MSc thesis defense presentation

Tuesday, 28 Feb 2017
16:00
School of Electrical and
Computer Engineering
(old buildings), 1.1.31
Learning Poisson
Binomial Distributions
with Differential Privacy
Dimitris Fotakis
• <u>Aristeidis T.</u>
Pagourtzis
• Efstathios Zachos

Agamemnon Giannakopoulos defends his MSc thesis

Thesis abstract

This thesis tries to leverage two major research areas. The first area concerns the Distribution Learning Theory and the second the Differential Privacy. More specific, given a highly efficient algorithm which learns with ε -accuracy a Poisson Binomial Distribution we try to study its Differential Privacy property. We show that the Algorithm achieves Differential Privacy under specific circumstances (regarding PBD nature). If the PBD close to a (n,k)-Binomial form the algorithm is Differential Privacy. If the PBD is close to a k-sparse form algorithm's privacy depends on PBD cardinality.

Download date: 2024-04-26, 22:57.