MSc thesis defense presentation

<u>Dimitrios Nikolopoulos defends his</u> <u>MSc thesis</u>

Date: Wednesday, 19 Mar

2014

Thesis title: Randomly-oriented

RKD-trees

Ioannis Emiris

Committee: • D. Gounopoulos

Manolis Koubarakis

Thesis abstract

Consider a set S of points in a real D-dimensional space RD, where distances are defined using function $\Delta: RD \times RD \to R$ (the Euclidean metric). Nearest neighbor search is an optimization problem for finding the closest points in S to a given query point $q \in RD$. Given a positive real $\epsilon > 0$ then a point $p \in S$ is a $(1+\epsilon)$ -approximate nearest neighbor of the query point $q \in RD$ if $dist(q, p) \le (1+\epsilon)dist(q, pnn)$ where $pnn \in S$ is the true nearest neighbor to q. If the data that is expressed in high- dimensional space RD lies closer to an embedded manifold M of dimension d, where $d \blacksquare D$, then, we show the data may be preprocessed into the Randomly-oriented RKD-trees structure and we provide a near optimal bound on the number of levels required to reduce the size of its cells by a factor $s \ge 2$. We show the data may be preprocessed into the structure in $O \blacksquare \blacksquare D \cdot N \cdot \log N \blacksquare \blacksquare$ time and $O \blacksquare \blacksquare D \cdot N \blacksquare \blacksquare$ space, so that given a query point $q \in RD$ and $\epsilon > 0$, a $(1+\epsilon)$ -approximate nearest neighbor of q may ϵ high-dimensional data with an underlying low-intrinsic dimensional subspace.

Download date: 2025-02-22, 15:25.