
ΕΘΝΙΚΟ KΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΛΟΓΙΚΗΣ ΚΑΙ ΑΛΓΟΡΙΘΜΩΝ

Implementing Approximate Voronoi Diagrams

for Approximate Nearest Neighbor Searching

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Αλέξανδρου Κωνσταντινάκη - Κάρμη

ΑΜ 201010

Επιβλέπων: Ιωάννης Εμίρης

Καθηγητής Ε.Κ.Π.Α.

Αθήνα, Αύγουστος 2012

...................................

Copyright © Αλέξανδρου Κωνσταντινάκη - Κάρμη, 2012.

Με επιφύλαξη παντός δικαιώματος. All rights reserved .

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται

η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση

της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα

και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Καποδιστριακού

Πανεπιστημίου Αθηνών.

Περίληψη

Η αναζήτηση πλησιέστερου γείτονα είναι ένα θεμελιώδες πρόβλημα στην Επιστήμη των Υπολογι-

στών. Ένα άπο τα κύρια θεωρητικά ζητήματα ειναι η εξισορρόπηση του χρόνου που απαιτείται

για να απαντήσει η δομή σε ερωτήματα και η χωρική πολυπλοκότητά της: η πρόσφατη μελέτη

στο Προσεγγιστικό Διάγραμμα Voronoi(AVD) οδηγεί σε βέλτιστο χρόνο ερωτήματος δίνοντας

τη δυνατότητα στο χρήστη να επιλέξει μεταξύ λιγότερου χώρου ή γρηγορότερου χρόνου

ερωτήματος. Η βασική ιδέα είναι να χωριστεί ο χώρος γύρω από τα σημεία εισόδου και

να γίνει χρήση κουτιών διαφόρων μεγεθών για να καλυφθεί. Σε κάθε κουτί αποδίδουμε ένα

υποσύνολο των σημείων εισόδου, τα οποία ειναι υποψήφιοι ε - προσεγγιστικοί πλησιέστεροι

γείτονες για κάθε σημείο σε αυτό το κουτί. Η υλοποίηση του AVD είναι ένα δύσκολο έργο που

δεν έχει υλοποιηθεί ώστε να δέχεται τη διάσταση d των σημείων ως είσοδο. Προσφέρουμε

μια αποτελεσματική, παράλληλη εφαρμογή που κατασκευάζει το AVD, προσφέροντας ιδέες

τροποποίησης του αλγορίθμου έτσι ώστε να καθίσταται η κατασκευή εφικτή. Στα πειραματικά

μας αποτελέσματα δείχνουμε ότι τα η δομή μασ απαντά πιο γρήγορα και με μεγαλύτερη ακρίβεια

σε σχέση με την καλυτερη υλοποίηση KD tree σε μικρές διαστάσεις.

Λέξεις Κλειδιά:

Προσεγγιστικός Πλησιέστερος Γείτονας, Προσεγγιστικό Διάγραμμα Voronoi, βέλτιστος χρόνος

ερωτήματος, KD/BBD tree, Quadtree

Abstract

Nearest neighbor searching is a fundamental problem in computer science. One of the main theoretical

issues is to balance query time and space complexity: the recent Approximate Voronoi Diagram (AVD)

[3] leads to optimal query time while making the tradeoff with space usage explicit. The key idea is

to cluster the space around the input points and use boxes of varying size to cover it. Each cluster is

assigned a subset of the points, which are candidate ε-approximate nearest neighbors to every point in

that cluster. However, the implementation of AVD has been a daunting task and was never completed.

We offer the first, efficient, parallel implementation of the AVD which accepts dimension as input and

introduce certain ideas and modifications that make the construction feasible. In our experimental

results, we show that our data structure is much faster and more accurate than a standard KD-tree in

low dimensions.

Keywords:

Approximate Nearest Neighbor, Approximate Voronoi Diagram, optimal query time, KD/BBD tree,

Quadtree

Contents

1 Introduction 5

1.1 Previous Work . 5

1.2 Our Contribution . 6

2 KD and BBD tree 7

2.1 KD tree . 7

2.1.1 Construction . 7

2.1.2 Adding elements . 9

2.1.3 Removing elements . 9

2.1.4 Nearest neighbour search . 9

2.2 BBD tree . 10

2.2.1 Construction . 11

2.2.2 Nearest neighbour search . 12

2.2.3 Comparison with KD tree . 13

3 The Main Algorithm 14

3.1 Step 1: Preprocessing the input points . 14

3.2 Step 2: WSPD . 14

3.3 Step 3: Finding the overlapping quadtree boxes 15

3.3.1 Step 3’ . 16

3.4 Step 4: Deciding the representatives . 16

4 Our Variant 17

4.1 Quadtree boxes that cover a sphere . 17

4.2 Dealing with space requirements . 18

4.2.1 Method B: Keep Step 3 and 4 separate 20

3

5 Our Implementation 21

5.1 Method A . 21

5.2 Method B . 22

6 Code Snippets 24

7 Experimental Results 29

7.0.1 Method A . 30

7.0.2 Method A’ . 30

7.0.3 Method B . 31

7.0.4 Method Summary . 32

8 Conclusion 33

9 Appendix 35

4

Chapter 1

Introduction

Nearest neighbor searching (NNS) is a fundamental problem in computer science with several important

applications, including machine learning, geometric inference and high-dimensional optimization. The

problem can be formulated in the following way: Given a point set S in d dimensions and a query

point q, we want to efficiently calculate its nearest point s ∈ S, for which dist(s, q) is minimum, using
some distance function (Euclidean, Manhattan etc.). In the approximate version of the problem, an

approximation factor ε is also part of the input and the answer s′ is allowed to be at most ε times

further away than the real nearest neighbor s, that is dist(s′, q) ≤ (1 + ε) · dist(s, q).

1.1 Previous Work

Research is concentrated on preprocessing the points into a data structure that allows for fast query

time. We focus on solutions that work well for small dimensions (≤ 10), therefore we omit methods

such as Locality Sensitive Hashing [12] or FLANN [14] [13] which are aimed at high dimensions.

The principal complexity issues are to determine the query time and space. The traditional Voronoi

Diagram has space complexity O(n⌈d/2⌉) and query time O(d logn), where n = |S|. J. L. Bentley

described the KD tree in [5], a data structure which was subsequently improved upon by many

researchers. At its core, it is a binary tree where every inner node can be thought of as a splitting

hyperplane that divides space into two along some axis. Construction time is O(dn logn) and the

required space is O(n) . A second important result came with the BBD tree by Arya, Mount et al.

[4]. It is a variation of the KD tree that uses an extra shrink operation that achieves query time

O(logn + 1/εd−1). An advanced implementation of the KD and BBD tree is found in the ANN

library ¹, constructed by Mount et al.

A conscious effort has been made to remove dependencies on ε in query time. T.M.Chan [7] and

K.L.Clarkson [8] had positive results in this direction. Har-Peled in [11] proposes a faster algorithm

that constructs a balanced quadtree-like structure. Each cell of this subdivision stores a representative

point of S, which is an ε-nearest neighbor of any query point in the cell. Using this Approximate

¹http://www.cs.umd.edu/∼mount/ANN/

5

6 CHAPTER 1. INTRODUCTION

Voronoi Diagram (AVD) to answer queries, we only need to point-locate the particular cell by descending

the tree. This structure answers queries in O(log(n/ε)) with space O((n/ed)(logn) log(n/ε)). It

is evident that we get a much faster query time at the expense of a much bigger data structure.

This work was improved by Arya, Malamatos and Mount in [1] [2] [3]. A new trade-off parameter,

γ ∈ [2, 1ε) is defined in their work.

At one extreme (γ = 2) it provides time and space

Time: O(logn+ 1/ε(d−1)/2)
Space: O(n log(1/ε))

At the other extreme (γ = 1/ε) it provides time and space

Time: O(log(n/ε))
Space: O((n/εd−1) log(1/ε))

The key difference to Har-Peled’s work is the addition of the new t parameter; each leaf is allowed

at most t representatives. It is important to note that the complexities mentioned above assume that

the dimension d is a constant.

1.2 Our Contribution

Our work is focused on implementing this last algorithm by Arya, Malamatos and Mount [3] and

researching its potential as a practical approach to calculating approximate nearest neighbors in low

dimensions. Our main result is that we are able to construct a data structure which answers queries

faster and more exact compared to the fastest KD tree implementation for dimensions 3-5. Construction

time and memory consumption are much greater than for KD trees but remain manageable for modern

computers.

The rest of this thesis is organized as follows: in Chapter 2 we present the KD and BBD tree

and in Chapter 3 we will briefly describe the Arya, Malamatos and Mount algorithm [3]. In Chapter

4 we describe the changes we made to make the memory consumption of the algorithm feasible. In

Chapter 5 we briefly describe our implementation, in Chapter 6 we present interesting code snippets

and in Chapter 7 we present our experimental results.

Chapter 2

KD and BBD tree

2.1 KD tree

The KD tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in

a k-dimensional space. It is a binary tree in which every non-leaf node can be thought of as implicitly

generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to

the left of this hyperplane represent the left subtree of that node and points right of the hyperplane

are represented by the right subtree. The hyperplane direction is chosen in the following way: every

node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that

dimension’s axis. So, for example, if for a particular split the ”x” axis is chosen, all points in the subtree

with a smaller ”x” value than the node will appear in the left subtree and all points with larger ”x”

value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the

point, and its normal would be the unit x-axis.

2.1.1 Construction

Since there are many possible ways to choose axis-aligned splitting planes, there are many different ways

to construct k-d trees. The canonical method of k-d tree construction has the following constraints:

As one moves down the tree, one cycles through the axes used to select the splitting planes.

(For example, in a 3-dimensional tree, the root would have an x-aligned plane, the root’s children

would both have y-aligned planes, the root’s grandchildren would all have z-aligned planes, the root’s

great-grandchildren would all have x-aligned planes, the root’s great-great-grandchildren would all have

y-aligned planes, and so on.)

Points are inserted by using a way to choose axis-aligned splitting planes. (Note the assumption

that we feed the entire set of n points into the algorithm up-front.)

Here is a list of different ways to choose the axis-aligned splitting plane:

• standard kd-tree splitting rule The splitting dimension is the dimension of the maximum spread

7

8 CHAPTER 2. KD AND BBD TREE

of S. The splitting point is the median of the coordinates of S along this dimension. A median

partition of the points S is then performed. This rule guarantees that the final tree has height

dlog2 ne, and size O(n), but the resulting cells may have arbitrarily high aspect ratio.

• midpoint splitting rule This is a simple splitting rule, which guarantees that cells have bounded

aspect ratio, and is called the midpoint splitting rule. It simply cuts the current cell through its

midpoint orthogonal to its longest side. It can be seen as a binary variant of a quad tree, since

with every d levels of the tree, a hypercube of side length x is partitioned into equal hypercubes

of side length x=2 each. If there are ties, it selects the dimension with the maximum point

spread. This rule can produce trivial splits, meaning that all of the points of S lie to one side

of the splitting plane. As a result, the depth of and size of the resulting tree can be arbitrarily

large, and both may even exceed n if the points are highly clustered.

• sliding midpoint splitting rule This is a simple modification of the midpoint splitting rule. It

first attempts to perform a midpoint split, by the same method described above. If points of

S lie on both sides of the splitting plane then the algorithm acts exactly as it would for the

midpoint split. However, if a trivial split were to result, then it attempts to avoid this by sliding

the splitting plane toward the points until it encounters the first data point. More formally, if the

split is performed orthogonal to the ith coordinate, and all the points of S have i-coordinates

that are larger than that of the splitting plane, then the splitting plane is translated so that its ith

coordinate equals the minimum ith coordinate among all the points of S. Let this point be p1.

Then the points are partitioned with p1 in one part of the partition, and all the other points of

S in the other part. A symmetrical rule is applied if the points all have ith coordinates smaller

than the splitting plane. This rule cannot result in any trivial splits, implying that the tree has

maximum depth n and size O(n). It is possible to generate a cell C of very high aspect ratio,

but it can be shown that if it does, then C is necessarily adjacent to a sibling cell C0 that is

fat along the same dimension that C is skinny. It turns out that cells of high aspect ratio are

not problematic for nearest neighbor searching if this occurs.

• fair splitting rule This is a compromise between the standard kd-tree splitting rule (which always

splits data points at their median) and the midpoint splitting rule (which always splits a box

through its center. It is called the fair-split rule. The goal of this rule is to achieve as nicely

balanced a partition as possible, provided that the aspect ratio bound is never violated. Given a

cell, it first determines the sides of this cell that can be split in some way so that the ratio of

the longest to shortest side does not exceed some predefined ASPECT RATIO. Among these

sides, it selects the one in which the points have the largest spread. It then splits the points in

the most even manner possible, subject to maintaining the bound on the ratio of the resulting

cells. To determine that the aspect ratio will be preserved, we determine the longest side (other

than this side), and determine how narrowly we can cut this side, without causing the aspect

ratio bound to be exceeded. This procedure is more robust than either the kd-tree splitting

rule or the pure midpoint splitting rule when data points are highly clustered. However, like the

midpoint splitting rule, if points are highly clustered, it may generate a large number of trivial

splits, and may generate trees whose size exceeds O(n).

• sliding fair splitting rule This is a splitting rule that is designed to combine the strengths of

2.1. KD TREE 9

both fair-split with sliding midpoint split. Sliding fair-split is based on the theory that there are

two types of splits that are good: balanced splits that produce fat boxes, and unbalanced splits

provided the cell with fewer points is fat.

This splitting rule operates by first computing the longest side of the current bounding box.

Then it asks which sides could be split and still satisfy the aspect ratio bound with respect to

this side. Among these, it selects the side with the largest spread (just as fair-split would). It

then considers the most extreme cuts that would be allowed by the aspect ratio bound. This is

done by dividing the longest side of the box by the aspect ratio bound. If the median cut lies

between these extreme cuts, then we use the median cut. If not, then consider the extreme

cut that is closer to the median. If all the points lie to one side of this cut, then we slide the

cut until it hits the first point. This may violate the aspect ratio bound, but will never generate

empty cells. However the sibling of every such skinny cell is fat, as with sliding midpoint split.

2.1.2 Adding elements

One adds a new point to a KD tree in the same way as one adds an element to any other search

tree. First, traverse the tree, starting from the root and moving to either the left or the right child

depending on whether the point to be inserted is on the ”left” or ”right” side of the splitting plane.

Once you get to the node under which the child should be located, add the new point as either

the left or right child of the leaf node, again depending on which side of the node’s splitting plane

contains the new node.

Adding points in this manner can cause the tree to become unbalanced, leading to decreased

tree performance. The rate of tree performance degradation is dependent upon the spatial distribution

of tree points being added, and the number of points added in relation to the tree size. If a tree

becomes too unbalanced, it may need to be re-balanced to restore the performance of queries that

rely on the tree balancing, such as nearest neighbour searching.

2.1.3 Removing elements

To remove a point from an existing k-d tree, without breaking the invariant, the easiest way is to form

the set of all nodes and leaves from the children of the target node, and recreate that part of the tree.

2.1.4 Nearest neighbour search

The nearest neighbour search (NN) algorithm aims to find the point in the tree that is nearest to a

given input point. This search can be done efficiently by using the tree properties to quickly eliminate

large portions of the search space.

Searching for a nearest neighbour in a k-d tree proceeds as follows:

Starting with the root node, the algorithm moves down the tree recursively, in the same way that

it would if the search point were being inserted (i.e. it goes left or right depending on whether the

point is less than or greater than the current node in the split dimension). Once the algorithm reaches

10 CHAPTER 2. KD AND BBD TREE

a leaf node, it saves that node point as the ”current best” The algorithm unwinds the recursion of the

tree, performing the following steps at each node: If the current node is closer than the current best,

then it becomes the current best. The algorithm checks whether there could be any points on the

other side of the splitting plane that are closer to the search point than the current best. In concept,

this is done by intersecting the splitting hyperplane with a hypersphere around the search point that

has a radius equal to the current nearest distance. Since the hyperplanes are all axis-aligned this is

implemented as a simple comparison to see whether the difference between the splitting coordinate

of the search point and current node is less than the distance (overall coordinates) from the search

point to the current best. If the hypersphere crosses the plane, there could be nearer points on the

other side of the plane, so the algorithm must move down the other branch of the tree from the

current node looking for closer points, following the same recursive process as the entire search. If

the hypersphere doesn’t intersect the splitting plane, then the algorithm continues walking up the tree,

and the entire branch on the other side of that node is eliminated. When the algorithm finishes this

process for the root node, then the search is complete. Generally the algorithm uses squared distances

for comparison to avoid computing square roots. Additionally, it can save computation by holding the

squared current best distance in a variable for comparison.

Finding the nearest point is an O(log N) operation in the case of randomly distributed points.

Analyses of binary search trees has found that the worst case search time for a k-dimensional KD tree

containing N nodes is given by the following equation.

In very high dimensional spaces, the curse of dimensionality causes the algorithm to need to visit

many more branches than in lower dimensional spaces. In particular, when the number of points is

only slightly higher than the number of dimensions, the algorithm is only slightly better than a linear

search of all of the points.

The algorithm can be extended in several ways by simple modifications. It can provide the

k-Nearest Neighbours to a point by maintaining k current bests instead of just one. Branches are only

eliminated when they can’t have points closer than any of the k current bests.

It can also be converted to an approximation algorithm to run faster. For example, approximate

nearest neighbour searching can be achieved by simply setting an upper bound on the number points

to examine in the tree, or by interrupting the search process based upon a real time clock (which may

be more appropriate in hardware implementations). Nearest neighbour for points that are in the tree

already can be achieved by not updating the refinement for nodes that give zero distance as the result,

this has the downside of discarding points that are not unique, but are co-located with the original

search point.

2.2 BBD tree

The BBD tree improves upon the KD tree. It is based on a hierarchical decomposition of space. The

tree has guaranteed height O(logn) and subdivides space into regions of O(d) complexity defined by

axis-aligned hyperrectangles that are fat, that is the ratio between longest and shortest side is bounded.

Space is recursively subdivided into a collection of cells, each of which is either a d-dimensional
rectangle or the set-theoretic difference of two rectangles, one enclosed within the other. Each node of

2.2. BBD TREE 11

the tree is associated with a cell and hence it is implicitlye associated with the set of data points lying

within this cell. Each leaf cell is associated with the set of data points lying within this cell. Each leaf

cell is associated with the a single point lying within the bounding rectangle for the cell. The leaves

of the tree define a subdivision of space. The tree has O(n) nodes and can be built in O(dn logn)
time. Query time depends on a constant cd,ε ≤ d⌈1 + 6d/ε⌉d and is O(cd,e logn) for single query

points.

2.2.1 Construction

The BBD tree is constructed through the repeated application of two operation: splits (like in KD tree)

and shrinks (unique to the BBD tree). These are two different ways to divide a cell into smaller cells

(children). A split partitions the cell along an axis-orthogonal hyperplane.A shrink partitions a cell into

disjoin subcells, but uses a box rather than a hyperplane to do the splitting. For both operations, the

following invariants hold:

• All boxes satisfy an aspect ratio bound (no box is either too thin or fat)

• If the parent has an inner box, then this box lies entirely within one of the two children. If the

operation is a shrink, then this inner box lies within the inner child of the shrink.

• Inner boxes are sticky for their enclosing outer boxes, that is each of their faces is either

sufficiently far from or else touching the outer box’s corresponding face.

It is important to note that when only splits are performed, it is not possible to guarantee that the

points are evenly distributed. This is remedied using shrinks. Note that a split is really a special case

of shrink, where the shrinking box has 2d − 1 sides in common with the outer box. There are two

reasons for making the distinction. The first is that splitting will be necessary for technical reasons in

maintaining the above inariants. The other reason is largely practical. Determining whether a point lies

within a shrinking box requires 2d comparions in general. On the other hand, determining the side of

a pliting hyperplane on which a point lies requires only one comparison. This provides huge savings

when dimension increases. The BBD tree is constructed through a combination of split and shrink

operations We begin with a set S of n data points in Rd. Let C denote a hypercube containing

all the points in S. The root of the BBD tree is a node whose associated cell is C and whose

associated set is the entire set S. The recursive construction algorithm is given a cell and a subset

of data points associated with this cell. Each stage of the algorithm determines how to subdivide the

current cell either through splitting or shrinking and then partitions the points among the child nodes.

This is repeated until the number of associated points is at most one (or more, according to bucket

size), upon which the node is made a leaf of the tree.

Given a node with more than one data points, we first consider the question of whether we should

apply splitting or shrinking. As mentioned before, splitting is preferred because it is simpler, but can’t

guarantee that the final tree is balanced. A simple strategy is to apply splits and shrinks alternately.

Experience shows that good results can be obtained when shrinking is only occasionally performed.

As with splits, there are various ways we can perform shrinks:

12 CHAPTER 2. KD AND BBD TREE

• BD Simple: This is called a simple shrink. It depends on two constants: BDGAPTHRESH
whose value is 0.5, and BDCTTHRESH whose value is 2. It first computes the tight

bounding box of the points, and computes the 2d gaps, that is, the distances between each

side of the tight enclosing rectangle for the data points R(S) and the corresponding side of the

cell’s bounding rectangle R(C). If at least BDCTTHRESH of the gaps are larger than the

length the longest side of R(S) times BDGAPTHRESH , then it shrinks all sides whose

gaps are at least this large. After the shrink has been performed, all of the points of S lie in

the inner box of the shrink, and the outer box contains no points. If none of the gaps is large

enough, then no shrinking is performed, and splitting is performed instead.

• BD Centroid: This rule is called a centroid shrink. Its operation depends on two constants:

BDMAXSPLITFAC and BDFRACTION , both of whose value are 0.5. It repeatedly

applies the current splitting rule (without actually generating new cells in the tree). In each

case we see which half of the partition contains the larger number of points, and we repeat

the splitting on this part. This is repeated until the number of points falls below a fraction of

BDFRACTION of the original size of S. If it takes more than dim·BDMAXSPLITFAC
splits for this to happen, then we shrink to the inner box. All the other points of S are placed

in the outer box. Otherwise, shrinking is not performed, and splitting is performed instead.

2.2.2 Nearest neighbour search

Given the query point q, we begin by locating the leaf cell containing the query point in O(logn) time
by a simple descent through the tree. Next, we begin enumerating the leaf cells in increasing order of

distance from the query point. We call this priority search. When a cell is visited, the distance from

q to the point associated with this cell is computed. We keep track of the closest point seen so far.

Let p denote the closest point seen so far. As soon as the distance from q to the current leaf

cell exceeds dist(q, p)/(1+ε), it follows that the search can be terminated, and p can be reported as

an approxiamte nearest neighbor to q. The reason is that any point located in a subsequently visited

cell cannot be close enough to q to violate p’s claim to be an approximate nearest neighbor. It can

be shown that, by using an auxiliary heap, priority search can be performed in time O(d · logn) times

the number of leaf cells that are visited.

The number of cells visited in the search depends on d and ε, but not on n. Consider the last

leaf to be visited that did not cause the algorithm to terminate. If we let r denote the distance from

q to this cell, and let p denote the closest data point encountered so far, then because we do not

terminate, we know that the distance from q to p is at least r · (1 + ε). We could not have seen

a leaf cell of diameter less than r · ε up to now, since the associated data point would necessarily

be closer to q than p. This provides a lower bound on the sizes of the leaf cells seen. The fact

that the cells are fat and a simple packing argument provide an upper bound on the number of cells

encountered.

It is easy to extend this algorithm to enumerate data points in ”approximately” increasing distance

from the query point. In particular, we will show that a simple generalization to this search strategy

allows us to enumerate a sequence of k approximate nearest neighbors of q in additional O(k ·d· logn)

2.2. BBD TREE 13

time. We will also show that, as a consequence, the data structure can be generalied to handle point

insertions and deletions in O(logn) time per update.

2.2.3 Comparison with KD tree

The empirical running times on most kinds of distributions suggest that there is little or no significant

practical advantage to using the BBD tree over the KD tree. Indeed, a KD tree, enhanced with many of

the recent improvements (allowing approximation errors, incremental distance calculations, and priority

search) is a very good data structure for nearest neighbor searching on most data sets. However, it

can perform very badly in some circumstances, especially when the data distribution is clustered in

low-dimensional subspaces, as in the clustered segments distribution. Low-dimensional clustering is

not uncommon in practice. An inspection of some of the other program statistics (not shown here)

explains why. For this distribution, the KD tree produced a large number of cells with very high aspect

ratios. Because the optimized KD tree cuts along the dimension of greatest spread, it can produce

cells that are very skinny along the dimensions in which the data are well distributed, and very long

in the remaining dimensions. These skinny cells violate the packing constraint, which is critical to our

analysis. If the query point distribution differs from the data point distribution, then many such skinny

cells may be visited by the search. This is why uniformly distributed query points were chosen. In

contrast, we could have forced bounded aspect ratios by using the midpoint splitting rule, but by not

allowing shrinking. The result is a sort of binary form of a quadtree. For highly clustered distributions,

like clustered segments, this results in trees that are at least an order of magnitude larger than the

BBD tree in both size and depth. Both variants of BBD trees took advantage of shrinking to produce

reasonably small trees with cells of bounded aspect ratio. The running times are significantly better

than those for the KD tree for this distribution.

Chapter 3

The Main Algorithm

We will first present the algorithm by Arya, Malamatos and Mount [3] succintly.

Given a point set S ⊆ Rd consisting of n points, an approximation factor ε ∈ (0, 0.5] and an

integer t ≥ 1 then the (t,ε) approximate Voronoi Diagram is a subdivision of space into cells such

that each cell w is associated with a subset of at most t points from S , called representatives. The

representatives are candidate ε − approximate nearest neighbors to any point q ∈ w and at least

one of them is guaranteed to be an ε− approximate nearest neighbor of q ∈ S. We also define

a space-time tradeoff parameter γ ∈ [2, 1ε].

3.1 Step 1: Preprocessing the input points

The algorithm assumes that all points are scaled and translated to lie within a sphere of radius ε
11

centered inside the unit hypercube [0, 1]d. This ensures that any point p ∈ S is an ε−approximate
nearest neighbor to a query point that falls outside the unit hypercube. We are going to focus on

answering queries that fall inside the unit hypercube.

3.2 Step 2: WSPD

Our goal is to subdivide the unit hypercube into quadtree boxes which represent the AVD cells.

These cells store no geometric information but are instead a rasterization of the traditional Voronoi

Diagram. Naturally the cells need to be smaller in areas that fall near the bisector of the line segment

that connects 2 input points, whereas they can be larger around individual points. To obtain this

classification, we use the algorithm by Callahan and Kosaraju [6]. See Fig. 9.1 for an example.

D: Given a set of n points S ∈ Rd and two subsets X, Y from S we are going to call

(X,Y) a well separated pair if X, Y can be enclosed in d-dimensional balls so that the distance of the

centers of the two balls is at least σr where σ is an arbitrary number called the separation factor

and r = max(rX , rY). For our application, σ = 4 is proved to be the minimum value that still

14

3.3. STEP 3: FINDING THE OVERLAPPING QUADTREE BOXES 15

holds the desired properties. D: A Well Separated Pair Decomposition (WSPD) of S is the

set PS,σ = {(X1, Y1), . . . , (Xm, Ym)} of pairs of subsets of S such that

1. ∀i ∈ [1,m], Xi and Yi are well separated.

2. ∀x, y with x ̸= y (∃i)[(x ∈ Xi ∧ y ∈ Yi) ∨ (x ∈ Yi ∧ y ∈ Xi)].

Notice that 2 single points are always well separated. The process calculates a number of dumbells,

so called because joining each pair of balls with a line resembles that shape. The time complexity is

O(n logn+σdn) and produces O(σdn) dumbells. Notice that for a fixed dimension d the number of

dumbells is linear, whereas the geometric Voronoi Diagram needs to consider
(
n
2

)
= n!

2!(n−2)! = O(n2)
pairs. The process of computing the set of dumbells demands the construction of a Fair Split Tree

(FST). According to [6], there are two algorithms to construct the tree, a simple one that is quadratic

in the worst case and a more complicated one that runs in nlogn. Once the FST is available, the

computation of the pairs takes time O(σdn) and produces O(σdn) pairs.

3.3 Step 3: Finding the overlapping quadtree boxes

We will use this list of dumbells to construct a tree structure consisting of quadtree boxes in d
dimensions. A quadtree box is defined recursively to be either the unit hypercube or a hypercube

obtained by splitting any quadtree box into 2d equal parts. The size of a quadtree box is the length

of its edge. The leaves of this tree structure are the cells of the AVD. We produce the quadtree

boxes: For each dumbell we denote the midpoint of the line segment that connects the centers of

the two enclosing spheres with z and its length with l. We draw a number of concentric spheres

centered on z with radius ri = 2il where i ∈ [0, log(1ε)] and for each such circle we find all the

overlaping quadtree boxes of side
ri
c2γ

with c2 ≥ 20d. Notice that the ratio of circle radius to square

side remains constant. In the original paper there is a proof that dictates that this specific size should

be used for boxes. See Fig. 9.3 for an example of a quadtree.

Each such quadtree box is inserted in a BBD tree like structure. This is going to be the final

structure on which queries will be performed. A quadtree box can be implicitly represented in such a

tree by inserting the coordinates of its 2d vertices. Notice that this tree structure simplifies our query

stage: we just need to go down the tree to determine which leaf contains our query point. Our final

construction stage is to determine a number of representatives for each leaf. The final stage of the

query process is thus to check the distance of the query point to all representatives of the leaf and

return the nearest one.

To determine the construction time of this step, we need to calculate the number of quadtree boxes

and their insertion time in the BBD tree. If d is considered a constant, then there are O(n) dumbells

from WSPD. The ratio of volumes of a sphere to a cube is O(γd). We make about log(1/ε) circles

per dumbell. By multiplying these three results we deduce that the number of quadtree boxes is

O(nγd log(1/ε)). The BBD tree ensures an insertion time of O(n logn) with O(n) nodes. So the

construction time for this stage is O(m logm) where m = nγd log(1/ε) with O(m) nodes.

16 CHAPTER 3. THE MAIN ALGORITHM

3.3.1 Step 3’

There is also a faster alternative which calls for inserting just the boxes that overlap the hyperplane

of the bisector of the line instead of the whole sphere. This reduces the number of boxes to

O(nγd−1 log(1/ε)).

3.4 Step 4: Deciding the representatives

For each leaf of the tree structure we need to calculate t = 1

(γε)
d−1
2

representatives, that is a subset

of input points who are candidate ε-ANN for any query point that falls inside the particular cell. To

determine the subset, we calculate random helper points on a circle centered on the center of the

box and of radius find the NN of a number of random helper points that lie on a circle around the

particular quadtree. In case there are input points inside this circle, then one of them is added to the

list of representatives. Notice that for ε = 1
2 , only one representative per leaf needs to be calculated.

Chapter 4

Our Variant

We define a number of abbreviations:

1. d denotes the dimension we are working in.

2. r is the maximum number of representatives a leaf is allowed to have.

4.1 Quadtree boxes that cover a sphere

Our initial task is to implement the algorithm as described in the previous section by filling in the

missing details. This mainly involves finding a way to calculate the quadtree boxes that overlap a

d-dimensional sphere.

To this end we use an algorithm from graphics, the Bresenham Midpoint Circle algorithm [15].

This rasterization algorithm was originally used to calculate the pixels that need to be colored to

produce the circumference of a circle on screen. It doesn’t require expensive angle calculations, but

instead uses integer arithmetic to produce 1/8th of a circle. The rest of the circumference is created

by mirroring the coordinates of each pixel. See Fig. 9.4.

For example, in order to draw the circle x2 + y2 = r2, it first fills the pixel at (r, 0) and then

proceeds to the 45 degrees angle in steps that increase y by one and only occasionally decrease x.
The algorithm was modified to produce the centers of quadtree boxes of filled circles and rings in

any dimension. Producing filled circles requires that on each step we don’t just produce the box with

center (x, y), but all the boxes of the column, (x, 0), (x, side), . . . , (x, y) Producing rings demands

drawing both an outer and an inner circle and filling their difference.

Extending this algorithm to cover hyperspheres of any dimension is more demanding. The idea

is to divide the d-dimensional hypersphere into circle slices of different radiuses which the Bresenham

algorithm can draw. During this process we can take advantage of mirroring. For example, to cover

a sphere in R3, we need to draw circles of decreasing radius from z = 0 to z = r and mirror every

quadtree box to the negative value −z.

17

18 CHAPTER 4. OUR VARIANT

A hypersphere with center (x0, y0, z1,0, z2,0, . . . , zd−2,0) is described by (x−x0)
2+(y−y0)

2 =

r2 −
∑d−2

i=1 (zi − zi,0)
2 First we produce set A = {0, side, 2 · side, . . . , r}. This describes possible

values for each zi variable. We calculate the cartesian product and receive a set of tuples:

A×A× . . .×A︸ ︷︷ ︸
d-2

T = {(0, 0, . . . , 0︸ ︷︷ ︸
d-2

), (0, 0, . . . , side), . . . , (r, r, . . . , r)}

For each t ∈ T so that r′2 = r2 −
∑d−2

i=1 t2i > 0, we can produce a set of quadtree boxes by:

1. Calculating the x and y coordinates by running Bresenham’s midpoint circle algorithm for center

(x0, y0) and radius r′.

2. Calculating the other d − 2 variables by mirroring each tuple value around the center of the

hypersphere.

For the first step we have already mentioned that the Midpoint Circle algorithm is easy to adapt to

drawing filled circles or rings. For the second step we must produce sets B1, B2, . . . , Bd−2 where

Bi = {zi,0+ ti, zi,0− ti} and take the cartesian product B1×B2× . . .×Bd−2. We combine every

result of this step with every result of the first step to get the coordinates of a unique quadtree box.

Finally, in order to implement Step 3’ we simply filter the results of the above algorithm, keeping

only the ones that belong to the hyperplane of the bisector. Their characteristic property is that the

vector they define is almost perpendicular to the vector defined by the dumbell. Therefore for every

box of Step 3 we calculate the inner product of its vector and the dumbell’s vector and only insert it

if the result is close to zero.

4.2 Dealing with space requirements

After implementing the original algorithm using the generalized Bresenham, it was evident that the

space required was not practical. Indeed, as little as 128 points in d = 3 required gigabytes of

memory to build. We will first point out the reasons why this happens and then describe our method

to circumvent the memory bottleneck.

Revisiting the complexity calculation of the previous section, if d is not considered a constant and

γ = 2 (minimum space), then the number of quadtree boxes is exponential in d , as follows:

V sphere

V cube
=

πd/2

(d/2)!R
d

Rd

(20γd)d

≈ (700d)d

If we also take into account that the number of dumbells depends on σd = 4d, then, for a given

number of points, increasing d = 3 to d = 4 involves calculating 26000 times more quadtree boxes

4.2. DEALING WITH SPACE REQUIREMENTS 19

and from d = 4 to d = 5, 34000 times more quadtree boxes. So the number of boxes that need

to be inserted has a very big constant which is exponential in d.

We propose a number of methods to circumvent this problem

1. We limit our approach to ε = 1
2 and, as a result γ = 2 and t = 1. This provides the slowest

query time, but also the smallest data structure. We will not bother with lower values of ε
because ,as we will see in the experimental results, our data structure is extremely accurate.

2. The original algorithm recommends a BBD tree like structure to save the quadtree boxes. Instead

we use a simple d-dimensional quadtree, as in [11] and the demo implementation ¹. The

suggested method for coercing a BBD/KDtree to represent a single quadtree box demands the

insertion of 2d points and produces a structure that is in our experience much larger than the

equivalent quadtree. A small experiment revealed that in practice the equivalent KD tree is 4

times as big as our quadtree. An initial concern was that the quadtree might have O(n) depth
in the worst case, but this is a problem experienced in point quadtrees, not region quadtrees,

as in our case. In all cases, the maximum depth of our quadtree was measured as part of our

experimental results. In Section 5 we see that this property grows

These changes are not enough to solve the memory issue. We will also introduce leaf merging:

If the union of representatives of all leaves belonging to an inner node has cardinality less than or

equal to r, then we can delete the children and turn the parent into a leaf. This process can be

applied recursively if we traverse the tree depth first. See Fig. 9.5 for an example. Leaf merging

effectively minimizes our tree structure.

We proceed to describe 2 different methods to create the quadtree. In both cases we create the

tree by insertion, repeatedly putting in boxes calculated by the generalized Bresenham algorithm in

Section 3.1.

Method A: Merge Step 3 and 4 into a single step

For this method we load a single representative to every box before inserting it. To insert such a

box, traverse the quadtree starting from the root and in each iteration go down to the child node that

contains it. This loop continues until a leaf node is found, then:

• If the leaf has no representatives, create new children for it and continue travelling down the

tree the nex box is inserted.

• If it already contains representatives, check whether or not the new box’s representative is

already present among the leaf’s representatives. If that’s the case, there is nothing further

to do, since we already consider the new box’s representative as a candidate ε − ANN for

this area. Otherwise, create new children and assign to each one the representatives of their

father. It’s easy to show that this algorithm guarantees that we lose no representatives after

¹http://valis.cs.uiuc.edu/∼sariel/progs/avoronoi/

20 CHAPTER 4. OUR VARIANT

consecutive insertions and leaf merges, see Fig. 9.6. Finally, the new representative is added

to the representatives of some leaf.

In case this addition causes the leaf to contain more than r representatives, we select the one

that is further away from the center of the leaf and remove it.

After a number of insertions and with the purpose of managing the memory consuption, we apply

leaf merging as described above.

This method, as we’ll see in Section 5, is slow because it calculates a representative for each new

box.

4.2.1 Method B: Keep Step 3 and 4 separate

In order to speed up the process, we attempted to keep step 3 and 4 separate. We add a new

height variable h to each quadtree node. The meaning of h = 3 in a leaf node is that the leaf is

the root of a complete subtree with height 3.

This time we insert quadtree boxes without representatives. Again we periodically apply a variant

of leaf merging that supresses full subtrees by changing the height variable of their root and deleting

the rest of the tree. Once this step is completed, we can continue to step 4. We visit all leaves of

the tree and assign a representative to each one. If a leaf with height greater than zero is found, we

construct the corresponding subtree. As leaves are filled with representatives, we apply leaf merging to

keep memory consumption low.

This method proved to be much faster than the previous one and in our final version of the

application we maxed out performance by implementing Step 3’.

Chapter 5

Our Implementation

In this section we will describe the main steps of our implementation. The input consists of n points

in d and a maximum number of representatives per leaf, r.

1. Scale and translate the input points into a circle of radius ε
11 centered inside the unit hypercube

[0, 1]d. This process demands the computation of the minimum enclosing sphere of the original

points. To this end we use Miniball v2.0 [10] and ¹, a library that finds the smallest enclosing

ball of a set of points in linear time.

2. Find the well separated pairs. We refer to the original paper [6] for the actual algorithm and

our description in Section 3. The simple of algorithm we mentioned in Section 2.2 is used for

the construction of the fair split tree, a choice which doesn’t incur a time bottleneck since this

calculation is extremely fast compared to the rest of the process.

3. Construct the quadtree. We calculate the overlapping quadtree boxes by using the generalized

Bresenham algorithm we described in Section 3.1.

5.1 Method A

For this method every box is assigned a single representative. This representative is decided

by running an exact search on the input points on an ANN KD tree using the center of the

quadtree as the query point.

Initially, the program gave every box a representative before trying to insert it. An improvement

of 20% in construction time was achieved by making this decision lazy: the calculation of the

new box’s representative is done only if a leaf node containing representatives is reached, and

thus this decision needs to be made, according

In an effort to make this step faster, we parallelized it. Our initial approach was to dynamically

allocate dumbells to threads and to allow them to insert quadtree boxes in a common quadtree.

¹http://www.inf.ethz.ch/personal/gaertner/miniball.html

21

22 CHAPTER 5. OUR IMPLEMENTATION

In this solution, each thread constructs a local KD tree and once it has computed the represen-

tatives of a number of new boxes, it locks the whole quadtree and runs the insertion algorithm.

This parallelization yielded a 40% speedup over the serial instance of the program with just 4
threads and didn’t consume any extra memory. Still this is not the best parallelization method.

Our final version removes the global quadtree and the lock, and instead allows each thread to

have a local quadtree. As a result, all threads are working at 100% all of the time, but memory

consumption is also multiplied, roughly by the number of threads. Once all threads have

completed, the individual quadtrees are merged into one final global quadtree. The merging

algorithm is very intuitive: we keep the first quadtree as an accumulator and merge the other

ones in it. For each quadtree, we traverse both itself and the accumulator with DFS.

(a) If both nodes are inner nodes, we recurse to the children

(b) If the accumulator has an inner node and the quadtree has a leaf, there is nothing to do

(c) If the accumulator has a leaf and the quadtree has an inner node, we copy the subtree

from the quadtree to the accumulator

(d) If both nodes are leaves, we copy the quadtree leaf’s representatives to the accumulator’s

representatives and remove the ones that are further away from the center of the quadtree

box in case the cardinality of the union is bigger than r

The merging phase takes negligible time (less than 1% for 4 threads) compared to the overall

construction time and its use leads to a 50% improvement in construction time for 4 threads

compared to the previous parallel version.

Every so often we apply our merging function. Generally, the frequency of application acts

as a tradeoff parameter between maximum space required and construction time. We call the

merging function every time the quadtree becomes too large for the memory of the current

machine to handle without swapping: since we know the exact footprint of one node of the

tree, we have a specific limit of nodes that can be handled in a given amount of memory.

The number of nodes in the tree is periodically calculated and the merging function is called

as necessary.

5.2 Method B

For this method boxes are inserted without representatives.

In the first phase, which corresponds to Step 3 of the algorithm, we insert blank boxes

in quadtrees. This step is parallelized, each thread is dynamically assigned a dumbell and

computes all the boxes that cover the spheres associated with it. The variant of leaf merging

described in Section 3.2-Method B is applied when the tree gets too big for the computers main

memory. When all threads are done, we merge the individual trees as in Section 4.1-Method

A. We thus end up with a quadtree that contains no representatives and in which complete

subtrees have been compressed to their root.

5.2. METHOD B 23

In the second phase, which corresponds to Step 4 of the algorithm, we calculate the represen-

tatives of the quadtree. Again we parallelize the computation, assigning a number of children

of the quadtree root to every thread. Each thread visits every leaf of each child, expands the

compressed subtrees into a complete subtrees of height h and calculates representatives for the

empty leaves. We apply leaf merging as before to manage the memory consumption.

Chapter 6

Code Snippets

It is interesting to see specific parts of the code.

1. This is the QNode class that makes up our quad trees

class QNode {
public:
QNode** children;
myset* representatives;
int depth;

};

It is brought down to its essentials. We only keep a pointer to an array of children and a

pointer to the set of representatives. This essentialy means that our node costs only 16 bytes

of memory on a 64bit system. There are certain reasons that led us to implement it this way:

(a) We can’t just keep the children in a QNode* children because that causes all the children

nodes to lie next to their parent in memory, actually nested between their parent and

their uncle. However, it is crucial we are able to delete and create nodes anywhere in

the tree and the only way to achieve that is by ...prekageo...

(b) We keep each unique set of representatives only once and make a pointer to it. This is

the most sane way to avoid using excess space.

(c) We keep no information about the coordinates of the center of the square or the size of

the side of the square. As we will see, these are not necessary, we can just compute them

as we go down the tree from the root, where center coordinates and size are known.

2. C++ doesn’t have a library that calculates cartesian products. We give an example of an iterative

method of computing the cartesian product of a vector of vectors of integers. We use a vector

of iterators, each one iterates over an individual vector of integers. Each iterator knows it’s

current position, it’s starting position and it’s final position.

24

25

typedef std::vector<int> Vi;
typedef std::vector<Vi> Vvi;

struct Digits {
Vi::const_iterator begin;
Vi::const_iterator end;
Vi::const_iterator me;

};
typedef std::vector<Digits> Vd;

Then initialize all the iterators at the beginning. Make a copy of the current state of iterators,

then increase the rightmost one. Continue making copies until the rightmost one reaches the

end, reset it and increase the next to last one by one. Continue in this fashion until all iterators

have reached the end.

void cart_product(Vvi& out,Vvi& in) {
Vd vd;

// Start all of the iterators at the beginning.
for(Vvi::const_iterator it = in.begin();

it != in.end();
++it) {
Digits d = {(*it).begin(), (*it).end(), (*it).begin()};
vd.push_back(d);

}

while(1) {
Vi result;
for(Vd::const_iterator it = vd.begin();
it != vd.end();
it++) {
result.push_back(*(it->me));

}
out.push_back(result);

for(Vd::iterator it = vd.begin(); ;) {
++(it->me);
if(it->me == it->end) {

if(it+1 == vd.end()) {
return;

} else {
it->me = it->begin;
++it;

}

26 CHAPTER 6. CODE SNIPPETS

} else {
break;

}
}

}
}

3. We present the basic Bresenham midpoint circle function It takes the center coordinates (x0, y0)
and the radius as input. The ddFx variable denotes the error on the x axis and the ddFy

variable denotes the error on the y axis. Also, f is the total error.

void rasterCircle(int x0, int y0, int radius) {
int f = 1 - radius;
int ddF_x = 1;
int ddF_y = -2 * radius;
int x = 0;
int y = radius;

setPixel(x0, y0 + radius);
setPixel(x0, y0 - radius);
setPixel(x0 + radius, y0);
setPixel(x0 - radius, y0);

while(x < y) {
if(f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;

}
x++;
ddF_x += 2;
f += ddF_x;
insertBox(x0 + x, y0 + y);
insertBox(x0 - x, y0 + y);
insertBox(x0 + x, y0 - y);
insertBox(x0 - x, y0 - y);
insertBox(x0 + y, y0 + x);
insertBox(x0 - y, y0 + x);
insertBox(x0 + y, y0 - x);
insertBox(x0 - y, y0 - x);

}
}

4. This is how we retrieve this information when we go down the tree. qb points to the current

27

node, qb_center is its center coordinates and qb_side is its side. Finally leaf_center is an array

of the center coordinates of the input quadtree box (the one we want to descend to) and

child_addr is the address (number of array cell) that we select among the children of the current

node to descend to. Initially qb points to the root, qb_center=0.5 ∀i ∈ [0, dim] and qb_side

is 1.0.

child_addr=0;
it=1;
for (i=0; i<dim; i++) {
if (leaf_center[i] > qb_center[i]) {

child_addr = child_addr | it;
qb_center[i] += qb_side;

} else {
qb_center[i] -= qb_side;

}
it = it << 1;

}
qb=&(qb->children[0][child_addr]);
qb_side = qb_side/2.0;

As we see, bitwise operations are employed to make this step as fast as possible. For

example, if we are at the root then qb_center is (0.5, 0.5, 0.5) for 2D and we want to to

(0.75, 0.25, 0.75). For the x coordinate the if clause is activated and child_addr gets the value

0|1 = 1. Then it = 1 << 1 = 2 and when the loop checks the y coordinate the else clause

is activated which leaves child_addr the same. Finally, it = 2 << 1 = 4 and the if clause is

activated so child_addr gets a final value of 1|4 = 5. We can also check the correctness of

the array boundaries: For input (0.25, 0.25, 0.25) obviously all checks will fail so child_addr

will point to 0. For input (0.75, 0.75, 0.75) all checks will succeed so child_addr will point to

(((0|1)|2)|4) = 7 = 23 − 1.

5. Parallelization is achieved through the use of boost threads. The use of boost threads is very

easy. The code that needs to be executed as a single thread is written inside a class. The

class should include:

• A constructor, a function which is executed once on thread startup.

• An operator() function, executed right after the constructor.

• A destructor, a function which is executed once on thread completion.

Outside the class, we just need to initialize the right number of threads, commence them and

then wait for their completion. Communication between the threads and the rest of the code

is achieved by using global variables.

struct Worker {
Worker(){allocate resources};

28 CHAPTER 6. CODE SNIPPETS

operator()(){run functions};
~Worker(){destroy resources}

}
boost::thread* threads[num_threads];
for (int i=0; i<num_threads; ++i)
threads[i] = new boost::thread(Worker(i));

for (int i=0; i<num_threads; ++i) {
threads[i]->join();
delete thr[i];

}

6. This is how we dynamically allocate WSPD pairs to threads. All WSPD pairs are stored in a

global list and each thread must dynamically get the index of the next WSPD it’s going to work

on. We keep a global wspd index and a global boost::mutex. When a thread needs a new

WSPD pair, it first locks the mutex, gets the index number, increases the index and releases

the lock. If the number it acquires is greater than the length of the list, that is the number of

WSPD pairs, then the thread terminates.

int global_index=0;
boost::mutex mutex;

struct Worker {
int get_index() {

boost::mutex::scoped_lock lock(mutex);
global_index++;
if (global_index < Globals::wspd_centers.size()) {
return global_index;

} else {
return -1;

}
}

operator()() {
for (int priv_ind=get_index(); priv_ind!=-1; priv_ind=get_index();) {

//work on Globals::wspd_centers[priv_index]
}

}
}

Chapter 7

Experimental Results

We recall our notation:

1. n is the number of input points

2. d denotes the dimension we are working in.

3. r is the maximum number of representatives a leaf is allowed to have.

We will initially present our testing methodology. Once the final quadtree is constructed, we make a

number of queries to a KD tree, asking for an exact and an approximate answer, and to our AVD

structure. Each time we call the corresponding search functions by providing a single query point

and request a single nearest neighbor. We measure the aggregate query time in each case and also

compute the query exactness of each of the two approximate methods. This is done by comparing

the exact answer of the ANN KD tree to the two approximate answers by calculating
approx
exact − 1.

For each quadtree, we make 109 queries, consisting of random points equally distributed inside

each leaf of our quadtree. Thus, not only are our queries all inside the unit hypercube, but for a

bigger quadtree, our queries are more concentrated near the input points, where most AVD cells lie,

than near the edges of the hypercube. For smaller quadtrees, each leaf covers a bigger area and our

queries are closer to being random over the whole hypercube. As we will see this affects the behaviour

of the approximate KD tree queries.

In our results we are interested in the construction time, the maximum memory required by each

thread, the size of the final data structure, its maximum height, query time and query exactness.

There are 3 main KD tree implementations:

1. ANN, a mature implementation, previously mentioned in Section 1.

2. CGAL, a computational geometry library that also includes a KD tree implementation ¹.

¹CGAL,Computational Geometry Algorithms Library, http://www.cgal.org

29

30 CHAPTER 7. EXPERIMENTAL RESULTS

3. Libnabo, a new, faster implementation of KD trees based on the same algorithms as ANN, but

different data structures ².

We should justify our choice to compare with ANN. Using the methodology described above we

found that the ANN KD tree is faster than the ones in CGAL and Libnabo. This is in accordance

with the comparison done by the authors of Libnabo [9]. Libnabo is 10− 20% faster than ANN in

the special case where a large number of queries is given to the search function all at once, not one

by one as in our experiments. In all cases, we’ll see that AVD is at least 50% faster than the ANN

KD tree and should therefore be faster than Libnabo as well. See Fig. 9.7.

Note that our comparison to KD trees instead of BBD trees should not affect our experimental

results. BBD trees are faster than KD trees in specific distributions, when data is clustered in low-

dimensional subspaces [4]. We experiment with distributions that are uniform over all dimensions and

therefore no significant difference between the two.

Lastly, our testing of the efficiency of parallelization was limited to 4 threads because of hardware

constraints. All experiments were conducted using this number of threads.

7.0.1 Method A

Initially we test our program with input points in 3 dimensions and for various values of r. We see

that an increase in r results in lower construction time, lower max space, a smaller data structure and

slightly increased query exactness. On the other hand, query time is also slightly increased, since there

are more points to check sequentially for each search. Also, query time in KD trees increases more

rapidly with an increase in the number of input points. If query points are more uniformly distributed

inside the unit hypercube, KD trees gives answers faster, but lose in exactness. Our conclusion from

the above is that in no case should r = 1 be used. Otherwise, the choice of r is a tradeoff between

query time and the rest of the characteristics that we measure. See Fig. 9.8.

We also examine the speedup achieved by using multiple threads. We run the same test

(d = 3,n = 128,r = 4) for t ∈ [1, 4] and obtain Fig. 9.9. Using Amdahl’s law ³, S(N) = 1
(1−P)+ P

N
)
,

and substituting S = 2.8 and N = 4 we calculate that our implementation is 70% parallelizable and

a maximum speedup of 3.3 can be achieved.

For the rest of the experiments we decide to use r = 4.

7.0.2 Method A’

There are numerous applications for which a bigger value than the maximum ε = 0.5 covered in the

theoretical analysis is adequate. At the same time we want to speed up the construction process. We

proceed to describe a practical approach that makes construction feasible both for more points and

bigger dimensions, but at the loss of exactness.

²Libnabo, https://github.com/ethz-asl/libnabo

³http://en.wikipedia.org/wiki/Amdahl’s_law

31

1. We define the variable s which is the factor by which the size of the quadtree boxes is multiplied

by. For s = 1, we insert boxes as big as the original algorithm proposes, for s = 2 we calculate

boxes that are twice as large etc.

2. Once the construction of the individual quadtrees and their merging in the final quadtree has

been completed, we will examine every leaf and make sure it contains exactly r representatives.

This is easy to do by searching a KD tree for the r nearest neighbors to the center of the box

and adding them one by one until the leaf is filled.

We run our tests as before. As we see in Fig. 9.10, construction is greatly accelerated, enabling us

to test for many points. As before, max space and tree size are very well contained. It is difficult to

find a pattern for the maximum error, however we find that 99.9% of all answers are at most 10%
wrong. The maximum depth of our tree seems to be about O(logn), much less than linear.

We continue our experiments with dimensions 4 and 5 in Fig. 9.11 and Fig. 9.12. These are

dimensions that we wouldn’t be able to test for without big values of s. The results that we obtain

for dimension 4 lead us to the same conclusions as with dimension 3. However, for d = 5 it becomes

evident that as the dimension increases, AVD is not that much faster than the ANN KD tree, but it is

much more exact.

7.0.3 Method B

For this method we can use bigger boxes to cover spheres without losing the upper bound of the

maximum error like we did in Method A’. We insert bigger boxes (again, using the notion of s) but
each leaf is now assigned a height h = s − 1. For example instead of inserting boxes that cover a

sphere (s = 1) and mark the leaves with h = 0, we could cover the sphere with boxes twice as big

(s = 2) and mark the leaves with h = 1. In Step 4 of this Method, these leaves are expanded to

complete trees of height h, therefore we calculate representatives for boxes of the correct size and no

information is lost.

In Fig. 9.13 we experiment with different values of s for d = 3, n = 256, r = 4. Based on

the figure, we should select between s = 4 and s = 8 for our further experiments. Total time is less

for s = 4 but time spent on Step 3’ (Total time minus Step 4) is longer compared to s = 8. Bearing

in mind that Step 3’ grows faster than Step 4, we select s = 8 for the rest of our experiments.

We proceed into testing our application for d = 3 with our standard testing methodology, see

Fig. 9.14. Construction time has been reduced greatly. For example, the construction time for

n = 1024 has dropped from 5 hours using Method A to 5 minutes. We also notice that most of

the time is taken up by Step 4, the calculation of representatives. What is more, Step 3’ grows a lot

faster with more points compared to Step 4. Maximum required space grows linearly and the tree is

much smaller than with Method A. Maximum depth of the final quadtree is again about O(logn).
Lastly, the AVD is twice as fast a the approximate KD tree in answering queries, while giving the exact

answer 99.9% of the time.

Compared to the previous methods, not only Method B much faster to construct for d = 3, it
also yields a smaller final data structure. This is manifested in its lower space consumption, smaller

depth and results in faster query times.

32 CHAPTER 7. EXPERIMENTAL RESULTS

We also test our data structure with queries that are uniform on the hypercube. As before, we

calculate 109 query points and check the query time and exactness of answers. The results are shown

in Fig. 9.15. The KD tree is much faster in this test, but still slower than AVD (AVD is 35% faster).

However it maintains the same level of exactness, whereas the KD tree shows a huge drop, with at

most 40% of its answers being exact. It is important to note however that the error of the KD tree is

not large and in these tests about 99% of its answers are at most 10% wrong.

Method B is fast enough that we can try building a tree for dimension 4. The results are shown

in Fig. 9.16. Although the experimental results in query time and error

7.0.4 Method Summary

We summarize the differences in experimental results between the different methods:

• Method A: Requires the most time to construct.

• Method A’: Construction is accelerated at the expense of the upper bound of error. Dimensions

higher than 3 are feasible.

• Method B: Fastest construction and smallest data structure. Also fastest and most accurate

queries. Practical for d = 3.

Chapter 8

Conclusion

In this paper we presented an implementation of a new algorithm that constructs Approximate Voronoi

Diagrams aimed at Nearest Neighbor Searching and compared it to the best current KD tree imple-

mentations.

We sum up the great advantages of the AVD data structure. For dimension 3 and Method

B, we conclude that AVD is significantly faster and more exact than KD tree. These properties are

maintained whether the query points are concentrated near the input points or are random over the

hypercube. Depending on the query set, the KD tree is either relatively fast or relatively accurate, but

not both at the same time. The size of the final AVD data structure, although much greater than that

of a KD tree, is very manageable for modern computers using the methods we proposed. The same

applies for construction time. For dimensions 4 and 5 and based on Method A’, the same properties

are true, but at the expense of the upper bound on maximum error.

There are a number of disadvantages in our implementation. Even for dimension 3 we believe

that construction time could be faster. Currently, a lot of boxes are calculated multiple times and thus

slow down the process without enriching the final data structure One way to address this problem

would be to merge dumbells that are very close together and have spheres that overlap to a large

extent. What is more, using a library that is faster than ANN, such as Libnabo with multiple query

points on each call of the search function would also speed up construction. Our Method A’ applied

for dimensions 4 and 5 could be combined with the ideas of Method B to yield a fast Method B’.

It should also be mentioned that AVD does not yet support incremental addition or removal

of input points. These are methods that are desirable by users and further research is needed for

their implementation. The structure itself is more static than a classic KD/BBD tree, since the desired

approximation factor ε needs to be known before construction, whereas KD tree supports it as a

variable specified in query time.

At the current stage of research we believe that AVD is a competitive option in the following

scenario:

1. The input points are 3 dimensional and static.

33

34 CHAPTER 8. CONCLUSION

2. A very large number of queries is going to be performed.

3. Exactness of answers is crucial to the process..

For our future work we want to answer a number of question that our research poses:

• How does the AVD data structure compare to KD tree and other solutions in actual applications

that require approximate nearest neighbor searching and specifically for d = 3?

• What is the theoretic upper bound of the approximation factor when boxes of bigger size are

inserted?

• Are there applications where an upper bound on the exactness of answers is not required as

long as almost all results are very close to exact?

Chapter 9

Appendix

35

36 CHAPTER 9. APPENDIX

Figure 9.1: high resolution (small squares) inside big subsets

Figure 9.2: An example of quadtree boxes that overlap circles in 2D

Figure 9.3: An example of a quadtree

37

Figure 9.4: The original Midpoint Circle Algorithm (from Wikipedia)

Figure 9.5: An example of merging for d = 2 and r = 2.The tree on the right can’t be

merged because there are 5 different representatives.

Figure 9.6: We try to insert a small square with repr ”C”. The new children inherit the

parent’s representatives, a superset of their original representatives.”A” is further away than ”B”

and is removed.

ANN Exact Nabo Exact ANN Approx AVD CGAL Approx Nabo Approx
0

100

200

300

400

500

600

700

T
im

e
 (

n
s
)

Query Time

Figure 9.7: Comparison of different KD tree implementations and AVD (d = 3,n = 256,r = 4)

38 CHAPTER 9. APPENDIX

0 200 400 600 800 1000 1200

input points (#)

0

2

4

6

8

10

12

ti
m

e
 (

h
)

3 dimensions

ε = 0.5

1 repr

2 reprs

4 reprs

Construction Time

0 200 400 600 800 1000 1200

input points (#)

0

200

400

600

800

1000

s
p
a
c
e
 (

M
B

)

3 dimensions

ε = 0.5

4 threads

1 repr

2 reprs

4 reprs

Max Space

0 200 400 600 800 1000 1200

input points (#)

300

400

500

600

700

800

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

3 dimensions

ε = 0.5

Exact 1 repr

Exact 4 reprs

Approx 1 repr

Approx 4 reprs

AVD 1 repr

AVD 4 reprs

Query Time

0 200 400 600 800 1000 1200

input points (#)

40

50

60

70

80

90

100

%
 e

x
a
c
t

a
n
s
w

e
rs

3 dimensions

ε = 0.5

KD 1 repr

KD 4 reprs

AVD 1 repr

AVD 4 reprs

Exact Answers

Figure 9.8: Experimental results for Method A, d = 3

0 1 2 3 4 5

threads(#)

0

1

2

3

4

5

S
p
e
e
d
u
p
 (

x
 t

im
e
s
)

Speedup

Figure 9.9: Speedup achieved with 1-4 threads against maximum speedup

39

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

input points (#)

0

10

20

30

40

ti
m

e
 (

h
)

Construction Time

0 1000 2000 3000 4000 5000

input points (#)

0

50

100

150

200

250

s
p
a
c
e
 (

M
B

)
Space/thread

AVD Size

Space

0 4000 8000 12000 16000

input points (#)

300

400

500

600

700

800

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

KD Exact

KD Approx

AVD

Query Time

0 4000 8000 12000 16000

input points (#)

50

60

70

80

90

100

p
e
rc

e
n
t

(%
)

KD Exact

KD �<0.1

AVD Exact

AVD �<0.1

Exactness of Answers

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

input points (#)

13

14

15

16

17

18

19

20

21

le
n
g
th

Max Depth

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

input points (#)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a
p
p
ro

x
im

a
ti

o
n
 f

a
c
to

r

Max Error

Figure 9.10: Experimental results for Method A’, d = 3, r = 4, s = 4

40 CHAPTER 9. APPENDIX

0 1000 2000 3000 4000 5000

input points (#)

0

10

20

30

40

50

ti
m

e
 (

h
)

Construction Time

0 1000 2000 3000 4000 5000

input points (#)

0

50

100

150

200

250

s
p
a
c
e
 (

M
B

)
Space/thread

AVD Size

Space

0 1000 2000 3000 4000 5000

input points (#)

400

600

800

1000

1200

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

KD Exact

KD Approx

AVD

Query Time

0 1000 2000 3000 4000 5000

input points (#)

50

60

70

80

90

100

p
e
rc

e
n
t

(%
)

KD Exact

KD �<0.1

AVD Exact

AVD �<0.1

Exactness of Answers

0 1000 2000 3000 4000 5000

input points (#)

13,8

14

14,2

14,4

14,6

14,8

15

15,2

le
n
g
th

Max Depth

0 1000 2000 3000 4000 5000

input points (#)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
p
p
ro

x
im

a
ti

o
n
 f

a
c
to

r

Max Error

Figure 9.11: Experimental results for Method A’, d = 4, r = 8, s = 8

41

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

input points (#)

0

10

20

30

40

50

60

70

80

90

ti
m

e
 (

h
)

Construction Time

0 400 800 1200 1600 2000

input points (#)

0

100

200

300

400

500

s
p
a
c
e
 (

M
B

)

Space/thread

AVD Size

Space

0 400 800 1200 1600 2000

input points (#)

500

1000

1500

2000

2500

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

KD Exact

KD Approx

AVD

Query Time

0 500 1000 1500 2000 2500

input points (#)

50

60

70

80

90

100

p
e
rc

e
n
t

(%
)

KD Exact

KD �<0.1

AVD Exact

AVD �<0.1

Exactness of Answers

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

input points (#)

0

2

4

6

8

10

12

14

le
n
g
th

Max Depth

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

input points (#)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

a
p
p
ro

x
im

a
ti

o
n
 f

a
c
to

r

Max Error

Figure 9.12: Experimental results for Method A’, d = 5, r = 16, s = 16

0 2 4 6 8 10 12 14 16 18

times bigger boxes (#)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

T
im

e
 (

s
)

Total Time

Step 4

Box size vs subtree depth

Figure 9.13: Selecting the best value for s in Method B

42 CHAPTER 9. APPENDIX

0 2000 4000 6000 8000 10000

input points (#)

0

500

1000

1500

2000

2500

3000

ti
m

e
 (

s
)

Total

Step 4

Construction Time

0 2000 4000 6000 8000 10000

input points (#)

0

20

40

60

80

100

s
p
a
c
e
 (

M
B

)

Max Space

Max Space

0 2000 4000 6000 8000 10000

input points (#)

300

400

500

600

700

800

900

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

Exact

Approx

AVD

Query Time

0 2000 4000 6000 8000 10000

input points (#)

40

50

60

70

80

90

100

%
 e

x
a
c
t

a
n
s
w

e
rs

KD

AVD

Exact Answers

0 2000 4000 6000 8000 10000

input points (#)

11

12

13

14

15

16

17

18

le
n
g
th

Depth

Max Depth

Figure 9.14: Experimental results for Method B, d = 3

0 2000 4000 6000 8000 10000

input points (#)

300

400

500

600

700

800

900

1000

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

Exact

Approx

AVD

Query Time

0 2000 4000 6000 8000 10000

input points (#)

20

30

40

50

60

70

80

90

100

%
 e

x
a
c
t

a
n
s
w

e
rs

KD Exact

AVD Exact

Exact Answers

Figure 9.15: Experimental results for Method B, d = 3 with random queries over the

hypercube

43

0 200 400 600 800 1000 1200

input points (#)

0

10

20

30

40

50

60

ti
m

e
 (

h
)

Total

Step 4

Construction Time

0 200 400 600 800 1000 1200

input points (#)

0

20

40

60

80

100

120

140

160

s
p
a
c
e
 (

M
B

)

Max Space

0 200 400 600 800 1000 1200

input points (#)

400

600

800

1000

1200

1400

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

Exact

Approx

AVD

Query Time

0 200 400 600 800 1000 1200

input points (#)

50

60

70

80

90

100

%
 e

x
a
c
t

a
n
s
w

e
rs

KD Exact

AVD Exact

Exact Answers

0 200 400 600 800 1000 1200

input points (#)

14,5

15

15,5

16

16,5

17

17,5

le
n
g
th

Max Depth

Figure 9.16: Experimental results for Method B, d = 4

0 200 400 600 800 1000 1200

input points (#)

400

600

800

1000

1200

a
v
e
ra

g
e
 t

im
e
 p

e
r

q
u
e
ry

 (
n
s
)

Exact

Approx

AVD

Query Time

0 200 400 600 800 1000 1200

input points (#)

30

40

50

60

70

80

90

100

%
 e

x
a
c
t

a
n
s
w

e
rs

KD

AVD

Exact Answers

Figure 9.17: Experimental results for Method B, d = 4 with random queries over the

hypercube

44 CHAPTER 9. APPENDIX

Bibliography

[1] Sunil Arya and Theocharis Malamatos. Linear-size approximate voronoi diagrams. In David

Eppstein, editor, SODA, pages 147–155. ACM/SIAM, 2002.

[2] Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-efficient approximate voronoi

diagrams. In John H. Reif, editor, STOC, pages 721–730. ACM, 2002.

[3] Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-time tradeoffs for approximate

nearest neighbor searching. J. ACM, 57(1), 2009.

[4] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.

An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM,

45(6):891–923, 1998.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509–517, 1975.

[6] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with

applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.

[7] Timothy M. Chan. Approximate nearest neighbor queries revisited. Discrete & Computational
Geometry, 20(3):359–373, 1998.

[8] Kenneth L. Clarkson. An algorithm for approximate closest-point queries. In Symposium on
Computational Geometry, pages 160–164, 1994.

[9] Jan Elseberg, Stephane Magnenat, Roland Siegwart, and Andreas Nuchter. Comparison of

nearest-neighbor-search strategies and implementations for efficient shape registration. Journal of
Software Engineering for Robotics, 2012.

[10] Bernd Gärtner. Fast and robust smallest enclosing balls. In Jaroslav Nesetril, editor, ESA, volume
1643 of Lecture Notes in Computer Science, pages 325–338. Springer, 1999.

[11] Sariel Har-Peled. A replacement for voronoi diagrams of near linear size. In FOCS, pages
94–103. IEEE Computer Society, 2001.

[12] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse

of dimensionality. In Jeffrey Scott Vitter, editor, STOC, pages 604–613. ACM, 1998.

45

46 BIBLIOGRAPHY

[13] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic algorithm

configuration. In Alpesh Ranchordas and Helder Araújo, editors, VISAPP (1), pages 331–340.
INSTICC Press, 2009.

[14] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image descriptor matching.

In CVPR. IEEE Computer Society, 2008.

[15] J.R. Van Aken. An efficient ellipse drawing algorithm. In CG&A, pages 24–35, September 1984.

