
EJNIKO KAPODISTRIAKO PANEPISTHMIO AJHNWN
TMHMA MAJHMATIKWN

METAPTUQIAKO PROGRAMMA LOGIKHS KAI ALGORIJMWN

Exploiting the Structure of the Data in Approximate
Nearest Neighbor Search

DIPLWMATIKH ERGASIA

tou

Aristotèlh-Emmanou l
J�nou-FÐlh

Epiblèpwn: Iw�nnhc EmÐrhc
Kajhght c E.K.P.A.

Aj na, AÔgoustoc 2012

...................................
Copyright c⃝ Aristotèlhς-Emmanou l J�noς-FÐlhc, 2012.
Me epifÔlaxh pantìc dikai¸matoc. All rights reserved .

ApagoreÔetai h antigraf , apoj keush kai dianom thc paroÔsac ergasÐac, ex olokl rou
 tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apoj keush kai dianom
gia skopì mh kerdoskopikì, ekpaideutik c ereunhtik c fÔshc, upì thn proôpìjesh na
anafèretai h phg proèleushc kai na diathreÐtai to parìn m numa. Erwt mata pou aforoÔn
th qr sh thc ergasÐac gia kerdoskopikì skopì prèpei na apeujÔnontai proc ton suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton sug-
grafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou EjnikoÔ
KapodistriakoÔ PanepisthmÐou Ajhn¸n.

Abstract

Nearest neighbor searching (NNS) is a fundamental problem with several important ap-
plications. To accelerate the queries, we exploit the fact that data often exhibits highly
nonrandom spatial patterns. We consider input points almost lying on about logt n un-
known lines in a space of constant dimension d, where n is the number of points and t
constant. The lines are distributed uniformly in a bounding sphere, the points are distri-
buted uniformly on each line, and their number per line varies from Ω(logt n) to O(n).
Queries take O(log log n/ϵO(d2)) expected time, which is exponentially faster than without
structure, using optimal space O(n), and return a (1 + ϵ)-approximate nearest neighbor,
for any given ϵ > 0. Ignoring the step of NNS on a line, queries take O(log2 log n/ϵO(d2))
with high probability. Our key step is to employ a reduction of determining the nearest
line to NNS among points.

PerÐlhyh

H eÔresh tou plhsièsterou geÐtona eÐnai èna kaÐrio prìblhma me pollèc shmantikèc efarmo-
gèc. Gia na epitaqÔnoume to qrìno eÔreshc tou kontinìterou geÐtona ekmetalleuìmaste to
ìti pollèc forèc ta dedomèna akoloujoÔn mh tuqaÐa prìtupa. Sugkekrimèna, upojètoume ìti
ta shmeÐa pou deqìmaste wc eÐsodo brÐskontai p�nw se logt n �gnwstec eujeÐec se k�poio
q¸ro stajer c di�stashc d, ìpou n eÐnai o arijmìc twn shmeÐwn kai t eÐnai mia stajer�.
Oi eujeÐec eÐnai katanemhmènec omoiìmorfa se mia periorismènh mp�la kai ta shmeÐa eÐnai
omoiìmorfa katanemhmèna p�nw se k�je eujeÐa. Deqìmaste ìti k�je eujeÐa ja èqei apì
Ω(logt n) èwc O(n) shmeÐa. H eÔresh enìc kat� prosèggish plhsièsterou geÐtona qrei�ze-
tai O(log log n/ϵO(d2)) anamenìmeno qrìno, o opoÐoc eÐnai ekjetik� mikrìteroc apì to qrìno
pou ja qreiazìtan an den ekmetalleuìmastan th dom twn shmeÐwn. Gia k�je dosmèno ϵ > 0
o algìrijmoc epistrèfei èna (1+ ϵ)-kat� prosèggish plhsièstero geÐtona, qrhsimopoi¸ntac
bèltisto q¸ro O(n). An agno soume thn eÔresh tou plhsièsterou geÐtona an�mesa se sh-
meÐa pou brÐskontai p�nw se mÐa eujeÐa, o algìrijmoc qrei�zetai qrìno O(log2 log n/ϵO(d2))
me meg�lh pijanìthta. To basikì b ma ston algìrijmo eÐnai h efarmog mi�c anagwg c apì
thn eÔresh kontinìterhc eujeÐac, sthn eÔresh plhsièsterou shmeÐou.

Acknowledgments

I would like to deeply thank my supervisor Prof. Emiris. I feel very lucky I had the chance
to be taught by him as he has influenced me in a very positive way not only academically
but also on a personal level.

Aristotelis-Emmanouil Thanos-Filis

Contents

1 Introduction 4

2 Nearest Neighbor Search 6

2.1 Structures for Approximate NNS . 6

2.2 Balanced Box-Decomposition Trees . 8

3 Exploiting the Structure of the Data 9

3.1 Preprocessing, and Query Algorithm . 9

3.2 Correctness . 11

3.3 Time Complexity . 12

4 Conclusion 17

4.1 Conclusion and Future Work . 17

3

Chapter 1

Introduction

In this thesis we consider the problem of approximate nearest neighbor search in the case
where the input points are sampled from a polylogarithmic number of line segments in a
bounding ball. The queries may be arbitrary in the ball. Assuming that the lines segments
are chosen uniformly from the set of chords of the bounding ball and assuming further
that the points are uniformly distributed on each segment, we achieve queries in expected
O(log log n/ϵO(d2)) time and O(log2 log n/ϵO(d2)) time with high probability.

We use a reduction from [16], that maps lines and points in Rd to points in Rd′ , where
d′ = Θ(d2), such that line-point distances in Rd are equal, up to a linear transformation,
to point-point distances in Rd′ . This reduction enables the use of a dynamic data structure
for NN search on points, so that, when answering a query for point q, the lines in L can
be listed in order of their approximate distance to q. As each line l is listed, the NN to q
in l is found, which gives an upper bound on the NN distance to q. When that the next
line l to be listed is farther from q than that upper bound, the query algorithm stops. The
distributional assumptions imply that O(1) lines will be examined, in expectation, and
the distributional assumptions on the points on each line imply that interpolation search
can be used to find the NN of q on a given line l in O(log log n) time.

The input model we consider is specialized but it is a first step to exploit directly
the structure of the data points. A scenario in which this input model would fit well is
the following: Some spaceships moving in straight lines in space are taking a photograph
every 1 minute and for each photograph the position of the spaceship and the time is
saved. Given a location-point in space we want to find a relatively recent photograph
of the location which is the nearest possible to the point. Hence the data-points (i.e.
the locations of the photographs taken) are on lines and almost equidistant on the lines
since the spaceships have a constant speed. Moreover we can assume that the lines are
distributed uniformly in space since we want the spaceships to cover as much locations as
possble.

Our approach is original in that it improves the query performance without sacrificing
space usage, by exploiting directly (on a straight forward way) the nonrandom pattern of

4

5

the dataset of points. Let P be a set of n points in Rd. We assume they (approximately) lie
on certain lines, but the lines are unknown. Given query point q ∈ Rd and approximation
factor ϵ > 0, we seek a point v ∈ P such that dist(q, v) ≤ (1 + ϵ)dist(q, u), for all u ∈ P .
We make the following hypotheses:

i. The number of lines on which the points lie is roughly logt n where t is a positive
integer constant.

ii. Each line contains at least logt n points.

iii. Points are equidistant on each line, or picked independently and uniformly at random
on each line (segment of the line inside the bounding sphere).

iv. The lines are picked independently and uniformly at random in a bounding sphere (in
the sense of Remark 3.2).

Hypothesis (i), namely the points (almost) lying on a rather small number of lines, is
required in order for the dataset to possess some significant structure. Hypothesis (ii) is
quite loose and allows lines to contain very different numbers of points, even up to O(n)
points. Having the same number of lines and lower bound on the number of points per line
is a technical assumption which can be removed, as discussed in Sect. 4.1. Hypotheses (iii)
and (iv) are necessary for the complexity analysis; in their absence, our approach is still
valid but with lower performance.

The input points may be generated as follows. A bounding sphere B is fixed and
a number of lines that intersect with the sphere is picked uniformly at random (see Re-
mark 3.2). For the segment of each line inside the sphere, a number of points is picked
to approximately lie on this segment. The set of all points on these segments is the input
dataset P . We consider the case that the points on each segment are picked uniformly at
random, and the case that the points are equidistant on the segment. Note that we are
not given the lines.

Our contribution is an approximate nearest neighbor algorithm, that achieves expected
query time O(c log log n), where c ≤ d′⌈1 + 6d′/ϵ⌉d′ = O(ϵ−d′), and d′ = O(d2), using
optimal space O(n). Clearly, c = O(1) for a given ϵ, if d is constant; in the conclusion, we
discuss general dimension. Furthermore, if we ignore searching among points on a line, a
query time of O(log2 log n) is guaranteed with high probability.

To the best of our knowledge, this is the first algorithm that exploits directly the
structure of the dataset of points. Of course a large number of data structures have been
proposed for both approximate and exact search of pointsets that satisfy natural structural
conditions such as having low doubling dimension [15],[14],[18], but in these works they
take advantage of the structure of the space or the randomized way their structure is built.

The standard nearest neighbor search algorithms, e.g. based on BBD trees, would be
exponentially slower, with query time logarithmic in n, assuming they used optimal space;
the same holds for the more recent work on line queries [2].

Chapter 2

Nearest Neighbor Search

Nearest neighbor searching (NNS), also known as similarity searching, is a fundamen-
tal question with several important applications, including machine learning, geometric
inference, and high-dimensional optimization. A lot of current research focuses on this
problem, e.g. [2, 21, 17, 12], with impressive, and often optimal, results. One of the main
remaining open questions, and a means to further improve the query complexity, is to
exploit the fact that, in practical situations, e.g. bioinformatics and image analysis, data
(or queries) exhibit high correlation, such as temporal and spatial locality. We focus on
approximate NNS when the dataset of points almost lie on few, unknown lines. This is
the first step in investigating adaptive approximate NNS. Our algorithm achieves optimal
space usage and exponential query speedup since query time is logarithmic in the number
of lines instead of the number of points.

Let P be a set of n points in Rd and let dist(p, p′) be the Euclidean distance between
any points p, p′. The nearest neighbor problem consists in reporting, given a query point
q, its nearest neighbor p ∈ P such that dist(p, q) ≤ dist(p′, q), for all p′ ∈ P . For this
purpose, one preprocesses P into an appropriate data structure, called NN-structure. Since
an exact solution to high-dimensional NNS requires heavy resources, research has focused
on approximate nearest neighbors. Given parameter ϵ > 0, a (1 + ϵ)-approximate nearest
neighbor (ϵ-NN) to a query q is any point p ∈ P such that dist(q, p) ≤ (1 + ϵ) · dist(q, p′),
where p′ is a nearest neighbor to q.

2.1 Structures for Approximate NNS

A classic data structure is k-d trees [9]. Each level of the tree represents a partition of
space by an axis-perpendicular hyperplane. An interesting implementation is FLANN (Fast
Library for Approximate Nearest Neighbor), which contains (probabilistic) algorithms and
data-structures among which it chooses the most appropriate for the input [12].

Balanced Box-Decomposition (BBD) trees [23] offer query time O(c log n), c ≤ d⌈1 +

6

2.1. STRUCTURES FOR APPROXIMATE NNS 7

6d/ϵ⌉d, using space O(dn) where n is the number of points in the structure. BBD-trees
allow the deletion of a point from the structure in O(log n) and are thus employed by our
algorithm. They led to ANN, a state-of-the-art approximate nearest-neighbors software.

Approximate Voronoi Diagrams (AVD) are another relevant data structure. They offer
a tradeoff between space complexity and query time based on parameter γ : 2 ≤ γ ≤ 1

ϵ

[21]. Then, the query takes O
(
log(nγ) + 1/(ϵγ)

d−1
2

)
and space is O

(
nγd−1 log 1

ϵ

)
. They

are implemented on a hierarchical quadtree-based subdivision of space into cells, each
storing a number of representative points, such that for any query point lying in the cell,
at least one of the representatives is an approximate nearest neighbor.

A major approach for high dimensions is Locality Sensitive Hashing. In [1] they
present an algorithm that almost matches the known lower bound and achieves query
time O(dnϵ−2+o(1)), using O(dn + n1+ϵ−2+o(1)) space. However, it is not clear that a
“dual” of this approach might work in our setting.

An interesting generalization of the problem arises if we replace the pointset with a
set of objects O, but there are only few results known. In R3, when O comprises disjoint
polyhedra [24] presented a data structure of near quadratic size that answers an ϵ-NN
query in O(log (n/ϵ)). In [25], they answer ϵ-NN queries when O is a set of triangles,
segments, and points in convex position, in O(log2 n/ϵ2) time using O(n/ϵ2) space. In [6],
they developed a data structure for ϵ-NN queries over a set of parallel segments. In high
dimensions, [4] offers an algorithm for a set of k-flats with query (d+ logn+ 1/ϵ)O(1) but

super-polynomial space in 2(logn)
O(1)

.

More recently, there have been results where the queries are lines for a dataset of
points [2], or the dataset is a set of linear or affine subspaces with point queries [16], or
both the dataset and the queries are linear or affine subspaces [17]. In [2] they present
an algorithm for high dimensions which, for approximation 1 + ϵ, achieves query time
O(d3n0.5+c), for arbitrary small c > 0, and space O(d2nO(1/ϵ2+1/c2)). We analyze and
apply the results of [16] in the sequel, since they reduce finding the nearest line to the
approximate NNS among points in a higher dimension. They alleviate the problem of high
dimension experimentally but without guarantees; we shall address this issue in Sect. 4.1.

In [22, 20] it was shown how to answer efficiently planar point location queries with
temporal locality, in optimal expected-case query time. In [7], they gave for the same
problem spatially adaptive methods. For more than 2 dimensions, there are very few
results in exploiting structure. The most relevant is [10], where they showed how to solve
the approximate NNS in a distance-sensitive manner with data structures using space
filling curves.

In [19] they study the Approximate Nearest Neighbor problem for metric spaces where
the query points are constrained to lie on a subspace of low doubling dimension.

8 CHAPTER 2. NEAREST NEIGHBOR SEARCH

2.2 Balanced Box-Decomposition Trees

In this section we introduce the balanced box-decomposition tree or BBD-tree [23], which
is the primary data structure used in our algorithm. It is among the general class of geo-
metric data structures based on a hierarchical decomposition of space into d- dimensional
rectangles whose sides are orthogonal to the coordinate axes. The principal difference
between the BBD-tree and the other data structures listed above is that each node of the
BBD-tree is associated not simply with a d-dimensional rectangle, but generally with the
set theoretic difference of two such rectangles, one enclosed within the other.

It is constructed through the repeated application of two operations, fair splits (or
simply splits) and shrinks. A fair split partitions a cell by an axis-orthogonal hyperplane.
The two children are called the low child and high child, depending on whether the coor-
dinates along the splitting coordinate are less than or greater than the coordinate of the
splitting plane. A shrink partitions a cell into disjoint subcells, but uses a box (called the
shrinking box) rather than a hyperplane to do the splitting. It partitions a cell into two
children, one lying inside (the inner child) and one lying outside (the outer child). The
recursive construction algorithm is given a cell and a subset of data points associated with
this cell. Each stage of the algorithm determines how to subdivide the current cell, either
through splitting or shrinking, and then partitions the points among the child nodes. This
is repeated until the number of associated points is at most one. A simple strategy is that
splits and shrinks are applied alternately. This will imply that both the geometric size and
the number of points associated with each node will decrease exponentially as we descend
a constant number of levels in the tree.

An intuitive overview of the approximate nearest neighbor query algorithm follows.
Given the query point q, we begin by locating the leaf cell containing the query point
in O(log n) time by a simple descent through the tree. Next, we begin enumerating the
leaf cells in increasing order of distance from the query point. We call this priority search.
When a cell is visited, the distance from q to the point associated with this cell is computed.
We keep track of the closest point seen so far. Let p denote the closest point seen so far. As
soon as the distance from q to the current leaf cell exceeds dist(q, p)/(1+ϵ), it follows that
the search can be terminated, and p can be reported as an approximate nearest neighbor
to q. The reason is that any point located in a subsequently visited cell cannot be close
enough to q to violate p’s claim to be an approximate nearest neighbor.

BBD trees offer query time O(c log n), c ≤ d⌈1 + 6d/ϵ⌉d, using space O(dn) where n
is the number of points in the structure.

Chapter 3

Exploiting the Structure of the
Data

3.1 Preprocessing, and Query Algorithm

In this section we describe our algorithm. First, it finds the lines on which the points lie.
When a query point q is given, it finds the k nearest lines to q, each containing a pointset
Si, i = 1, . . . , k. For each line, the algorithm finds the nearest point ui ∈ Si to q, and
returns the nearest point among {u1, . . . , uk}. The algorithm’s steps are:
Preprocessing steps:

(P1) Find the lines on which the points lie and for each line store its points in sorted
order.

(P2) Map each line to a point in Rd′ , d′ > d, and construct a dynamic NN-structure for
these points.

Query steps:

(Q1) Given a query point q ∈ Rd, use the map in step P2 to map it to the same space
Rd′ , then use the NN-structure to find its closest point.

(Q2) Remove the point found in Q1 from the NN-structure.

(Q3) Find the line in the original space that corresponds to the point found in Q1.

(Q4) Among the points (approximately) on this line, find point ui nearest to q, and
compute their distance, denoted by p.

(Q5) Repeat steps Q1 to Q4:

1. If the new distance is less than p, update the value of p with the new distance.

9

10 CHAPTER 3. EXPLOITING THE STRUCTURE OF THE DATA

2. If the line found is at distance > p, return the ui that corresponds to p.

In step P1 we compute the set of lines li: Iteratively pick a pair of points and check
how many of the other points (approximately) lie on the line defined by the pair. We
keep the lines that contain at least logt n points. If there exist more than logt n such lines,
keep the logt n with most points. The algorithm constructs two data structures for the
pointset Si on every line li: a binary search tree and a sorted array. In step P2, we map
the lines found in step P1 to a set of points in Rd′ , where d′ = O(d2), using the mapping
in [16]. A dynamic NN-structure, namely BBD-tree, is built on all image points. We use
this mapping to determine nearest lines to the query point.

After we are given a query point q ∈ Rd, in step Q1 the algorithm first maps it to a
point q′ ∈ Rd′ and then queries the NN-structure to find an (1 + ϵ)-approximate nearest
neighbor s1 of q′.

In step Q2, we remove s1 from the NN-structure. As a result, when we later search
for the nearest point, the next approximate nearest point is returned. Point s1, found in
step Q2, corresponds without loss of generality to l1, which is the (almost) nearest line to
q, returned by step Q3. It satisfies the approximation factor as proven in Corollary 3.1.
We compute the projection (foot) v1 of q on l1.

In step Q4, we employ interpolation search [11, 3] to determine point u1 ∈ S1 which
is closest to v1. We compute the distance between q and u1. Interpolation search, when
the points follow the uniform distribution, has expected runtime O(log logm), where m
is the number of the points in the sorted array. In our case m = O(n) because the line
may contain as many points. Unfortunately, in the worst case the time is linear. Thus,
we perform binary search if interpolation search has not terminated in time O(log n).

In spite of l1 being almost nearest to q, this is not necessarily the case for u1, because
the points on l1 may be relatively far from v1. Thus, we use the NN-structure k times to
find k approximate nearest lines and, for every line, we repeat the above procedure. Let
ρj be the distance between q and lj returned at the j-th iteration. Let point uj ∈ lj be
closest to q. The algorithm stops when:

k
min
j=1

{dist(q, uj)} ≤ ρk. (3.1)

In Corollary 3.3 we determine k with high probability. To guarantee correctness, we
do not fix k a priori but, instead, we compute nearest lines until bound (3.1) holds; this
may increase the worst-case query time.

Mapping. We employ the mapping from [16]. We represent a line li by a (d+1)×(d−1)
matrix Z whose first d rows contain orthonormal columns, representing the hyperplane
orthogonal to li, and the last row contains the offset vector v in this hyperplane. We
represent the query point q by q̂ = (qT , 1)T . For a symmetric d× d matrix A we define a
vector h(A) containing the entries of the upper triangular portion of A, with the diagonal

3.2. CORRECTNESS 11

entries scaled by 1/
√
2. Let I = diag{1, . . . , 1, 0} be a (d + 1) × (d + 1) matrix. The

following transformations define maps

li 7→ ûi ∈ Rd′ , q 7→ v̂ ∈ Rd′ , (3.2)

to points in Rd′ , where d′ = (d+1)(d+2)
2 + 1 = O(d2), where

ûi = −
(
h(ZZT) +

d− 1

d
h(I), c(li)

)
, v̂ = γ

(
1

∥q∥2
h(q̂q̂T) +

1

d
h(I), 0

)
,

with

c(li) =

√
M4 − ∥ZZT ∥2F

2
and γ =

√
dM4 − (d− 1)2

d− 1
.

Here ∥ · ∥F stands for the Frobenius norm defined by the following trace and given by the
formula: ∥ZZT ∥2F = Tr(ZZT (ZZT)T) = d− 1 + 3∥v∥2, where v is the offset; M > 0 is a
sufficiently large constant such that all c(li) ∈ R (thus it is determined by the line with
the largest norm of the offset vector).

Proposition 3.1. [16] Assume that σ is a linear or affine subspace, mapped to point ûi,
and q is mapped to v̂. For µ, ν constants, it holds:

dist2(ûi, v̂) = µ · dist2(σ, q) + ν.

Let δ be the intrinsic dimension of σ. If σ is linear (i.e. contains the origin), which is not
our case,

µ =
1

∥q∥2

√
δ(d− δ)

d− 1
, ν =

(
1− δ

d

)(
δ −

√
δ(d− δ)

d− 1

)
.

If δ = 1, then ν = 0, as in our case.

Thus, transformation (3.2) satisfies:

dist2(ûi, v̂) = µ · dist2(li, q), (3.3)

3.2 Correctness

This section proves the correctness of our method.

Corollary 3.1. Let q be the query point and li be a line and assume that after applying
the mapping, y corresponds to q and xi corresponds to li. Let OPT be the distance between
y and its exact nearest neighbor and OPTs be the distance between the query and its exact
nearest line in Rd. If the NN-structure returns xi, then dist(li, q) ≤ (1 + ϵ)OPTs.

12 CHAPTER 3. EXPLOITING THE STRUCTURE OF THE DATA

Proof. It holds from (3.3) that OPT 2 = µ · OPT 2
s . If the NN-structure returns xi for

which dist(xi, y) ≤ (1 + ϵ)OPT , then:

dist2(xi, y) = µ · dist2(li, q) ⇔ (1 + ϵ)2OPT 2 ≥ µ · dist2(li, q) ⇔
(1 + ϵ)2µ ·OPT 2

s ≥ µ · dist2(li, q) ⇔ (1 + ϵ)OPTs ≥ dist(li, q).

Theorem 3.1. The above algorithm returns a (1 + ϵ)-approximate nearest neighbor.

Proof. By Corollary 3.1, the algorithm starts with the (1 + ϵ)-approximate nearest line
and, among its points, finds the one closest to the query q; it stores their distance p. It
then finds the next nearest line, provided it is at distance less than p, finds the closest
point on it, and may decrease the value of p accordingly. This continues until the next
nearest line is at distance > p, which implies its points are at distance > p. Let li and lj
stand for the lines examined and not examined, respectively, by the algorithm. It follows
that

(1 + ϵ)min
j

dist(lj , q) ≥ min
i

dist(li, q) > p.

For any point pj ∈ lj , for any j, it follows dist(pj , q) > p/(1 + ϵ). The algorithm returns
p, and the data point realizing this distance to q, hence the claim is established.

If we fix k a priori and look for the k nearest neighbors, there is a small probability that
the algorithm gives an incorrect answer, since the lines are chosen uniformly at random in
the bounding sphere (Remark 3.2), hence they may not help us exploit the position of the
points to accelerate queries. For this reason, we do not fix k but instead we find nearest
lines until expression (3.1) holds. In this way we increase the worst-case query time but
guarantee correctness.

3.3 Time Complexity

The running time of our algorithm depends on the NN structure we choose. If we assume
that the dimension d is small in comparison to the number of points n, the best data
structures are the BBD-trees and AVD. The advantage of the BBD-trees is that we can
remove a point from the structure. Using this feature of the BBD-trees, we will be able
to remove the point that corresponds to the approximate nearest line after we find it.

In the preprocessing step, finding the set of lines costs
(
n
2

)
·O(n) = O(n3) time, which

dominates the preprocessing time complexity. The sorting of points on every line costs
O(n log n) time per line, for a total time in O(n logt+1 n). Storing takes a total of O(n)
space. The construction of the BBD-tree costs O(d2logt n log log n) time and O(d2 logt n)
space.

3.3. TIME COMPLEXITY 13

Query analysis. In the processing step we query the BBD-trees structure k times, so
the time cost will be O(kc log log n) where c ≤ d′⌈1+6d′/ϵ⌉d′ since the number of points in
the structure is logt n. We perform an interpolation search on each of the k approximate
nearest lines, using each line’s sorted array. Since a line contains ≥ logt n points and there
are logt n lines, a line contains ≤ n − log2t n points. In the case where the points are
equidistant on the lines, interpolation search returns the nearest point in O(1) time. In
the case they are picked uniformly at random on the lines, interpolation search returns
the nearest point in expected O(log log n) time but, in the worst case, in O(n) time. To
deal with this we perform interpolation search for O(log n) time and, if the nearest point
is not found, we use binary search in O(log n) time, using the line’s binary search tree.

Remark 3.1. We denote by F the time of finding the nearest point to q within the points
of a line. The overall query time will be O (k (c log log n+ F)). From the above discussion,
in the expected case, F = O(log log n), whereas in the worst case, F = O(log n).

Lemma 3.2 shows that the expected value E[k] ≤ 1 and, with high probability, k =
O(log log n). In the worst case, our algorithm searches all lines, and the distribution of
points on lines shall not allow the interpolation search to terminate in O(log log n) time,
which implies k = O(logt n) and F = O(log n). Thus, the worst-case overall query time is
O(logt+1 n).

Definition 3.1. We define a hyperannulus with width r to be the set theoretic difference
of two hyperspheres cocentred with radii R1, R2 such that R2−R1 = r. We will say that a
line lies inside a hyperannulus if the line intersects the hyperannulus but does not intersect
the inner hypersphere.

Remark 3.2. A line li ⊂ Rd is defined by a direction unit vector e2 ∈ Sd−2, where Si

is the i-dimensional unit sphere, and a point b ∈ Rd on the line. The latter point can be
uniquely determined by a unit vector e1 ∈ Sd−1 and a distance α from the origin. We pick
li in the bounding sphere of radius R as follows: Without loss of generality, assume that
the center of the sphere is the origin. Pick uniformly at random a unit vector e1 ∈ Rd,
rooted at the origin. Then, pick uniformly at random a number α from the interval [0, R],
and let b be the point on the line defined by e1 at distance α from the origin. Finally, pick
uniformly at random a unit vector e2 ∈ Rd−1, lying on the orthogonal hyperplane to e1,
and rooted at b. The line li is defined by e2.

Lemma 3.1. The probability for a line, which is picked uniformly at random as in Re-
mark 3.2, to lie inside a hyperannulus depends only on its width and not on the radii of
the spheres which define it, provided the hyperannulus is contained in the bounding sphere.

Proof. A hyperannulus defined by two hyperspheres contains the same number of lines
irrespective of their common center. Using Remark 3.2, a line lies inside the hyperannulus
defined by hyperspheres with radii R1, R2 iff its distance α from their common center
is in [R1, R2]. This is a random event that depends only on the choice of α, hence the

14 CHAPTER 3. EXPLOITING THE STRUCTURE OF THE DATA

probability that a line lies inside the hyperannulus depends only on the hyperannulus’
width.

Corollary 3.2. If a hyperannulus of width r is contained in a bounding sphere of radius
R and a line is picked uniformly at random inside the bounding sphere as in Remark 3.2,
the probability that the line lies inside the hyperannulus is r/R.

Proof. Without loss of generality, we assume that the bounding sphere is partitioned by
cocentred hyperannuli C1, . . . , CR/r, all of width r. If a line is picked inside Ci, then this
line does not lie inside any other Cj , j ̸= i. We denote by Ui the event that a line lies
inside the hyperannulus Ci. By the previous argument, we have Ui

∩
Uj = ∅, ∀i ̸= j. Let

P (U) denote the probability of event U . Using union bound we have:

1 = P

R/r∪
i=1

Ui

 =

R/r∑
i=1

P (Ui).

The probability for a line to lie inside any hyperannulus is fixed and given by Lemma 3.1.
Then, P (Ui) = P (Uj), ∀i, j. As a result, P (Ui) = r/R.

Lemma 3.1 implies that a hyperannulus of width r, inside a bounding sphere of radius
R, contains a line with the same probability as every Ci. Hence, the probability for a line,
which is picked uniformly at random in the sphere, to lie inside this hyperannulus is r/R.

Lemma 3.2. The expected number k of approximate nearest lines that the algorithm finds,
before the termination condition (3.1) is satisfied, is E[k] ≤ 1.

Proof. After the algorithm finds the first approximate nearest line l1, we know that there
does not exist a line inside the hypersphere B1 centered at the query point q with radius
ρ1
1+ϵ . If such a line existed, the approximation factor of the NNS would have been violated
by Corollary 3.1. Let s denote the distance between u1 and the projection of q on l1,
and let B2 be the hypersphere centered at q with radius p (Fig. 3.1). We show that the
expected number of lines inside this annulus is ≤ 1.

First suppose the hyperannulus is entirely contained in the bounding sphere. Every
line contains ≥ logt n points and, in both cases of hypothesis (iii), the (expected) distance
of two points is ≤ 2R/logt n, where R is the radius of the bounding sphere. Then s ≤
R/logt n. Let r denote the width of the hyperannulus. It holds that p = ρ1 + r, and
p2 = s2 + ρ21 (Fig. 3.1), thus s2 = r2 + 2rρ1 ⇒ r ≤ s ⇒ r ≤ R/logt n. Applying
Corollary 3.2, the probability of a line to be inside this hyperannulus is 1/logt n. Since we
pick independently logt n lines, the expected number of lines in the hyperannulus is 1.

There may appear instances such that q, l1 and u1 define a hyperannulus that partly
lies outside the bounding sphere, namely when q is closer to the surface of the bounding

3.3. TIME COMPLEXITY 15

sphere than to l1. Since lines only exist inside the bounding sphere, k is the number of
lines inside the intersection of the hyperannulus with this sphere. The expected number
of lines inside this part of the hyperannulus is less than the expected number of lines in
the entire hyperannulus.

B2

B1

q

ρ1
p

r

su1l1

Sq’hma 3.1: l1 is the nearest line to the query q, and u1 is the nearest point on the
line to q. The next nearest line l2 cannot be nearer to q than l1 and hence cannot
intersect with B1. The algorithm will terminate if l2 is at distance > p to q, i.e. l2
does not intersect B2. The number k of iterations is bounded by the number of lines
inside the hyperannulus defined by B1, B2.

We proved, in Sect. 3.3, that our algorithm achieves query time O (k (c log logn+ F)).
Using Lemma 3.2 and that interpolation search has expected time complexity O(log log n)
(see Remark 3.1), we have the following:

Theorem 3.2. Our algorithm returns an (1+ϵ)-approximate nearest neighbor in expected
query time O(c · log logn), using space O(n), where c ≤ d′⌈1 + 6d′/ϵ⌉d′ = O(ϵ−d′), d′ =
O(d2), and the space dimension d is constant.

We now apply the theory of Balls and bins [26, Chap.5] to control the probability that
the above complexity indeed occurs. Consider the process of tossing n balls into n bins.
The tosses are made uniformly at random and independent of each other, which implies
that the probability that a ball falls into any given bin is 1/n.

Proposition 3.2. With high probability, namely ≥ 1 − 1/n, all bins have at most
3 lnn/ln lnn balls.

Corollary 3.3. Let k be the number of approximate nearest lines the algorithm finds before
the termination condition is satisfied. Then k = O(log log n/log log log n) with probability
≥ 1− 1/ logt n.

16 CHAPTER 3. EXPLOITING THE STRUCTURE OF THE DATA

Proof. We use a simple reduction from the bins and balls problem. We saw before that
the width r of the hyperannulus with inner hypersphere C1 and outer hypersphere C2

is at most R/ logt n (Fig. 3.1). We assume that the bounding sphere is partitioned with
cocentred annuli with width R/ logt n. The number of annuli needed to cover the bounding
sphere is logt n, and any line picked lies inside a unique annulus. We consider these annuli
to be bins and the logt n lines, that are picked uniformly at random and independent of
each other, are balls. We apply Proposition 3.2 to obtain that any annulus with width
R/ logt n contains at most 3 log t log n/log log t log n lines with probability 1−1/ logt n.

It should be clear that the number of lines k found by the NN-structure is bounded by
the number of lines in the hyperannulus formed by the query point q, its first approximate
nearest line l1 and its nearest point u1 ∈ li (Fig. 3.1). In case the hyperannulus lies
partly outside the bounding sphere, k will be the number of lines in the intersection of the
hyperannulus with the sphere. Thus, Corollary 3.3 holds in this case too.

Corollary 3.3 guarantees our algorithm achieves query time
O (log log n (c log log n+ F)) with high probability. By combining it with Theorem 3.2,
and Remark 3.1 for specifying F , we obtain our Main Theorem:

Theorem 3.3. Suppose the points lie on some unknown lines in Rd, d = O(1), satisfying
hypotheses (i) to (iv), and the queries are points. Our algorithm (preprocessing steps P1,
P2, and processing steps Q1 to Q4) uses optimal space O(n) to return an (1+ϵ)-approximate
nearest neighbor in query time O (k (c log log n+ F)), where k is the number of examined
lines, F the cost of searching on a line, and c = O(ϵ−O(d2)), which is constant for ϵ = O(1).
The query time is bounded by O(c log log n) in the expected case, O(logt+1 n) in the worst
case, and O (log log n (c log logn+ F)), with high probability.

Chapter 4

Conclusion

4.1 Conclusion and Future Work

This is a first effort to exploit structure of the data points, lying on roughly logt n unknown
lines, to achieve a query logarithmic in their number, i.e. exponentially faster than standard
NNS, while using optimal space. In the worst case, when interpolation search fails to
terminate in o(log n), or termination condition (3.1) requires that the algorithm examines
all lines, our query becomes O(logt+1 n), comparable to standard NNS. Essentially our
algorithm solves the problem even if points only approximately lie on lines.

We assumed the number of points per line is ≥ logt n (same as the number of lines)
to apply Proposition 3.2 and bound k. We can generalize to lines with ≥ logn points
and employ the bounds for different (larger) number of balls than bins [13]. Clearly, the
number of lines L determines query time, which is O(k logL + kF), since the more lines
there are, the less structured we have.

For general dimension, we employ dimension reduction by random projection [8] of
the points (obtained by the mapping) to Rδ, δ = O(log n/ϵ2). This distorts distances in
Rd′ by a factor of ≤ 1 + ϵ, with high probability, assuming d′ ≫ log n. Let the nearest
neighbor of the mapped query q′ be π1 and the point actually found be π2, then:

dist(q′, π2) ≤
(1 + ϵ)2

1− ϵ
dist(q′, π1).

It suffices for our algorithm to change the termination condition (3.1) to:

k
min
j=1

{dist(q, uj)} ≤ 1 + ϵ

1− ϵ
ρk.

We choose the data structure in [5] to obtain query time O
(
δ2(logm+ 1/ϵ)O(1)

)
and

O(δ2mO(1/ϵ2)) space, where m = logt n.

This is the first step in investigating adaptive approximate NNS; we plan to study the
problem with points lying on objects other than lines, such as circles.

17

References

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proc. FOCS, pages 459–468, 2006.

[2] Alexandr Andoni, Piotr Indyk, Robert Krauthgamer, and Huy L. Nguyen. Appro-
ximate line nearest neighbor in high dimensions. In Proc. SODA, pages 293–301,
2009.

[3] Alexis C. Kaporis, Christos Makris, Spyros Sioutas, Athanasios K. Tsakalidis, Kostas
Tsichlas, and Christos D. Zaroliagis. Dynamic interpolation search revisited. In Proc.
ICALP, pages 382–394, 2006.

[4] Avner Magen. Dimensionality reductions in l2 that preserve volumes and distance to
affine spaces. Discrete & Computational Geometry, 38(1):139–153, 2007.

[5] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approxi-
mate nearest neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457–474,
2000.

[6] Ioannis Z. Emiris, Theocharis Malamatos, and Elias P. Tsigaridas. Approximate
nearest neighbor queries among parallel segments. In 26th Europ. Workshop Comp.
Geom. (EuroCG), pages 141–144, Dortmund,, 2010.

[7] John Iacono and Stefan Langerman. Proximate planar point location. In Proc. Symp.
Comp. Geom., pages 220–226, 2003.

[8] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into
a Hilbert space. In Conf. Modern anal. & prob. (1982), volume 26 of Contemporary
Mathematics, pages 189–206. AMS, 1984.

[9] Jon Louis Bentley. Multidimensional binary search trees used for associative search-
ing. Commun. ACM, 18(9):509–517, 1975.

[10] Jonathan Derryberry, Don Sheehy, Maverick Woo, and Danny Dominic Sleator. A-
chieving spatial adaptivity while finding approximate nearest neighbors. In Proc.
Canadian Conf. Comp. Geom., 2008.

18

REFERENCES 19

[11] Kurt Mehlhorn and Athanasios K. Tsakalidis. Dynamic interpolation search. J. ACM,
40(3):621–634, 1993.

[12] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In Proc. VISAPP: Intern. Conf. Computer Vision Theory
& Appl., pages 331–340, 2009.

[13] Martin Raab and Angelika Steger. Balls into bins: A simple and tight analysis. In
Proc. RANDOM, pages 159–170, 1998.

[14] Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM Tran-
sactions on Algorithms, 3(3), 2007.

[15] Robert Krauthgamer and James R. Lee. The black-box complexity of nearest neighbor
search. In ICALP, pages 858–869, 2004.

[16] Ronen Basri, Tal Hassner, and Lihi Zelnik-Manor. Approximate nearest subspace se-
arch with applications to pattern recognition. In Proc. Comp. Vision Pattern Recogn.
(CVPR), 2007.

[17] Ronen Basri, Tal Hassner, and Lihi Zelnik-Manor. Approximate nearest subspace
search. IEEE Trans. Pattern Anal. Mach. Intell., 33(2):266–278, 2011.

[18] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional
manifolds. In STOC, pages 537–546, 2008.

[19] Sariel Har-Peled and Nirman Kumar. Approximate nearest neighbor search for low
dimensional queries. In SODA, pages 854–867, 2011.

[20] Sébastien Collette, Vida Dujmovic, John Iacono, Stefan Langerman, and Pat Morin.
Distribution-sensitive point location in convex subdivisions. In Proc. SODA, pages
912–921, 2008.

[21] Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-time tradeoffs for
approximate nearest neighbor searching. J. ACM, 57(1), 2009.

[22] Sunil Arya, Theocharis Malamatos, David M. Mount, and Ka Chun Wong. Optimal
expected-case planar point location. SIAM J. Comput., 37(2):584–610, 2007.

[23] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Ange-
la Y. Wu. An optimal algorithm for approximate nearest neighbor searching fixed
dimensions. J. ACM, 45(6):891–923, 1998.

[24] Vladlen Koltun and Micha Sharir. Polyhedral voronoi diagrams of polyhedra in three
dimensions. In Proc. Symp. Comp. Geom., pages 227–236, 2002.

[25] Yusu Wang. Approximating nearest neighbor among triangles in convex position.
Inf. Process. Lett., 108(6):379–385, 2008.

20 REFERENCES

[26] M. Mitzenmacher and E. Upfal. Probability And Computing: Randomized Algorithms
And Probabilistic Analysis. Cambridge U. Press, 2005.

