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Abstract

Typically, Erd■s–Pósa properties reveal relations between covering and packing invariants in combinatorial

structures. The origin of the study of such properties comes from the celebrated Erd■s–Pósa Theorem (1695), stating

that there is a function f : N → N such that for every k ∈ N and for every graph G, either G contains k vertex-disjoint

cycles or there is a set X of f(k) vertices in G meeting all cycles of G. In particular, Erd■s and Pósaa proved this

result for f(k) = O(k · log k) and showed that this bound is optimal. Given a graph J, we denote by M(J) the set of all

graphs that can be contracted to J (also called models of J). Robertson and Seymour proved that the class M(J)

satisfies the Erd■s–Pósa property if and only if J is planar. Notice that this can be seen as the (qualitatively tight)

extension of the Erd■s–Pósa Theorem (take J = θ2 where, in general, θr is the graph consisting of two vertices and r

parallel edges between them). The emerging question is whether (and when) the function involved in the above

proposition can match the (optimal) O(k log k) bound of Erd■s–Pósa and whether this bound can be improved under

several assumptions on the considered graphs. Given two graphs H and G, we denote by packH (G) as the maximum

number of vertex-disjoint models of H in G. We also denote by cover_H (G) the minimum number of vertices that

intersect all models of H in G. We prove the following result. Theorem 1. There exist a function f : N → N such that

for every two positive integers r, q and every graph G excluding K_q as a minor, it holds that cover_θ_r (G) ≤ f (r) ·

pack_θ_r (G) · log q. Our proof can be adapted for the edge-variant of the same theorem (where we consider edge

coverings and edge-disjoint models). Our results also imply that, for every r, the problems of computing the values of

pack_θ_r , coverv_θ_r , as well as their “edge” counterparts admit log(OPT)-approximation (deterministic and

polynomial) algorithms. This improves existing results on the approximability of the above graph invariants. (Joint

work with: Dimitris Chatzidimitriou, Jean-Florent Raymond, and Ignasi Sau).
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