MSc thesis defense presentation

Date:	Wednesday, 19 Mar
	2014
Thesis title:	Randomly-oriented
	RKD-trees
Committee:	Ioannis Emiris
	• D. Gounopoulos
	Manolis Koubarakis

Dimitrios Nikolopoulos defends his MSc thesis

Thesis abstract

Consider a set S of points in a real D-dimensional space RD, where distances are defined using function $\Delta : RD \times RD \rightarrow R$ (the Euclidean metric). Nearest neighbor search is an optimization problem for finding the closest points in S to a given query point $q \in RD$. Given a positive real $\varepsilon > 0$ then a point $p \in S$ is a $(1+\varepsilon)$ -approximate nearest neighbor of the query point $q \in RD$ if dist $(q, p) \leq (1 + \varepsilon)$ dist(q, pnn) where pnn $\in S$ is the true nearest neighbor to q. If the data that is expressed in high- dimensional space RD lies closer to an embedded manifold M of dimension d, where $d \blacksquare D$, then, we show the data may be preprocessed into the Randomly-oriented RKD-trees structure and we provide a near optimal bound on the number of levels required to reduce the size of its cells by a factor $s \ge 2$. We show the data may be preprocessed into the structure in $O \blacksquare D \cdot N \cdot \log N \blacksquare$ time and $O \blacksquare D \cdot N \blacksquare$ space, so that given a query point $q \in RD$ and $\varepsilon > 0$, a $(1+\varepsilon)$ -approximate nearest neighbor of q may ε high-dimensional data with an underlying low-intrinsic dimensional subspace.

Download date: 2025-03-02, 16:45.