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Abstract

Daskalakis and Papadimitriou [7] show that for all n, ε > 0 the set of Poisson

Binomial Distributions admits a proper ε-cover in total variation distance, of

size n2 + n · (1/ε)O(log2(1/ε)), which can also be computed in polynomial time.

More specific, they proved that given a set S of PBDs there exists a ε-cover Sε

with the following property: If a PBD X ∈ S then there exist a distribution

Y ∈ Sε that is ε-close to X and Y is on k-Sparse form or on (n, k)-Binomial

form. Based on that theorem Daskalakis, Diakonikolas and Servedio [6] gave a

highly efficient algorithm which learns to ε-accuracy (with respect to the total

variation distance) using O(1/ε3) samples independent of n. The running

time of the algorithm is quasilinear in the size of its input data O(log(n)/ε3).

Their second main result is a proper learning algorithm that learns to ε-

accuracy using O(1/ε2) samples, and runs in time (1/ε)poly(log(1/ε)) · log n. The

algorithm output its result in 3 stages. On stage 1 the algorithm outputs

a hypothesis distribution HS that is ε-close to the initial PBD X when the

latter is close to a k-Sparse form in the cover Sε. On stage 2 the algorithm

outputs a hypothesis distribution HP that is ε-close to the initial PBD X

when the latter is close to a (n, k)-Binomial form in the cover Sε. Finally the

algorithm choose the closer distribution to X between HS and HP .

We try to study the above mentioned algorithm regarding the property

of differential privacy. More specific we prove that if the PBD X is ε-close

to a (n, k)-Binomial form then the algorithm is differential private. On case

where X is ε-close to a k-Sparse form the property of differential privacy
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depends on the PBD cardinality.
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Chapter 1

Introduction

Due to extensive use of computers, information can be stored massively in

databases. Corporations, organizations and governments collect digital in-

formation and provide a unique opportunity for the conduction of fruitful

statistical research. However, their analysis may pose risks and difficulties.

A major problem that usually researchers meet is their raw and unstructured

form, making the extraction of useful information very challenging. The sec-

ond problem is generated by the fact that most of the collected datasets

contain private or sensitive information and their use may pose risks for pri-

vacy violations. Regarding the first, the area of Distribution Learning Theory

has given significant results while for the second Differential Privacy tackles

successfully the issue. These two areas constitute the main aspects of this

thesis. Let’s first introduce to the reader these two fields.

1.1 Distribution Learning Theory

As stated above a crucial problem that may arises, regarding the use of a

database, is their unstructured form, which makes difficult the extraction

of useful information. More specific, assuming that a large class of these
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datasets can be modeled as samples from a probability distribution over a

very large domain, an important goal, regarding the exploration of these

datasets, would be the understanding of their underlying distributions. The

field which tackle this problem is known as distribution learning.

Distribution learning theory is a framework of machine learning theory

and the goal is to find an efficient algorithm that, based on a known sample,

determines with high probability the distribution from which the samples

have been drawn. It is a recently developed area, and blends with parallel

developments in computer science, and in particular machine learning. Es-

pecially after the explosion of “Big Data” problems, the specific area has

become very active and with many applications in fields such as Medical

Diagnosis, Finance, neural networks and many others.

Distribution learning problems have often been investigated in the con-

text of supervised or unsupervised learning. By the term supervised learning

we refer to a machine learning algorithm that uses a known dataset (called

the training dataset) to make predictions. The training dataset is properly

labeled by a “supervisor” or “teacher” and includes input data and response

values (output data). From it, the supervised learning algorithm seeks to

build a model that can make predictions of the response values for a new

dataset. By the term unsupervised learning we usually refer to problems

were, given a training sample (input data) we try to model the underly-

ing data structure/distribution with zero-knowledge for the output (i.e. no

knowledge regarding the underlying distribution). In this thesis we consider

a basic problem in unsupervised learning: learning an unknown Poisson Bi-

nomial Distribution (PBD).

PBDs are one of the most basic classes of discrete distributions. Indeed,

they are arguably the simplest n parameter probability distribution that has

some nontrivial structure. As such they have been intensely studied in prob-

ability and statistics and arise in many settings; for example, note here that

tail bounds on PBDs form an important special case of Chernoff/Hoeffding
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bounds [37, 38, 39]. In application domains, PBDs have many uses in research

areas such as survey sampling, case-control studies, and survival analysis, see

e.g., [40] for a survey of the many uses of these distributions in applications.

Before further investigate the area of Poisson Binomial Distributions let

us introduce an example to better understand the concept and usage of the

distribution learning theory. Consider, for example the identification of high

risk groups in a population. A physician may wish, on the basis of records

of patients effected by some disease, to infer the attribute values of the sub-

groups of the population which are at high risk of contracting this disease.

One may assume that the overall distribution of the population over the at-

tributes space is known to the researcher and serves as a baseline relative to

which risk (i.e. the density of the distribution of sick people) is defined. Note

that in the situation we consider here the physician has access to files of sick

people only. Consequently we may view his data as a sample drawn from the

unknown distribution that he wishes to assess. Distribution learning theory

could extract, with high accuracy, the unknown distribution, deriving the

attribute values of the population which are at high risk of contracting the

disease.

1.2 Differential Privacy

Consider the above mentioned example. To perform the statistical analysis

(and define the population which are at high risk of contracting this dis-

ease) the physician is getting access to sensitive information about a group

of patients. This access may be pose risks by violating patient’s privacy

and exposing (unwittingly) their personal information in public. Even if

the physician apply some simple anonymization techniques, such as deleting

user name or ID number to preserve privacy, individuals sensitive informa-

tion still having a high probability of being re-identified from the released

dataset. In the early years, Latanya Sweeney et al. provided an example of
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de-anonymization on a published medical dataset [12,13].

Lots of literatures suggests that with the background information (i.e.

zip code, date of birth, gender etc.) the combination of several attributes

may re-identify an individual. Narayanan [15] re-identified part of the users

in the Netflix Prize dataset by associating it with the International Movie

Data Base (IMDB). Mudhakar et al. [16] de-anonymized mobility traces by

using social networks as their background information. Stevens et al. [17]

exploited Skype, a popular P2P communication software to invade users’ lo-

cation and sharing of information. All of these examples show that simple

anonymization is insufficient for privacy preserving. All these incidents mo-

tivated this area for more robust and efficient results. But what is the true

meaning of privacy?

Privacy or better “Differential privacy” describes a promise, made by a

data holder, or curator, to a data subject: “You will not be affected, adversely

or otherwise, by allowing your data to be used in any study or analysis, no

matter what other studies, data sets, or information sources, are available.”

At their best, differentially private database mechanisms can make confi-

dential data widely available for accurate data analysis, without resorting to

data clean rooms, data usage agreements, data protection plans, or restricted

views. Thus differential privacy addresses the paradox of learning nothing

about an individual while learning useful information about a population. A

rich class of application areas exists regarding differential privacy. Medical

databases, Homeland Security, Transportation Systems, Network searching

and Searching Engine companies are some indicative areas were differential

privacy is applied. More specific, a medical database may give us a lot of

information regarding a specific disease (i.e. smoking causes cancer), without

exposing sensitive information of the individuals who constitute the dataset.

Differential privacy acquires the intuition that releasing an aggregated re-

port should not reveal too much information on any individual record in the

dataset [14]. This can be achieved using randomized mechanisms whose out-
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put distribution remains almost unchanged even with an arbitrary individual

record deleted. More precisely, the randomized mechanism contains adding

calibrated noise to the query output or randomizing all possible outputs in

the domain.

Differential privacy is a definition, not an algorithm. For a given compu-

tational task T and a given value of ε there will be many differentially private

algorithms for achieving T in an ε-differentially private manner. Some will

have better accuracy than others. When ε is small, finding a highly accurate

ε-differentially private algorithm for T can be difficult, much as finding a

numerically stable algorithm for a specific computational task can require

effort.

Distribution Learning and Differential Privacy are the key aspects that

will be examined in this thesis. Having get a glimpse of them lets continue

with some historical points and the importance of their applications.

1.3 Historical Background and Applications

Regarding Distribution Learning theory the first pioneer was Karl Pearson,

1894 [1] who tried to estimate the parameters of a mixture of Gaussians (a

linear combination of two Gaussian distributions). Pearson was the first who

introduced the notion of the mixtures of Gaussians in his attempt to explain

the probability distribution from which he got same data that he wanted to

analyze. The learning procedure starts with clustering the samples into two

different clusters minimizing some metric. Using the assumption that the

means of the Gaussians are far away from each other with high probability

the samples in the first cluster correspond to samples from the first Gaus-

sian and the samples in the second cluster to samples from the second one.

Applications for this work are met in areas such as Fisheries research, Agri-

culture, Botany, Economics, Medicine, Genetics, Psychology, Paleontology,

Electrophoresis, Finance, Sedimentology/Geology and Zoology [2]. A range
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of new methods regarding mixture Gaussian estimation have been proposed.

More specific Valiant Moitra and Kalai [29] proposed a polynomial-time al-

gorithm for the case of two Gaussians in n dimensions (even if they overlap),

with provably minimal assumptions on the Gaussians, and polynomial data

requirements. In statistical terms, the estimator converges at an inverse

polynomial rate.

Valiant has also contribute in the development of the specific area by

his publication [30] which shows that it is possible to design learning ma-

chines that have all three of the following properties: 1. The machines can

provably learn whole classes of concepts. Furthermore, these classes can be

characterized. 2. The classes of concepts are appropriate and nontrivial

for general-purpose knowledge. 3. The computational process by which the

machines deduce the desired programs requires a feasible (i.e., polynomial)

number of steps.

A significant work on the specific area has also be made by Michael

Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert Schapire and

Linda Sellie in 1994 [3]. In their model, an unknown target distribution

is chosen from a known restricted class of distributions over {0, 1}n, and

the learning algorithm receives independent random draws from the target

distribution. The algorithm also receives a confidence parameter δ and an

approximation parameter ε. The goal is to output with probability at least

1− δ, and in polynomial time, a hypothesis distribution which has distance

at most ε to the target distribution. Lucien Birge 1997 [4] has given a compu-

tationally efficient algorithm that can learn any unimodal distribution over

a domain [a, b] to variation distance ε from O(log(n)/ε3) samples. Chan,

Diakonikolas, Servedio, and X. Sun have also contribute in the development

of the area by their papers [31,32,33]. Briefly, in these papers they present

efficient algorithms that approximate specific classes of distributions (i.e. a

class C of probability distributions over the discrete domain [n] that can be

well-approximated by a variable-width histogram with few bins; univariate

probability distributions that are well approximated by piecewise polynomial
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density functions; distributions with a piecewise constant probability density

function).

Finally extensive work has also been made by Papadimitriou, Daskalakis,

Diakonikolas and Servedio in their respective papers [5,6,7,8]. Summarizing

their results, they proposed a highly efficient algorithm which learns to ε-

accuracy (with respect to the total variation distance) using O(1/ε3) samples

independent of n. The running time of the algorithm is quasilinear in the

size of its input data, i.e., O(log(n)/ε3) bit-operations. Their second main

result is a proper learning algorithm that learns to ε-accuracy using O(1/ε2)

samples, and runs in time (1/ε)poly(log(1/ε)) · logn. This sample complexity

is nearly optimal, since any algorithm for this problem must use Ω(1/ε2)

samples. The results of the specific papers will be further analyzed in the next

chapters. Distribution learning as a framework of machine learning theory

may appear in a huge area of applications as Medicine, Neural Networks,

Finance and many others areas [9,10,11].

Regarding Differential Privacy. Various methods and algorithms have

been proposed to preserve privacy. The most popular privacy model is the

k-anonymity model 1996 [20, 21]. It partitions the dataset into a number of

equivalence groups in which every record has the same attribute values with

at least K − 1 other records. There are a number of other privacy models.

For example, the `-diversity 2007 [22] privacy model ensures at least l diverse

values exist for the sensitive attribute. The t-closeness 2007 [23,24] model

requires the sensitive attribute distribution in each group should not deviate

from that of the whole dataset by more than t. The δ-presence 2007 [25]

bounds the probability of inferring the presence of any individual’s record

within a specified range.

The following algorithms are among the most known and classical dif-

ferential private algorithms. Dwork, McSherry, Nissim, and Smith 2006 first

introduce The Laplace mechanism [18]. On input a query function f mapping

databases to reals, the so-called true answer is the result of applying f to the

14



database. To protect privacy, the true answer is perturbed by the addition of

random noise generated according to a carefully chosen distribution (Laplace

distribution), and this response, the true answer plus noise, is returned to

the user. McSherry and Talwar 2009 [19] proposed the exponential mecha-

nism. Given some arbitrary range R, the exponential mechanism is defined

with respect to some utility function u, which maps database/output pairs

to utility scores. Intuitively, for a fixed database x, the user prefers that the

mechanism outputs some element of R with the maximum possible utility

score.

Applications of differential private mechanisms/algorithms may be found

in each area were databases with sensitive information exists. Some indicative

examples are given bellow:

Medical Databases: The scrub system [26] was designed for identification

of clinical notes and letters which typically occurs in the form of textual

data. The Scrub system uses numerous detection algorithms which compete

in parallel to determine when a block of text corresponds to a name, address

or a phone number. The Datafly System [27] was one of the earliest practical

applications of privacy-preserving transformations. This system was designed

to prevent identification of the subjects of medical records which may be

stored in multidimensional format.

Homeland Security Applications: A number of applications for homeland

security are inherently intrusive because of the very nature of surveillance. In

[28], a broad overview is provided on how privacy-preserving techniques may

be used in order to deploy these applications effectively without violating

user privacy.

Montreal Transportation System: With the wide deployment of smart

card automated fare collection (SCAFC) systems, public transit agencies

have been benefiting from huge volume of transit data, a kind of sequential

data, collected every day. Yet, improper publishing and use of transit data

could jeopardize passengers’ privacy. R. Chen, B. C. Fung, B. C. Desai, and
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N. M. Sossou present in their paper [34], a solution to transit data publica-

tion under the rigorous differential privacy model for the Soci de transport

de Montr (STM). They propose an efficient data-dependent yet differentially

private transit data sanitization approach based on a hybrid-granularity pre-

fix tree structure.

Search engine companies: Search engine companies collect the database

of intentions, the histories of their users’ search queries. These search logs

are a gold mine for researchers. Search engine companies, however, are wary

of publishing search logs in order not to disclose sensitive information. M.

Gotz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke in their paper

[35], are analyzing algorithms for publishing frequent keywords, queries, and

clicks of a search log. They first show how methods that achieve variants

of k-anonymity are vulnerable to active attacks and demonstrate that the

stronger guarantee ensured by ε-differential privacy unfortunately does not

provide any utility for this problem. However they propose an algorithm

(ZEALOUS) and show how to set its parameters to achieve (ε, δ)-probabilistic

privacy.

Netflix Prize: F. McSherry and I. Mironov in their paper [36] are con-

sider the problem of producing recommendations from collective user be-

havior while simultaneously providing guarantees of privacy for these users.

Specifically, they consider the Netflix Prize data set, and its leading algo-

rithms, adapted to the framework of differential privacy. Differential privacy

constrains a computation in a way that precludes any inference about the

underlying records from its output. Such algorithms necessarily introduce

uncertainty (i.e. noise) to computations, trading accuracy for privacy. They

find that several of the leading approaches in the Netflix Prize competition

can be adapted to provide differential privacy, without significantly degrad-

ing their accuracy. To adapt these algorithms, they explicitly factor them

into two parts, an aggregation/learning phase that can be performed with

differential privacy guarantees, and an individual recommendation phase that

uses the learned correlations and an individual’s data to provide personalized
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recommendations.

1.4 Motivation / Results

In this thesis we consider a basic problem in unsupervised learning: learning

an unknown Poisson Binomial Distribution (PBD). Daskalakis, Diakoniko-

las and Servedio [6] proposed an algorithm for efficient for learning (PBD)

from a known sample. We try to prove differential privacy on [6] algorithm,

regarding Poisson Binomial Distribution learning. More specific we prove

that if the PBD X is ε-close to a (n, k)-Binomial form then the algorithm

is differential private. On case where X is ε-close to a k-Sparse form the

property of differential privacy depends on the PBD cardinality.
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Chapter 2

Preliminaries

As mentioned above Distribution Learning and Differential Privacy are the

key aspects that will be examined in this thesis. Thus, a detailed analysis

on the prerequisites definitions/theorems for both areas are given in the next

subsections. We further need the following notation.

Order Notation: Whenever we write O(f(n)) or Ω(f(n)) in some bound

where n ranges over the integers, we mean that there exists a constant c > 0

such that the bound holds true for sufficiently large n if we replace the

O(f(n)) or Ω(f(n)) in the bound by c · f(n). On the other hand, whenever

we write O(f(1/ε)) or Ω(f(1/ε)) in some bound where ε ranges over the pos-

itive reals, we mean that there exists a constant c > 0 such that the bound

holds true for sufficiently small ε if we replace the O(f(1/ε)) or Ω(f(1/ε)) in

the bound with c · f(1/ε).
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2.1 Poisson Binomial Distribution

Total Variation Distance: For two distributions P and Q supported on a

finite set A their total variation distance is defined as:

dTV (P,Q) := (1/2) ·
∑
α∈A

|P (a)−Q(a)|.

Covers: Let F be a set of probability distributions. A subset G ⊆ F is

called a (proper) ε-cover of F in total variation distance if, for all D ∈ F ,

there exists some D′ ∈ G such that dTV (D,D′) ≤ ε.

Poisson Binomial Distribution: A Poisson Binomial distribution of

order n ∈ N is the discrete probability distribution of the sum
∑n

i=1Xi of n

mutually independent Bernoulli random variables X1, ..., Xn.

We denote the set of all Poisson Binomial distributions of order n by Sn.

By definition, a Poisson Binomial distributionD ∈ Sn can be represented by a

vector (pi)
n
i=1 ∈ [0, 1]n of probabilities as follows. We map D ∈ Sn to a vector

of probabilities by finding a collection X1, ..., Xn of mutually independent

indicators such that
∑n

i=1 Xi is distributed according to D, and setting pi =

E[Xi] for all i. We will be denoting a Poisson Binomial distribution D ∈ Sn
by PBD(pi, ..., pn) when it is on the latter form. Lemma 2.1 implies that the

resulting vector of probabilities is unique up to a permutation, so that there

is a one-to-one correspondence between Poisson Binomial distributions and

vectors (pi)
n
i=1 ∈ [0, 1]n such that 0 ≤ pi ≤ p2 ≤ ... ≤ pn ≤ 1.

Translated Poisson Distribution: We say that an integer random

variable Y is distributed according to the translated Poisson distribution

with parameters µ and σ2, denoted TP (µ, σ2), iff Y can be written as

Y = bµ− σ2c+ Z,

where Z is a random variable distributed according to Poisson(σ2+{µ−σ2}),
where {µ− σ2} represents the fractional part of µ− σ2.
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Lemma 2.1. Let X1, ..., Xn be mutually independent indicators with expec-

tations p1 ≤ p2 ≤ ... ≤ pn respectively. Similarly let Y1, ..., Yn be mutu-

ally independent indicators with expectations q1 ≤ q2 ≤ ... ≤ qn respec-

tively. The distributions of
∑n

i=1Xi and
∑n

i=1 Yi are different if and only if

(p1, ..., pn) 6= (q1, ..., qn).

Lemma 2.2. Let X1, ..., Xn be mutually independent random variables, and

let Y1, ..., Yn be mutually independent random variables. Then

dTV

(
n∑
i=1

Xi,
n∑
i=1

Yi

)
≤

n∑
i=1

dTV (Xi, Yi).

Lemma 2.3. (Variation distance of Poisson Distributions). Let `1, `2 > 0.

Then

dTV (Poisson(`1), Poisson(`2)) ≤ 1

2
(e|`1−`2| − e−|`1−`2|).

Lemma 2.4. (Variation distance of Translated Poisson Distributions [49])

Let µ1, µ2 ∈ R and σ2
1, σ

2
2 ∈ R+ be such that bµ1 − σ2

1c ≤ bµ2 − σ2
2c. Then

dTV (TP (µ1, σ
2
1), TP (µ2, σ

2
2)) ≤ |µ1 − µ2|σ1 +

|σ2
1 − σ2

2|+ 1

σ2
1

.

Theorem 2.5. (Binomial Approximation [50]). Let J1, ..., Jn be mutually

independent indicators with E[Ji] = ti, and t̄ =
∑

i ti
n
. Then

dTV

(
n∑
i=1

Ji,B(n, t̄)

)
≤
∑n

i=1(ti − t̄)2

(n+ 1)t̄(1− t̄)
,

where B(n, t̄) is the Binomial distribution with parameters n and t̄

Theorem 2.6. (Translated Poisson Approximation[43]). Let J1, ..., Jn be

mutually independent indicators with E[Ji] = ti. Then

dTV

(
n∑
i=1

Ji, TP (µ, σ2)

)
≤
√∑n

i=1 t
3
i (1− ti) + 2∑n

i=1 ti(1− ti)
,

where µ =
∑n

i=1 ti and σ2 =
∑n

i=1 ti(1− ti).
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Theorem 2.7. (Poisson Approximation). Let J1, ..., Jn be mutually inde-

pendent indicators with E[Ji] = ti, and t =
∑

i ti
n
. Then

dTV

(
n∑
i=1

Ji, Poisson

(∑
i

ti

))
≤
∑

i t
2
i∑

i ti
.

Theorem 2.8. (Chernoff Bounds). Let X =
∑n

i=1Xi, where Xi = 1 with

probability pi and Xi = 0 with probability 1− pi, and all Xi are independent.

Let µ = E(X) =
∑n

i=1 pi. Then

P(|X − µ| ≥ δµ) ≤ 2eµδ
2/3 for all 0 < δ < 1.

2.2 Differential Privacy

Distance Between Databases: The `1 norm of a database x is denoted

‖x‖1 and is defined to be:

‖x‖1 =

|X|∑
i=1

|xi|

The `1 distance between two databases x and y is ‖x − y‖1. Note that

‖x‖1 is a measure of the size of a database x (i.e., the number of records it

contains), and ‖x − y‖1 is a measure of how many records differ between x

and y. Databases may also be represented by multisets of rows (elements of

X) or even ordered lists of rows, which is a special case of a set, where the

row number becomes part of the name of the element. In this case distance

between databases is typically measured by the Hamming distance, i.e., the

number of rows on which they differ.

Differential Privacy: A randomized algorithm M with domain N |X| is

ε-differential private if for all S ⊆ Range(M) and for all x, y ∈ N |X| such

that ‖x− y‖1 ≤ 1:

Pr[M(x) ∈ S] ≤ exp(ε) · Pr[M(y) ∈ S],
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where, ‖x‖1 the `1 norm of a database x. Substituting the term exp(ε) by

1− ε the above relation may be expressed as

Pr[M(x) ∈ S]/Pr[M(y) ∈ S] ≤ 1 + ε.

Intuitively the above relation tell us that if an algorithm is differential private,

then a small change on his input database (by at most one entry) will affect

negligible its output. Thus if an individual adds his personal information on

a predefined database the algorithm’s output will not change, betraying his

information.

To better understand the concept of differential privacy we will illustrate

a classical mechanism (the Laplace Mechanism) regarding the latter.

Definition 2.1. (`1 sensitivity). The `1 sensitivity of a function f : N|X | →
Rk is:

∆f = max
‖x−y‖1=1
x,y∈N|X|

‖ f(x)− f(y) ‖1 .

The `1 sensitivity of a function f captures the magnitude by which a single

individual’s data can change the function f in the worst case, and therefore,

intuitively, the uncertainty in the response that we must introduce in order

to hide the participation of a single individual. Indeed, we will formalize this

intuition: the sensitivity of a function gives an upper bound on how much we

must perturb its output to preserve privacy. One noise distribution naturally

lends itself to differential privacy.

Definition 2.2. (The Laplace Distribution). The Laplace Distribution (cen-

tered at 0) with scale b is the distribution with probability density function

Lap(x|b) =
1

2b
exp(−|x|

b
).

The variance of this distribution is σ2 = 2b2. We will sometimes write

Lap(b) to denote the Laplace distribution with scale b, and will sometimes
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abuse notation and write Lap(b) simply to denote a random variable X ∼
Lap(b).

We will now define the Laplace Mechanism. As its name suggests, the

Laplace mechanism will simply compute f , and perturb each coordinate with

noise drawn from the Laplace distribution. The scale of the noise will be

calibrated to the sensitivity of f (divided by ε).

Definition 2.3. (Laplace Mechanism). Give any function f : N|X | → Rk,

the Laplace mechanism is defined as:

ML(x, f(·), ε) = f(x) + (Y1, ..., Yk)

where Yi are i.i.d. random variables drawn from Lap(∆f/ε).

Theorem 2.9. The Laplace mechanism is ε-differential private.

Proof. Let x ∈ N|X | and y ∈ N|X | be such that ‖ x − y ‖1≤ 1, and let f(·)
be some function f : N|X | → Rk. Let px denote the probability density

function ofML(x, f, ε), and let py denote the probability density function of

ML(y, f, ε). We compare the two at some arbitrary point z ∈ Rk.

px(z)

py(z)
=

k∏
i=1

(
exp(− ε|f(x)i−zi|

∆f
)

exp(− ε|f(y)i−zi|
∆f

)

)

=
k∏
i=1

exp

(
ε(|f(y)i − zi| − |f(x)i − zi|)

∆f

)

≤
k∏
i=1

exp

(
ε|f(x)i − f(y)i|

∆f

)
= exp

(
ε ‖ f(x)− f(y) ‖1

∆f

)
≤ exp(ε),

where the first inequality follows from the triangle inequality, and the last

follows from the definition of sensitivity and the fact that ‖ x − y ‖1≤ 1.

That px(z)
py(z)

≥ exp(−ε) follows by symmetry.
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Chapter 3

Sparse Covers for Sums of

Indicators

In this chapter we provide two crucial theorems (from [7]) that will help us to

further understand the space of PBDs. More specific the first theorem proves

that for each set Sn of PBDs and each ε > 0, there exist an ε-cover Sn,ε of

size n2 + (1
ε
)O(1/ε2). The specific theorem not only guarantees the existence

of such a cover, but also specifies the form of the PBDs in the cover. More

specific we will see that each PBD in the cover is in k-Sparse form or in (n, k)-

Binomial Form. Thus, the expected values of each indicator E[Xi] (recall the

definition of PBDs as sums of independent indicators
∑

iXi) takes specific

values. The second theorem sparsifies the above mentioned cover Sn,ε by

removing specific elements and without losing much of accuracy (i.e. losing

ε).

Theorem 3.1. [7]. Let X1, ..., Xn be an arbitrary mutually independent indi-

cators, and k ∈ N. Then there exist mutually independent indicators Y1, ..., Yn

satisfying the following:

1. dTV (
∑n

i=1 Xi,
∑n

i=1 Yi) ≤ 41/k.

2. at least one of the following is true:
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(a) (k − sparseform) there exists some ` ≤ k3 such that, for all

i ≤ `,E[Yi] ∈
{

1
k2
, 2
k2
, ..., k

2−1
k2

}
and, for all i < l,E[Yi] ∈ {0, 1};or

(b) ((n, k) − Binomialform) there is some ` ∈ {1, ..., n} and q ∈
{1, ..., n} such that, for all i < `,E[Yi] = q and for all i > `,E[Yi] =

0; moreover, ` and q satisfy `q ≥ k2 and `q(1− q) ≥ k2 − k − 1.

Proof. Assume that E[Xi] = pi thus the vector (p1, ..., pn) corresponds the

expectation values of Xi’s. The proof of Theorem is conducted in 2 stages

however, the high level of the proof is the following: We will allocate the

values of all pi ∈ (0, 1) to specific values in such a way so we do not have

to travel too much distance from the starting Poisson Binomial distribution.

The details of the proof are presented hereafter.

In Stage 1 we allocate the probabilities pi’s ∈ (0, 1
k
) ∪ (1 − 1

k
, 1) to the

discrete values 0, 1
k
, 1 − 1

k
and 1. This allocation will yield a new vector of

probabilities p
′
i and thus the creation of new variables Z1, ..., Zn with E[Zi] =

p
′
i such that

dTV

(∑
i

Xi,
∑
i

Zi

)
≤ 7/k

and

E[Zi] /∈ (0,
1

k
) ∪ (1− 1

k
, 1)

that is we eliminate from our collection variables that have expectations very

close to 0 and 1, without traveling to much from the initial PBD. To achieve

this bound the following steps are applied:

We first define Lk be the set of all i’s such that pi ∈ (0, 1/k) and Hk be

the set of all i’s such that pi ∈ (1− 1
k
, 1).

1. Initially, we set p
′
i = pi, for all i ∈ [n]\Lk∪Hk. We simple set E[Zi] = pi

for all pi ∈ [ 1
k
, 1− 1

k
] thus,

dTV

 ∑
i∈[n]\Lk∪Hk

Xi,
∑

i∈[n]\Lk∪Hk

Zi

 = 0.
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2. Let L′k ⊆ Lk be an arbitrary subset of cardinality r = b
∑

i∈Lk
pi

1/k
c. We

simply identify (randomly) a set of indicators i such that to round all

the pi’s in (0, 1/k) to 0 and 1/k

3. Set p
′
i = 1

k
, for all i ∈ L′k, and p

′
i = 0, for all i ∈ Lk\L′k.

We round all indicators expectations to 0 or 1/k. The following figure shows

the Stage 1 process.

The first 3 steps finalize Stage 1 process. Let us define how much this round-

ing costs in terms of variation distance. The first step implies zero distance as

we saw above. For steps 2-3 we will bound the distance dTV (
∑

i∈Lk Xi,
∑

i∈Lk Zi)

using Theorem 2.7. In particular

dTV

(∑
i∈Lk

Xi, Poisson

(∑
i∈Lk

pi

))
≤
∑

i∈Lk p
2
i∑

i∈Lk pi
≤

1
k

∑
i∈Lk pi∑
i∈Lk pi

= 1/k.

Similarly, dTV
(∑

i∈Lk Zi, Poisson
(∑

i∈Lk p
′
i

))
≤ 1/k. By Lemma 2.3 we

bound the distance

dTV

(
Poisson

(∑
i∈Lk

pi

)
, Poisson

(∑
i∈Lk

p
′

i

))
≤ 1

2
(e

1
k − e−

1
k ) ≤ 1.5

k
.
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Using the triangle inequality we get that

dTV (
∑
i∈Lk

Xi,
∑
i∈Lk

Zi) ≤
3.5

k
.

Thus the Stage 1 keeps k-close the distance between the two RBDs
∑

iXi

and
∑

i Zi.

Stage 2 is a more complex process. In this stage the rounding of p
′
i’s

(from Stage 1) it depends from the number m of p
′
i ∈ (0, 1). More specific if

m ≤ k3 then we will construct indicators Y1, ..., Yn which satisfy the Property

2(a) in the Theorem, if m > k3 the relative indicators Y1, ..., Yn will satisfy

the Property 2(b) in the Theorem. We will examine both cases (a) and (b)

separately. We first define M be all i’s such that p
′
i /∈ {0, 1} and m := |M|.

Case (a): m ≤ k3

The high level of the proof is the following: We first partitioning the interval

[1/k, 1− 1/k] into irregularly sized subintervals, whose endpoints are integer

multiples of 1/k2 . We then round all but one of the pi’s falling in each

subinterval to the endpoints of the subinterval so as to maintain their total

expectation, and apply Ehm’s [50] approximation to argue that the distri-

bution of their sum is not affected by more than O(1/k2) in total variation

distance. The proof details are given hereafter

We first split the interval [1/k, 1 − 1/k] as stated above and define the

subsets of i’s that fall inside each partition. More specific we first define

Ml = {i ∈ M|p′i ≤ 1/2} and Mh = {i ∈ M|p′i ≥ 1/2} (M = Ml tMh).

We then define

Ml,j =

{
i|p′i ∈

[
1

k
+

(j − 1)j

2

1

k2
,

1

k
+

(j + 1)j

2

1

k2

]}
.

The same split follows regardingMh. We define (qi)i∈Ml,j
following the next

steps:

1. Set pj,min := 1
k

+ (j−1)j
2

1
k2

(the lower pi value of the respective subin-

terval), pj,max := 1
k

+ (j+1)j
2

1
k2

(the maximum pi value of the respective

subinterval)
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2. We define an arbitrary subsetM′

l,j ⊆Ml,j of cardinality r = bnj(p̄j−pj,min)

j/k2
c,

where nj = |Mi,j|, and p̄j =

∑
i∈Ml,j

p
′
i

nj

3. Set qi = pj,max, for all i ∈M′

l,j,

4. for an arbitrary index i∗j ∈Ml,j\M
′

l,j, set qi∗j = nj p̄j − (rpj,max + (nj −
r − 1)pj,min);

5. finally, set qi = pj,min, for all i ∈Ml,j\M
′

l,j\{i∗j}.

The next figure shows the above mentioned procedure:

Observe that for i ∈Ml,j\i∗j , qi is an integer multiple of 1/k2. The final step

is to give an upper bound of the allocation performed in the above steps. By

theorem 2.5

dTV

 ∑
i∈Ml,j

Zi,B(nj, p̄j)

 ≤ ∑
i∈Ml,j

(p
′
i − p̄j)2

(nj + 1)p̄j(1− p̄j)
≤ 8/k2.

A similar deviation gives dTV

(∑
i∈Ml,j

Yi,B(nj, p̄j)
)
≤ 8

k2
. Thus by triangle

inequality:

dTV

 ∑
i∈Ml,j

Zi,
∑
i∈Ml,j

Yi

 ≤ 16

k2
.
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As the above inequality holds for each j = 1, ..., k − 1, by lemma 2.2 we get:

dTV

(∑
i∈Ml

Zi,
∑
i∈Ml

Yi

)
≤

k−1∑
j=1

dTV

 ∑
i∈Ml,j

Zi,
∑
i∈Ml,j

Yi

 ≤ 16

k
.

Finally by rounding qi∗j to their closest multiple of 1/k2 (see figure) the above

bound increasing to 17/k.

By lemma 2.2 we get the final bound of the Case (a):

dTV

(∑
i∈M

Zi,
∑
i∈M

Yi

)
≤ dTV

(∑
i∈Ml

Zi,
∑
i∈Ml

Yi

)
+dTV

(∑
i∈Mh

Zi,
∑
i∈Mh

Yi

)
≤ 34

k
.

Case (b): m > k3

The case (b) is a more technical case. At the specific approach we will

approximate the PBD
∑

i Zi with a Translated Poisson distribution, using

Theorem 2.6 due to Rollin [43]. The approximation of
∑

i Zi, is at least 3/k-

close to the Translated Poisson distribution. We then argue that the latter

is 6/k-close to a Binomial distribution B(m′, q), where

m′ :=

⌈
(
∑

i∈M p
′
i + t)2∑

i∈M p
′2
i + t

⌉
and q :=

`∗

n
,
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where `∗ satisfies
∑

i∈M p
′
i+t

m′
. For fixed m′ and q, we set qi = q, for all i < m′,

and qi = 0, for all i > m′. We also define:

µ := E

[∑
i∈M

Zi

]
and µ′ := E

[∑
i∈M

Yi

]
,

σ2 := V ar

[∑
i∈M

Zi

]
and σ′2 := V ar

[∑
i∈M

Yi

]
.

The following lemma compares the values µ, µ′, σ2, σ′2 and will provide useful

information regarding proof’s procedure.

Lemma 3.2. The following hold

µ ≤ µ′ ≤ µ+ 1 (3.1)

σ2 − 1 ≤ σ′2 ≤ σ2 + 2 (3.2)

µ ≥ k2 (3.3)

σ2 ≥ k2(1− 1

k
) (3.4)

We first approximate
∑

i∈M Zi and
∑

i∈M Yi with a Translated Poisson

distribution as follows:

dTV

(∑
i

Zi, TP (µ, σ2)

)
≤
√∑

i p
′3
i (1− p′i) + 2∑
i p
′
i(1− p

′
i)

≤
√∑

i p
′
i(1− p

′
i) + 2∑

i p
′
i(1− p

′
i)

≤ 1√∑
i p
′
i(1− p

′
i)

+
2∑

i p
′
i(1− p

′
i)

=
1

σ
+

2

σ2

≤ 1

k
√

1− 1/k
+

2

k2(1− 1/k)
(using (3.4))

≤ 3

k
,

Similarly,

dTV

(∑
i

Yi, TP (µ′, σ′2)

)
≤ 3

k
, (using (3.2), (3.4))
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By the triangle inequality we get:

dTV

(∑
i

Zi,
∑
i

Yi

)

≤ dTV

(∑
i

Zi, TP (µ, σ2)

)
+dTV

(∑
i

Yi, TP (µ′, σ′2)

)
+dTV

(
TP (µ, σ2), TP (µ, σ2)

)
≤ 6/k + dTV

(
TP (µ, σ2), TP (µ, σ2)

)
≤ 6/k +

|µ− µ′|
min(σ, σ′)

+
|σ2 − σ′2|+ 1

min(σ2, σ′2)
(using lemma 2.4)

≤ 1

k
√

1− 1
k
− 1

k2

+
3

k2(1− 1
k
− 1

k2
)

(using lemma 3.2)

≤ 9/k.

Theorem 3.1 implies the existence of an ε-cover of Sn whose size is n2 +

n · (1/ε)O(1/ε2). This cover can be obtained by enumerating over all Poisson

Binomial distributions of order n that are in k-sparse or (n, k)-Binomial form

as defined in the statement of the theorem, for k = d41/εe.

The next step is to sparsify this cover by removing elements to obtain

the next Theorem 3.3. Note that the term n · (1/ε)O(1/ε2) in the size of the

cover is due to the enumeration over distributions in sparse form. Using

Theorem 3.4 below, we argue that there is a lot of redundancy in those

distributions, and that it suffices to only include n · (1/ε)O(log21/ε) of them

in the cover. In particular, Theorem 3.4 establishes that, if two Poisson

Binomial distributions have their first O(log1/ε) moments equal, then their

distance is at most ε. So we only need to include at most one sparse form

distribution with the same first O(log1/ε) moments in our cover. We proceed

to state Theorem 3.3 including in its proof the Theorem 3.4.

Theorem 3.3. [8]. For all n, ε > 0 there exists a set Sn,ε ⊂ Sn such that:
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1. Sn,ε is an ε-cover of Sn in total variation distance; that is, for all D ∈
Sn, there exists some D′ ∈ Sn,ε such that dTV (D,D′) ≤ ε

2. |Sn,ε| ≤ n2 + n · (1
ε
)O(log21/ε)

3. Sn,ε can be computed in time O(n2logn) +O(nlogn) · (1
ε
)O(log21/ε)

Moreover, if {Yi} ∈ Sn,ε then the collection of n Bernoulli random

variables {Yi}, i = 1, ..., n has one of the following forms, where k =

k(ε) = C/ε is a positive integer, for some absolute constant C > 0:

(a) (k-sparse form) there exists some ` ≤ k3 such that, for all i ≤
`,E[Yi] ∈

{
1
k2
, 2
k2
, ..., k

2−1
k2

}
and, for all i < `,Yi ∈ {0, 1};or

(b) ((n, k)-Binomial form) there is some ` ∈ {1, ..., n} and q ∈ {1, ..., n}
such that, for all i < `,E[Yi] = q and for all i > `,E[Yi] = 0; more-

over, ` and q satisfy `q ≥ k2 and `q(1− q) ≥ k2 − k − 1.

Finally, for every {Xi} ∈ Sn for which there is no an ε-cover in

Sn,ε that is in sparse form, there exists some {Yi} ∈ Sn,ε in k-heavy

Binomial form such that

(c) dTV (
∑n

i=1 Xi,
∑n

i=1 Yi) ≤ ε; and

(d) If µ = E[
∑n

i=1Xi], µ
′ = E[

∑n
i=1 Yi], σ

2 = V ar[
∑n

i=1 Xi]and σ
′2 =

V ar[
∑n

i=1 Yi], then|µ−µ′| = O(1) and |σ−σ′| = O(1+ε ·(1+σ2)).

Proof. Theorem 3.1 implies the existence of an ε-cover Sn,ε of Sn of size

at most n2 + n · (1
ε
)O(1/ε2). This cover is obtained by taking the union of

all Poisson Binomial distributions in (n, k)-Binomial form and all Poisson

Binomial distributions in k-sparse form, for k = d41/εe. The total number

of Poisson Binomial distributions in (n, k)-Binomial form is at most n2, since

there are at most n choices for the value of ` and at most n choices for

the value of q. The total number of Poisson Binomial distributions in k-

sparse form is at most (k3 + 1) · k3k2 · (n + 1) = n · (1
ε
)O(1/ε2) since there

are k3 + 1 choices for `, at most k3k2 choices of probabilities p1 ≤ p2 ≤
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... ≤ p` in { 1
k2
, 2
k2
, ..., k

2−1
k2
}, and at most n + 1 choices for the number of

variables indexed by i > ` that have expectation equal to 1. Notice that

enumerating over the above distributions takes time O(n2logn) +O(nlogn) ·
(1
ε
)O(1/ε2), as a number in {0, ..., n} and a probability in { 1

n
, 2
n
, ..., n

n
} can be

represented usingO(logn) bits, while a number in {0, ..., k3} and a probability

in { 1
k2
, 2
k2
, ..., k

2−1
k2
} can be represented using O(logk) = O(log1/ε) bits.

We next show that we can remove from S
′
n,ε a large number of the sparse-

form distributions it contains to obtain a 2ε-cover of Sn. In particular, we

shall only keep n · (1
ε
)O(log21/ε) sparse-form distributions by appealing to the

next Theorem.

Theorem 3.4. Let P := (pi)
n
i=1 ∈ [0, 1/2]n and Q := (qi)

n
i=1 ∈ [0, 1/2]n be

two collections of probability values. Let also X := (Xi)
n
i=1 and Y := (Yi)

n
i=1

be two collections of mutually independent indicators with E[Xi] = pi, for all

i ∈ [n]. If for some d ∈ [n] the following condition is satisfied:

(Cd) :
n∑
i=1

p`i=1 =
n∑
i=1

q`i=1, for all ` = 1, ..., d,

then dTV

(∑
i

Xi,
∑
i

Yi

)
≤ 13(d+ 1)1/42−(d+1)/2.

Remark. Condition (Cd) in the statement of Theorem constrains the first d

power sums of the expectations of the constituent indicators of two Poisson

Binomial distributions. To relate these power sums to the moments of these

distributions we can use the theory of symmetric polynomials to arrive at the

following equivalent condition to (Cd) :

(Vd) : E

( n∑
i=1

Xi

)`
 = E

( n∑
i=1

Yi

)`
 , for all λ ∈ [d].

Theorem 3.4 states that if two sums of independent indicators (equivalent

two PBDs) have equal first d moments, then their total variation distance is

at most ε. Assuming that a class of PBDs in the cover meets the conditions
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of Theorem 3.4 we will keep only one PBD from the specific class, writing off

the others. By repeating the same procedure for all the classes are created

we obtain the sparsify cover.

More specific: for a collection P = (pi)i∈[n] ∈ [0, 1]n, we denote by LP =

{i|pi ∈ (0, 1/2]} and by RP = {i|pi ∈ (1/2, 1)}. For a collection P =

(pi)i∈[n] ∈ [0, 1]n, we also define its moment profile mP to be the (2d(ε) + 1)-

dimensional vector

mP =

(∑
i∈LP

pi,
∑
i∈LP

p2
i , ...,

∑
i∈LP

p
d(ε)
i ;

∑
i∈RP

pi, ...,
∑
i∈RP

p
d(ε)
i ; |i|pi = 1|

)
.

By Theorem 3.4 if mP = mQ then dTV (PBD(P), PBD(Q)) ≤ ε. Given the

above we will try to sparsify the S
′
n,ε as follows: for every possible moment

profile that can arise from a Poisson Binomial distribution in k-sparse form,

we keep in our cover a single Poisson Binomial distribution with such moment

profile. The cover resulting from this sparsification is a 2ε-cover, since the

sparsification loses us an additional ε in total variation distance, as argued

above.

We now bound the cardinality of the sparsified cover. The total number of

moment profiles of k-sparse Poisson Binomial distributions is kO(d(ε)2) ·(n+1).

Indeed, consider a Poisson Binomial distribution PBD(P = (pi)i∈[n]) in k-

sparse form. There are at most k3 +1 choices for |LP |, at most k3 +1 choices

for |RP |, and at most (n+ 1) choices for |{i|pi = 1}|. We also claim that the

total number of possible vectors(∑
i∈LP

pi,
∑
i∈LP

p2
i , ...,

∑
i∈LP

p
d(ε)
i

)

is kO(d(ε)2). Indeed, if |LP | = 0 there is just one such vector, namely the all-

zero vector. If |LP | > 0, then, for all t = 1, ..., d(ε),
∑

i∈LP p
t
i ∈ (0, |LP |] and it

must be an integer multiple of 1/k2t. So the total number of possible values

of
∑

i∈LP p
t
i is at most k2t|LP | ≤ k2tk3, and the total number of possible
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vectors (∑
i∈LP

pi,
∑
i∈LP

p2
i , ...,

∑
i∈LP

p
d(ε)
i

)
is at most

d(ε)∏
t=1

k2tk3 ≤ kO(d(ε)2).

The same upper bound applies to the total number of positive vectors(∑
i∈RP

pi,
∑
i∈RP

p2
i , ...,

∑
i∈RP

p
d(ε)
i

)
.

The moment profiles we enumerated over are a superset of the moment pro-

files of k-sparse Poisson Binomial distributions. We call them compatible

moment profiles. We argued that there are at most kO(d(ε)2) · (n+ 1) compat-

ible moment profiles, so the total number of Poisson Binomial distributions

in k-sparse form that we keep in the cover is at most kO(d(ε)2) · (n + 1) =

n · (1
ε
)O(log2/ε). The number of Poisson Binomial distributions in (n, k)-

Binomial form is the same as before, i.e. at most n2 , as we did not eliminate

any of them. So the size of the sparsified cover is n2 + n · (1
ε
)O(log2/ε).

To finish the proof it remains to argue that we don’t actually need to

first compute Sn,ε and then sparsify it to obtain our cover, but can produce

it directly in time O(n2logn) + O(nlogn) · (1
ε
)O(log2/ε). We claim that, given

a moment profile m that is compatible with a k-sparse Poisson Binomial

distribution, we can compute some PBD(P = (pi)i) in k-sparse form such

that mP = m, if such a distribution exists, in time O(logn) · (1
ε
)O(log2/ε). So

the algorithm enumerates over all moment profiles that are compatible with

a k-sparse Poisson Binomial distribution and for each profile finds a Poisson

Binomial distribution with such moment profile, if such distribution exists,

adding it to the cover if it does exist. It then enumerates over all Poisson

Binomial distributions in (n, k)-Binomial form and adds them to the cover

as well. The overall running time is as promised.
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Chapter 4

A Learning Algorithm

In this chapter we describe the main result of [8] regarding an efficient al-

gorithm for learning PBDs from O(1/ε2) many samples independent of [n].

Since PBDs are an n-parameter family of distributions over the domain [n],

the view of such a tight bound is a surprising result. The starting point of

the algorithm for learning PBDs is a theorem of [41, 42] that gives detailed

information about the structure of a small ε-cover (under the total varia-

tion distance) of the space of all PBDs on n variables (see Theorem 3.3).

Roughly speaking, this result says that every PBD is either close to a PBD

whose support is sparse, or is close to a translated “heavy” Binomial distri-

bution. The learning algorithm exploits this structure of the cover; it has

two subroutines corresponding to these two different types of distributions

that the cover contains. First, assuming that the target PBD is close to a

sparsely supported distribution, it runs Birge’s unimodal distribution learner

over a carefully selected subinterval of [n] to construct a hypothesis HS; the

(purported) sparsity of the distribution makes it possible for this algorithm

to use O(1/ε3) samples independent of n. Then, assuming that the target

PBD is close to a translated “heavy” Binomial distribution, the algorithm

constructs a hypothesis Translated Poisson Distribution HP [43] whose mean

and variance match the estimated mean and variance of the target PBD; the
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HP is close to the target PBD if the target PBD is not close to any sparse

distribution in the cover. At this point the algorithm has two hypothesis dis-

tributions, HS and HP , one of which should be good; it remains to select one

as the final output hypothesis. This is achieved using a form of “hypothesis

testing” for probability distributions.

4.1 Learning Poisson Binomial Distributions

Theorem 4.1. [8]. Let X =
∑n

i=1Xi, be an unknown PBD.

1. [Learning PBDs from constantly many samples] There is an

algorithm with the following properties: given n, ε, δ and access to in-

dependent draws from X, the algorithm uses

O((1/ε3) · log(1/δ))

samples from X, performs

O((1/ε3) · logn · log2(1/δ))

bit operations, and with probability at least 1−δ outputs a (succinct de-

scription of a) distribution X̂ over [n] which is such that dTV (X, X̂) ≤
ε.

2. [Properly learning PBDs from constantly many samples] There

is an algorithm with the following properties: given n, ε, δ and access to

independent draws from X, the algorithm uses

O((1/ε2) · log(1/δ))

samples from X, performs

(1/ε)O(log2(1/ε)) ·O(logn · log1/δ)

bit operations, and with probability at least 1 − δ outputs a (succinct

description of a) vector p̂ = (p̂1, ..., p̂n) defining a PBD X̂ such that

dTV (X, X̂) ≤ ε.
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The Basic Learning Algorithm. The high-level structure of the learn-

ing algorithms which give theorem 4.1 is provided in Algorithm Learn−PBD
of Figure 1

Learn− PBD(n, ε, δ)

1. Run Learn− SparseX(n, ε, δ/3) to get hypothesis distribution

HS.

2. Run Learn−PoissonX(n, ε, δ/3) to get hypothesis distribution

HP .

3. Return the distribution which is the output of

Choose−HypothesisX(HS, HP , ε, δ/3).

Figure 1: Learn-PBD(n, ε, δ)

At a high level, the subroutine Learn − Sparse is given sample access

to X and is designed to find an ε-accurate hypothesis HS with probability

at least 1 − δ/3, if the unknown PBD X is ε-close to some sparse form

PBD inside the cover Sn,ε. Similarly, Learn − Poisson is designed to find

an ε-accurate hypothesis HP , if X is not ε-close to a sparse form PBD (in

this case, Theorem 3.3 implies that X must be ε-close to some k(ε)-heavy

Binomial form PBD). Finally, Choose − Hypothesis is designed to choose

one of the two hypothesis HS, HP as being ε-close to X. The following

subsections specify these subroutines, as well as how the algorithm can be

used to establish Theorem 3.3. Note that Learn − Sparse and Learn −
Poisson do not return the distributions HS and HP as a list of probabilities

for every point in [n]. They return instead a succinct description of these

distributions in order to keep the running time of the algorithm logarithmic

in n. Similarly, Choose−Hypothesis operates with succinct descriptions of

these distributions.
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4.1.1 Learning when X is close to a sparse PBD

The starting point here is the simple observation that any PBD is a unimodal

distribution over the domain {0, 1, ..., n}. (There is a simple inductive proof

of this, or see Section 2 of [44].) This enables us to use the algorithm of

Birge [4] for learning unimodal distributions. The Theorem 4.2 as stated

below follows from [4].

Theorem 4.2. [4]. For all n, ε, δ > 0, there is an algorithm that draws

O(
logn

ε3
log

1

δ
+

1

ε2
log

1

δ
loglog

1

δ
)

samples from an unknown unimodal distribution X over [n], does

O(
log2n

ε2
log2 1

δ
)

bit-operations, and outputs a (succinct description of a) hypothesis distribu-

tion H over [n] that has the following form: H is uniform over subinter-

vals [α1, β1], [α2, β2], ..., [αk, βk], whose union
⋃n
i=1[αi, βi] = [n], where k =

O( logn
ε

). In particular, the algorithm outputs the lists α1 through αk and β1

through βk, as well as the total probability mass that H assigns to each subin-

terval [αi, βi], i = 1, ..., k. Finally, with probability at least 1−δ, dTV (X,H) ≤
ε.

The main result of this subsection is the following:

Lemma 4.3. For all n, ε′, δ′ > 0, there is an algorithm Learn−SparseX(n, ε′, δ′)

that draws

O(
1

ε′3
log

1

ε′
log

1

δ′
+

1

ε′2
log

1

δ′
loglog

1

δ′
)

samples from a target PBD X over [n], does

logn ·O(
1

ε′3
log2 1

δ′
)

bit operations, and outputs a (succinct description of a) hypothesis distribu-

tion HS over [n] that has the following form: its support is contained in an
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explicitly specified interval [a, b] ⊂ [n], where |b − a| = O( 1
ε′3

), and for every

point in [a, b] the algorithm explicitly specifies the probability assigned to that

point by HS. The algorithm has the following guarantee: if X is ε′-close to

some sparse form PBD Y in the cover Sn,ε′ of Theorem 3.3, then with prob-

ability at least 1− δ′, dTV (X,HS) ≤ c1ε
′, for some absolute constant c1 ≥ 1,

and the support of HS lies in the support of Y .

The high-level idea of Lemma 4.3 is quite simple. Truncate O(ε′) of the

probability mass from each end of X to obtain a conditional distribution

X[â,b̂]; since X is unimodal so is X[â,b̂]. If b̂ − â is larger than O(1/ε
′3) then

the algorithm outputs “fail” (and X could not have been close to a sparse-

form distribution in the cover). Otherwise, use Birge’s algorithm to learn the

unimodal distribution X[â,b̂]. A detailed description of the algorithm is given

in Figure 2 below.

Learn− SparseX(n, ε′, δ′)

1. Draw M = 32log(8/δ′)ε
′2 samples from X and sort them to obtain

a list of values 0 ≤ s1 ≤ ... ≤ sM ≤ n.

2. Define â := sd2ε′Me and b̂ := sb(1−2ε′)Mc.

3. If b̂− â > (C/ε′)3 (where C is the constant in the statement of The-

orem 3.3), output “fail” and return the (trivial) hypothesis which

puts probability mass 1 on the point 0.

4. Otherwise, run Birge’s unimodal distribution learner (Theorem 4.2)

on the conditional distribution X[â,b̂] and output the hypothesis that

it returns.

Figure 2: Learn− SparseXn, ε′, δ′

Proof. As described in Figure 2, algorithm Learn − SparseXn, ε′, δ′ first

draws M = 32log(8/δ′)ε
′2 samples from X and sorts them to obtain a list of
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values 0 ≤ s1 ≤ ... ≤ sM ≤ n. The following claim holds about the values â

and b̂ defined in Step 2 of the algorithm:

Claim 1. With probability at least 1−δ′/2, we have Pr[X ≤ â] ∈ [3ε′/2, 5ε′/2]

and Pr[X ≤ b̂] ∈ [1− 5ε′/2, 1− 3ε′/2].

Proof of Claim. We only show that Pr[X ≤ â] ≥ 3ε′/2 with probability

at least 1 − δ′/8, since the arguments for Pr[X ≤ â] ≤ 5ε′/2, P r[X ≤ b̂] ≤
1− 3ε′/2 and Pr[X ≤ b̂] ≥ 1− 5ε′/2 are identical. Given that each of these

conditions is met with probability at least 1− δ′/8, the union bound estab-

lishes the claim. To show that Pr[X ≤ â] ≥ 3ε′/2 is satisfied with probability

at least 1−δ′/8 we argue as follows: Let a′ = max{i|Pr[X] < 3ε′/2}. Clearly,

Pr[X ≤ a′] < 3ε′/2 while Pr[X ≤ a′ + 1] ≥ 3ε′/2. Given this, if M samples

are drawn from X then the expected number of them that are ≤ a′ is at most

3ε′M/2. It follows then from the Chernoff bound that the probability that

more than 7/4ε′M samples are ≤ a′ is at most e−(ε′/4)2M/2 ≤ δ′/8. Hence

except with this failure probability, we have â ≥ a′ + 1, which implies that

Pr[X ≤ â] ≥ 3ε′/2.

As specified in Steps 3 and 4, if b̂− â > (C/ε′)3, where C is the constant

in the statement of Theorem 3.3, the algorithm outputs “fail”, returning the

trivial hypothesis which puts probability mass 1 on the point 0. Otherwise,

the algorithm runs Birge’s unimodal distribution learner (Theorem 4.2) on

the conditional distributionX[â,b̂], and outputs the result of Birge’s algorithm.

Since X is unimodal, it follows that X[â,b̂] is also unimodal, hence Birge’s algo-

rithm is appropriate for learning it. The way the Birge’s algorithm is applied

to learn X[â,b̂] given samples from the original distribution X is the obvious

one: draw samples from X, ignoring all samples that fall outside of [â, b̂],

until the right O(log(1/δ′)log(1/ε′)/ε
′3 number of samples fall inside [â, b̂], as

required by Birge’s algorithm for learning a distribution of support of size

(C/ε′)3 with probability at least 1− δ′/4. Once the right number of samples

in [â, b̂] has been obtained, the algorithm runs Birge’s algorithm to learn the

conditional distribution X[â,b̂] . Note that the number of samples we need to
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draw from X until the right O(log(1/δ′)log(1/ε′)/ε
′3 number of samples fall

inside [â, b̂] is still O(log(1/δ′)log(1/ε′)/ε
′3, with probability at least 1− δ′/4.

Indeed, since P (â ≤ X ≤ b̂) = 1−O(ε′), it follows from the Chernoff bound

that with probability at least 1− δ′/4, if K = Θ(log(1/δ′)log(1/ε′)/ε
′3) sam-

ples are drawn from X, at least K(1−O(ε′)) fall inside [â, b̂].

Analysis: It is easy to see that the sample complexity of our algo-

rithm is as promised. For the running time, notice that, if Birge’s algo-

rithm is invoked, it will return two lists of numbers a1 through ak and

b1 through bk, as well as a list of probability masses q1, ..., qk assigned to

each subinterval [ai, bi], i = 1, ..., k, by the hypothesis distribution HS, where

k = O(log(1/ε′)/ε′). In linear time, we can compute a list of probabilities

q̂1, ..., q̂k, representing the probability assigned by HS to every point of subin-

terval [ai, bi], for i = 1, ..., k. So we can represent our output hypothesis HS

via a data structure that maintains O(1/ε′3) pointers, having one pointer per

point inside [a, b]. The pointers map points to probabilities assigned by HS

to these points. Thus turning the output of Birge’s algorithm into an explicit

distribution over [a, b] incurs linear overhead in our running time, and hence

the running time of our algorithm is also as promised. Moreover, we also

note that the output distribution has the promised structure, since in one

case it has a single atom at 0 and in the other case it is the output of Birge’s

algorithm on a distribution of support of size (C/ε′)3.

It only remains to justify the last part of the lemma. Let Y be the sparse-

form PBD that X is close to; say that Y is supported on {a′, ..., b′} where

b′− a′ ≤ (C/ε′)3. Since X is ε′ -close to Y in total variation distance it must

be the case that P [X ≤ a′ − 1] ≤ ε′ . Since P [X ≤ â′ − 1] ≥ 3ε′/2 by Claim

1, it must be the case that â ≥ a′. Similar arguments give that b̂ ≤ b′. So

the interval [â, b̂] is contained in [a′, b′] and has length at most (C/ε′)3. This

means that Birge’s algorithm is indeed used correctly by our algorithm to

learn X[â,b̂] , with probability at least 1− δ′/2 (that is, unless Claim 1 fails).

Now it follows from the correctness of Birge’s algorithm (Theorem 4.2) and

the discussion above, that the hypothesis HS output when Birge’s algorithm
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is invoked satisfies dTV (HS, X[â,b̂]) ≤ ε′, with probability at least 1 − δ′/2,

i.e., unless either Birge’s algorithm fails, or we fail to get the right number

of samples landing inside [â, b̂]. To conclude the proof of the lemma we note

that:

2dTV (X,X[â,b̂]) =
∑
i∈[â,b̂]

|Pr[X[â,b̂] = i]−Pr[X = i]|+
∑
i/∈[â,b̂]

|Pr[X[â,b̂] = i]−Pr[X = i]|

=
∑
i∈[â,b̂]

∣∣∣∣∣ 1∑
i∈[â,b̂] Pr[X = i]

Pr[X = i]− Pr[X = i]

∣∣∣∣∣+
∑
i/∈[â,b̂]

Pr[X = i]

=
∑
i∈[â,b̂]

∣∣∣∣ 1

1−O(ε′)
Pr[X = i]− Pr[X = i]

∣∣∣∣+O(ε′)

O(ε′)

1−O(ε′)

∑
i∈[â,b̂]

|Pr[X = i]|+O(ε′) = O(ε′)

So the triangle inequality gives: dTV (HS, X) = O(ε′) and the lemma is

proved.

4.1.2 Learning when X is close to a k-heavy Binomial

Form PBD

Lemma 4.4. For all n, ε′, δ′ > 0, there is an algorithm Learn−PoissonX(n, ε′, δ′)

that draws O(log(1/δ′)/ε
′2) samples from a target PBD X over [n], does

O(logn · log(1/δ′)/ε2) bit operations, and returns two parameters µ̂ and σ̂2.

The algorithm has the following guarantee: Suppose X is not ε′-close to any

sparse form PBD in the cover Sn,ε′ of Theorem 3.3. Let HP = TP (µ̂, σ̂2)

be the translated Poisson distribution with parameters µ̂ and σ̂2. Then with

probability at least 1− δ′ we have dTV (X,HP ) ≤ c2ε
′ for some absolute con-

stant c2 ≥ 1.
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Our proof plan is to exploit the structure of the cover of Theorem 3.3. In

particular, if X is not ε′-close to any sparse form PBD in the cover, it must

be ε′-close to a PBD in heavy Binomial form with approximately the same

mean and variance as X, as specified by the final part of the cover theorem.

Hence, a natural strategy is to obtain estimates µ̂ and σ̂2 of the mean and

variance of the unknown PBD X, and output as a hypothesis a translated

Poisson distribution with parameters µ̂ and σ̂2. This strategy is a successful

one. Before providing the details, two facts should be highlighted as there

will be used later. The first is that, assuming X is not ε′-close to any sparse

form PBD in the cover Sn,ε′ , its variance σ2 satisfies

σ2 = Ω(1/ε
′2) ≥ θ2 for some universal constant θ. (4.1)

The second is that under the same assumption, the estimates µ̂ and σ̂2 of

the mean µ and variance σ2 of X that we obtain satisfy the following bounds

with probability at least 1− δ:

|µ− µ̂| ≤ ε′ · σ and |σ2 − σ̂2| ≤ ε′ · σ2. (4.2)

Learn− PoissonX(n, ε′, δ′)

1. Let ε = ε′/
√

4 + 1
θ2

and δ = δ′.

2. Run algorithm A(n, ε, δ) to obtain an estimate µ̂ of E[X] and

an estimate σ̂2 of V ar[X].

3. Output the translated Poisson distribution TP (µ̂, σ̂2).

Figure 3: Learn − PoissonX(n, ε′, δ′) The value θ used in Line 1 is the

universal constant specified in the proof of Lemma 4.4

44



A(n, ε, δ)

1. Let r = O(log1/δ). For i = 1, ..., r repeat the following:

(a) Draw m = d3/ε2e independent samples Zi,1, ..., Zi,m from

X.

(b) Let µ̂i =
∑

j Zi,j

m
, σ̂2

i =
∑

j(Zi,j− 1
m

∑
k Zi,k)

2

m−1
.

2. Set µ̂ to be the median of µ̂1, ..., µ̂r and set σ̂2 to be the median

of σ̂2
1, ..., σ̂

2
r .

3. Output µ̂ and σ̂2.

Figure 4: A(n, ε, δ)

Lemma 4.5. For all n, ε, δ > 0, there exists an algorithm A(n, ε, δ) with

the following properties: given access to a PBD X of order n, it produce

estimates µ̂ and σ̂2 for µ = E[X] and σ2 = V ar[X] respectively such that

with probability at least 1− δ :

|µ− µ̂| ≤ ε · σ and |σ2 − σ̂2| ≤ ε · σ2

√
4 +

1

σ2
.

The algorithm uses

O(log(1/δ)/ε2)

samples and runs in time

O(logn · log(1/δ)/ε2).

Proof. We treat the estimation of µ and σ2 separately. For both estimation

problems we show how to use O(1/ε2) samples to obtain estimates µ̂ and σ̂2

achieving the required guarantees with probability at least 2/3 (we refer to

these as “weak estimators”). Then a routine procedure allows us to boost

the success probability to 1 = δ at the expense of a multiplicative factor

O(log1/δ) on the number of samples. While we omit the details of the
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routine boosting argument, we remind the reader that it involves running

the weak estimator O(log1/δ) times to obtain estimates µ̂1, ..., µ̂O(log1/δ) and

outputting the median of these estimates, and similarly for estimating σ2. We

proceed to specify and analyze the weak estimators for µ and σ2 separately:

Weak estimator for µ.

Let Z1, ..., Zm be independent samples from X, and let µ̂ = 1
m

∑
i Zi.

Then

E[µ̂] = µ and V ar[µ̂] =
1

m
σ2.

Chebyshev’s inequality implies that

Pr

[
|µ− µ̂| ≥ tσ√

m

]
≤ 1

t2

Choosing t =
√

3 and m = d 3
ε2
e, the above inequality implies that |µ− µ̂| ≤

ε · σ with probability at least 2
3
.

Weak estimator for σ2.

Let Z1, ..., Zm be independent samples from X, and let σ̂2 =
∑

i(Zi− 1
m

∑
i Z1)2

m−1

be the unbiased sample variance. Then

E[σ̂2] = σ2 and V ar[σ̂2] = σ4

(
2

m− 1
+
k

m

)
.

where k is the excess kurtosis of the distribution of X. To bound k in terms

of σ2 suppose that X =
∑n

i=1Xi, where E[Xi] = pi for all i. Then

k =
1

σ4

∑
i

(1− 6pi(1− pi))(1− pi)pi (see [51])

≤ 1

σ4

∑
i

(1− pi)pi

=
1

σ2
.

Hence V ar[σ̂2] = σ4
(

2
m−1

+ k
m

)
≤ σ4

m
(4 + 1

σ2 ). So Chebyshev’s inequality

implies that

Pr

[
|σ̂2 − σ2| ≥ t

σ2

√
m

√
4 +

1

σ2

]
≤ 1

t2
.
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Choosing t =
√

3 and m = d 3
ε2
e the above imply that |σ̂2−σ2| ≤ ε·σ2

√
4 + 1

σ2

with probability at least 2
3
.

We proceed to prove Lemma 4.4. Learn− PoissonX(n, ε′, δ′) runs A(n, ε, δ)

from Lemma 4.5 with appropriately chosen ε = ε(ε′) and δ = δ(δ′), given

below, and then outputs the translated Poisson distribution TP (µ̂, σ̂2), where

µ̂ and σ̂2 are the estimated mean and variance of X output by A. Next, we

show how to choose ε and δ, as well as why the desired guarantees are satisfied

by the output distribution.

If X is not ε′-close to any PBD in sparse form inside the cover Sε′ of

Theorem 3.1, there exists a PBD Z in (k = O(1/ε′))-heavy Binomial form

inside S ′ε that is within total variation distance ε′ from X. We use the

existence of such Z to obtain lower bounds on the mean and variance of

X. Indeed, suppose that the distribution of Z is Bin(`, q), a Binomial with

parameters `, q. Then Theorem 3.1 certifies that the following conditions are

satisfied by the parameters `, q, µ = E[X] and σ2 = V ar[X]:

1. `q ≥ k2

2. `q(1− q) ≥ k2 − k − 1

3. |`q − µ| = O(1) and

4. |`q(1− q)− σ2| = O(1 + ε′ · (1 + σ2)).

In particular, conditions (2) and (3) above imply that

σ2 = Ω(k2) = Ω(1/ε′2) ≥ θ2,

for some universal constant θ, establishing (4.1). In terms of this θ, we

choose ε = ε′/
√

4 + 1
θ2

and δ = δ′ for the application of lemma 2.6 to obtain

estimates µ̂ and σ̂2.
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From the choice of parameters and the guarantees of lemma 2.6, it follows

that, if X is not ε′-close to any PBD in sparse form inside the cover Sε′ , then

with probability at least 1− δ′ the estimates µ̂ and σ̂2 satisfy:

|µ− µ̂| ≤ ε′ · σ and |σ2 − σ̂2| ≤ ε′ · σ2,

establishing (4.2). Moreover, if Y is a random variable distributed according

to the translated Poisson distribution TP (µ̂, σ̂2), we show that X and Y are

within O(ε′) in total variation distance, concluding the proof of lemma 4.4.

Claim 2: If X and Y are as above, then dTV (X, Y ) ≤ O(ε′).

Proof. Suppose that X =
∑n

i=1 Xi, where E[Xi] = pi for all i. Lemma 2.6

implies that

dTV

(∑
i

X,TP (µ, σ2)

)
≤
√∑

i p
3
i (1− pi) + 2∑

i pi(1− pi)
≤
√∑

i pi(1− pi) + 2∑
i pi(1− pi)

≤ 1√∑
i pi(1− pi)

+
2∑

i pi(1− pi)
=

1

σ
+

2

σ2

= O(ε′).

It remains to bound the total variation distance between the translated Pois-

son distributions TP (µ, σ2) and TP (µ̂, σ̂2), by lemma 2.4

dTV (TP (µ, σ2), TP (µ̂, σ̂2)) ≤ |µ− µ̂|
min(σ, σ̂)

+
|σ2 − σ̂2|+ 1

min(σ2, σ̂2)

≤ ε′σ

min(σ, σ̂)
+

ε′σ2 + 1

min(σ2, σ̂2)

≤ ε′σ

σ/
√

1− ε′
+

ε′σ2 + 1

σ2/
√

1− ε′

= O(ε′) +
O(1− ε′)

σ2

= O(ε′) +O(ε′2)
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= O(ε′).

The claim follows from the triangle inequality

dTV (X, Y )

≤ dTV

(∑
i

X,TP (µ, σ2)

)
+dTV (TP (µ, σ2), TP (µ̂, σ̂2))+dTV (TP

(
µ̂, σ̂2),

∑
i

Y

)
≤ 3O(ε′) = O(ε′).

The proof of Lemma 4.4 is concluded. We remark that the algorithm

described above does not need to know a priori whether or not X is ε′-close

to a PBD in sparse form inside the cover Sε′ of Theorem 3.1. The algorithm

simply runs the estimator of Lemma 4.5 with ε = ε′/
√

4 + 1
θ2

and δ = δ′ and

outputs whatever estimates µ̂ and σ̂2 the algorithm of Lemma 4.5 produces.

4.1.3 Hypothesis testing

The hypothesis testing routine Choose − HypothesisX uses samples from

the unknown distribution X to run a “competition” between two candidate

hypothesis distributions H1 and H2 over [n] that are given in the input. It

is proven that if at least one of the two candidate hypotheses is close to the

unknown distribution X, then with high probability over the samples drawn

from X the routine selects as winner a candidate that is close to X. This

basic approach of running a competition between candidate hypotheses is

quite similar to the “Scheffe estimate” proposed by Devroye and Lugosi (see

[45, 46] and Chapter 6 of [47], as well as [48]), but the notion of competition

here is different.

Lemma 4.6. . There is an algorithm Choose−HypothesisX(H1, H2, ε
′, δ′)

which is given sample access to distribution X, two hypothesis distributions
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H1, H2 for X, an accuracy parameter ε′ > 0, and a confidence parameter

δ′ > 0. It makes

m = O(log(1/δ′)/ε
′2)

draws from X and returns some H ∈ {H1, H2}. If dTV (X,Hi) ≤ ε′ for

some i ∈ {1, 2}, then with probability at least 1 − δ′ the distribution H that

Choose−Hypothesis returns has dTV (X,H) ≤ 6ε′.

Proof of Lemma 4.6: Figure 5 describes how the competition between H1

and H2 is carried out.

Choose−HypothesisX(H1, H2, ε
′, δ′)

INPUT: Sample access to distribution X; a pair of hypothesis distribu-

tions (H1, H2); ε′, δ′ > 0.

Let W be the support of X,W1 = W1(H1, H2) := {w ∈ W |H1(W ) >

H2(W )}, and p1 = H1(W1), p2 = H2(W1). /* Clearly, p1 > p2 and

dTV (H1, H2) = p1 − p2.*/

1. If p1 − p2 ≤ 5ε′, declare a draw and return either Hi. Otherwise:

2. Draw m = 2log(1/δ′)/ε
′2 samples s1, ..., sm from X, and let τ =

1
m
|{i|si ∈ W1}| be the fraction of samples that fall inside W1.

3. If τ > p1 − 3
2
ε′, declare H1 as winner and return H1; otherwise,

4. if τ < p2 + 3
2
ε′, declare H2 as winner and return H2; otherwise,

5. declare a draw and return either Hi.

Figure 5: Choose−HypothesisX(H1, H2, ε
′, δ′)

The correctness of Choose−Hypothesis is an immediate consequence of

the following claim. (In fact for Lemma 4.6 we only need item (i) below, but

item (ii) will be handy later in the proof of Lemma 4.7.)

Claim 3. Suppose that dTV (X,Hi) ≤ ε′ for some i ∈ {1, 2}. Then:
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1. if dTV (X,H3−i) > 6ε′, the probability that Choose−HypothesisX(H1, H2, ε
′, δ′)

does not declare Hi as the winner is at most 2e−mε
′2/2, where m is cho-

sen as in the description of the algorithm. (Intuitively, if H3−i is very

bad then it is very likely that Hi will be declared winner.)

2. if dTV (X,H3−i) > 4ε′, the probability that Choose−HypothesisX(H1, H2, ε
′, δ′)

declares H3−i as the winner is at most 2e−mε
′2/2. (Intuitively, if H3−i

is only moderately bad then a draw is possible but it is very unlikely

that H3−i will be declared winner.)

Proof. Let r = X(W1). The definition of the total variation distance implies

that |r−pi| ≤ ε′. Let us define independent indicators {Zj}mj=1 such that, for

all j, Zj = 1 iff sj ∈ W1. Clearly, τ = 1
m

∑m
j=1 Zj and E[τ ] = E[Zj] = r. Since

the Zj’s are mutually independent, it follows from the Chernoffbound that

Pr[|τ − r| ≥ ε′/2] ≤ 2e−mε
′2/2. Using |r − pi| ≤ ε′ we get that Pr[|τ − pi|] ≥

3ε′/2 ≤ 2e−mε
′2/2. Hence:

• For part (i): If dTV (X,H3−i) > 6ε′, from the triangle inequality we get

that p1− p2 = dTV (H1, H2) > 5ε′. Hence, the algorithm will go beyond

step 1, and with probability at least 1− 2e−mε
′2/2

, it will stop at step 3

(when i = 1) or step 4 (when i = 2), declaring Hi as the winner of the

competition between H1 and H2.

• For part (ii): If p1 − p2 ≤ 5ε′ then the competition declares a draw,

hence H3−i is not the winner. Otherwise we have p1− p2 > 5ε′ and the

above arguments imply that the competition between H1 and H2 will

declare H3−i as the winner with probability at most 2e−mε
′2/2

.

This concludes the proof of Claim 3. In view of Claim 3, the proof of Lemma

4.6 is concluded. Choose−Hypothesis algorithm implies a generic learning

algorithm of independent interest.

Lemma 4.7. . Let S be an arbitrary set of distributions over a finite domain.

Moreover, let Sn,ε ⊆ S be an ε-cover of S of size N , for some ε > 0. For all
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δ > 0, there is an algorithm that uses

O(ε−2logNlog(1/δ))

samples from an unknown distribution X ∈ S and, with probability at least

1− δ, outputs a distribution Z ∈ Sn,ε that satisfies dTV (X,Z) ≤ 6ε.

Proof. The algorithm performs a tournament, by running

Choose − HypothesisX(H1, H2, ε, δ/(4N)) for every pair (Hi, Hj), i < j, of

distributions in Sn,ε. Then it outputs any distribution Y∗ ∈ Sn,ε that was

never a loser (i.e., won or tied against all other distributions in the cover).

If no such distribution exists in Sn,ε then the algorithm says “failure”, and

outputs an arbitrary distribution from Sn,ε.

Since Sn,ε is an ε-cover of Sn, there exists some Y ∈ Sn,ε such that

dTV (X, Y ) ≤ ε. We first argue that with high probability this distribution

Y never loses a competition against any other Y ′ ∈ Sn,ε (so the algorithm

does not output “failure”). Consider any Y ′ ∈ Sn,ε. If dTV (X, Y ′) > 4ε, by

Claim 3(ii) the probability that Y loses to Y ′ is at most 2e−mε
′2/2 ≤ δ/2N .

On the other hand, if dTV (X, Y ′) ≤ 4ε, the triangle inequality gives that

dTV (Y, Y ′) ≤ 5ε and thus Y draws against Y ′. A union bound over all N − 1

distributions in Sn,ε − {Y } shows that with probability at least 1− δ/2, the

distribution Y never loses a competition.

We next argue that with probability at least 1 − δ/2, every distribution

Y ′ ∈ Sn,ε that never loses must be close to X. Fix a distribution Y ′ such

that dTV (X, Y ′) > 6ε. Claim 3(i) implies that Y ′ loses to Y with probability

at least 1 − 2e−mε
′2/2 ≥ 1 − δ/(2N). A union bound gives that with proba-

bility at least 1 − δ/2, every distribution Y ′ that has dTV (X, Y ′) > 6ε loses

some competition. Thus, with overall probability at least 1− δ, the tourna-

ment does not output “failure” and outputs some distribution Y ∗ such that

dTV (X, Y ∗) ≤ 6ε. This proves the lemma.
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Chapter 5

Differential Privacy on

Learning Algorithm

In this section we examine the differential privacy on Learning − PBD X

algorithm. We first give an overview of the algorithm so as to remember

and better understand its process. Then we will examine if the algorithm is

differential private.

The algorithm tries to predict a PBD X by gaining access to a sample of

the distribution. By theorem 3.3 we know that X will be ε-close to a sparse

form PBD Y or ε-close to a (n, k)-Binomial form. To compute the approx-

imation distribution, the algorithm performs 3 stages. In the first stage it

use Birge algorithm, as a subroutine, and outputs a hypothesis distribution

HS with the following guarantee: if X is ε-close to some sparse form PBD Y

then with probability 1 − δ the hypothesis distribution HS is ε-close the X,

dTV (X,HS) ≤ c1ε for some constant c1 ≥ 1. On stage 2 the algorithm outputs

a hypothesis distribution HP with the following guarantee: if X is not ε-close

to any sparse form PBD in the cover Sε′ the algorithm will output two esti-

mation parameters µ, σ such that HP = TP (µ, σ2) (where TP (µ, σ2) is the

translated Poisson distribution) and with probability at least 1− δ we have
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dTV (X,HS) ≤ c2ε for some constant c2 ≥ 1. Recall that from Theorem 3.3

X will be ε-close on a sparse PBD Y or on a (n, k)-heavy binomial form, thus

we expect that X will be ε-close to HS or HP . In stage 3 the algorithm will

decide in which of the two hypothesis distributions the PBD X is closer and

with high probability will output the specific distribution. At the end the al-

gorithm perform’s a Tournament: For every pair (Hi, Hj), i < j of hypothesis

distributions in the cover Sε it calculates the distance from the initial PBD

X and with high probability outputs the “closer” one. This decision is made

by running the subroutine Choose−HypothesisX . Choose−HypothesisX

compares the hypothesis distributions HP and HS with a sample of X and

decides which one is closer. With high probability the subroutine will export

the closest distribution.

As we mentioned above in this section we try to prove if and when the

Learn−PBD (we will refer to algorithm as (Learn(X)) hereafter) algorithm

is differential private. We will try to prove that with high probability, a

small change (by at most one entry) on algorithm’s input dataset will affect

negligible its output. More specific, assume two PBDsX = (p1, p2, ..., pn) and

X ′ = (p
′
1, p2, ..., pn) differ in only one entry (i.e. p1 6= p

′
1). Then with high

probability the algorithm’s output should remain ε-close. As stated above the

algorithm computes its output in 3 steps. Thus, to conclude its differential

privacy we have to ensure that in each step its output remain ε-close with high

probability for both datasets X and X ′. To this end we will first try to prove

that with high probability the Learn−SparseX algorithm outputs the same

hypothesis distribution HS for both X,X ′ datasets. The same idea applies

for the subroutines Learn− PoissonX and Choose−HypothesisX . Finally

we will also ensure that the Tournament performed at the end maintains the

privacy. The results are quite interesting. More specific we will see that if the

PBD X is close to a (n, k)-heavy binomial form then the algorithm becomes

differential private (the hypothesis distribution HP remains the same for

both X,X ′). However on case were X is close to a k-Sparse form the privacy

depends on m (where m the number of p
′
i 6= {0, 1} see Theorem 3.1). In our
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results we assume that the difference between the two PBDs X,X ′ datasets

is from 0 to 1 (i.e. p1 = 0 and p
′
1 = 1 which represents the worst case, the

highest mean difference).

We first try to define the difference between the two output hypothesis

distributions regarding the Learn − SparseX algorithm when X is close to

a k-Sparse form. More specific assume two PBD X and X ′ as above. The

subroutine Learn − SparseX will output two hypothesis distributions HS

and H
′
S ε-close to X and X ′. We must calculate the variation distance of

the latter. Observe that if we calculate the dTV (X,X ′) then by triangle

inequality we will obtain an upper bound:

dTV (HS, H
′

S) ≤ dTV (HS, X)+dTV (X,X ′)+dTV (X ′, H
′

S) ≤ 2c·ε+dTV (X,X ′).

We first prove that dTV (X,X ′) = P (X = t), where t = bµc and µ the mean

value of X. However, as an upper bound for P (X = t) is quite difficult we

will try to bound a relative probability P (Y = np) where Y is a binomial

distribution Bin(n, p) and np its mean.

Theorem 5.1. Assume X = (p1, p2, ..., pn) and X ′ = (p
′
1, p2, ..., pn) two

PBD differ in only one entry by 1 (i.e. p1 = 0 and p
′
1 = 1). Then

dTV (X,X ′) = P (X = t), where t = bµc and µ the mean value of X.

Proof. We first observe that if W1 = {0, 1, 2, ..., n} is the support of X then

W2 = {1, 2, ..., n + 1} will be the support of X ′ because of the change from

0 to 1 of the p1 probability. By the definition of PBD mass function we

observe that P (X = k) = P (X ′ = k + 1), for k = 0, .., n. Indeed, P (X =

k) =
∑

A∈Fk

∏
i∈A pi

∏
i∈Ac(1 − pi), where Fk is the set of all subsets of k

integers that can be selected from {1, 2, 3, ..., n}. Thus, if p1 = 0 or p1 = 1

these two probabilities do not contribute in the calculation of P (X = k) value

(they will give zero mass). Hence, considering that all others probabilities

are equal pi = p
′
i, i 6= 1 their mass functions will be exactly the same for each

value in their respective domains W1,W2. Thus,

P (X = k) = P (X ′ = k + 1), for k = 0, .., n. (5.1)
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Finally, also by PBD definition it is easy to observe that

P (X = k − 1) ≤ P (X = k) for k = 1, ..., bµc (5.2)

and

P (X = k) ≥ P (X = k + 1) for k = bµc, ..., n (5.3)

where µ the mean value of X.

Let W = W1 ∪W2, t = bµc, where µ =
∑

i pi the mean value of X (thus,

µ+ 1 the mean value of X ′), we prove that:

dTV (X,X ′) =
1

2

∑
w∈W

(|P (X = w)− P (X ′ = w)|)

=
1

2

∑
w∈W

(|P (X ′ = w + 1)− P (X ′ = w)|) from (5.1)

=
1

2
(|P (X ′ = 1)− P (X ′ = 0)|+ ...+ |P (X ′ = t+ 1)− P (X ′ = t)|

+|P (X ′ = t+ 2)− P (X ′ = t+ 1)|+ ...+ |P (X = n+ 1)− P (X ′ = n+ 1)|)

=
1

2
(P (X ′ = 1) + P (X ′ = 2)− P (X ′ = 1) + ...+ P (X ′ = t+ 1)− P (X ′ = t)

+P (X ′ = t+ 1)− P (X ′ = t+ 2) + ...+ P (X ′ = n+ 1)) from (5.2),(5.3)

= P (X ′ = t+ 1) = P (X = t).

As we discussed we will try to bound a relative probability P (Y = np).

Theorem 5.2. Assume Y a binomial distribution Bin(n, p) and np its mean.

We will show that P (Y = np) ≤ e
2π
· 1
√
n·
√
p(1−p)

Proof. We will first give a lemma which will help us to prove the theorem.

Lemma 5.3. Stirling’s Approximation

For all positive integers n the following inequality holds:

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n
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We now begin the proof of the theorem:

P (y = np) =

(
n

np

)
· pnp · (1− p)n−np =

n!

(np)!(n− np)!
· pnp · (1− p)n−np

≤ enn+ 1
2 e−n · pnp · (1− p)n−np

√
2π(np)np+

1
2 e−np

√
2π(n− np)(n−np)+ 1

2 e−(n−np)

=
enn√n·pnp·(1−p)n−np

en

2π(np)np√np(n−np)n−np
√
n−np

enpen−np

=
enn
√
n · pnp · (1− p)n−np

2πnnp · pnp · nn−np · (1− p)n−np
√
n2p− n2p2

=
e

2π
·

√
n

n
√
p(1− p)

=
e

2π
· 1
√
n
√
p(1− p)

Thus as we discussed the bound depends on distributions cardinality n

or equivalent by its variance as np(1− p) = σ2.

As a next step we will prove that with high probability the hypothesis

distributions output of the algorithm Learn− PoissonX between X and X ′

are ε-close.

Theorem 5.4. Let X,X ′ be two PBD of order n, differ in only one entry.

We can assume that the two distributions are of the form X = (p1, ..., pn),

X ′ = (p
′
1..., pn), and p1 = 0, p

′
1 = 1. We define µ = E[X], µ′ = E[X ′] and

σ2 = V ar[X], σ
′2 = V ar[X ′]. Let µ̂, µ̂′, σ̂2, σ̂

′2 be the estimated means and

variances of X,X ′ respectively produced by the algorithm. We will prove that

for all n, ε, δ > 0,

dTV (TP (µ̂, σ̂2), TP (µ̂′, σ̂
′2)) ≤ O(ε)

With probability at least (1− δ)2.
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Proof. As it has been described in subsection 4.1.2 the algorithm Learn −
PoissonX will output a translated Poisson distribution TP (µ̂, σ̂2) with pa-

rameters µ̂, σ̂2. Thus the algorithm will output two translated Poisson dis-

tributions TP (µ̂, σ̂2), TP (µ̂′, σ̂
′2), one for each X and X ′ respectively. For

those parameters µ, µ′, σ2, σ
′2 the properties: (4.1) and (4.2) from section

4.1.2 holds. Thus with probability at least 1− δ:

σ2, σ
′2 = Ω(1/ε

′2) ≥ θ2 (5.4)

|µ− µ̂| ≤ ε′σ, |σ2 − σ̂2| ≤ ε′σ2 (5.5)

|µ′ − µ̂′| ≤ ε′σ′, |σ′2 − σ̂′2| ≤ ε′σ
′2 (5.6)

We first bound the |µ−µ′| and |σ2−σ′2|. We prove that the distance between

the two mean values µ, µ′ is:

|µ− µ′| =

∣∣∣∣∣
n∑
i=1

pi −
n∑
i=2

pi + p
′

1

∣∣∣∣∣ =
∣∣∣(p1 − p

′

1)
∣∣∣ = 1.

When the distance between the two variances is

|σ − σ′| =

∣∣∣∣∣
n∑
i=1

(1− pi)pi −

(
n∑
i=1

(1− p′i)p
′

i

)∣∣∣∣∣ =

=

∣∣∣∣∣
n∑
i=2

(1− pi)pi −

(
n∑
i=2

(1− p′i)p
′

i

)∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=2

(1− pi)pi −

(
n∑
i=2

(1− pi)pi

)∣∣∣∣∣ = 0.

Thus

|µ̂− µ̂′| ≤ |µ̂− µ|+ |µ− µ′|+ |µ′ − µ̂′| ≤ ε′ · σ + ε′ · σ′ + 1

= ε′ · (σ + σ′) + 1 = 2ε′ · σ + 1.

and

|σ̂2 − σ̂′2| ≤ |σ̂2 − σ2|+ |σ2 − σ′2|+ |σ′2 − σ̂′2| ≤ ε · σ2 + ε · σ′2
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= 2ε′ · σ2

With probability at least (1− δ)2.

We then bound the total variation distance between the two translated

Poisson distributions:

dTV (TP (µ̂, σ̂2), TP (µ̂′, σ̂
′2)) ≤ |µ̂− µ̂′|

min(σ̂, σ̂′)
+
|σ̂2 − σ̂′2|+ 1

min(σ̂2, σ̂′2)

≤ 2ε′σ̂ + 1

σ
+

2ε′σ̂2 + 5/4

σ2

≤ 2ε′σ̂ + 1

σ/
√

1− ε
+

2ε′σ̂2 + 5/4

σ2/(1− ε)

= O(ε) +O(ε2)

= O(ε).

Hence the output of the Learn− PoissonX algorithm for both X and X ′ is

ε-close.

As a last step it remains to show that the Tournament with high prob-

ability will output the “right” hypothesis distributions. As we saw the sub-

routines Learn−SparseX and Learn−PoissonX will output two hypothesis

distributions HS, HP close to the initial distribution X. The same will ap-

ply for the PBD X ′, obtaining H
′
S, H

′
P . The algorithm in his last step will

perform a competition between the two candidates hypothesis distributions

(HS, HP for X and H
′
S, H

′
P for X ′) and with hight probability (1− 2e−mε

2/2)

will output the closest one. Thus, for both X,X ′ the Choose−HypothesisX

subroutine will output the closest distributions (in respect to X and X ′) with

probability at least (1− 2e−mε
2/2)2.

As a last step we run the Choose−HypothesisX algorithm for every pairs

(Hi, Hj), i < j of distributions in Sε. Then it output, with high probability

(at least 1− δ) a distribution Z ∈ Sε that was never a looser and with total

variation at most 6ε i.e. dTV (X,Z) ≤ 6ε. Thus, we must show that the

59



Tournament will keep “close” its output with high probability for both X

and X ′.

Lemma 5.5. Let X = (p1, p2, ..., pn) and X ′ = (p
′
1, p2, ..., pn) be two PBDs

differ in only one entry by 1 (i.e. p1 = 0, p
′
1 = 1). Let also Z and Z ′ be

the two outputs of the Tournament for X and X ′ respectively. Then with

probability (1 − δ)2 their variation distance will be dTV (Z,Z ′) ≤ 12ε + d,

where d = dTV (X,X ′).

Proof. The proof is simply as it comes directly from the triangle inequality.

With probability at least 1−δ the Tournament (for X) will output a distribu-

tion Z such that dTV (X,Z) ≤ 6ε. The same holds for X ′. The Tournament

will output a distribution Z ′ such that dTV (X ′, Z ′) ≤ 6ε.

Then from the triangle inequality:

dTV (Z,Z ′) ≤ dTV (Z,X) + dTV (X,X ′) + dTV (X ′, Z ′)

≤ 6ε+ d+ 6ε

= 12ε+ d,

with probability at least (1− δ)2.

As we show the Tournament will output with high probability two dis-

tributions Z,Z ′ which are 12ε + d close. The variation distance d of X,X ′

depends on the nature of the PBD distributions X and X ′. If X and X ′

are close to a k-Sparse form then their variation distance depends on their

cardinality n. If X,X ′ are close to a (n, k)-Binomial form then their distance

remains ε-close. The following section gives a brief description of our results.
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Chapter 6

Conclusions \ Next Steps

As we show the algorithm Lean Poisson Binomial Distribution performs dif-

ferential privacy with respect to the following conditions:

• If the PBD X is close to a (n, k)-Binomial Form then the algorithm is

differential private

• On case where X is close to a k-Sparse form the property of differential

privacy depends on the PBD cardinality

As next steps the following may be considered:

• Give a lower variation distance bound so as to show if the algorithm is

optimal (by its construction) regarding its Differential Privacy property.

• Provide a better bound regarding P (X = t) theorem’s 5.1 output

• Add noise on Algorithm’s subroutine Learn− Sparse to maintain pri-

vacy for sparse cardinality
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