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Chapter 1

Introduction

One of the most well known problems in theoretical computer science is
the satisfiability problem for classical propositional logic (SAT). In fact, SAT
is the problem that first comes to mind when NP-completeness is discussed.
Furthermore, for every logic defined, the question of how easy or hard it is
to decide for a formula whether it is satisfiable, or provable for this logic is
one of the most compelling and the first to ask. Thus, it is natural to ask
this question and try to classify the satisfiability problem for intuitionistic
and modal logic, as well as for the much younger justification logic.
Steve Cook was the first to study the complexity of the satisfiability problem,
in [10], in 1971, resulting in the well-known Cook’s theorem, showing that it
is NP-complete, with profound consequences for the field of computational
complexity. For the various modal logics, the problem was studied by Lad-
ner in [30] (1977), while Statman in [38] (1979) showed that intuitionistic
propositional logic is PSPACE-complete.
The logic of proofs (LP) was first presented by S.Artemov in [3], providing
an answer to questions posed for a long time in logic. Since then, it has
further developed and evolved into a plethora of justification logics, as with
the paradigm of modal logics, a collection of logics, of which the original,
LP, is a member. This system of logics has been shown to carry significant
properties and its study has led to fresh and naturally ambitious directions.
It is thus the obvious next step to consider the provability problems and
dual, the satisfiability problem, for justification logic. Kuznets, Krupski and
Milnikel have moved towards this end and provided many results that demon-
strate in their own way that this system of justification logics is non-trivial
in that it behaves in very different ways than known logics, while still being
connected in a robust way to the well-known modal logics.
As the field is still young, however, there are still plenty of unanswered ques-
tions and open problems concerning the complexity of satisfiability. Further-
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8 CHAPTER 1. INTRODUCTION

more, due to the complexity of the whole structure, these questions had been
many, to begin with.
This thesis attempts to present three different topics. The first is a summary
of historical results concerning the complexity of the provability (validity)
and the satisfiability problem for propositional intuitionistic and modal log-
ics. The second is an overview of the system of logics, now known as justifi-
cation logic. The focus lies, however, on the presentation of the main results
concerning the complexity of the validity problem for justification logic. Not
all justification logics are presented here and not all concepts are discussed.



Chapter 2

Needed Concepts

2.1 Logic

2.1.1 Classical and Intuitionistic Propositional Logic

Syntax

The syntax of Intuitionistic and Classical Logic is the same. Propositional
(or sentence) variables are included, p, q, r, . . ., the bottom symbol ⊥ and the
propositional connectives ∧,∨,→,¬.
Formally, the set of propositional variables will be Slet = {p1, . . . , pn, . . .}.

Definition 2.1.1. If A,B are formulas of propositional logic, then so are:

⊥, p, q, . . ., where p, q, . . . are propositional variables.

(A ∧ B)

(A ∨ B)

(A→ B)

¬A

Many times it is convenient to consider ¬A to be short for A → ⊥, and
especially when dealing with intuitionistic logic. On the other hand, while it
is customary when dealing with classical logic to include only two symbols
to the language (usually ¬ and one more, or ⊥ and→) and consider the rest
of the connectives definable from those, this is not possible in the case of
intuitionistic logic.

As usual, parentheses will be omitted when not necessary. ¬ will bind
more strongly than ∧, which will in turn bind more strongly than ∨, and ∨
will in turn bind more strongly than →. → will be right-associative.
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Axiomatizations

A Hilbert-style axiomatization of Intuitionistic and Classical proposi-
tional Logic follows. This has been taken from Melvin Fitting’s notes on
classical propositional logic. The axioms are

A→ B → A

(A→ B → C)→ (A→ B)→ A→ C

A ∧B → A

A ∧B → B

A→ B → A ∧ B

A→ A ∨ B

B → A ∨ B

(A→ C)→ (B → C)→ A ∨B → C

⊥ → A

¬¬A→ A - double negation rule : only in Classical Logic,

where A,B,C are formulas of the language. And one rule, Modus Ponens:

A→ B A

B

Definition 2.1.2. A proof of formula A in C (in int) is a finite sequence
of formulas, A1, . . . , An, where for all i, Ai is either an axiom of classical
(intuitionistic) propositional logic, or occurs by application of modus ponens
on two formulas appearing previously in the proof, and An is A.
We write C ⊢ A, or ⊢C A (int ⊢ A, or ⊢int A), if there exists a proof of A in
C (int).

Semantics

For classical propositional logic, defining semantics is simple:

Definition 2.1.3. A valuation is a function v : Slet −→ {True, False}.

Definition 2.1.4. A valuation v is said to make a formula φ of classical
propositional logic true (φv = true), if
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• φ = p, a propositional variable and v(p) = True,

• φ = ψ1 ∧ ψ2 and v makes both ψ1 and ψ2 true,

• φ = ψ1 ∨ ψ2 and v makes at least one of ψ1 and ψ2 true,

• φ = ψ1 → ψ2 and v makes ψ2 true, or ψ1 false, or

• φ = ¬ψ and v makes ψ false.

For Intuitionistic Logic, a valuation function is not sufficient. The seman-
tics presented here are Kripke semantics, and although they are not the only
ones defined for this logic, they are the most convenient for the material of
this thesis.

Definition 2.1.5. A Kripke structure K = (W,≤, D) for intuitionistic logic
is a partially ordered set W of states and a function D from states to sets of
propositional variables.

a ≤ b =⇒ D(a) ⊆ D(b)

The truth relation in K is defined:

• K, a 6|= ⊥

• K, a |= p iff p ∈ D(a)

• K, a |= A ∧ B ⇐⇒ a |= A and a |= B

• K, a |= A ∨ B ⇐⇒ a |= A or a |= B

• K, a |= A→ B ⇐⇒ ∀b ≥ a (b |= A⇒ b |= B)

Definition 2.1.6. A propositional formula is called classically (intuitionis-
tically) satisfiable if there is a valuation (Intuitionistic Kripke model) that
makes the formula true (at some state of the model).

Definition 2.1.7. A propositional formula is called classically (intuitionis-
tically) valid if there for all valuations (Intuitionistic Kripke models) make
the formula true (at all states).

Observation 2.1.1. For classical logic, the notions of validity and satisfiability
are dual: a formula φ is satisfiable if and only if its negation is not valid, and
vice-versa. This is not true for intuitionistic logic, but it is true for all other
logics considered in this thesis.

Theorem 2.1.1 (Completeness). A formula is classically (intuitionistically)
valid if and only if it is classically (intuitionistically) valid.
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Figure 2.1: The model K. D(1) = D(3) = ∅, D(2) = {p}.

Corollary 2.1.1. Therefore, the Validity problem is equivalent to the Prov-
ability problem. “provable” and “valid” will be used interchangeably.

Example 2.1.1. Consider the Kripke modelK(W,≤, D), whereW = {1, 2, 3}
and ≤= {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)} and D(1) = D(3) = ∅, D(2) = {p}.
In K, K, s2 |= p, K, 3 |= ¬p, but K, 1 6|= p and K, 1 6|= ¬p, therefore
K, 1 6|= p ∨ ¬p, thus p ∨ ¬p, a classical tautology is not intuitionistically
valid.

2.1.2 Normal Modal Logics

Here, the syntax and semantics of some well-known modal logics will be
briefly presented, along with tableau rules for these logics.

Syntax

Definition 2.1.8. The formulas of modal logic are defined in the following
way:

• Propositional variables are modal formulas : p1, p2, p3, . . ..

• If A,B are formulas =⇒ so are A ∧ B,A ∨ B,A→ B,⊥,2A.

• Nothing else is a formula.

Again, we can think of ¬A as short for A → ⊥. The set of modal formulas
isML
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Axiomatizations

Like in the case of classical and intuitionistic propositional logic, axioms
will be provided for Normal Modal Logics. Of course, not all normal modal
logics share the same axioms.
Axioms:

A1 Tautologies of propositional logic

A2 2φ ∧2(φ→ ψ)→ 2ψ (K)

A3 2φ→ φ (T)

A4 2φ→ 22φ (4)

A5 ¬2φ→ 2¬2φ (5)

A6 ¬2⊥ (D)

R1 Modus Ponens

R2 Knowledge Generalization:
φ

2φ

Definition 2.1.9. The following table defines a number of normal modal
logics, according to the axioms it uses.

Logic K T 4 5 D
K X X

D X X

T X X

S4 X X X

S5 X X X X

KD45 X X X X

In general, considering that K is included in all normal modal logics, and
with the exception of S4, S5, the name of a modal logic directly implies the
axioms it contains.

Definition 2.1.10. A Normal Modal Logic is a modal logic that contains
at least the propositional tautologies, axiom scheme K and is closed under
Modus Ponens and Knowledge Generalization.

Observation 2.1.2. Apparently, the smallest (in terms of provable formulas)
normal modal logic is K.
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Semantics

Similarly to the semantics of intuitionistic logic, the semantics for modal
logic will include Kripke structures. Of course, the semantics for Modal
Logic preceded the ones for Intuitionistic logic. In fact, the Kripke models
for Intuitionistic logic are just a special case of the ones that will be presented
below.

Definition 2.1.11. • A Kripke frame is a pair (W,R), where R ⊆ W 2

(accessibility relation)

• A Kripke structure is a triple M = (W,R, v), where v : ML → 2W

For s ∈ W , the truth relation |= is defined between worlds and modal
formulas.

– For any propositional variable p, (M, s) |= p⇐⇒ s ∈ v(p).

– (M, s) |= φ ∧ ψ ⇐⇒ (M, s) |= φ and (M, s) |= ψ.

– (M, s) |= φ ∨ ψ ⇐⇒ (M, s) |= φ or (M, s) |= ψ.

– (M, s) |= φ→ ψ ⇐⇒ (M, s) 6|= φ or (M, s) |= ψ.

– (M, s) |= ¬φ⇐⇒ (M, s) 6|= φ

– (M, s) |= 2φ⇐⇒ for all t, accessible from s, (M, t) |= φ

Definition 2.1.12. Now, the Kripke models for each Modal Logic will be
specified, by demanding certain conditions from the accessibility relation of
the frames.

• For K, no conditions are needed. All Kripke models defined above are
models for K.

• For D, we demand that the accessibility relation is serial (For each
world w there is a world u s.t. R(w, u)).

• T , we demand that the accessibility relation is reflexive(For each world
w, R(w,w)).

• K4, we demand that the accessibility relation is transitive. (For every
x, y, w worlds, R(x, y) and R(y, w) imply that R(x, w))

• S4, we demand that the accessibility relation is reflexive and transitive.

• S5, we demand that the accessibility relation is reflexive, symmetric
and transitive (it is an equivalence relation).

Theorem 2.1.2 (Completeness). Each Modal Logic introduced above is
sound and complete with respect to its corresponding Kripke models.
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Tableaux Rules for Modal Logic

Tableau Rules will be presented for Modal Logic. These will be particu-
larly useful when dealing with the complexity of Validity for Modal Logic.

Definition 2.1.13. A prefixed modal formula is a formula of the form Tφ,
or Fφ, where φ is a modal formula.

We will also use state prefixes for the formulas in the tableaux. The
formulas that will be actually used are of the form σ V φ, where σ is a state
prefix, V ∈ {T, F} and φ is a modal formula.
The following are the tableau rules for the modal logics introduced.

σT X ∧ Y

σT X
σT Y

σF X ∨ Y

σF X
σF Y

σF X → Y

σT X
σF Y

σT X ∨ Y

σT X | σT Y

σF X ∧ Y

σF X | σF Y

σT X → Y

σF X | σT Y

Remark 2.1.1. Up until now, by ignoring the following rules and the state
prefixes, we have a sound and complete system for classical propositional
logic. There are also tableu systems for intuitionistic logic, but they will not
be used in the following.

σF¬X

σT X

σT3X

σ.nTX

σF2X

σ.nFX
,

for σ.n new.
σT2X

σ.nTX

σF3X

σ.nFX
,

for σ.n that already occurs in the branch.

If the logic contains T:
σT 2X

σT X

σF 3X

σF X

If the logic contains D:
σT 2X

σT 3X

σF 3X

σF 2X

If the logic contains 4:
σT 2X

σ.nT 2X

σF 3X

σ.nF 3X
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If the logic contains 5:
σ.nT 2X

σT 2X

σ.nF 3X

σF 3X
,

for σ, σ.n already occurring in the tableau branch.

A rule of the form
A

B
C

or
A

B | C

describes the following action: from A, produce formulas B, C. For the first
rule, insert both to the tableau, while for the second, split it to two branches
each containing one of the formulas.

Definition 2.1.14. A tableau branch is closed if it contains both σ Tφ and
σ Fφ, for some σ and φ.

Definition 2.1.15. A formula φ is provable if there is a tableu that has 1 Fφ
at its root, and by applying tableau rules, all its branches eventually become
closed.

Theorem 2.1.3. The above tableau proof systems are sound and complete
w.r.t. their corresponding logics.

2.1.3 Justification Logics

LP was the first justification logic to appear, in [2]. Since then, jus-
tification logic has developed significantly, with a multitude of logics and
variations, many of which are presented in the following.

Syntax

Here, the common language of the justification logics that this thesis will
study will be defined. The language will include justification constants ci, i ∈
N, justification variables: xi, i ∈ N, justification terms, usually denoted
t, s, . . . and also called evidence terms, proof terms, proof polynomials, and
in some cases in this text and when the meaning is clear from the context,
just terms. These are defined:

Definition 2.1.16 (Justification Terms ).
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• Constants and variables are terms

• If t1, t2 are terms, so are

(t1 · t2), (t1 + t2), (!t1)

· is called application, + is called sum and ! proof checker. The set of
justification terms will be called Tm.

Also, propositional variables will be used in the language: pi, i ∈ N.
The set of propositional variables will be called SLet. The formulas of the
language are

Definition 2.1.17.

• All propositional variables are formulas

• If p is a propositional variable, t is a term and F1, F2 are formulas, then
so are

p, ⊥, (F1 → F2), (t : F1)

The language formed like that will be called JL.

¬F is seen as short for F → ⊥, and the rest of the connectives can
be defined in the usual way from these. Also as usual, parentheses will be
omitted using standard conventions, and naturally, !s : s : F will be read as
(!s : (s : F )).

Axiomatizations

Some axioms of justification logic are the following.

A1 Finitely many schemes of classical propositional logic

A2 s : (F → G)→ (t : F → s · t : G) - Application Axiom

A3
s : F → s+ t : F
s : F → t+ s : F - Monotonicity Axiom

A4 t : F → F - Factivity Axiom

A5 t : F →!t : t : F - Positive introspection

A6 t : ⊥ → ⊥ - Consistency Axiom
and the rules:
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MP Modus Ponens Rule :
F → G F

G

R4

c : A,

R4!

! · · ·!!c : · · ·!!c :!c : c : A,

R4CS

c : A,

where c : A ∈ CS

R4!
CS

! · · ·!!c : · · ·!!c :!c : c : A,

where c : A ∈ CS,

where in the above, F and G are formulas in JL, c a justification constant, A
an axiom of the logic and CS a constant specification for the logic in question
(defined below).

Remark 2.1.2. R4!
CS is admissible in the presence of Positive Introspection

rule and R4CS . Similarly, A6 is an instance of A4. Therefore, these will not
be used together in the same logic.

Definition 2.1.18. A constant specification for a justification logic JL is
any set

CS ⊂ {c : A | c is a constant, A an axiom of JL}

A c.s. is:

• axiomatically appropriate if each axiom is justified by at least one con-
stant.

• injective if every constant justifies at most one axiom.

• schematic if every constant justifies a certain number of axiom schemes
(0 or more).
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• schematically injective if it is schematic and every constant justifies at
most one scheme

• finite if it is a finite set

• almost schematic if it is the union of a schematic and a finite c.s.

The empty constant specification, ∅, will also be considered, as well as the to-
tal constant specification, TCSJL = {c : A | c is a constant, A an axiom of JL}.

Observation 2.1.3. The total constant specification is schematic and axiomat-
ically appropriate, but not schematically injective.

Below, a table appears that provides a guide for the justification logics
this thesis deals with.

Logic A1 A2 A3 A4 A5 A6 MP R4CS R4!
CS

J X X X X X

JD X X X X X X

JT X X X X X X

J4 X X X X X X

JD4 X X X X X X X

LP X X X X X X X

Definition 2.1.19. The justification logics J, JD, JT, J4, JD4, LP in the
language JL are defined by the axioms and rules indicated by thr above
table. The original justification logic, LP , originally the Logic of Proofs,
according to the uniform notation used for all other logics could also have
been named JT4. As LP is chronologically the first justification logic defined,
it keeps its name to avoid confusion.

Remark 2.1.3. Other justification logics have also been defined that are not
mentioned, in extended languages. This thesis does not deal with those.

Definition 2.1.20. If JL is a justification logic and CS a constant specifica-
tion for this logic, then JLCS is JL with R4 (or R4!, respectively) replaced
by R4CS (R4!

CS , respectively). JL0 = JL∅ and JL = JLTCSJL
.

Properties of Justification Logics and Definitions

Definition 2.1.21. The forgetful projection is a function ◦ : JL −→ ML
that converts justification formulas into modal formulas. It is defined by
induction:
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• p◦ = p

• ⊥◦ = ⊥

• (F → G)◦ = (F ◦ → G◦), and finally,

• (t : F )◦ = 2(F ◦),

where p is a propositional variable, F,G are justification formulas and t is a
justification term.

Theorem 2.1.4 (Realization Theorem [2, 9, 37, 6] ). The following hold:

1. J◦ = K

2. JD◦ = D

3. JT ◦ = T

4. J4◦ = K4

5. JD4◦ = D4

6. LP ◦ = S4

Remark 2.1.4. From now and on, except when made explicit, whenever it is
said that L is a justification logic, it will be meant that L is one of the logics
J, JD, JT, J4, JD4, LP .

Corollary 2.1.2. For any constant specification CS and justification logic
L of those defined above, LCS is consistent.

Proof. It suffices to show that the full L is consistent. But if L is inconsis-
tent, L ⊢ ⊥, which leads to L◦ ⊢ ⊥. This is a contradiction to the established
consistency of the modal logics established above.

Lemma 2.1.1 (Internalization Property [4, 6] ). For any justification logic L
and CS axiomatically appropriate constant specification for L, if

F1, . . . , Fn ⊢LCS
B,

then there exists a term t(x1, . . . , xn) for some fresh justification variables
x1, . . . , xn, such that

x1 : F1, . . . , xn : Fn ⊢LCS
t(x1, . . . , xn) : B
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Remark 2.1.5. The requirement that CS is axiomatically appropriate cannot
be dropped. According to the theorem, all axioms are justified. For this, an
axiomatically appropriate CS is needed.

Corollary 2.1.3 (Constructive Necessitation). For any justification logic L
and CS axiomatically appropriate constant specification for L, if

LCS ⊢ B,

then there exists a ground term t s.t.

LCS ⊢ t : B.

Lemma 2.1.2 (Lifting Lemma [4, 6]). For any justification logic L with pos-
itive introspection (J4, JD4, LP ), CS axiomatically appropriate constant
specification for L, if

F1, . . . , Fn, q1 : G1, . . . qm : Gm ⊢LCS
B,

for some justification terms q1, . . . , qm, then there exists a term

t(x1, . . . , xn, y1, . . . , ym)

for xi, yi fresh variables, s.t.

x1 : F1, . . . , xn : Fn, q1 : G1, . . . qm : Gm ⊢LCS
t(x1, . . . , xn, y1, . . . , ym) : B

Lemma 2.1.3 (Deduction Theorem [4, 6]). For any justification logic L, con-
stant specification CS, if

Γ, F ⊢LCS
G,

then
Γ ⊢LCS

F → G.

The following property has certain requirements from the constant spec-
ification.

Lemma 2.1.4 (Substitution Property[4, 6]). For any justification logic L and
schematic constant specification for L, CS, if

Γ ⊢LCS
F,

then
Γ[s\x,G\p] ⊢LCS

F [s\x,G\p],

where [s\x,G\p] means substituting justification term s for justification vari-
able x and/or formula G for propositional variable p.
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Remark 2.1.6. Again, the requirement for a schematic constant specification
cannot be dropped. However, a different version of the property exists, with
different requirements of the constant specification.

Lemma 2.1.5 (Substitution Property with renaming of constants [16]). For
any justification logic L and axiomatically appropriate constant specification
for L, CS, if

Γ ⊢LCS
F,

then

Γ[s\x,G\p] ⊢LCS
F̄ [s\x,G\p],

where [s\x,G\p] means substituting justification term s for justification vari-
able x and/or formula G for propositional variable p, and formula F̄ is ob-
tained from F by possibly substituting some justification constants for others.

Definition 2.1.22. For any justification logic L and constant specification
CS, the reflected fragment of LCS is

rLCS = {t : F | LCS ⊢ t : F}.

Definition 2.1.23 (∗-calculi). ∗CS Axioms: ∗(c : A), where c : A ∈ CS

∗CS ! Axioms: ∗(! · · ·!!c :!c : c : A), where t : A ∈ CS

∗A2
∗(s, F → G) ∗(t, F )

∗(s · t, G) ,

∗A3
∗(t, F )

∗(s+ t, t : F )

∗(s, F )

∗(s+ t, t : F )

∗A4
∗(t, F )

∗(!t, t : F ) ,

The calculi: ∗CS-calculus includes ∗CS !, A2, A3, and ∗!CS-calculus includes
∗CS, A2, A3 and A5

Remark 2.1.7. The ∗-calculi provide an independent axiomatization of the
reflected fragments of the justification logics.
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Theorem 2.1.5 ([25, 28]). For any justification logic L and constant speci-
fication CS,

LCS ⊢ t : F ⇐⇒ rLCS ⊢ t : F ⇐⇒⊢∗CS ∗(t, F ),

if L is one of J, JD, JT , and

LCS ⊢ t : F ⇐⇒ rLCS ⊢ t : F ⇐⇒⊢∗!CS ∗(t, F ),

otherwise.

Semantics

Semantics for the justification logics that were introduced above will be
provided. In this thesis, the semantics that are mostly needed are via M-
models, as these are very useful for studying complexity properties due to
their compact description. However, there is another way to provide se-
mantics for the justification logics. These are the F-models that provide
Kripke-style semantics. These are useful for other reasons. They provide
semantics for logics not discussed here, for which there are no known se-
mantics via M-models, they are useful for studying the interaction between
the justification logics and the classical modal logics, and even define Hybrid
Justification Logics that combine both the justification formalism and the
classical modality. However, for the logics studied here, the two approaches
are equivalent.

Definition 2.1.24. An M-model for a justification logic LCS in language
JL, where CS is a constant specification for L is a pair

M = (V,A),

where propositional valuation

V : SLet −→ {True, False}

assigns a truth value to each propositional variable and

A : Tm× JL −→ True, False

is an admissible evidence function. Informally, A(t, F ) specifies whether term
t is considered admissible evidence for formula F . A(t, F ) will be used as
an abbreviation for A(t, F ) = True and ¬A(t, F ) as an abbreviation for
A(t, F ) = False.
The admissible evidence function must satisfy certain closure conditions that
depend on the axioms and rules of LCS :
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Application Closure: If A(s, F → G) and A(t, F ) then A(s · t, G).

Sum Closure: If A(s, F ) then A(s+ t, F ).
If A(t, F ) then A(s+ t, F ).

CS Closure: If c : A ∈ CS, then A(c, A) and

A(!! · · ·!
︸ ︷︷ ︸

n

c, !! · · ·!
︸ ︷︷ ︸

n−1

c : · · · :!c : c : A), for any n ≥ 1.

Positive Introspection Closure (only if A5 is an axiom of L) IfA(t, F )
then A(!t, t : F )

Consistent Evidence Condition (only if A6 is an axiom of L) A(t,⊥) =
False,

For any formulas F,G, any terms s, t, any c : A ∈ CS, and any integer n ≥ 1.
The truth relationM |= H is defined as follows:

• M |= p iff V (p) = True

• M 6|= ⊥

• M |= F → G iffM 6|= F orM |= G

• M |= t : F iffM |= F and A(t : F ) (if A4 is an axiom of L) -definition
1

• M |= t : F iff A(t : F ) (if A4 is not an axiom of L) -definition 2

for any formulas F,G, any term t and any propositional variable p.

Definition 2.1.25 (Simplified CS Closure). Another condition is the follow-
ing: If c : A ∈ CS, then A(c, S).

Proposition 2.1.1. Let A : Tm × JL −→ True, False satisfy both the
Positive Introspection Closure and the Simplified CS Closure. Then A also
satisfies the full CS Closure condition.

The following table summarizes which closure conditions and which def-
inition of truth for formulas t : F should be used for various justification
logics. The CS Closure condition is replaced by its simplified version when-
ever possible.



2.1. LOGIC 25

Appl. Sum CS Simpl.CS Pos.Intr. Cons.Evid.
Logic Closure Closure Closure Closure Closure Condition def. 1 def.2
J X X X X

JD X X X X X

JT X X X X

J4 X X X X X

JD4 X X X X X X

LP X X X X X

Theorem 2.1.6 (Completeness Theorem for M-models [34, 26]). Each jus-
tification logic from JCS , JDCS , JTCS , J4CS , JD4CS , LPCS , where CS is a
constant specification for that logic is sound and complete with respect to
its M-models.

In what follows, possible evidence functions are introduced and some of
their properties are presented.

Definition 2.1.26. An M-type possible evidence function is any function

B : Tm× Fm −→ {True, False}.

A possible evidence function is essentially an admissible evidence function
with no conditions imposed on it.

Definition 2.1.27. We say that an M-type possible evidence function B2 is
based on an M-type possible evidence function B1 and write

B1 ⊆ B2,

if for all terms t and formulas F ,

B1(t, F ) =⇒ B2(t, F ).

Definition 2.1.28. Let EF be a class of M-type possible evidence functions.
A possible evidence function B ∈ EF is called the minimal evidence function
in EF if for all B′ ∈ EF ,

B′ ⊆ B.

Proposition 2.1.2. If the minimal evidence function in a class exists, it is
unique.

Theorem 2.1.7 ([34]). For any L justification logic of the ones considered
here, CS constant specification for L and any possible evidence function B,
the class of M-type admissible evidence functions for LCS based on B is
symbolized AEFB(LCS), is nonempty and has a unique minimal element.
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2.2 Computational Complexity

Here, the concepts from Complexity Theory needed for later will be pre-
sented. The model of computation assumed is the Turing Machine, although
others could be easily used with no, or with minimal effect.

Definition 2.2.1. TIME(t(n)) (or DTIME(t(n))): problems that can be
solved by a deterministic TM in time t(n).

Definition 2.2.2. NTIME(t(n)): problems that can be solved by a non
deterministic TM in time t(n).

Definition 2.2.3. SPACE(s(n)) (or DSPACE(s(n))): problems that can
be solved by a deterministic TM by using additional working space s(n).

Definition 2.2.4. NSPACE(s(n)): problems that can be solved by a non
deterministic TM by using additional working space s(n).

Based on the above, we define:

• P = PTIME =
⋃

i≥1DTIME(ni)

• NP = NPTIME =
⋃

i≥1NTIME(ni)

• PSPACE =
⋃

i≥1DSPACE(ni)

• NPSPACE =
⋃

i≥1NPSPACE(ni)

• L = DSPACE(logn)

• NL = NSPACE(logn)

• DEXP =
⋃

i≥1DTIME(2n
i

)

• DEXPSPACE =
⋃

i≥1DSPACE(2n
i

)

• f is constructible: there is a TM which, for all inputs x with |x| = n,
accepts the input in time O(n+ f(n)) (time- constructible) or working
space O(f(n)) (space- constructible).

Proposition 2.2.1. If If f is constructible, then:

• DSPACE(f(n)) ⊆ NSPACE(f(n))

• DTIME(f(n)) ⊆ NTIME(f(n))
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• DTIME(f(n)) ⊆ DSPACE(f(n))

• NTIME(f(n)) ⊆ DSPACE(f(n))

• If f(n) > log n, then

- NTIME(f(n)) ⊆ DTIME(cf(n))

- DSPACE(f(n)) ⊆ DTIME(cf(n))

• NSPACE(f(n)) ⊆ DTIME(klogn+f(n)).

Theorem 2.2.1 (Savitch’s Theorem). If f(n) ≥ logn, then

NSPACE(f(n)) ⊆ DSPACE(f 2(n))

An immediate consequence: PSPACE = NPSPACE.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE

We know that L 6= PSPACEandNL 6= PSPACE.
The rest of the relationships between these classes are open problems.

Definition 2.2.5. FP is the class of functions that can be computed by a
deterministic TM in polynomial time.

Definition 2.2.6. FL is the class of functions that can be computed by a
deterministic TM in logarithmic space.

Definition 2.2.7. Complement of a language

L = {x|x /∈ L}

Complement class:
coC = {L|L ∈ C}

For example, SAT ∈ coNP , and P is closed under complement.

Theorem 2.2.2 (Immerman- Szelepcsényi). NSPACE(s(n)) is closed un-
der complement.

Definition 2.2.8 (Karp Reduction). We say that a language A is polyno-
mially (or Karp) reducible to B,

A ≤Pm B iff ∃f ∈ FP, ∀x(x ∈ A⇐⇒ f(x) ∈ B)
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Definition 2.2.9 (Log-space reduction). We say that a language A is Log-
space reducible to B,

A ≤Lm B iff ∃f ∈ FL, ∀x(x ∈ A⇐⇒ f(x) ∈ B)

We have A ≤Lm B =⇒ A ≤Pm B, but not the converse.

Definition 2.2.10. We say that class C is closed under reduction ≤ if

A ≤ B ∧ B ∈ C =⇒ A ∈ C.

Definition 2.2.11 (Hardness). A is C-hard, under leq, if:

∀B ∈ C : B ≤ A

Definition 2.2.12 (Completeness). A is C- complete, under ≤, if:

A is C - hard under ≤ ∧A ∈ C .

Definition 2.2.13. The problem SAT (satisfiability) is defined:

Given: A boolean formula in CNF.

Question: Is there an assignment that satisfies the formula ?

Theorem 2.2.3. (Cook).The SAT problem in NP- complete.

Computation with an oracle: An algorithm uses an oracle for problem
Π, if the algorithm can pose (during the computation) a query to the oracle
for some instance χ of problem Π, whether χ ∈ Π, and the oracle answers
’yes’ or ’no’. The algorithm does not spend any additional resources when it
asks a question to the oracle (it gets the correct answer for ’free’ even though
problem Π can be very hard).

Definition 2.2.14. • CΠ : class of problems solvable by an algorithm in
class C that uses an oracle for problem Π

•
CC≀ =

⋃

Π∈Co

CΠ

E.g.: P SAT : Problems solvable by a deterministic polynomial algorithm
using an oracle for the SAT problem. Another equivalent description: PNP

(because SAT is NP- complete).

Definition 2.2.15. (k ≥ 0)
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• Σp
0 = Πp

0 = ∆p
0 = P

• Σp
k+1 = NPΣ6pk ,Πp

k+1 = coΣp
k+1,∆

p
k+1 = PΣp

k ,∆Σp
k = Σp

k ∪Πp
k

• Polynomial hierarchy: PH = ∩k∈NΣp
k

Σp
1 = NP , Πp

1 = coNP and ∀k ≥ 0 : Σp
k ⊆ Σp

k+1 and Πp
k ⊆ Σp

k+1.

Although there is no proof of the strictness of the above inclusions (like
in the arithmetic hierarchy), it is believed that the polynomial hierarchy is
strict. If PH is not strict, then ∃k : PH = Σp

k, i.e., the PH collapses at the
k-th level.

A different way to define PH : using quantifier alteration (∃and∀). In all
cases, quantifiers quantify over strings whose size is bounded by a polynomial
p w.r.t input size.

Proposition 2.2.2. L ∈ Σp
k iff ∃ predicate R computable in polynomial time

and a polynomial p that bounds the quantified variables, such that:

x ∈ L⇐⇒ ∃y1∀y2 . . . QkykR(x, y1, y2, . . . , yk),

where

Qk =

{
∃ , if k is odd
∀, if k is even

Similarly for Πp
k, but the quantifiers start from ∀:

Proposition 2.2.3. L ∈ Πp
kiff∃ predicated R computable in polynomial

time and a polynomial p that bounds the quantified variables, such that:

x ∈ L⇐⇒ ∀y1∃y2 . . . QykR(x, y1, y2, . . . , yk),

where

Qk =

{
∀, if k is odd
∃, if k is even

Definition 2.2.16. An alternating Turing machine is a nondeterministic
Turing machine in which the set of states is partitioned into two sets, KAND, KOR.
(The corresponding configurations are usually refered to as type ∧ and type
∨ nodes in the computation tree)
Let x be an input to the machine. The set of eventually accepting configu-
rations of the machine is defined as follows:
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• All halting configurations are eventually accepting iff they are accept-
ing.

• A configuration with its state in KAND is eventually accepting iff all
its permissible succesor configurations are accepting, and

• A configuration with its state in KOR is eventually accepting iff any of
its permissible succesor configurations is accepting.

The TM accepts the input x iff the initial configuration is an eventually
accepting configuration.
An alteration in the computation of the machine is a transition, during the
computation, from a state in in KAND to a state in in KOR, or vice-versa.

Definition 2.2.17. Similarly to the definitions ofDTIME(f(n)), NTIME(f(n)),
P ,NP ,DSPACE(f(n)),NSPACE(f(n)), L, NL, PSPACE, andNPSPACE,
the classes ATIME(f(n)), AP , ASPACE(f(n)), AL and APSPACE are
defined.

Proposition 2.2.4. • AL = P

• AP = PSPACE

When describing an alternating algorithm later on, it might be said that
a choice is universal, or existential, meaning that the current state when the
choice is made is in KAND, or in KOR, respectively.

It can be shown that the polynomial hierarchy is exactly the class of
languages accepted by TMs with a bounded number of alternations.

• L ∈ Σp
k iff L is acceptable by a TM with at most k alternations, starting

with type ∨ (at the root);

• L ∈ Πp
k iff L is acceptable by a TM with at most k alterations, starting

with type ∧.

Finally, the following problems will be used later in reductions:

Definition 2.2.18. The problem ∀∃3SAT is defined:

Input: A formula of the form ∀~p ∃~q φ(~p, ~q), where φ is a propositional for-
mula in 3CNF and ~p, ~q are short for p1, . . . , pn, q1, . . . , qm, respectively.

Question: Is it true that ∀~p ∃~q φ(~p, ~q)?

This problem is known to be Πp
2-complete.
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Definition 2.2.19. The problem QBF is defined:

Input: A closed formula of the form φ = Q1p1 · · ·Qkpk, where ψ is a propo-
sitional formula in 3CNF and p1, . . . , pk, are propositional letters.

Question: Is it true that φ?

This problem is known to be PSPACE-complete.
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Chapter 3

The Complexity of the Validity
Problem

In this chapter, the complexity of the Validity problem is discussed, for
Intuitionistic, Modal and Justification Logic. Of course, the problem was
first studied for the case of Classical Propositional Logic, by S.Cook, in [10].

3.1 Intuitionistic Logic and Validity

The Complexity of the Validity Problem for the case of Intuitionistic
Logic was first studied by Statman in [38] and was proven to be PSPACE−
complete. An alternative proof was given by Svejdar in [39].

Theorem 3.1.1. [38] The problem of determining if an arbitrary formula is
intuitionistically valid is PSPACE − hard.

Proof. [39] The proof is by reduction from QBF .
Let A = Qmpm · · ·Q1p1B be a QBF formula, where B contains no quantifiers
and Qi ∈ {∃, ∀}. An effort will be made to keep connectives others than →
and ∧ out of the formula that will be formed. For this, new variables, namely
q1, . . . , qm and s1, . . . , sm. The formulas A∗

i will be defined recursively.
Let A∗

0 be Bp1, . . . , pm. If i > 0 and Qi is ∃, then A∗
i is

(A∗
i−1 → qi) ∧ ((pi → qi)→ si) ∧ ((¬pi → qi)→ si)→ sj

and if i > 0 and Qi is ∀, then A∗
i is

(A∗
i−1 → qi) ∧ ((pi → qi) ∧ (¬pi → qi)→ qi)→ qj

Let A∗ be A∗
m. By induction on i, it will be shown that for 0 ≤ i ≤ m, and

any e, evaluation of the variables pi+1, . . . , pm, e 2 Qipi · · ·Q1p1B(p1, . . . , pm)

33
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⇐⇒ A∗
j has a counterexample in which each variable among pi+1, . . . , pm is

evaluated according to e in all states of the structure.
So, let e be an evaluation of pi+1 · · · pm.

For i = 0 (base case) If e makes B false, then the structure with one state
that evaluates p1, . . . , pm according to e is a counterexample to A∗

0 = B.
On the other hand, if K is a counterexample for A∗

0, in which each pj
is evaluated according to e in all states, then it is straightforward to
see that in all states, v, e(pj) = true =⇒ v |= pj and e(pj) = false =⇒
v |= ¬pj . Thus, immediately, e 2 B.

For i > 0 Let Qi = ∃, and e 2 ∃piQi−1pi−1 · · ·Q1p1B. Also, let et be an eval-
uation of pi−1, . . . , pm s.t. et(pi) = true and for all j > i, et(pj) = e(pj),
and let ef be an evaluation of pi−1, . . . , pm s.t. ef(pi) = false and for all
j > i, ef (pj) = e(pj). Neither of et and ef satisfy Qi−1pi−1 · · ·Q1p1B.
Thus, by the induction hypothesis, there exist counterexamples, K0, K1,
for A∗

i−1, s.t. pi−1, . . . , pm are evaluated in all states according to ef and
et, respectively. Let a0, a1 be the respective roots of these structures.
Let K be the structure constructed by combining K0 and K1, together
with new state a, s.t. a ≤ a0, a1 6≤ a, ≤ on K0, K1 and ≤ behaves in
the obvious manner for all other pairs. Now, the truth values of the
variables, that have not yet been defined, will be given for the states
of K.

• In a, pi+1, . . . , pm are assigned truth values according to e.

• p1, . . . , pi, q1, . . . , qi−1, s1, . . . , si−1 are all negative in a.

• qj has everywhere the same truth value as A∗
i−1

• si has everywhere the same truth value as (pi → qi) ∨ (¬pi → qi)

Now, it can be checked that K is a counterexample for A∗
i .

If Qi = ∃, and K is a counterexample for A∗
i , in which each pj, j > i is

evaluated according to e in all states, then in K there must be a state
a s.t.

a |= (A∗
i−1 → qi) ∧ ((pi → qi)→ si) ∧ ((¬pi → qi)→ si)

and a 2 sj . So, a |= (¬pi → qi)→ si, therefore a 2 pi → qi. From that,
there exists a a0 ≥ a in K s.t. a0 |= ¬pi, a0 2 qi. And because a ≤ a0,
a0 |= A∗

i−1 → qi. In conclusion, a0 2 A∗
i−1. The substructure generated

by a0 is a counterexample to A∗
i−1, where pi is everywhere negative.

Similarly, by taking a1 |= pi, we have a counterexample for A∗
i−1, where
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pi is everywhere true. Let et, ef be defined as above. By the induc-
tion hypothesis, et 2 Qi−1pi−1 · · ·Q1p1B and ef 2 Qi−1pi−1 · · ·Q1p1B.
Therefore, e 2 ∃piQi−1pi−1 · · ·Q1p1B.
The case for Qi = ∀ is similar.

Remark 3.1.1. Later, for the case of various modal logics, a reduction is given
to the satisfiability problem for these logics, thus establishing the PSPACE-
completeness for it. Then, we conclude that since PSPACE = coPSPACE,
then the provability problem is also PSPACE-complete. This cannot be
done here, as the set of intuitionistically provable and the set of intuitionisti-
cally satisfiable formulas are not complements of each other, as is the case for
all other logics considered in this thesis. Moreover, the set of intuitionistically
satisfiable formulas is the same as the set of classically satisfiable proposi-
tional formulas, which is known to be NP -complete. Thus, the satisfiability
problem for intuitionistic logic is widely believed not to be PSPACE-hard.

Observation 3.1.1. We can also reach a conclusion about the implicational
fragment of intuitionistic logic, that is the set of formulas in intuitionis-
tic logic that contain only the symbol →. Remember that ¬A is short for
A → ⊥. That is the reason that an effort has been made to avoid connec-
tives other than → and ∧ in the construction of the proof above. To show
hardness of implicational formulas, the following changes can be made to the
construction. First, replace B with a classically equivalent implicational for-
mula. Then, after the construction, use the fact that A∧B∧C∧· · ·∧D → E
is intuitionistically equivalent to A → (B → (C → (· · · → (D → E) · · · ))).
Notice that conjunctions appear only in this context. In fact, we can even
avoid the symbol ⊥, but this will not be covered here.

So far, all at has been proven is the PSPACE−hardness of intuitionistic
logic. Proof of PSPACE − completeness also needs a PSPACE algorithm
deciding whether a given formula is intuitionistically valid. This will be
accomplished by giving a translation t of every propositional formula A into
S4, s.t.

Int ⊢ A⇐⇒ S4 ⊢ t(A)

and a PSPACE algorithm for the validity problem for S4. This translation
can be described simply: ”Prefix all subformulas of A with 2”.

Proposition 3.1.1. Int ⊢ A⇐⇒ S4 ⊢ t(A)

Theorem 3.1.2. The problem of determining if an arbitrary formula is in-
tuitionistically valid is PSPACE − complete.

The theorem is proven by combining 3.1.1, the above proposition and
theorem 3.2.2.
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3.2 Modal Logic and Validity

Observation 3.2.1. It is immediately apparent that the satisfiability prob-
lem for all modal logics mentioned here is NP − hard, as any propositional
formula is classically satisfiable iff it is satisfiable for any modal logic and, fur-
thermore, the satisfiability problem for classical propositional logic is known
to be NP − complete. Therefore, to establish NP − completeness for the
satisfiability problem on a modal logic, all that is needed is to show that
the problem is in NP . Also, according to the previous section, to establish
PSPACE − completeness for the satisfiability problem for S4, all that is
required is to show that the problem is in PSPACE.

Proposition 3.2.1. Given a structure M , and a (modal) formula φ, there is
an algorithm for checking if φ is satisfied in M , that runs in time O(‖M‖·φ).

Proof. In time O(|φ|), an increasing (in terms of length) sequence of all
subformulas of φ can be produced. Taking each formula in turn, we can fill
a |φ| × |M | matrix that keeps the information of which formula is true in
which state. By the definition of truth, this can be done in the required
time. Then, all we have to do is check if φ is satisfied in any state.

Proposition 3.2.2. An S5 (or KD45) formula φ is satisfiable iff it is satis-
fiable in a structure inMrst ( inMelt) with at most |φ| states.

Proof. First, the proof for S5.
All that is needed to show is that if φ is satisfiable in a structure M , then it
is satisfiable in a structure M ′, with at most |φ| states.
Suppose (M, s) |= φ. We can assume, w.l.o.g. that M = (S, π,R), where
R = S2. Otherwise, we can consider M to be the induced substructure on
the equivalence class (defined by the relation R) that includes s. Let F be
the set of subformulas of φ that have the form 2ψ that are false at s. For
each 2ψ ∈ F , let sψ be one of the states in S, s.t. (M, sψ) |= ¬ψ. Let
M ′ = (S ′, π′,R′) be the induced substructure of M on S ′ = {s} ∪ {sψ |
Kψ ∈ F}. Since |F | < |Sub(φ)| ≤ |φ|, |S ′| ≤ |φ|. It will be shown by
induction on the structure of ψ, for any ψ, subformula of φ, and any s′ ∈ S ′,
(M, s′) |= ψ ⇐⇒ (M ′, s′) |= ψ.
The cases of propositional variables or connectives, are trivial. If the formula
is 2ψ, then

(M, s′) |= 2ψ ⇒

(M, s′′) |= ψ, for all s′′ ∈ S ⇒

(M, s′′) |= ψ, for all s′′ ∈ S ′ ⇒
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(M ′, s′′) |= ψ, for all s′′ ∈ S ′ (Ind.Hyp.)

⇒ (M, s′) |= 2ψ

Conversely,

(M, s′) |= ¬2ψ ⇒

(M, s′′) |= ¬ψ, for some s′′ ∈ S ⇒

(M, s) |= ¬2ψ, as (s, s′′) ∈ R ⇒

2ψ ∈ F ⇒

∃sψ ∈ S
′ (M, sψ) |= ¬ψ ⇒

(M ′, spsi) |= ¬ψ (Ind.Hyp.) ⇒

(M, s′) |= ¬2ψ.

This completes the proof for S5.
For KD45, the proof is similar, with the following changes. We don’t assume
R = S2, but instead, that for all s′ ∈ S, that (s, s′) ∈ R. It can be easily
checked that this doesn’t affect the satisfiability of the formula. Also, F will
be the set of all subformulas of the form 2ψ, and sψ will be a state in S
s.t. (M, sψ) |= ψ ⇔ (M, s) |= 2ψ. This is to make R′ serial. If F is empty,
though, then M ′ is a single state reflexive structure, and φ is satisfied in
that, because it is propositional, and we are done. Finally, keeping in mind
that for any s′, s′′ 6= s, (s′, s′′) ∈ R, as R is euclidean, we can complete the
proof.

From the above, the following corollary follows immediately. To decide
whether a formula φ is satisfiable, all we have to do is guess nondeterminis-
tically a structure M of size at most |φ| and then check in time O(|φ|2) if φ
is satisfied in M .

Corollary 3.2.1. The satisfiability problem for S5 and KD45 is NP −
complete. Therefore, the validity problem for these logics is coNP−complete.

Remark 3.2.1. The above results cannot be generalized for K, T and S4.
Indeed, an infinite set of counterexamples of the previous proposition can be
constructed for any of these logics.

Theorem 3.2.1. The satisfiability problem for K, T and S4 is PSPACE−
hard.
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Proof. The proof is by reducing the problem QBF (quantified boolean for-
mula) to the satisfiability problem for these logics. One way to check if a
QBF formula is true or not is the following. If the formula has no quantifiers,
i.e. all occurrences of variables are replaced by truth values, just evaluate its
truth value. If the formula is of the form ∃pB, replace it with B1∨B2, and if
it is of the form ∀pB, with B1∧B2, where B1 is B, with p replaced by True,
and B2 is B, with p replaced by False. Then, check if the new formula is
true. The correctness of this procedure is immediate and follows from the
definition of the problem.
To construct the reduction from QBF to S4, a formula that will be formed,
that will describe the above procedure. Suppose the given formula, A, is
Q1p1 · · ·QmpmB, where B contains no quantifiers and Qi ∈ {∃, ∀}. A for-
mula φS4

A . The following propositional variables will be used: p1, . . . , pm, d0,
. . . , dm+1. First, the following formulas are defined.

depth =
m+1∧

i=1

(di → di−1)

determined =

m∧

i=1

(di → ((pi → K(di → pi)) ∧ (¬pi → 2(di → ¬pi))))

branching =
∧

i:Qi+1=∀

(di ∧ ¬di+1)→ (3(di+1 ∧ ¬di+2 ∧ pi) ∧3(di+1 ∧ ¬di+2 ∧ ¬pi))

∧
∧

i:Qi+1=∃

(di ∧ ¬di+1)→ (3(di+1 ∧ ¬di+2 ∧ pi) ∨3(di+1 ∧ ¬di+2 ∧ ¬pi))

and finally,

φS4
A = d0 ∧ ¬d1 ∧2(depth ∧ determined ∧ branching ∧ (dm → B)).

The role of the formula depth is to make the truth values of the variables
d1, . . . , dm+1 characterize the depth of the decision tree for the procedure.
determined expresses the fact that once a truth value is assigned to a variable
in the decision tree, that value does not change when we go deeper in the
tree. Finally, branching describes if the current node of the decision tree
is universal, or existential, and how the tree continues. The size of φS4

A is
linear w.r.t. the size of A, and it is easily constructed from A. As mentioned
before, φS4

A mimics the previous procedure for determining the truth of QBF
formulas, on an Mrt structure. Therefore it is easy to see that A is true if
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and only if φS4
A is satisfiable by aMrt structure.

Respectively, the formulas constructed for T and K are φTA and φKA . They
are the same as φS4

A , except that to deal with the fact that structures for T
are not transitive, and structures for K are not even reflexive,

φTA = d0 ∧ ¬d1 ∧ 2
m(depth ∧ determined ∧ branching ∧ (dm → B)),

and

φKA = d0 ∧ ¬d1 ∧
m∧

i=0

2
i(depth ∧ determined ∧ branching ∧ (dm → B)).

Below, a PSPACE procedure is given, that decides whether a (K, T , or
S4) formula is satisfiable.

Theorem 3.2.2. The satisfiability problem for K, T and S4 is in PSPACE.

Proof. An alternating algorithm that runs in polynomial time will be given
below. This proves that the satisfiability problem for these logics is in
APTIME = PSPACE.
The algorithm constructs a prefixed tableau branch for the given formula, φ.
At each step, a tableau rule is applied to add one or two new formulas to
the constructed branch, which we will call B. At first, B only contains 1.φ,
which is not marked. B is a set, i.e. it contains each element at most once.
The algorithm also uses a variable, called w. At each step, the algorithm
does the following.

1. Pick an unmarked formula, ψ in B and mark it. This is a universal
choice.

2. If a propositional rule is applicable for the formula, apply it. If this
produces two new formulas in the same branch, add them to B. If the
rule branches, existentially choose one of the formulas it produces, add
it to B. If now two formulas of the form σ.ψ′ and σ¬ψ′ are contained
in B, reject.

3. If the formula is of the form w.3X, add toB (w+1)X and w := w+1. If
the formula is of the form w.¬2X, add to B (w+1)¬X and w := w+1.
If now two formulas of the form σψ′ and σ¬ψ′ are contained in B, reject.

4. If ψ is of the form σ.2X, let ψ′ be X, and if it is of the form σ¬3X,
let ψ′ be ¬X. Also, let ψ be σ.F . In these cases, do:
If σ ≥ w, accept. Otherwise,
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• For K, add (σ + 1).ψ′ to B.

• For T , add (σ + 1).ψ′ and σ.ψ to B.

• For S4, add (σ + 1).ψ′, σ.ψ and (σ + 1)F to B.

If now two formulas of the form σ′ψ′ and σ′¬ψ′ are contained in B,
reject.

Since to increase the value of w, the complexity of the formula used in the
rule decreases, w ≤ |φ|. The number of different prefixed formulas with at
most the same complexity as φ is therefore at most |φ|2. Every step of the
algorithm applies a rule to a different unmarked prefixed formula and marks
it. So, the algorithm runs in at most |φ|2 steps. Each step takes at most
O(|φ|2) time, so the algorithm uses polynomial time.
The correctness of the algorithm is immediate, as it simply follows the tableau
construction rules.

Corollary 3.2.2. The satisfiability problem for K, T and S4 is PSPACE−
complete. Therefore, the validity problem for these logics is PSPACE-
complete.

3.3 Justification Logic and Validity

Now, the case of Justification Logic is considered. Upper and lower
bounds will be provided for the complexity of the validity problem for justi-
fication logics that have been defined here. The following theorem provides
information about the case of the reflected fragments of justification logics.

Theorem 3.3.1 ([23, 28]). Let CS be a schematic constant specification
decidable in polynomial time. Then,

1. There exists a non-deterministic algorithm that runs in polynomial time
and determines, given a finite set S of ∗-expressions, a formula F and
a term t, whether

S ⊢∗CS ∗(t, F )

2. There exists a non-deterministic algorithm that runs in polynomial time
and determines, given a finite set S of ∗-expressions, a formula F and
a term t, whether

S ⊢∗!CS ∗(t, F )
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Proof. Two nondeterministic algorithms will be provided, ∗CS-DERIVE and
∗!CS-DERIVE for the respective calculi. Variables P,Q,R, . . . will be used
over formulas. X, Y, . . . will denote schemes. An axiom scheme can be written
as a formula in this extended language. F ∈ X will denote that formula F
is an instance of the scheme X. Also, the empty scheme will be considered, ∅.

procedure ∗CS-DERIVE(S,*(t,F)) and procedure ∗!CS-DERIVE(S,*(t,F)):

1. For each occurrence of a subterm s in t, where ∗(s,G) ∈ S for some G,
choose, nondeterministically, to mark it with the symbol ’S’ or not.
Make sure that if s was thus marked, then no proper suboccurrence of
this occurrence is assigned anything, or marked with anything. Fur-
thermore, all such proper suboccurrences will not be taken into account
for the following.

2. For each occurrence of operator + (outside terms marked with S), non-
deterministically mark it with ’l’ or ’r’.

3. For each occurrence of r = !!! · · ·!
︸ ︷︷ ︸

n

c in t, for a constant c and an integer n,

nondeterministically choose an axiom scheme X. If c : X ⊆ CS, make
the assignment:

!! · · ·!
︸ ︷︷ ︸

n

c← ! · · ·!
︸︷︷︸

n−1

c : · · · :!c : c : X, for n ≥ 1, or

c← X, for n = 0.

If c : X 6⊆ CS , then reject the input.
For ∗!CS-DERIVE(S,*(t,F)), this step is:

3!. For each occurrence of a constant c in t, nondeterministically choose an
axiom scheme X. If c : X ⊆ CS , make the assignment:

c← X.

If c : X 6⊆ CS , then reject the input.

4. For each occurrence of a justification variable x, assign:

x← ∅.

5. For each occurrence of s marked with S in step 1, nondeterministically
choose a formula G s.t. ∗(s,G) ∈ S. and make the following assign-
ment:

s← G.
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Repeat steps 6− 8 until an assignment is made to t.

6. Nondeterministically, choose an occurrence of a subterm s1 + s2 s.t. s1, s2

have been assigned with X1, X2, respectively, but s1 + s2 has not been
assigned yet (if such a subterm exists). If this appearance of + has
been marked with l, let i = 1. If it was marked with r, then let i = 2.
Assign:

s1 + s2 ← Xi.

7. Nondeterministically, choose an occurrence of a subterm !s s.t. s has been
assigned with X, but !s has not been assigned yet (if such a subterm
exists). Assign

!s← ∅.

For ∗!CS-DERIVE(S,*(t,F)), this step is:

7!. Nondeterministically, choose an occurrence of a subterm !s s.t. s has been
assigned with X, but !s has not been assigned yet (if such a subterm
exists). If X 6= ∅, then assign

!s← s : X;

else, assign
!s← ∅.

8. Nondeterministically, choose an occurrence of a subterm s1 · s2 s.t. s1, s2

have been assigned with Z1, X2, respectively, but s1 · s2 has not been
assigned yet (if such a subterm exists). If Z1 = X1 → Y1 and X2 is
unifiable with X1, then assign

s1 · s2 ← Y ∗,

where Y ∗ is the form Y takes after the unification of X1 and X2. If
Z1 = P and X2 6= ∅, then assign

s1 · s2 ← Q,

where Q is fresh. Otherwise, assign

s1 · s2 ← ∅.

9. Let X be the scheme assigned to t. If X is unifiable with F , then accept.
Otherwise, reject.
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To complete the proof, two conditions must be shown to be satisfied. First,
the above algorithms must run in polynomial time. But this is easily seen,
as no step can be executed more times than the number of occurrences of
subterms of t in t. Secondly, it must be shown that the algorithms accept
if and only if S ⊢∗CS ∗(t, F ) (S ⊢∗!CS ∗(t, F )). For the only if part, it can
be established that s ← X =⇒ for all G ∈ X, S ⊢∗ ∗(s,G). This can be
proven by induction on the assignments made by the algorithm. For the
opposite direction, notice that in a ∗-calculus derivation, each rule appli-
cation increases the complexity of the terms and conserves these terms as
distinct occurrences. Term t is constructed by applying rules of the respec-
tive ∗-calculus. Therefore, we can associate each subterm appearance with a
formula that was associated with that occurrence of the subterm during its
construction by a rule of the ∗-calculus. This is what the algorithm attempts
to accomplish. Therefore, if (t, F ) is indeed derivable, there exists a series of
choices of the algorithm that lead to an accepting configuration.

Corollary 3.3.1. There exists a deterministic algorithm that runs in poly-
nomial time and determines, given a finite set S of ∗-expressions, a formula
G and a term t, whether

S ⊢∗!∅ ∗(t, G)

Proof. The algorithm for this proof is similar to the algorithm of the previ-
ous proof. Only, it assigns formulas to terms in a different way (determinis-
tically). Call Ss the set of formulas F s.t. s : F ∈ S. By recursion on the
structure of the term s, assign to an occurrence of it a set of formulas, which
will be called SF (s):

• If s is a constant, then SF (s) := Ss. Notice that |SF (s)| ≤ |Ss|.

• If s = s1 + s2 then SF (s) := Ss ∪ SF (s1) ∪ SF (s2). Notice that
|SF (s)| ≤ |Ss|+ |SF (s1)|+ |SF (s2)|.

• If s = s1 · s2 then SF (s) := Ss ∪ {F | ∃H ∈ SF (s2) s.t. H → F ∈
SF (s1)}. Notice that |SF (s)| ≤ |Ss|+ |SF (s1)|.

• If s =!s1 then SF (s) := Ss ∪ {s1 : F | F ∈ SF (s1)}. Notice that
|SF (s)| ≤ |Ss|+ |SF (s1)|.

If G ∈ SF (t), then accept. Otherwise, reject.
The above algorithm is correct with similar, yet simpler reasoning as the one
used in the previous proof. For the complexity of the algorithm, all that is
needed is to establish that each term is assigned with a set that contains few
enough formulas. Let For(n) = max|s|≤n |FS(s)|. Then,

For(n) ≤ |S|+ For(n−m) + For(m), for some m < n
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and
For(1) ≤ |S|.

Therefore, For(n) ≤ |S|2.

Corollary 3.3.2. Let CS be an almost schematic constant specification de-
cidable in polynomial time. Then,

1. There exists a non-deterministic algorithm that runs in polynomial time
and determines, given a finite set S of ∗-expressions, a formula F and
a term t, whether

S ⊢∗CS ∗(t, F )

2. There exists a non-deterministic algorithm that runs in polynomial time
and determines, given a finite set S of ∗-expressions, a formula F and
a term t, whether

S ⊢∗!CS ∗(t, F )

Proof. The proof for this is simple. Since CS is almost schematic, it is the
union of a finite X and a schematic CS ′. To decide for a given S and ∗(t : F )
if S ⊢∗CS ∗(t, F ), simply run the nondeterministic polynomial-time algorithm
from above for determining if S ∪X ⊢∗CS ∗(t, F ). Since X’s size is constant,
the running time of the algorithm remains a polynomial of the size of the
input.

Corollary 3.3.3. Let CS be a finite, or injective constant specification de-
cidable in polynomial time. Then, there exists a deterministic algorithm that
runs in polynomial time and determines, given a finite set S of ∗-expressions,
a formula F and a term t, whether

S ⊢∗CS ∗(t, F )

In the following, by “decidable”, it will be meant “decidable in polynomial
time”.

Theorem 3.3.2 ([26]). JCS , JTCS , J4CS , LPCS with a decidable almost schematic
CS are in Πp

2.

Proof. The algorithm for deciding these logics consists of two parts. Let Φ
be the given formula. The first part constructs a tableau branch, starting
from F Φ, and applying all propositional rules possible. In addition, the
following rules are also used. The first two are for logics JCS and J4CS . The
following two are used for JTCS and LPCS .

T s : G

T ∗ (s : G)

F s : G

F ∗ (s : G)
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T s : G

T G
T ∗ (s : G)

F s : G

F ∗ (s : G) | F G

This part of the algorithm is similar to the algorithm used to prove theorem
3.2.2. The ∗-expressions are not analyzed further for the moment. If no more
rules can be applied, the branch is called completed, and if it contains both
T G and F G, it is called closed. Every application of a rule reduces the
complexity of the formulas, and, furthermore, the sum of the lengths of the
resulting formulas is at most as much as the length of the initial formula.
Therefore, a closed, or a completed tableau branch is reached in time linear
with respect to the length of the initial formula. All choices made during
this part are universal.
The second stage of the algorithm when a completed, or closed branch is
formed. If the branch is closed, accept. If not, then decide in nondeterminis-
tic polynomial time if for some ∗-expression produced by the first part, of the
form F ∗ (t : R), X ⊢∗CS ∗(t, R), where X is the set of all positively prefixed
∗-expressions in the branch. If the answer is “yes”, then accept. Otherwise,
reject.
From the above description, the following lemma should follow clearly.

Lemma 3.3.1. The algorithm above runs in polynomial time, is a coNP al-
gorithm and uses an NP oracle.

Therefore, to show that the problems in question are in Πp
2, all that is

needed is the following lemma:

Lemma 3.3.2. A formula G is derivable in JCS , JTCS , J4CS , or LPCS , if and
only if the tableau that is produced from F G has in every not closed branch
a ∗-expression of the form F ∗ (t : R) s.t. ∗(t : R) is derivable from X by
the corresponding ∗-calculus.

Proof. First, suppose that G is not derivable. Then, by the Completeness
Theorem, there exists an M-modelM = (V,A) s.t. M |= ¬G. A not closed,
completed branch will be constructed that contains only ∗-expressions of the
form F ∗ (t : G) s.t. ∗(t : G) is not derivable from X by the ∗-calculus
considered. More specifically, all formulas that will appear in the branch will
be satisfied by the model and for all ∗-expressions T/F ∗ (t : G) will be
satisfied by A, i.e. A(t, G) will hold iff we are in the case of T ∗ (t : G). This
branch will be constructed as follows:

• Of course, F Φ is satisfied in the model.
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• For any propositional rule, at least one of the possible choices that
can be made produces formulas satisfied in the model. Otherwise, the
hypothesis of the rule would not be satisfied in the first place.

• For the new rules introduced here, for

T s : G

T ∗ (s : G)

F s : G

F ∗ (s : G)
,

the formula s : G is satisfied in the model iff A(t, G) holds. On the
other hand, for

T s : G

T G
T ∗ (s : G)

F s : G

F ∗ (s : G) | F G
,

from T s : G the formula T G is produced. This formula must be
satisfied in the model, by the definition of |=, otherwise, neither would
T s : G. The same holds for A(s,G). From F s : G, either the formula
F G must be satisfied by the model, or A(t, G) must not hold.

From the above, the model satisfies all elements of the branch. Therefore,
the branch cannot be closed. Furthermore, for no negatively prefixed ∗-
expression F ∗(s,G), it is the case that X ⊢∗CS ∗(s,G), where X is as defined
above. If this was true, then since A(t, R) holds for all ∗(t, R) ∈ X, then it
should be that also A(s,G) holds. But this cannot be, because F ∗ (s,G) is
in the branch.
For the opposite direction, given an open branch, where for no expression
F ∗ (t : G), X ⊢∗CS ∗(t, G), a model can be constructed, that satisfies all
elements of the branch. Simply, takeM |= p iff p is in the branch, and define
B to be the set of all positively prefixed expressions in the branch. From
this, define A to be the minimal evidence function based on B. It can be
seen from the properties of the ∗-calculi and the evidence functions thatM
is indeed a model. And it satisfies all formulas of the branch (by induction on
the structure of the formula), therefore also ¬G. The only nontrivial case is
of formulas of the form F t : G. Since the algorithm accepts, B 0∗CS ∗(t, G),
therefore, since A is the minimal evidence function on B, A(t, G) does not
hold, soM |= ¬t : G.

This completes the proof of the theorem.

Corollary 3.3.4. LPCS with a finite or decidable injective CS is in coNP .
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Proof. The proof is the same as above, only now deciding if X ⊢∗!CS t : G is
in P . And, of course, there is no need to check nondeterministically a formula
F t : G in the branch, but instead this can be done deterministically, checking
all such formulas, that are only polynomially many.

Theorem 3.3.3 ([28, 29]). JDCS with a decidable, almost schematic and
axiomatically appropriate CS is in Πp

2.

Proof. A somewhat different approach is needed for the case of JDCS . The
fact that CS is axiomatically appropriate is needed for the proof. The differ-
ence in this case is that admissible evidence functions for JDCS models must
satisfy the Consistent Evidence function condition. That is, for no admissi-
ble evidence function A and term t, should it be true that A(t : ⊥). To deal
with this, the algorithm is modified in the following ways:

• The formulas in the tableau are also prefixed with an integer. The for-
mulas are of the form n V G, where n is a natural number, V ∈ {T, F},
G is a formula of the logic. Instead of the tableau rules introduced
above, the following ones are used:

n T s : G

n T ∗ (s : G)
n + 1 T G

n F s : G

n F ∗ (s : G)

The integer prefixes are not used to denote possible worlds in a model,
as is the usual case with S5, but different M-models. They are to ensure
that the Consistent Evidence function condition is maintained: from
t1 : F1, . . . , tk : Fk we cannot infer t : ⊥.

• Instead of having X be the set of positive ∗ expressions in the branch,
Xn are the sets of positive ∗ expressions in the branch that are prefixed
with n. Then, for the algorithm to accept, it must be the case that for
some n, F ∗ (t, G) that Xn ⊢∗CS ∗(t, G).

As before, the algorithm runs in polynomial time and correctness is what is
left to show.

Lemma 3.3.3. A formula G is derivable in JDCS , if and only if the tableau
that is produced from 1 F G has in every not closed branch a ∗-expression of
the form n F ∗ (t : R) s.t. ∗(t : R) is derivable from Xn by the corresponding
∗-calculus.
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Proof. The proof is similar to the proof of the previous lemma and proceeds
by proving that a formulaG is not derivable in JDCS , if and only if the tableau
that is produced from 1 F G has a not closed branch with all ∗-expressions
of the form n F ∗ (t : R) satisfy that ∗(t : R) is not derivable from Xn

by the corresponding ∗-calculus.. What is needed is to make sure that the
Consistent Evidence function condition is satisfied by the admissible evidence
function of the model considered when a model is constructed and that when
a branch is constructed, then for each n, there exists a model satisfying all
n-prefixed elements of the branch. Therefore, instead of a single model, a
sequence of models will be considered, M1, . . . ,MN , where N is sufficiently
large. The proof proceeds by recursively constructing the models, starting
from the given M1 = M |= ¬G, thus ensuring for all n that all n-prefixed
element introduced in the branch will be satisfied inMn. And similarly, for
the other direction of the proof, the induction is on N − n, showing that a
model exists that satisfies all n-prefixed elements.

The proof of the theorem is thus complete.

A trivial lower bound holds for all logics considered:

Proposition 3.3.1. For any CS, any of JCS , JDCS , JTCS , J4CS , JD4CS ,
LPCS , J5CS , J45CS , JD45CS , JT45CS is coNP -hard.

This holds because any propositional formula is valid for classical propo-
sitional logic iff it is valid for any of these logics.
However, other less trivial lower bounds are known.

Theorem 3.3.4 ([33]). 1. J4CS with a decidable schematic CS is Πp
2-

hard.

2. LPCS with a decidable schematically injective axiomatically appropri-
ate CS is Πp

2-hard.

Proof. The proof for both parts of the theorem will be by reducing the
problem ∀∃3SAT and requires the following lemma. In the following, if no
logic is specified, it is meant any of the two logics considered in this theorem.

Lemma 3.3.4. Let ψ(p1, . . . , pn) be a propositional formula in 3CNF , built
up from propositional variables p1, . . . , pn, and an axiomatically appropriate,
schematic constant specification CS. Then, there is a ground proof polyno-
mial qψ that can be constructed in time polynomial to the size of ψ, s.t. for
all assignments of pej ’s to p or ¬p,

pe1 → pe2 → · · · → pen → ψ is a tautology
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⇐⇒

⊢CS gψ : (pe1 → pe2 → · · · → pen → ψ).

Of course, the size of gψ will also be a polynomial to the size of ψ.

Proof. First, a term gi will be constructed for every clause Ci, such that
⊢CS gi : (pe1 → pe2 → · · · → pen → Ci) for all assignments of pj, or ¬pj to pej
that makes pe1 → pe2 → · · · → pen → Ci valid.
Here it is worth noticing that

a. Due to the substitution property, we can think of each Ci to be of the
form (p ∨ q ∨ r)

b. The substitutions of pei ’s that make pe1 → pe2 → · · · → pen → (pe∨qe∨re)
valid are exactly those that substitute pe with p, qe with q, or re with
r.

c. If terms gpi , g
q
i , g

r
i are constructed, s.t. ⊢CS gxi : (pe1 → pe2 → · · · → pen →

(pe ∨ qe ∨ re)) for all substitutions of xe with x, where x ∈ {p, q, r},
then the term gpi + gqi + gri will be gi.

The formula p → (p ∨ q ∨ r) is (propositionally) valid. Thus, due to con-
structive necessitation, there exists a term b, s.t. ⊢CS b : (p → (p ∨ q ∨ r)).
There also exist terms a1, a2 s.t. ⊢CS a1 : ((A → B) → (A → C → B))
and ⊢CS a2 : (A → B → A). Thus, if Ci has in the place of p a (positive or
negative) appearance of pj, then gpi will be

a2 · (a2 · · · (a2
︸ ︷︷ ︸

j−1

·(a1 · (a1 · · · (a1 · (a1
︸ ︷︷ ︸

n−j

·b)) · · · ))) · · · ).

Now, the gi’s are constructed and they are of size linear to n. Let d, a3

be such that

⊢CS d : ((A→ (B → C))→ (D → A)→ (D → B)→ (D → C))

and
⊢CS a3 : (A→ B → (A ∧ B)).

Then,

⊢CS d · a3 : ((D → A)→ (D → B)→ (D → (A ∧B))),

and if b∗ = d · · · (d
︸ ︷︷ ︸

n

·a5) · · · ), then
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⊢CS b
∗ : (pe1 → · · · → pen → C1)→ (pe1 → · · · → pen → C2)→

→ (pe1 → · · · → pen → C1 ∧ C2),

and this implies that gψ = (b∗ · · · ((b∗ · g1) · g2) · · · gm−1) · gm.
To complete the proof, what needs to be shown is that

pe1 → pe2 → · · · → pen → ψ is a tautology

⇐⇒

⊢CS gψ : (pe1 → pe2 → · · · → pen → ψ).

The “=⇒” part occurs from the above construction. For the reverse, a
simple observation is needed. In LPCS ,

⊢CS gψ : (pe1 → pe2 → · · · → pen → ψ)

implies
⊢CS (pe1 → pe2 → · · · → pen → ψ)

due to factivity. So,

gψ : (pe1 → pe2 → · · · → pen → ψ)

is derivable in LPCS only if

(pe1 → pe2 → · · · → pen → ψ)

is a tautology. Since LPCS can derive more formulas than J4CS , this also
holds for J4CS , thus completing the proof.

Now, to prove the first part of the theorem:
By reduction from ∀∃3SAT . Let ∀p1, . . . , pn∃q1, . . . , qmψ(p1, . . . , pn, q1, . . . , qm)
be a quantified boolean formula, where p1, . . . , pn, q1, . . . , qm are propositional
variables and ψ is a quantifier-free propositional formula using variables from
p1, . . . , pn, q1, . . . , qm. Using the lemma, we have constructed the term gψ.
The produced formula, F , is

[(x1 : p1 ∨ x1 : ¬p1) ∧ · · · ∧ (xn : pn ∨ xn : ¬pn)

∧(y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)]→

→ (gψ · x1 · · ·xn · (y1 + z1) · · · (ym + zm)) : ψ.
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This formula can easily be seen that it can be constructed in time polynomial
with respect to m + n. What must be proven is that F is provable in J4CS
if and only if ∀p1, . . . , pn∃q1, . . . , qmψ holds.
By the deduction theorem, the above formula is provable in J4CS iff

(x1 : p1 ∨ x1 : ¬p1), · · · , (xn : pn ∨ xn : ¬pn),

(y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm)

⊢CS (gψ · x1 · · ·xn · (y1 + z1) · · · (ym + zm)) : ψ,

which in turn holds if and only if for every possible assignment of the pei ’s to
pi or ¬pi,

(x1 : pe1), · · · , (xn : pen), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm)

⊢CS (gψ · x1 · · ·xn · (y1 + z1) · · · (ym + zm)) : ψ.

Of course, this derivation is possible iff it is possible in the ∗!CS-calculus;
and since the derived formula is not in the premises, then it follows from a
formula of the form (ym + zm) : H and

(gψ · x1 · · ·xn · (y1 + z1) · · · (ym−1 + zm−1)) : H → ψ.

Similarly, (ym + zm) : H could only occur from ym : H , or zm : H , thus H is
either qm, or ¬qm, call it qem. Now, we have that

(x1 : pe1), · · · , (xn : pen), (y1 : q1), (z1 : ¬q1), · · · , (ym : qm), (zm : ¬qm)

⊢CS (gψ · x1 · · ·xn) : qe1 → · · · → qem → ψ.

As before, a formula H exists, s.t.

(gψ · x1 · · ·xn) : qe1 → · · · → qem → ψ

occurs from xn : H and

(gψ · x1 · · ·xn−1) : H → qe1 → · · · → qem → ψ.

Of course, H now is pen. Proceeding similarly for all pei , it is shown that the
initial formula is derivable in J4CS if and only if for every assignment of the
pei ’s to pe or ¬pe, there is an assignment of the qei ’s to qi or ¬qi, s.t.

(x1 : pe1), . . . , (xn : pen), (y1 : q1), (z1 : ¬q1), . . . , (ym : qm), (zm : ¬qm)

⊢CS gψ : pe1 → · · · → pen → qe1 → · · · → qem → ψ.
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And since the premises contain no constants and gψ is a ground term, because
when a ∗!CS-calculus rule is used the terms of the hypotheses are subterms of
the term in the conclusion, in the above proof, the premises are not needed.
Therefore, the initial formula is derivable in J4CS if and only if for every
assignment of the pei ’s to pe or ¬pe, there is an assignment of the qei ’s to qi or
¬qi, s.t.

⊢CS gψ : pe1 → · · · → pen → qe1 → · · · → qem → ψ.

By lemma 3.3.4, the proof for the first part is complete.

Now, the proof for the second part of the theorem (for LPCS) will be
given. Again, this will be done by reduction from ∀∃3SAT , and again,
let ∀p1, . . . , pn∃q1, . . . , qmψ(p1, . . . , pn, q1, . . . , qm) be a quantified boolean for-
mula, where p1, . . . , pn, q1, . . . , qm are propositional variables and ψ is a quantifier-
free propositional formula using variables from p1, . . . , pn, q1, . . . , qm. The
fact that CS is axiomatically appropriate and schematically injective will
play a crucial role in the following. Let c2, cL, cR be justification constants
s.t. c2 : A ∈ CS iff A is an instance of the application axiom, cL : A ∈ CS iff
A is an instance of s : F → s+ t : F and cR : A ∈ CS iff A is an instance of
s : F → t+ s : F . Also, let gψ be the one provided by lemma 3.3.4.
Then, k0, k1, . . . , kn will be defined inductively: k0 =!gψ and ki+1 = c2 ·
ki·!xi+1. By its construction, the length of kn is a polynomial of the size of
ψ. From lemma 3.3.4, it is known that:

pe1 → · · · → pen → qe1 → · · · → qem → ψ is valid

m

⊢CS gψ : (pe1 → · · · → pen → qe1 → · · · → qem → ψ)

m

x1 : pe1, . . . , xn : pen ⊢CS (gψ · x1 · x2 · · ·xn) : (qe1 → · · · → qem → ψ).

By lemma 2.1.1, the last part is equivalent to

x1 : pe1, . . . , xn : pen ⊢CS k : ((gψ · x1 · x2 · · ·xn) : (qe1 → · · · → qem → ψ)),

for some term k. In fact, for Γn being {x1 : pe1, . . . , xn : pen},

Lemma 3.3.5. For i ≤ n, Γn ⊢CS ki : H if and only if H is of the form
(gψ · x1 · x2 · · ·xi) : G and Γn ⊢CS gψ : pe1 → · · · → pei → G

Proof. For i = 0, the proposition simply states that Γn ⊢!gψ : H if and
only if H is of the form gψ : G and Γn ⊢ gψ : G, which according to the
rules of the ∗!CS−calculus is true.
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Assuming the lemma holds for i, it will be shown for i+ 1. Γn ⊢CS c2·
ki·!xi+1 : H if and only if there is some F , s.t. Γn ⊢CS !xi+1 : F and
Γn ⊢CS c2 · ki : F → H . It is evident that F is xi+1 : pei+1. Therefore,
Γn ⊢CS c2 · ki·!xi+1 : H if and only if Γn ⊢CS c2 · ki : (xi+1 : pei+1)→ H .
Again, this holds iff there is some formula F ′ s.t. Γn ⊢CS kiF

′ and
Γn ⊢CS c2 : F ′ → (xi+1 : pei+1)→ H . By the induction hypothesis, this
is equivalent to

Γn ⊢CS gψ : pe1 → · · · → pei → G

and

Γn ⊢CS c2 : ((gψ · x1 · x2 · · ·xi) : G)→ (xi+1 : pei+1)→ H

for some G. By the way c2 was defined before, ((gψ ·x1 ·x2 · · ·xi) : G)→
(xi+1 : pei+1) → H is an instance of the application axiom. Therefore,
G is of the form pei+1 → G′, so H is of the form x1 · · ·xi · xi+1 : G′ and
Γn ⊢CS gψ : pe1 → · · · → pei+1 → G′, thus completing the induction.

What would be desirable is to be able to use the formula of the previous
part and show that

(x1 : pe1), . . . , (xn : pen), (y1 : q1 ∧ z1 : ¬q1), . . . , (ym : qm ∧ zm : ¬qm)

⊢CS gψ · x1 · · ·xn · (y1 + z1) · · · (ym + zm) : ψ

for any assignment of pei ’s, if and only if φ is true. However, this time, due
to reflexion, (y1 : q1 ∧ z1 : ¬q1), . . . , (ym : qm ∧ zm : ¬qm) is inconsistent, thus
proving anything, whether ψ is satisfiable or not. On the other hand, from
the previous part, we know that there is a proof that does not use reflexion
for the above formula for all assignments of pei ’s, if and only if φ is true. This
fact will be used and the restriction of not using reflexion will be encoded
using a justification term t, such that

x1 : pe1, . . . , xn : pen ⊢CS t : [(y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)]→

→ (gψ · x1 · · ·xn · (y1 + z1) · · · (ym + zm)) : ψ.

Specifically, that t will be tψ; and let tψ be

(g0 · (cL + cR) · c2 · (cL + cR) · c2 · · · (cL + cR) · c2
︸ ︷︷ ︸

m

) · kn,

where g0 is a ground term that contains only constants justifying proposi-
tional axioms and constructed along the lines of the proof of lemma 3.3.4, is
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independent of the assignments of the pei ’s that make ψ true and its length
is a polynomial of the length of ψ. Let F be:

[(x1 : p1 ∨ x1 : ¬p1) ∧ · · · ∧ (xn : pn ∨ xn : ¬pn)]

→ tψ : [(y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)]→

→ (gψ · x1 · · ·xn · (y1 + z1) · · · (ym + zm)) : ψ.

Of course, ⊢CS F if and only if for each possible assignment of pei ’s to pi or
¬pi,

x1 : pe1, . . . xn : pen ⊢CS tψ : [(y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)→

→ (gψ · x1 · · ·xn · (y1 + z1) · · · (ym + zm)) : ψ].

Let Γn be as before. Then,

Lemma 3.3.6. Let CS, c2, cL, cRtψ, kn be defined as above, and let t be some
justification term. Then,

Γn ⊢CS tψ : [(y1 : q1 ∧ z1 : ¬q1) ∧ · · · ∧ (ym : qm ∧ zm : ¬qm)→

→ (t · x1 · · ·xn · (y1 + z1) · · · (ym + zm)) : ψ]

if and only if
Γn ⊢CS kn : t : (qe1 → · · · → qem → ψ),

for some assignment of the qei ’s to qei or ¬qei .

Proof. The lemma will be proven for m = 2. The proof generalizes easily
for the general case. Thus, it will be proven that

Γn ⊢CS (g0 · (cL + cR) · c2 · (cL + cR) · c2) · kn :

[((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 : q2 ∧ z2 : ¬q2))→ (t · (y1 + z1) · (y2 + z2)) : ψ]

implies that Γn ⊢CS kn : t : (qe2 → qe1 → ψ), for some assignment of the qei ’s.
All the implications will also hold for the reverse, but for convenience the
proof will focus only on one direction.
Starting from

Γn ⊢CS (g0 · (cL + cR) · c2 · (cL + cR) · c2) · kn :

[((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 : q2 ∧ z2 : ¬q2))→ (t · (y1 + z1) · (y2 + z2)) : ψ],

there must be a formula Fn s.t.

Gamman ⊢CS Kn : Fn
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and
Γn ⊢CS (g0 · (cL + cR) · c2 · (cL + cR) · c2) :

(Fn → [((y1 : q1∧z1 : ¬q1)∧(y2 : q2∧z2 : ¬q2))→ (t ·(y1+z1) ·(y2+z2)) : ψ]).

Again, similarly, and because of the rules of ∗!CS-calculus, there must be
formulas A1, A2, A3, A4 such that

Γn ⊢CS c2 : A1

Γn ⊢CS (cL + cR) : A2

Γn ⊢CS c2 : A3

Γn ⊢CS (cL + cR) : A4

and
Γn ⊢CS g0 : (A4 → A3 → A2 → A1 → Fn →

→ [((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 : q2 ∧ z2 : ¬q2))→ (t · (y1 + z1) · (y2 + z2)) : ψ]).

It is evident that A1 is of the form t1 : (F1 → G1)→ (s1 : F1 → (t1 · s1) :
G1), A2 is of the form u1 : H1 → (u1 + v1) : H1, or v1 : H1 → (u1 + v1) : H1,
A3 is of the form t2 : (F2 → G2) → (s2 : F2 → (t2 · s2) : G2) and A4 is
of the form u2 : H2 → (u2 + v2) : H2, or v2 : H2 → (u2 + v2) : H2. Lets
suppose A2 is of the form u1 : H1 → (u1 + v1) : H1 and A4 is of the form
v2 : H2 → (u2 + v2) : H2. Therefore, we have that Γn ⊢CS kn : Fn and

Γn ⊢CS g0((v2 : H2 → (u2 + v2) : H2)

→ (t2 : (F2 → G2)→ (s2 : F2 → (t2 · s2) : G2))

→ (u1 : H1 → (u1 + v1) : H1)

→ (t1 : (F1 → G1)→ (s1 : F1 → (t1 · s1) : G1))→ Fn

→ [((y1 : q1 ∧ z1 : ¬q1) ∧ (y2 : q2 ∧ z2 : ¬q2))→ (t · (y1 + z1) · (y2 + z2)) : ψ]),

for some F1, F2, G1, G2, H1, H2, Fn, s1, s2, t1, t2, u1, u2, v1, v2.
As g0 is a ground term that contains only constants specifying propositional
axioms, it follows that the above formula, without g0 is a propositional tautol-
ogy (seeing prefixed terms as atoms). What remains is to unify the formulas

• y1 : q1

• z1 : ¬q1

• y2 : q2
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• z2 : ¬q2

• t1 : (F1 → G1)→ (s1 : F1 → (t1 · s1) : G1)

• t2 : (F2 → G2)→ (s2 : F2 → (t2 · s2) : G2)

• u1 : H1 → (u1 + v1) : H1

• v2 : H2 → (u2 + v2) : H2

• Fn

in such a way, that the conclusion (t · (y1 + z1) · (y2 + z2)) : ψ is implied.
We cannot use Fn, as, according to lemma 3.3.5, it cannot unify with any
of the first four formulas, or the desired conclusion at this point. Keeping
in mind that yi’s, zi’s and qi’s are elementary, this can happen, resulting in
Fn unifying with t : qe1 → qe2 → ψ, for some assignment of qei ’s. Therefore,
Γn ⊢CS kn : t : qe1 → qe2 → ψ, which is the intended conclusion for the case of
m = 2. As it was said before, this proof generalizes naturally to the general
case for m.

Now, if for all i, pei is any of pi or ¬pi, and for those pei ’s the qei ’s are the
ones guaranteed by lemma 3.3.6, then what needs to be shown is simply that

(x1 : pe1), . . . , (xn : pen) ⊢CS (gψ · x1 · · ·xn) : qe1 → · · · q
e
m → ψ

if and only if ψ is true under the valuation implied by the choices of the pei ’s
and qei ’s. We know that

(x1 : pe1), . . . , (xn : pen) ⊢CS (gψ · x1 · · ·xn) : qe1 → · · · q
e
m → ψ

m by lemma 3.3.5

⊢CS gψ : pe1 → · · · → pen → qe1 → · · · → qem → ψ.

And the last statement is true if and only if pe1 → · · · → pen → qe1 → · · · →
qem → ψ is a tautology. This completes the proof of the second and last part
of the theorem.

Corollary 3.3.5. 1. J4CS with a decidable schematic CS is Πp
2-complete.

2. LPCS with a decidable schematically injective axiomatically appropri-
ate CS is Πp

2-complete.

Corollary 3.3.6. J4 is Πp
2-complete.



Chapter 4

Conclusions and Open
Questions

Modal Logic has been studied extensively in the past and it is reasonable
that the complexity of Validity for the normal modal logics presented here has
been determined. On the other hand, Justification Logic is a relatively new
field, presenting much variety and although important efforts have been made
to determine the complexity of Validity in this case, many questions remain
open. Below is a table that summarizes the complexity results presented in
this thesis.

Logic Upper Bound Lower Bound
Classical Logic NP NP -hard
Intuitionistic Logic PSPACE PSPACE-hard
K PSPACE PSPACE-hard
D PSPACE PSPACE-hard
T PSPACE PSPACE-hard
S4 PSPACE PSPACE-hard
S5 NP NP -hard
KD45 NP NP -hard
JCS Πp

2 NP -hard
JDCS Πp

2 NP -hard
JTCS Πp

2 NP -hard
J4CS Πp

2 Πp
2-hard

JD4CS Unknown NP -hard
LPCS Πp

2 Πp
2-hard

The reader can see that no conditions are mentioned for the constant spec-
ification. It is assumed that the most strict restrictions mentioned so far
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apply for each logic (except from CS being finite), for clarity. Even with this
simplification, it is evident from looking at the table that many currently
known upper and lower bounds do not match. Furthermore, for JD4CS ,
no reasonable upper bound is known and there are other Justification Log-
ics, not defined here, J5, J45, JD45, JT45; these include the extra axiom
¬t : F →?t : ¬t : F that corresponds to negative introspection and of course
also use the extra symbol ? in their syntax. No M models are known for
these, or non-trivial complexity bounds.
Other topics could also be covered in this thesis. Only monomodal logics
were considered. The purpose was to contrast these logics to their justifica-
tion counterparts. Indeed, it is apparent that the explicitness of the justifi-
cation terms causes the complexity of determining the validity of a formula
dramatically (assuming PH 6= PSPACE). This contrast is magnified even
more when the reflected fragments of the above justification logics are con-
sidered; there, the justification term plays an essential role.
In this thesis, no F -, or Fk-models were introduced. This is because, for
the purposes of this thesis, M-models were sufficient. Also, it seems that
M-models are more apporpriate for studying complexity issues, whenever
available. F - (and Fk-) models are Kripke models with an admissible ev-
idence function and were first introduced for LP in [15], by Mel Fitting.
Because of their simmilarity to Kripke models, they are more appropriate for
epistemic settings, for comparisons to Modal Logic, or for considering hybrid
logics that include both justification terms and normal modalities.
An obvious research direction from here would be to try to answer all these
questions that have been left ananswered, considering justification logic. An-
other direction, both for modal and for justification logic would be to consider
the problem of validity from a parameterized point of view. Of course, as the
field of computational complexity theory is diverse, there may be even more
meaningful ways to study satisfiability that have not been thought of before.
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