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Abstract

In this thesis, we study counting classes that lie below #P .

One approach, the most regular in Computational Complexity Theory, is the machine-based
approach. Classes like #L, span-L [1], and TotP , #PE [38] are defined establishing space
and time restrictions on Turing machine’s computational resources.

A second approach is Descriptive Complexity’s approach. It characterizes complexity classes
by the type of logic needed to express the languages in them. Classes deriving from this
viewpoint, like #FO [44], #RHΠ1 [16], #RΣ2 [44], are equivalent to #P , the class of AP -
interriducible problems to #BIS, and some subclass of the problems owning an FPRAS
respectively.

A great objective of such an investigation is to gain an understanding of how “efficient
counting” relates to these already defined classes. By “efficient counting” we mean counting
solutions of a problem using a polynomial time algorithm or an FPRAS.

Many other interesting properties of the classes considered and their problems have been
examined. For example alternative definitions of counting classes using relation-based op-
erators, and the computational difficulty of complete problems, since complete problems
capture the difficulty of the corresponding class. Moreover, in Section 3.5 we define the log-
space analog of the class TotP and explore how and to what extent results can be transferred
from polynomial time to logarithmic space computation.
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Chapter 1

Preliminaries

A decision problem can be considered as a language L. In many interesting cases, a relation
RL is associated with the language L, such that given some instance x of the problem the
answer is “yes” if and only if x ∈L if and only if there is some certificate y for which RL(x, y).

Definition 1.0.1 A deterministic finite automaton (DFA)M is a 5-tuple, (Q,Σ, δ, q0, F ),
consisting of a finite set of states Q, a finite set Σ of input symbols called the alphabet, a
transition function δ : Q× Σ→ Q, an initial state q0 ∈ Q, a set of accepting states F ⊆ Q.
Let w = a1a2...an be a string over the alphabet Σ. The automaton M accepts the string w if
a sequence of states, r0, r1, ..., rn, exists in Q with the following conditions: (1) r0 = q0, (2)
ri+1 = δ(ri, ai+1), for i = 0, ..., n− 1, (3) rn ∈ F .
A nondeterministic finite automaton (NFA) M is a 5-tuple, (Q,Σ,∆, q0, F ), where
Q,Σ, q0, F are as before and ∆ is a transition function ∆ : Q × Σ → P (Q) and P (Q)
denotes the power set of Q. For each state-symbol combination there may be more than one
next steps or none. The automaton M accepts the string w ∈ Σ∗ if a sequence of states,
r0, r1, ..., rn, exists in Q with the following conditions: (1) r0 = q0, (2) ri+1 = ∆(ri, ai+1), for
i = 0, ..., n− 1, (3) rn ∈ F .
A DFA (or an NFA) is considered as a finite directed graph with labels on its edges. This
graph is called the state transition graph of the DFA (NFA).

Definition 1.0.2 A deterministic Turing machine (DTM) is a quadrupleM = (K,Σ, δ, s),
where K is a finite set of states, s ∈ K is the initial state, Σ is a finite set of symbols (the
alphabet of M) and δ is a transition function, which maps K×Σ to (K∪{h, “yes”, “no”})×
Σ×{←,→,−}. We assume that K, Σ are disjoint sets and that h (the halting state), “yes”
(the accepting state), “no” (the rejecting state), and the cursor directions ←, →, and − are
not in K ∪ Σ.
In a similar way we define the k-tape Turing machine, k > 1, where δ is a program that
decides the next state and, for each of the k tapes, the symbol overwritten and the direction
of cursor motion by looking at the current state and the current symbol at each tape.
A nondeterministic Turing machine (NTM) is a quadruple M = (K,Σ,∆, s), where
K,Σ, s are as before and ∆ is a relation: ∆ ⊂ (K×Σ)×[((K∪{h, “yes”, “no”})×Σ×{←,→
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6 CHAPTER 1. PRELIMINARIES

,−}]. That is, for each state-symbol combination, there may be more than one appropriate
next steps.

A finitely long string x ∈ Σ∗ is required as input for a computation of a Turing machine. A
transducer is a Turing machine with output. At the end of the computation the contents
of an extra tape consist the output of the machine on a given input x. The output is valid
only if the machine stops in an accepting state. Moreover, the input tape is read-only (the
contents of the input tape cannot be overwritten) and the output tape is write-only (the
cursor never moves to the left). If in addition we assume that the input cursor only moves
to the right, the Turing machine is called one-way.
In many cases we describe the operation of a Turing machine using the notion of a config-
uration. Intuitively, a configuration contains a complete description of the current state of
the computation (the state q ∈ K, the symbol scanned by the cursor and the contents of all
tapes).
The space required by M on input x is the total number of work tape cells occupied at
the end of the computation (we do not count the space used on the input or output tapes).
We say that a Turing machine M operates within space bound f(n), if for any input x, M
requires space at most f(|x|). We say that a language L is in the class SPACE(f(n)) (resp.
NSPACE(f(n))) if there is a (nondeterministic) Turing machine with input and output
that decides L and operates within space bound f(n).

Definition 1.0.3 (i) The complexity class L is the class containing decision problems that
can be solved by a deterministic Turing machine using a logarithmic amount of space, i.e.
L = SPACE(logn).
(ii) NL = NSPACE(logn).
(iii) The class 1NL is the class of languages that can be decided by one-way nondeterministic
log-space bounded Turing machines.

The complexity class TIME(f(n)) (NTIME(f(n))) is the set of languages that can be
decided by some (nondeterministic) Turing machine within time bound f(n).

Definition 1.0.4 (i) The complexity class P is the class
∪

k∈NTIME(nk).
(ii) NP =

∪
k∈NNTIME(nk). Alternatively, a language L is in NP if and only if there is a

polynomially decidable relation R and a polynomial p, such that L= {x : there is some y, |y| 6
p(|x|) and, (x, y) ∈ R}.

Definition 1.0.5 A nondeterministic Turing machine is called unambiguous if it has the
following property: For any input x there is at most one accepting computation.
UP is the class of languages that can be decided by unambiguous polynomial-time bounded
Turing machines.
UL is the class of languages that can be decided by unambiguous log-space bounded Turing
machines.
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FewP and FewL are the classes of languages accepted by NP , NL Turing machines respec-
tively, having polynomial number of accepting paths.

Definition 1.0.6 For any language L, we define L̄ = Σ∗\L and for any class C of languages,
we define co-C = {L̄ : L ∈ C}.

The previous classes contain languages, i.e. decision problems. At this point, we introduce
classes that their members are functions. The function problem associated with the language
L, denoted FL, is the following computational problem: Given x, find a string y such that
RL(x, y) if such a string exists, otherwise return “no”.

Definition 1.0.7 The class of all function problems associated with languages in NP is
called FNP . FP is the subclass of FNP containing only the problems that can be solved in
polynomial time.
FL is the class of function problems associated with languages in NL that can be solved in
logarithmic space.

Definition 1.0.8 The counting problem associated with the language L, denoted #L, is the
following: Given x, how many y are there such that (x, y) ∈ RL?
#P is the class of counting problems associated with languages in NP .
Alternatively, for a machine M , let the function accM : {0, 1}∗ → N be defined so that
accM(x) is the number of accepting computations of M on x. Define #P := {f | f = accM
for some NP -machine M}.

Definition 1.0.9 For a transducer M , let the function spanM : {0, 1}∗ → N be defined so
that spanM(x) is the number of different valid outputs of M on x. Define span-P := {f |
f = spanM for some NP -transducer M}.

Definition 1.0.10 A language L is in the class PP if there is a nondeterministic polynomial-
time bounded Turing machine M such that, for all inputs x, x ∈L if and only if more than
half of the computations of M on input x end up accepting. We say that M decides L “by
majority”.
A language L is in the class PL if there is a nondeterministic log-space bounded Turing
machineM such that, for all inputs x, x ∈L if and only if more than half of the computations
of M on input x end up accepting.

Proposition 1.0.1 (i) NP ⊆ PP .
(ii) NL ⊆ PL

Definition 1.0.11 Log-space reductions between functions:

• Log-space functional many-one reduction (log-space Karp) f 6l
m g: ∃h ∈ FL, ∀x

f(x) = g(h(x)).
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• (Nonadaptive) Log-space functional Turing reduction (log-space Cook) f 6l
T g: Such

a reduction is computed by a deterministic log-space transducer that asks queries to
the oracle function g. The L-transducer has an additional unbounded oracle tape on
which a query can be written one-way, the query-answer can be read two-way and each
query-answer is erased before a new query is being constructed.

• Log-space metric reduction (log-space Cook[1]) f 6l
1−T g: It is a log-space functional

Turing reduction in which the L-transducer may ask at most one query to the oracle
function g.

For simplicity we use the notions “Karp”, “parsimonious”, “Cook”, “Cook[1]” reductions
and we assume that the reader is familiar with these types of reductions.

Definition 1.0.12 For function classes C and C ′, define
C − C ′ = {h | there exist functions f ∈ C and f ′ ∈ C ′ such that h = f − f ′}.

Definition 1.0.13 For every n ∈ N, a n-input, single-output Boolean circuit C is a
directed acyclic graph with n sources (vertices with no incoming edges) and one sink (vertex
with no outgoing edges). All nonsource vertices are called gates and are labelled with one of
∨, ∧ or ¬ (i.e. the logical operations OR, AND, and NOT).
The vertices labelled with ∨ and ∧ have fan-in (i.e., number of incoming edges) equal to 2
and the vertices labelled with ¬ have fan-in 1. The size of C, denoted as |C|, is the number
of vertices in it. The depth of a circuit is the length of the longest directed path from an
input node to the output node.
If C is a Boolean circuit, and x ∈ {0, 1}n is some input, then the output of C on x, denoted
by C(x), is defined in the natural way. More formally, for every vertex v of C, we give it a
value val(v) as follows: If v is the ith input vertex then val(v) = xi and otherwise val(v) is
defined recursively by applying vs logical operation on the values of the vertices connected to
v. The output C(x) is the value of the output vertex.

Definition 1.0.14 Let T : N → N be a function. A T(n)-size circuit family is a
sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs and a single output, and its
size |Cn| 6 T (n) for every n. We say that a language L is in SIZE(T(n)) if there exists a
T (n)-size circuit family {Cn}n∈N such that for every x ∈ {0, 1}n , x ∈ L⇔ Cn(x) = 1.

Definition 1.0.15 A Boolean circuit is monotone if it contains only AND and OR gates,
and no NOT gates. Such a circuit can only compute monotone functions, defined as follows.
For x, y ∈ {0, 1}n , we denote x ≼ y if every bit that is 1 in x is also 1 in y. A function
f : {0, 1}n → {0, 1} is monotone if f(x) 6 f(y) for every x ≼ y.

Definition 1.0.16 Let C be a Boolean circuit. An AND gate v in C is said to be a skew
gate if it has at most one input that is not an input of C. The input of v that is not an
input to C is called a non-skew input of v. The circuit C is said to be a skew circuit if
all AND gates in it are skew gates. A family {Cn} of Boolean circuits is said to be a skew
circuit family if all its members are skew circuits.
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Definition 1.0.17 A circuit family {Cn} is P-uniform if there is a polynomial-time Turing
machine that on input 1n outputs the description of the circuit Cn.
A circuit family {Cn} is logspace-uniform if there is an implicitly logspace computable
function mapping 1n to the description of the circuit Cn.

Definition 1.0.18 (i) For every d, a language L is in NCd if L can be decided by a family
of circuits {Cn} where Cn has poly(n) size, depth O(logdn) and bounded fan-in. The class
NC is

∪
i>1NC

i.

(ii) For every d, a language L is in ACd if L can be decided by a family of circuits {Cn}
where Cn has poly(n) size, depth O(logdn) and unbounded fan-in. The class AC is

∪
i>1AC

i.

Proposition 1.0.2 For every i ∈ N, NCi ⊆ ACi ⊆ NCi+1.

Arithmetic circuits are defined just as Boolean circuits, except that the gates compute
the sum and the product of their inputs instead of computing the OR and AND functions.
We denote a gate computing the sum (product) of its inputs as a PLUS (MULT resp.) gate.

Definition 1.0.19 We define the degree of an arithmetic circuit to be the algebraic degree
of the polynomial computed by the circuit.
Thus, in a Boolean circuit the constants have degree zero, the circuit inputs have degree one,
the degree of an OR vertex is the maximum of the degrees of its inputs, and the degree of an
AND vertex is the sum of the degrees of its inputs.
Analogously, in an arithmetic circuit the constants have degree zero, the circuit inputs have
degree one, the degree of a PLUS vertex is the maximum of the degrees of its inputs, and the
degree of a MULT vertex is the sum of the degrees of its inputs.
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Chapter 2

Log-space counting classes

2.1 The classes #L and span-L

In this section, we introduce the log-space analogs of the classes #P and span-P. These
classes were introduced by Àlvarez and Jenner. The results of this section can be found in
[1].
Functions in #L count the number of accepting computations of a nondeterministic log-
space-bounded Turing machine, whereas functions in span-L count the number of different
output values of such a machine with additional output tape.

Definition 2.1.1 Define #L := {f | f = accM for some NL-machine M}.

Definition 2.1.2 Define span-L := {f | f = spanM for some NL-transducer M}.

It is easily verified that FP ⊆ #P . Moreover, in [31] it was shown that #P ⊆ span-P . The
corresponding statements hold for log-space classes.

Proposition 2.1.1 FL ⊆ #L ⊆ span-L.

Proof. The first inclusion can be proved easily.
For the second inclusion, let f ∈ #L andM the NL-machine witnessing f . We can construct
an NL-transducer M ′ that simulates M , accepts iff M accepts and outputs the computation
path. Then f = accM = spanM ′ , and hence f ∈ span-L. �

We present some complete functions for the classes #L and span-L, which are counting
versions of NL-complete automata and graph problems.

The ranking function for DFA, #DFA:
Input : An encoding of a DFA M and a string x ∈ {0, 1}∗.
Output : The number of words lexicographically smaller than or equal to x accepted by M.

11



12 CHAPTER 2. LOG-SPACE COUNTING CLASSES

The ranking function for NFA, #NFA:
Input : An encoding of a NFA M and a string x ∈ {0, 1}∗.
Output : The number of words lexicographically smaller than or equal to x accepted by M.

Comment 2.1.1 The decision version of these two problems is the nonemptiness problem
for M, where M is a DFA or an NFA respectively. This problem is NL-complete with respect
to log-space many-one reductions [27].

Theorem 2.1.1 (i) #DFA is log-space many-one complete for #L.
(ii) #NFA is log-space many-one complete for span-L.

Proof. (i) We can construct an NL-machine N, which on input a DFA M and x ∈ {0, 1}∗
guesses a string y 6 x bit-by-bit. For every new bit, N records the corresponding state
of M and accepts if a final state is ever reached. Since M is a DFA, there is exactly one
computation path of N for any guessed word y. Furthermore, the number of accepting
paths of N corresponds to the number of words smaller or equal to x accepted by M. So,
#DFA ∈ #L.
For the hardness property, let f ∈ #L and N the NL-machine witnessing f . Let p(|x|) be the
polynomial that bounds the running time of N on input x. There exists a function h ∈ FL
such that f(x) = #DFA(h(x)). Define h(x) := (< Nx >, 1

p(|x|)), where < Nx > denotes
the encoding of a state transition graph of a DFA constructed as follows. Let C(N,x) denote
the set of all configurations of N on input x, c(start,x) the start configuration, C(acc,x) the set
of all accepting configurations, and sink denote an element not contained in C(N,x). Then,
Nx := (C(N,x)∪{sink}, C(N,x)∪{sink}, δ, c(start,x), C(acc,x)), where for all ci, cj ∈ C(N,x)∪{sink}
:

δ(ci, β) :=

{
cj if ci reaches cj in one step in a computation of N on x,
sink otherwise.

The automaton Nx is a DFA and can be constructed in logarithmic space. Furthermore,
the number of accepting computation paths of N on input x equals the number of words
accepted by Nx of length at most p(|x|). The above construction can be made such that the
alphabet of Nx is {0, 1}, and then f(x) equals the words accepted by Nx lexicographically
smaller than or equal to 1q(|x|), for some polynomial q.
(ii) To prove #NFA ∈ span-L, construct an NL-transducer N, which on input an NFA M
and x ∈ {0, 1}∗ does the following. N guesses and outputs a word y 6 x bit-by-bit, guessing
and recording a new state of M consistent with each guessed bit and the transition table of
M. N accepts if an accepting state of M is ever reached. Since M is an NFA, a word y can
cause different sequences of transitions and there may be more than one valid computation of
N with the same output. But the number of different valid outputs of N, spanN(< M,x >),
corresponds to the number of words smaller or equal to x accepted by M.
To see that #NFA is span-L hard, consider a function f ∈ span-L and the NL-transducer N
that witnesses f via its span. There exists a function h ∈ FL such that f(x) = #NFA(h(x)).
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Define h(x) := (< Nx >, 1p(|x|)), where Nx := (C(N,x) ∪ {sink}, {0, 1}, δ, c(start,x), c(acc,x)),
where the notation is the same as in (i). For all ci, cj ∈ C(N,x) suct that ci reaches cj in one
step in a computation of N on x, and β ∈ {0, 1, λ} we define:
δ(ci, β) := cj if β ∈ {0, 1} and the output in cj is β or

β = λ and in cj no output occurs.
The number of different words smaller or equal to 1p(|x|) that are accepted by Nx is exactly
the number of different valid outputs the transducer N can produce on input x. �

As a consequence of the previous proof, a restrictive version of #NFA, the census function,
is also span-L-complete.

The census function for NFA, #NFA6n:
Input : An encoding of a NFA M and 1n.
Output : The number of words of length up to n accepted by M.

Another two complete functions for #L and span-L can be obtained by defining counting
versions of the graph problem, REACHABILITY, which is NL-complete.

#Path:
Input : A directed graph G = (V,E) with vertex set V = {1, 2, ..., n}.
Output : The number of different paths of length at most n from vertex 1 to vertex n.

#SpecialPath:
Input : A directed labelled graph G = (V,E) with vertex set V = {1, 2, ..., n} and edges
labelled over L, and L′ ⊆ L.
Output : The number of lexicographically different paths of length at most n from vertex 1
to vertex n, with labels in L′ deleted.

Another way to define two graph problems complete for #L and span-L would be to count
(simple) paths, allowing only acyclic graphs as inputs.

Corollary 2.1.1 (i) #Path is log-space many-one complete for #L.
(ii) #SpecialPath is log-space many-one complete for span-L.

Proof. (i) Let G = (V,E) and M the NL-machine that solves REACHABILITY on input
G: MachineM guesses a path starting from vertex 1 of length at most n in logarithmic space.
A computation path is accepting iff the path ends at vertex n, and rejecting otherwise. Then,
the number of M ’s accepting computation paths is equal to #Path(G), hence #Path(G) ∈
#L.
For the hardness property, consider f ∈ #L, and N the NL-machine witnessing f . Construct
in logarithmic space the configuration graph GN of N. The number of accepting computation
paths of N is equal to #Path(GN).
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(ii) Let G=(V, E) and M the NL-transducer that does the following. M solves REACH-
ABILITY on input G, but it outputs only the guessed edges labelled over L \ L′. Hence,
#SpecialPath ∈ span-L.
Moreover, #SpecialPath is span-L-hard. Let the function f that, given the encoding of
an NFA M and a string 1n, returns the number of words lexicographically smaller than 1n

accepted by M. Convert the state transition graph of M to a graph GM with n states. The
edges of this graph are labelled over L = {0, 1, λ}. Define L′ to be {λ}. Then,
f(< M >, 1n) = #SpecialPath(GM). Since, the first problem is span-L-hard and the new
graph, GM , can be constructed easily in logarithmic space, the proof is complete. �

Comment 2.1.2 The problem #Path can be defined as the problem of computing the num-
ber of (simple) paths from vertex 1 to vertex n in a directed acyclic graph (DAG). This
problem is also #L complete.
Contrary to the previous versions of counting paths in a graph, the problem of counting simple
paths of a particular length in a (general) directed graph is #P complete.

We just showed membership in span-L for the counting versions of an automata and a graph
problem. The next section present other problems that belong to span-L.

2.2 Problems belonging to span-L

Consider the functions

#3SAT :
Input : A boolean formula ϕ in 3-conjunctive normal form.
Output : The number of satisfying assignments of ϕ.

#UN3SAT :
Input : A boolean formula ϕ in 3-conjunctive normal form.
Output : The number of nonsatisfying assignments of ϕ.

Whereas the first function is #P complete with respect to log-space many-one reduc-
tions, we show that the second function #UN3SAT is in span-L. First, we give the following
lemma which is proved using the same idea. Consider the set

EV AL3SAT := {ϕ; b1b2...bn|bi ∈ {0, 1}, ϕ boolean formula in 3-conjunctive normal
form, and b1...bn is a satisfying assignment for ϕ}.

Lemma 2.2.1 (i) EV AL3SAT ∈ 1NL.
(ii) EV AL3SAT ∈ co-1NL.
(iii) EV AL3SAT ∈ L, and hence EV AL3SAT ∈ NL.
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Proof. (i) Let M be an 1NL-machine that on input (x̃11, x̃12, x̃13), ..., (x̃m1, x̃m2, x̃m3); b1b2...bn
guesses a clause. The head of the input tape is moved to that clause and its three literals
x̃i1, x̃i2, x̃i3 are stored on the working tape. The head keeps moving until the relevant bits
of the assignment are reached and then checks whether the clause is unsatisfied. Similarly,
that the input is not well-formed can be easily guessed and verified. M accepts if the clause
is unsatisfied.

(ii) It follows from (i).
(iii) It can be easily proved. �

Proposition 2.2.1 #UN3SAT ∈ span-L.

Proof. We construct an NL-transducer M such that on input a formula ϕ in 3-conjunctive
normal form, spanM(ϕ) equals the number of nonsatisfying assignments of ϕ.

On input x, M first checks whether x is of the required form. If this is not the case
M rejects and spanM(x) = 0. If x is a well-formed ϕ, M counts the number of different
variables in ϕ, guesses a clause and stores its three literals x̃i1, x̃i2, x̃i3 on its working tape.
Then M guesses bit-by-bit an assignment of appropriate length, writing every guessed bit on
the output tape. At the same time, when the relevant bits of the assignment are reached, M
checks if they falsify the clause x̃i1∨ x̃i2∨ x̃i3. If this is the case, then M accepts and outputs
the guessed truth assignment for the formula ϕ. �

#DNF :
Input : A boolean formula F in DNF.
Output : The number of satisfying truth assignments for F .

Theorem 2.2.1 #DNF ∈ span-L.

Proof. A DNF formula is a disjunction of terms, each of which is a conjunction of literals
of the form x or x. Our goal is to estimate the number of assignments to the variables that
satisfy this formula.

The algorithm proving that #DNF is in span-L is simple and clear: Let M be an
NL-transducer, D1, ...Dm the terms of the input F and x1, ..., xn the variables of F . On
input F in DNF, M guesses a term Di nondeterministically. Then, for every variable xj,
1 6 j 6 n, M outputs a truth value for xj in the following way: For j running from 1 to
n, M outputs “1”, if Di contains xj, outputs “0”, if Di contains xj, outputs nondetermin-
istically “1” (“TRUE ”) or “0” (“FALSE”), if xj and its negation xj don’t appear in Di,
and stops rejecting if both xj and xj appear in Di. The checking of xj ∈ Di (and xj ∈ Di)
can be done by moving a cursor, so in logarithmic space. Moreover, different paths of this
transducer lead to the same truth assignment, but the number of distinct outputs is equal
to the number of truth assignments for F . �
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The next problem is the problem of counting the different nodes appearing in a path
from node 1 to node n of a directed graph G.

#PATH NODES:
Input : A directed graph G = (V,E) with vertex set V = {1, 2, ..., n}.
Output : The number of nodes v, such that there is a path P from node 1 to n and v ∈ P .

Theorem 2.2.2 #PATH NODES ∈ span-L.

Proof. Given a graph G, an NL transducer M guesses a vertex v and a path from vertex
1 to vertex n. If v appears in the path, then M outputs vertex v. The computation can be
done in logarithmic space since M deletes the current node of the path before guessing the
next node. M stores on its working tape only the initial guessed vertex v. Some vertex can
be seen on the output many times, but the number of different outputs is the number we
would like to compute. �

#CY CLE NODES:
Input : A directed path G = (V,E) with vertex set V = {1, 2, ..., n}.
Output : The number of nodes v, such that there is a cycle C in G and v ∈ C.

Theorem 2.2.3 #CY CLE NODES ∈ span-L.

Proof. The proof is very similar to the previous proof. A node v is guessed and a cycle
starting from v. If such a cycle is found then v is written on the output. �

2.3 #L is easy, but span-L is hard

With the theorems of this section, we show that the class #L is included in FP, but,
surprisingly, that span-L is a hard log-space counting class. More precisely, if span-L ⊆ FP ,
then the polynomial time hierarchy collapses to P.

In [1], it was shown that #L ⊆ NC2, and since NC2 ⊆ FP , #L ⊆ FP . Here, we
prove that the number of accepting paths of an NL-machine can be computed in polynomial
time.

Theorem 2.3.1 #L ⊆ FP .

Proof. To prove the theorem, we show that #Path can be computed by a deterministic
Turing machine M in polynomial time.

Given a directed graph G(V, E) with vertex set V = {1, 2, ..., n}, M performs a pro-
cedure in n steps. In fact, M constructs a n × n matrix, in which the (i, j)th element
contains the number of paths from vertex 1 to vertex i of length at most j. In the j-th step,
j = 0, 1, ..., n− 1, M saves, for each vertex i, i ∈ {1, ..., n}, the number of paths of length at
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Figure 2.1: Inclusion relations among log-space and poly-time counting classes

most j from vertex 1 to vertex i. In order M to compute the paths of length at most j from
1 to some vertex k, it finds the vertices that have edges going to k and sums the number of
paths of length at most j − 1 from 1 to them. These numbers have already been saved in
j − 1-th step. At the end, M returns the content of the (n, n)th element, i.e. the number of
paths from 1 to vertex n of length at most n. Obviously, this algorithm needs polynomial
time.

Since FP is closed under log-space functional many-one reductions, #L ⊆ FP . �

Some interesting observations about #L, span-L and the class FLNL are proved in [1].

Proposition 2.3.1 (i) #L ⊆ NC2.
(ii) FLNL ⊆ NC2.
(ii) FLNL ⊆ #L if and only if NL = UL.
(iii) FLNL ⊆ span-L.

In the following we will show that the complexity of span-L is closely tied to the com-
plexity of #P . The two classes are log-space metric reducible to each other, i.e. FL1(#P ) =
FL1(span-L).

Theorem 2.3.2 span-L ⊆ #P .

Proof. Let f be a function in span-L such that on input x, f(x) = spanN(x), for some
NL-transducer N. Any output value y of N, on input x, satisfies |y| 6 p(|x|), where p is a
polynomial. Obviously, the set A := {x; y|x, y ∈ {0, 1}∗, y is a valid output of N on x} is
in NL. Since NL ⊆ P , there is a P-algorithm for deciding membership in A. Construct an
NP-machine M which on input x guesses a string y, |y| 6 p(|x|), and verifies that x; y ∈ A
executing the P-algorithm for A on x; y. Then M has exactly one accepting computation for
each valid output y of N. Thus, f ∈ #P . �

In the rest of this section, we present results we need to prove that #P is log-space
metric reducible to span-L.
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Theorem 2.3.3 (Valiant [49])
#3SAT is complete for #P with respect to log-space many-one reductions.

Theorem 2.3.4 #P ⊆ FL1(span-L).

Proof. Since #3SAT is complete for #P with respect to log-space many-one reductions, it
suffices to show that #3SAT ∈ FL1(span-L).

We will show that #3SAT can be computed by a deterministic L-transducer M that
asks one query to #UN3SAT . This yields #3SAT ∈ FL1(span-L). On input x, M checks
that x is a formula of the required form. If this is not the case, M outputs 0. If x is a
formula ϕ in 3-conjunctive normal form, M copies ϕ on the oracle tape, queries its oracle for
#UN3SAT (ϕ) and has two-way access to #UN3SAT (ϕ) on its oracle tape. M now computes
the difference 2n − #UN3SAT (ϕ), where n denotes the number of different variables in ϕ
and outputs this value. Clearly, #3SAT = 2n −#UN3SAT (ϕ).

This difference can be computed in logarithmic space (since subtraction can be done
in deterministic logspace), but the value 2n must be stored in O(logn) space, and this can
be done by storing just n in O(logn) space. �

Corollary 2.3.1 FL1(span-L) = FL1(#P ), i.e. every function in #P is metric reducible
to a function in span-L and vice versa.

This means that span-L and #P share the same complete functions with respect to
metric reducibility. Thus, we can add the functions #NFA and #SpecialPath to the list of
functions complete for #P with respect to log-space metric reducibility. We mention here
again that these two functions are counting versions of NL-complete problems.

Let us define the “complements” #co-DFA and #co-NFA of the already introduced
functions #DFA and #NFA:

#co-DFA:
Input : An encoding of a DFA M and a string 1n.
Output : The number of words of length up to n that are not accepted by M.

#co-NFA:
Input : An encoding of an NFA M and a string 1n.
Output : The number of words of length up to n that are not accepted by M.

Following the proof of Theorem 2.1.1 (i) and replacing rejecting with accepting states
of Nx and vice versa, we can easily prove that #co-DFA is #L-complete. On the contrary,
#co-NFA is not span-L-complete with respect to log-space many-one reducibility unless
NL = P = NP .

Theorem 2.3.5 #co-NFA is log-space many-one complete for #P .
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Although span-L and #P are very similar in computation power, they do not seem
to be the same class. The inclusion #P ⊆ span-L would imply that there exists an NL-
transducer M witnessing the #P -complete function #3SAT . Then, by simulating M and
checking that M has a valid output on input ϕ, we could decide 3SAT with an NL compu-
tation.

Proposition 2.3.2 If span-L = #P , then NL=P=NP.

Combining PH ⊆ P PP , which was proved by Toda in [46], P#P = P PP [6] and
Corollary 2.3.1, we have the following.

Corollary 2.3.2 PH ⊆ P span−L = P#P = P PP .

Furthermore, since PNP ⊆ P#P , Corollary 2.3.1 implies that span-L is Turing hard
for ∆p

2 = PNP , the second deterministic level of the polynomial-time hierarchy.
It is also unlikely that every function in span-L can be computed in polynomial time.

Corollary 2.3.3 span-L ⊆ FP if and only if P = NP = PH = P#P .
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Chapter 3

Properties of counting classes below
#P

3.1 #P, span-P and the operator #·
We would like to study some properties of counting classes. For this purpose, we will need the
machine-based definition of the class #C by Valiant [50] and the predicate-based definition
of the operator #· by Toda [47]. This line was followed in many papes later, like [51].

An excellent review of such “definition adventures” can be found in [24].

Definition 3.1.1 For any class C, define #C =
∪

A∈C(#P )
A, where by (#P )A, we mean the

functions counting the accepting paths of nondeterministic polynomial-time Turing machines
having A as their oracle.

Definition 3.1.2 For any class C, define # · C to be the class of (total) functions f , such
that for some C-computable, two-argument predicate R and some polynomial p, for every
string x it holds that: f(x) = |{y | |y| = p(|x|) and R(x, y)}|.

Comment 3.1.1 (i) Because of the characterization of the class NP via P predicates, it
holds that #P = # · P .

(ii) When using an oracle, it does not matter whether the oracle or its complement is
used, so #NP = #coNP .

(iii) The class # ·NP is the class of functions “counting” the number of appropriate-
length second arguments that cause some predicate, computable by an NP machine, to be
true for the given first argument. It is easy to prove that this class is exactly the class of
functions “counting” the number of accepting paths of an NP machine that for every input
and every possible computation path asks one question to an NP oracle at the end of the path
and returns the oracle’s answer.

We give here a sketch of the proof: A function which counts the y’s that make
true an NP-computable predicate R, can be witnessed by an NP machine that guesses a y
of appropriate length and asks the question “is R(x, y) true?” to the NP oracle for R.

21



22 CHAPTER 3. PROPERTIES OF COUNTING CLASSES BELOW #P

Conversely, a function which “counts” the accepting paths of an NP machine M with a
final NP oracle call, can be viewed as a function that “counts” the y’s of the NP-computable
predicate R = {(x, y) | y is an accepting path of M on input x}. The predicate R can be
computed by the NP machine M ′, which on input (x, y) simulates the M ’s path y on input x
and at the end instead of calling the oracle for an NP problem, M ′ simulates the NP machine
that solves this problem. Clearly, R(x, y) is true iff M ′ has at least one accepting path on
input (x, y).

(iv) Similarly, # · coNP is the class of functions “counting” the number of accepting
paths of an NP machine which can ask only one question to a coNP oracle at the end of any
computation path and returns the oracle’s answer.

(v) It is not hard to see that the class that “counts” the accepting paths of NPNP

machines is # · PNP . Thus, #NP = # · PNP .

We continue with some results that demonstrate the connection between classes defined
with the machine-based approach and classes defined with the operator #·.

Theorem 3.1.1 (i) #P = # ·NP ⇐⇒ UP = NP .
(ii) # · coNP = # · PNP = #NP .
(iii) # ·NP = # · coNP ⇐⇒ NP = UPNP ⇐⇒ NP = coNP .
(iv) P#·NP = P#·coNP .

Proof. (i) (=⇒) It is immediate from the definitions of the classes UP and NP that
UP ⊆ NP . Let A ∈ NP . We show that its characteristic function belongs to # ·NP = #P .
This means that there is an NP machine which on input x has one accepting path if x ∈ A
and zero accepting paths if x ̸∈ A. Equivalently, A ∈ UP .

Since A ∈ NP , there is an NP machineM for A. There is also a polynomial p that gives
the length of the computation paths of M . We define the predicate R such that R(x, 0p(|x|))
is true if M has at least one accepting path on input x, false if M has no accepting path on
input x and R(x, y), y ̸= 0p(|x|), is always false. The predicate R is NP -computable. Let the
NP machine M ′ which on input (x, 0p(|x|)) simulates M on input x, whereas on input (x, y),
y ̸= 0p(|x|), rejects the input. Obviously M ′ computes R.

So f(x) = |{y | p(|x|) = |y| andR(x, y)}| is the characteristic function of A and belongs
to # ·NP .

(⇐=) From the definitions 3.1.1 and 3.1.2 we have that #P ⊆ # ·NP .
Let f ∈ # ·NP and f(x) = |{y | p(|x|) = |y| and R(x, y)}|, for some R and p. There is an
NP machine M that computes R. Because of our assumption that UP = NP , we can have
a UP machine, M ′, for R. This means that on input (x, y), M ′ has exactly one accepting
path if R(x, y) is true, and no accepting path if ¬R(x, y) is true. Define the NP machine
N , which on input x guesses a string y, |y| = p(|x|) and simulates M ′ on input (x, y). Then
the accepting paths of N are equal to the number of y’s that make R(x, y) true.

So f ∈ #P .
(ii) We use here the characterization of # · coNP mentioned in the comment 3.1.1 (iv).

It holds that # · coNP ⊆ #NP . A function witnessed by an NP machine M which at the
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end asks one question of the form “x ∈ A?” to a coNP oracle, can be witnessed by an NP
machine M ′ which at the end asks the question “x ∈ A?” to an NP oracle and returns the
opposite of the oracle’s reply. Obviously, M and M ′ are the same except for their oracles.

Conversely, #NP ⊆ # · coNP . Let M the NPNP machine which witnesses a function
f ∈ #NP asking questions to an NP oracle A. We describe the construction of the NP
machine M ′, which has the same number of accepting paths as M , asking only one coNP
oracle question at the end, and returning the oracle’s answer.

The machine M ′ simulates M on the same input x. When M makes an oracle call, M ′

guesses the answer of the oracle and continues the simulation of M with this oracle answer.
At the end, M ′ remembers the “yes” guesses and the “no” guesses.

We note here that there is an NP machine N1 that on input < x1, x2, ..., xn > accepts
iff x1 ∈ A ∧ x2 ∈ A ∧ ... ∧ xn ∈ A and a coNP machine N2 that on input < y1, y2, ..., ym >
accepts iff y1 ∈ A ∧ ... ∧ ym ∈ A. Here every “xi ∈ A?”, 1 6 i 6 n, symbolizes an NP oracle
call that was answered positively by M ′’s guess and every “yi ∈ A?”, 1 6 i 6 m, symbolizes
an NP oracle call that was answered negatively by M ′’s guess.

1. IfM withM ′’s guesses for the oracle answers rejects the input, thenM ′ makes a trivial
question “x ∈ B?” to a coNP oracle, where x ̸∈ B. The machineM ′ returns the answer
of the coNP oracle and rejects the input.

2. If M with M ′’s guesses for the oracle answers accepts the input, then M ′ accepts the
input only if its guesses are correct. For this, M ′ does the following:

• M ′ checks if its “yes” guesses are correct. M ′ simulates a computation path
p of N1 on input < x1, x2, ..., xn >. If N1 rejects, then M ′ halts and rejects.
But if N1 accepts, then M ′ continues the computation and checks that p is the
lexicographically smallest accepting path of N1 on input < x1, x2, ..., xn >. This
checking can be done with a coNP oracle call and we include it in the next step.

The set S = {(x, p) | p is the lexicographically smallest accepting path of N1

on input x} belongs to coNP, since there is a coNP machine N for S. N guesses
a path p′ of N1, simulates N1’s computation on this path and accepts iff p6 p′ or
p′ is a rejecting path.

• M ′ checks if its “no” guesses are correct.
M ′ poses the question “y1 ∈ A ∧ ... ∧ ym ∈ A ∧ (< x1, x2, ..., xn >,p) ∈ S?”
to a coNP oracle. The last part of the question is for the accepting path p of
N1. If the oracle’s answer is “no”, then M ′ rejects the input. If the coNP oracle
answers positively, then all the guesses ofM ′ are correct andM ′ accepts the input.
Furthermore, because of the checking (< x1, x2, ..., xn >,p) ∈ S, each accepting
path of M corresponds to exactly one accepting path of M ′.

Thus, f belongs to # · coNP .
(iii) Here, we give only the proof for # ·NP = # · coNP ⇐⇒ NP = coNP .
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(=⇒) Let A ∈ NP and M the machine that on input x asks the NP oracle for A and
accepts iff the oracle answers “yes”. Then,M witnesses the function f , f(x) = 1⇐⇒ x ∈ A.
So f ∈ # ·NP . From our assumption, it holds that f ∈ # · coNP . Thus, x ∈ A is equivalent
with one accepting path of some machine N that asks a coNP oracle at the end and receives
a positive answer. This accepting path corresponds to a coNP computation that accepts x
iff x ∈ A. So, A ∈ coNP . We conclude that NP ⊆ coNP , which means that NP = coNP .

(⇐=) If NP = coNP , an NP oracle used by a machine at the end of some computation
can be replaced by a coNP oracle and vice versa.

(iv) It is not hard to see that if f ∈ # ·NP , then for some polynomial q it holds that
f ′(x) = 2q(x) − f(x) is in # · coNP . �

As a result of Theorem 3.1.1 (ii), if the function f “counts” the number of the accepting
paths of a NPTM M with an NP oracle A, we can assume that the queries to the oracle A
is replaced by only one oracle query to some oracle A′ ∈ coNP .

Köbler et al. defined the class span-P of all the classes counting the number of different
outputs of nondeterministic polynomial-time transducers.

They also proved basic relationships among the classes #P , span-P and #NP .

Proposition 3.1.1 (i) #P ⊆ span-P .
(ii) span-P ⊆ #NP .
(iii) span-P = # ·NP .

Proof. (i) Similarly to Proposition 2.1.1.
(ii) Let f ∈ span-P , i.e. f = spanM for some nondeterministic polynomial-time

transducer M . Let M ′ be the NPTM which on input x guesses a string y and asks an NP
oracle ifM outputs y on input x. The problem “The string y is an output ofM on input x?”
can be solved by an NPTM which on input x guesses a path w, simulates M ’s computation
and checks that at the end M outputs y.

(iii) span-P ⊆ # ·NP can be proved as in (ii) above.
We show that # · NP ⊆ span-P . Let f ∈ # · NP and M the machine witnessing f .

We construct an NP transducer M ′ witnessing f . On input x, M ′ guesses a string y and
simulates M ’s computation path y on input x. At the end, instead of M ’s oracle call, M ′

answers the NP oracle question on its own and outputs y if and only if the answer is “yes”.
Clearly, the number of different outputs of M ′ is equal to the number of accepting paths of
M . �

Proposition 3.1.2 #NP = {f : f = spanM−M ′ , for some pair of nondeterministic,
polynomial-time Turing transducers M, M ′}, where spanM−M ′(x) is the number of different
outputs that M on input x can produce that cannot be produced by M ′.

Proposition 3.1.3 If f ∈ #NP then there are two functions g1, g2 ∈ span-P , such that for
every x, f(x) = g1(x)− g2(x).
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Proof. Let f ∈ #NP . Then there is a pair of nondeterministic polynomial-time transducers
M , M ′ such that f = spanM−M ′ . Let g1 = spanM and g2 = spanM ′′ , where M ′′ is the
nondeterministic polynomial-time transducer that on input x guesses a string y and if y ∈
spanM(x) ∩ spanM ′(x) then outputs y. Obviously the problem “The string y is an output
of M and an output of M ′ on input x?” can be solved by an NPTM which guesses a path
w1 of M and a path w2 of M ′ and checks that at the end of these computation paths both
transducers output y. It follows that f(x) = g1(x)− g2(x). �

We have already defined the class UP to be the class of NP sets having a unique
accepting computation. It is well known that P ̸= UP if and only if one-way functions exist
[22]. Note that in [6] it is also shown that under the assumption P ̸= NP , UP ̸= NP if and
only if there exist one-way functions whose range is an NP -complete set.

It is not likely that the class #P equals the class span-P since this question can be
reduced to the question whether UP equals NP .

Proposition 3.1.4 (i) span-P = #NP ⇐⇒ NP = coNP .
(ii) #P = span-P ⇐⇒ UP = NP .

Proof.
(i) It is immediate from Proposition 3.1.1 (iii) and Theorem 3.1.1 (ii) and (iii).
(ii) Suppose #P = span-P , and let A ∈ NP and M the corresponding NPTM. De-

fine M ′ such that it outputs “1” if M accepts, and nothing otherwise. Then, spanM ′ is
the characteristic function of A, which by the assumption, is in #P . That is, there is a
nondeterministic, polynomial-time Turing machine which has one accepting computation on
inputs x ∈ A, and none on x ̸∈ A. Thus A ∈ UP .

Conversely, assume UP = NP and let f = spanM be a member of span-P . Then the
set {(x, y) : M on input x outputs y} is obviously in NP , and hence in UP by the assump-
tion. That is, there is a nondeterministic polynomial-time machine M ′ for this set: If M ′

accepts an input (x, y) then it has a unique accepting computation. Define the nondeter-
ministic machine M ′′ which on input x guesses y and simulates M ′ on input (x, y). Then we
have f = accM ′′ , which shows that f ∈ #P . �

Comment 3.1.2 Proposition 3.1.4 (ii) is immediate consequence of Theorem 3.1.1 (i) and
Proposition 3.1.1 (iii).

3.2 #L, span-L and the operator #·
The question we are concerned here is: Can we find a natural operator such that, similar to
the above result for polynomial time, span-L = # · NL? The answer is in the affirmative,
using a variation of an NL Turing machine.

Definition 3.2.1 A 2-1-TM is a Turing machine with two input tapes. The first is a two-
way (that can be read as often as necessary) and the second is a one-way input tape (that
can be read only once).
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Definition 3.2.2 (i) Let 2-1-L be the class of polynomially length-bounded two-argument
predicates (binary relations) R that are accepted by deterministic logspace 2-1-Turing ma-
chines.
(ii) Let 2-1-NL be the class of polynomially length-bounded two-argument predicates R that
are accepted by nondeterministic logspace 2-1-Turing machines.
(iii) In the same way, we define 2-1-ΣkL (2-1-ΠkL) to be the class of polynomially length-
bounded two-argument predicates R that are accepted by log-space 2-1-Σk-Turing machines
(2-1-Σk-Turing machines resp.). A 2-1-Σk-Turing machine (2-1-Σk-Turing machine) is an
alternating Turing machine that makes at most k − 1 alternations and it starts in an exis-
tential (universal resp.) configuration.

It can be easily proved that a language L is in NL if and only if there is a 2-1-TM
M , such that for every x: x ∈ L ⇔ ∃y, |y| = p(|x|) and M accepts (x, y). In other words,
x ∈ L⇔ ∃yR(x, y) for some relation R in the class 2-1-L.

For the corresponding counting classes we give the following definitions. The class
span-L is equivalent to counting the second arguments of 2-1-NL relations and not just
2-1-L (deterministic) relations.

Definition 3.2.3 (i) # ·L (or #Σ0L) is the class of (total) functions f such that, for some
two-argument predicate R ∈ 2-1-L and some polynomial p, for every string x it holds that:
f(x) = |{y : |y| = p(|x|) and R(x, y)}|.
(ii) # ·NL (or #Σ1L) is the class of (total) functions f such that, for some two-argument
predicate R ∈ 2-1-NL and some polynomial p, for every string x it holds that:
f(x) = |{y : |y| = p(|x|) and R(x, y)}|.
(iii) #ΣkL (#ΠkL) is the class of (total) functions f such that, for some two-argument
predicate R ∈ 2-1-ΣkL and some polynomial p, for every string x it holds that:
f(x) = |{y : |y| = p(|x|) and R(x, y)}|.

Comment 3.2.1 (i) Similarly, one can define # ·coNL (or #Π1L). Although, NL = coNL
[26] [45], this closure complementation does not necessarily hold for 2-1-NL. Here the input
cannot be read several times. Thus, it is not known whether # ·NL = # · coNL. In fact we
show that this equality is very unlikely.

(ii) Observe that all classes C that we considered in the previous section are supersets
of P for which defining # · C as in Definition 3.1.2 or by using 2-1-C predicates analogous
to the approach of Definition 3.2.3 makes no difference (as the machine could start by de-
terministically copying its second tape’s contents onto its work tape). This is the reason why
we use the same notation #·, without becoming inconsistent.

(iii) An alternative way of defining # ·NL is as the class of functions “counting” the
accepting paths of some NL machine M which makes one 2-1-NL oracle call at the end of
every computation path and returns the oracle’s answer. We assume that M has two oracle
tapes, which are an instance of a 2-1-NL problem. For every input x the machine M copies
x on the first oracle tape and writes some string y on the second oracle tape. The proof that
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the two definitions are equivalent is the same as the proof for the two definitions for # ·NP
in the Comment 3.1.1 (iii).

(iv) The class #ΣkL (#ΠkL), for some k > 0, is the class # · 2-1-ΣkL (# · 2-1-ΠkL
resp.). When we refer to this class, we use the former notation.

Theorem 3.2.1 (i) # · L = #L.
(ii) # ·NL = span-L.

Proof. (i) #L ⊆ # · L: Let M be an NL machine witnessing f ∈ #L. The predicate
R = {(x, y) | y is an accepting path of M on input x} is computable by the 2-1-L machine
M ′ which on inputs x, y simulates M ’s path y on input x and accepts iff M accepts.
#·L ⊆ #L: Let f ∈ #·L and f(x) = |{y | p(|x|) = |y| andR(x, y)}|, whereR is computable
by some 2-1-L-TM N . Define the NL machine M ′ which on input x, guesses a y bit by bit,
since |y| = p(|x|), and simulates N on inputs x, y. M ′ accepts iff the simulation of N halts
accepting.

(ii) span-L ⊆ # · NL: Let f ∈ span-L, i.e. f = spanM for some nondeterministic
log-space transducer M . Let M ′ be the NL machine which on input x copies x on the first
oracle tape, guesses and writes a string y on the second oracle tape and asks a 2-1-NL oracle
if M outputs y on input x. The problem “The string y is an output of M on input x?” can
obviously be solved by an 2-1-NL Turing machine.
# · NL ⊆ span-L: Let f ∈ # · NL and the NL machine M with one 2-1-NL oracle call
at the end of every computation path, witnessing f . In addition, there is a 2-1-NL Turing
machine N which can “answer” the oracle questions. We convert each computation path of
M to a path of an NL transducer M ′. A path of M on input x is a log-space computation
ending to writing x and y on the oracle tapes. The corresponding path of M ′ does not call
the oracle, but answers the oracle question on its own. The only problem with this idea is
thatM ′ cannot store y on its work tape, because this string may be much longer than log|x|.
Thus M ′ on input x simulates N on input (x, y) and each time N requires the next bit of y,
M ′ simulates M on input x until this bit is generated. After the current bit is used by N ’s
computation, it is deleted from M ′’s work tape. As y is read only one-way by N the ith bit
of y is not used after the i+1th bit and the computation can be done by a nondeterministic
log-space Turing machine. If the simulation of N ends accepting (x, y), then the transducer
M ′ outputs the encoding of its own computation path. The number of different outputs of
M ′ is the number of accepting paths of M .

It is worth noting that this part of the proof would fail if the NL machine M asked an
NL oracle at the end of some computation path (instead of a 2-1-NL oracle). �

Can we compare polynomial-time classes to logarithmic-space classes? The first easy
answer to this question, is that although #P = #·coNL, it is very unlikely that #P = #·NL.

Following the definitions of the previous subsection, let #NL denote the class of func-
tions that witness the number of accepting computations of NL machines with oracle calls
to NL. It holds that (1) EV AL3SAT ∈ L, and hence NP ⊆ NLL ⊆ NLNL and (2) it is
clear that NLNL ⊆ P ⊆ NP . From (1) and (2) the “decision” classes NP and NL coincide.
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The same equality is true for the corresponding counting classes, i.e. #NL = #P , since
(1) #3SAT ∈ #NL =⇒ #P ⊆ #NL and (2) let M the Turing machine witnessing some
f ∈ #NL, then each computation of M belongs to NLNL, which means that it also belongs
to P . Hence #NLNL ⊆ #P .

Theorem 3.2.2 (i) #P = #NL.
(ii) #P = # · coNL.
(iii) #P = # ·NL = span-L =⇒ NL = UP .

Proof (iii) Let A ∈ UP andM the corresponding Turing machine. The function f = accM ∈
#P is the characteristic function of the set A, since f(x) = 1 if x ∈ A, and f(x) = 0 if x ̸∈ A.
Because of our hypothesis, f ∈ # ·NL. Thus, there is a nondeterministic log-space machine
M ′ with one 2-1-NL oracle call at the end of its computation, and with only one accepting
path iff x ∈ A. The existence of M leads to a nondeterministic log-space computation with
one 2-1-NL oracle call for A, which can be transformed to an NL computation for A.

Sketch proof for (ii). The #P -complete problem #3SAT can be solved by an NL
machine that asks a 2-1-coNL oracle question after some computation. Given a 3CNF
formula this machine guesses an assignment for the formula and writes this assignment on
its oracle tape. The problem of verifying that an assignment satisfies a 3CNF formula is
in 2-1-coNL. For the inverse inclusion the proof of the Proposition 3.3.3 below is clarifying. �

3.3 Restrictions of log-space classes

In the current section we consider three kinds of restriction of a log-space class:

• The Turing machine can read the input only one-way.

• The Turing transducer can output only logarithmic number of bits.

• The Turing machine has polynomial number of accepting paths.

The difference between #- and span-classes exactly corresponds to the difference be-
tween unambiguous and ambiguous computation. The proof that NP = UP if and only if
#P = span-P can be translated to log-space counting classes when one-way machines are
considered.

For two-way log-space classes the proof technique does not work. Furthermore, in
[41] was stated that “NL and UL are probably equal”. If this intuition is right and the
equality NL = UL implies span-L = #L, then the polynomial hierarchy would collapse.
But although we can prove span-L = #L⇒ NL = UL, the inverse implication is still open.

The class UL contains all NL sets having a unique accepting computation and 1UL,
1NL, span-1L, #1L are the one-way analogs of UL, NL, span-L and #L respectively.

Theorem 3.3.1 1UL = 1NL if and only if span-1L = #1L.
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Proof. Assume 1NL ⊆ 1UL and let f = spanM , where M is a 1NL-transducer. Consider
the setA = {x1#y1!x2#y2!...xn#yn!|xi ∈ {0, 1}, yj ∈ {0, 1}∗ and on input x = x1x2...xn there
is a computation path on which M outputs y1, ..., yn such that output yi occurs after reading
bit xi and before reading input bit xi+1}.
As M is a one-way transducer, it can be shown that A ∈ 1NL and, hence, A ∈ 1UL by
assumption. LetM ′ be a 1UL-machine for A. M ′ has a unique accepting computation, when
it accepts. Construct a 1NL-machine M ′′ that on input x does the following: M ′′ guesses
x1#y1!x2#y2!...xn#yn! bit-by-bit, simulates M ′ on this word, and checks that x = x1...xn.
Then f(x) = accM ′′(x), and f ∈ #1L.

Conversely, assume that span-1L = #1L. Let A ∈ 1NL, and let M be an 1NL-
machine that accepts A. Construct an 1NL-transducer M ′ that on input x simulates M
and outputs “1” iff M accepts. Then spanM ′ is the characteristic function cA of A. By
assumption, cA ∈ #1L. Thus, there exists a 1NL-machine that on input x has one accepting
computation, if x ∈ A, and none, if x ̸∈ A. Hence, A ∈ 1UL, and 1NL = 1UL. �

Corollary 3.3.1 span-1L = #1L implies P = NP = P#P = P span−L.

The restriction to one-way classes was one approach in order to prove Proposition 3.1.4
(ii) for log-space classes. A different approach is the following restriction of span-L.

Definition 3.3.1 For a class of functions F , define F [logn] = {f ∈ F : ∃ a constant c ∀x
|f(x)| 6 c · log|x|}.

The class span-L[logn] consists of the functions witnessed by NL-transducers that can
output only c · log(|x|) bits at the end of each computation.

Proposition 3.3.1 #L = span-L[logn]⇐⇒ UL = FewL.

Proof. Suppose #L = span-L[logn], and let A ∈ FewL and M the corresponding NL
Turing machine. Define M ′ such that it outputs “1” if M accepts, and nothing otherwise.
Then, spanM ′ is the characteristic function of A, cA. Thus, cA ∈ span-L[logn] and by the
assumption, cA ∈ #L. That is, there is a nondeterministic, log-space Turing machine which
has one accepting computation on inputs x ∈ A, and none on x ̸∈ A. Thus A ∈ UL.

Conversely, let UL = FewL and let f = spanM be a member of span-L[logn]. Then the
set A = {(x, y) : |y| 6 c · log(|x|) and M outputs y on input x} is in FewL: An NL machine
N simulates M on input x and checks that M ’s output is equal to y. Since M has at most
poly(|x|) different outputs for some polynomial p, the machine N has polynomial number
of accepting paths. Hence A ∈ UL by the assumption. That is, there is a nondeterministic
log-space machine M ′ for the set A: If M ′ accepts an input (x, y) then it has a unique ac-
cepting computation. Define the nondeterministic log-space machine M ′′ which on input x
guesses y and simulatesM ′ on (x, y). Then we have f = accM ′′ , which shows that f ∈ #L. �
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Definition 3.3.2 (i) A 1-1-TM is a Turing machine with two one-way input tapes.
(ii) Let 1-1-L, 1-1-NL be the classes of polynomially length-bounded two-argument predicates
R that are accepted by deterministic and nondeterministic logspace 1-1-Turing machines
respectively.
(iii) #·1L (or #Σ01L) is the class of functions f such that, for some two-argument predicate
R ∈ 1-1-L and some polynomial p, for every string x it holds that f(x) = |{y : p(|x|) = |y|
and R(x, y)}|.
(iv) # · 1NL (or #Σ11L) is the class of functions f such that, for some two-argument
predicate R ∈ 1-1-NL and some polynomial p, for every string x it holds that f(x) = |{y :
p(|x|) = |y| and R(x, y)}|.
(v) The classes #Σk1L and #Πk1L are defined analogously.

Theorem 3.2.1 holds for the corresponding one-way classes as well.

Proposition 3.3.2 (i) #1L = # · 1L.
(ii) span-1L = # · 1NL.

Comment 3.3.1 It is easy to observe that the #P -complete (under “Cook” reductions)
problem #3DNF is in the class #Σ11L. Given a 3DNF formula F and an assignment of F ,
a nondeterministic 1-1-Turing machine guesses a clause C of F , writes on its work tape the
three literals occurring in C, and reads the truth value of these variables given on the second
input. Obviously, the two inputs can be read from left to right. Thus, #3DNF ∈ span-1L.

Based on the definitions of #ΠkL and #Πk1L classes, for k > 1, and Lemma 2.2.1, we
can prove the following proposition.

Proposition 3.3.3 #Π11L = #Π1L = #P .

Proof. #Π11L ⊆ #Π1L ⊆ #P : A nondeterministic polynomial time bounded Turing
machine can guess the second input of a 2-1- Turing machine and simulate the universal
branches deterministically. Since the computation of each branch is log-space bounded, the
total computation is polynomial time bounded.

#P ⊆ #Π11L: Let the relation R3SAT = {(ϕ, b) : ϕ ∈ 3CNF and b is a satisfying
assignment for ϕ}. It holds that R3SAT ∈ 1-1-Π11L: A universal 1-1-Turing machine guesses
universally a clause of ϕ, copies the literals of this clause on its working tape and reading
the second input b one-way checks that the clause is satisfiable. Thus, #3SAT ∈ #Π11L.
Also there exists a parsimonious 1L reduction from every problem in #P to #3SAT . �

Regarding the class span-L, we can define the following subclasses:
span-Lp: {f : f = spanM for some NL transducer M having at most polynomial number of
different valid outputs}.
span-L[determ]: {f : f = spanM for some NL transducer M that writes its output
deterministically}.
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span-L[logn]: {f : f = spanM for some NL transducer M that writes at most logarithmic
number of bits on its output tape}.

It holds that span-L[determ] ⊆ span-L[logn] ⊆ span-Lp.

• span-L[determ] ⊆ span-L[logn]: Let f ∈ span-L[determ] and M the transducer wit-
nessing f . The output wc printed along one path of M is completely determined by
the first configuration c on the path in which a symbol of the output occurs. Since
there are only polynomially many different configurations in the length n of the input,
each one of them can be mapped to a different string of length O(log(n)). However we
should map two configurations c and c′ to the same string if wc = wc′ . A transducer
M ′ simulates M and when M reaches the configuration cw in which the first symbol of
the output w is printed, M ′ outputs the string (of logarithmic length) mapped to cw.
Clearly, f ∈ span-L[logn].

• span-L[logn] ⊆ span-Lp: Since the outputs are of logarithmic length, there are at most
polynomial many such outputs.

The inverse inclusion span-Lp ⊆ span-L[determ] can be proved via the class FLNL[logn].
In [1] was shown that span-L[determ] = FLNL[logn]. We show here that span-Lp =
FLNL[logn].

Lemma 3.3.1 Given numbers k1, k2, ..., kt, where ∀i ki 6 2n and t 6 p(n) and ki ̸= kj for
all i ̸= j , there exists a prime number q < p3(n) · n2 such that for all i and j and i ̸= j, ki
mod q ̸= kj mod q.

Theorem 3.3.2 span-Lp = FLNL[logn].

Proof. span-Lp ⊆ FLNL[logn]: LetM be an NL transducer having p1(|x|) valid outputs on
input x for some polynomial p1, and let f be the spanM function. We show the construction
of an FLNL machine which compute the same function f and its output is logarithmic in the
length of x. There exists a polynomial p2 such that each one of M ’s valid outputs on input
x has a length bounded by p2(|x|). So, each output can be represented by p2(|x|) bits. By
Lemma 3.3.1 there exists a prime q < p32(|x|) · p21(|x|) such that the integer representations
of all the valid outputs y1, ..., yp1(|x|) taken mod q are all distinct, i.e yi mod q = wi and all
wi are distinct. The wi can be represented by O(log|x|) bits. To find q, queries are sent to
an oracle A:
A = {(M,x, q) : on input x, there are at least two accepting paths of M whose outputs are
distinct but when taken mod q, have the same value}.
A lies in NL: The corresponding NL machine guesses two paths and computes the mod q of
their outputs in parallel and verifies whether the mods are equal and the paths are accepting.
The outputs of the paths are stored bit by bit on the work tape of the machine.
Now, the machine asks if w represents a valid output for all w < q. The queries are made to
an oracle B:
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B = {(M,x,w) : w represents a valid output of M on input x}.
B lies in NL: The corresponding NL machine guesses a path and verifies that the mod of
its output is w.
Every time a new representation w of a valid output is found, the machine increments a
counter by one (since the number of the different outputs is bounded by a polynomial, a
counter can be maintained in logspace). The value of the counter at the end gives the value
of f = spanM , and it is logarithmic in |x|.

FLNL[logn] ⊆ span-Lp: Let f be in FLNL[logn]. Since NL is closed under comple-
mentation, a deterministic log-space transducer M with oracle A ∈ NL computing f can be
simulated by an NL transducer M ′ which uses subroutines for A and Ā to solve the oracle
queries: For any oracle query w, the answer “yes” or “no” is guessed and the subroutine
for A or Ā is started respectively. If the corresponding subroutine ends answering “yes”
(which means that the guessed oracle answer made by M ′ was correct) the computation is
continued, otherwise M ′ halts rejecting. Since the length of w can be polynomial in the
length of x, w is produced bit by bit. If some bit of w is necessary to be produced again, M ′

computes w from the beginning (this computation is deterministic). Every output of M ′ is
equal to f(x). We can construct a new transducer N , which on input x simulates M ′ and
for every output y of M ′ guesses a z 6 y and outputs z. Since neither y nor z can be stored
on the work tapes, N first guesses |y| and then outputs a value z of length |y| − 1 or a value
z of length |y| smaller or equal to y. This is done comparing the symbols of y produced by
M ′ to the symbols of z. It is clear that spanN(x) = f(x). Hence f ∈ span-L[logn]. �

Corollary 3.3.2 span-L[determ] = span-L[logn] = span-Lp.

3.4 The counting class TotP and its relationship with

span-L

In [38], Pagourtzis and Zachos introduced the classes #PE and TotP . The first one is
the class of “hard-to-count-easy-to-decide” problems and the second one is the class of
“counting” all the computation paths of a polynomial-time nondeterministic machine.

More formally, for each function f : {0, 1}∗ → N we define a related language
Lf = {x | f(x) > 0}. Note that for function problems this language represents a natural
decision version of the problem.

Definition 3.4.1 Let the function f : {0, 1}∗ → N, then f ∈ #PE if f ∈ #P and Lf ∈ P .

Definition 3.4.2 For a machine M , let totM denote the function from {0, 1}∗ to N such
that totM(x) = (#paths of M on input x)− 1. Define
TotP = {f : f = totM for some polynomial-time nondeterministic Turing machine M}.
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Some #PE problems are in TotP . The key property of these problems is the possibility
to reduce them to other instances of the same problem. The definition of self-reducibility is
given below:

Definition 3.4.3 A function f : Σ∗ → N is called poly-time self-reducible if there exist poly-
nomials r and q and polynomial time computable functions h : Σ∗ × N→ Σ∗,
g : Σ∗ × N→ N and t : Σ∗ → N such that for all x ∈ Σ∗:
(a) f(x) = t(x) +

∑r(|x|)
i=0 g(x, i)f(h(x, i)), that is, f can be processed recursively by reducing

x to h(x, i), 0 6 i 6 r(|x|), and
(b) the recursion terminates after at most polynomial depth, that is, f

(
h(...h(h(x, i1), i2)..., iq(|x|))

)
can be computed in polynomial time.

Let #PESR be the class of self-reducible functions of #PE. In [38] it was also proved
the following important theorem.

Theorem 3.4.1 TotP is exactly the closure under polynomial-time functional many-one
reductions (6p

m) of #PESR.

Proposition 3.4.1 The following problems belong to TotP . They are also TotP complete
with respect to metric reducibility (Cook reducibility).
1. #DNF : given a DNF Boolean formula, count the number of its satisfying assignments.
2. #MONOTONE-2-SAT : given a CNF formula with exactly two positive literals per
clause, count the number of its satisfying assignments.
3. #NON-CLIQUES: given a graph G and a number k, count the number of size-k sub-
graphs of G that are not cliques.
4. #NON-IS: given a graph G and a number k, count the number of size-k subgraphs of G
that are not independent sets.
5. #NON -NEGATIV E-PERMANENT : given a n× n matrix A with nonnegative inte-
ger entries, compute its permanent.
6. #NFA: given an NFA M and a string x, count the number of strings 6 x that are
accepted by M .

Using Theorem 3.4.1 we can prove the connection between TotP and span-L.

Theorem 3.4.2 span-L ⊆ TotP .

Proof. Let f ∈ span-L via an NL transducer M (f ≡ spanM). It suffices to show that f is
poly-time many-one reducible to a #PESR function.

It holds that Lf ∈ NL ⊆ P : We can convert M to a logspace acceptor M ′: M ′ accepts
whenever M gives an output and therefore has at least one accepting path iff M has at least
one output. In Theorem 2.3.2, we showed that span-L ⊆ #P . These two facts mean that
f ∈ #PE.
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We observe that the number of different outputs of M is equal to the number of
different outputs of M starting with “0” plus the number of different outputs of M start-
ing with “1”. Define the NL transducer N , which on input (x, y) generates the outputs
of M on input x that have y as a prefix. The span-L function of N is self-reducible:
spanN(x, y) = spanN(x, y0) + spanN(x, y1) + g(x, y), where

g(x, y) :=

{
1 if y is an output of N on input x
0 otherwise.

Similarly to spanM , spanN belongs to #PE. Moreover, spanM(x) = spanN(x, ϵ),
which means that spanM 6p

m spanN ∈ #PESR. �

Similarly to span-L, TotP and #P share the same complete functions with respect to
metric reducibility.

Proposition 3.4.2 P span−L = P TotP = P#P .

3.5 The log-space analog of the class TotP

We introduce now the counting class TotL. Analogously to #PE and TotP , [38], we have
the following definitions.

Definition 3.5.1 Define the class #LE = {f | f ∈ #L and Lf ∈ L},
where Lf = {x | f(x) > 0}.

Definition 3.5.2 For a machine M , let totM denote the function from {0, 1}∗ to N such
that totM(x) = (#paths of M on input x)− 1. Define
TotL = {f | f = totM for some log-space nondeterministic Turing machine M}.

But, which is the relationship between these two classes and #L? Do the statements
about #PE, TotP and #P hold when we refer to the corresponding log-space counting
classes? Below, we answer this question in the affirmative.

Proposition 3.5.1 (i) #L ⊆ TotL− FL.
(ii) FL ⊆ TotL ⊆ #LE ⊆ #L.

Proof. (i) Let f ∈ #L via an NL machine M . We can convert M so that we have an NL
machine M ′ with a full binary computation tree and then we double the accepting paths of
M ′ obtaining the NL machine N with totN(x) = totM ′(x) + accM ′(x), for every x. Clearly,
f(x) = accM(x) = accM ′(x) = totN(x) − totM ′(x) = totN(x) − (2p(|x|) − 1), where p(|x|) is
the length that has every computation path of M ′’s full binary tree. Observe that 2p(|x|) can
be computed in logarithmic space using log

(
p(|x|)

)
bits to store p(|x|).

(ii) Let f ∈ FL. Define the NL machine M which computes f(x) bit by bit. When
a bit is computed, M branches in such a way that the number of its computation paths
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are equal to f(x) + 1 (f(x) paths and one dummy path). For this branching, M needs two
states:
q0, which allows M to nondeterministically choose between two actions and
q1, which forces M to deterministically continue if the current bit is “0” and allows M to
nondeterministically choose between two actions if the current bit is “1”. Hence,
totM(x) =

(
f(x) + 1

)
− 1 = f(x), for every x. On the other hand, if TotL ⊆ FL, then

by (i) of this proposition, we would also have #L ⊆ FL and we would be able to compute
f#path in deterministic logarithmic space. This would mean that REACHABILITY ∈ L
and L = NL.

For the second inclusion, let f ∈ TotL with f(x) = (#paths of M on input x) − 1,
for some M . The leftmost path of the machine M can be distinguished (nondeterministic
choices can be lexicographically ordered). So, we define the modified machine M ′ with all
the paths of M accepting, except for the leftmost path. For every input x, it holds that
f(x) = totM(x) = (#paths of M on input x) − 1 = #accepting paths of M ′ on input
x = accM ′(x). It remains to show that totM(x) > 0 can be checked in deterministic loga-
rithmic space. Equivalently, that (#paths of M) > 1. For this, it suffices to simulate M
until it branches: If it does not, then totM(x) = 0, otherwise, totM(x) > 0. We conclude
that f ∈ #L and Lf ∈ L. To see that #LE * TotL, unless L = NL, consider the problem
f#path+1: for any input directed graph return the number of paths from node 1 to node n
plus one. This problem is in #LE since it is in #L and f#path+1 > 0, for every input x. If
f#path+1 ∈ TotL, then there is an NL machine N such that f#path+1(x) = (#paths of N
on input x) − 1 ⇔ f#path(x) = (#paths of N on input x) − 2. The REACHABILITY
is equal to solving f#path(x) > 0 for any input x or equivalent to

(
(#paths of N on input

x)− 2
)
> 0, which can be solved in deterministic logarithmic space. �

A 2004 result by Omer Reingold shows that USTCON , the problem of whether there
exists a path between two vertices in a given undirected graph (undirected reachability), is
in L (showing that L = SL, since USTCON is SL-complete) [40].

Similarly to #Path, the counting version of USTCON belongs to #L:

#USTCON :
Input : An undirected graph G = (V,E) with vertex set V = {1, 2, ..., n}.
Output : The number of different paths of length at most n from vertex 1 to vertex n.

Hence, the counting problem #USTCON belongs to the class #LE. Does #USTCON
belong to TotL?

When we refer to counting in log-space, what kind of self-reducibility would make sense?
Could we have a result similar to Theorem 3.4.1, i.e. a result that associates TotL with #LE?
There is no easy answer to this question. However, restricted versions of #USTCON are in
TotL.
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In the next definition N(u) is the neighbourhood of a vertex u in a graph G, i.e.
N(u) = {v ∈ V : E(u, v)}.

#UASTCONlog:
Input : (G, 1, n), where G = (V,E) is an undirected acyclic graph with vertex set V =
{1, 2, ..., n} such that |N(u)| = O(logn) for every vertex u ∈ {1, ..., n}.
Output : The number of different paths from vertex 1 to vertex n.

#USTCONlog:
Input : (G, 1, n), where G = (V,E) is an undirected graph with vertex set V = {1, 2, ..., n}
such that |N(u)| = O(logn) for every vertex u ∈ {1, ..., n}.
Output : The number of different paths from vertex 1 to vertex n.

Proposition 3.5.2 (i) #UASTCONlog ∈ TotL.

Proof. Let (G, 1, n) be an input of #UASTCONlog. The properties mentioned in the
definition of the problem can be checked in log-space. We can design a nondeterministic
log-space algorithm with a computation tree with exactly #UASTCONlog(G) + 1 leaves. A
description of the algorithm follows.

begin
if #UASTCONlog(G, 1, n) = 0 then stop
else nondeterministically choose between

• stop

• call GenTree#UASTCONlog
(G, 1, ∅)

end

The first nondeterministic choice creates a dummy additional path, whereas the second
calls the following procedure.

procedure GenTree#UASTCONlog
(G, u, S)

begin
if u = n then stop
else
for each v ∈ N(u) \ S
Previous(v)← {u};
check whether #UASTCONlog(G \ Previous(v), v, n) > 0;
nondeterministically choose between
spawn a nondeterministic branch for some v ∈ N(u)\S provided#UASTCONlog(G\Previous(v), v, n) > 0
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call GenTree#UASTCONlog
(G, v, Previous(v));

end

The procedure GenTree#UASTCONlog
first checks whether it just discovered a path from

vertex 1 to vertex n, by checking if u = n. In this case it stops. Otherwise it computes and
stores all the neighbouring vertices to u that are contained in a path from 1 to vertex n.
This can be done in deterministic logarithmic space because #UASTCONlog ∈ #LE, and
N(u) = O(logn). Moreover, this computation exclude the vertices that are connected to n
but are not in a path from 1 to n by searching the subgraph G \ u. The acyclicity of the
graph guarantees the correct result. �

3.6 Arithmetizing classes around

NC1 and L

The title of this chapter is inspired by the paper [36] by Limaye, Mahajan and Raghavendra
Rao. Knowing that NC1 ⊆ L, we would like to define an arithmetization of NC1, the class
#NC1, and study the relationship between this class and #L.

3.6.1 Barrington’s Theorem

Some definitions that we need are the following. The first one is about the class NC1 and
we have already seen this.

Definition 3.6.1 We say that the language L is decided by {Cn}n∈N, if for every x ∈ {0, 1}n,
it holds that Cn(x) = 1 iff x ∈ L.
A language L is in NC1 if L can be decided by a family of circuits {Cn}n∈N, where Cn has
poly(n) size, depth O(logn) and fan-in 2, for every n.

Buss [10] showed that the evaluation of Boolean formulae is a complete problem for
NC1. The class NC1 contains functions which are computed by very fast parallel algorithms,
such as the sum or product of 2 integers of n bits each, the sum of n integers of n bits each,
integer or Boolean matrix multiplication, sorting n integers of n bits each and parity of n
bits. It is the smallest class of the ten surveyed by Cook [12].

Definition 3.6.2 A branching program is a finite directed acyclic graph which accepts
some subset of {0, 1}n. Each node (except for the sink nodes) is labelled with an integer i,
1 6 i 6 n, and has two outgoing arrows labelled 0 and 1. This pair of edges corresponds to
querying the ith bit xi of the input, and making a transition along one outgoing edge or the
other depending on the value of xi. There is a single source node, s, corresponding to the
start state, and a sink node , t, corresponding to accepting state. An input x is accepted iff it
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induces a chain of transitions from s to t, and the set of such inputs is the language accepted
by the program.
A branching program is oblivious if the nodes can be partitioned into levels V1, ..., Vl and a
level Vl+1, such that the nodes in Vl+1 are the sink nodes, nodes in each level Vj, with j 6 l,
have outgoing edges only to nodes in the next level Vj+1, and all nodes in a given level Vj
query the same bit xij of the input.
Such a program is said to have length l, and width k if each level has at most k nodes.

Definition 3.6.3 k-BWBP is the class of languages recognized by polynomial length branch-
ing programs of width k, and BWBP =

∪
k k-BWBP .

It holds that, a language L is in L/poly if and only if it can be recognized by branching
programs of polynomial size [2]. The class L/poly is a non-uniform logarithmic space class,
analogous to the non-uniform polynomial time class P/poly. Formally, for a formal language
L to belong to L/poly, there must exist an advice function f that maps an integer n to a
string of length polynomial in n, and a Turing machine M with two read-only input tapes
and one read-write tape of size logarithmic in the input size, such that an input x of length
n belongs to L if and only if the machine M accepts the input (x, f(n)).

In 1989, Barrington showed that any language recognized by an NC1 circuit can be
recognized by a width-5 polynomial-size branching program.

Theorem 3.6.1 (Barrington [5]) If a boolean function can be computed by a DeMorgan
formula of a polynomial size, then it can also be computed by an oblivious width-5 branching
program of polynomial length.

Comment 3.6.1 (i) A DeMorgan formula is a rooted binary tree in which each leaf is
labelled by a literal of the set {x1, ..., xn, x1, ..., xn} or a constant from {0, 1} and each internal
node is labelled by ∧ (“and”) or ∨ (“or”). Every DeMorgan formula computes in a natural
way a boolean function from {0, 1}n to {0, 1}. The size of a DeMorgan formula is defined to
be the number of leaves in it.

(ii) Theorem 3.6.1 means that NC1 ⊆ BWBP . In [5] the inverse inclusion
BWBP ⊆ NC1 was also proved. The classes NC1 and BWBP coincide and they equal the
class 5-BWBP .

As stated in Lemma 1 of [36], BWBP coincides with BP-NFA, where BP-NFA is the
class of all languages recognized by uniform polynomial length branching programs over a
nondeterministic automaton. In more detail, a projection P (x) of the input x is computed
by a deterministic branching program of polynomial size and then P (x) is given as input to
a nondeterministic automaton M. The input is accepted iff M accepts P (x).

Definition 3.6.4 [11] A n-projection over ∆ is a finite sequence of pairs (i, f), where 1 6
i 6 n and f is a function from Σ to ∆, such pairs being called instructions. The length of
this sequence is denoted Sn , and its jth instruction is denoted (Bn(j), En(j)). A projection
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over ∆ is a family P = {Pn}n∈N of n-projections over ∆. We can consider P as a tuple
P = (Σ,∆, S, B,E), where S is a function from N to N, B is a function from N×N to N and
E is a function from N× N into ∆Σ = {f | Σ→ ∆}. We write P (x) for the concatenation
of the (E|x|(j))(xB|x|(j)) for 1 6 j 6 S|x|.

Thus, as x ranges over strings of length n, each bit of P (x) depends on at most one bit
of x.

In section 3.5.3, we are going to use nondeterministic branching programs in order
to define counting for the class BWBP . Nondeterministic branching programs have the
capability to branch nondeterministically without consuming an input bit.

Definition 3.6.5 A nondeterministic branching program on the variable set {x1, ..., xn} is
a directed, acyclic graph with the same structure as a (usual) branching program, but which
may additionally contain unlabelled nodes with two unlabelled outgoing edges. These nodes
are called nondeterministic nodes (guessing nodes).

Such a graph represents a Boolean function f : {0, 1}n → {0, 1} in the following way.
Let an input x = (x1, x2, ..., xn) ∈ {0, 1}n be given. We call an edge activated for x if it leaves
a nondeterministic node or if it leaves a labelled node which is labelled by xi. We define
f(x) = 1 iff there is a path consisting of activated edges from the source to the accepting
sink node (such a path is called accepting path).

3.6.2 Circuit definitions of decision and counting classes

Before defining the corresponding counting classes #NC1 and #BWBP , we refer to the
boolean circuit characterizations of NP and NL, given in [52]. By “arithmetizing their
boolean circuits”, we obtain the counting classes #P and #L.

Theorem 3.6.2 (i) NL = Uniform Skew Circuit SIZE(nO(1)).
(ii) NP = Uniform Skew Circuit DEPTH(nO(1)).
(iii) NP = Uniform Circuit DEPTH,DEGREE(nO(1); nO(1)).

To arithmetize a boolean circuit, we propagate all NOT gates to the input level, convert
OR gates to PLUS (+) gates, and convert AND gates to MULT (×) gates. As a result, we
obtain monotone arithmetic circuits which map naturally from the binary strings {0, 1}∗ to
the natural numbers.

Let B be a Boolean circuit of size s, depth d and degree D. Then there exists an
arithmetic circuit A of size s, depth d and degree D, such that B has p accepting subtrees
on an input x on which it evaluates to one if and only if A has value p on input x. Given
a Boolean circuit B, the arithmetic circuit A is obtained in the way we mentioned in the
previous paragraph, by replacing all the OR (AND) gates of B by PLUS (respectively, MULT)
gates.
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Definition 3.6.6 The notion of an accepting subtree of a Boolean circuit given an input
on which it evaluates to one is analogous to the notion of accepting subtrees of machines.

Let B be a Boolean circuit, and let T(B) be its tree equivalent: The tree-equivalent of a
graph is obtained by replicating vertices whose outdegree is greater than one until the resulting
graph is a tree. Let x be an input on which B evaluates to one. An accepting subtree H of
the circuit B on input x is a subtree of T(B) defined as follows:

• H includes the output gate,

• for any AND gate v included in H, all the immediate predecessors of v in T(B) are
included as its immediate predecessors in H,

• for any OR gate v included in H, exactly one immediate predecessor of v in T(B) is
included as its only immediate predecessor in H, and

• any input vertex of T(B) included in H has value one as determined by the input x.

It is easy to verify the fact that the circuit B evaluates to one given the input x if and only
if there is an accepting subtree of T(B) on input x.

Definition 3.6.7 A function f : {0, 1}∗ → N is in
#Uniform Circuit SIZE,DEPTH,DEGREE(s(n); d(n);D(n)) if and only if there exists
a uniform family {Gn}n∈N of Boolean circuits of size O(s(n)), depth O(d(n)) and degree
O(D(n)) such that for all strings x of length n, f(x) is the number of accepting subtrees of
Gn on input x.

The next lemma comes naturally if we consider our observations above.

Lemma 3.6.1 For s(n), D(n) = Ω(n),
#Uniform Circuit SIZE,DEPTH,DEGREE(sO(1)(n); d(n);D(n)) =
Uniform Monotone Arithmetic Circuit SIZE,DEPTH,DEGREE(sO(1)(n); d(n);D(n)).

The theorem below establishes the relationship between the number of accepting paths
in nondeterministic Turing machines and the number of accepting subtrees of Boolean cir-
cuits.

Theorem 3.6.3 For T (n) = Ω(n),
#NTIME(TO(1)(n)) = #Uniform Circuit DEPTH,DEGREE(TO(1)(n);TO(1)(n)) =
Uniform Monotone Arithmetic Circuit DEPTH,DEGREE(TO(1)(n);TO(1)(n)).

For the special case of #P , it holds that #P = Uniform Monotone Arithmetic
Circuit DEPTH,DEGREE(nO(1);nO(1)).

Similarly, arithmetizing uniform boolean scew circuits of polynomial size, we obtain
#L.
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3.6.3 The classes #NC1 and #BWBP

At this point, it has become clear that #NC1 can be defined in two ways.

Definition 3.6.8 A function f : {0, 1}n → N is in #NC1 if it can be computed by an
arithmetic circuit of polynomial size, O(logn) depth and bounded fan-in.

Equivalently, a function f : {0, 1}n → N is in #NC1 if there exist a boolean NC1

circuit C, such that f(x) is the number of accepting subtrees (or proof trees) of C for input
x [11].

Evaluating arithmetic formulae over N is complete for #NC1.

The class #BWBP can also be defined in two ways.

Definition 3.6.9 A function f : {0, 1}n → N is in #BWBP if there exist a nondetermin-
istic branching program P of bounded width and polynomial length, such that f(x) is equal
to the number of accepting paths of P on input x.

The following problem is #BWBP -complete: Given a sequence of constant dimension
matrices over the natural numbers 0, 1, compute a specific entry in the matrix product.

The class #BWBP can equivalently be defined by considering ordinary (i.e., deter-
ministic) branching programs which output a sequence of elements from a given alphabet:
This sequence is then given as input to a nondeterministic finite automaton, and we count
accepting paths in that NFA. Thus, let us define #BP -NFA, the class of functions that
“count” the number of accepting paths in a nondeterministic finite-state automaton when
run on the projection of the input x, P (x). Then #BWBP = #BP -NFA [36].

As presented in Lemma 2 of [36], #BWBP = #BP -NFA ⊆ #NC1 ⊆ FL, where the
last inclusion was proved in [13]. But it remains an open question if the classes #BWBP
and #NC1 are equal. There has even been some speculation in the community that these
two classes may really be different, since the techniques used to prove Barrington’s theorem
do not seem to help in this setting.

For any counting class #C, we can define the associated “Gap” class GapC. A function
f is in GapC iff there are two functions f1, f2 in #C, such that f = f1− f2. Thus, the class
GapNC1 can be characterized as the difference of two functions in #NC1. We also obtain
the class GapNC1 if we augment the arithmetic circuits of #NC1 by allowing the constant
−1. Evaluating arithmetic formulae over Z is complete for GapNC1. The authors of [11] did
show that GapNC1 is equal to the class of functions that are the difference of two #BWBP
functions, i.e. GapNC1 = GapBWBP .

Theorem 3.6.4 (i) #BWBP ⊆ #NC1.
(ii) GapNC1 = GapBWBP .

An important open question regarding arithmetic NC1 is whether GapNC1 (and hence
#NC1) is equal to boolean NC1. It is observed that #NC1 is at least as powerful as boolean
NC1. A hint that they might be the same class of functions is provided by the following
theorem, which states that the class #NC1 is almost in NC1.



42 CHAPTER 3. PROPERTIES OF COUNTING CLASSES BELOW #P

Complexity Classes Complete Problems

L Graph Acyclicity, Tree Isomorphism
NC1 = BWBP Regular Sets, Boolean Formula Evaluation
#L #DFA, #Path
GapL Determinant of Integer Matrices
#NC1 Counting accepting paths in VPA
#BWBP Counting accepting paths in NFA
GapNC1 = GapBWBP Evaluating Arithmetic Formula over Z

Table 3.1: Complexity Classes and some of their complete problems

Theorem 3.6.5 [29] Let f ∈ GapNC1. Then f is computed by a family of Boolean circuits
having bounded fan-in, polynomial size, and depth O(lognlog∗n), where log∗n is the number
of times the logarithm function must be iteratively applied before the result is less than or
equal to 1.

Krebs, Limaye, and Mahajan prove a complete problem for #NC1 in [32] and relate
the difference of #NC1 and #BWBP to the difference of their complete problems.

More formally, the following is proved in [11]: There is a fixed NFA N , such that any
function f in #BWBP can be reduced to counting accepting paths of N . In particular,
f(x) equals the number of accepting paths of N on a word g(x) that is a projection of x and
is of size polynomial in the length of x.

There had been no similar characterization of #NC1 before [32] was published. The
main result of [32] is this: There is a fixed VPA (visibly pushdown automaton) V , such that
any function f in #NC1 can be reduced via projections to counting accepting paths of V .
Moreover, any #V PA function (“counting” the number of accepting paths in any VPA) can
be computed in #NC1.

Thus, the difference (if any) between #BWBP and #NC1, which is known to vanish
with one subtraction, is captured exactly by the extension of NFA to VPA.

Visibly pushdown automata (VPA) are pushdown automata (PDA) with certain restric-
tions on their transition functions. There are no ϵ moves. The input alphabet is partitioned
into call, return and internal letters. On a call letter, the PDA must push a symbol onto
its stack, on a return letter it must pop a symbol, and on an internal move it cannot access
the stack at all. While this is a severe restriction, it still allows VPA to accept non-regular
languages (the simplest example is anbn). At the same time, VPA are less powerful than all
PDA; they cannot even check if a string has an equal number of a’s and b’s. In fact, due
to the visible nature of the stack, membership testing for VPA is significantly easier than
for general PDA; it is known to be in Boolean NC1. In other words, as far as membership
testing is concerned, VPA are no harder than NFA.



Chapter 4

Problems that characterize #L and
span-L

4.1 #L and the determinant

One of the most important early results of complexity theory is the theorem of [54] showing
that the complexity of computing the permanent of an integer matrix is characterized by
the complexity class #P . It is perhaps surprising that well over a decade passed before it
was discovered that an equally-close connection exists between the complexity of computing
the determinant of a matrix and the class #L.

There are several efficient algorithms for computing the determinant of a matrix. If
two matrices of order n can be multiplied in time M(n), where M(n) > nα for some α > 2,
then the determinant can be computed in time O(M(n)) [8]. This means, for example, that
an O(n2.376) algorithm exists based on the Coppersmith-Winograd algorithm for matrix
multiplication.

Although stated in different ways, the results of [55], [56], [48] and [15] show the
following fact:

Theorem 4.1.1 [4] A function f is in GapL iff f is logspace many-one reducible to the
determinant, i.e. Closure6l

m
(INTDET ) = GapL.

We describe here the proof of Toda in [48], but not in detail.
In [12], Cook defined the class DET of functions that are NC1-reducible to the in-

teger determinant, DET = Closure6NC1 (INTDET ), and exhibited some linear algebraic
problems that are complete for the class. For NC1 reducibility we give the definition 4.1.3
below.

Toda studied the relationship between the integer determinant and some counting
graph theoretic problems related to #L. More precisely speaking, he showed that the integer
determinant is interreducible to the problems of counting the followings: the number of paths
between two nodes of a given acyclic directed graph, the number of shortest paths between
two nodes of an undirected graph or a directed graph, the number of rooted spanning trees

43
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of a given directed graph, and the number of Eulerian cycles of a given Eulerian directed
graph.

Theorem 4.1.2 DET = Closure6NC1 (INTDET ) = Closure6NC1 (#L). More precisely,
DET = Closure6AC0 (#L).

Note that it is unknown if #L is closed under AC0 OR NC1 reductions.
Thus, Toda proved that #L is computationally equivalent to DET under NC1 -

reducibility and hence that all complete functions for #L are also complete for DET . Toda’s
results may also be contrasted to the results by Valiant [49]. A similarity and a difference
between the determinant and the permanent are translated into those between #P -complete
functions and the problems above. To state the contrasts on the above four problems: The
problems of counting (1) the number of simple paths between two nodes of a directed graph
not necessarily acyclic, (2) the number of all simple paths not necessarily shortest between
two nodes of an undirected graph, (3) the number of all rooted trees not necessarily spanning
of a directed graph, and (4) the number of all Hamiltonian paths in a directed graph are
#P -complete.

The results of [48] are partitioned into three groups depending on the reducibilities
used. The first group includes some problems of which the integer determinant problem
is a p-projection. The second group includes three counting problems to which the integer
determinant problem is equivalent with respect to the polynomial-size and constant-depth
truth-table reducibility. The third one includes a counting problem to which the integer
determinant problem is equivalent with respect to P -uniform NC1-reducibility.

Definition 4.1.1 [43] Let the problems F = {fn}n∈N, G = {gn}n∈N, where fn, gn are boolean
functions from {0, 1}n to {0, 1}m. Then F is projection reducible to G, F 6proj G, if there
is a function p(n) bounded above by a polynomial in n and for each fn ∈ F a mapping
σn : {y1, ...yp(n)} → {x1, x1, x2, x2, ..., 0, 1} such that fn(x1, ..., xn) = gp(n)

(
σn(y1), ..., σn(yp(n))

)
.

Definition 4.1.2 [14] Let the problems F = {fn}n∈N, G = {gn}n∈N, where fn, gn are boolean
functions from {0, 1}n to {0, 1}m. Then F is constant depth truth table reducible to G,
F 6cd−tt G, if there is a polynomial p(n) and a constant c such that each fn is computed by
a circuit of depth 6 c and size 6 p(n) containing “black boxes” which compute members gj
of G or their negations gj with j 6 p(n), where the size and depth of black boxes are counted
as unity, and such that there is no path in the circuit from an output of one black box to an
input of another black box.

For NC1-reducibility, one possible definition is to say that a set A is many-one
6NC1-reducible to a set B if there is an NC1 computable function f such that for all x,
x ∈ A iff f(x) ∈ B. However, here we are interested not just in sets, but in computing
functions and solving problems, so the “Turing” (or “Cook”) version of reducibility is most
useful.
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Definition 4.1.3 [12] Let the problems F = {fn}n∈N, G = {gn}n∈N, where fn, gn are boolean
functions from {0, 1}n to {0, 1}m. Then F is (P -uniform) NC1 reducible to G, F 6NC1 G,
if there is a (P -uniform) family {Cn}n∈N of NC1 circuits for solving F , containing oracle
nodes for G. An oracle node for G is a node with some sequence < yl, ..., yj > of input edges
and a sequence < z1, ..., zl > of output edges whose values satisfy gj(yl, ..., yj) = (z1, ..., zl).
For the purpose of defining depth in Cn, this oracle node counts as depth log(j + l).

Comment 4.1.1 The notions of “black boxes” for G and oracle nodes for G in the defini-
tions 4.1.2 and 4.1.3 respectively, describe the same thing.

Here are the definitions of the problems mentioned in [48].

INTDET :
Input : A n× n matrix A of n-bit integer entries.
Output : The determinant of A.

ZERO-ONE DET : A restricted version of INTDET where all entries of the matrix
are 0 or 1.

MATPOW{−1,0,1}:
Input : A n× n integer matrix A of entries either −1, 0, or 1.
Output : The (1, n)th entry of

∑n
i=1A

i.

N thPOWER−1,0,1:
Input : A n× n integer matrix of entries either −1, 0, or 1.
Output : The (1, n)th entry of the nth power of the matrix.

DIRECTED PATH DIFFERENCE:
Input : Two monotone directed graphs G and H with n nodes (where a directed graph is
called monotone if it contains no edge (i, j) such that j 6 i).
Output : f#path(G)− f#path(H).

DIRECTED PATH:
Input : A monotone directed graph G with n nodes.
Output : The number of paths in G from the first node to the nth node.

SHORTEST PATH:
Input : An undirected graph G with n nodes.
Output : The number of shortest paths in G between the first node and the nth node (where
we define the length of a path as the number of edges on the path).

ROOTED SPANNING TREE:
Input : A directed graph G.



46 CHAPTER 4. PROBLEMS THAT CHARACTERIZE #L AND SPAN-L

Output : The number of rooted spanning trees of G (where a rooted spanning tree is a di-
rected spanning tree such that every vertex except the root has in-degree 1, while the root
has in-degree 0).

DIRECTED EULERIAN PATH:
Input : A directed graph G.
Output : The number of Eulerian paths in G.

In the first place, Toda proves the following sequence of 6proj-reductions:

INTDET 6proj MATPOW{−1,0,1} 6proj N
thPOWER{−1,0,1} 6proj

DIRECTED PATH DIFFERENCE 6proj ZERO-ONE DET .

This fact means that the problems above are equivalent under projection reductions.

The second important theorem of Toda states that INTDET is 6cd−tt-reducible to
each of the following problems: DIRECTED PATH, SHORTEST PATH, ROOTED
SPANNING TREE and vice versa.

At the end Toda shows that DIRECTED EULERIAN PATH 6cd−tt INTDET
and INTDET 6NC1 DIRECTED EULERIAN PATH.

The proof of the first result gives a proof of the Theorem 4.1.1. The rest of Toda’s
theorems relate the complexity of the determinant to the complexity of known algebra or
graph problems.

4.2 #DNF: A problem in span-L with FPRAS

Although DNF , the decision version of the problem, belongs to L, it is known that #DNF
is #P -complete with respect to log-space metric reductions.

Theorem 4.2.1 (i) DNF ∈ L.
(ii) #DNF is complete for #P with respect to log-space metric reductions.

Proof. (i) Let aDNF formula F with variables x1, ..., xn. A deterministic log-space machine
M reads F ’s clauses from the first to the last one until it finds a clause such that for all
i ∈ {0, ..., n}, it does not contain both xi and xi. If M finds a clause with this property, it
halts accepting, otherwise M halts rejecting. Checking the above property can be done in
logarithmic space.

(ii) In section 2.2 we defined the problem #3SAT . Here, we need the function #SAT
which on input a boolean formula F in CNF outputs the number of its satisfying assign-
ments, #F . We reduce #SAT to #DNF . Consider a CNF formula F . Let G = F . Note
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that G can be easily expressed in DNF with the same size as F . Now any assignment that
satisfies F does not satisfy G and vice versa. Thus we have #F = 2n −#G, where n is the
number of the variables in F . Thus, solving #G gives an answer to #F . It is clear that we
described a log-space metric reduction. �

According to the results of section 2.3, #DNF is also span-L - complete with respect
to log-space metric reductions. It is unlikely that #DNF is span-L complete under log-space
functional many-one reductions. This would mean that the decision versions of all span-L
problems could be decided in L.

It is also well known that #DNF admits an FPRAS [33]. An interesting question would
be “Is there any span-L - complete problem with respect to log-space functional many-one
reductions which admits an FPRAS?”. If this question is answered in the affirmative then
all the problems that belong to span-L have an FPRAS.

In the rest of this section we present the FPRAS for #DNF .

Definition 4.2.1 A randomised algorithm is called an unbiased estimator for a function f
if on input n, the expected value of the output is f(n).

Definition 4.2.2 Consider an input F of #DNF and the problem of approximating #F .
An ϵ, δ approximation algorithm for the #DNF problem is a Monte-Carlo algorithm which
on every input formula F , ϵ > 0, δ > 0, outputs a number Ỹ such that
Pr[(1− ϵ)#F 6 Ỹ 6 (1 + ϵ)#F ] > 1− δ.

Our goal is a fully polynomial randomized approximation scheme, known as an FPRAS.
Given an input #F , an error parameter ϵ > 0 and a confidence parameter 0 < δ < 1, our
goal is to compute Ỹ as in Definition 4.2.2 in time polynomial in |F |, ϵ−1 and log(1/δ).

The first algorithms can be thought as variants of the following abstract Monte-Carlo
algorithm. We have a finite set U of known size and an efficient method of randomly choosing
elements from U such that each u ∈ U is equally likely to be chosen. We have a function f
defined on U such that f(u) is either 0 or 1 at each u and we have an efficient method for
computing f(u) given u. Our goal is to estimate |G| where G is the subset of U at which the
function f takes on the value 1. One trial of the Monte-Carlo algorithm consists of randomly
choosing u ∈ U , computing f(u), and Y = |U | ·f(u). The Monte-Carlo algorithm consists of
running N trials, where Yi is the value of Y from the i-th trial. The output of the algorithm
is Ỹ =

∑N
i=1

Yi

N
.

For each of the previous results it holds that
E[Yi] = Pr

(
f(u) = 1

)
· |U | + Pr

(
f(u) = 0

)
· 0 = |G|

|U | · |U | = |G| and E[Ỹ ] = |G|. Thus,
we have an unbiased estimator for our problem. The number of times we have to repeat
this procedure in order to have an ϵ, δ approximation algorithm is given by the following
theorem.

Theorem 4.2.2 (Zero-One Estimator) Let µ = |G|
|U | and ϵ 6 2. If N > (1/µ) ·(4 · ln(2/δ)/ϵ2)

then the Monte-Carlo algorithm described above is an ϵ, δ approximation algorithm.
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To obtain an FPRAS for the DNF counting problem it is sufficient to design an algo-
rithm that has the following properties:

1. In polynomial time we can compute |U | and we can randomly choose members from
U with the uniform probability distribution.

2. The function f is computable in polynomial time.

3. We can compute in polynomial time an upper bound on B = (1/µ) = |U |/|G| such
that this value is polynomial in the length of F .

If we can achieve these goals, then the polynomial time ϵ, δ approximation algorithm
consists of computing B and running N = B · (4 · ln(2/δ)/ϵ2) trials.

A first idea that doesn’t work: Let U be the set of all possible truth assignments for
the n variables. Let f be the function which evaluates to 1 on the set of truth assignments
which satisfy F . Naturally, G is the set of truth assignments which satisfy F and the quan-
tity we want to estimate is |G|. It is easy to verify that the first and second properties
are true with these definitions of U and f , but |U |/|G| might be exponentially large in the
size of the formula. This algorithm is an exponential time algorithm for the #DNF problem!

We present an ϵ, δ approximation algorithm for the DNF counting problem based on
the coverage algorithm for the union of sets presented in Section 3 of [33]. The running time
of this algorithm is O(nm2 · ln(1/δ)/ϵ2). This can be achieved by “decreasing” the size of
the universe U .

Let Di be the set of truth assignments which satisfy clause Ci. Let D =
∪m

i=1Di. It is
easy to verify that #F = |D|. Let U be the disjoint union of the Di, i.e. U = D1 ⊎ ...⊎Dm.
An element in U is represented by a pair (s, i), where 1 6 i 6 m and s ∈ Di. Then U
contains only the satisfying assignments. However, if an assignment s satisfies k clauses, U
contains k copies of s. Thus |U | =

∑m
i=1 |Di| > |D|.

For each s ∈ D, define the coverage set of s to be cov(s) = {(s, i) : (s, i) ∈ U}.
The coverage sets define a partition on U , where the size of each coverage set is at most
m (each satisfying assignment satisfies at most m clauses) and the number of coverage sets
is exactly |D| (exactly one coverage set corresponds to exactly one satisfying assignment).
Each coverage set contains information about which clauses become true by s.

We define f(s, i) = 1 if i is the smallest index such that s ∈ Di and f(s, i) = 0
otherwise. Since, for each s ∈ D, f takes on the value 1 for exactly one element of cov(s),
the size of the subset of U for which f takes on the value 1 is equal to |D|. This definition
means that f(s, i) takes on the value 1 if Ci is the first clause satisfied by s.

To implement the algorithm, we need to define the sets Di so as to have the following
properties:

• For all i ∈ {1, 2, ...,m}, |Di| can be easily computed. Obviously, the number of satis-
fying assignments of the clause Ci is equal to |Di| = 2n−#variables in Ci .
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• For all i ∈ {1, 2, ...,m}, we can randomly choose an element s ∈ Di such that the
probability of choosing each such s is 1/|Di|. This is done by setting the truth values
for the variables which appear in Ci to satisfy clause Ci and then choosing the truth
values for the variables that do not appear in Ci randomly to be “true” or “false” each
with probability 1

2
.

• Given any s ∈ D and any i ∈ {1, 2, ...,m}, it is easy to decide whether or not s ∈ Di.
Simply by determining the truth values of the variables of the clause Ci according to
s one can check if this clause is satisfied or not.

After all, the above procedures can be done in polynomial time.

A trial proceeds as described in the beginning: Choose (s, i) uniformly at random from
U and set Y = |U | · f(s, i). In more detail:

1st step: Randomly choose i ∈ {1, 2, ...,m} such that i is chosen with probability
|Di|/|U |.

2nd step: Randomly choose s ∈ Di such that s is chosen with probability 1/|Di|.

(Note. Steps 1 and 2 randomly choose (s, i) ∈ U with probability 1/|U |.)

3rd step: Compute f(s, i).

4th step: Y = f(s, i) · |U |.

The 2nd step was discussed as one of the properties that the sets Di have.

The 1st step can also be done in polynomial time. Let A be an integer array of length
m+ 1 such that A0 = 0 and Ai =

∑i
j=1 |Di| (then Am = |U |). Choose uniformly at random

a number r between 1 and |U | and use binary search to find the entry in A such that

Ai−1 < r 6 Ai. The entry Ai and the index i are chosen with probability Ai−Ai−1

|U | = |Di|
|U | .

Finally, the computation of f(s, i) require polynomial time. Let j = min{l : s ∈ Dl}.
The value of j is computed by indexing sequentially through the clauses and checking whether
s satisfies Cl. Then f(s, i) = 1 iff i = j.

The total time of the preprocessing step of the algorithm (computing all the |Di| and
the array A) is O(mn). The total time for steps 1 and 2 is O(n) and for step 3 is O(mn).
The advantage we have with the coverage algorithm over the naive algorithm is that
1
µ
= |U |

|D| 6
m·|D|
|D| = m, where the last inequality holds because each element of D appears at

most m times in U (a satisfying assignment s satisfies at most m clauses). Thus applying the
Zero-One Estimator Theorem, N = m · 4 · ln(2/δ)/ϵ2 trials suffice for an ϵ, δ approximation
algorithm. The total time for preprocessing plus all trials of the algorithm is
O(nm2 · ln(1/δ)/ϵ2).
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4.3 The complexity of the span-L - complete problem

#NFA

In this section we will study the complexity of a version of the problem #NFA, which we
defined in the section 2.1.

#NFAm:
Input : An encoding of a NFA M and an integer m in unary.
Output : The number of words of length exactly m accepted by M, i.e. |L(M) ∩ Σm|.

This problem has a variety of applications in computational biology. In addition,
there has been considerable theoretical interest in the complexity of counting and random
generation.

We have already seen that #NFA is #P -complete and it is easily shown that #NFAm

is #P -complete. The results we present are based on the work of Jerrum, Valiant and
Vazirani [30] and the work of Karp and Luby [34] and they can be found in [35].

Theorem 4.3.1 #NFAm is #P -complete with respect to log-space metric reductions.

Proof. There is a simple reduction from #DNF to #NFAm (and it is a reduction from
#DNF to #NFA at the same time).

Let F be a boolean formula in disjunctive normal form. We construct an NFA whose
language is exactly the satisfying assignments of F . Let x1, ..., xm and t1, ..., tl be the vari-
ables and the terms respectively of F . For each ti we construct an NFA Mi. This machine
will consist of a chain of m + 1 states, s0i, ..., smi, where the state s0i is the start state and
smi the accepting state of this automaton. The edge < sj i, sj+1i > is labelled 1 if xj+1 occurs
in ti, 0 if xj+1 occurs in ti and 0, 1 otherwise. Clearly, Mi accepts exactly those strings
corresponding to truth assignments that satisfy term ti. Now let M be the NFA with a start
state s and an ϵ-transition to the start state s0i for each 1 6 i 6 l. The final states are
exactly the final states of each Mi. Thus, M accepts exactly the strings corresponding to
satisfying assignments of F and #NFAm(M,m) = #DFA(F ). �

Comment 4.3.1 (i) The witnesses of an NP language can be modelled as satisfying as-
signments of a CNF formula and the non-witnesses as the satisfying assignments of a DNF
formula. Because of the construction in the previous proof, the non-witnesses of an NP lan-
guage can be modelled as a regular language in which the accepting NFA makes all of its
nondeterministic moves in the first step.

(ii) The nO(logn) -ras given in [35] is a generalization of the FPRAS for #DNF de-
scribed in Section 4.2.

Similarly to the Definition 4.2.1 of the previous section we give the following definition
of a g(n)-ras.
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Definition 4.3.1 A g(n)-randomised approximation scheme for a non-negative real-valued
function f is a probabilistic algorithm which, on input x and ϵ > 0 and δ < 1 computes f̃(x)
where Pr[f(x) · (1 + ϵ)−1 6 f̃(x) 6 f(x) · (1 + ϵ)] > 1− δ.
Further, the algorithm runs in time O(g(n)) where n is the maximum of |x|, ϵ−1 and logδ−1.

Under a reasonable assumption of self-reducibility on an NP set, it is known that the
problem of randomised approximate counting is polynomial time equivalent to the problem
of almost uniform generation. Let R be any polynomial-time computable binary relation.
For any x, the counting problem is to count, or approximately count the number of y such
that (x, y) ∈ R. The associated generation problem is, on input x, to generate uniformly at
random, an element of the set {y | (x, y) ∈ R}.

Definition 4.3.2 Let R be a polynomial-time computable binary relation. For any x, let
ϕ(x) = {y : (x, y) ∈ R}. A g(n)-almost uniform generator for the relation R is a probabilistic
algorithm, A, which, on input x, ϵ > 0 outputs a y ∈ ϕ(x) such that
|ϕ(x)|−1(1 + ϵ)−1 6 Pr(A outputs y) 6 |ϕ(x)|−1(1 + ϵ).
Also, A runs in time O(g(n)) where n is the maximum of |x| and logϵ−1.

Jerrum, Valiant and Vazirani showed in [30] the following important fact: If R is a
self-reducible polynomial-time computable relation, then there exists a polynomial-time ran-
domised approximation scheme if and only if there exists a polynomial-time almost uniform
generator. We give a nO(logn)-ras for #NFAm and a nO(logn)- almost uniform generator for
R = {(M,x) :M is an NFA, x ∈ L(M) and |x| = m} based on this fact.

A first attempt should consist of finding an unbiased estimator for #NFAm with the
hope its standard deviation to be small and hence the estimator could be used to obtain a
polynomial time approximation to #NFAm.

In the first place we describe one of the two unbiased estimators of [35].

Given an NFA (without ϵ transitions) and a number m in unary:

1. Count the number of accepting paths of length m, A(m).

2. Uniformly generate an accepting path of length m in the NFA. Let the string labelling
the path be s.

3. Count the number of accepting paths labelled by s, A(m, s).

4. Output the estimate A(m)/A(m, s) for #NFAm.

In step 2 the probability that a string s is generated is A(m, s)/A(m) and when
s is generated the output is A(m)/A(m, s). Thus, the expected value of the output is∑

s[A(m)/A(m, s) · A(m, s)/A(m)] which is the number of the accepted words of length m.
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Comment 4.3.2 (i) The number of accepting paths of length m of an NFA can be computed
with dynamic programming in the same way the number of accepting paths of a DFA is
computed: If f(q, i) = the number of paths of length i from q0 to q, then f(q, i + 1) =∑

p f(p, i) where the sum is taken over all p ∈ Q and all a ∈ Σ such that δ(p, a) = q.
Obviously, f(qacc,m) is the number of accepting paths of length m. Of course this number
overcounts the number of accepted words of an NFA. With slight modification, this dynamic
programming algorithm can be used to count the number of accepting paths of a particular
string s of an NFA: If f(q, i) = the number of paths labelled by the first i symbols of s,
then f(q, i + 1) =

∑
p f(p, i) where the sum is taken over the p ∈ Q such that δ(p, a) = q

and a is the i+1th symbol of s. The value f(qacc,m) is the number of accepting paths of the
string s. Here we suppose that the NFA has one starting state q0 and one accepting state
qacc.

(ii) Unfortunately the standard deviation of this experiment can be rather large.

We present the algorithms for approximate counting and almost uniform generation of
[35]. The input to these algorithms is some < M, 1m >, where M is a m-level NFA with
binary alphabet and no ϵ-transitions.

Definition 4.3.3 A m-level NFA is an NFA in which the states can be partitioned into
m+ 1 levels with the following properties:

• There is exactly one state at level 0 and it is the starting state.

• There is exactly one state at level m and it is the accepting state.

• All transitions are from a node in level i to a node in level i+ 1 for i ∈ {0, ...,m− 1}.

• For any state, p, the accepting state is reachable from p and p is reachable from the
starting state.

Lemma 4.3.1 For any NFA M and integer m, there exists an NFA M ′ such that M ′ is a
m-level NFA with no ϵ-transitions, a binary alphabet and such that |L(M ′)| = |L(M)∩Σm|.
Further, the size of M ′ is polynomial in the size of M and m.

Comment 4.3.3 If the NFA M of the previous lemma has n = |Q| states then each level
of the NFA M ′ has at most n states.

Let M be a m-level NFA with at most n states per level and let L = L(M). We write
∆(q, x) to denote the set of states reachable from q on string x. Let q1, ..., qj be the states at
level ⌊m

2
⌋ in M . For each state q of them define Lq as the strings in L that have accepting

paths in M through state q.
Let Lq,P be the prefixes of Lq of length ⌊m2 ⌋, i.e. Lq,P = {x : q ∈ ∆(qstart, x)} and Mq,P

the ⌊m
2
⌋-level NFA that consists of all the states from which q is reachable. Similarly, let

Lq,S be the suffixes of Lq of length ⌈m2 ⌉ and Mq,S the corresponding NFA.
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Assume that we know |Lq,P | and |Lq,S| exactly and that we can generate strings uni-
formly at random from these languages. Then |Lq| = |Lq,P | · |Lq,S|. To generate an element
of Lq, we generate an element x from Lq,P and y from |Lq,S and output xy. Then xy is
uniformly drawn from Lq.

Now we want to compute |L| = |
∪j

i=1 Lqi|, where the sets Lqi are not necessarily dis-

joint. For i = 1, ..., j, let pi be the probability that a random string of Lqi is not in
∪i−1

k=1 Lqk .

Then we compute the size of L as follows: |L| =
∑j

i=1 pi · |Lqi|.

The algorithms described above, are given in detail here:

The algorithm to generate a random string in L is as follows:

1. Randomly choose a state qi from level ⌊m
2
⌋ with probability

|Lqi |∑j
l=1 |Lql

|
.

2. Randomly generate a string x from Lqi . If x has paths through
k different states at level ⌊m

2
⌋, output x with probability 1

k
.

3. If in step 2 we fail to output x repeat steps 1 and 2 until a string
is output.

The algorithm to generate a random string in L is as follows:

1. For each state qi in level ⌊m
2
⌋ approximately count Lqi .

2. For each state qi in level ⌊m
2
⌋ uniformly generate k strings in-

dependently from lqi .

3. For each i estimate the probability pi as the fraction of the k
strings generated from Lqi that are not in

∑i−1
l=1 |Lql |.

4. Output
∑

i pi · |Lqi|.

The running time analysis leads to the bound nO(logm) for approximately counting the
number of strings accepted by a m-level NFA with n states per level.

In [42] was proved the following theorem.

Theorem 4.3.2 Let R ⊆ Σ∗ × Σ∗ be self-reducible. If there exists a polynomially time-
bounded randomised approximate counter for R within ratio 1+O(nα) for some α ∈ R, then
there exists a fully polynomial randomised approximation scheme for #R.
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Approximate counting is robust with respect to polynomial time computation for self-
reducible counting functions.

For the #NFAm problem we have the following result which is slightly different and
it does not require the self-reducibility property.

Theorem 4.3.3 If #NFAm can be approximated within a factor of 2n
δ
in polynomial time

for some constant 0 6 δ < 1, then #NFAm can be approximated within a factor of 1+ ϵ for
any constant ϵ > 0 in polynomial time.

The above theorem can be used to bootstrap the approximate counting algorithm so
that achieves an approximation factor of (1 + ϵ) for any ϵ that is inverse polynomial.

For further analysis we refer the reader to [35].



Chapter 5

Descriptive Complexity of counting
functions

Descriptive complexity is an attempt to understand computation from the point of view of
logic. It characterizes complexity classes by the type of logic needed to express the languages
in them. This connection between complexity and the logic of finite structures allows results
to be transferred easily from one area to the other and provides additional evidence that
the main complexity classes are somehow “natural” and not tied to the specific abstract
machines used to define them.

Specifically, each logical system produces a set of queries expressible in it. The queries
when restricted to finite structures correspond to the computational problems of traditional
complexity theory.

The first main result of descriptive complexity was Fagin’s theorem, shown by Ronald
Fagin in 1974. It established that NP is precisely the set of languages expressible by sentences
of existential second-order logic [25] [58].

5.1 Preliminary definitions of first-order logic

We first review basic notions of first-order logic.

Definition 5.1.1 A vocabulary τ =< Rα1
1 , ..., R

αr
r , c1, ..., cs, f

β1

1 , ..., fβt
t > is a tuple of rela-

tion symbols, constant symbols and function symbols. Ri is a relation symbol of arity αi and
fj is a function symbol of arity βj.

A structure with vocabulary τ is a tuple A =< |A|, RA
1 , ..., R

A
r , c

A
1 , ..., c

A
s , f

A
1 , ..., f

A
t >

whose universe is the nonempty set |A|. For each relation symbol Ri of arity αi in τ , A
has a relation RA

i of arity αi defined on |A|, i.e. RA
i ⊆ |A|αi . For each constant symbol

cj ∈ τ , A has a specified element of its universe cAj ∈ |A|. For each function symbol fi ∈ τ ,
fA
i is a total function from |A|βi to |A|. A vocabulary without function symbols is called a
relational vocabulary. The notation ∥A∥ denotes the cardinality of the universe of A.

55
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Example 5.1.1 (i) The tuple τg =< E2, s, t > is the vocabulary of graphs with specified
source and terminal nodes. The symbol E is a relational symbol of arity 2 for expressing
“edge relation” and s, t are constant symbols for the source and terminal respectively.

(ii) The tuple σ =<62, S1 > is the vocabulary of boolean strings. The 6 represents the
usual ordering on natural numbers and the relation S represents the positions where a binary
string has one. Consider the binary string w = 01101. We can code w as the structure
Aw =< {0, 1, ..., 4},6, {1, 2, 4} > of vocabulary σ.

Comment 5.1.1 In the history of mathematical logic most interest has concentrated on
infinite structures. Yet, the objects computers have and hold are always finite. To study
computation we need a theory of finite structures. That’s why we concentrate on finite struc-
tures. We define STRUC[τ ] to be the set of finite structures of vocabulary τ .

Other symbols of first-order logic are: • the variables x, y, z, ... • ∧ (“and”) • ∨ (“or”) •
¬ (“not”) • → (implication) • the symbols , () (comma and parentheses) • ∃ (“there exists”)
and ∀ (“for all”).

Definition 5.1.2 For any vocabulary τ , define the first-order language L(τ) to be the set of
formulas built up from the relation, constant and function symbols of τ , the logical relation
symbol =, the boolean connectives ∧, ∨,→, ¬, variables: V AR = {x, y, z, ...} and quantifiers
∃ and ∀.

We say that an occurrence of a variable x in ϕ is bound if it lies within the scope of
a quantifier (∃x) or (∀x), otherwise it is free. We write ϕ(x1, ..., xn) to denote that the free
variables of the formula ϕ belong to {x1, ..., xn}.

A formula without free variables is called a sentence.

Comment 5.1.2 For the inductive definitions of terms, atomic formulas and well formed
formulas one could consult [18].

We write A |= ϕ to mean that A satisfies ϕ, i.e., that ϕ is true in A. Since ϕ may
contain some free variables, we will let an interpretation into A be a map i : V → |A| where
V is some finite subset of V AR. For convenience, for every constant symbol c ∈ τ and any
interpretation i for A, we let i(c) = cA. If τ has function symbols, then the definition of i
extends to all terms via the recurrence, i(fj(t1, ..., trj)) = fA

j (i(t1), ..., i(trj)).
We have an inductive definition for what it means for a sentence ϕ to be true in a

structure A.

Definition 5.1.3 (Definition of Truth)
Let A ∈ STRUCT [τ ] be a structure, and let i be an interpretation into A whose domain

includes all the relevant free variables. We inductively define whether a formula ϕ ∈ L(τ) is
true in (A, i):

• (A, i) |= t1 = t2 ⇔ i(t1) = i(t2)
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• (A, i) |= Rj(t1, ..., trj)⇔< i(t1), ..., i(trj) >∈ RA
j

• (A, i) |= ¬ϕ⇔ it is not the case that (A, i) |= ϕ

• (A, i) |= ϕ ∧ ψ ⇔ (A, i) |= ϕ and (A, i) |= ψ

• (A, i) |= (∃x)ϕ⇔ (there exists α ∈ |A|)(A, i, α/x) |= ϕ, where

(i, α/x)(y) :=

{
i(y) if y ̸= x,
α if y = x.

We write A |= ϕ to mean that (A, ∅) |= ϕ.

Comment 5.1.3 The truth of sentences containing ∨, → and ∀ is defined naturally follow-
ing the previous definition.

[18] is strongly recommended for a good revision of the basic first-order logic notions.

5.2 Fagin’s Theorem

Second-order logic consists of first-order logic plus new relation variables over which we may
quantify. For example, the formula (∀Rr)ϕ means that for all choices of relation R of arity
r, ϕ holds.

Definition 5.2.1 Let K be a class of finite structures over L(τ) which is closed under iso-
morphism. Then K is (first-order) definable if it is of the form Mod(ϕ) = {A : A is an L(τ)
structure and A |= ϕ} for some first-order sentence ϕ. Let FO be the set of (first-order)
definable classes.
Similarly, we say that K is definable by a second-order sentence if K = Mod(ϕ) = {A : A
is an L(τ) structure and A |= ϕ} for some second-order sentence ϕ. Let SO be the set of
second-order definable classes.
Finally SO∃ (resp. SO∀) is the class of existential (resp. universal) second-order definable
classes, i.e. the sentence of the above definition can only contain existential (resp. universal)
quantification over relational symbols.

Example 5.2.1 (i) Examples of definable classes are the class of all graphs and the class
of all groups. A property of structures is said to be expressible in first order logic (or some
other logic) if it determines a definable class. For example the property of a graph being
complete is expressible in first order logic by the sentence ∀x∀y < x, y >∈ E.

(ii) A natural way to encode a formula ϕ in CNF is via the structure Aϕ = (A,P,N),
where A is a set of clauses and variables, the relation P (c, v) means that variable v occurs
positively in clause c and N(c, v) means that v occurs negatively in c.
SAT is the set of boolean formulae in CNF that admit a satisfying assignment. This property
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is expressible in SO∃ as follows:
ΦSAT = (∃S)(∀x)(∃y)((P (x, y) ∧ S(y)) ∨ ((N(x, y) ∧ ¬S(y))).
ΦSAT asserts that there exists a set S of variables - the variables that should be assigned true
- that is a satisfying assignment of the input formula.

Definition 5.2.2 A query is any mapping I : STRUC[σ]→ STRUC[τ ] that is polynomially
bounded. A boolean query is a map Ib : STRUC[σ] → {0, 1}. A boolean query may also be
thought of as a subset of STRUC[σ] - the set of structures A for which Ib(A) = 1.

Everything that a Turing machine does may be thought of as a query from binary
strings to binary strings. In order to make Descriptive complexity rich and flexible it is
useful to consider other vocabularies. To relate structures over other vocabularies to Turing
machine complexity, we fix a scheme that encodes the structures of some vocabulary τ
as boolean strings. To do this, for each τ , we define an encoding binτ : STRUC[τ ] →
STRUC[τs], where τs =< S1 > is the vocabulary of boolean strings. The details of the
encoding are not important, but it is useful to know that for each τ , binτ (and its inverse)
are first-order queries. This means that binτ is given by a tuple of formulas from L(σ) (and
its inverse is given by a tuple of formulas from L(τ)). However, the encoding binτ (A) does
presuppose an ordering on the universe. There is no way to code a structure as a string
without an ordering. Since a structure determines its vocabulary, in the sequel we usually
write bin(A) instead of binτ (A) .

Definition 5.2.3 Let a Turing machine M , a vocabulary τ and Q ⊆ STRUC[τ ]. We say
that M computes Q if for every A ∈ STRUC[τ ], M on input binτ (A) halts and accepts if
and only if A ∈ Q.

Proposition 5.2.1 Let L be an isomorphism closed class of finite structures over a vocab-
ulary τ .
If L is definable by a first-order sentence, then it belongs to the complexity class L, i.e.
FO ⊆ L.

Theorem 5.2.1 (Fagin [20])
Let L be an isomorphism closed class of finite structures over a vocabulary τ .
L is NP computable if and only if it is definable by an existential second-order sentence, i.e.
SO∃ = NP .

Proof. SO∃ ⊆ NP : Let Φ = ∃Rα1
1 ...∃R

αk
k ϕ be a second-order existential sentence and

let τ be the vocabulary of Φ. Our task is to build an NP machine N such that for all
A ∈ STRUC[τ ], A |= Φ⇐⇒ N accepts on input bin(A).

Let A be an input structure to N and let n = ∥A∥. What N does is to nonde-
terministically choose relations R1, ..., Rk, subsets of |A|α1 , ..., |A|αk (this can be done by
nondeterministically writing down binary string of length nα1 , ..., nαk). After this polyno-
mial number of steps, we have an expanded structure A′ =< A, R1, R2, ..., Rk >. N should
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accept iff A′ |= ϕ. By Proposition 5.2.1, we can test if A′ |= ϕ in logspace, so certainly in
NP. Notice that N accepts A iff there is some choice of relations R1 through Rk such that
< A, R1, R2, ..., Rk >|= ϕ.

NP ⊆ SO∃: Let M be a nondeterministic Turing machine that uses time nk − 1 for
inputs bin(A) with n = ∥A∥. We write a second-order sentence, Φ = (∃C2k

1 ...C
2k
t ∆k)ϕ that

says, “There exists an accepting computation C2k
1 , ..., C

2k
t ,∆ ofM”. We suppose thatM has

one work tape and we describe how to code M ’s computation. Define a (nk − 1)× (nk − 1)
matrix C of n2k tape cells. For each pair (s, t), C(s, t) codes the tape symbol σ that appears
in cell s of M ’s work tape at time t if the cursor doesn’t scan this cell. If the cursor scans
the cell s at time t, then C(s, t) codes the pair < q, σ > consisting of M ’s state q at time t
and tape symbol σ. Let Γ = {γ0, ..., γt} = (Q× Σ) ∪ Σ be a listing of the possible contents
of a cell of the matrix C. We will let Ci, 0 6 i 6 t, be relation variables, one for each γi.
The intuitive meaning of Ci(s, t) is that computation cell s at time t contains symbol γi. For
coding s and t (0 6 s, t 6 nk − 1) we use k-tuples s = s1...sk, t = t1...tk, where each si, ti
ranges over the universe of A, i.e. is between 0 and n− 1. Thus, each Ci is of arity 2k.

The k-ary relation ∆ encodes M ’s nondeterministic moves. Intuitively, ∆(t) is true, if
step t+1 of the computation makes choice “1” and it is false if step t+1 of the computation
makes choice “0”. Note that these choices can be determined from C0, ..., Ct, but the formula
Φ is simplified when we explicitly quantify ∆.

Now the sentence ϕ(C1, ..., Ct,∆) consists of four parts: ϕ ≡ α∧ β ∧ η ∧ ζ. We analyse
what each of these parts expresses. The first two sentences can be easily written explicitly.
We explain how one can write η and ζ.

• Sentence α asserts that row 0 of the computation correctly codes input bin(A).

• Sentence β says that it is never the case that Ci(s, t) and Cj(s, t) both hold, for i ̸= j.

• Sentence η says that for all i, row i+1 of C follows from row i via move ∆(t) ofM . Pre-
cisely, η asserts that the contents of tape cell (s, t+ 1) follows from the contents of cells
(s− 1, t+ 1), (s, t) and (s+ 1, t) via the move ∆(t) of M . Let < a−1, a0, a1, δ >→M b
mean that the triple of cell contents a−1,a0, a1 lead to cell content b via move δ of M .
Then, the following sentence encodes this information for the cells of C that are not
in the first and last column:
η1 ≡ (∀t, t ̸= max)(∀s, 0 < s < max)

∧
<a−1,a0,a1,δ>→M b

(
¬δ∆(t) ∨ ¬Ca−1(s− 1, t) ∨

¬Ca0(s, t) ∨ ¬Ca1(s+ 1, t) ∨ ¬Cb(s, t+ 1)
)
,

where ¬δ is ¬ if δ is the nondeterministic choice “0” and is the empty symbol when δ is
“1”. If η0 and η2 are the sentences that encode the information for s = 0 and s = max
respectively, then η ≡ η0 ∧ η1 ∧ η2.

• Finally, ζ asserts that the last row of the computation includes the accept state. We
may assume that when M accepts it clears its tape, moves all the way to the left,
writes 1 at the first cell and enters a unique accept state qacc. Then M has these tape
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contents until time max = nk − 1. Let γf , for some f ∈ {0, ..., t}, correspond to the
pair < qacc, 1 >. Then ζ = Cf (0,max).

Clearly A |= Φ ⇐⇒ M accepts on input bin(A), as Φ describes the steps of M ’s compu-
tation. The structure A has to include a relation symbol 6 corresponding to a total order
on the universe |A|. If such an ordering does not exist then Φ ≡ ∃X∃C1...Ct∆(X is a total
order) ∧ ϕ, where “X is a total order” can be expressed by a first order sentence. �

5.3 Logical characterization of #P

Our purpose is to give the logical characterization for the class #P [44] and comment on
the expressiveness and feasibility of syntax-restricted subclasses obtained in this setting of
logical definability.

Motivated by Fagin’s characterization of NP, Saluha et al. examine the class of prob-
lems with an associated counting function f definable using first-order formulae ϕ(z,T) as
follows: f(A) = |{< T, z >: A |= ϕ(z,T)}|, where A is an ordered finite structure, T is a
sequence of predicate variables (relation symbols) and z is a sequence of first-order variables.
This framework captures exactly the class #P . We emphasize that the instance space of a
counting problem is a set of ordered finite structures over a certain vocabulary τ , i.e. the
structures that include a binary relation which is always interpreted as a total order on the
elements of their universe.

Definition 5.3.1 A counting problem is a tuple L = (IL,FL, fL), where IL is the set of
input instances, FL(I) is a set of feasible solutions for the input I ∈ IL and fL(I) = |FL(I)|
is the counting function corresponding to the problem.

Definition 5.3.2 Let L be a counting problem with finite structures A over vocabulary σ
as instances. The relation 6 is interpreted as a total order on the elements of |A|. Let
T = (T1, ..., Tr), r > 0, be a sequence of predicate symbols and let z = (z1, ..., zm), m > 0, be
a sequence of first-order variables, such that m + r > 0. We say L is in the class #FO if
there is a first-order formula ϕ(z,T) with predicate symbols from σ ∪T and free first-order
variables from z, such that: fL(A) = |{< T, z >: A |= ϕ(z,T)}|.

We define subclasses #Πn, #Σn, n > 0 analogously using Πn, Σn respectively, instead
of arbitrary first-order formulae. A Πn (resp. Σn) formula is a formula which is of the form
∀x1∃x2∀x3...Qxnψ (resp. ∃x1∀x2∃x3...Qxnψ) when it is written in the quantifier prenex
normal form, where obviously Q = ∃ (resp. Q = ∀), if n is even and Q = ∀ (resp. Q = ∃),
if n is odd.

For a counting problem in #FO, the associated decision problem is the following: Given
an input structure A, is there an interpretation of < T, z > on the structure A such that
A |= ϕ(T, z)?

Theorem 5.3.1 The class #P coincides with the class #FO.
Precisely, #P = #Π2. Hence, #P = #Π2 = #Πn = #Σn, n > 2.
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Proof. #FO ⊆ #P : As in the proof of Fagin’s Theorem, the easy direction is proved using
the fact that FO ⊆ L.

#P ⊆ #FO: Assume that L is a problem in the class #P and the instances of L are
finite structures A over σ, which includes the relation symbol 6. Let A be such a structure
and M be the nondeterministic machine such that the number of accepting paths of the
machine on input bin(A) is given by fL(A). Hence, to check if fL(A) is nonzero is in NP .
By Fagin’s theorem, there is a first-order sentence ϕ(T) with relation symbols from σ ∪ T
such that fL(A) ̸= 0 if and only if A |= (∃T)ϕ(T).

The formula ϕ can be chosen to be a Π2 formula involving the binary relation 6. In the
proof of Fagin’s theorem, the description of the sentences α, β and η have only ∀ quantifiers
over first-order variables. In addition, we need to define a binary relation S representing
the “successor” relation, and two unary relations for the max and min. When we use these
relations in ϕ, an alternation of quantifiers occurs. Finally, the formula Φ of Fagin’s Theorem
can be written in quantifier prenex normal form as follows Φ ≡ ∃Tϕ(T) ≡ ∃T∀x∃yψ(T).

Further, the formula ϕ is such that, every accepting computation of the NP machine
M on input bin(A) corresponds to a unique value of the sequence T which satisfies ϕ(T).
The number of accepting computations of the NP machine is equal to |{< T >: A |= ϕ(T)}|.

Therefore #P = #Π2 = #FO. �

Comment 5.3.1 (i) Although the relation 6 is not needed in the proof of Fagin’s theorem,
in the above proof the structure A includes such a relation. In the absence of a total order,
one can define a binary relation 6 and assert, as a subformula of ϕ, that 6 represents a total
order on the universe. However, any total order will suffice in satisfying the formula. There
are ∥A∥! possible binary relations which are total orders and hence the number of distinct
assignments to T which satisfy ϕ(T) is ∥A∥! times the number of accepting paths in the
corresponding NP machine. This problem disappears when the structures are ordered, i.e.
when they include a relation which represents a total order.

(ii) Instead of counting only satisfying predicate variables T, we count assignments to
both second-order and first-order variables < T, z >. The reason for doing this is that there
are functions in #P , which are more naturally expressible by counting assignments of just
first-order variables or a combination of first-order and second-order variables.

In [9] it was shown that #Π2[≼] = #Π1[SUCC] = #Π1[+]. At first we make clear
what we mean by writing #Πk[op] and then give a sketch proof for these equations.

Definition 5.3.3 Let op be one of the following predicates: ≼, SUCC,+. Let σ and τ be
vocabularies that do not contain op and 6. Let (A,6A) be an ordered σ-structure and let
op6

A
be the total ordering (≼) or the successor relation (SUCC) or the plus relation (+)

that induces 6A.

For k ∈ N we define the class #Σk[op] (#Πk[op]) to be the class of functions f such
that there exists a Σk-formula (Πk-formula respectively) ϕ over (σ, τ, op) and f(A,6A) =
|{T : (A,T, opA) |= ϕ}| for all ordered structures (A,6A).
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Note that given a linear ordering 6A the relations ≼A (≡6A), SUCCA and +A com-
patible to 6A are uniquely determined. We also assume that the universe of the structure
is of the form {0, ..., n− 1}.

The definition of #Σk[op] (#Πk[op]) is a generalization of the definition given in [44]:
#Σk = #Σk[≼] (#Πk = #Πk[≼]). Moreover, we prefer to count only relation symbols at
this point, since these proofs are theoretical and they do not consider any examples.

Theorem 5.3.2 (i) #Π1[SUCC] = #Π1[+].
(ii) #Π2[≼] = #Π1[SUCC].

Sketch proof (i) #Π1[SUCC] ⊆ #Π1[+]: Let f ∈ #Π1[SUCC]. That is, there exist σ, τ
such that for all ordered σ-structures (A,6A): f(A,6A) = |{T : (A,T, SUCCA) |= ϕ}| for
some Π1 formula ϕ. A Π1 formula ϕ+ can be defined such that

(A, 0, n− 1,≼A,+A,T, SUCCA) |= (ϕ ∧ ϕ+) iff (A,T, SUCCA) |= ϕ.
In other words a plus relation can be defined using the successor relation.
Let τ ′ = (min,max,≼, SUCC, τ), then there exists a τ ′-expansion T′ for all ordered σ-
structures A such that f(A,6A) = |T′ : (A,T′,+A) |= (ϕ ∧ ϕ+)}|. Thus, f ∈ #Π1[+].
#Π1[+] ⊆ #Π1[SUCC]: Similar as above, we use a Π1 formula ϕSUCC to define a successor
relation using the plus relation.

(ii) #Π1[SUCC] ⊆ #Π2[≼]: This direction is easy since we can use the formula ϕSUCC

to define a successor relation using a given linear order. Thus, all counting functions that
are definable via Π1 formulae that use a successor relation are definable also by Π2 formulae
using a linear ordering.
#Π2[≼] ⊆ #Π1[SUCC]: This direction is much more difficult to prove. For each Π2 formula
ϕ over (σ, τ,≼) we should construct a Π1 formula ϕ̂ over (σ, τ̂ , SUCC), such that for all
ordered σ-structures (A,6A) it holds that

|{TA : (A,TA,6A|= ϕ}| = |{T̂A : (A, T̂A, SUCCA) |= ϕ̂}|.
The proof can be found in [9]. �

Corollary 5.3.1 #P = #Π2[≼] = #Π1[+] = #Π1[SUCC].

5.4 Logical Hierarchy in #P

In this section we restrict ourselves to the classes #Σk[≼], #Πk[≼] or just #Σk, and #Πk as
defined in [44].

Descriptive complexity gives some insight into subclasses of #P . A fundamental ques-
tion of counting complexity concerns the computational feasibility of counting problems. By
computationally feasible we mean either polynomial time computable or approximable by
a polynomial time randomised algorithm. Can we distinguish the “easy” from the “hard”
counting problems? Which subclasses of #P can help us to classify counting problems?

In [44] and [16] the computational feasibility of problems belonging to #P is related
to logically definable classes.
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We begin the presentation of these attempts from the study of the classes #Σ0 = #Π0,
#Σ1, #Π1, #Σ2 and #Π2 which are obtained by restricting the quantifier complexity of the
first-order formula.

Theorem 5.4.1 The problems in #Π2 form a linear hierarchy with five distinct levels:
#Σ0 = #Π0 ( #Σ1 ( #Π1 ( #Σ2 ( #Π2 = #P .

Proof. All the containments of the theorem are trivial except for the containment #Σ1 ⊆
#Π1. Let L be a counting problem in #Σ1 with fL(A) = |{< T, z >: A |= (∃x)ψ(x, z,T)}|,
where ψ(x, z,T) is a quantifier-free formula. Instead of counting the tuples < T, z >, we
can count the tuples < T, (z,x∗) >, where x∗ is the lexicographically smallest x, such that
A |= ψ(x, z,T). Let θ(x∗,x,6) be the quantifier-free formula that expresses the fact that
x∗ is lexicographically smaller than x under 6. Then,
fL(A) = |{< T, (z,x∗) >: A |= ψ(x∗, z,T) ∧ (∀x)ψ(x, z,T)→ θ(x∗,x,6)}|.
Hence, L ∈ #Π1 and #Σ1 ⊆ #Π1.

The strictness of the containments is due to the following facts:

• #3DNF is in the class #Σ1 but not in the class #Σ0.

• #3SAT is in the class #Π1 but not in the class #Σ1.

• #DNF is in the class #Σ2 but not in the class #Π1.

• #HAMILTONIAN is in the class #Π2 but not in the class #Σ2.

The proofs of the above propositions are model theoretic and are based on smart remarks.
They can be found in [44]. �

The next two theorems will bring us one step closer to our objective. They assert that
every problem in #Σ0 is polynomial time computable and that every problem in #Σ1 is
approximable in polynomial time by a randomised algorithm.

Theorem 5.4.2 Every counting problem in #Σ0 is computable in deterministic polynomial
time.

Proof. Let L be a counting problem in #Σ0. Then fL(A) = |{< T, z >: A |= ψL(z,T)}|,
where ψL is a quantifier-free formula, A is a finite ordered structure over a vocabulary σ,
T is a sequence (T1, ..., Tr) of predicate variables of arities a1, ..., ar, respectively, and z is a
sequence (z1, ..., zm) of first-order variables.

To compute fL(A), we count for each z∗ ∈ |A|m, the number of assignments to T so
that A |= ψL(z

∗,T). The number of such z∗ is ∥A∥m. So, it suffices to show that for every
z∗ ∈ |A|m we can compute fz∗

L (A) = |{T : A |= ψL(z
∗,T)}| in polynomial time. Then,

fL(A) =
∑

z∗∈|A|m f
z∗
L (A).

For every z∗ ∈ |A|m consider the formula ψL(z
∗,T). This formula can be viewed as

a propositional formula with variables of the form Ti(yi) where yi are tuples of arity ai,
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i = 1, ..., r. The total number of such variables is
∑r

i=1 ∥A∥ai . Let c(z∗) denote the number
of ai-tuples yi, for i = 1, ..., r, such that Ti(yi) or ¬Ti(yi) appear in ψL(z

∗,T). Obviously
the number of variables of the form Ti(yi), i = 1, ..., r, that do not appear in the formula is
(
∑r

i=1 ∥A∥ai)− c(z∗). Also, c(z∗) does not depend on the size of the structure A. Hence, we
can find all the truth assignments to the variables that occur in this propositional formula
in constant time. Let s(z∗) be the number of such satisfying assignments. It is easily seen
that fz∗

L (A) = s(z∗) · 2(
∑r

i=1 ∥A∥ai )−c(z∗), which is computed in polynomial time. �

Comment 5.4.1 It is unlikely that every problem in the next higher class in the hierarchy,
i.e. #Σ1, is computable in polynomial time, because #Σ1 has #P -complete problems, e.g.
#3DNF .

Theorem 5.4.3 Every counting function in #Σ1 has an FPRAS.

The existence of a FPRAS for every problem in #Σ1 is proved in two steps:

1. Every problem in #Σ1 is reducible to a restricted version of #DNF , the problem
#k · logDNF .

2. The problem #k · logDNF has an FPRAS.

For the first step, we need the appropriate notion of reduction and the definition of the
problem #k · logDNF .

Definition 5.4.1 Given counting problems L, R, we say L is (polynomial time) product
reducible to R, L 6pr R, if there are polynomial time computable functions g : IL → IR,
h : N → N, such that for every finite structure A which is an input to L the value of the
counting function is given by fL(A) = fR(g(A)) × h(|A|). If h is the constant 1 function,
the reduction is said to be parsimonious.

Proposition 5.4.1 (i) Given counting problems L, R, if L 6pr R and R is computable in
polynomial time, then L is computable in polynomial time.

(ii) Given counting problems L, R, if L 6pr R and R has a polynomial time ran-
domised (ϵ, δ) approximation algorithm, then L also has a polynomial time randomised (ϵ, δ)
approximation algorithm.

Proof. Follows easily from the definition of the product reduction. �

Definition 5.4.2 For any positive integer k, the counting problem #k · logDNF (#k ·
logCNF ) is the problem of counting the number of satisfying assignments to a propositional
formula in disjunctive normal form (respectively, conjunctive normal form) in which the
number of literals in each disjunct (respectively, conjunct) is at most klogn, where n is the
number of propositional variables in the formula.
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Lemma 5.4.1 For every counting problem L ∈ #Σ1, there is a positive constant k so that
L 6pr #k · logDNF .

Proof. Let L ∈ #Σ1 and fL(A) = |{< T, z >: A |= (∃y)ψ(y, z,T)}|, where ψ(y, z,T)
is a quantifier-free formula in DNF form, with at most t literals per disjunct, T is a se-
quence (T1, ..., Tr) of second-order predicate variables whose arities are a1, ..., ar respectively,
y and z are sequences (y1, ..., yp) and (z1, ..., zm) respectively, of first-order variables. Let
{y1, ..., y∥A∥p} be the set |A|p and {z0, ..., z∥A∥m−1} be the set |A|m.

For every zi ∈ |A|m, we write the formula (∃y)ψ(y, z,T) as a disjunction
∨∥A∥p

j=1 ψ(yj, zi,T).
By replacing in this new formula every subformula that is satisfied by A by the value TRUE,
and every subformula that is not satisfied by A by the value FALSE, we obtain a propo-
sitional formula ψ′(zi,T) in DNF form with variables Tq(wq), wq ∈ |A|aq and q = 1, ..., r.
This means that each literal of this formula is of the form Tq(wq) or ¬Tq(wq) for some
q ∈ {1, ..., r} (or it has already the value TRUE or FALSE). Let c(A) be the number of
variables Tq(wq), wq ∈ |A|aq and q = 1, ..., r, that do not appear in any formula ψ′(zi,T),
i = 1, ...,m.

At the end, the DNF formula we construct has to accept as satisfying assignments all
the pairs < T, z > that satisfy ψ in A. Thus, we need |A|m new conjuncts, one for each
zi: We define l new propositional variables x1, ..., xl, where 2l−1 < |A|m 6 2l. For every
s ∈ {0, 1}l, let x(s) represent the conjunction of these l variables so that for 1 6 i 6 l, xi
appears complemented if and only if the ith component of s is 0. For example, if l = 4 and
s = 0101, then x(s) = ¬x1 ∧ x2 ∧ ¬x3 ∧ x4. We interpret s as the binary representation of
an integer between 0 and 2l − 1.

Consider now the propositional formula
θA ≡def [ψ′(z0,T) ∧ x(0)] ∨ [ψ′(z1,T) ∧ x(1)] ∨ ... ∨ [ψ′(z∥A∥m−1,T) ∧ x(∥A∥m − 1)].

(1) This formula can be written in DNF form and its variables are among x1, ..., xl and
Tq(wq), q = 1, ...r.

(2) Each disjunct contains at most t+ l literals, for some constant t. All the variables
occurring in θA are at most n =

∑r
i=1 ∥A∥ai + l, and 2l−1 < |A|m 6 2l, l = O(logn). Hence

θA is a k · logDNF formula for suitable k depending on the size of ψ(y, z,T).
(3) The truth value of c(A) variables do not affect the truth of θA. So all the possible

truth assignments on these variables can generate pairs < T, z > that satisfy the initial
formula ψ in A. As a result, fL(A) = 2c(A) × (the number of satisfying assignments of
θA).

(4) We can construct θA in polynomial time. �

Comment 5.4.2 The decision version of a problem L ∈ #Σ1 is : Given a finite structure
A, is fL(A) ̸= 0 ? Equivalently, A |= (∃T)(∃z)ϕ(z,T) ?, where ϕ is an existential formula.
There exists a first-order existential formula ϕ′ such that A |= (∃T)(∃z)ϕ(z,T) if and only
if A |= ϕ′. It is known that the problem of model checking for a first-order formula is in
the uniform version of the class AC0. Hence, the complexity of the decision version of every
#Σ1 problem is very low.
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Lemma 5.4.2 For every k, there is a FPRAS for the #k · logDNF problem.

The #k ·logDNF problem is a special case of the #DNF problem which has a FPRAS
as we showed in section 4.2. In fact, it suffices to show that every problem in #Σ1 is product
reducible to #DNF in Lemma 5.4.1.

Theorem 5.4.3 follows immediately from Proposition 5.4.1(ii), Lemma 5.4.1 and Lemma
5.4.2.

Comment 5.4.3 (i) The class #Σ1 has a lot of interesting problems like, #MONOCHRO-
MATIC-kCLIQUE-PARTITIONS, #NON -V ERTEX-COV ERS, #NON-CLIQUES.

(ii) It is unlikely that every problem in the next higher class in the hierarchy, i.e. #Π1

has an FPRAS. Such a result would imply that NP = RP , since #3SAT is in the class #Π1

and 3SAT is NP-complete.

A natural question to ask in this context is: Given an arbitrary first order formula
ϕ(z,T), is the counting problem defined using this formula polynomial time computable or
is approximable by a polynomial time (ϵ, δ) randomised algorithm?

Let σ be a vocabulary and let ϕ(z,T) be a first-order formula with predicate symbols
from σ ∪T . We say a counting problem Lϕ with instances finite structures over σ is defined
by the formula ϕ(z,T), if the counting function fL is defined using ϕ: fL(A) = |{< T, z >:
A |= ϕ(z,T)}|. We also write fϕ for this function.

Theorem 5.4.4 Let σ be a vocabulary with a unary predicate {C} and three binary predicate
symbols {E,P,N}.

(i) Assuming NP ̸= RP , the following is an undecidable problem: Given a first-order
formula ϕ(z,T) over σ ∪ T , does the counting problem Lϕ have a polynomial time (ϵ, δ)
randomised approximation algorithm, for some constants ϵ, δ > 0?

(ii) Similarly, assuming P ̸= P#P , the following is an undecidable problem: Given a
first-order formula ϕ(z,T) over σ ∪ T , is the counting problem Lϕ polynomial time com-
putable?

The above results do not contradict the fact that there is an effective syntax for the
class of counting problems that are computable in polynomial time or for the class of all
approximable counting functions.

We would like to see whether the classes #Π1 and #Σ2 also capture some aspect of the
computational complexity of the counting problems in them. One intuitive reason for the
difficulty in answering this question is that #Π1 has counting functions which are complete
for #P under parsimonious reductions, e.g., #3SAT .

An approach to study the computational properties of subclasses of #P is to restrict
the quantifier-free part of the first-order formula. At the first place we isolate a syntactic
subclass of #Σ2.
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Definition 5.4.3 Let σ be a vocabulary and let L be a counting problem, with finite or-
dered structures A over σ as instances. We say that L is in the class #RΣ2 if there is
a quantifier-free first-order formula ψL(z,T) over σ ∪ T, such that fL(A) = |{< T, z >:
A |= ∃x∀yψL(x,y, z,T)}|, where ψL(x,y, z,T) is a quantifier-free formula, and when ψL is
expressed in an equivalent formula in conjunctive normal form, each conjunct has at most
one occurrence of a predicate symbol from T.

Lemma 5.4.3 #DNF is complete for #RΣ2 under product reductions.

Proof. To show that #DNF is in #RΣ2, we use the vocabulary {D,P,N}, with a unary
relation D and two binary P,N , to encode a DNF formula ϕ as a finite structure Aϕ. The
structure Aϕ has universe |Aϕ| = D ∪ V , where V is the set of variables and D is the
set of disjuncts of ϕ. The predicate D(d) expresses the fact that d is a disjunct, whereas
P (d, u) (N(d, u)) expresses that the disjunct d contains variable u positively (negatively).
Let T denote the set of variables assigned true value in a satisfying assignment to the
instance ϕ. Under this encoding, f#DNF (Aϕ) = |{< T >: Aϕ |= (∃d)(∀u)D(d) ∧ (P (d, u)→
T (u))∧ (N(d, u)→ ¬T (u))}|. Hence, #DNF ∈ #RΣ2, since the quantifier-free part D(d)∧
(P (d, u)→ T (u))∧ (N(d, u)→ ¬T (u)) is in conjunctive normal form and T appears at most
once in each conjunct.

To show that #DNF is hard for the class #RΣ2, consider a counting function L in
#RΣ2 which is expressible as fL(A) = |{< T, z >: A |= (∃x)(∀y)ψL(x,y, z,T)}|, where
ψL(x,y, z,T) is a quantifier-free formula in CNF and each conjunct has at most one occur-
rence of a predicate symbol T.

Let x = (x1, ..., xp1) and y = (y1, ..., yq1) for some p1, q1 > 0. Let ∥A∥p1 = p and
∥A∥q1 = q, |A|p = {x1, ...,xp} and |A|q = {y1, ...,yq}. Then, A |= (∃x)(∀y)ψL(x,y, z,T)
if and only if A |=

∨p
i=1

∧q
j=1 ψL(xi,yj, z,T) if and only if A |=

∨p
i=1

∧q
j=1 ψi,j(z,T), where

ψi,j(z,T) is obtained from ψL(xi,yj, z,T) by replacing every subformula that is true in A by
the logical value TRUE, every subformula that is false in A by FALSE, and then by deleting
the values FALSE and all the conjuncts that contain the value TRUE. One can check that
the resulting formula, say θA, is in DNF form with propositional variables of the form Ti(wi),
wi ∈ |A|ai . This uses the fact that ψL(x,y, z,T) has at most one of any predicate from the
sequence T per conjunct.

Let cA be the number of propositional variables which do not appear in θA. It can be
easily verified that fL(A) = cA × (the number of satisfying assignments of θA). Finally,
the above reduction can be computed in polynomial time. �
Theorem 5.4.5 Every counting problem in #RΣ2 has an FPRAS. Moreover, the decision
version of every problem in #RΣ2 is in P .

Example 5.4.1 Examples of problems in #RΣ2 are #NON−HITTING−SETS, #NON−
DOMINATING− SETS and #NON − EDGE −DOMINATING− SETS.

Another approach to obtain classes of counting problems with feasible computational
properties is to consider the closure of the classes #Σ0 and #Σ1 under product reductions.
Then #P form an hierarchy with three levels.



68 CHAPTER 5. DESCRIPTIVE COMPLEXITY OF COUNTING FUNCTIONS

Definition 5.4.4 Given a class C of counting problems, the closure class Ppr(C) is the class
of counting problems which are product reducible to some problem in C.

In particular, we are interested in the closure classes Ppr(#Σ0), Ppr(#Σ1) and Ppr(#Π1).

Theorem 5.4.6 (i) Every counting problem in the class Ppr(#Σ0) is computable in poly-
nomial time. In fact, Ppr(#Σ0) is exactly the class of polynomially computable counting
functions.

(ii) Every counting problem in the class Ppr(#Σ1) has an FPRAS. The decision version
of every problem in Ppr(#Σ1) is in P .

Theorem 5.4.7 (i) The classes Ppr(#Σ0), Ppr(#Σ1) and Ppr(#Π1) form a hierarchy with
three levels: Ppr(#Σ0) ⊆ Ppr(#Σ1) ⊆ Ppr(#Π1) = #P .

(ii) Ppr(#Σ0) = Ppr(#Σ1) if and only if P = P#P .
(iii) If Ppr(#Σ1) = Ppr(#Π1), then NP = RP .

5.5 Descriptive Complexity of #BIS and its relatives

In recent years there has been great interest in classifying the approximation complexity of
counting problems.

The steady progress in determining the complexity of counting graph homomorphisms
contributed to the study of approximation counting complexity. Counting graph homo-
morphisms is equivalent to counting colourings (with specific properties) of graphs. These
problems have applications in statistical physics.

In such problems, known asH-colouring problems, the graphH is fixed and we consider
the problem of counting the number of homomorphisms from an input graph G to the
fixed graph H (H-colourings of G). In 1990 Hell and Nešetřil [23] showed that there is a
complexity dichotomy between graphs H for which the corresponding decision problem is in
P , and those for which it is NP -complete. In 2000 Dyer and Greenhill [17] considered the
problem of counting H-colourings. They were able to completely characterize the graphs H
for which this problem is #P -complete. They defined a trivial connected component of H to
be one that is a complete graph with all loops present or a complete bipartite graph with no
loops present, and showed that counting H-colourings is #P -complete if H has a nontrivial
component and that it is in P otherwise.

According to a very recent result [21], if H is any fixed graph without trivial compo-
nents, then the problem is as hard as #BIS with respect to approximation-preserving re-
ducibility. This means that if H is any fixed graph without trivial components, the problem
of approximately counting H-colourings is as hard as approximately counting independent
sets in bipartite graphs.

In fact #BIS is a well known problem. In 2003 Dyer et al. [16] turned their atten-
tion to the relative complexity of approximate counting problems, introducing the idea of
approximation preserving reductions. They showed that there appear to be three distinct
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classes of problems relative to such reductions: those that can be approximated in polynomial
time, those that are as hard to approximate as #SAT , and a logically defined intermediate
class of problems that are equivalent in approximation complexity to approximately counting
independent sets in a bipartite graph, i.e. #BIS.

We present useful definitions for these results.

Definition 5.5.1 Suppose f, g : Σ∗ → N are functions whose complexity (of approximation)
we want to compare. An approximation-preserving reduction from f to g is a probabilistic
oracle Turing machine M that takes as input a pair (x, ϵ) ∈ Σ∗ × (0, 1), and satisfies the
following three conditions: (i) every oracle call made by M is of the form (w, δ), where
w ∈ Σ∗ is an instance of g, and 0 < δ < 1 is an error bound satisfying δ−1 6 poly(|x|, ϵ−1),
(ii) the TM M meets the specification for being a RAS for f whenever the oracle meets the
specification for being a RAS for g, and (iii) the run-time of M is polynomial in |x| and ϵ−1.

If an approximation-preserving reduction from f to g exists we write f 6AP g and
say that f is AP-reducible to g. If f 6AP g and g 6AP f , then we say that f and g are
AP-interreducible and write f ≡AP g.

#BIS:
Input : A bipartite graph B.
Output : The number of independent sets in B.

A very few non-trivial combinatorial structures may be counted exactly using a poly-
nomial time deterministic algorithm. The two key examples are spanning trees in a graph
and perfect matchings in a planar graph. Both of these algorithms rely on a reduction to a
determinant, which can be computed in polynomial time by Gaussian elimination.

There are some counting problems that admit an FPRAS despite being complete in
#P with respect to Turing reducibility. Two representative examples are #DNF and
#MATCH.

#MATCH:
Input : A graph G.
Output : The number of matchings (of all sizes) in G.

On the other hand, the problem #SAT is #P -complete under parsimonious reductions.
Since a parsimonious reduction is a very special case of an approximation-preserving reduc-
tion, all problems in #P are AP-reducible to #SAT . Thus, #SAT is complete for #P with
respect to AP-reducibility. Zuckerman [57] has shown that #SAT cannot have an FPRAS
unless NP = RP . The same is obviously true of any problem in #P to which #SAT is AP-
reducible. Dyer et al. proved that the counting versions of NP-complete problems are com-
plete for #P with respect to AP-reducibility. In other words, #SAT is AP-reducible to these
problems. For example, #SAT 6AP #LARGEIS and hence #SAT ≡AP #LARGEIS .
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#LARGEIS:
Input : A positive integer m and a graph G in which every independent set has size at most
m.
Output : The number of size-m independent sets in G.

It is known that the decision version of determining whether or not G has a size-m
independent set is NP-complete. Additionally, a problem may be complete for #P with
respect to AP-reducibility even though its associated decision problem is polynomial time
solvable, as it is the case with #IS ≡AP #SAT .

We do not have any evidence that the restriction of #IS to bipartite graphs is complete
for #P with respect to AP-reducibility. The fact that #BIS is interreducible with a number
of other problems not known to be complete or to admit an FPRAS makes this problem and
its relatives interesting. The following list provides examples of problems AP-interreducible
with #BIS:

#P4-COL:
Input : A graph G.
Output : The number of P4-colourings of G, where P4 is the path of length 3.

#DOWNSETS:
Input : A partially ordered set (X,6).
Output : The number of downsets in (X,6).

#1P1NSAT :
Input : A boolean formula ϕ in CNF, such that every clause has at most one unnegated
literal and at most one negated literal.
Output : The number of satisfying assignments to ϕ.

#BEACHCONFIGS:
Input : A graph G.
Output : The number of “Beach configurations” in G, i.e. P ∗

4 -colourings of G, where P ∗
4

denotes the path of length 3 with loops on all three vertices.

All the above problems lie in a syntactically restricted subclass #RHΠ1 ⊆ #Π1. Fur-
thermore, they characterize #RHΠ1 in the sense of being complete for #RHΠ1 with respect
to AP-reducibility. We say that a problem is in #RHΠ1 if it can be expressed in the form
f(A) = |{(T, z) : A |= ∀yψ(y, z,T)}|, where ψ is an unquantified CNF formula in which
each clause has at most one occurence of an unnegated relation symbol from T and at most
one negated relation symbol from T. The rationale behind the naming of the class #RHΠ1 is
as follows: “Π1” indicates that only universal quantification is allowed, and “RH” indicates
that the unquantified subformula ψ is in “restricted Horn” form. Note that the restriction
on clauses of ψ applies only to terms involving symbols from T. For example:
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fDS(A) = |{(D) : A |= ∀x∀y
(
D(x)∧ y 6 x→ D(y)

)
}|, where we represent an instance

of #DOWNSETS as a structure A = (|A|,6), where 6 is a binary relation assumed to be
a partial order. The downset is represented by a unary relation D.

f1P1NSAT (A) = |{(T ) : A |= ∀x∀y
(
T (x) ∧ x ∼ y → T (y)

)
}|, where we represent an

instance of #1P1NSAT as a structure A = (|A|,∼), where ∼ is a binary relation and x ∼ y
represents that the variables x, y exist in the same clause, x negated and y unnegated. The
idea here is that ¬x∨ y is equivalent to x→ y. Note also that if the input formula contains
clauses with one literal we can eliminate them, as they do not add more truth assignments
to the formula. The truth assignment is represented by a unary relation T .

fBIS(A) = |{(I) : A |= ∀x∀y
(
L(x) ∧ x ∼ y ∧ I(x)

)
→ I(y)}|, where we represent an

instance of #BIS as a structure A = (|A|, L,∼), where L is the set of “left” vertices and
∼ is a binary relation assumed to represent adjacency. An independent set includes the left
vertices for which the unary relation I is “true” and the right vertices for which I is “false”.
Counting all the relation symbols which satisfy the above formula is equivalent to counting
all the independent sets of a bipartite graph.

fP ∗
4
(A) = |{(C1, C2, C3) : A |= ∀x∀y

(
C1(x)→ C2(x)

)
∧
(
C2(x)→ C3(x)

)
∧
(
C1(x)∧x ∼

y → C2(y)
)
∧
(
C2(x) ∧ x ∼ y → C3(y)

)
}|, where Cj is “true” for a vertex iff its colour is in

{c1, c2, ..., cj}. Obviously a vertex belongs to none of the relations C1, C2, C3 iff its colour is
c4.

Theorem 5.5.1 #1P1NSAT is complete for #RHΠ1 under parsimonious reducibility.

Proof. Consider a problem in #RHΠ1, f(A) = |{(T, z) : A |= ∀yψ(y, z,T)}|, and suppose
T = (T0, ..., Tr−1), y = (y0, ..., yl−1) and z = (z0, ..., zm−1), where Ti are relations of arity
ai and yj, zk are first-order variables. Let L = ∥A∥l and M = ∥A∥m and (η0, ..., ηL−1) and
(ζ0, ..., ζM−1) be enumerations of |A|l and |A|m respectively. Then, A |= ∀yψ(y, z,T) iff
A |=

∧L−1
q=0 ψ(ηq, z,T).

If we replace z by some ζs in
∧L−1

q=0 ψ(ηq, z,T), we obtain
∧L−1

q=0 ψ(ηq, ζs,T). It suffices

to count the relations T such that A |=
∧L−1

q=0 ψ(ηq, ζs,T), for each s = 0, ...,M − 1, and sum

these values, i.e. f(A) =
∑M−1

s=0

∣∣{T : A |=
∧L−1

q=0 ψ(ηq, ζs,T)
}∣∣.

Now, ψq,s(T) is obtained from ψ(ηq, ζs,T) by replacing every subformula that is true
(resp. false) in A by TRUE (resp. FALSE) and eliminating the clauses containing TRUE-
literals (resp. eliminating the FALSE-literals from their clauses). The formula

∧L−1
q=0 ψq,s(T)

is in CNF form with propositional variables Ti(wi), where wi ∈ |A|ai , and there is at most
one occurrence of an unnegated propositional variable in each clause and at most one of a
negated variable. To obtain a precise correspondence we must add, in each instance, trivial
clauses Ti(wi) → Ti(wi) for every propositional variable Ti(wi) not already occurring in
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∧L−1
q=0 ψq,s(T), otherwise the number of T will be underestimated by a factor 2u, where u is

the number of unrepresented variables Ti(wi).
The value f(A) is the sum of the numbers of satisfying assignments toM(polynomially

many) instances of #1P1NSAT . Thus, the above procedure provides an AP-reduction
to #1P1NSAT . In the rest of the proof, we modify this reduction in order to have a
parsimonious reduction from a problem in #RHΠ1 to #1P1NSAT .

First, we distinguish the variables in the above set of instances of #1P1NSAT as
Ti

s(wi), s = 0, 1, ...,M − 1. We distinguish the instances as Ψs =
∧L−1

q=0 ψq,s(T), s =
0, 1, ...,M − 1. We assume that each Ψs does not contain any one-literal clause, since the
the truth setting of any such literal is forced. Let v1, ..., vM−1 be new propositional variables.
Let Φs =

∧r−1
i=0 ∧wi∈|A|ai (Ti

s(wi) → vs+1), s = 0, 1, ...,M − 2, and Ξs =
∧r−1

i=0

∧
wi∈|A|ai (vs →

Ti
s(wi)), s = 1, ...,M − 1.

The formula ϕ =
∧M−1

s=0 Ψs ∧
∧M−2

s=0 Φs ∧
∧M−1

s=1 Ξs has f(A) satisfying assignments. To
see this, note that if, for a given s and for some i, Ti

s(wi) is assigned TRUE, then Ti
p(wj)

must be assigned TRUE for every p > s and for every j because of the formulae Φs and Ξs.
There can only be one s such that the variables Ti

s(wi), i = 0, ..., r − 1, receive both truth
assignments. This is the unique s such that vs = FALSE and vs+1 = TRUE. And this is
the case that we count the pairs (T, ζs) satisfying the initial formula: When some s is fixed,
ϕ is satisfied if and only if Ψs is satisfied. Since the satisfying assignments are disjoint for
different s, we get the number of pairs (T, z) satisfying the initial formula. �

Corollary 5.5.1 The problems #P4 − COL, #DOWNSETS, #1P1NSAT ,
#BEACHCONFIGS are all complete for #RHΠ1 with respect to AP-reducibility.

Corollary 5.5.1 gives information about the class #RHΠ1. It is likely to be a strict
subset of #Π1. If #RHΠ1 = #Π1 then #IS 6AP #BIS and #BIS =AP #SAT , since
#IS ∈ #Π1 and #IS =AP #SAT . Moreover, #RHΠ1 is not a subset of #Σ1. In particular,
#1P1NSAT ∈ #RHΠ1 \#Σ1 in the same way that #3SAT ∈ #Π1 \#Σ1. Obviously, all
the problems in #Σ1 are AP-reducible to complete problems in #RHΠ1, but it is not known
whether #Σ1 ⊂ #RHΠ1.

5.5.1 #BIS and the Approximation Complexity Hierarchy

The question of the approximation complexity of #BIS remains open. But the conjecture
that lies between “FPRASable” problems and #SAT was strengthened by Bordewich’s result
[7]. Under the assumption that NP ̸= RP , there are counting problems which neither admit
an FPRAS nor #SAT is AP-reducible to them, i.e. are of intermediate approximation
complexity between “FPRASable” and #SAT .

The proof of this proposition is based on the proof of Ladner’s theorem [37]. The main
result is given below.

Proposition 5.5.1 If NP ̸= RP then there are an infinite number of problems πA1 , πA2 , ...
in #P such that
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(i) for all i, πAi
does not have an FPRAS,

(ii) for all i, #SAT is not AP-reducible to πAi
, and

(iii) for all i, j such that i < j, we have πAj
<AP πAi

.

Assuming NP ̸= RP , there are infinitely many complexity levels between efficient
approximability and the inapproximability of #SAT . Moreover, if #BIS is genuinely in the
middle ground, then there are problems that do not admit an FPRAS, are not equivalent in
approximation complexity to #BIS and are not AP-interreducible with #SAT , thus also
occupy the middle ground.

5.6 Descriptive Complexity and Log-space Counting

Classes

We have already shown that every problem in #Σ0 can be computed in deterministic poly-
nomial time, and every problem in #Σ1 has an FPRAS. In this section, we relate these two
logically defined classes to Turing machine based counting classes.

First, we describe an encoding e of ordered σ-structures into binary strings. Let (A,6)
and n = ∥A∥. Then e(A,6) starts with 1n0. We use the enumeration induced by 6 to
encode the constants and the relations in binary strings. For example, let R be a k-ary
relation, then in the encoding of R the bit at position

∑k
i=1 xi ·ni−1 is 1 iff (x1, x2, ...xk) ∈ R.

Also, we encode a τ -expansion T of A using the enumeration induced by 6. For all functions
f ∈ #FO let e(f) be the function that for all x ∈ {0, 1}∗, e(f)(x) = f(A,6) if x = e(A,6)
and f(x) = 0 otherwise. The function e(f) is well-defined since our encoding is one-to-one.
For any class of first-order counting functions C ⊆ #FO let e(C) be the class of functions
e(f) : {0, 1}∗ → N for f ∈ C. The encoding e can be handled by a Turing machine working
in logarithmic space.

In section 3.2 we defined the classes # · 1L (or #Σ01L), # · 1NL (or #Σ11L), #ΣkL,
and #ΠkL for k > 1. These classes consist of functions that “count” the second argument
of binary relations in 1-1-Σ0L, 1-1-Σ1L, 1-1-ΣkL, and 1-1-ΠkL respectively.

Theorem 5.6.1 [9] It holds that:
(i) e(#Σ0) ⊆ #Σ01L = #1L.
(ii) e(#Σ1) ⊆ #Σ11L = #span-1L.
(iii) e(#Π1) ⊆ #Π11L.

Proof. (i) Let e(f) ∈ e(#Σ0), and let ϕ be the Σ0 formula with relation symbols from
σ ∪ T, such that f(A,6) = |{T : (A,T,6) |= ϕ}| for all ordered σ-structures (A,6). We
define the binary relation Rϕ such that (e(A,6), e(T,6)) ∈ Rϕ iff (A,T,6) |= ϕ. Since
our encoding is one-to-one, we have e(f)(x) = |y : (x, y) ∈ Rϕ}| for every x ∈ {0, 1}∗. It is
now sufficient to show that Rϕ ∈ 1-1-Σ0L. We describe a log-space bounded 1-1-Σ0-Turing
machine Mϕ that accepts Rϕ. Since ϕ is a Σ0 formula and has no variables, Mϕ has to read
a constant number of bits in order to evaluate ϕ. The machine makes a sweep over the two
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inputs and copies on its work tape the constants and the members of relations that needs
for the evaluation of ϕ. Then Mϕ checks deterministically that the representation is correct
and that ϕ holds.

(ii) We define the relation Rϕ exactly as in (i). In this case the formula ϕ has exis-
tentially quantified variables. A log-space bounded 1-1-Σ1-Turing machine Mϕ after reading
the inputs, keeps the elements needed, guesses assignments to the variables and evaluates ϕ
as above.

(iii) Mϕ works similar to (ii), but instead of existentially guessing the variable assign-
ment, it uses universal branches. This can be done by a 1-1-Π1-Turing machine. �

In the above proof, it was more convenient to count only relations T satisfying a for-
mula instead of counting relations and first-order variables. As we noted below Theorem
5.3.1 we are allowed to do that.

We show that the above inclusions are strict. We define the following problems.

#DEG 1 NGB :
Input : A graph G.
Output : The number of nodes of G that have a neighbour of degree 1.

#DIST2 :
Input : A graph G.
Output : The number of pairs of nodes of G for which the shortest path in the graph is of
length two.

Since f#DEG 1 NGB(A) = |{z : A |= ∃x
(
zEx∧∀y(y ̸= x→ ¬(zEy))

)
}|, and f#DIST2(A) =

|{(z1, z2) : A |= ∃x
(
z1Ex ∧ xEz2 ∧ ¬(z1Ez2)

)
}|, it holds that #DEG 1 NGB ∈ #Σ2, and

#DIST2 ∈ #Σ1. It can be proved that #DEG 1 NGB ̸∈ #Σ1, and #DIST2 ̸∈ #Σ0 using
model theoretic arguments similar to those in [44].

• #DEG 1 NGB ∈ span-1L \#Σ1: Given a graph G as first input and a node v with a
neighbour of degree 1 as second input, a nondeterministic 1-1- Turing machine guesses
a neighbour u of the node v and checks if u has degree 1 reading the first input from
left to right. This means that #DEG 1 NGB ∈ #Σ11L = span-1L.

• #DIST2 ∈ #1L \#Σ0: Given a graph G as first input and a path (u, v, w) of length
two as second input, a deterministic 1-1-Turing machine reads the second input and
copies the path on its work tape. Then it reads the first input one-way and checks
that there are the edges (u, v), (v, w), and that there is no edge (u,w) in the graph.
So, #DIST2 ∈ #Σ01L = #1L.



Chapter 6

Conclusions

For further study and research many problems are open.

First we should examine all the possible results that the class span-L could give. An
open problem is the existence of a polynomial-time approximation algorithm for #NFA.
Alternatively, some problem already owning an FPRAS could be span-L complete under
6l

m. Concerning descriptive complexity, the class span-L could be shown to coincide with
some subclass of #P . A decision problem for NFA is expressed in MSO (Monadic Second
Order Logic).

Moreover, research around #BIS is strong. A trichotomy for approximately counting
H-colorings has recently showed up (Galanis, Goldberg, Jerrum 2016). It would be useful
to find other problems belonging to #RHΠ1.

Other classes considered in this thesis should be enriched. Classes like TotP , span-
L, #L give an insight in feasible computation and in the consequences of space and time
restrictions. For example a complete problem for TotP under parsimonious reductions would
give information about the real computational difficulty of this class.
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[31] J. Köbler, U. Shönning and J. Torán, On counting and approximation. Acta Inform. 26
(1989), 363-379.

[32] A. Krebs, N. Limaye and M. Mahajan, Counting paths in VPA is complete for #NC1.
In Proceedings of COCOON 2010, volume 6196 of LNCS, Springer (2010), 44-53.

[33] R. M. Karp, M. Luby and N. Madras, Monte-Carlo Approximation Algorithms for
Enumeration Problems. J. Algorithms 10 (3) (1989), 429-448.

[34] R. M. Karp and M. Luby, Monte-Carlo Algorithms for Enumeration and Reliability
Problems. Proc. 24th IEEE FOCS (1983), 56-64.

[35] S. Kannan, Z. Sweedyk, S. Mahaney, Counting and Random Generation of Strings in
Regular Languages. SODA (1995), 551-557.

[36] N. Limaye, M. Mahajan and B. V. Raghavendra Rao, Arithmetizing Classes Around
NC1 and L. Theory Comput. Syst. 46(3) (2010), 499-522.

[37] R. E. Ladner, On the Structure of Polynomial Time Reducibility. Journal of Combina-
torial Theory, Series B 48, 92-110 (1990).

[38] A. Pagourtzis and S. Zachos, The Complexity of Counting Functions with Easy Decision
Version. MFCS (2006), 741-752.

[39] C. H. Papadimitriou, Computational Complexity. Addison-Wesley (1994).

[40] O. Reingold, Undirected ST-connectivity in log-space. STOC’05: Proceedings of the
37th Annual ACM Symposium on Theory of Computing. ACM, New York, 376-385.

[41] K. Reinhardt and E. Allender, Making Nondeterminism Unambiguous. In 38th IEEE
Symposium on Foundations of Computer Science (FOCS) (1997), 244-253.

[42] A.J. Sinclair and M.R. Jerrum, Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82 (1989), 93-133.

[43] S. Skyum and L. G. Valiant, A complexity theory based on Boolean Algebra. Proc. 22nd

IEEE Symposium on Foundations of Computer Science (1981), 244-253.

[44] S. Saluja, K. V. Subrahmanyam and M. Thakur, Descriptive Complexity of #P func-
tions. Proc. 7th IEEE Symposium on Structure in Complexity Theory (1992).



80 BIBLIOGRAPHY
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