
National and Kapodistrian University of Athens

Department of Mathematics
Graduate Program in Logic and Theory of Algorithms and Computation

Complexity Dichotomies for Approximations
of Counting Problems

Master Thesis
of

Andreas-Nikolas Göbel

Supervisor: Stathis Zachos
Professor

July 2012

2

Η παρούσα Διπλωματική Εργασία

εκπονήθηκε στα πλαίσια των σπουδών

για την απόκτηση του

Μεταπτυχιακού Διπλώματος Ειδίκευσης

στη

Λογική και Θεωρία Αλγορίθμων και Υπολογισμού

που απονέμει το

Τμήμα Μαθηματικών

του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την 23η Ιουλίου 2012 από Εξεταστική Επιτροπή

αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

1. : Ε. Ζάχος Καθηγητής ……………………

2. : Αρ. Παγουρτζής Επίκ. Καθηγητής ……………………

3. : Δ. Φωτάκης Λέκτορας ……………………

i

Abstract

This thesis is a survey of dichotomy theorems for computational problems, focusing
in counting problems. A dichotomy theorem in computational complexity, is a complete
classification of the members of a class of problems, in computationally easy and compu-
tationally hard, with the set of problems of intermediate complexity being empty. Due to
Ladner’s theorem we cannot find a dichotomy theorem for the whole classes NP and #P,
however there are large subclasses of NP (#P), that model many ”natural” problems, for
which dichotomy theorems exist.

We continue with the decision version of constraint satisfaction problems (CSP), a class
of problems in NP. for which Ladner’s theorem doesn’t apply. We obtain a dichotomy
theorem for some special cases of CSP. We then focus on counting problems presenting the
following frameworks: graph homomorphisms, counting constraint satisfaction (#CSP)
and Holant problems; we provide the known dichotomies for these frameworks.

In the last and main chapter of this thesis we relax the requirement of exact com-
putation, and settle in approximating the problems. We present the known cassification
theorems for cases of #CSP. Many questions in terms of approximate counting problems
remain open.

The appendix introduces a recent technique for obtaining exact polynomial-time algo-
rithms for counting problems, namely the holographic algorithms.

ii

iii

Acknowledgements

I am truly grateful to my advisor Stathis Zachos, for putting up with me, and guiding
me all these years. Without his influence I wouldn’t have made it this far.

I would like to express my gratitude to Aris Pagourtzis for giving me the opportunity
to work with him in the field of computational complexity. He was always there for me
whenever I needed his help.

I wish to thank Dimitris Fotakis for always providing me with up-to-the-point advice,
and believing in me.

Part of this thesis was joint work with Stelios Despotakis. Without him this thesis
wouldn’t have been completed.

During the preparation of this thesis I received help (not only in subjects related to this
thesis), and useful comments form the following members of Corelab (in random order):
Charis, Helen, Themis, Antony, Paris.

I also wish to thank the rest of Corelab members for their fruitful discussions (in
seniority order): Katerina, Petros, Georgia, Thanasis, Chris, Christina, Dimitris, Matoula,
Sotiris, Markos, Theodore, Lydia.

I am most grateful to my parents for supporting me in multiple ways all the years of
my study.

iv

Contents

1 Introduction and Motivation 3
1.1 Basic Definitions . 3
1.2 Ladner’s Theorem and Implications . 5
1.3 Three Examples of Computational Dichotomies 7

2 Decision Version of Constraint Satisfaction Problem 11
2.1 Definition of the Decision Problem . 11
2.2 Boolean CSP . 13
2.3 The General Case . 20

3 Dichotomies on Counting Problems 21
3.1 Counting Frameworks . 21

3.1.1 Graph Homomorphisms . 21
3.1.2 Counting Constraint Satisfaction Problems 22
3.1.3 Holant Problems . 23

3.2 Dichotomy Theorems . 24
3.2.1 Graph Homomorphisms . 24
3.2.2 Counting Constraint Satisfaction Problems 25
3.2.3 Holant Problems . 26

4 Approximating #CSP 29
4.1 FPRAS and AP-Reductions . 29

4.1.1 Approximation Algorithms for Counting Problems 29
4.1.2 AP-Reductions and Three Complexity Classes 30

4.2 Unweighted Boolean #CSP . 31
4.2.1 Relational Clones Revisited . 32
4.2.2 The Trichotomy Theorem . 33

4.3 Weighted Boolean #CSP . 35
4.3.1 Functional Clones . 35
4.3.2 Log-supermodular Functions . 37

A Holographic Algorithms 41

1

2 CONTENTS

Chapter 1

Introduction and Motivation

This chapter begins with some basic definitions we will use later on. It continues with Lad-
ner’s theorem and its variations, which is the reason we will restrict our classes of problems
in later chapters. Finally we present examples of dichotomy theorems in computational
complexity.

1.1 Basic Definitions

Computational Complexity classify problems into complexity classes. In this section we
are going to define some complexity classes and reductions which are used in this theses.
For more details we refer the reader to [2, 43].

When restricting the time recourses of a Turing Machine we have the following defini-
tion:

Definition 1.1.1. Let f be a function from N to N. We say that the TM M operates
within time f(n) if, for any input string x, the time required by M on x is at most f(|x|)
1. Suppose that a language L ⊆ (Σ − {t})∗ is decided by a TM operating in time f(n).
We say that L ∈ TIME(f(n)).

And when we restrict the working space we get:

Definition 1.1.2. Suppose that f is a function from N to N. We say that the TM M
operates within space bound f(n), if for any input x, M requires space at most f(|x|). Let
L be a language. L ∈ SPACE(f(n)) if there is a TM that decides L with the use of f(n)
cells on its work tape.

For nondeterministic TM’s we denote the time and space bound complexity classes with
NTIME(f(n)) and NPACE(f(n)) respectively. We have the following complexity classes:

L = SPACE(log n)
NL = NSPACE(log n)

1|x| denotes the length of the string x

3

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

P =
⋃
k>0 TIME(nk)

NP =
⋃
k>0 NTIME(nk)

EXP =
⋃
k>0 TIME(2n

k
)

PSPACE =
⋃
k>0 SPACE(nk)

NPSPACE =
⋃
k>0 NSPACE(nk)

The above classes are related in the following way:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

For most of the inclusions, it remains open whether they are open or not. The central
open in computational complexity is the relation between P and NP, because for most of
the problems that arise naturally in the bibliography, those we can solve efficiently are in
P and those we can’t are in NP.

The above definitions hold for decision problems (languages). In this thesis we will
discuss more about counting problems (functions), where we are interested in counting the
solutions of a given problem. The core class for counting complexity is the following:

Definition 1.1.3 (Valiant [45]). #P is the class of all functions f : Σ∗ → N such that for
any x ∈ Σ∗, f(x) = accM(x), and M is a NPTM.

Additionally the class of function computed by a deterministic polynomial-time Turing
machine is FP. The open counting problem, which is analogue of the P vs. NP, is whether
FP = #P or FP (#P, with the latter considered to be the case.

In order to provide completeness results later on we will use the following reductions:

Definition 1.1.4. We say that a problem A reduces to a problem B by Karp reduction
(polynomial-time many one) and we denote A ≤pm B, if there exists a polynomial-time
computable function f such that for all x, x ∈ A if and only if f(x) ∈ B.

In case of functions fA and fB the above reduction is defined as follows:

fA(x) ≤pm fB : ∃g ∈ FP,∀xfA(x) = g(fB(x)

Definition 1.1.5. We say that a problem A (or function) reduces to a problem B by Cook
(polynomial-time Turing) reduction and we denote A ≤pT B, if A can be computed by a
deterministic TM M within polynomial time with the use of an oracle for B. If M makes
only one call to B, then we have Cook [1] reduction, denoted A ≤p[1]−T B.

Note that the polynomial-time Turing reduction holds not only for languages(problems),
but for functions also. For counting problems we will use also the parsimonious reduction:

Definition 1.1.6. We say that a counting problem #A reduces to #B by parsimonious
reduction if there exists a polynomial-time computable function f such that for all x, |{y |
(x, y) ∈ A}| = |{z | (f(x), z) ∈ B}|.

1.2. LADNER’S THEOREM AND IMPLICATIONS 5

1.2 Ladner’s Theorem and Implications

Computational complexity deals with classifying problems in terms of the recourses re-
quired to compute them. One of the main open problems is a proof or a disproof for
P 6= NP. Since the latter is still open, the best one can hope is to classify every problem in
NP to be either NP-complete or solvable in P. The above statement also holds for counting
problems, that is in shortage of a proof for FP 6= #P, can we classify every problem in #P
to be either #P-complete or solvable in polynomial time?

A negative answer for both questions comes from the following theorem due to Lad-
ner [39].

Theorem 1.2.1. If P 6= NP then there exists a language L ∈ NP that is neither in P nor
NP-complete.

The following proof can be found in [2] (with some details omitted):

Proof of theorem 1.2.1. Consider the language SATH = {φ01n
H(n) | φ ∈ SAT ∧ n = |φ|},

where H : N→ N is the function defined as follows:
H(n) is the smallest number i < log log n such that for every x ∈ {0, 1}? with |x| ≤ log n,
Mi outputs SATH(x) within |x|i steps. If there is no such number i then H(n) = log log n.

In order to compute H(n) we first need to compute H(k) for every k ≤ log n recursively.
Then simulate at most log log n Turing machines for every input of length at most log n
for at most (log n)log logn steps; this requires at most o(n2) computational steps. At every
such step we need to check that indeed Mi(x) = SATH(x) on all inputs of length at most
log n. Finally the computation of H(n) can be shown to require at most O(n3) steps.

Now assume that SATH ∈ P, and therefore there exists a Turing Machine M that
solves SATH in at most nc steps. That means that there exists a number i > c such that
Mi = M . By definition, for n > 22i , H(n) ≤ i and therefore H(n) = O(1).

On the other hand, if H(n) = O(1), then H can take only finitely many values, therefore
there exists an i such that H(n) = i, for finitely many n’s. The latter implies that Mi solves
SATH in ni time. Thus, the last two paragraphs prove that SATh ∈ P ⇐⇒ H(n) = O(1).
Moreover the latter argument holds even if we only assumed that there is some constant
C such that H(n) ≤ C for infinitely many n’s, hence proving that if SATH /∈ P then H(n)
tends to infinity with n.

Now let SATH ∈ P: From the above this would imply that H(n) ≤ C for some constant
C, implying that SATH is simply SAT padded with at most a polynomial number of 1’s.
But then a polynomial-time algorithm for SATH can be used to solve SAT in polynomial
time, implying that P = NP.

Suppose that SATH is NP-complete: Therefore there is a reduction r from SAT to
SATH that runs in time O(nk) for some constant k. We have already shown that SATH /∈
P, thus H(n) tends to infinity. Since r works in O(nk) time, for large enough n it must
map SAT instances of size n to SATH instances of size smaller than nH(n). Thus for large
enough formulae ψ, the reduction r must map it to a string of the type φ01H(|φ|) where φ
is smaller by some fixed polynomial factor. More explicitly |φ|+1+ |φ|H(|φ|) = O(|ψ|i), that

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

is |φ| = o(|ψ|). By recursively repeating the process until we get a small enough formulae,
we have a polynomial-time algorithm for SAT, contradicting the assumption P 6= NP.

Note that this proof technique can be applied to other classes as well, providing the
following corollaries.

Corollary 1.2.2. Provided P 6= NP, there is an infinite hierarchy of separate complexity
classes that lie between P and NP.

Proof. We apply the proof of theorem 1.2.1 to show that there is an language that is neither
in P nor inter-reducible with SATH =def SATH0 :

Consider the language SATH1 = {φ01n
H(n) | φ ∈ SATH0 ∧ n = |φ|}, where H is

the function defined in the proof of 1.2.1; SATH1 is not only in NP, but also reduces to
SATH0 (since H is polynomially computable). On the other hand, following the same
arguments as before, SATH1 ∈ P would imply that SATH0 ∈ P. Furthermore, a reduction
SATH0 ≤p SATH1, can provide us with a polynomial algorithm for SATH0 .

Now consider the following family of languages: SATHi = {φ01n
H(n) | φ ∈ SATHi−1

∧
n = |φ|}. The complexity classes defined by the downwards Karp closure of SATHi , is an
infinite hierarchy of classes between P and NP.

Corollary 1.2.3. If FP 6= #P then there is an infinite hierarchy of separate complexity
classes between FP and #P.

Proof. Since SATH ∈ NP, there exists a succinct2 certificate, call it y, such that x ∈
SATH , if there exists a polynomially computable relation R, such that (x, y) ∈ R. The
counting version of SATH , namely #SATH , is the following: given x compute the number
of such certificates y. If #SATH were complete for #P, this would imply that #SAT
reduces to #SATH . Similarly with the decision proof we would be able to construct a
polynomial-time algorithm by reducing the size of the instance of #SAT recursively. On
the other hand if we could compute #SATH in polynomial time, then we would be able
to decide SATH in polynomial time also. This argument extends for the counting versions
of all the problems SATHi defined previously.

Except from the artificial problems described in the above proofs (SATH), there are
some natural candidates that are not NP-complete, and they are conjectured to be neither
in P nor NP-complete. Example of problems is the graph isomorphism and the decision
version of factoring, namely given an integer n and an integer M with 1 ≤M ≤ n, does n
have a factor d with 1 < d < M? For the counting setting we can consider the problem of
counting the number of divisors of a given positive integer.

On the other hand, the majority of decision(counting) problems that arise naturally are
either tractable –efficiently computable –in P(FP), or hard –NP-complete(#P-complete).
Since we cannot prove that the latter holds for every problem in NP(#P), we would be

2Of length at most polynomial of |x|

1.3. THREE EXAMPLES OF COMPUTATIONAL DICHOTOMIES 7

interested in finding proper subclasses, containing as many problems as possible, such that
the problems of this subclass are either efficiently computable or hard. We would like for
this class be restricted enough so that Ladner’s theorem will not hold for it, but to contain
as many problems as possible. This will allow us to completely define the complexity of
the problems contained in such a class. Such theorems in computational complexity, where
a set of problems is proven to contain either tractable or hard problems, and no problems
of intermediate complexity, are known as dichotomy theorems (basically we partition the
problems of the class in to two sets).

1.3 Three Examples of Computational Dichotomies

One of the first dichotomy theorems, after Shaefer’s result which we will discuss in the next
chapter, is due to Jaeger, Vertigan and Welsh [29], on the Tutte polynomial of a graph.

Definition 1.3.1. The Tutte polynomial of a graph G is:

T (G;x, y) =
∑
A⊆E

(x− 1)κ(V,A)−κ(V,E)(y − 1)|A|−(|V |−κ(V,A))

where κ(V,A) = the number of connected components of the graph (V,A).

The Tutte polynomial is defined for every undirected graph and encodes information
about how the graph is connected. Some examples, that can be found in Welsh’s Book [48]
are the following:

• T (G; 1, 1) counts the number of spanning trees of a connected graph G.

• T (G; 2, 1) counts the number of forests in G

• T (G; 1, 2) counts the number of edge subsets that are connected and span G.

• T (G; 2, 0) counts the number of acyclic orientations of G.

• The chromatic polynomial P (G;λ) of a graph G with n vertices, m edges and k
connected components is given by: P (G;λ) = (−1)n−kλkT (G; 1− λ, 0).
Where λ is a positive integer, P (G;λ) counts the proper λ-colorings of G.

For fixed rationals x, y the dichotomy theorem of Jaeger, Vertigan and Welsh is on the
following problem:

• Tutte(x, y):

– Input: A graph G.

– Output: T (G;x, y).

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

More explicitly they have proven that the problem of evaluating the Tutte polynomial
of a graph at a point in the (x, y)-plane is #P-hard except when (x−1)(y−1) = 1 or when
(x, y) equals (1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (j, j2), (j2, j) where j = e2πi/3.
A visualization can be seen in figure 1.1, where the red points correspond to tractable
cases, and the blue hard for general graphs but tractable for planar graphs.

Figure 1.1: A visualization of the tractable cases of the Tutte polynomial.

The other dichotomy theorem that came out in 1990’s was for the H-Coloring Problem.
An H-coloring of G is just a homomorphism from G to H.

For example when H = K3 then K3-coloring is simply the problem 3-Colorability,
and if H = Kq then we have the q-Colorability problem.

Hell and Nesetril [28] proved that the H-coloring problem is in P if H is bipartite,
otherwise it is NP-complete. (counting version also here?)

Many recent dichotomy theorems concern problems that come from statistical physics.
In statistical physics they model spin systems on graphs, and they are interested in com-
puting the Partition Function of a Spin System on a graph. One of the most intensively
studied models in statistical physics is the Ising model, introduced in the 1920’s by Lenz
and Ising to study ferro-magnetism. An instance of the model is given by a set of n sites,
a set of interaction energies Vij for each unordered pair of sites i, j, a magnetic field in-
tensity B, and an inverse temperature β. A configuration of the system defined by these
parameters is one of 2n possible assignments σ of ±1 spins to each site. The energy of a
configuration σ is given by the Hamilton H(σ) defined by:

H(σ) = −
∑
{i,j}

Vijσiσj −B
∑
k

σk

The interesting part of this sum is the first term, consisting of a contribution from pairs
of sites. The importance of this expression comes from the Gibbs distribution, according to

1.3. THREE EXAMPLES OF COMPUTATIONAL DICHOTOMIES 9

which the probability that the system is in configuration σ is proportional exp(−βH(σ)).
This implies that the probability of configuration σ is 1/Z × exp(−βH(σ)), where the
normalizing factor Z, called the partition function of the system, is

Z =
∑

σ∈{−1,1}n
exp(−βH(σ))

Note that computing the partition function of the Ising model equals to the problem
Tutte(x, y) with x, y such that (x−1)(y−1) = 2. Other notable statistical physics models
are the Hard-Core Model (which is equal to computing the independent sets of a graph),
the Potts Model and the Anti-ferromagnetic Potts Model (equal to counting colorings).
The dichotomy theorems we have are in special cases of these models and state that the
partition function can be approximated (FPRAS) under some values of a parameter of a
system. For the Ising model the parameter is β.

What is most remarkable with these dichotomies is that they coincide with phase tran-
sitions proven by physicists. So when the parameter is under a critical value, the problem
is tractable, and when the parameter surpasses this value, the problem becomes #P-hard,
and furthermore the system changes phase.

10 CHAPTER 1. INTRODUCTION AND MOTIVATION

Chapter 2

Decision Version of Constraint
Satisfaction Problem

The purpose of this chapter is to introduce the constraint satisfaction problem (CSP) as
a decision problem and present some of the main results about it.

Constraint Satisfaction problem first appeared in the bibliography in a 1974 article
by Ugo Montanari [42]. The fore-mentioned article applied CSP to picture processing
problems.

To give an intuition about the problem, consider CSP as a general framework modeling
numerous known combinatorial problems. Examples of such problems can be found in
graph theory (graph coloring, vertex cover, ...), in Logic (SAT), in database theory, in
artificial intelligence, in operations research, in optimization and many other areas.

2.1 Definition of the Decision Problem

We begin with some elementary definitions.

Definition 2.1.1. Domain is a finite set D of elements, usually denoted as
D = {0, 1, · · · , n− 1}.

Definition 2.1.2. Cardinality of a domain D is denoted as |D| = n.

Definition 2.1.3. An k-ary relation R in domain D is a subset R ⊆ Dk.

For example let D = {0, 1, 2} be a domain, a binary relation over D is
L = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}.

Definition 2.1.4. A k-ary constraint is a predicate applied to a vector of k variables.

Examples of constraints are C1(x, y) = (x = y), C2(x, y) = (x ≤ y) and C3(x, y, z) =
(x 6= y 6= z 6= x).

From a relation R we can construct a constraint R(~x) such that R corresponds to
the solution set of R(~x). For example let L be the fore-mentioned relation with domain

11

12CHAPTER 2. DECISION VERSION OF CONSTRAINT SATISFACTION PROBLEM

D = {0, 1, 2}, then the constraint L(x, y) corresponds to the constraint x ≤ y with domain
D.

Observe that from a relation R we may obtain more than one constraints. For example
R(x, y) and R(y, x) are different constraints.

Let us now define the problem CSP. As input of CSP we are given a formula φ, which
consists of a finite conjunction over constraints with D as domain. The output is “yes”
when there exists an assignment of the variables used in φ , such that all the constraints
are satisfied.

As an example consider the formula (a = b) ∧ (b 6= d) ∧ (d < c) ∧ (b < c) with domain
D = {0, 1, 2, 3}, then the assignment a = 2, b = 2, c = 3, d = 2 is not a solution as the
second constraint is violated. On the other hand the assignment a = 1, b = 1, c = 3, d = 2
satisfies all the constraints, making the formula satisfiable.

Examples of specific problems we can express under the CSPframework are the follow-
ing. The simplest example is the 3-Colorability of a graph. We are given an undirected
graph G = (V,E), and we want to decide whether there exists a coloring of it’s vertices
with three colors, such that no two adjacent vertices have the same color. Consider the
domain D = {0, 1, 2}, so that each element of D corresponds to a each color. For every
edge vi ∈ V we introduce the variable xi of out CSP. In order to express the graph of
figure 2.1 we will use as variable the set V = {xa, xb, xc, xd}.

Figure 2.1: 3-Colorability as CSP

Finally for every edge u, v ∈ E, we have the constraint that corresponds to the relation
NEQ (xu 6= xv). In our current example the input of the CSP instance is (xa 6= xb)∧(xa 6=
xc) ∧ (xb 6= xc) ∧ (xa 6= xd). A solution can be seen in figure 2.2, and corresponds to the
assignment xa = 0, xb = 2, xc = xd = 1, hence G is 3-colorable.

Figure 2.2: A 3-coloring for G

A second example of a problem that can be formulated as a CSP is the Vertex Covering
problem. We are given as input a graph G = (V,E) and an integer k and we want to decide

2.2. BOOLEAN CSP 13

Figure 2.3: Vertex Cover as CSP

whether there is a set K of at most k vertices, that saturates all the edges of G, meaning
each edge has at least one endpoint in K. The variables of the CSP will correspond to the
vertices of G, that is for v ∈ V we have the variable xv; for the example in figure 2.3 the
variable set will consist of V = {xa, xb, xc, xd}. The domain for vertex cover, formulated
as a CSP is D = {0, 1}, where the evaluation of a variable σ(xv) = 1 will correspond
to the event v ∈ K. There will be two kinds of constraint: one constraint OR(xu, xv)
for every edge (u, v) ∈ E, where by OR we denote the relation OR= {(01), (10), (11)},
ensuring that every edge will be covered by at least one vertex; and another constraint K
that will ensure that |K| ≤ k, containing every variable in the problem. In the example
depicted in figure 2.3, the CSP instance will be OR(xa, xb)∧ OR(xa, xc)∧ OR(xb, xc)∧
OR(xa, xd) ∧K(xa, xb, xc, xd). A solution for k = 2, is given by xa = xb = 1, xc = xd = 0.

Besides general CSP we can restrict the type of constraints and obtain the so called
parametric CSP. The parameter S is a set of relations over the domain D. The problem
CSP(S) now, has as input a formula ϕ, that is a conjunction of relations exclusively from
S. Again the question of the problem is whether ϕ is satisfiable.

The general CSP it is known to be NP-complete: as shown in the examples both
3-Colorability and vertex cover, known NP-complete problems, are special cases of
CSP. The interest around parametric CSP is that given a domain D, there exist some
parameters S, for which CSP(S) ∈ P. For example CSP({OR, K} over D = {0, 1} is
NP-complete, because as shown in a previous example, it is the NP-complete problem
vertex cover. Furthermore the problem CSP({NEQ}) is the 3-Colorability problem
when the domain is {0, 1, 2}, and hence NP-complete; but when as domain we consider the
set D = {0, 1}, we have the 2-Colorability problem (check whether the given graph is
bipartite), which can be solved in polynomial time.

2.2 Boolean CSP

For this section the domain of the relations used will be the boolean domain D = {0, 1}.
Many natural problems are modeled as CSPs with relations over the boolean domain, hence
it is an interesting case. Furthermore we have a complete classification of the complexity
of parametric boolean CSP, due to Schaefer’s theorem [44].

The classical problem 3Sat is an example of problem that can be modeled as CSP over
the boolean domain. In order to formally define 3Sat we will need the following definition
for boolean formulas.

14CHAPTER 2. DECISION VERSION OF CONSTRAINT SATISFACTION PROBLEM

Definition 2.2.1. A formula is in conjunctive normal form (CNF), when it consists of a
conjunction of clauses. The clauses in CNF are disjunction of literals, where every literal
is either a variable x, or the negation of a variable x̄.

The input of 3Sat is a finite CNF-formula ϕ, such that each clause has at most three
literals, and the output is “yes” when there exists a truth assignment of the variables that
satisfies ϕ, or “no” otherwise. The problem 3Sat is known to be NP-complete due to
Karp [35].

In order to express 3Satas a CSP we require the following relations: R0 = {0, 1}3 \
{(0, 0, 0)}, R1 = {0, 1}3 \ {(0, 0, 1)}, R2 = {0, 1}3 \ {(0, 1, 1)} and R3 = {0, 1}3 \ {(1, 1, 1)}.
For example we can obtain the following constraints (x∨ y ∨ z) = R0(x, y, z), (x∨ y ∨ z̄) =
R1(x, y, z), (x ∨ ȳ ∨ z) = R1(x, z, y), (x̄ ∨ y ∨ z̄) = R2(y, x, z), e.t.c.. Therefore 3Sat
corresponds to the problem CSP({R0, R1, R2, R3}).

Before presenting Shaefer’s theorem we need to define the following properties over
constraints.

Definition 2.2.2. A clause will be called:

• Horn if it contains at most one positive literal,

• dual Horn if it contains at most one negative literal,

• bijunctive if it contains at most two literals

• affine if it can be described by an affine equation over GF[2].

Furthermore a formula ϕ = c1 ∧ · · · ∧ cp is called Horn, dual Horn, bijunctive or affine
if every clause ci of ϕ is Horn, dual Horn, bijunctive or affine respectively.

For the previous definition (2.2.2), we always consider that the formulas are in CNF.
Here are some examples for the above definitions:

• the formula c1 := (x̄ ∨ ȳ ∨ z) is Horn,

• the formula c2 := (x̄ ∨ y ∨ z) is dual Horn,

• the formula c3 := (x̄ ∨ y) is bijunctive, Horn and dual Horn,

• the formula c4 := (x ∨ y) is bijunctive and dual Horn,

• the formula c5 := (x+ y + z = 1) mod 2 is affine,

• the formula c6 := (x = y) is affine, bijunctive, Horn and dual Horn,

• the formula c7 := (x 6= y) is affine and bijunctive.

2.2. BOOLEAN CSP 15

While the general SAT problem is NP-complete, there are some special cases that can
be solved in polynomial time (in P). Such a case is HornSat, where we are given a finite
Horn formula ϕ, and we want to know whether it is satisfiable of not.

Similarly we can define the problem DualHornSat, with input now a dual horn
formula. Note that a formula ϕ(x1, · · · , xk) is Horn if and only if the formula ϕ(x̄1, · · · , x̄k)
is dual Horn. Therefore we conclude that DualHornSat can be solved with a polynomial
time algorithm.

Let us now restrict the input of the problem to contain only bijunctive formulas. We
then obtain the problem 2SAT, a problem known to be a member of P.

Finally we will define the problem AffineSat. As an input we are given a finite affine
formula ϕ and we want to determine whether ϕ is satisfiable or not. From another point
of view AffineSat is the following problem: given a system of affine equations A~x = b,
over the ring Z2 as input, determine whether it has a solution. By Gaussian elimination
we can check whether the system A~x = b has a solution within polynomial time, hence
AffineSat ∈ P.

Many natural problems can be solved as AffineSat. For example in 2-Colorability
we are given a graph G = (V,E), and we want to know if there exists a function f : V →
{0, 1}, such that it holds f(x) 6= f(y) for each edge (x, y) ∈ E. Consider the relation
2col = {(0, 1), (1, 0)}, that corresponds to the affine constraint 2col(x, y) = (x + y = 1)
mod 2. Therefore for every edge (x, y) ∈ E we have the constraint (x + y = 1). All
the constraint together define an affine system of equations A~x = b in Z2, which we can
solve in polynomial time with Gaussian elimination. This is a polynomial time solution of
2-Colorability.

To sum thing up the problem 3Sat is NP-complete, but its restrictions HornSat,
DualHornSat, 2SAT and AffineSat are in P.

Another SAT variant we are going to use later on is the problem Nae3Sat. We are
given a finite formula ϕ = c1 ∧ · · · ∧ cp, and each clause contains exactly 3 literals. The
difference from 3Sat now is that we want to know whether ϕ has a satisfying assignment
such that in every clause ci there is at least one literal taking the value “1” and at least one
literal taking the value “0”. Due to Shaefer [44], this problem is known to be NP-complete.

Lets see how we can express Nae3Sat as CSP. Consider a relation set S that contains
the relation NAE = {001, 010, 011, 100, 101, 110}. By using NAE we can define the con-
straint NEQ(x, y) = NAE(x, y, y), which is true if and only if x is assigned to a different
value from y. With the use of NAE and OR we can now define the following constraints:

• NAE1(x, y, z) = NAE(x, y, z̄) = ∃v(NEQ(z, v) ∧ NAE(x, y, v))

• NAE2(x, y, z) = NAE(x, ȳ, z̄) = ∃v(NEQ(y, v) ∧ NAE1(x, v, z))

• NAE3(x, y, z) = NAE(x̄, ȳ, z̄) = ∃v(NEQ(x, v) ∧ NAE2(v, y, z))

Note that similarly with 3Sat, the above constraints suffice to express Nae3Satas a
CSP problem, i.e. Nae3Sat = CSP({NAE}), hence CSP({NAE}) is NP-complete.

Consider now the following trivial relations:

16CHAPTER 2. DECISION VERSION OF CONSTRAINT SATISFACTION PROBLEM

Definition 2.2.3. Let d ∈ {0, 1}. A relation R is called d-valid if it contains the vector
(d, d, · · · , d). A set of relations S is called d-valid if every relation R ∈ S is d-valid.

Immediate from the definitions one can see that if S is a 0-valid or 1-valid set of relations
then CSP(S) has an obvious solution (by assigning every variable to the value “0” or “1”
respectively, and therefore CSP(S) ∈ P.

Now we are set to state the main theorem of this section, which provides a dichotomy
for boolean unweighted(constraints are relations) CSP, due to Schaefer [44].

Theorem 2.2.4. Let S be a set of relations over the boolean domain {0, 1}. If S is

• 0-valid,

• or 1-valid,

• or Horn,

• or dual Horn,

• or bijunctive,

• or affine,

then CSP(S) is in P. In every other case CSP(S) is NP-complete.

Proof. We have already proven the cases for which CSP(S) ∈ P. We will show that in any
other case, that is if S does not satisfy any of the six cases of theorem 2.2.4, S will contain
the relation NAE we mentioned before. In that case, since CSP({NAE}) is NP-complete,
it also holds that CSP(S) is also NP-complete.

Note that the proof we are going to sketch here is not the original proof given by Schaefer
(which is much more complicated). It is based in [1] and contains parts of universal algebra.

Before going to the main part of the proof we will need the following definitions.

Definition 2.2.5. Define as Cartesian product of two relations R1 ⊆ Dk and R2 ⊆ Dm, the
relation R1 × R2 = {z ∈ Dk+m | ∃x ∈ R1, y ∈ R2 : zi = xi for i = 1, 2, · · · , k and zk+j =
yj for j = 1, 2, · · · ,m}.

For example given the relations R1 = {(0, 1), (2, 3)} and R2 = {(4, 5, 6), (7, 8, 9)}, then
R1 ×R2 = {(0, 1, 4, 5, 6), (0, 1, 7, 8, 9), (2, 3, 4, 5, 6), (2, 3, 7, 8, 9)}

Definition 2.2.6. We call projection of a relation R ⊆ Dk on the t-th coordinate the
relation prtR = {z ∈ D | ∃x ∈ R : xt = z}.

In a similar manner we can define the projection of a relation in more than one coordi-
nates. For example given R = {(1, 2, 3), (4, 5, 6), (7, 8, 9)}, the projection of R in the first
and third coordinate is the relation pr1,3R = {(1, 3), (4, 6), (7, 9)} (= pr1R× pr3R)

Definition 2.2.7. We call identification of a relation R ⊆ Dk in the coordinates s and t the
relation R′ = {z ∈ Dk−1 | ∃x ∈ R : xs = xt and zi = xi for i = 1, 2, · · · , t−1, t+1, · · · , k}.

2.2. BOOLEAN CSP 17

As an example let R = {(1, 2, 2), (3, 4, 5), (7, 7, 7)}. The identification of R at the last
two coordinates is the relation R′ = {(1, 2), (7, 7)}. In other words R′ is the set of solutions
of the constraint R′(x, y) defined as R′(x, y) = R(x, y, y).

Definition 2.2.8. Let S be a set of relations. Define S to be closed in terms of the
operation op if ∀R ∈ S, op(R) ∈ S. Informally, by applying the operation op, we cannot
get a relation outside of S.

Definition 2.2.9. Let S be a set of relations. We can construct a new set, namely S ′,
such that it contains all the relations of S, all the projections of the relations of S, all the
projections of the projections of the relations of S, e.t.c.. The set S ′ is called the projection
closure of S.

As an example consider the set S = {R}, where R = {(1, 2, 3), (4, 5, 6), (7, 8, 9)}, then
we can construct the relations:

• R1 := pr2,3R = {(2, 3), (5, 6), (8, 9)},

• R2 := pr1,3R = {(1, 3), (4, 6), (7, 9)},

• R3 := pr1,2R = {(1, 2), (4, 5), (7, 8)},

• R4 := pr2R1 = {(3), (6), (9)},

• R5 := pr1R1 = {(2), (5), (8)},

• R6 := pr1R2 = {(1), (4), (7)},

The projection closure of S is the set S ′ = S ∪
⋃

1≤i≤6

{Ri}.

Let EQ denote the equality relation, that is EQ= {(d, d) | d ∈ D}.

Definition 2.2.10. The relational clone (co-clone) of S, denoted with 〈S〉R, is the “small-
est” (infinite) set of relations such that:

• S ⊆ 〈S〉R,

• EQ∈ 〈S〉R,

• 〈S〉R is closed under Cartesian product,

• 〈S〉R is closed under projection,

• 〈S〉R is closed under identification.

The reason we define relational clones is the following theorem:

Theorem 2.2.11. For any set S of relations, we have #CSP(S) ≡AP #CSP(〈S〉R).

18CHAPTER 2. DECISION VERSION OF CONSTRAINT SATISFACTION PROBLEM

In other words relational clones can be considered to be normal forms of sets of rela-
tions. We can have S1 and S2 two different sets of relations, but 〈S1〉 = 〈S2〉. Due to
theorem 2.2.11 we don’t have to deal with the sets S1, S2 separately, when studying the
complexity of their CSPs.

Corollary 2.2.12. Let S1 and S2 be two different sets of relations. If 〈S1〉 = 〈S2〉 then
CSP(S1)≡P CSP(S2).

Definition 2.2.13. A lattice is a partially ordered set in which any two elements have a
unique supremum (also called a least upper bound) and a unique infimum (also called a
greatest lower bound).

Let S be the set of all relational clones of all the different relations that have domain
D = {0, 1}, then the structure of the partial relation (S,⊆),is a lattice, called Post’s lattice.
Furthermore the structure of Post’s lattice is completely known and depicted in figure 2.4:
each circle corresponds to a relational clone in the Boolean domain, when two relational
clones are connected with an edge, that is interpreted that the clone placed lower in the
lattice is a subset if the clone placed higher.

The next theorem [32, 31, 30] is crucial to the proof of Shaefer’s theorem.

Theorem 2.2.14. If we have S1 ⊆ 〈S2〉 (with S1 finite) then the reduction CSP(S1)≤P
CSP(S2) holds.

Immediate corollaries from theorem 2.2.14

Corollary 2.2.15. If a relational clone S implies CSP(S)∈ P , then for all co-clones S ′

below S, we have CSP(S ′)∈ P .

Corollary 2.2.16. If a co-clone S implies CSP(S)∈ NP-complete, then for all co-clones
S ′ above S, we have CSP(S ′)∈ NP-complete.

Let us mention again Shaefer’s theorem, in combination with Post’s lattice. The rela-
tional clones that correspond to the six polynomially decidable cases of CSP(S) as stated
in the theorem are the following:

• 0-valid: IL0,

• 1-valid: IL1,

• Horn: IE2

• dual Horn: IV2,

• bijunctive: D2,

• affine: IL2.

2.2. BOOLEAN CSP 19

Figure 2.4: Post’s Lattice

For relations in the above relational clones we have already proven that the correspond-
ing CSP’s are in P. Due to corollary 2.2.15 it holds that for all relational clones bellow the
fore-mentioned clones in the lattice, their corresponding CSP’s will also be polynomially
decidable.

This leaves us with only two relations which have CSP’s of unknown complexity:

• The total relational clone BR, contains all possible boolean relations.

• The relational clone IN2, which is the clone generated by the relation NAE.

We already know that CSP({NAE} is NP-complete, hence CSP(BR) and CSP(IN2)
are also NP-complete. This concludes the proof. Note that in a later chapter we will
discuss clones more explicitly.

20CHAPTER 2. DECISION VERSION OF CONSTRAINT SATISFACTION PROBLEM

Shaefer’s theorem can be specialized even more. Namely in [1] we can obtain complete-
ness results in subclasses of P, i.e. ⊕L, NL, L, for the polynomially decidable CSP’s.

2.3 The General Case

The general case (not only boolean domain) has been studied by Feder and Vardi in [22].
They consider subclasses of NP for which Ladner’s theorem doesn’t hold. The widest
such class is called MMSNP (Monotone Monadic Strict NP without inequality), named
so due to a logical characterization. It is defined as a special case of Fagin’s theorem for
NP, having three restriction on the expressibility of the formula. Note that ignoring any
of these three restrictions, we cannot obtain a dichotomy theorem, as Ladner’s theorem
applies. Additionally it is shown that MMSNP contains exactly the problems that can be
formulated as CSP’s. It is conjectured that the general parametric CSP is either in P or
NP-complete (Feder-Vardi Conjecture).

An extension to Schaefer’s result came from Bulatov [3], where we have a dichotomy
theorem for the three element CSP, that is the domain of the constraints is D = {0, 1, 2}.
The Feder-Vardi conjecture stated previously remains open to date.

Chapter 3

Dichotomies on Counting Problems

This section contains three frameworks that model counting problems, namely Graph Ho-
momorphisms, counting constraint satisfaction problem #CSP, and holant problems. We
will prove that the #CSP is a generalization of graph homomorphisms, and that holant is
a generalization of #CSP. Additionally we will survey the dichotomy theorems that have
been proved for the three fore-mentioned counting problem frameworks.

3.1 Counting Frameworks

In this section we will introduce three frameworks for counting problems. The goal is to
define proper subclasses of problems of #P so we can classify them completely in terms of
their complexity.

3.1.1 Graph Homomorphisms

The first an the simplest of the frameworks we are going to present in this thesis, is the
graph homomorphism problem.

Definition 3.1.1. Let A = (Ai,j) ∈ Cq×q be a complex matrix. The graph homomorphism
problem EVAL(A) is the following:

Input: A graph G = (V,E).
Output: The partition function:

ZA(G) =
∑

σ:V→[q]

∏
(u,v)∈E

Aσ(u),σ(v).

Depending on the choice of matrix A, the partition function can express different
properties, and the problem EVAL may correspond to a different natural problem. Some
examples follow:

• Let A =

(
0 1
1 1

)
, then ZA(G) counts the number of vertex covers in G.

21

22 CHAPTER 3. DICHOTOMIES ON COUNTING PROBLEMS

• Let A =

 0 1 1
1 0 1
1 1 0

, then ZA(G) counts the number of 3-colorings in G.

• And in general if A =

0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

, then ZA(G) counts the number of k-

colorings in G, where A is a k × k matrix.

• Counting the number of induced subgraphs of G with an even number of edges:

A =

(
1 1
1 −1

)
.

3.1.2 Counting Constraint Satisfaction Problems

The second framework of problems we are going to examine here is #CSP. It is defined
as follows:

Definition 3.1.2. Let [q] be a domain set. A constraint language F is a finite set of
functions {f1, · · · , fh} in which fi : [q]ri → C is an ri-ary function for some ri ≥ 1. The
problem #CSP(F) is:

Input: Let x = (x1, · · · , xn) be a set of n variables. The input is a collection I of m tuples
(f, i1, · · · , ir) in which f is an r-ary function in F and i1, · · · , ir ∈ [n].
Output: The partition function:

ZF(I) =
∑
x∈[q]n

∏
(f,i1,··· ,ir)∈I

f(xi1 , · · · , xir).

If the functions in F have as range the set {0, 1}, then we can see them as relations
and we have the unweighted #CSP(F).

It is easy to see that #CSP, is the counting version of the decision CSP, where we
want to decide whether ZF(I) > 0 as discussed in chapter 2. An expected example of
a problem that can be modeled as #CSPis #3Sat. More explicitly let D = {0, 1} and
L = {f0, f1, f2, f3}, where:

f0(x, y, z) = x ∨ y ∨ z,
f1(x, y, z) = x̄ ∨ y ∨ z,
f2(x, y, z) = x̄ ∨ ȳ ∨ z,
f3(x, y, z) = x̄ ∨ ȳ ∨ z̄,

hence #CSP(L) is precisely the problem #3Sat.
As we have already mentioned in the introduction #CSP is a generalization of the graph

homomorphisms problem. This is the case because an instance of graph homomorphisms,

3.1. COUNTING FRAMEWORKS 23

with matrix A = (Ai,j), can be expressed as #CSP(L), where L = {fA} contains only one
function fA. Let the function fA(i, j) = Ai,j, and correspond to every vertex v1, v2 . . . vn
a variable x1, x2 . . . xn. Apply a constraint fA(xi, xj) if and only if (vi, vj) ∈ E(G). Hence
graph homomorphisms is indeed a special case of #CSP.

3.1.3 Holant Problems

The third, and the most general model we are going to discuss in this thesis, is the Holant
problem defined in [14].:

Definition 3.1.3. Let [q] be a domain set and F be a finite set of complex-valued functions
over [q]. The Holant(F) problem is:

Input: A signature grid Ω = (G,F, π), where G = (V,E) is a labeled graph and π labels
each vertex v ∈ V with a function fv ∈ F so that the arity of fv is the same as the degree
of v.
Output: HolantΩ, where

HolantΩ =
∑

σ:E→[q]

∏
v∈V

fv(σ |E(v)).

As an example consider the problem of counting perfect matchings of a graph. Freed-
man Lovász and Schrijver have proven that this problem cannot be expressed as graphs
homomorphisms [24]. Counting the perfect matchings of a graph G can be modeled as a
Holant problem in the following way. Let [q] = {0, 1} and F contain all the ExactOne
functions, that is the functions that return 1, if exactly one of their arguments (input
variables) is set to 1, and return 0 in any other case. In every vertex v of G we corre-

spond the function fv ∈ ExactOne that has the proper arity. The product
∏
v∈V

fv(σ |E(v))

equals with 1, if σ−1(1) ⊆ E is a perfect matching, otherwise
∏
v∈V

fv(σ |E(v)) = 0. Therefore

HolantΩ counts the number of perfect matchings of G. If instead functions in ExacOne,
we consider AtMostOne functions, then we count the number of (not necessarily perfect)
matchings.

Definition 3.1.4. Let A be a set of functions. We can define a sub-framework HolantA

of Holant as
HolantA(F) = Holant(F ∪A).

In this sub-framework, we call the functions in A, freely available functions.

If all equality functions are assumed to be freely available, then the sub-framework
which is created is exactly the #CSP problem, i.e.

#CSP(F) = Holant(F ∪ Equalities).

In order to be convinced for the above, consider the following:

24 CHAPTER 3. DICHOTOMIES ON COUNTING PROBLEMS

• Represent an instance of #CSP by a bipartite graph where the Left Hand Side (LHS)
is labeled by variables and the Right Hand Side (RHS) is labeled by constraints
(functions).

• The signature grid Ω is as follows: Every variable node on LHS is attached an
Equality function and every constraint node on RHS has the given constraint
function.

• The Equality function on each variable node forces the incident edges to take the
same value; this effectively reduces edge assignments to vertex assignments assigning
values to each variable on LHS as in #CSP.

Here are some special cases of the Holant problem:

Definition 3.1.5. Let U denote the set of all unary functions. Then,

Holant?(F) = Holant(F ∪ U).

Definition 3.1.6. Let ∆i be the unary function which gives value 1 on inputs i ∈ [q], and
0 on all other inputs. Then,

Holantc(F) = Holant(F ∪ {∆1, · · · ,∆q}).

Clearly, Holantc is a super framework of Holant?. Furthermore, Holantc can be also
viewed as a super framework of #CSP [17].

The main reason we define subclasses of the Holant problem, is that in shortage of a
general dichotomy theorem for Holant, we look for dichotomies for the special cases of the
Holant problem. The Venn diagram of the classes of problems we defined in this section is
depicted in figure 3.1.

3.2 Dichotomy Theorems

In this section we will mention the dichotomy theorems that exist for the classes of problems
we defined in the previous section (3.1).

3.2.1 Graph Homomorphisms

Let us first discuss the case of Graph Homomorphisms for an undirected graph, that is the
case where the matrix A is symmetrical. If additionally, the matrix A contains only 0,1
valued entries, Dyer and Greenhil in [20] have proved the following:

Theorem 3.2.1. The counting Graph Homomorphisms problem of an undirected graph
HA is in #P-complete if HA has a connected component which is not a complete graph
with all loops present or a complete bipartite graph with no loops present. Otherwise, the
counting problem is in FP.

3.2. DICHOTOMY THEOREMS 25

Figure 3.1: The classes of counting problems

Later on Bulatov and Grohe in [7] extended the result to the non-negatively weighted
setting. Goldberg, Grohe, Jerrum, and Thurley in [26] have proven the corresponding
dichotomy theorem for all symmetric matrices with real number values.

Finally Cai, Chen and Lu in [11] provided the following general theorem:

Theorem 3.2.2. Let A be a symmetric complex matrix. Then counting graph Homomor-
phisms to HA either can be computed in polynomial time or is #P-hard.

For the unsymmetric case (i.e. for non-directed graphs), Dyer, Goldberg and Paterson
in [19] proved a dichotomy for an acyclic family of graphs. Cai and Chen in [9] solved the
problem for all acyclic graphs with non-negative weights.

As discussed in section 3.1.2, Graph Homomorphism is a special case of #CSP, there-
fore the remaining cases are included in the #CSP dichotomy theorems, where we have a
complete dichotomy theorem.

3.2.2 Counting Constraint Satisfaction Problems

We begin by stating the results for the boolean #CSP, with constraints that have domain
D = {0, 1}. For the unweighted case, were the constraint functions can be considered
relations we have the following theorem due to Creignou and Hermann.

Theorem 3.2.3. Let F be a set of relations over a Boolean domain {0, 1}. The problem
#CSP(F) is in FP if every relation in F is affine. Otherwise, #CSP(F) is #P-complete.

26 CHAPTER 3. DICHOTOMIES ON COUNTING PROBLEMS

Let us now generalize the affine relations1 to pure affine functions by scaling them by a
factor c. Denote with P the the class of functions expressible as a product of unary func-
tions, binary equality functions and binary disequality functions. The following theorem
is due to Dyer, Goldberg and Jerrum [17].

Theorem 3.2.4. Let F be a set of non-negative functions over Boolean domain. Then
#CSP(F) is #P-hard unless all the functions in F are pure affine or of the product type
P, in which case the problem is in P.

In 2009, Cai, Lu, Xia [14] and independently Bulatov, Dyer, Goldberg, Jalsenius and
Richerby [5] finally proved the dichotomy for complex weighted Boolean #CSP.

For the general case, where the domain of the functions D can be any finite set, we
have Bulatov’s groundbreaking result [5] for the unweighted case (relations as constraints).
The proof of his dichotomy criterion was based in universal algebra, making it hard to
understand, and furthermore it wasn’t shown to be decidable. Dyer and Richerby in [21]
gave a simpler dichotomy criterion, which was proven to be equal with Bulatov’s. They
also proved that the criterion is decidable.

For the weighted case we the result of Bulatov, Dyer, Goldberg, Jalsenius, Jerrum and
Richerby [4], provides a dichotomy for the CSP with positive rational weighted functions
as constraints. Cai, Chen and Lu in [12] extended this result for all non-negative weights.
The general case was proved by Cai and Chen in [10], were the constraints of F can be
any complex valued function. Whether their criterion, consisting of three conditions, is
decidable remains open.

Finally Cai, Lu and Xia in [63] prove a trichotomy for #CSP, depending on the input
graph2 of the problem. The problems can be separated in three classes:

• Tractable for every input graph.

• Hard for every input graph.

• Hard for general input graphs, but tractable for planar input graphs. The planar
cases of such CSP’s are precisely the problems solved by holographic algorithms3.

Figure 3.2 is a visualization of the above facts.

3.2.3 Holant Problems

In this section we will mention the dichotomy results for the problems Holant? and Holantc.
Cai, Lu, and Xia, in [14] have proven a dichotomy for the symmetric, boolean Holant?

with complex weights. Later on they extended this result so that it includes the non-
symmetric case [15].

1Consider them as functions with boolean range.
2The input graph of a CSP is a bipartite graph. One partition contains vertices corresponding to

variables, the other contains vertices corresponding to constraint appearances in the input. Connect a
variable vertex with a constraint vertex when the variable appears in the constraint.

3For an introduction to holographic algorithms the reader is referred to the appendix A

3.2. DICHOTOMY THEOREMS 27

Hard for Plannar Graphs

Hard for General Graphs

but Tratable for Plannar Graphs

Tratable for general graphs

Preisely Captured

by Holographi Algorithms

#CSP

Figure 3.2: A trichotomy for #CSP

In the same paper [14] provided a dichotomy theorem for the symmetric boolean Holantc

with real number weights. The complex number weighted case was resolved by Cai, Huang
and Lu in [13].

Most of the cases, for the general Holant class remain open.

28 CHAPTER 3. DICHOTOMIES ON COUNTING PROBLEMS

Chapter 4

Approximating #CSP

In this final chapter, we relax the requirement of exact computations, and study the prob-
lems in terms of approximate computations. We define the properties required by an
approximation, and define a reduction that preserves the approximability of the problems.
Boolean Unweighted #CSP, is the simplest case we consider, and for which we have a
solid “trichotomy” theorem, partitioning the problems in three classes. Finally we present
the first results for the weighted case. Many questions remain open.

4.1 FPRAS and AP-Reductions

The following section contains the definitions of the approximation algorithms for counting
problems we are going to use, and the reductions we will use in order to obtain complexity
theoretic results in terms of approximations.

4.1.1 Approximation Algorithms for Counting Problems

For counting problems we are going to use the following notion of approximation:

Definition 4.1.1 (Randomized Approximation Scheme). A randomized approximation
scheme for f is a randomized algorithm A, such that given an input x and an error tolerance
0 < ε, and outputs an integer z such that for every instance x

Pr[(1− ε)f(x) ≤ z ≤ (1 + ε)f(x)] ≥ 3

4
.

Furthermore a RAS is said to be a fully polynomial randomized approximation scheme
(FPRAS), if it runs in time polynomial in |x| and ε−1.

In terms of obtaining an FPRAS, it is sometimes useful, and equivalent to substitute the
approximation interval from [(1− ε)f(x), (1 + ε)f(x)], with [e−εf(x), eεf(x)]. Additionally
it was shown in [34], that the 3/4 on the left hand side of the previous equation can be
any number in (1/2, 1).

29

30 CHAPTER 4. APPROXIMATING #CSP

The first question that comes in mind, is whether relaxing the requirement of an al-
gorithm to give the exact value of a function, allows us to solve problems in polynomial
time, that in the exact case would be #P-complete. The answer is positive, and here are
examples of problems #P-complete problems that have an FPRAS:

• #DnfSat:
Given a boolean formula in disjunctive normal form, count the number of satis-
fying assignments. This problem can be shown to be #P-complete under Turing
Reductions. Let ϕ be an instance of #SAT, and acc(ϕ) the number of its satisfying
assignments. The formula ¬ϕ can be converted to DNF-form in polynomial time, and
has 2n−acc(ϕ) satisfying assignments (assuming that n is the number of variables of
ϕ). Therefore provided an oracle for #DnfSat we can solve #SAT in polynomial
time. The FPRAS of #DnfSat was given by Karp and Luby in [36].

• Permanent:
Given a n× n non-negative matrix A compute the permanent of a matrix, per(A) =∑

σ

∏
i a(i, σ(i)), were the summation is over all permutations σ of [n]. This particular

problems has been well studied, and has various applications to other sciences. It
was show to be #P-complete by Valiant, in the paper [45] that pretty much initiated
the area of counting complexity. An pretty innovative FPRAS was given in [33].

4.1.2 AP-Reductions and Three Complexity Classes

As we are interested in complexity results for approximating computations, we have to
define an appropriate reduction. Furthermore we would like the class of problems admitting
FPRAS to be closed under this reduction, while the reduction is as general as possible.
The following reduction will be used:

Definition 4.1.2 (Approximation Preserving Reduction [16]). Suppose f, g functions from
Σ? to N. An approximation-preserving reduction from f to g (f ≤AP g) is a randomized
algorithm A for computing f using an oracle for g. Takes as input a pair (x, ε) ∈ Σ?×(0, 1)
and satisfies the following:

1. Every oracle call is of the form (w, δ), with w an instance of g and δ ∈ (0, 1) satisfying
δ−1 ≤ poly(|x|, ε−1).

2. The algorithm is a RAS, whenever the oracle meets the specs of a RAS.

3. The run time of A is polynomial in |x| and ε−1

Note that since the parsimonious reduction conserves the number of solutions, it can
be considered as a special case of an AP-reduction. Furthermore since #SAT is complete
for #P under parsimonious reduction, it is also complete for the problems of #P under
the AP-reduction. For an NP-complete decision problem A, the counting problem #A, is
complete for #P with respect to AP-reducibility.

4.2. UNWEIGHTED BOOLEAN #CSP 31

Lets assume that #SAT has an FPRAS. By the definition of FPRAS, we then could
distinguish with high probability whether the given formula ϕ has zero solutions or not,
in time polynomial. Furthermore as shown in [18] this error probability can be made
one-sided, proving, under the assumption that #SAT has an FPRAS, that NP = RP,
which is considered to be unlikely. In conclusion every #P-complete problem under the
AP-reduction, cannot have an FPRAS unless NP = RP.

But not all #P-complete problems (under AP-reduction) have decision version that
is NP-complete. An example of a problem with easy decision version, but hard even to
approximate is the problem #IS: Count the number of independent sets (of all sizes) of a
given graph G. The decision is trivial since every graph contains an independent set of size
0. As a problem of #P it is trivial that #IS ≤AP #SAT. It is remarkable that the inverse
also holds, combining the last two statements we have that #IS ≡AP #SAT, hence #IS
cannot have an FPRAS, unless NP = RP.

How hard is it to approximate #IS if we restrict the input graph G to be bipartite?
This is known as the problem #BIS. An FPRAS for #BIS is not known, and there is
strong evidence that this problem is inapproximable. It can be shown to belong in a class
named1 #RHΠ1, and furthermore that, all problems that are AP-interreducible with #BIS
are in this class. Later on this thesis we are going to use another problem that belongs
in #RHΠ1, and therefore is AP-interreducible with #BIS. The problem #Downsets:
Count the number of downsets of a given partially ordered set (X,�). Where a downset
in (X,�), is a subset D ⊆ X that is closed under �; i.e., x � y and y ∈ D implies x ∈ D.

To sum thing up, the results of [16] as discussed in this section are the following:

There are three degrees of approximability within problems of #P:

• Solvable by an FPRAS:
Permanent, #DnfSat...

• AP-interreducible with #SAT:
#SAT, #IS, #Mon2Sat...

• An Intermediate Class #RHΠ1(AP-Interreducible with #BIS):
#BIS, #Downsets...

4.2 Unweighted Boolean #CSP

In the parent section we will present a “Trichotomy theorem for the boolean unweighted
#CSP, under AP-reductions. This is basically the analogue of Shaefer’s dichotomy theo-
rem, were the #CSPcounting problems are shown to either have an FPRAS, or be complete
for the class #RHΠ1 or for #P under approximation preserving reductions.

1This class has a logical characterization, in a way similar to Fagin’s theorem for NP. The “RH” name
comes from Reduced Horn from.

32 CHAPTER 4. APPROXIMATING #CSP

4.2.1 Relational Clones Revisited

The proof of the main theorem of the section is based once again in relational clones. In
more detail we are going to prove that an instance of #CSP(F), where F contains relations
that belong to the relational clone IM2, which we will define later, captures precisely the
complexity of #RHΠ1.

Definition 4.2.1 (Primitive positive formula). Let R be a set of Boolean relations. A
pp-formula over R is an existentially quantified product of atomic formulae:

ψ = ∃xn+1 . . . xn+m

s∧
j=1

ϕj

A basis for the relational clone I is a set R of Boolean relations such that the relations
in I are exactly the relations that can be implemented with a pp-formula over R∪ {EQ}.
Therefore I = 〈R〉R, and note that every relational clone has such a basis. For R ∈ 〈R〉R,
it holds that 〈R∪{R}〉R = 〈R〉R. A basis R is called plain basis for 〈R〉R, if every member
of 〈R〉R is definable by a CNF(R)-formula.

The main idea is that implementations from pp-formulas for the constraints correspond
to reductions for the counting problems defined by these constrains. Therefore in order
to study the complexity for cases of #CSP, depending on which relational clone the con-
straints of the instance belong to, we only have to study the complexity of the instances
containing relations from the basis of the clone.

Figure 4.1: Post’s lattice and the relational clone IM2

4.2. UNWEIGHTED BOOLEAN #CSP 33

The relational clone we are going to use is IM2. Its position in Post’s lattice can be
seen in figure 4.1. The basis that defines IM2 is R = {δ0, δ1, IMP}. Moreover it is proven
to be a plain basis for IM2. This means that every relation in IM2 is logically equivalent
with a conjunction of predicates of the following three forms:

1. δ0(xi) = {(0)} = ¬xi

2. δ1(xi) = {(1)} = xi

3. IMP(xi, xj) = {(0, 0), (0, 1), (1, 1)} = xi → xj

4.2.2 The Trichotomy Theorem

For the unweighted boolean #CSP, in terms of approximation preserving reduction, we
have a correspondence with the three classes of problems stated in section 4.1.2. Namely
in this section we are going to present the proof of the following theorem as given in [18].

Theorem 4.2.2. Let F be a constraint language with domain {0, 1}. Then one of the
following hold:

1. If every relation if F is affine then #CSP(F) ∈ FP.
(Admitting FPRAS.)

2. If every relation in F is in IM2 then #CSP(F) ≡AP #BIS.
(#RHΠ1-complete)

3. Otherwise #CSP(F) ≡AP #SAT.
(Inapproximable under assumptions)

Proof. The lemmata used in this proof are going to be stated here unproven. The reader
is referred to original paper for a complete proof.

1. If every relation if F is affine then #CSP(F) ∈ FP: This comes directly from the
Craignou-Herman #CSP dichotomy as stated in theorem 3.2.3.

2. If every relation in F is in IM2 then #CSP(F) ≡AP #BIS: We begin with the case
that ifF ⊆ IM2 then #CSP(F) ≤AP #Downsets ≡AP #BIS. Let F ⊆ IM2, hence
every constraint an instance I of #CSP(F) is a conjunction of the form δ0(xi) or
δ1(xi) or IMP(xi, xj). But since a CSP instance is a conjunction of constrains, we
can restate the previous phrase so that #CSP(F) has constraints of the form δ0(xi)
or δ(xi) or IMP(xi, xj). Define IMP?(xi, xj) the transitive closure of IMP, that is
IMP(xi, xj) ∧ IMP(xj, xk) =⇒ IMP?(xi, xk). Now let N0(I) be the set of variables
forced to take the value 0. A variable xi can be in N0(I), if δ0(xi) ∈ I or IMP?(xi, xj)
and δ0(xj) are in I. Similarly define N1(I) to be the set of variables forced take
the value 1. I.e. if xi ∈ N1(I) then either δ1(xi) ∈ I or IMP(xj, xi) and δ1(xj) are
in I. Removing all the variables of the instance I that are in N0(I) and in N1(I),

34 CHAPTER 4. APPROXIMATING #CSP

and the constraints that are applied to them, doesn’t affect the number of solutions.
Variables forced to take one value can only be satisfied in one way, therefore the only
nonzero addends of the partition function are the ones for witch these variables take
their forced value. Furthermore we can identify all pairs of variables s.t. IMP?(xi, xj)
and IMP?(xj, xi). Again this action has no effect on the number of solutions, as xi
and xj will create nonzero addend of the partition function only if they take the
same value. The remaining variables and relations define a partial order, namely
(X,�). Let σ be an evaluation of the variables. The evaluation of a variable, such
that σ(xi) = 1, corresponds to xi belonging in the downset. Hence it cannot hold
IMP(xi, xj) with σ(xj) = 1 and σ(xi) = 0, the satisfying assignments are in one to
one correspondence with the downsets of (X,�). Note in fact that we have proven
the stronger #CSP(F) ≤pm #Downsets.

Now consider the case where F ⊆ IM2 and not Affine. We will show that #BIS ≤AP

#CSP(F). We will make use of the following two lemmata:

Lemma 4.2.3. For a constraint language F with domain {0, 1}, either #CSP(F ∪
{δ0}) ≤AP #CSP(F) or #CSP(F ∪ {δ1}) ≤AP #CSP(F).

Note that lemma 4.2.3 is the only part of this proof that takes advantage of the re-
quirement relaxation from exact computations to approximate with high probability.

Lemma 4.2.4. If R is a non affine relation over {0, 1} then {R, δ0} implements
either OR= {(0, 1), (1, 0), (1, 1)}, IMP, NAND= {(0, 0), (0, 1), (1, 0)}. (same holds
for {R, δ1})

Observe that if F implements R, then #CSP(F ∪ {R}) ≤pm #CSP(F). This also
holds for the AP-reduction. By combining the previous lemmata, we have one of the
following cases:

(a) #CSP(F ∪ {δ0, IMP}) ≤AP #CSP(F ∪ {δ0})
(b) #CSP(F ∪ {δ0,NAND}) ≤AP #CSP(F ∪ {δ0})
(c) #CSP(F ∪ {δ0,OR}) ≤AP #CSP(F ∪ {δ0})

The same hold for δ1 in place of δ0, but since the proof is symmetrical, will will only
show it for the three cases above. In order to complete the proof we now have to prove
that the following hold: #BIS ≤AP #CSP({IMP}), #BIS ≤AP #CSP({NAND})
#BIS ≤AP #CSP({OR}).

• #BIS ≤AP #CSP({IMP}): Let G = (V1, V2, E) be an instance of #BIS.
Consider the the reduction that corresponds to each vertex v ∈ G the variable
v, and to each edge {v1, v2} ∈ E, with v1 ∈ V1, the constraint IMP(v1, v2).
The independent sets of G are in one to one correspondence with the satisfying
assignments of #CSPF . A vertex v1 ∈ V1 is in the independent set of G if and
only if σ(v1) = 1. Respectively a vertex v2 ∈ V2 is in the Independent Set if and
only if σ(v2) = 0.

4.3. WEIGHTED BOOLEAN #CSP 35

• #BIS ≤AP #SAT ≡AP #IS ≤AP #CSP({NAND}): Let G = (V,E) instance
of #IS. Consider the the reduction that corresponds to each vertex v ∈ G the
variable v, and to each edge {v1, v2} ∈ E the constraint NAND(v1, v2). The
independent sets of G are in one to one correspondence with the satisfying
assignments of #CSP(F). A vertex v ∈ V is in the independent set of G if and
only if σ(v) = 1.

• #BIS ≤AP #SAT ≡AP #IS ≤AP #CSP({OR}): The reduction is the same
with the one above; corresponds to each vertex v ∈ G the variable v, and to
each edge {v1, v2} ∈ E the constraint NAND(v1, v2). The independent sets of G
are in one to one correspondence with the satisfying assignments of #CSP(F).
In this case a vertex v ∈ V is in the independent set of G if and only if σ(v) = 0.

3. #CSP(F) ≡AP #SAT. The fact that #CSP(F) ≤AP #SAT comes from the
fact that #SAT is complete for #P with respect to the approximation preserving
reduction. The part #SAT ≤AP #CSP(F), when F is neither affine, nor contains
relations only from IM2 is an immediate consequence of the following lemma:

Lemma 4.2.5. Let R1 and R2 be relations on {0, 1} (not necessarily separate). If
R1 is not affine and R2 is not in IM2 then #SAT ≤AP #CSP({R1, R2}).

4.3 Weighted Boolean #CSP

Now we consider the Weighted version. That is the constraints are functions with boolean
domain, and their range is in positive real numbers. We could consider functions with
negative numbers, but this will introduce cancellations, which will increase the difficulty of
our analysis. There is a dichotomy theorem [49, 50, 51] for complex weighted functions, that
prove dichotomies for the problems #CSPc and #CSP?. These problems are the analogues
of Holantc and Holant? respectively. That means that all unweighted for (the c-case) or
complex-weighted (for the ? case) unary constraints are freely available. Furthermore, there
is the restriction that the variables appear at most a bounded number of times among all
given constraints.

In this section we are going to present more general results than the ones above, as
they appear in [6, 41].

4.3.1 Functional Clones

In section 4.2.1 we defined the pp-formulas over relations. As we pointed out before, pp-
implementations between constraints correspond to reductions among the CSP problems.
As we intend to study weighted #CSP, we will generalize our definitions in order to explore
functional clones.

36 CHAPTER 4. APPROXIMATING #CSP

Definition 4.3.1 (pps-Formula). Let F be a set of boolean functions.A primitive positive
summation formula over F is a summation of a product of atomic formulae of F :

ψ =
∑

xn+1...xn+m

s∏
j=1

φj.

And specifies the function Fψ : Dn → R:

Fψ(x) =
∑
y∈Dm

s∏
j=1

Fφj(x,y).

Like in the relational setting we can define the functional clone 〈F〉 to be the set
of Boolean functions containing exactly the relations that can be implemented with a
pps-formula over R ∪ {EQ}, where EQ is the function specified by the equality relation
EQ= {(0, 0), (1, 1)}. Every functional clone has a basis. Note also that for F ∈ 〈F〉, it
holds that 〈F ∪ {F}〉 = 〈F〉.

If it were the case that we were interested in exact computations we would stop here, but
we want to consider approximate computations, therefore we have to consider constraint
functions that correspond to AP-reductions.

Definition 4.3.2 (ppsω Definable Functions). We say that an α-ary function F with
domain D is ppsω-definable over F , if there exists a finite subset SF ⊆ F , such that, for
every ε > 0, there exists an α-ary function F̂ , pps-definable over SF , such that:

‖F − F̂‖∞ = max
x∈Dα

|F − F̂ | < ε

Again we can define the ppsω functional clone 〈F〉ω to be the set of Boolean functions
containing exactly the relations that can be implemented with a pps-formula overR∪{EQ}.
Every ppsω functional clone has a basis. Note also that for F ∈ 〈F〉ω, it holds that
〈F ∪ {F}〉ω = 〈F〉ω.

Many approximation-preserving reductions in the literature are based not on a fixed
“gadget” but on sequences of increasingly-large gadgets that come arbitrarily close to
some property without actually attaining it. The notion of ppsω-definability provided here
is intended to capture this phenomenon.

Will will use a computationally effective version of 〈F〉ω, in order to obtain the main
lemma of this section.

Definition 4.3.3 (Efficiently ppsω Definable Functions). We say that a function F is
efficiently ppsω-definable over F if there is a finite subset SF of F , and a TM MF,SF with
the following property: on input ε > 0, MF,SF computes a pps-formula ψ over SF such that
Fψ has the same arity as F and ‖Fψ − F‖∞ < ε. The running time of MF,SF is at most a
polynomial in log ε−1.

4.3. WEIGHTED BOOLEAN #CSP 37

Likewise the efficiently ppsω-definable functional clone 〈F〉ω,p, is the set of all functions
that can be represented efficiently by a ppsω-formula over F∪{EQ}. And the corresponding
closure property still holds, that is, G ∈ 〈F〉ω,p =⇒ 〈F ∪ {G}〉ω,p = 〈F〉ω,p.

Since we want to derive computational results, we now restrict attention to functions
whose co-domains are restricted to efficiently-computable real numbers. A real number is
polynomial-time computable if the first n bits of its binary expansion can be computed in
time polynomial in n. For n ∈ N, we will denote with Bpn the set of boolean with arity
n and domain the polynomial-time computable real numbers, and with Bp the boolean
functions of all arities with domain the polynomial-time computable real numbers.

Finally we are ready to state the main theorem of this section:

Theorem 4.3.4. Let F be a finite set of Bp. If F ∈ 〈F〉ω,p, then #CSP(F,F) ≤AP

#CSP(F).

That is the notion of efficient ppsω-definable clone captures the complexity of approxi-
mation preserving reductions in terms of #CSP’s. An immediate corollary is the following:

Corollary 4.3.5. Let S1 and S2 be two different sets of relations, such that, 〈S1〉ω,p =
〈S2〉ω,p, then #CSP(S1) ≡AP #CSP(S2).

4.3.2 Log-supermodular Functions

In contrast with the relational clones, where we have a complete picture of Post’s lattice,
we know little about the functional clones, and especially, since we are interested in AP-
reductions, the efficient ppsω functional clones. In order to present the first results regarding
ppsω functional clones we need to define Log-supermodular functions:

Definition 4.3.6. A function F is log-supermodular (lsm) if F (x∨y)F (x∧y) ≥ F (x)F (y)
and by LSM, we denote the class of all lsm functions.

The term log-supermodular comes from the fact that F is lsm if and only if lnF is
supermodular. It isn’t hard to observe that the natural logarithm of all boolean functions
of arity 1 is modular, so it is also supermodular, hence all boolean functions of arity 1 are
lsm. Another example of lsm function, which is also a binary function is IMP(x, y).

The reason to study lsm functions is because of their closure property that ppsω-
definable clones from lsm functions, contain only lsm functions. Formally stated:

Lemma 4.3.7. If F ⊆ LSM is any set of lsm functions then 〈F〉ω ⊆ LSM.

If we only consider binary functions, that is of arity two (members of Bp2), we can get
a clear picture of the ppsω-functional clones. Every binary Boolean function can belong in
one of the following sets:

• 〈Bp1〉ω,p, functions that can be efficiently ppsω-defined over unary functions.

• 〈NEQ,Bp1〉ω,p functions that can be efficiently ppsω-defined over unary functions and
the function specified by the relation NEQ= {(0, 1), (1, 0)}.

38 CHAPTER 4. APPROXIMATING #CSP

• 〈IMP,Bp1〉ω,p functions that can be efficiently ppsω-defined over unary functions and
the function IMP.

• 〈OR,Bp1〉ω,p functions that can be efficiently ppsω-defined over unary functions and
the function OR.

Furthermore the clone 〈OR,Bp1〉ω,p can efficiently ppsω-define all the binary functions
(total clone for boolean binary functions). So when we restrict our functions to binary we
have a quite complete picture of the clones lattice. Namely:

〈Bp1〉ω,p (
〈NEQ,Bp1〉ω,p
〈IMP,Bp1〉ω,p

(〈OR,Bp1〉ω,p = Bp.

As the interest is focused in obtaining general results, we want to study the functional
clones of all functions of Bp. The main theorem of [6] states that if a function is not
generated2 by the NEQ-clone (〈NEQ,Bp1〉ω,p), then it generates the function IMP. But the
most important part of this theorem is the fact that there are no functional clones lying
strictly between the clone of lsm functions and the total clone, or in other words, if a clone
can generate a non-lsm function, then it can generate every function. Formally we have:

Theorem 4.3.8. For F ∈ Bp the following hold:

• If F /∈ 〈NEQ,Bp1〉 then IMP ∈ 〈F,Bp1〉ω,p, and hence 〈IMP,Bp1〉ω,p ⊆ 〈F,B
p
1〉ω,p

• If, in addition, F /∈ LSM, then 〈F,Bp1〉ω,p = Bp

This also holds for the non-effective version of the theorem, that is the range of the func-
tions can be the non-negative reals (functions in B instead of Bp), and the ppsω-definability
can be noneffective.

One wonders whether the IMP clone suffices to generate all the lsm functions. The
results of [41] state that that is not the case:

Theorem 4.3.9. Let LSMk = LSM ∩ Bk. The following hold:

• 〈LSM2〉 = 〈LSM3〉

• 〈LSM2〉 (〈LSM4〉

With a vague picture on the functional clones lattice, we are ready to proceed on the
complexity results on boolean #CSP, with constraint functions in Bp, in terms of AP-
reductions:

Theorem 4.3.10. [Bulatov, Dyer, Goldberg, Jerrum [6]] Suppose F is a finite subset of
Bp

2By generate we mean efficiently ppsω-define.

4.3. WEIGHTED BOOLEAN #CSP 39

• If F ⊆ 〈NEQ,Bp1〉 then for any finite subset S of Bp1, there is an FPRAS for
#CSP(F , S).

• Otherwise:

– There is a finite subset S ⊆ Bp1, such that #BIS ≤AP #CSP(F , S)

– If there is a function F ∈ F ,then there is a finite subset S ⊆ Bp1 such that,
F /∈ LSM then #SAT ≡AP #CSP(F , S).

As it can be deduced from the above theorem, what we know of the complexity of
#CSP, with constraint functions in Bp, is that we can approximate #CSPF , if F is
in the clone F ⊆ 〈NEQ,Bp1〉, otherwise the problem is at least as hard to approximate
as any problem in #RHΠ1. Provided that F contains some non-lsm functions then the
corresponding constraint satisfaction problem is inapproximable under complexity theoretic
assumptions.

There are many problems that remain open in therms of the approximation of counting
problems: Does the conjecture that #BIS and in general the problems of #RHΠ1, are
indeed inapproximable, and under which complexity theoretic assumptions? Which func-
tional clone corresponds to the computational complexity of #RHΠ1, in other words can
we make theorem 4.3.10 into “1-1” correspondence with the approximate counting classes?
Furthermore as we stated previously the functional clones lattice picture is still incomplete.
Can the study of the functional clones be helpful in other areas, can we deduce from it
other interesting complexity results for #CSP’s?

The ultimate goal for #CSP’s, is to have a complete dichotomy theorem for the general
case like in [10], but in terms of AP-reductions. It is also interesting to study the complexity
of Holant problems under both reductions (Turing and AP), again a series of results from
the more restricted cases to the general ones is expected.

40 CHAPTER 4. APPROXIMATING #CSP

Appendix A

Holographic Algorithms

This appendix is a brief introduction to a recent algorithmic technique named holographic
algorithms. Holographic Algorithms were introduced by Valiant in [46], and manage to
solve “exotic” problems, not previously known to be in FP, in polynomial time. High level
speaking, the general idea is to reduce (within polynomial time) a counting problem to the
the problem of counting the perfect matchings of a planar graph. The latter problem is
known to have a polynomial algorithm (FKT-algorithm) due to Kastelyn and Temperley
and Fisher independently [23, 37, 38].

Let us now define formally the problem of counting perfect matchings:

Definition A.0.11. The problem #PerfMatch is the following:
Input: An undirected graph G = (V,E,W) with weights on its edges.
Output:

PerfMatch(G) =
∑
E′

∏
(i,j)∈E′

wi,j,

where the summation is over all perfect matchings E ′ of G.

Note that if for every edge (vi, vj) ∈ E, we set wi,j = 1, PerfMatch(G) is exactly the
number of the perfect matchings of G. The corresponding decision problem is known to
be in P, but on the other hand the counting problem #PerfMatch is #P-complete [45].

When G is a planar graph the we can solve it using the FKT-algorithm:

Theorem A.0.12. There is a polynomial time computable function f that given a planar
embedding of a planar graph G = (V,E,W) defines f : E → {−1, 1} such that for the
antisymmetric matrix M defined so that for all i < j

• if (i, j) 6∈ E then Mi,j = Mj,i = 0, and

• if (i, j) ∈ E then Mi,j = f(i, j) · wi,j and Mj,i = −f(i, j) · wi,j,

it is the case that PerfMatch(G) =
√
Det(M).

In order to solve a counting problems with the help of a holographic algorithm we are
going to use the following strategy, named holographic reduction:

41

42 APPENDIX A. HOLOGRAPHIC ALGORITHMS

• The individual components of an instance I of a counting problem (e.g. nodes and
edges) will be replaced by gadgets that we call matchgates.

• Therefore, we transform the instance I to an instance Ω of what we call a matchgrid.

• The weighted sum of the perfect matchings of Ω will equal the number of solutions
of I.

Therefore solving #PerfMatch with the FKT-algorithm we have an algorithm for
the initial counting problem.

Let us now provide the definitions for the above:

Definition A.0.13. A planar matchgate Γ is a triple (G,X, Y) where G is a planar
embedding of a planar graph (V,E,W), where X ⊆ V is a set of input nodes, Y ⊆ V is a
set of output nodes, and X ∩ Y = ∅.

• The arity of the matchgate is |X|+ |Y |.

• The standard signature of Γ with respect to a set Z ⊆ X ∪ Y is PerfMatch(G−Z).

• The standard signature of Γ is the 2|X| × 2|Y | matrix u(Γ) whose elements are the
standard signatures of Γ with respect to Z for all possible choices of Z.

Crucial to the holographic reductions is finding a proper basis:

Definition A.0.14. A basis (of size 1) is a set of two distinct nonzero vectors, which we
call n and p.

Furthermore the basis b0 = [n, p] = [(0, 1), (1, 0)] is called the standard basis. Note
that in general, the vectors in a basis do not need to be independent.

As an example we are going to use the basis b1 = [n, p] = [(−1, 1), (1, 0)]
If we have two vectors q, r of length l,m, respectively, then we shall denote the tensor

product s = q ⊗ r to be the vector s of length l · m in which si·m+j = qi · rj. Thus, for
example, for the basis b1, n⊗ p = (−1, 0, 1, 0).

We are going to use two kinds of matchgates as defined bellow:

Definition A.0.15. We say that a matchgate is a generator if it has zero input nodes and
nonzero output nodes.
Similarly, we say that a matchgate is a recognizer if it has zero output nodes and nonzero
input nodes.

Figure A.1: A generator matchgate

43

A generator matchgate Γ for basis b1 with output nodes {1, 2} and one edge of weight
-1 can be found in figure A.1.

The standard signature u(Γ) of the matchgate in figure A.1 is the vector (-1,0,0,1).
Therefore, it generates n⊗ n+ n⊗ p+ p⊗ n. The signature of this generator with respect
to the basis b1 will then be (1,1,1,0). For x ∈ {n, p}2 we shall denote by valG(Γ, x) the
signature element corresponding to x. Thus, for the current example, valG(Γ, n ⊗ p) = 1
and valG(Γ, p⊗ p) = 0.

A recognizer matchgate for basis b1 with input nodes v1, v2, · · · , v5 and edge weights
w1, w2, · · · , w5 can be seen in figure A.2.

Figure A.2: A recognizer matchgate

Let us consider a recognizer like the above but with k inputs. The purpose of such
recognizers is to have PerfMatch take on appropriate values as the inputs range over 2k

possible tensor product values x = x1 ⊗ x2 ⊗ · · · ⊗ xk, where xi ∈ {n, p}. If vector u is the
standard signature of Γ, then valR(Γ, x) is the inner product of u and x.

The following proposition holds for generator matchgates:

Proposition A.0.16. For all k > 0 and for all w1, · · · , wk there exists a k − input
recognizer matchgate Γ such that on input x = x1 ⊗ x2 ⊗ · · · ⊗ xk ∈ {n, p}k over basis b1,
valR(Γ, x) equals:

• −(w1 + · · ·+ wk) if x1 = · · · = xk = n,

• wi if xi = p, and xj = n for every j 6= i,

• 0 otherwise.

The above proposition holds for the recognizer of figure A.2, where the number of input
vertices is k = 5.

We define a matchgrid over a basis b to be a weighted undirected planar graph G that
consists of:

• a set B of g generator matchgates B1, · · · , Bg,

• a set A of r recognizer matchgates A1, · · · , Ar, and

• a set C of f connecting edges C1, · · · , Cf where each Ci edge has weight one and
joins an output node in a generator with an input node of a recognizer.

44 APPENDIX A. HOLOGRAPHIC ALGORITHMS

Consider such a matchgrid Ω = (A,B,C) and denote by X = bf = (n, p)f the set of
2f possible combinations of the basis elements n, p that can be transmitted simultaneously
along the f connecting edges in the matchgrid.

The value of the matchgrid at x is the quantity

Holant(Ω) =
∑
x∈bf

[
∏

1≤j≤g

valG(Bj, xj)] · [
∏

1≤i≤r

valG(Ai, x)].

In the core of holographic reductions, and holographic algorithms, lies the following
theorem:

Theorem A.0.17 (Valiant ’04 [46]). For any matchgrid Ω over any basis b if Ω has
weighted graph G then

Holant(Ω) = PerfMatch(G).

Let us now give some examples of these “exotic” problems that now have a polynomial
time holographic algorithm.

We begin with the problem #X-Matchings:
Input: A Planar Wighted Bipartite Graph G = {V = (V1, V2), E,W}, where the nodes in

V1 have degree 2.
Output:

∑
M mass(M), where M is a (not necessarily perfect) matching and

mass(M) =
∏

(i,j)∈M

wi,j
∏
i unsat

[−
∑
j∼i

wi,j]

The holographic algorithm for #X-Matchings, constructs a matchgrid H over b1
by replacing: v ∈ V1 with the generator matchgate of the example and u ∈ V2 with the
recognizer matchgate of the example of proper degree. For each edge (u, v) connect an
output of the generator matchgate of u to an input of the recognizer matchgate for v. It
is obvious that Holant(ΩH) = #X-Matchings(G)

Some other problems that have been solved by holographic algorithms are:

• #Pl-3-Nae-Sat: Planar not-all-equal 3 satisfiability (CNF).

• #7Pl-Rtw-Mon-3-Cnf:
Input: A planar 3CNF Boolean formula where each variable appears positively and
in exactly two clauses (Planar, Read-twice, monotone, 3CNF).
Output: Number of sat. assignments.

The holographic algorithm for the latter problem was given in [47]. The surprising fact
about it is that solving it mod 2 is ⊕P-complete!

To sum things up, in order to design a Holographic Algorithm for a combinatorial
problem, one has to do the following:

1. Find suitable basis vectors.

45

2. Find the suitable matchgates.

A series of results [52, 53, 56, 59, 54, 55, 57, 58, 60, 61, 25] explore the realizable signatures,
that is the functions for which we can find a matchgate with the proper values under the
relevant basis.

A Holographic Algorithm uses planar perfect matchings on a planar matchgrid in order
to compute the output. This usually restricts the problem to planar combinatorial in-
stances. Cai, Lu, Xia in [62] extended the Holographic algorithms to non-planar structures
by introducing a new gadget in order to realize signatures called Fibonacci gates. Some
new counting problems that can be solved in polynomial time are the following:

• Given a 3-regular graph, compute the number of even colorings minus the number of
odd colorings. (2-coloring on the edges, even when even edges are colored black).

• Given a Rtw-Cnf formula, compute the number of even lying assignments minus
the number of odd lying assignments. (A variable is lying when it is inconsistent).

We conclude by explaining the fact that Valiant’s function HolantΩ is the same expres-
sion with the counting problem framework HolantΩ′ , where Ω′ = (G,F, π), that we used
in section 3.1.3: every vertex v of HolantΩ′ problem can be replaced by a matchgate, with
value equal to fv. The degree of v equals to the number of output nodes of the matchgate.
Assignments to edges of G correspond to vectors of the basis used by the matchgrid.

46 APPENDIX A. HOLOGRAPHIC ALGORITHMS

Bibliography

[1] Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert
Vollmer. The complexity of satisfiability problems: Refining Schaefer’s theorem. Elec-
tronic Colloquium on Computational Complexity (ECCC), (100), 2004.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[3] Andrei A. Bulatov. A dichotomy theorem for constraints on a three-element set. In
FOCS, pages 649–658, 2002.

[4] Andrei A. Bulatov, Martin E. Dyer, Leslie Ann Goldberg, Markus Jalsenius, Mark
Jerrum, and David Richerby. The complexity of weighted and unweighted #CSP.
CoRR, abs/1005.2678, 2010.

[5] Andrei A. Bulatov, Martin E. Dyer, Leslie Ann Goldberg, Markus Jalsenius, and
David Richerby. The complexity of weighted boolean #CSP with mixed signs. Theor.
Comput. Sci., 410(38-40):3949–3961, 2009.

[6] Andrei A. Bulatov, Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. Log-
supermodular functions, functional clones and counting csps. In STACS, pages 302–
313, 2012.

[7] Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor.
Comput. Sci., 348(2-3):148–186, 2005.

[8] Jin-Yi Cai. Holographic algorithms: guest column. SIGACT News, 39(2):51–81, 2008.

[9] Jin-Yi Cai and Xi Chen. A decidable dichotomy theorem on directed graph homo-
morphisms with non-negative weights. In FOCS, pages 437–446, 2010.

[10] Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In
STOC, pages 909–920, 2012.

[11] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A
dichotomy theorem. In ICALP (1), pages 275–286, 2010.

47

48 BIBLIOGRAPHY

[12] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Non-negatively weighted #CSP: An effective
complexity dichotomy. In IEEE Conference on Computational Complexity, pages 45–
54, 2011.

[13] Jin-Yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and back: Di-
chotomy for Holantc problems. In ISAAC (1), pages 253–265, 2010.

[14] Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holant problems and counting CSP. In STOC,
pages 715–724, 2009.

[15] Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Holant* problems of boolean
domain. In SODA, pages 1714–1728, 2011.

[16] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500,
2003.

[17] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted
boolean #csp. CoRR, abs/0704.3683, 2007.

[18] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation tri-
chotomy for boolean #csp. J. Comput. Syst. Sci., 76(3-4):267–277, 2010.

[19] Martin E. Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomor-
phisms to directed acyclic graphs. J. ACM, 54(6), 2007.

[20] Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homo-
morphisms. Random Struct. Algorithms, 17(3-4):260–289, 2000.

[21] Martin E. Dyer and David Richerby. On the complexity of #CSP. In STOC, pages
725–734, 2010.

[22] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory. SIAM
J. Comput., 28(1):57–104, 1998.

[23] Michael Fisher and Harold Temperley. Dimer problem in statistical mechanics-an
exact result. Philosophical Magazine, 6:1061–1063, 1961.

[24] Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank
connectivity, and homomorphism of graphs. 2007.

[25] Zhiguo Fu and Jin-Yi Cai. Holographic algorithms on domain size k > 2. In TAMC,
pages 346–359, 2012.

[26] Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity
dichotomy for partition functions with mixed signs. CoRR, abs/0804.1932, 2008.

BIBLIOGRAPHY 49

[27] Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the tutte polynomial.
Inf. Comput., 206(7):908–929, 2008.

[28] Pavol Hell and Jaroslav Nesetril. On the complexity of h-coloring. J. Comb. Theory,
Ser. B, 48(1):92–110, 1990.

[29] Francois Jaeger, Dirk L. Vertigan, and Dominic J. A. Welsh. On the computational
complexity of the jones and tutte polynomials. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 108(1):35–53, 1990.

[30] Peter Jeavons, David A. Cohen, and Martin C. Cooper. Constraints, consistency and
closure. Artif. Intell., 101(1-2):251–265, 1998.

[31] Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints.
J. ACM, 44(4):527–548, 1997.

[32] Peter Jeavons and Martin C. Cooper. Tractable constraints on ordered domains. Artif.
Intell., 79(2):327–339, 1995.

[33] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation
algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–
697, 2004.

[34] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of com-
binatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169–188,
1986.

[35] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[36] Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumeration and
reliability problems. In FOCS, pages 56–64, 1983.

[37] Pieter Kasteleyn. Dimer statistics and phase transitions. Journal of Mathematical
Physics, 4:287–293, 1963.

[38] Pieter Kasteleyn. Graph theory and crystal physics. In F. Harrary: Graph Theory
and Theoretical Physics, page 43–110. New York: Academic Press, 1967.

[39] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM,
22(1):155–171, 1975.

[40] Pinyan Lu. Complexity dichotomies of counting problems. Electronic Colloquium on
Computational Complexity (ECCC), 18:93, 2011.

[41] Colin McQuillan. Lsm is not generated by binary functions. CoRR, abs/1110.0461,
2011.

50 BIBLIOGRAPHY

[42] Ugo Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Inf. Sci., 7:95–132, 1974.

[43] Christos M. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[44] Thomas J. Schaefer. The complexity of satisfiability problems. In STOC, pages 216–
226, 1978.

[45] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

[46] Leslie G. Valiant. Holographic algorithms (extended abstract). In FOCS, pages 306–
315, 2004.

[47] Leslie G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565–1594, 2008.

[48] Dominic J. A. Welsh. Complexity: Knots, Colourings and Counting. Cambridge
University Press, 1993.

[49] Tomoyuki Yamakami. Approximate counting for complex-weighted boolean constraint
satisfaction problems. In WAOA, pages 261–272, 2010.

[50] Tomoyuki Yamakami. Approximation complexity of complex-weighted degree-two
counting constraint satisfaction problems. In COCOON, pages 122–133, 2011.

[51] Tomoyuki Yamakami. Optimization, randomized approximability, and boolean con-
straint satisfaction problems. In ISAAC, pages 454–463, 2011.

[52] Jin yi Cai and Vinay Choudhary. Some results on matchgates and holographic algo-
rithms. In ICALP (1), pages 703–714, 2006.

[53] Jin yi Cai and Vinay Choudhary. Valiant’s holant theorem and matchgate tensors. In
TAMC, pages 248–261, 2006.

[54] Jin yi Cai, Vinay Choudhary, and Pinyan Lu. On the theory of matchgate computa-
tions. In IEEE Conference on Computational Complexity, pages 305–318, 2007.

[55] Jin yi Cai and Pinyan Lu. Bases collapse in holographic algorithms. In IEEE Con-
ference on Computational Complexity, pages 292–304, 2007.

[56] Jin yi Cai and Pinyan Lu. Holographic algorithms: from art to science. In STOC,
pages 401–410, 2007.

[57] Jin yi Cai and Pinyan Lu. Holographic algorithms: The power of dimensionality
resolved. In ICALP, pages 631–642, 2007.

BIBLIOGRAPHY 51

[58] Jin yi Cai and Pinyan Lu. On block-wise symmetric signatures for matchgates. In
FCT, pages 187–198, 2007.

[59] Jin yi Cai and Pinyan Lu. On symmetric signatures in holographic algorithms. In
STACS, pages 429–440, 2007.

[60] Jin yi Cai and Pinyan Lu. Holographic algorithms with unsymmetric signatures. In
SODA, pages 54–63, 2008.

[61] Jin yi Cai and Pinyan Lu. Signature theory in holographic algorithms. In ISAAC,
pages 568–579, 2008.

[62] Jin yi Cai, Pinyan Lu, and Mingji Xia. Holographic algorithms by fibonacci gates and
holographic reductions for hardness. In FOCS, pages 644–653, 2008.

[63] Jin yi Cai, Pinyan Lu, and Mingji Xia. Holographic algorithms with matchgates
capture precisely tractable planar #csp. In FOCS, pages 427–436, 2010.

