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Chapter 1

Introduction

1.1 The Paradoxes of Geometric Probability

Geometric probability is the informal study of the probabilities involved in geo-
metric problems in which the random selection is one of points, lines or other
geometrical objects in Euclidean space.

The field arose by extrapolation from the elementary, discrete case which
had been the topic of earlier studies1 to the continuous, geometric case. Hence,
the most basic intuition of geometric probability was shaped, that

Pr(A) =df

area covered by outcomes favorable to A

area covered by all possible outcomes
(A)

where naturally one can replace ‘area’ by ‘length’ or ‘volume’ accordingly. This
came only as a natural generalisation of the underlying principle of earlier math-
ematical studies of games of chance, namely that2

Pr(A) =df

number of outcomes favorable to A

number of possible outcomes
(B)

Setting the probability of an event equal to the proportion of outcomes favor-
able to the event out of all possible outcomes, be that proportion measured
by ‘length’, ‘area’, ‘volume’ or just counting in the discrete case, is called the
‘uniform’ probability assignment.

1The study of games of chance goes back to 1494, when Fra Luca de Paciolli adresses the
problem of the fair division of the stakes if a game is forced to stop midway (see [3]). However,
as Professor Glenn Shafer informs us in [10], its systematic study essentially began with Pierre

de Fermat ’s and Blaise Pascal ’s correspondence on that same matter. Continuous probability
is hinted at by Isaac Newton in his study into the motions of the planet, around 1665. It
was placed in the context of geometric problems some 70 years later, in 1773 when Georges

le Clerk Buffon asked his famous needle problem in a lecture to the Paris Royal Academy of
Sciences. He published the solution much later in 1777, in his Histoire Naturelle, generalle et

particuliére.
2Formula (B) notably appears as the definition of probability in Jacob Bernoulli ’s work,

posthumously published in 1713 in the famous Ars Conjectandi.
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Similarly, certain intuitions about the notion of conditional probability, usu-
ally amounting to an argument about the order of certain events or about a
state of knowledge, were transferred over from the discrete to the continuous.

Both extrapolations turned out to be problematic.

Problematic Extrapolations - the Principle of Indifference

Formula (A) was immediately seen to be representation-dependent; a chord of a
circle could be determined either by its two endpoints or by its midpoint, each
parameterisation yielding a different value for the probability that the chord
satisfies a certain property.

The same difficulty had already been recognised of (B), but was seen as sur-
mountable in the discrete case since there always seemed to exist a fine-grained
enough description with respect to which everyone agreed that elementary out-
comes were symmetric, hence equiprobable. This criterion of ‘symmetric ele-
mentary outcomes’ came to be known as the ‘Principle of Indifference’3.

The mathematical content of this principle is that whenever a relabelling of
the elementary outcomes leaves their probabilities unaffected (symmetry), the
uniform distribution must be employed. This fails in the continuous case since
clearly lengths, areas and volumes are preserved by some bijections but certainly
not all. Symmetry in the elementary outcomes hence fails to uniquely identify a
probability assignment. A growing list of geometric problems refusing to admit
a general consensus representation loomed ahead.

Remark. The Principle of Indifference was so unequivocally employed in the
discrete case that it was thought of as a definition of what probabilities are, not
merely as a rule of thumb guiding an arbitrary choice of probability distribution.
This explains why the failing of the Principle of Indifference, although brought
about by simple mathematics, came as such a great shock to early thinkers.

Problematic Extrapolations: Conditional Probability

As for the calculus of conditional probabilities, theorists felt unsafe about which,
if any, properties were preserved, since the definition itself could not transfer,
designed as it was to model conditioning on events of nonzero probability only:

Pr(A given B) =df

number of outcomes favorable to both A and B

number of outcomes favorable to B

In contrast, in geometric probability it was often the case that we wished to
condition upon an event of probability 0 (a great circle seen as a subset of the
surface of the sphere, for instance), an operation that would force a division by
zero in the definition above.

3This principle was first explicitly identified such by Pierre-Simon Laplace in his seminal
work Théorie Analytiques des Probabilités, published in 1812. Laplace used the term Principle

of Insufficient Reason, which was eventually abandoned for the term Principle of Indifference,
coined much later by John Maynard Keynes. For further information see [10].
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Figure 1.1: the Chord Paradox: from left to right, the three possible solutions
to the question.

The Paradoxes

These difficulties were exemplified via concrete examples of problems that seem-
ingly admitted no unique solution, of which we presently describe four repre-
sentative specimens.

The Perfect Cube Paradox4.

A precision tool factory produces iron cubes with edge length ≤ 1cm. What is
the probability that the face area of a randomly selected cube is ≤ 0.25cm2?
Observing that each edge length ≤ 1cm corresponds uniquely to a face area
≤ 1cm, we can recast this problem more abstractly as follows.

Let y = x2. For any random choice of x ∈ [0, 1], essentially a choice of
y ∈ [0, 1] has also occurred. However, the probability that x lies in [0, 1/2] is 1/2,
whereas the probability that y lies in [0, 1/4] is 1/4 - but the two probabilities
ought to be equal since the two events are equivalent.

The Chord Paradox5.

Consider a disk on the plane with an inscribed equilateral triangle. What is
the probability that a chord chosen at random be longer than the side of an
inscribed equilateral triangle?

The position of the inscribed triangle relative to the chord chosen is clearly
irrelevant to the problem. So we may as well assume that one of the two points
of the chord is fixed on one of the vertices of the inscribed triangle. Now, the

4The underlying idea of this argument has been severally phrased by various authors at
various times. The transformation y = x2 on [0, 1] was used by Emile Borel and Henri

Poincaré (see [14]), whereas y = 1/x on R+ was instead used by Johannes Von Kries. The
anecdotal recasting in terms of a perfect cube factory is due to Bas C. Van Fraassen, in [13].

5This paradox is most commonly known as Bertrand’s paradox. Van Fraassen in [13]
informs us it was first described by Joseph Bertrand in his 1888 textbook Calcul des Proba-

bilités, along with the Paradox of the Great Circle, that follows. Bertrand was a well-known
probabilist and his views on the ill-defined nature of certain continuous probability problems
were very influential, which explains why paradoxes of the type encountered in this section
are often called Bertrand-type paradoxes.
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two edges of the triangle emanating from that point trichotomize the tangent
to that point, so 1/3 of the outcomes will result in a chord longer than the side
of the triangle.

However, a chord is also completely determined by its midpoint. Chords
whose length exceeds the side of an inscribed equilateral triangle have their
midpoints inside a smaller circle with radius equal to 1/2 that of the given one.
The set of favorable midpoints covers an area 1/4 of the original disk, which
also defines the proportion of favorable outcomes as 1/4, not 1/3.

Alternatively, by rotational symmetry, we may fix the radius that the mid-
point of the randomly selected chord will lie on. Then the proportion of favorable
outcomes is precisely all points on the radius that are closer to the center than
half the radius, so it is neither 1/3, nor 1/4, but 1/2.

The Paradox of the Great Circle6.

Pick two points on the sphere at random. What is the probability that they
lie within 10′ of each other? By symmetry we assume that the first point is
fixed on the North Pole of the sphere. We then calculate the proportion of the
sphere’s surface that lies within 10′ of the North Pole. This is 2.1 × 10−6.

We may however observe that there exists a unique great circle that connects
the second randomly selected point with the North Pole. Moreover, by rotational
symmetry, no great circle has more chances of being selected than any other.
Therefore, we may assume we know the great circle that connects the two points.
We have now reduced the original problem to one of picking one point on a
given great circle. The answer to the original question can hence be found by
calculating the proportion of the length of the great circle that lies within 10′

of the North Pole, which is of course 10/(180 · 6) ≈ 9.3 × 10−3, not 2.1 × 10−6.

Buffon’s Needle Problem7.

Assume that a large number of parallel lines 10cm apart are drawn on the floor
and a needle is dropped. What is the probability that a needle 5cm in length
intersects with one of the lines? Clearly the needle will intersect at most one
line. The two quantities of interest can be therefore seen to be the distance d of
the needle’s tip to the line that it is nearest to and the angle θ that the needle
forms with that line. It is natural to assume that the two are independent and
chosen at random. Moreover, the favorable outcomes are precisely those for
which d ≤ sin θ. Now d varies from 0 to 5 and θ from 0 to 2π. The proportion
of this area that satisfies the equation d ≤ sin θ is equal to 1/π, which also
gives the required probability. Until this day, Buffon’s solution is recognised as

6This was published in Bertrand ’s Calcul des Probabilités (see previous footnote) and was
revisited by Borel shortly afterwards. It is the only problem of geometric probability that
Kolmogorov himself adresses in the Grundbegriffe, where he refers to it as a Borel paradox([6,
p. 50-51]). Currently it is mostly known as the Borel-Kolmogorov paradox.

7See Footnote 1.
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Figure 1.2: Buffon’s Needle Problem: on the left, the two quantities of interest,
d and y = sin θ. On the right, the calculation of the area representing favorable
outcomes, under the (θ, d) parameterisation.

correct and fully agrees with experimental data of needle throwing8. However,
we need only reparameterise the problem to represent sin θ by y to get a different
answer.

1.2 The Call for Foundations

The early shock caused by the heterogeneity of geometric and discrete probabil-
ity had by 1933 been replaced by a puzzled enthusiasm, since probabilities had
by then been employed succesfully in a wide range of problems: discrete games
of chance, continuous modelling of prices in the stock exchange, stability of
planetary orbits, properties of decimal expansions of real numbers and notably
statistical and quantum mechanics. Each application would often come with
its own interpretation of what ‘probabilities’ meant, contributing towards the
confusion surrounding that question which prevailed amidst philosophers and
mathematicians. On the other hand, each application would also contribute to
the growing toolbox of theorems and methods for probability theory, bridging
gaps, creating more abstract versions of existing results and overall adding to
the spreading belief that Kolmogorov succinctly expressed in a 1929 publication:

[...] one gains the impression that the formulas of the calculus of
probability express one basic group of mathematical laws of the most
general kind9.

Indeed the laws of probability by 1933 were conceived as axioms, to be sat-
isfied by various interpretations, not as truths that must be strained to hold
universally to a variety of settings10. Kolmogorov in his introduction to the

8Buffon’s solution can be trusted to the extent that it can be used as a way to obtain
arbitrarily good approximations to π.

9The quote is borrowed from [14, p.21].
10(This discussion is a synthesis of [14], [11] and [10]). Already in 1901, in Georg Bohlmann

and Ladislaus Von Bortkiewicz’s entry on probability in the Encyklopadie der mathematischen

Wissenschaften the addition and multiplication theorems were stated as “axioms”. David
Hilbert called for an axiomatisation of probability one year before that, in 1900. Rudolf

Laemmel ’s dissertation in 1904 attempted to offer precisely such an axiomatic basis for re-
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Grundbegriffe puts it as follows ([6, p.1]):

The theory of probability, as a mathematical discipline, can and
should be developed from axioms in exactly the same way as Geome-
try and Algebra. This means that after we have defined the elements
to be studied and their basic relations, and have stated the axioms
by which these relations are to be governed, all further exposition
must be based exclusively on these axioms, independent of the usual
concrete meaning of these elements and their relations. [...] Every
axiomatic (abstract) theory admits, as is well known, of an unlim-
ited number of concrete interpretations besides those from which it
was derived.

This reconceptualisation gave much-needed breathing space to mathematicians
involved in the theory of probability. In its light, the development of the mathe-
matics of probability could proceed uninhibited by the persistent conundrum of
what probabilities ‘really meant’ and the paradoxes could be seen as ill-advised
applications of probability theory - much less to the despair of the mathemati-
cian than inconsistencies within the theory.

No More Paradoxes?

In particular with respect to geometric probability and Bertrand-type para-
doxes, Kolmogorov’s foundations broke the matter down as follows:

Step A. A formal construct is offered, now known as a probability space, that
is meant to model any ‘random experiment’, ie any statement of the form ‘pick
x ∈ X at random’. This reductive imperative underlies the entire measure-
theoretic conception of probability theory:

Any well-posed question about the probability of an eventA must
be in unique correspondence to a question about the probability of
a set A that is represented in a specified probability space.

An important step in the right direction is that probabilities are now thought
of as assignments on sets of elementary outcomes, as opposed to assignments on
the elementary outcomes themselves. In the discrete case, the two approaches
are equivalent, since assignments on the singletons extend uniquely to assign-
ments on arbitrary sets by the properties of probability. In the continuous case,
however, this is not so - this being yet another way to observe the failing of the
Principle of Indifference here.

ducing probability theory to set theory, whereas a similar attempt was made by Ugo Broggi

shortly afterwards in 1907, in which measure theory was also employed. The choice of axioms
and definitions in these two works were however not in consonance with the viewpoint that
was eventually adopted, as expressed in the Grundbegriffe. In contrast, Evgeny Slutsky’s
publication in 1922 of On the question of the logical foundation of the theory of probability

was praised by Kolmogorov as “the first to give the right picture of the purely mathematical
content of probability theory”. In it Slutsky suppressed mention of probabilities and equally
likely cases altogether in favor of a theory of valences, using additivity with respect to parti-
tions, while he referred to the various schools of probability theory as interpretations of the
theory of valences.
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Step B. One then proceeds to establish that the operative notions of infor-
mal probability talk can be formalised and indeed extended in the context of
probability spaces. Such notions involve functions from one set of elementary
outcomes to another, expectations (or mean values), independence, joint con-
sideration of several random experiments and, notably, conditional probability
with respect to an event of probability 0.

Step C. Finally, whenever two formal calculations yield different answers, this
can only be because the underlying probability spaces are different (since, by
definition, the probability space specifies uniquely the probabilities of all events
one is allowed to reason with). The question of which probability space, if any,
is the one that ‘truly’ models this particular question in geometric probability
is one of applicability and is investigated separately from the mathematics.

The Mathematics of the Grundbegriffe

This dissertation will provide a modern viewpoint of precisely the mathematics
laid out in Step B above. In a sense, it was precisely the fact that the mathe-
matics worked so nicely that dictated the choice of a probability space in Step
A as a fundamental notion. It will also become apparent as the dissertation
proceeds that the mathematics we will use rest on nontrivial developments, re-
cent at the time of the Grundebgriffe, in measure theory11. We take great care
throughout the main text to make explicit any such dependencies, even when
Kolmogorov fails to do so. We do this to emphasize the point that it would have
been exceptionally hard for the mathematics community to provide foundations
for even relatively simple fragments of probability theory any earlier than the
1920’s, in the absence of the general framework of measure theory.

Even with the groundwork laid and the mathematical community already
convinced of the fundamental relationship between probability theory and mea-
sure, the Grundbegriffe remains an important work not only as a work of con-
solidation, but also because of certain novel technical contributions that in a
sense provided the coup de grâce to any doubts as to the value of Kolmogorov’s
axiomatisation. These were

• the introduction of infinite-dimensional probability spaces,

11(This discussion is a synthesis of [14], [11] and [10]). The theory of measure arguably
starts with Borel’s publication of Leçons sur la théorie des fonctions, wherein he describes
his theory of Borelian content, a generalisation of length on the real line. This is followed
by Henri Lebesgue’s 1904 Leçons sur l’intégration et la recherche des fonctions primitives, in
which the theory of Lebesgue measure, a broad generalisation of that of Borelian content is
introduced. Shortly afterwards, a theory of integration suitable for Lebesgue measure started
developping by Lebesgue himself but also by others, with the Radon integral appearing in
Johann Radon’s Theorie und Anwednungen der absolut additiven Mengenfunktionen. In 1914,
Constantin Carathéodory published his Über das lineare Mass von Punktmengen, in which
his notion of outer measure and generalised integration appears, followed by the abstract
Fréchet integral, featured in Maurice Fréchet ’s Sur l’intégrale d’une fonctionelle étendue à

un ensemble abstrait. Finally, Kolmogorov’s notion of conditional probability rested on the
Radon-Nikodym theorem, stated in its fully abstract form in 1930 by Otto Nikodym in his
Sur une généralisation des intégrales de M.J.Radon.
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• the demonstration of techniques for the differentiation and integration of
expectations with respect to a parameter,

• the precise definition of a notion of conditional probability with respect
to events of probability 0.

In our discussion in the main text we overview the latter two contributions in
detail, since they pertain to questions of geometric probability. The former
contribution does not and is hence omitted.

Afterword

There are several standpoints as to whether it is possible to venture beyond
Kolmogorov’s Step C so as to also resolve via mathematics the question of ap-
plicability of probability theory to geometric problems, in the sense of providing
formal or at least semi-formal criteria as to the appropriate choice of probability
space for each problem in geometric probability. Some think it impossible, in
effect condemning geometric probability problems to be intrinsically ambigu-
ously phrased. This would make Kolmogorov’s formalism a somewhat pyrrhic
victory over the paradoxes, as is succinctly explained in the following quote by
the philosopher of science Mark Van Fraassen ([13, p.305]):

After all, if we were told as part of the problem which parameter
should receive a uniform distribution, no such Principle [as that
of Indifference] would be needed. It was exactly the function of the
Principle [of Indifference] to turn an incompletely described physical
problem into a definite problem in the probability calculus.

Indeed, others think more can be achieved and that the Principle of Indifference
can be replaced by more sophisticated semi-formal criteria. However, to do so,
one must investigate and take a position as to the nature of the object of study of
geometric probability. Is it purely mathematical, is it an idealisation of physical
objects or is it a form of logical calculus?

To discuss such questions thoroughly falls beyond the scope of this disser-
tation. However, in an afterword to Chapter 3, we will refer the interested to
reader to one influential school of thought that has attempted, with some suc-
cess, to further Kolmogorov’s revisionist programme so that it can accommodate
a much larger fragment of geometric probability talk.
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Chapter 2

The Grundbegriffe

This Chapter forms the main part of this dissertation, where we review the
mathematics underlying the measure-theoretic conception of probability theory.
We present two intertwined narratives, one faithful to modern standard practice,
the other faithful to Kolmogorov’s original mode of exposition, as captured in
the Grundbegriffe. Whereas the former is more streamlined, the latter is often
more revealing of basic intuitions.

This Chapter is subdivided as follows. In Section 2.1, we introduce and
familiarise ourselves with the basic notions: probability spaces, independence,
elementary conditional probability and probability functions.

Section 2.2 plays the role of infrastructure works. We provide and discuss
certain measure-theoretic results that make possible the construction of inter-
esting probability spaces, in particular over countable domains and over Rn.
The operative results here are Carathéodory’s Extension Theorem and Fubini’s
Product Measure Theorem.

Section 2.3 uses the results of Section 2.2 to provide concrete examples of
probability spaces modelling familiar problems. We do not advance the theory
here at all; we merely toy around with the notions already defined.

Section 2.4 ventures ahead to the study of random variables and their distrib-
ution functions. We establish the correspondence between distribution functions
and probability measures over the Borel sets of Rn and argue for the singular
role of Lebesgue measure in the foundations of probability theory.

Section 2.5 introduces the notion and properties of mathematical expecta-
tions, an application of Lebesgue integration. We take some time to investigate
a somewhat neglected Theorem of Kolmogorov’s and apply it to the puzzling
experiment of randomly spattering a wall with paint.

Finally, in Section 2.6 we motivate, introduce and discuss Kolmogorov’s no-
tion of conditional probability.

In certain sections, we will adopt a more discursive style so as to offer some
intuition, put a certain result in historical perspective or perhaps give an idea
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of an omitted proof. We take care to include the qualification “a discussion” in
the title of such sections.

2.1 Probability Spaces

The Axioms of Probability Spaces

Our basic object throughout this dissertation is a triple (Ω, F, P ), where

• Ω = {ξi | i ∈ I} is the set of elementary outcomes or outcomes,

• F ⊆ P(Ω) is the set of random events or events,

• P : F → R is a real-valued set function that assigns probabilities to events.

One has to get used to this vocabulary whereby events are sets of outcomes. Our
aim is not merely to assign probabilities to individual outcomes, but rather to
be able to talk of the probability that any one out of of a given set of outcomes
occurs (this set could be an interval of values, for instance). On the other hand,
single outcomes are still represented by singletons.

Definition 1. We call the tuple (Ω, F, P ) (or the tuple (F, P ) whenever Ω is
clear from the context) a probability space if it satisfies the following axioms:

I. F ⊆ P(Ω) is a family of subsets of Ω closed under complements, countable
unions and countable intersections,

II. Ω ∈ F,

III. P is a function from F to R+, the set of positive real numbers,

IV. P (Ω) = 1,

V. if A, B, A ∪ B ∈ F and A ∩ B = ∅ then P (A ∪ B) = P (A) + P (B),

VI. if A1 ⊇ A2 ⊇ A3 ⊇ ... is an infinite descending chain of events of F with
an empty intersection

⋂

n∈N An = ∅, then limn→∞ P (An) = 0.

In modern terms, Axioms I and II can be jointly stated as follows:

Definition 2. A family F of subsets of some set Ω is said to be a σ-algebra

over Ω iff it contains Ω and is closed under complements and countable unions.

In some cases, however, a weaker set of conditions on F is all we need:

Definition 3. A collection of subsets of Ω is an algebra over Ω whenever it
contains Ω and is closed under pairwise unions, differences and intersections.
An algebra is therefore finitely closed, as opposed to being countably closed.

11



It makes sense in the first couple of sections to keep track of our assumptions,
so that the role of each axiom be clearly understood by the reader. In particular,
it will be important to make a note of which results can go through in the absence
of Axiom VI. This motivates the following definition:

Definition 4. Let F be an algebra over Ω. If P satisfies Axioms III-V over F

then it is called finitely additive.

The objects of interest therefore at this early stage are all tuples (Ω, F, P )
where F is either an algebra or a σ-algebra and P is certainly finitely additive,
but may or may not satisfy Axiom VI. Eventually1, however, we will only be
interested in probability spaces, ie tuples that satisfy the whole of Definition 1.

Some immediate corollaries

We now derive several elementary properties of probabilities that flow from finite
additivity. Easy set-theoretical results are stated without proofs.

Proposition 1. Consider (Ω, F, P ) where F is an algebra and P finitely addi-
tive, ie satisfies Axioms III-V. Then, if A, B, A1, A2, ... ∈ F, we have

(a) P (A) + P (Ac) = 1.

(b) P (∅) = 0 .

(c) If A1, ..., An are pairwise disjoint2, then P (
⋃n

i=1 Ai) =
∑n

i=1 P (Ai).

(d) If A1, ..., An are pairwise disjoint and
⋃n

i=1 Ai = Ω, then
∑n

i=1 P (Ai) = 1.

(e) If A ⊆ B, then3 P (B \ A) = P (B) − P (A).

(f) If A ⊆ B, then P (A) ≤ P (B).

(g) P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

Proof. For Claim (a), we observe that P (A∪Ac) = 1 by Axiom IV since A∪Ac =
Ω. But Ac is in F by finite closure of F. Since A and Ac are mutually disjoint,
P (A ∪ Ac) = P (A) + P (Ac) = 1 by Axiom V. Claim (b) then follows from (a)
by setting A =df Ω. Claim (c) follows from a trivial inductive application of
Axiom V, whereas claim (d) follows from (c) using P (Ω) = 1. For Claims (e)
and (f), we observe that A and B \ A are disjoint, so:

P (B) = P (A ∪ (B \ A)) = P (A) + P (B \ A), by Axiom V, yielding (e)

≥ P (A), since P ≥ 0, by finite closure of F, yielding (f)

1Kolmogorov himself initially requires only that F be an algebra and P finitely additive,
then introduces Axiom VI and countable closure of F at a later stage. We thoroughly explain
his approach and the reasons behind it later, in Section 2.2.

2Kolmogorov adopts a notational convention that distinguishes between the union of
A1, ...,An when we know these to be disjoint (

P
i Ai) than when we do not (

S
i Ai). In

this way, he turns the additivity of P into the statement that P commutes with the Σ opera-
tor. This method of making assumptions implicit in the notation is recurrent in Kolmogorov
but not standard today.

3Kolmogorov uses B − A to denote the difference of the two sets. See previous footnote.
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Finally for Claim (g), observe that:

P (A ∪ B) = P (A ∪ (B \ A)) = P (A) + P (B \ A), by Axiom V

= P (A) + P (B \ (A ∩ B)), since B \ A = B \ (A ∩ B)

= P (A) + P (B) − P (A ∩ B), by (e)

Countable Additivity

We have made no use of Axiom VI in the proof of Proposition 1. This is
because we have been concerned with finite collections of events only. It is an
easy observation that if finite collections is all we can get out of F, Axiom VI is
redundant.

Proposition 2. If F is a finite family of subsets of Ω and P is finitely additive
over F, then P also satisfies Axiom VI over F.

Proof. Any descending chain A1 ⊇ A2 ⊇ ... has to involve finitely many strict
inclusions (since each strict inclusion introduces a new element of the finite set
F). Therefore it eventually becomes constant: AN = AN+1 = ... =

⋂

n An = ∅.
This proves that limn→∞ P (An) = P (AN ) = P (∅), as required.

Remark. The cardinality of Ω does not come into play in the above proof.

When we deal with infinite families of events, Axiom VI becomes necessary
to ensure that P is well-behaved in that it commutes with certain natural limit
operations. The limit operation we have so far considered is very specific (the
infimum of a descending chain with empty intersection). It is however sufficient
to yield the same property for P with respect to other natural limit operations:

Proposition 3. Let F be a σ-algebra over Ω and P be finitely additive over F.
Then the following are equivalent, for sets Ai, Bi, Ci, Di all in F:

(a) [Axiom VI] If A1 ⊇ A2 ⊇ ... and
⋂

i Ai = ∅, then limi→∞ P (Ai) = 0.

(b) If B1 ⊇ B2 ⊇ ..., then limi→∞ P (Bi) = P (
⋂

i Bi).

(c) If C1 ⊆ C2 ⊆ ..., then limi→∞ P (Ci) = P (
⋃

i Ci).

(d) If D1, D2, ... are pairwise disjoint, then
∑

i P (Di) = P (
⋃

i Di).

Proof. Our method of proof will be to establish that a ⇔ b, b ⇔ c and d ⇔ a.
Firstly, (a) is a special case of (b), so the direction (b) ⇒ (a) is trivial. We now
show that (a) ⇒ (b). Denote by B the intersection of the chain in (b). Then
P (Bi) = P (Bi \ B) + P (B). But now consider the following chain:

(B1 \ B) ⊇ (B2 \ B) ⊇ ...

Its intersection is empty, so we can apply (a) to obtain:

lim
n

(P (Bn) − P (B)) = lim
n

P (Bn) − P (B) = 0

13



as required. We have shown (a) ⇔ (b) and (b) ⇔ (c) is trivially obtained by
taking complements. We presently show that (a) ⇒ (d). Let:

D =df

⋃

n

Dn, D1, D2, ... ∈ F, with the Di’s pairwise disjoint

Now let Am =
⋃

n>m Dn. Clearly the Ai’s form a descending chain. Moreover
their intersection is empty, since:

[∀m, x ∈ Am] ⇔ [∀m, ∃n > m, x ∈ Dn] ⇔ x is in infinitely many Dn’s

which contradicts the disjointness of the Dn’s. So by an application of (a):

lim
m→∞

P (Am) = 0

This completes the proof, since P (D) = P (D1)+ ... + P (Dm)+ P (Am) for each
m, by Axiom V, which yields that P (D) =

∑

m P (Dm) by taking the limit as
m tends to infinity of each side.

Finally, we show that (d) ⇒ (a). Let A1 ⊇ A2 ⊇ ... be a descending chain
with empty intersection. Clearly then the complements of the Ai’s form an
ascending chain whose union is the whole of Ω. We can of course turn their
union into a union of disjoint sets, by letting:

D1 = Ac
1 and for i > 1, Di =df (Ac

i \ Ac
i−1) = (Ai−1 \ Ai)

We can then apply (d) and Proposition 1 to obtain that limn→∞ P (An) = 0:

1 = P (Ω) =
∑

i

P (Di), by applying (d) and using
⋃

i

Di = Ω

= P (Ac
1) +

∑

i>1

P (Ai−1 \ Ai), by definition of Di

= P (Ac
1) +

∑

i>1

(P (Ai−1) − P (Ai)), by Prop 1, also using Ai+1 ⊆ Ai

= P (Ac
1) + lim

n→∞
(P (A1) − P (An)), since all other terms cancel out

= P (Ac
1) + P (A1) − lim

n→∞
P (An) = 1 − lim

n→∞
P (An), as required.

Properties (b) and (c) are sometimes known as monotone convergence prop-
erties. Property (d) is known as the property of countable additivity. A probabil-
ity assignment is then finitely additive iff it satisfies Axioms III-V and countably
additive iff it satisfies Axiom VI as well - in this latter case, it can also be referred
to as a probability measure4:

Remark. The tuple (Ω, F, P ) is a probability space if and only if F is a σ-algebra
containing Ω and P a probability measure over F.

4In measure theory, a set function µ : F → R+ defined on a family F of subsets of Ω that
satisfies countable additivity is called a measure iff µ(∅) = 0, a finite measure iff µ(Ω) < ∞
and a probability measure iff µ(Ω) = 1.
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Elementary Conditional Probability

We now introduce some new notions. We start with that of elementary condi-
tional probability. We presently give its formal definition, immediately followed
by some motivation in the form of Proposition 4.

Definition 5. [Elementary Conditional Probability] The elementary condi-
tional probability PA(B) of B given A, where P (A) > 0, is given by:

PA(B) =df

P (A ∩ B)

P (A)
(2.1)

or, equivalently, it can be given as the unique solution of:

P (A ∩ B) = P (A)PA(B) (2.2)

Remark. Arguably (2.2) has a mild advantage over (2.1), since when P (A) = 0 it
merely fails to produce a unique solution, rather than force an illegal operation5.

Proposition 4. Let A ∈ F with P (A) > 0 and (Ω, F, P ) be a probability space.
Then (Ω, F, PA) is also a probability space.

Proof. With immediate proofs:

PA(B) ≥ 0, PA(Ω) = 1, PA(B ∪ C) = PA(B) + PA(C) (B, C disjoint)

That PA satisfies Axiom VI is nearly as direct. If (An : n ∈ N) is a descending
chain of events with empty intersection, so is (A ∩ An : n ∈ N), hence:

lim
n→∞

PA(An) =df

1

P (A)
lim

n→∞
P (A ∩ An), by Def 5 and extracting 1/P (A)

= 0, by Axiom VI as it applies to lim
n→∞

P (A ∩ An).

Notation. The modern notation for PA(B) is P (B | A). Observe that Kol-
mogorov’s notation PA(B) is much more compact in that it readily suggests a
nice subscripted piece of notation for the resulting distribution, PA.

Observe that Proposition 4 together with (2.2) imply that PA is in fact the
unique probability measure P ′ on F such that P ′(B) is always proportional to
P (A ∩ B). This sheds some light into the meaning of elementary conditional
probability; conditioning on an event A has the effect of reevaluating the prob-
ability of any other event B to take into account as a given fact that A has also
occurred. Let us now derive some simple results about conditional probabilities.

5It also perhaps mirrors best the intuition of early workers in probability theory, who
took P (A) = 0 to mean that A was impossible (a view which was later abandoned with
the introduction of continuous probability). Since the probability of B conditional on A
was then essentially understood as a hypothetical statement (“if A has happened, then the
probability of B is x”), A being impossible meant that the hypothetical statement had an
impossible antecedent, in which case its consequent (and hence also the value of the conditional
probability of B) could be anything whatsoever.
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Proposition 5. Let X, A1, A2, ..., An ∈ F and P (Ai) > 0 for all i. Then:

(a) Multiplication Theorem:

P (A1, A2, ..., An) = P (A1)PA1(A2)PA1A2(A3)...PA1...An−1(An)

(b) Total Probability Theorem: if the Ai’s are disjoint and
⋃

i Ai = Ω, then

P (X) = P (A1)PA1(X) + ... + P (An)PAn
(X)

(c) Bayes’ Theorem: if the Ai’s are disjoint,
⋃

i Ai = Ω and P (X) > 0, then

∀i, PX(Ai) =
P (Ai)PAi

(X)

P (A1)PA1(X) + ... + P (An)PAn
(X)

Proof. Claim (a) follows by trivial induction on (2.2). Moreover, clearly:

X =
n
⋃

i=1

X ∩ Ai, where the X ∩ Ai’s are disjoint

so Claim (b) follows by additivity and (2.2) applied on each X ∩ Ai. Finally,

PX(Ai) =df

P (X ∩ Ai)

P (X)
=

P (Ai)PAi
(X)

P (X)

which yields precisely (c) if we substitute in the expression in (b) for P (X).

Remark. Result (c) is known as Bayes’ Theorem and is the cornerstone of
the theory of Bayesian Inference. Viewed in a context of hypothesis testing,
Bayes’ Theorem acts as a learning scheme (otherwise known as a belief revision
scheme), whereby we interpret the pairwise disjoint sets Ai as mutually exclusive
competing hypotheses about a certain experiment and X as an experimentally
observed event (ie, a dataset). Then, for each i, the quantity PX(Ai) measures
how probable hypothesis Ai has become given the occurrence of the data X .
Bayes’ theorem allows us to express this quantity in terms of:

• how likely it is under each hypothesis for data X to come up (the PAi
(X)’s).

• how likely each hypothesis was prior to the observation X (the P (Ai)’s).

This is very intuitive; a quantitative version of the sort of argument common
sense would produce. And yet Bayes’ theorem constitutes a major point of dis-
pute between Bayesian probability theorists and measure-theoretic probability
theorists, since Bayesians often (ab)use the aforementioned interpretation by
applying the theorem in situations where it is not clear what the underlying
probability space is, or even whether there is one.
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Independence

As we have seen in the introduction, a concept closely related to conditional
probabilities is that of independence.

Definition 6. Two events A1, A2 are independent iff:

P (A1 ∩ A2) = P (A1)P (A2)

Proposition 6. Two events A1, A2 of positive probability are independent iff:

PA1(A2) = P (A2)

or equivalently PA2(A1) = P (A1)

Proof. Follows directly from Definition 5.

Remark. The semantics of independence and conditional probability are then
intertwined: to condition on a certain event A is to assume it has happened -
if to do so leaves the probability of a certain event B unaffected, then the two
are said to be independent.

We now generalise our definition to apply to collections of events larger than
merely a pair. There are of course two ways to start:

Definition 7. Events A1, ..., An are (mutually) independent iff the following
holds for all m ≤ n and 1 ≤ i1 < ... < im ≤ n:

P (Ai1 ∩ Ai2 ∩ ... ∩ Aim
) = P (Ai1 )P (Ai2)...P (Aim

)

Events A1, A2, ..., An are pairwise independent iff:

P (Ai ∩ Aj) = P (Ai)P (Aj), for all i 6= j

In the case of independence, unlike that of disjointness, ‘mutually’ is strictly
stronger than ‘pairwise’:

Proposition 7. Pairwise independence does not imply mutual independence.

Proof. It is easy to offer a counterexample. This one is due to S.N. Bernstein6.
Let:

Ω =df {ξ1, ξ2, ξ3, ξ4}, F =df P(Ω)

P ({ξi}) = 1/4, from which we can derive all other values,

A =df {ξ1, ξ2}, B =df {ξ1, ξ3}, C =df {ξ1, ξ4}

We then have that P (A) = P (B) = P (C) = 1/2. Now observe that:

P (A ∩ B) = P (B ∩ C) = P (A ∩ C) = 1/4 = (1/2)2 (pairwise independence)

but P (A ∩ B ∩ C) = P ({ξ1}) = 1/4 6= (1/2)3 (mutual independence fails)

6Kolmogorov makes this reference in [6, p.11].
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So pairwise independence is a special case of mutual independence. Kol-
mogorov in fact views the latter as a special case of yet another more general
definition, which follows (Definition 9). It has an intuitive content which is best
understood if we adhere to his terminology and distinguish between indepen-
dence of events and independence of experiments :

Definition 8 (experiment). An experiment (equivalently decomposition, par-
tition) U = {A1, A2, ..., Ar} with possible results A1, ..., Ar is a collection of
mutually disjoint random events whose union is Ω (ie they are jointly exhaus-
tive).

Definition 9. Consider n experiments U(1), U(2), ..., U(n) where:

U(i) = {A
(i)
1 , ..., A(i)

ri
}

The U(i)’s are (mutually) independent iff:

P (A(1)
q1

∩ A(2)
q2

∩ ... ∩ A(n)
qn

) = P (A(1)
q1

)P (A(2)
q2

)...P (A(n)
qn

) (2.3)

for all valid choices of qi (ie such that q1 ≤ r1, ..., qn ≤ rn).

Recall that in the case of n mutually independent events A1, ..., An, it follows
directly that any subcollection of events Ai1 , ..., Aim

, m < n, will also consist
of mutually independent events. The same holds for mutual independence of
experiments, although it requires a few lines of proof:

Proposition 8. If U(1), ..., U(n) are independent then so are U(i1), ..., U(im) for
any m < n and distinct ij’s.

Proof. What needs to be established is this:

P (A(i1)
q1

∩ A(i2)
q2

∩ ... ∩ A(im)
qm

) = P (A(i1)
q1

)P (A(i2)
q2

)...P (A(im)
qm

) (2.4)

We do it by induction on n. The base case is trivial, so we proceed to prove the
inductive step. We need only here establish the case where m = n − 1 (since
if m < n − 1, the result follows by the inductive hypothesis on n − 1). In this
case, we can reorder the ij’s so that i1 = 1, ..., in−1 = n− 1. Then rewriting the
LHS of (2.4):

P (A(1)
q1

∩ ... ∩ A(n−1)
qn−1

) =

rn−1
∑

q=1

P (A(1)
q1

...A(n−1)
qn−1

A(n)
q ), by total probability

=

rn−1
∑

q=1

P (A(1)
q1

)...P (A(n−1)
qn−1

)P (A(n)
q ), by mutual independence

= P (A(1)
q1

)...P (A(n−1)
qn−1

)

rn−1
∑

q=1

P (A(n)
q )

= P (A(1)
q1

)...P (A(n−1)
qn−1

), since

rn−1
∑

q=1

P (A(n)
q ) = P

(

⋃

q

A(n)
q

)

= 1
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We now establish that indeed the notion of mutual independence of events
is a special case of that of mutual independence of experiments:

Proposition 9. Events A1, ..., An are (mutually) independent iff the experi-
ments {A1, A

c
1}, ..., {An, Ac

n} are.

Proof. The ‘⇐’ direction is given by (2.4). The ‘⇒’ direction is given by an
easy inductive argument. We omit the full details and only give the base case.
Assume independence of the events A1, A2, ie: P (A1A2) = P (A1)P (A2). Then:

P (A1 ∩ Ac
2) = P (A1\(A1 ∩ A2)) = P (A1) − P (A1 ∩ A2), by Proposition 1

= P (A1) − P (A1)P (A2), by independence of the events

= P (A1)(1 − P (A2))

= P (A1)P (Ac
2) by Proposition 1

So P (A1 ∩Ac
2) = P (A1)P (Ac

2). Similarly we obtain P (Ac
1 ∩A2) = P (Ac

1)P (A2)
and P (Ac

1∩Ac
2) = P (Ac

1)P (Ac
2). The conjunction of these four statements yields

independence of the experiments, as required.

The intuitive content of Kolmogorov’s definition and choice of terms is cap-
tured in the Proposition below, which combines the definitions of experiments,
elementary conditional probability and independence of experiments:

Proposition 10. A sequence of n experiments are independent iff the proba-
bility of the result of each experiment, conditional on the fact that several other
experiments have had definite results (each of which has nonzero probability)
is equal to the absolute probability, where no conditional assumptions are being
made.

Proof. Formally, this proposition says that, assuming all events in the experi-
ments U(1), ..., U(n) have nonzero probability, then the experiments are indepen-
dent iff for each (experiment) i and each (result) q:

P (A(i)
q ) = P

A
(i1)
q1

...A
(im)
qm

(A(i)
q ) (2.5)

for each valid choice of i1, ..., im (that does not include i) and each valid choice of
q1, ..., qm. Now (2.5) follows from Proposition 8 by the definition of elementary
conditional probability. Conversely, (2.5) yields (2.3) using the Multiplication
Theorem.

Kolmogorov’s definition has the advantage of capturing standard intuitions
about experiments. In modern textbooks, however, a different definition of
independence is used, which can be easily shown to generalise Kolmogorov’s
notion:

Definition 10. Fix a probability space (Ω, F, P ). A countable collection of
sub-σ-algebras F1, F2, ... all contained in F, are said to be independent, iff for
any 1 ≤ i1 ≤ ... ≤ in and sets Gij

∈ Fj , we have:

P (Gi1 ∩ Gi2 ∩ ... ∩ Gin
) = P (Gi1 )P (Gi2)...P (Gin

)
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Proposition 11. Fix a probability space (Ω, F, P ), two7 experiments U(1) =
{A1, ..., An} and U(2) = {B1, ..., Bm} and define the following two collections:

F1 =df {∅,
⋃

i∈J

Ai | J ⊆ {1, ..., n}}, F2 =df {∅,
⋃

i∈J

Bi | J ⊆ {1, ..., m}}

Then F1 and F2 are sub-σ-algebras8 of F. Moreover, U(1) and U(2) are indepen-
dent (Definition 9) iff F1 and F2 are (Definition 10).

Proof. First we show that F1 (and hence also F2 by symmetry) is a sub-σ-
algebra of F. Clearly F1 ⊆ F, by closure of F. So it suffices to show that F1 is
a σ-algebra. Since

⋃

i Ai = Ω by definition of an experiment, Ω ∈ F1. As for
countable unions of (nonempty) sets in F1, by elementary set theory

⋃

k∈N

(
⋃

i∈Jk

Ai) =
⋃

i∈J

Ai, where J =df

⋃

k∈N

Jk ⊆ {1, ..., n}.

So F1 is closed under countable unions; for complements we observe that
(

⋃

i∈J

Ai

)c

=
⋃

i∈Jc

Ai, by disjointness of the Ai’s.

which completes the proof that F1 and F2 are both sub-σ-algebras of F. It is
immediate that if these are independent (Definition 10), then the experiments
U(1), U(2) also are (Definition 9). For the converse, assume that A ∈ F1, B ∈ F2.
If either is empty, trivially P (A ∩ B) = P (A)P (B) = 0. Otherwise,

A =df

⋃

i∈I

Ai, B =df

⋃

i∈J

Bi, for some I ⊆ {1, ..., n}, J ⊆ {1, ..., m}.

Then
A ∩ B =

⋃

i∈I

Ai ∩
⋃

i∈J

Bi =
⋃

(i,j)∈I×J

Ai ∩ Bj (2.6)

But we now observe that if (i, j) 6= (i′, j′), (Ai ∩ Bj) ∩ (Ai′ ∩ Bj′ ) = ∅, since at
least one intersection of two mutually disjoint sets is involved. Therefore,

P (A ∩ B) =
∑

(i,j)∈I×J

P (Ai ∩ Bj), the RHS of (2.6) being a union of disjoint sets

=
∑

(i,j)∈I×J

P (Ai)P (Bj), by independence of U(1), U(2)

=

(

∑

i∈I

P (Ai)

)





∑

j∈J

P (Bj)



 , by simple combinatorics

= P (
⋃

i∈I

Ai)P (
⋃

j∈J

Bj), by disjointness of the Ai’s and the Bj ’s

=df P (A)P (B), as required for independence of F1, F2.

7A straightforward induction can generalise this result for any finite number of experiments.
8Fi is the least σ-algebra that contains U(i); in modern notation, Fi =df σ(U(i)).
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From Partitions to Probability Functions

We have so far encountered finite partitions of Ω only, in the form of experiments
U = {A1, ..., Ar}. Arbitrary partitions of Ω are of course defined similarly:

Definition 11 (Partition). A family U ⊆ P(Ω) is a partition of Ω iff the ele-
ments of U are pairwise disjoint and their union is Ω.

Finite, countable and arbitrary partitions alike are usually given to us via
the aid of some indexing set (without any loss of generality):

U =df {Ai | i ∈ I}

Under such notation, the partition U is essentially represented as a function
from U to I, where I is some (arbitrary) indexing set. We may represent it
equally well by a function u from Ω to I as follows:

u : ω 7→ i, where i is such that ω ∈ Ai (2.7)

where clearly u is a function iff U is a partition. Conversely, given an arbitrary
probability function u we can write:

U =df {u−1(i) | i ∈ I} (2.8)

where
u−1(a) =df {ω ∈ Ω | u(ω) = a}

Naturally we will also wish to assume that u−1(i) be in F for all i ∈ I, since
we wish our partition to contain sets in F only. This motivates the following
definition.

Definition 12 (Probability Function). Let (Ω, F, P ) be a probability space. We
call a function u : Ω → I a probability function iff:

for all a ∈ u[Ω], u−1(a) ∈ F

Representing a partition as a function commits oneself to a particular choice
of index, label so to speak, for each set in the partition. This is not so in the
representation of a partition as a set of sets, since two partitions employing
different indexing schemes will be equal if they contain precisely the same sets.
Such ‘relabellings’ essentially are bijections between indexing sets, and apart
from them, partitions are uniquely represented by functions:

Proposition 12. Let u1 and u2 be two probability functions on Ω. Then
the generated partitions U1, U2 are equal iff there exists a bijective mapping
f : u1[Ω] → u2[Ω] such that u2 = f ◦ u1.

Proof. This proof is tedious definition-chasing, so we omit it.

The real advantage of working in terms of probability functions rather than
partitions is that it allows us to better exploit any structure that our indexing
set may have, such as an order relation and field operations, whereas a partition,
as we have explained, understands its indexing set merely as a set of labels. This
advantage will become apparent when we introduce in later chapters a special
case of highly structure-preserving functions Ω → R, random variables.
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Probability Functions and Measurability: a discussion

We will now prove certain basic results about probability functions, preparing
the ground for more advanced work in the next sections. For the purpose of this
subsection, we consider throughout two sets of elementary outcomes Ω, Ω′ and
a function u : Ω → Ω′, where we might as well constrain Ω′ so that u[Ω] = Ω′.

Definition 13 (Pre-images). We denote by u−1[A′] the pre-image or inverse
image of A′ under u:

u−1[A′] =df {ξ ∈ Ω | u(ξ) ∈ A′}

We simplify our notation for pre-images of singletons as in the previous section:

u−1(a) =df u−1[{a}] =df {ω ∈ Ω | u(ω) = a}

Let us explain briefly why the pre-image operator is the key to this entire
discussion. In terms of partitions, we would like to assign probabilities to sets of
labels according to the probabilities of the sets in the partition that the labels
code for. In formal terms, we assign to each subset of Ω′ the probability of its
pre-image.

Clearly we can do that precisely for those subsets of Ω′ whose pre-images
live in our given space (F, P ). We denote the class of such sets by F(u):

F(u) =df {A′ ⊆ Ω′ | u−1[A′] ∈ F} (2.9)

We can now proceed to define on it the following assignment of probabilities:

∀A′ ∈ F(u), P (u)(A′) =df P (u−1[A′]) (2.10)

It turns out that these definitions in fact suffice to make (Ω′, F(u), P (u)) a prob-
ability space, as the next two propositions establish.

Proposition 13. If F is a σ-algebra over Ω, then F(u) is a σ-algebra over Ω′.

Proof. We need to show that F(u) is closed under complement and countable
intersections and unions. It suffices to observe that, by elementary set the-
ory, the pre-image construct commutes with all these operations. Hence, F(u)

automatically inherits closure from F.

Proposition 14. If (Ω, F, P ) is a probability space, then so is (Ω′, F(u), P (u)),
as defined by (2.9) and (2.10).

Proof. Axiom I holds of F(u) by the previous proposition and Axiom III holds
of P (u) by construction. Clearly u−1[Ω′] = Ω so Ω′ ∈ F(u) and P (u)(Ω′) = 1,
which yields Axioms II and IV.

Finally, we show countable additivity (which yields Axioms V and VI). For
any countable collection A1, A2, ... such that the Ai’s are pairwise disjoint,

u−1

(

⋃

i

Ai

)

=
⋃

i

u−1[Ai] where the u−1[Ai]’s are pairwise disjoint, (2.11)
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since the pre-image not only commutes with unions but also with intersections,
hence preserving disjointness. Then

P (u)(
⋃

i

Ai) =df P (u−1[
⋃

i

Ai])

= P (
⋃

i

u−1[Ai]), since pre-images commute with disjoint sums

=
∑

i

P (u−1[Ai]), by countable additivity of P and (2.11)

=df

∑

i

P (u)(Ai).

Given a probability space over the domain of u, we have managed to induce
a probability space over its image, i.e.,

P (u)(A′) =df P (u(ω) ∈ A′) =df P (u−1[A′])

Remark. Observe that the leftmost and rightmost expressions both represent
probabilities of sets, whereas the middle expression is the probability of the
proposition “u(ω) ∈ A′”. It will often be the case, as is with “u(ξ) ∈ A′”, that
a certain proposition S will correspond in a definite manner to the statement
“ξ ∈ B” where B ∈ F for a certain space (Ω, F, P ). In such cases, we shall denote
the probability of that proposition by P (S). In fact, it is only such propositions
that are allowed to have probabilities at all according to the Grundbegriffe9.

Having finalised our construction of the induced space (u[Ω], F(u), P (u)), we
now prove a couple of technical results to familiarise the reader with the prop-
erties of this construction. Firstly, everything works well with compositions:

Proposition 15. Let u1 : Ω → Ω′, u2 : Ω′ → Ω′′ and consider:

u =df u2 ◦ u1 : Ω → Ω′′

Then the following holds true:

P (u)(A′′) = P (u1)(u−1
2 (A′′)), (A′′ ⊆ Ω′′)

Proof. Definition-chasing:

u(x) ∈ A′′ ⇔ u2(u1(x)) ∈ A′′ ⇔ u1(x) ∈ u−1
2 (A′′) ⇔ x ∈ u−1

1 (u−1
2 (A′′))

It is also important to remark that the construction F(u) equals the whole of
the power set of u[Ω] whenever u is a probability function and u[Ω] is countable:

Proposition 16. Let F be a σ-algebra over Ω and u : Ω → u[Ω] be a probability
function. If u[Ω] is countable, then F(u) = P(u[Ω]).

9This is in contrast to the Bayesian doctrine, which has entirely different and much weaker
criteria for the admissibility of an assignment of probabilities on propositions.
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Proof. By definition of a probability function, F(u) contains all singletons of
u[Ω]. Since u[Ω] is countable, it must also contain all subsets of u[Ω], by count-
able closure of F(u).

Whenever u[Ω] is not countable, F(u) will in general be much smaller than
P(u[Ω]). A common error, for instance, is to assume that it must still contain
all images of elements in F. An interesting but nontrivial counterexample to
this statement for u[Ω] = R can be found in Proposition 46, in the Appendix.

A Remark on Measurability

The notion of a function from one probability space to another underpins much
of probability theory. The key factor is the way in which the pre-image of
a certain function u and the σ-algebras on either space relate. Kolmogorov’s
approach to the study of this problem is the one we have taken so far, whereby:

Definition 14. Fix a space (Ω, F, P ) and a probability function u : Ω → Ω′.
Then the induced σ-algebra by u is denoted by F(u) and give by:

F(u) =df {A | u−1[A] ∈ F}

This is not the only possible set-up. In some contexts, it is convenient instead
to fix a σ-algebra F′ over the image space and construct a σ-algebra over the
domain large enough to contain all pre-images under u:

Definition 15. Fix (Ω′, F′) and u : Ω → Ω′. Then define:

σ(u) =df {u−1[A] | A ∈ F′}

This is a σ-algebra since the pre-image commutes with countable set operations.

Either of these two approaches serves to induce a new space from some given
space10. In modern probability, however, the focus has shifted away from the
construction of new spaces and now lies with the study of well-behaved functions
between pairs of standardised spaces. One then fixes two probability spaces and
is invited to consider functions from one to the other that are measurable:

Definition 16. Fix two σ-algebras F and F′ over two sets Ω and Ω′ respectively.
A function u : Ω → Ω′ is said to be F′/F-measurable or simply measurable iff:

∀A′ ∈ F′, u−1[A′] ∈ F

Presently we show that Definitions 14, 15 and 16 can translate to one an-
other, an indication that they are but alternative approaches to the same study.

10Observe however that the construction of σ(u) does not automatically equip us with a
probability measure over Ω, induced by u, as is the case in the construction of F(u). It usually
takes a lot more work to prove the existence of such a measure, since σ(u) might be too large
(as large as the power set of Ω, see the proof of Proposition 17) to admit a measure.
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Proposition 17. Fix two σ-algebras F and F′ over two sets Ω and Ω′ respec-
tively. Then, for any function u : Ω → Ω′:

(a) the σ-algebra F(u) is maximal such that u may be F′/F-measurable,

(b) the σ-algebra σ(u) is least such that u may be u F′/F-measurable,

(c) u is F′/F-measurable iff F′ ⊆ F(u).

(d) u is F′/F-mesaurable iff σ(u) ⊆ F.

Proof. We need only express F(u) and σ(u) as extrema of families of σ-algebras:

F(u) =
⋃

G, where G =df {Σ | u is Σ/F-measurable}

σ(u) =
⋂

H, where H =df {Σ | u is F′/Σ-measurable}

where neither family can be empty, since trivially {∅, Ω} ∈ G and P(Ω) ∈ H.

Remark. We can naturally generalise the Definition of σ(u) for the case where we
are given a family of probability functions which we want to make measurable:

Proposition 18. Fix (Ω, F) and a family of functions uγ : Ω → Ωγ indexed by
γ ∈ Γ, each image associated with a σ-algebra Fγ . Then define:

σ(uγ : γ ∈ Γ) =df

⋂

{F | u is Fγ/F-measurable for all γ ∈ Γ}

This is the least σ-algebra that makes all of uγ measurable.

Proof. That σ(uγ : γ ∈ Γ) is a σ-algebra follows from the trivial observation
that the intersection of a non-empty arbitrary collection of σ-algebras is a σ-
algebra. That the collection is non-empty is guaranteed by the fact that the
power set P(Ω) is trivially a σ-algebra that makes any function measurable.

2.2 Constructing Probability Spaces

In this section we will study methods and theorems that can assist us in the
constructions of probability spaces. These results will prove essential in the
following section, wherein we will be investigating concrete examples.

The Caratheodory Extension Theorem: a discussion

It is usually much easier mathematically to fully specify a probability assignment
on an algebra, than it is on a σ-algebra (recall Definitions 2 and 3). In fact, σ-
algebras themselves are rarely if ever given explicitly, but rather as the countable
closure of some smaller family of subsets of Ω (often an algebra):
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Proposition 19. For any family S of subsets of Ω, the following family denoted
by σ(S) is the least σ-algebra containing S:

σ(S) =df

⋂

F , where F =df {F | F is a σ-algebra over Ω and S ∈ F}

We call S the generator of σ(S) and σ(S) the closure11 of S.

Remark. The notation σ(S) can always be distinguished from the notation σ(u)
(Definition 15) from the fact that S is a set and u a function. No clearer standard
notational distinction exists.

Proof. Firstly note that F 6= ∅, since F trivially contains the power set P(Ω).
We now need only show that σ(S) is a σ-algebra over Ω, since then it is direct
from definition that it is least. Clearly Ω ∈ σ(S), because Ω can be found in
every F ∈ F . Moreover, any collection A1, A2, ... ∈ σ(S) can also be found in
each F ∈ F . Hence, by closure of all such F, also the result of any countable
operation on the collection A1, A2, ... must be in each F and hence also in S.

Our hope is that we can define probability measures over relatively simple
generators, which would then uniquely and consistently extend to probability
measures over their closures via the properties of measure. Before we establish
how that can be done, we ensure that we have a proper understanding of what
it means for P to be a probability measure over S, for choices of S that are not
σ-algebras:

Definition 17. Let S be any family of subsets of Ω containing Ω and ∅. Then
P is a probability measure over S if P (Ω) = 1 − P (∅) = 1 and P is countably
additive over S in the following sense:

if A1, A2, ... ∈ S and
⋃

i

Ai ∈ S, then P (
⋃

i

Ai) =
∑

i

P (Ai)

Note that
⋃

i Ai ∈ S now forms a part of the assumption.

On the one hand, it is clear enough that any assignment of probabilities
on S will uniquely determine certain probabilities in σ(S), via the properties
of measure. On the other, such forced assignments also raise possibilities of

11The definition of σ(S) as an infimum over a collection of sets is probably more recent
than Kolmogorov’s Grundbegriffe. At that time, mathematicians were more likely to use the
equivalent ‘constructive’ definition which uses transfinite induction:

Theorem (Inductive Definition of Countable Closure). Given S, a family of subsets of Ω we

can construct σ(S) setting F1 = S and using the following recursion:

for ξ a successor ordinal, Fξ+1 =df {countable unions of complements of sets in Fξ}

for λ a limit ordinal, Fλ =df {countable unions of sets in
[

ξ<λ

Fξ}

σ(S) =df

[
ξ

Fξ
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conflict, since there might be more than one ways to produce a certain set A in
σ(S) from sets in S, each yielding a different probability for A.

We therefore require two results: firstly, that no two forced assignments con-
tradict each other (existence of an extension); Secondly, that the probabilities
of all sets in σ(S) be forced (uniqueness of the extension).

When the generator is a σ-algebra both uniqueness and existence are trivially
satisfied. We are hence naturally led to ask: how much, if at all, weaker can
the structure of the generator S be, so that we are guaranteed uniqueness and
existence of an extension over σ(S)?

In the three results that follow, we separately answer this question for the
case of uniqueness and the case for existence, since it turns out that the latter
is a strictly stronger requirement12: existence requires finite closure, whereas
uniqueness only requires closure under finite intersections.

Definition 18 (π-system). A collection I of subsets of Ω is a π-system over Ω
whenever it is closed under pairwise intersections.

Theorem 1 (Uniqueness Lemma). Let I be a π-system over Ω and let P , P ′

be two probability measures on σ(I). Then:

P = P ′ on I ⇔ P = P ′ on σ(I)

Proof. Omitted, can be found in [15, p.194].

Proposition 20. There exists a π-system I and a probability measure P over
I such that no extension of P to a probability measure over σ(I) exists.

Proof. Let Ω = {ω1, ω2, ...} and I = {Ω, ∅, {ω1}, {ω2}, ...}. This is a π-system.
Now consider the following assignment P of probabilities on I:

P (Ω) =df 1 − P (∅) =df 1, and for all i, P (ωi) =df 0

This assignment agrees with Definition 17, because any family of sets in I whose
union remains in I must either contain only one non-empty set or it must contain
Ω; either way, countable additivity is satisfied:

P (A ∪ ∅) = P (A) = P (A) + P (∅), for any A ∈ I

P (Ω ∪ {ω} ∪ ... ∪ {ω′}) = P (Ω) = P (Ω) + P ({ω}) + ... + P ({ω′})

However, there exists no probability measure P ′ over σ(I) = P(Ω) that extends
P , since if that were so, from countable additivity of P ′ we should get:

1 = P ′(Ω) = P (
⋃

i

{ωi}) =
∑

i

P ′({ωi}) =
∑

i

P ({ωi}) = 0

Theorem 2 (Caratheodory Extension). Let Σ be an algebra over Ω and P be a
probability measure on Σ. Then there exists a (unique) probability measure on
σ(Σ) that agrees with P on Σ.

Proof. Proof omitted, can be found in [15, pp.195-199]. Uniqueness follows by
Uniqueness Lemma, since an algebra is trivially also a π-system.

12This makes sense, since we need S to have enough structure to reveal any conflicting
information that might be implicit in P .
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Remark on Kolmogorov’s Version of Definition 1

Equipped with the Carathéodory Extension Theorem, we are now in a position
to compare Kolmogorov’s approach to the axiomatic definition of probability
spaces with the modern approach (Definition 1).

The results we have just established heavily rely on the presence of countable
additivity (or equivalently Axiom VI). However, at the time of the writing of
the Grundbegriffe, countable additivity was still generally being viewed as a
separate hypothesis, useful for probabilistic reasoning in pure mathematics but
otherwise lacking empirical content13. This explains the reason why Kolmogorov
in 1933 goes about the definition of probability spaces in a roundabout way:

A. Initially he works with finite closure only, defining what he called Gen-
eralised Probability Fields, ie probability spaces over algebras that do not
necessarily satisfy Axiom VI.

B. He then introduces Axiom (VI) as an extra “arbitrary” hypothesis, “found
expedient in researches of the most diverse sort”14. This produces the
definition of Probability Fields.

C. Finally, he arbitrarily restricts15 his attention to probability fields over
σ-algebras, which he called Borel Probability Fields.

It is only this latter notion of a ‘Borel Probability Field’ that agrees with our
notion of a Probability Space. Moreover, the extension theorem serves precisely
to establish that any ‘Probability Field’ uniquely corresponds to a ‘Borel Prob-
ability Field’, although the same cannot be said for an arbitrary ‘Generalised
Probability Field’, since there we lack Axiom VI and the Extension Theorem
does not go through. In fact, our formalism has no place for ‘Generalised Prob-
ability Fields’.

13Certain philosophers of probability have argued that since only finitely complex composite
events are ever observed, the full strength of countable closure makes it much harder to
empirically justify a choice of probability assignment P , since there will typically be an infinity
of specific probability values which we will be even in principle unable to empirically verify.
Axiom (VI) was similarly viewed as a philosophical compromise. Kolmogorov describes the
whole matter very succintly as follows:

Since the new axiom is essential for infinite fields of probability only, it is
almost impossible to elucidate its empirical meaning. [...] For, in describing any
observable random process we can obtain only finite fields of probability. [...]
We limit ourselves, arbitrarily, to only those models which satisfy Axiom VI.

This limitation has been found expedient in researches of the most diverse sort.

14See previous footnote.
15In fact, he views this not as a restriction, but as an extension, claiming that sets of

events that form algebras may admit of an empirical interpretation, but σ-algebras are too
large to do so, since they invoke infinity in an essential way. This may seem odd to the
modern reader since σ-algebras are formally special cases of algebras, and better behaved,
if anything. However, with a ‘constructive’ definition of algebras in mind, as described in
footnote 11 earlier, a recursively defined algebra only requires finite induction, whereas a σ-
algebra requires transfinite induction. In this context, an algebra is indeed a simpler object,
which might explain Kolmogorov’s reluctance to deal with σ-algebras straight from the onset.

28



Remark. The term ‘Borel’ is at present used only in topological contexts, as
the reader will be reminded soon. For this reason we abandoned Kolmogorov’s
original terminology for its modern equivalent, ‘Probability Space’.

Spaces with a Countable set of Elementary Outcomes

Let Ω = {ξ1, ξ2, ..., } and p1, p2, ... be a sequence of positive real numbers such
that:

∑

n

pn = 1 (2.12)

Then, assuming that we wish our σ-algebra F to contain all singletons, the
following assignment of probabilities on the singletons can be uniquely extended
to a probability measure over F:

∀n ∈ N, P ({ξn}) =df pn (2.13)

Proposition 21. There exists precisely one probability space (Ω, F, P ) such that
F contains the singletons and P satisfies (2.13).

Proof. Firstly, the closure of the set of singletons is the power set P(Ω), which
is also the maximal σ-algebra over Ω, so it is the only possible choice for F. Now
for any set S in F, we define the following probability:

P (S) =df

∑

ξ∈S

P ({ξ})

Observe that the infinite sum on the RHS converges absolutely always, since it
only consists of positive terms and the sequence of partial sums is monotonically
increasing and, by (2.12), bounded above by 1.

In fact, P is a probability measure. By (2.12), P (Ω) = 1 and, by definition,
P (∅) = 0. Moreover, if (Ai : i ∈ N) is a sequence of disjoint sets in F, then:

P (
⋃

i

Ai) =df

∑

ξ∈
S

i
Ai

P ({ξ}) =
∑

i

∑

ξ∈Ai

P ({ξ}) =df

∑

i

P (Ai)

by absolute convergence and disjointness of the Ai’s. This completes the proof
that P is a probability measure. Finally, clearly P agrees with (2.13) on all
singletons, which together with the empty set form a π-system, so it is the
unique measure that satisfies (2.13), as required.

Spaces with R as a set of Elementary Outcomes

The standard σ-algebra to work with over the reals and by far the most impor-
tant example of a σ-algebra in this dissertation is the following:

σ(open sets in R)

This is in fact a special case of a general construction that works for any topo-
logical space. We recall the definition of a topological space:
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Definition 19. A topological space {Ω, T } consists of a non-empty set Ω to-
gether with a fixed collection T of subsets of A satisfying:

T1. Ω, ∅ ∈ T

T2. T is closed under finite intersections.

T3. T is closed under arbitrary unions.

We say a set A ⊆ Ω is open iff A ∈ T .

Much of the theory of spaces such as R that are naturally endowed with
a topology rests on being able to reason with open sets. It is hence natural
whenever Ω can be seen as a topological space that we should consider σ-algebras
that contain the topology of Ω. The least such σ-algebra is called Borel :

Definition 20. Let (Ω, T ) be a topological space. Then the Borel σ-algebra
over Ω is defined as follows:

B(Ω) =df σ(T )

We call any set A ⊆ Ω that is in the collection B(Ω) a Borel set of Ω.

It will prove useful that in the special case where Ω = R, the Borel sets can
be generated by the set of half-rays, {(−∞, a) | a ∈ R}:

Proposition 22.

B(R) =df σ({open sets in R}) = σ ({(−∞, a) | a ∈ R}) (2.14)

Proof. This proof relies on the simple remark that for any two sets G and H :

if G ⊆ σ(H) and H ⊆ σ(G), then σ(G) = σ(H)

We will be using this in several proofs. In this case, we need to establish that:

{half-rays in R} ⊆ σ({open sets in R}) (A)

{open sets in R} ⊆ σ({half-rays in R}) (B)

In one direction, (A) follows trivially since half-rays are open sets. In the other,
it suffices to establish that all open intervals (a, b) can be generated from half-
rays, since any open set can be expressed as a countable union of open intervals.
However, we readily observe that:

(a, b) = (−∞, b) \ (−∞, a]

whereby the following completes the proof:

(−∞, a] =
⋂

n

(−∞, a +
1

n
)
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Remark. By a similar proof one may show that B(R) = σ({(−∞, a] | a ∈ R}).

The foundation for the construction of probability measures on R is, natu-
rally, the notion of length, as generalised into a countably additive set function
by Lebesgue. To obtain a probability measure out of the notion of length we
have of course to limit ourselves to a bounded interval. We hence prove the exis-
tence of the Lebesgue probability measure on [0, 1], with obvious generalisations
to any bounded interval (a, b), [a, b), (a, b] or [a, b].

Theorem 3 (Existence of Lebesgue Measure). There exists a unique probability
measure Leb on ([0, 1],B([0, 1])) such that, for all 0 ≤ a ≤ 1, we have:

Leb([0, a)) = a (2.15)

Proof. The proof is nontrivial and standard so we will not include it in full in
the dissertation - we offer precisely enough information for the reader to be able
to understand what the nontrivial part is.

Let Ω = [0, 1]. We will construct an algebra Σ0 over Ω as follows. We let
A ∈ Σ0 iff A may be written as a finite disjoint union of open intervals and
singletons:

A = (a1, a2) ∪ {a3} ∪ (a4, a5) ∪ ... ∪ (an−1, an) (A)

where 0 ≤ ai ≤ ai+1 ≤ 1. It is routine to establish that Σ0 is in fact an algebra
(i.e., finitely closed). We then define the following assignment Leb on open
intervals and points:

Leb((a, b)) =df b − a, Leb({a}) = 0

This extends to an assignment of probabilities to Σ0 simply via finite addition.
It is then easy to establish that this assignment Leb(A) for A ∈ Σ0 is stable
under the various ways in which A can be represented as a disjoint union of
points and open intervals16. Having thus established that P is well-defined, we
trivially observe that:

Leb(Ω) = 1, Leb(∅) = 0 and Leb is finitely additive

Presently the nontrivial part of this proof is required:

Lemma. Leb is countably additive over Σ0.

Proof of Lemma. Omitted, can be found in [15, pp.200-202]. This proof makes
essential use of the topological properties (namely, the compactness) of [0, 1].

It then follows from the Carathéodory Extension Theorem that Leb can
be extended to σ(Σ0), which is of course precisely B([0, 1]) by Proposition 22.
Finally, it follows from the Uniqueness Lemma that Leb thus defined is unique,
since (2.15) determines Leb on the π-system {[0, a) | 0 ≤ a ≤ 1}.

In later sections, we will make essential use of Lebesgue measure to derive
a general method for the construction of probability measures on (R,B(R)), by
way of their correspondence with distribution functions.

16One may argue on the basis of the observation that overlapping endpoints cancel out.
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Remark on Completions

Note that the space we have just constructed, ([0, 1],B([0, 1]), Leb), is not a com-
plete space in the measure-theoretic sense (see Appendix A) and hence B([0, 1])
is strictly smaller than what is known as the family of Lebesgue measurable sets.
Naturally the complete space ([0, 1], Leb([0, 1]), Leb) is also a probability space.
However, probability theorists tend to prefer to avoid completions unless they
are needed for the mathematics. In particular, for topological spaces, the Borel
σ-algebra is sufficient for all important theorems and completions are mostly
considered an unnecessary complication that results only in loss of tangibility.

Product and Component Spaces

Joint consideration of two sets of elementary outcomes Ω1, Ω2 can be achieved
by encoding our experiment with pairs of values:

(ω1, ω2) ∈ Ω1 × Ω2

Naturally, this same representation also gives an ‘encoding’ of events involving,
say, Ω1 only, obtained by disregarding second coordinates:

Pr(X1) =df P ({(x′, y) ∈ Ω1 × Ω2 | x′ ∈ X1}) = P (X1 × Ω2), (X1 ⊆ Ω1)

Formally, this encoding is the pre-image π−1
1 (X1) of X1 under the projection

π1. This invites us to consider the projection maps as probability functions:

π1 : (ω1, ω2) 7→ ω1, π2 : (ω1, ω2) 7→ ω2

On the basis of this observation, we proceeed to investigate the relationship
between distinct spaces over Ω1 and Ω2 and spaces ‘joint’ over Ω1 × Ω2.

Component Spaces

Assume we are given a fixed probability space (Ω1 × Ω2, F, P ). It is easy to
construct its component spaces over each of Ω1 and Ω2. As we observed, the
encodings in F of sets in Fi are just pre-images under the projection maps. In
accordance with our results on probability functions, we can then see that the
two probability spaces we are looking for are:

(Ω1, F
(π1), P (π1)) and (Ω2, F

(π2), P (π2)) (2.16)

Product Spaces

Fix now two probability spaces (Ω1, F1, P1), (Ω2, F2, P2). We wish to define a
σ-algebra over Ω1 × Ω2 that contains ‘encodings’ of all sets Ai in Fi - formally,
their pre-images under the respective projections. The least such algebra is
precisely the object defined in Definition 15:
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Definition 21. Let F1, F2 be two given σ-algebras over Ω1, Ω2 respectively.
We define the product σ-algebra of F1 and F2, denoted by F1 × F2, as follows:

F1 × F2 =df σ(π1, π2) =df σ({π−1
i (Ai) | Ai ∈ Fi})

Proposition 23. The product σ-algebra can also be given as follows:

F1 × F2 = σ({A1 × A2 | Ai ∈ Fi}) (2.17)

Proof. As we have observed, the pre-image under projection πi of a set Ai in
Fi can be written as a cartesian product Ω1 × A2 or A1 × Ω1 respectively.
Conversely, the cartesian product A1 × A2 can be written as an intersection of
pre-images under projections, π−1

1 (A1) ∩ π−1
2 (A2). Therefore:

σ(π1, π2) =df σ({π−1
i (Ai) | Ai ∈ Fi}) = σ({A1 × A2 | Ai ∈ Fi})

Naturally, we are now only interested in probability measures P over F1×F2

that agree with Pi on encodings of sets Ai in Fi. Formally:

P (π−1
i (Ai)) = Pi(Ai), (Ai ∈ Fi) (2.18)

Of particular importance is the measure that additionally demands ‘indepen-
dence’ of the two underlying spaces, known as product measure:

Theorem 4 (Existence of Product Measure). Let (Ω1, F1, P1), (Ω2, F2, P2) be
two probability spaces. Then there exists a unique product measure P on the
product σ-algebra F1 × F2 that satisfies, for all Ai ∈ Fi:

P (A1 × A2) = P1(A1)P2(A2) (2.19)

This measure is sometimes denoted by P1 × P2.

Proof. Existence follows from Fubini’s theorem, which we will state much later
(without proof), when we are equipped with the notion of Lebesgue integration.
Uniqueness follows from the Uniqueness Lemma, since (2.19) constrains the
values of P everywhere on the π-system I defined below:

I =df {A1 × A2 | Ai ∈ Fi}

and, from Proposition 23, we know that F1 × F2 = σ(I).

Remark. Observe that among measures that satisfy (2.18), the additional con-
straint (2.19) can be written as:

P (π−1
1 (A1) ∩ π−1

2 (A2)) = P (π−1
1 (A1))P (π−1

2 (A2))

which expresses a requirement of independence of encodings of events A1 ∈ F1

from events in A2 ∈ F2 in exactly the sense of Section 2.1.

The product measure is of course not the only measure over F1 × F2 that
satisfies (2.18). There usually exists a wide range of such measures for any
given choice of spaces (Ωi, Fi, Pi), reflecting the existence of correlations between
outcomes of Ω1 and Ω2. We will see such examples later in the main text.
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An Aside

According to the above, we can say that two spaces (Ω1, P1, F1) and (Ω2, F2, P2)
agree with a space (Ω1 × Ω2, F, P ) precisely if all encodings of sets Ai ∈ Fi are
in F and are assigned the same probabilities by P as they are by Pi. Recalling
Proposition 17, we can rewrite this using Kolmogorov notation as follows17:

Fi ⊆ F(πi) and P (πi) = Pi on Fi

We hence have ‘agreement’ whenever the component spaces of (Ω1 × Ω2, F, P )
contain, respectively, the givens (Ω1, F1, P1), (Ω2, F2, P2). It turns out that
containment is the best we can do in general. Nevertheless, identity is in fact
possible in the case F1 = F2 = R. A proof of this result, making use of the
topological properties of R, is offered in the Appendix.

Beyond Pairs

The construction above can be extended by induction to any finite number of
spaces, without any problem. We are in such a case interested in any space
(Ω1 × ... × Ωn, F, P ) that satisfies:

F =df σ(π1, ..., πn)

and P (π−1
i (Ai)) = Pi(Ai), (Ai ∈ Fi) (2.18)

Among such spaces, one can prove the existence and uniqueness of the product
space that additionally satisfies:

P (A1 × ... × An) = P1(A1)P2(A2)...Pn(An), (Ai ∈ Fi) (2.19)

The analogous construction is possible for countable families of spaces18. First,
to state the equivalent of (2.19) we need the following definition:

Definition 22. Let (Ωi : i ∈ N) be a countable family of sets. A set A ⊆
∏

i∈N Ωi is a rectangle set iff it is a product
∏

i∈N Ai of sets Ai ⊆ Ωi, where only
a finite number of these containments are not identities. Formally:

A rectangle ⇔ A =
n
∏

i=1

Ai ×
∏

j>n

Ωj , (some n)

or equivalently A rectangle ⇔ A =
⋂

i∈I

π−1
i (Ai), (some finite I)

We can now state the Theorem in question:

17We require that the pre-image (‘encoding’) of any set in Fi be in F. This can be precisely
stated as Ai ∈ Fi ⇒ Ai ∈ {A | π−1

i (Ai) ∈ F}, or equivalently, Fi ⊆ F(πi).
18It is also possible, under certain conditions, for uncountable families. We omit this dis-

cussion since we lack the technical notions required even to state the theorems in question.
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Theorem 5 (Countable Product Space). Let ((Ωi, Fi, Pi) : i ∈ N) be a countable
collection of probability spaces and let Ω =df

∏

i Ωi. Now define πi to be the
projections of Ω onto its component spaces and define the product σ-algebra
over Ω as follows:

F =df σ(πi : i ∈ N) = σ({π−1
i (Ai) | Ai ∈ Fi})

There exists a unique choice of P over (Ω, F) that satisfies the following:

P (
⋂

i∈I

πi(Ai)) =
∏

i∈I

Pi(Ai), (I finite, Ai ∈ Fi) (2.20)

Proof. Nontrivial, omitted, can be found in [15]. Uses techniques different to
the analogous result for finite products.

Remark. In the finite case, the product σ-algebra was understood variably either
as the least σ-algebra containing all products

∏

i Ai, Ai ∈ Fi, or as the least σ-
algebra that makes all projections measurable. In the countable case, the former
definition becomes problematic, but the latter definition generalises painlessly.

Spaces with Rn as a set of Elementary Outcomes

Precisely as in the case of (R,B(R)), the foundation for the construction of
probability measures over (Rn,B(Rn)) is the notion of n-dimensional Lebesgue
measure, a generalisation of the notion of ‘volume’.

In this section, we will outline the key steps in the construction of n-fold
Lebesgue measure, which is a straightforward abstraction of the 1-dimensional
case. We will also use the results of the previous section to establish that the
n-fold Lebesgue measure over [0, 1]n agrees with the measure obtained by taking
the product of n copies of ([0, 1],B([0, 1]), Leb).

Definition 23. A half-ray in Rn is denoted by La1...an
and is given by:

La1...an
=df (−∞, a1) × (−∞, a2) × ... × (−∞, an), (ai ∈ R) (2.21)

Proposition 24.

σ({open sets in Rn}) = σ({half-rays in Rn})

Proof. We readily observe that half-rays are open sets. It now suffices to prove
that open sets in Rn can be countably generated from the set of half-rays. By
standard results, any open subset is a countable union of open ‘hypercubes’ of
the form:

∏

1≤i≤n

(ai, bi), 0 < ai, bi ≤ 1

We observe that:
∏

i

[ai, bi) = Lb1...bn
− La1b2...bn

− Lb1a2...bn
− ... − La1a2...bn
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and also that the singleton {(a1, ..., an)} is given by:

{(a1, ..., an)} =

(

⋂

m

La1+
1
n

,...,an+ 1
m

)

\ La1...an

which completes the proof since:

∏

i

(ai, bi) =

(

∏

i

[ai, bi)

)

\ {(a1, ..., an)}

Theorem 6 (Existence of n-dimensional Lebesgue Measure). There exists a
unique probability measure Lebn on ([0, 1]n,B([0, 1]n)) such that:

Lebn(La1...an
) =

n
∏

i=1

ai, (0 ≤ ai ≤ 1) (2.22)

In later chapters where there is no risk of comfusion, we denote Lebn by Leb.

Proof. The proof of existence is analogous to that of the one-dimensional result
and can be found in [15]. The proof of uniqueness follows from Uniqueness
Lemma since the set of half-rays in Rn is a π-system that generates B([0, 1]n).

This establishes the existence of the space ([0, 1]n,B([0, 1]n), Lebn), as re-
quired. The following lemma shows that this space is identical to the product
space ([0, 1]n,B([0, 1])× ... × B([0, 1]), Leb× ... × Leb):

Theorem 7. B(R) × ... × B(R) = B(Rn)

Proof. That B(Rn) ⊆ B(R)× ...×B(R) is trivial since the former is generated by
n-dimensional half-rays (by Proposition 24) whereas the latter is generated by
products of 1-dimensional Borel sets (by definition) and clearly n-dimensional
half-rays are special cases of such products:

La1...an
=df (−∞, a1) × ... × (∞, an)

In the other direction, we need to use the following lemma:

Lemma. The inverse image of a Borel set under a continuous map is Borel.

Proof of Lemma. Consider two Borel spaces (Ω1,B(Ω1)), (Ω2,B(Ω2)), where

B(Ωi) =df σ(T1)

Assuming u : Ω1 → Ω2 continuous, we are precisely required to show that

B(Ω2) is contained in {A ⊆ Ω2 | u−1[A] Borel in Ω1} (2.23)

This containment follows by observing that {A | u−1[A] ∈ B(Ω1)} is in fact
a σ-algebra that contains T2: it contains T2 by the definition of continuity;
it is a σ-algebra because the pre-image operator commutes with countable set
operations and B(Ω1) is closed under countable set operations.
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Finally, the Lemma applied to the continuous mapping πi yields:

for all Ai ∈ B(R), π−1
i (Ai) ∈ B(Rn)

∴ B(R) × ... × B(R) =df σ({π−1
i (Ai) | Ai ∈ B(R)}) ⊆ B(Rn)

as required.

Since the σ-algebras match, it follows that the measures Leb× ...×Leb and
Lebn also match, since they agree on the π-system of half-rays by (2.19).

Remark. We will be using the lemma encountered above elsewhere in this dis-
sertation as well. It is a very standard result in measure theory and is usually
expressed by the statement ‘continuous functions are Borel’, where a Borel func-
tion is simply a measurable function between two Borel spaces:

Definition 24. Consider two Borel spaces (Ω1, σ(T1)), (Ω2, σ(T2)) and a prob-
ability function u : Ω1 → Ω2. Then u is Borel measurable or Borel iff it is
T2/T1-measurable.

2.3 Applying and Interpreting Probability Spaces

The first two examples are of special importance, since either of them can be
thought of as a way of deriving the axioms of finite probability spaces from
basic intuitions about counting and chance events19.

Sequences of trials (frequentist interpretation)

Our first example of a setup that can be modelled by a finite probability space is
known as the finitistic frequentist interpretation of the axioms and was the pre-
ferred interpretation of Kolmogorov at the time of writing of the Grundbegriffe.
I summarily but faithfully reproduce his views here ([6, p.3]). It essentially
concerns the modelling of repeatable experiments under controlled conditions
(idealised laboratory experiments).

We study a definite set of events that could take place as a result of the
establishment of an assumed complex of conditions, C, which allows of any
number of repetitions. Then:

• Ω = {ξ1, ξ2, ...} is set equal to the countable set of all possible variants of
the outcome of the experiment that we consider à priori possible.

• A set A ⊆ Ω is in F iff it can be defined in any way that allows us to assert
in a definite manner whether a given outcome belongs to A or not.

19Moreover, any space equipped with a finite σ-algebra where all the probabilities are ra-
tional can be brought in isomorphy to either of them.
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• Under certain conditions, which Kolmogorov abstains from investigating
in the Grundbegriffe, we can set P (A) equal to a real number such that
if m is the number of occurrences of A after a very large20 number n of
trials, then m

n
is very close to P (A).

Having defined in this intuitive manner a space (Ω, F, P ), we are in a position
to derive that Axioms I-V hold of this space. Clearly Ω is well-defined, so is
in F. So is any set defined from previously well-defined sets via countable21

unions, intersections and differences. Hence Axioms I and II hold. Moreover,
clearly 0 ≤ m/n ≤ 1 and, since Ω occurs always, P (Ω) = n/n = 1, which yields
Axioms III and IV. Finally, if A and B are mutually exclusive and m1, m2 are
the numbers of their respective occurrences in a sample of n trials, then clearly
their disjunction has occurred precisely m1 + m2 times, yielding Axiom V.

This leaves Axiom VI, which clearly holds trivially if Ω is finite. Nevertheless,
Kolmogorov’s notation “Ω =df {ξ1, ξ2, ...}” also leaves open the possibility that
Ω be countably infinite, in which case some separate argument is required to
motivate Axiom VI. It is debatable whether or not it is possible to provide such
an argument in this purely finitistic context of relative frequencies. Kolmogorov
in 1933 thinks it “almost impossible” ([6, p.15]):

Since the new axiom is essential for infinite fields of probability only,
it is almost impossible to elucidate its empirical meaning, as has been
done, for example, in the case of Axioms I -V [...].

Remark. The relative frequency interpretation also serves to motivate the crucial
definition of elementary conditional probability as a reflection of the fact that
in conditioning upon an event A, we are essentially focusing our interest in the
subsequence of trials where A was indeed observed.

Single choice out of an urn (logical interpretation)

According to the rival logical interpretation of probability theory, a finite prob-
ability space can be defined only if one correctly identifies a fine-grained enough
description of the problem so that elementary outcomes are in all respects sym-
metric, hence equiprobable. Such a description is meant to be reached via a
logical breakdown of the outcomes of the experiment at hand into their finest
constituents.

Once such a fine-grained description has been achieved, it can brought in
isomorphy with an urn with n balls, for some natural number n. In this case

20The problem of how large ‘very large’ ought to be did not escape Kolmogorov nor his
contemporaries. By some it was in fact viewed as a grave disadvantage of the frequentist
foundations for probability. Taking a more modern standpoint, one would perhaps be inclined
to view this problem not as a foundational problem of mathematics, but rather of science in
general, very much akin the problem of accurate measurement in physics. As such, it cannot
be claimed to pose a greater peril for probability theory than it does for any other scientific
discipline.

21Kolmogorov only considers finite closure at this point in the text (see Remark on Kol-

mogorov’s Approach, earlier).
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Ω = {ξ1, ..., ξn}, F = P(Ω). We posit that a random choice can be made out
of that urn. By symmetry then we consider the selection of a certain ball to
be equiprobable with the selection of any other. This precisely implies that
P (ξi) = 1/n.

We then let some balls have an attribute that the others do not22. Intuitively,
the probability of an attribute A coming up ought to be equal to

P (A) =df

]A

]Ω
=

]A

n
(2.24)

where ]A counts the number of elements in the set A. This agrees with the
calculations made via Axiom V and the values of P on the singletons:

let m =df ]A, then P (A) = P ({ξi1 , ξi2 , ..., ξim
}) =

m
∑

j=1

P ({ξij
}) =

m

n

In this context, Axioms I and II hold by construction, whereas Axioms III, IV
and V can be derived by the following simple counting arguments:

P (Ω) =
]Ω

]Ω
= 1, 0 ≤ P (A) =

]A

]Ω
≤ 1 and

P (A ∪ B) =
](A ∪ B)

n
=

]A + ]B − ](A ∩ B)

n
= P (A) + P (B) − P (A ∩ B)

Remark. The definition of elementary conditional probability is sensible in this
context, too. For readability, we denote the extensions of each attribute by the
respective first letter. Now, what is the probability that a randomly chosen ball
from a certain urn be wooden, given that it is black? The formulation of the
question presupposes that in this particular experiment we have somehow been
assured that the outcome will be a black ball. The space we are sampling out
of is therefore not really Ω, but rather B, whereas the attribute ‘wooden’ no
longer refers to W but to its restriction to black balls. These two observations
together with (2.24) motivate the definition of conditional probability:

assuming B 6= ∅, PB(W ) =
](B ∩ W )

]B
=

](B ∩ W )/n

]B/n
=

P (B ∩ W )

P (B)

Logical Interpretation for Infinite Spaces - a discussion23

Both the frequentist and logical interpretations offered above fail to apply to
spaces where Ω is continuous24. Nevertheless, the logical interpretation has a

22Care must be taken in practice that this does not affect the random selection (for instance,
if randomness is ensured by blindfolding the person who picks, attributes of colour can be
brought into the discussion but attributes of shape cannot).

23This discussion largely repeats certain arguments made in the Introduction.
24In fact, even the countable case is problematic - the frequentist interpretation fails to

incorporate Axiom VI, whereas the logical interpretation directly contradicts it, since there
exists no space with a countable set of equiprobable elementary events: in any such space, by
countable additivity P (Ω) should equal either ∞ or 0.
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particularly simple analogue for the continuous case, which is of relevance to
Bertrand paradoxes. We review this analogue here.

One assumes that a real number x ∈ [a, b] is said to be chosen completely or
uniformly at random if the probability that it ends up in any interval is equal
to the length of that interval25. This of course corresponds to the Lebesgue
measure on [0, 1], otherwise known in this context as the uniform measure.

Therefore the task of the logical probabilist now becomes one of reparame-
terising the problem, until the parameter ‘sampled’ is sampled ‘uniformly at
random’. It is however questionable whether this task can be accomplished
by the same ‘logical’ reasoning that is usually employed in the finite case. In
particular, the following basic intuition about symmetric outcomes now fails:

if we have two descriptions of the set of elementary outcomes that
are in bijective correspondence between them, then if in one of them
elementary outcomes are equiprobable, this also holds of the other.

That this fails in the continuous case can be witnessed via even very simple
bijections on [0, 1], such as the map f(x) = x2. This failing lies at the very core
of Bertrand paradoxes, as we will explain in Chapter 3.

Two choices out of an urn with replacement

Let us now return to the task of modelling simple experiments and try to rep-
resent the choice of two balls, with replacement, from an urn: the experimenter
picks a ball at random, registers its attributes, then replaces it and repeats once
more. Assume (Ω, F, P ) models a single choice out of an urn Ω = {ξ1, ..., ξn} as
before. For two choices we then must have:

Ω′ =df Ω × Ω, F′ = P(Ω)

Moreover, the following must hold true of P ′, since by symmetry any pair (ξi, ξj)
is equally likely:

P ′(A × B) =df

](A × B)

]Ω
=

(]A)(]B)

n2
= P (A)P (B)

This identifies (Ω′, F′, P ′) with the product space26 of two copies of (Ω, F, P ).
Note that we could have equally well derived this by insisting that the second

25There are several ways to motivate this choice. One is to insist that the probability
be invariant with respect to translations, expressing a certain symmetry with respect to the
position of x. This yields the Lebesgue measure. Another is to view decimal expansions as
sequences of random selections from {0, 1, ...,9}, where each digit has equal probability. As we
will establish at the end of this section, this representation also yields the Lebesgue measure.

26This example gives us an opportunity to make an important remark: Kolmogorov’s choice
of formalisation picks out the notion of an experiment as the most basic notion of informal
probability talk and uses it as the cornerstone of the formal theory as well. This is also
remarked by Prof. Williams in the opening sentence of the second chapter of his textbook as
follows ([15, p.23]):

A model for an experiment involving randomness takes the form of a probability

triple (Ω, F, P ) [...].
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choice be independent of the first. We will demonstrate this alternative route
in dealing with the

Two choices out of an urn without replacement

Let us now model the experiment where a choice of two balls without re-

placement from the urn is being made at random: the experimenter randomly
chooses a ball, registers its attributes and then repeats without replacing the
ball. The first choice determines what urn the second choice is made out of.

Naturally, we have to ban pairs of the form (ξi, ξi). We can either do that
explicitly by leaving them out of our set of elementary outcomes, or do it im-
plicitly by giving them zero probability. We take the latter route and work over
the full Cartesian product Ω × Ω and its power set. The choice of P ′′ can now
be dictated via the use of conditional probability from elementary intuitions,
namely that symmetry holds for each choice:

1st choice is symmetric: P ′′(1st choice is ξ) =
1

n

2nd choice is symmetric: P ′′
1st choice is ξ(2nd choice is ξ′) =

{

1
n−1 , if ξ 6= ξ′

0, if ξ = ξ′

The uniqueness of conditional probability (Proposition 4) ensures us that there
exists only one probability assignment on the singletons that satisfies both these
constraints:

P ′′(ξ, ξ′) = P ′′(1st choice is ξ)P ′′
1st choice is ξ(2nd choice is ξ′)

=

{

1
n(n−1) , if ξ 6= ξ′

0, if ξ = ξ′

Since this is a finite space, this assignment on the singletons suffices to uniquely
induce the full probability measure. Now, typically27 in this situation we are

This principle can be seen at work in the fact that the probability space (Ω, F, P ) is related,
but not the same with (Ω′, F′, P ′). This reflects the fact that a single choice out of an urn is
different as an experiment than two choices out of an urn, although the experimental setups
are the same (namely, the urn).

This is a point of importance, since there is no shortage of alternative formalisations of
probability theory, in which different basic notions are employed: for instance, that of a
random sequence, a random source or a degree of belief.

27In teaching of probability theory in secondary education it is customary to ask this ques-
tion for particular choices of A1 and A2. The student is expected to concoct a separate
argument for each such choice. For instance, assume that we have an urn with n balls, n1

of which are black, n2 red and n3 green (so n1 + n2 + n3 = n). Assume we now pick a ball
without replacement. What is the probability that the second ball is red given that the first
one was black? We expect this answer to be n2

n−1
. Indeed, letting A1 be the set of black balls

and A2 the set of red ones, A1 ∩ A2 = ∅, so (2.25) becomes:

n(A1)n(A2) − n(A1 ∩ A2)

n(A1)(n − 1)
=

n2

n − 1
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asked to calculate the probability that the second choice has a certain attribute
A2 given that the first had attribute A1. Attributes A1 and A2 are represented
formally via their extensions, as follows:

1st choice is in A1 =df {(ξi, ξj) | ξi ∈ A1} =df X

2nd choice is in A2 =df {(ξi, ξj) | ξj ∈ A2} =df Y

Therefore, by an easy calculation which we omit, we have (provided A1 6= ∅):

P ′′
1st choice is in A1

(2nd choice is in A2) =
n(A1)n(A2) − n(A1 ∩ A2)

n(A1)(n − 1)
(2.25)

Denumerable coin tossing

We now move to a different kind of experiment:

a biased coin with probability of heads equal to p, where 0 < p < 1,
is tossed repeatedly until tails turns up.

We ‘reset’ our notation and denote by Ω the underlying set of possible outcomes,
which in this case is given by

Ω = {T, HT, HHT, HHHT, ...}∪ {HHHH...}.

In particular it must contain the infinite sequence ‘HHHH...’, since in principle
(and in literature28) the coin might for ever refuse to turn up tails. We give this
sequence the special name H∞.

A fully formal approach would express Ω in terms of countable products of
single tosses. For a while, we allow ourselves a significant head start and rely
on our intuition29 to explicitly assign probabilities on singletons of Ω:

P ({x}) =df

{

0, if x = H∞

(1 − p) pn−1, otherwise
(x ∈ Ω) (2.26)

where n is the length of the sequence x, a finite number whenever x 6= H∞. It
follows that

P (Ω) = P ({H∞}) +
∑

x∈Ω\{H∞}

P ({x}), by countable additivity

= 0 +

∞
∑

n=1

(1 − p)pn−1, by definition of P

= 1, by the summation of the geometric series.

28In the well-known play Rosencrantz and Guildenstern are Dead by Tom Stoppard,
Guildenstern, on his way to assassinate Hamlet, loses a substantial amount of money on
account of a certain coin for ever refusing to turn up heads. The character interprets this
alarmingly bad luck as a sign that he is soon meant to die. Indeed, he is right. Just as such a
sequence of die tosses can only be predetermined, so is the fate of Guildenstern, having been
decided centuries ago when Shakespeare described his death in Hamlet.

29This is as formal as one would get in an applied probability course.
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We hence have an assignment of probabilities on the singletons such that P (Ω) =
1. From the results on spaces over countable sets of elementary outcomes, this
uniquely defines a probability measure on P(Ω).

Completing the gaps, we now demonstrate a more formal alternative, wherein
the assignment (2.26) is derived from the independence of the tosses. To do so,
we have to look at a much bigger space, which we now describe. First, let
(Ω0, F0, P0) denote a single toss of the biased coin:

Ω0 = {H, T }, F0 = {∅, {H}, {T }, {H, T }}

P0({H}) = p, P0({T }) = 1 − p, for some 0 < p < 1

We can now represent infinite sequences of tosses as elements of the cartesian
product of countably many identical copies of Ω0:

Ω′ =df {H, T }N ∼= (N → {H, T })

Naturally, we equip it with the respective product σ-algebra:

F′ =df σ({R | R is a rectangle set})

where rectangle sets, as explained in the section on product spaces, are finite
intersections of inverse images of projections. Since the inverse image under the
i’th projection map can only be one of the two sets Si and Sc

i defined below:

Si =df π−1
i ({H}) = {s ∈ Ω′ | s(i) = H}

Sc
i =df π−1

i ({T }) = {s ∈ Ω′ | s(i) = T }

then an arbitrary rectangle R is given by

R =df

∏

i∈Q

Si ∩
∏

j∈R

Sc
j , (Q, R ⊆ N, disjoint and finite)

We now factor in the independence of the tosses and the understanding that
the probability of the i’th toss is constant, equal to p. Together these enforce
the following requirement on our probability measure P ′:

P ′





∏

i∈Q

Si ∩
∏

j∈R

Sc
j



 =
∏

i∈Q

P ′(Si)
∏

j∈R

P ′(Sc
j ) = pq(1 − p)r (2.27)

where q = ]Q and r = ]R. Clearly, this requirement30 precisely defines (Ω′, F′, P ′)
to be the countable product space of countably infinite many copies of (Ω0, F0, P0).

30The crucial application of Theorem 5 at this point means that there is no need in (2.27)
to posit independence for infinitely many trials - just for any finite combination of trials. This
is the difficulty that Borel had not addressed in his strong law of large numbers and which
Kolmogorov eventually resolved using the extension theorems.
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We presently compare (Ω, F, P ) with (Ω′, F′, P ′). First, we need to represent
the singletons of Ω in Ω′. This is trivial in the case of H∞:

{H∞} is given by
⋂

i∈N

Si

Moreover, it is clear that any finite sequence is represented in F′ by the set
of all its possible continuations. In this spirit, the singletons of Ω \ {H∞} are
represented in F′ as follows:

{HHH...T } is given by

n−1
⋂

i=1

Si ∩ Sc
n, where n is the length of HH...T .

We now check whether the probabilities of these sets in (Ω′, F′, P ′) match our
intuitive assignment (2.26) on the singletons of Ω. First,

P ′({HHH...T }) = P (Sc
n)

n−1
∏

i=1

P (Si) = (1 − p)pn, directly via (2.27)

yielding one branch of (2.26). The other branch is also easy to recover:

P ′(H∞) = P ′( lim
n→∞

n
⋂

i=1

Si), since {H∞} is given by
⋂

i∈N

Si

= lim
n→∞

P ′(
n
⋂

i=1

Si), by monotone convergence (Proposition 3)

= lim
n→∞

pn, by (2.27)

= 0, since 0 < p < 1.

This completes the derivation of (2.26) from the independence of tosses, as
promised. We have gained much more, though: whereas (Ω, F, P ) was tailored
to answer one specific question, the space (Ω′, F′, P ′) can answer any sensible
question we wish to ask about an infinite number of coin tosses. For instance:

Theorem 8 (Borel). Almost surely H will occur infinitely often.

Remark. Naturally we insist on the assumption that 0 < p < 1.

Proof. Consider the singleton of any sequence s of tosses with a finite number
of occurrences of H . Then from a certain toss onwards, say the m’th toss, only
T ever comes up. This precisely means that:

{s} ⊆
∞
⋂

i=m

Sc
i , therefore P ({s}) ≤ P

(

∞
⋂

i=m

Sc
i

)

= 0

again by Proposition 3. Moreover, the set of all such s is countable, since

{s | H occurs finitely many times} =
⋃

n∈N

{s | H does not occur after n’th toss}
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and the sets under the union in the RHS are finite. So by countable additivity

P ′(H occurs finitely many times) = 0,

∴ P ′(H occurs infinitely often) = 1.

Denumerable coin tossing and Lebesgue Measure

If, throughout the above example, we replace the biased coin with an unbiased
dekahedron (ten-sided die), we can then think of each infinite sequence of tosses
to represent the decimal expansion of a certain real number x ∈ [0, 1]. We
can make this mapping bijective if we ban sequences that end in an infinite
repetition of 9’s (they form a countable set with zero probability eitherway).

It is then easy to show that the end-product of our construction of (Ω′, F′, P ′)
above is equivalent to the Lebesgue measure over [0, 1]. For instance:

[0.13, 0.14] is represented in F′ by π−1
1 (1) ∩ π−1

2 (3)

∴ P ′([0.13, 0.14]) = P ′(π−1
1 (1))P ′(∩π−1

2 (3)) =
1

100
= Leb([0.13, 0.14])

This argument in fact works for any interval whose endpoints admit of a finite
decimal expansion. This together with the following simple proposition, suffices
to prove that P ′ = Leb for any Borel set, via the Uniqueness Lemma:

Proposition 25. Let I be the set of intervals whose endpoints admit of a finite
decimal expansion. Then I is a π-system that generates the Borel sets in [0, 1]:

σ(I) = B[0, 1]

Proof. Clearly the reals that admit of a finite decimal expansion form a dense set
in [0, 1], as this is equivalent to saying that the decimal expansion representation
of the reals exists. So for any interval [a, b] we can found a countable sequence of
intervals that tends to it, in the sense that [a, b] is the infimum of the sequence.
This proves that σ(I) contains all intervals and hence also all Borel sets.

Remark. It was precisely in the context of this argument that Emile Borel was
first motivated to introduce the property of countable additivity.

What about spaces over Ω = Rn other than the Lebesgue measure?

As we mentioned earlier, spaces over Rn are usually defined via the concept of
a distribution function, which is the topic of the next subsection. For concrete
examples of such spaces, the reader is invited to wait until Chapter 3, where
Bertrand paradoxes are investigated.
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2.4 Random Variables and Spaces over BRn

We will now turn our attention to probability functions into the reals. We
have explained that a probability function u : Ω → Ω′ is useful in that it
allows us to reason about (Ω, F, P ) indirectly, by investigating the induced space
(Ω′, F(u), P (u)). In particular, probability functions into the reals allow us to
take advantage of topological methods, provided the topology of the reals can is
contained in the induced field F(u). Equivalently, the Borel σ-algebra over the
reals must be contained in F(u):

B(R) ⊆ F(u)

This motivates31 the following definition:

Definition 25. A probability function u : Ω → R carried by the probability
space (Ω, F, P ) is a random variable iff B(R) ⊆ F(u).

Proposition 26. The following are equivalent:

A. The probability function u is a random variable.

B. The probability function u is B(R)/F-measurable.

C. For every a ∈ R, (−∞, a) ∈ F(u).

D. For every a ∈ R, (−∞, a] ∈ F(u).

Proof. Claim (A) is equivalent to (B) by definition (see Remark on Measurability
in Section 2.1). The equivalence of (C) with (A) follows from Proposition 22
and the equivalence of (D) with (A) from the remark that follows it.

Remark. On the basis of the previous proposition we will restrict our attention
to Borel sets only in this section,

working with (R,B(R), P (u)), as opposed to (R, F(u), P (u))

We take this step since, in dealing with distribution functions, our purpose
is precisely to investigate probability measures over the Borel σ-algebra on the
reals. In modern probability theory, this restriction is presupposed straight from
the onset, by defining a random variable to be a B(R)/F-measurable function.

31A less formal motivation arises by thinking of a random variable as roughly capturing the
concept of a ‘measuring device’, or an ‘observable’. Consider an arbitrarily complex underlying
process that yields measurements via some device. It would then be desirable that the set
of possible measurements be (a subset of) a complete ordered field, namely R, and that we
can always ask the question “what is the probability that the measured quantity is below a
certain value a?”. These are precisely the two formal requirements we demand of a probability
function so that it be called a ‘random variable’, as described in (C) of Proposition 26.
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Half-rays32 have two useful properties: firstly, they generate the Borel sets
of R (Proposition 22). Secondly, their probabilities can be naturally given in a
functional form, via a distribution function:

Definition 26. The distribution function F (x) of a random variable x is:

F (x)(a) =df P (x)((−∞, a)), (a ∈ R) (2.28)

Remark. Distribution functions are often defined over the extended real field
which includes the points ∞,−∞, under the understanding that (−∞,−∞) =df

∅ and (−∞,∞) =df R. It follows directly from the properties of measure that
for any random variable x, F (x)(∞) = 1 and F (x)(−∞) = 0.

Proposition 27. Let x be an r.v. and F its distribution function. Then33:

F : R → [0, 1] (2.29)

F is non-decreasing (2.30)

limx→−∞F (x) = 0 and limx→∞F (x) = 1 (2.31)

F is continuous on the left. (2.32)

Proof. By Proposition 26 all half-rays have probabilities, which proves (2.29).
Moreover, for all a, b ∈ R:

a < b ⇒ (−∞, a) ⊆ (−∞, b) ⇒ P (−∞, a) ⊆ P (−∞, b) ⇒ F (a) ≤ F (b)

which proves (2.30).
Now for any sequence of reals a1, a2, ... diverging to ∞, we have that

(−∞, a1) ⊆ (−∞, a2) ⊆ ... and
⋃

n∈N

(an,∞) = R

so by monotone convergence

lim
n→∞

F (an) = lim
n→∞

P ((−∞, an)) = P (R) = 1

Entirely analogously monotone convergence also yields that

lim
n→∞

an = −∞ ⇒ lim
n→∞

F (an) = 0

and lim
n→∞

an = b ⇒ lim
n→∞

(F (b) − F (an)) = 0

which proves (2.31) and (2.32).

32In some modern textbooks, closed half-rays (−∞, a] are used instead of open half-rays
throughout the discussion in this section. Our choice of open half-rays seems to me neater
since it emphasizes the fact that the same system of open sets generates both the topology
and the Borel σ-algebra of R. As we have explained both approaches are equivalent, although
the choice of approach affects several technical details in certain proofs. We will take care to
make note of such discrepancies.

33Had we been using closed half-rays instead, this proposition would still go through, except
with right-continuity rather than left-continuity in (2.32).
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In fact, not only are (2.29)-(2.32) necessary for a certain function to be the
distribution function of a random variable, but they are also sufficient, as the
following result, found in [15, p.34] establishes:

Theorem 9 (Skorokhod Representation). Let F be any function that satisfies
(2.29)-(2.32). Then the function XF : [0, 1] → R defined by:

XF (ω) =df inf{z : F (z) > ω}

is a random variable with distribution function F when understood as a proba-
bility function from the space ([0, 1],B([0, 1]), Leb). We call XF the Skorokhod
Representation34 of F .

Proof. In the Appendix.

Therefore, any function that satisfies (2.29)-(2.32) is the distribution of some
random variable, which validates the following choice of terminology:

Definition 27. A function F that satisfies (2.29)-(2.32) is called a distribution.

Corollary. The following equation defines a bijective correspondence between
probability measures P ′ on (R,BR) and distribution functions F :

F (a) =df P ′((−∞, a)) (2.33)

Proof. Let P ′ be an arbitrary probability measure on (R,B(R)). Then the
following assignment:

F (a) =df P ′((−∞, a))

uniquely defines a distribution F , namely the distribution function of the iden-
tity, viewed as a random variable.

Conversely, let F be an arbitrary distribution. Then consider P (XF ), the
probability measure on R induced by the Skorokhod Representation35 of F . By
construction, the distribution of XF is F , so P (XF ) satisfies (2.33):

P (XF )((−∞, a)) = F (a)

On the other hand, there cannot be any other measure over B(R) that does,
by Uniqueness Lemma. In particular, if F had initially been defined via (2.33)
from an arbitrary probability measure P ′, then it must be that P (XF ) = P ′.

Remark. This correspondence we have just established allows applied probabil-
ity textbooks to encourage students to think of probability spaces directly in
terms of distribution functions, rather than measure spaces, hence allowing the
tools of calculus to be used in more familiar ground.

34Had we assumed that distributions are right-continuous, XF would have to defined as
inf{z : F (z) ≥ ω} for an analogous proof to go through. In any case, the two versions of XF

can be easily seen to agree almost everywhere.
35This measure is otherwise known as the Stieltjes measure with respect to F - see the

discussion of the Skorokhod Representation Theorem that follows.
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The Skorokhod Representation Theorem: a discussion

Theorem 9 ensures us that any random variable x carried by an arbitrary space
(Ω, F, P ), insofar as the investigation of the induced probabilities of Borel sets
are concerned, can be equally well represented by the Skorokhod representa-
tion of the distribution function of x, which is a random variable carried by
([0, 1],B([0, 1]), Leb). This explains the following important observation made
by David Williams in [15, p.35]:

It is in fact true that every experiment you will meet in this (or any
other) course can be modelled via the triple ([0, 1],B[0, 1], Leb).

Williams then hastens to add:

However, this observation normally has only curiosity value.

In my opinion, it truly could be argued that Williams’ initial observation “nor-
mally has only curiosity value” in a philosophical sense. Similarly its importance
is little in a practical, applied sense; the correspondence between measures and
distribution functions being instead the key tool in terms of applicability. How-
ever, the modelling ‘omnipotence’ of ([0, 1],B[0, 1], Leb) is of grand foundational
significance, especially in the context of geometric probability. Indeed, with
some care one will observe that the existence and properties of all examples
of continuous probability spaces contained in this dissertation flow from the
existence and properties of Lebesgue measure.

On a technical note, it ought to be remarked that the bijective correspon-
dence between probability measures over B(R) and distribution functions can
be proved without the Skorokhod Representation Theorem, by properly amend-
ing the argument used for the proof of the existence of Lebesgue measure. Our
approach, although less direct, is better suited to our discussion, since it pre-
supposes the existence of Lebesgue measure and only does the necessary ‘ex-
tra work’, hence emphasizing the foundational importance of the existence of
Lebesgue measure and avoiding the repetition of technical proofs.

For completeness, we make a note here of the notation and terminology
employed in the absence of the Skorokhod Representation Theorem:

Definition 28 (Stieltjes Measure). Let F be a distribution. Then consider the
unique probability measure mF over B(R) that satisfies the following:

mF ({z ∈ R | z < a}) =df F (a) (2.34)

This choice of measure is called the Stieltjes measure with respect to F .

In the terminology of Theorem 9, the Stieltjes measure with respect to F is
the measure induced over B(R) by the Skorokhod Representation of F , ie:

mF =df P (XF )
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Multidimensional Distribution Functions

Consider n random variables, x1, ..., xn carried by a probability space (Ω, F, P ).
We now view the tuple of the n random variables as a probability function from
Ω to Rn:

x : ω 7→ (x1(ω), x2(ω), ..., xn(ω)), (ω ∈ Ω, xi(ω) ∈ R)

We can now work in the induced space (Rn, F(x), P (x)). However we choose to
restrict it to the Borel sets only, analogously to the one-dimensional case. We
are allowed to do that since

Proposition 28. F(x) ⊇ B(Rn)

Proof. It suffices to show that the n-fold half-rays are in F(x), since B(Rn) is
the least σ-algebra that contains them.

x−1(La1...an
) = {ω | x(ω) =df (x1(ω), ..., xn(ω)) ∈ La1...an

}

= {ω | xi(ω) ∈ (−∞, ai), 1 ≤ i ≤ n}

=

n
⋂

i=1

x−1
i ((−∞, ai)) ∈ F

Remark. One is certainly tempted to use the methods employed in the section
on product spaces to see in what way (Rn,B(Rn), P (x)) is related to the spaces
induced by each random variable on its own, again restricted to Borel sets,
(R,B(R), P (xi)). We remind the reader that the crucial conditions are two, one
of agreement and one of independence, labelled (2.18) and (2.19) respectively:

Agreement. for Ai Borel, P (x)(π−1
i (Ai)) = P (xi)(Ai), (1 ≤ i ≤ n)

Independence. for Ai Borel, P (x)(A1 × ... × An) =

n
∏

i=1

P (xi)(Ai)

It is easy to see that agreement is guaranteed by the definition of x, since the
composition of x with the projection πi yields precisely xi. On the other hand,
clearly independence will not always hold and P (x) may very well not agree with
the product measure P (x1) × ...×P (xn), as we will see in Proposition 29 below.
This is natural, since the existence of the underlying space (Ω, F, P ) yields the
expressive power to introduce correlations. It is also desirable since it provides a
method of defining measures over B(Rn) other than the product measure. Such
a method was lacking in Section 2.2.

Proposition 29. It is not always true that P (x) = P (x1) × ... × P (xn).

Proof. Consider the probability space ([0, 1],B([0, 1]), Leb) equipped with two
random variables x1, x2. The requirement of independence demands that for
any Borel sets A1 and A2,

P (x)(A1 × A2) = P (x1)(A1)P
(x2)(A2)

⇔ P (x−1
1 (A1) ∩ x−1

2 (A2)) = P (x−1
1 (A1))P (x−1

2 (A2)) (2.35)
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Now set x1(ω) = x2(ω) = ω and A1 = A2 = [0, 0.5], in which case the LHS of
(2.35) becomes:

P (x−1
1 (A1) ∩ x−1

2 (A2)) = P (x−1
1 (A1)), since x1 = x2 and A1 = A2

= P (A1), since x1 is the identity and A1 ⊆ [0, 1]

= 0.5

whereas by the same reasoning the RHS of (2.35) is equal to 0.25.

Having briefly investigated the properties of the tuple function, we can now
proceed to define the multidimensional analogue of distribution functions:

Definition 29. The following function is called the n-dimensional distribution
function of the random variables x1, ..., xn:

F (x1,...,xn) =df P (x)(La1...an
) (2.36)

Proposition 30. Let x1, ..., xn be random variables and F their n-dimensional
distribution function. Then:

F : (R ∪ {−∞,∞})n → [0, 1] (2.37)

F is non-decreasing in each variable (2.38)

limai→−∞F (a1, ..., an) = F (a1, ..., ai−1,−∞, ai+1, ..., an) = 0 (2.39)

lima1,...,an→∞F (a1, ..., an) = F (∞, ...,∞) = 1 (2.40)

F is continuous on the left in each variable (2.41)

Proof. The proof is entirely analogous of that of Proposition 27.

Definition 30. Any function F : Rn → [0, 1] that satisfies (2.37)-(2.41) is called
an (n-dimensional) distribution function.

Theorem 10. The following equation defines a bijective correspondence between
probability measures P ′ on (Rn,B(Rn)) and n-dimensional distributions F :

F (a1, ..., an) =df P ′(La1...an
) (2.33)

We denote the measure P ′ that corresponds to the distribution F by mF .

Proof. Again, the proof is analogous to the one-dimensional case.

Probability Density Functions

Distribution functions become even more useful when they satisfy certain ad-
ditional ‘nicety’ conditions, in which case calculus can be brought to bear on
the computation of probability values. The result that follows presupposes an
understanding of Lebesgue Integrability. However, it is best to place it here and
invite the reader to revisit its proof after a proper treatment of the integral is
provided in Section 2.5.
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Proposition 31. Let F be an n-dimensional distribution function. Assume
that it is also the case that for some Borel-measurable function f :

F (a1...an) =

∫

La1...an

f(t1, ..., tn)dLeb(t), ((a1, ..., an) ∈ Rn) (2.42)

Then for any Borel set A we have:

mF (A) =

∫

A

f(t)dLeb(t)

where all integrals are understood in the Lebesgue sense.

Proof. We prove the result for the case n = 1 only. The multidimensional case
can be proved analogously. Let µ be defined via:

µ(A) =df

∫

A

f(t)dLeb(t)

Then µ is countably additive by Property II of Theorem 15. Moreover, since F
is monotonically increasing, f is nowhere negative, therefore µ(A) ≥ 0. Finally,
since F (a) → 1 as a → ∞, we get that:

µ(R) =

∫ ∞

−∞

f(t)dLeb(t) = 1

Therefore µ is a measure. But now observe that:

µ((−∞, a)) =df

∫ a

−∞

f(t)dLeb(t)

= F (a), by hypothesis (2.42)

So µ is in fact identical to mF on the π-system of half-rays and therefore is
identical to it everywhere, by Uniqueness Lemma.

Remark. In the 1-dimensional case, under suitable conditions, we may write

f =df

d

da
F (a) (2.43)

for the function f that appears under the Lebesgue integral in (2.42). In this
case, the function is called the probability density function of F . The relation-
ship between definition (2.42) and definition (2.43) is simple but not trivial
and involves the Fundamental Theorem of Calculus for Lebesgue integrals. An
equivalent discussion is possible for the n-dimensional case, using partial deriv-
atives :

f =df

∂n

∂a1...∂an

F (a1, ..., an)

52



Equivalence of Random Variables

We will often be interested of identifying properties defined on Ω that can be
seen to hold with probability 1, or, as is the standard term, almost surely36:

Definition 31 (Almost Surely). Fix a probability space (Ω, F, P ). A property
R of elements of Ω is said to hold almost surely iff

{ω | R(ω) holds} ∈ F and P ({ω | R(ω) holds}) = 1

An important application of this notion is the following. Let x, y be two
random variables carried by (Ω, F, P ). We wish to call them equivalent iff they
are equal almost surely. To ensure this definition is valid, we need to show that
the truth-set of this property is in F, for an arbitrary choice of space, x and y.

Proposition 32. Let x, y be random variables carried by (Ω, F, P ). Then,

Z =df {ω | x(ω) = y(ω)} ∈ F

Proof. We will use the following lemma:

Lemma. Let the function y : Ω → R be defined as follows:

y(ξ) =df f(x1(ξ), ..., xn(ξ))

Whenever f : Rn → R is a Borel function, y is a random variable.

Proof of Lemma. A composition of measurable functions is measurable.

Consider now the probability function w(ω) =df x(ω)−y(ω). Since f(x, y) =
x−y is a continuous function, it is also Borel (recall the Lemma in Section 2.2).
Therefore w is a random variable, which implies that w−1({0}) is in F, since
{0} is a Borel set. This completes the proof, since

w−1({0}) =df {ω | w(ω) =df x(ω) − y(ω) = 0} = Z

We are now assured the following definition is valid:

Definition 32. Two random variables x and y carried by a probability space
(Ω, F, P ) are said to be equivalent iff they are equal almost surely.

We now show that any two equivalent random variables carried by a space
(Ω, F, P ) induce the same measure over R and therefore also have identical
distribution functions. In this sense, any results we may prove about a certain
random variable x only by appeal to its distribution or induced measure can at
best identify x up to equivalence.

36In real analysis, the counterpart term is ‘almost everywhere’. This is inappropriate here
since it fails to emphasize the dependence on the particular choice of probability measure,
which might not be the Lebesgue measure. Measure theorists often make this dependence
explicit by writing “almost everywhere (µ)”, where µ is the particular measure in question.
We adopt Kolmogorov’s ‘almost surely’ as a midway solution.
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Proposition 33. If x and y are equivalent, then

for all A ∈ B(R), P (x)(A) = P (y)(A) (2.44)

Proof. Considering Z as before:

P (x−1(A)) = P (x−1(A) ∩ Zc) + P (x−1(A) ∩ Z), by additivity

= P (x−1(A) ∩ Zc), since P (x−1(A) ∩ Z) ≤ P (Z) = 0

Similarly, we get P (y−1(A)) = P (y−1(A) ∩ Zc). But we now observe that:

x−1(A) ∩ Zc = {ω | x(ω) = y(ω) ∈ A} = y−1(A) ∩ Zc

∴ P (x−1(A)) = P (x−1(A) ∩ Zc) = P (y−1(A) ∩ Zc) = P (y−1(A)).

Convergence of Sequences of Random Variables

Consider now a sequence of random variables x1, x2, .... We first prove that the
proposition “(xi : i ∈ N) converges” corresponds to an event in F, which we call
the convergence set of (xi : i ∈ N).

Proposition 34. A =df {ξ ∈ Ω | the sequence x1(ξ), x2(ξ), ... converges} ∈ F

Proof. We write down what this set A is by definition of (Cauchy) convergence:

ξ ∈ A ⇔ ∀ k ∃n ∀m, m′ ≥ n, |xm(ξ) − xm′(ξ)| ≤ 1/k

∴ A =
⋂

k

⋃

n

⋂

m≥n

⋂

m′≥n

{ξ : |xm(ξ) − xm′(ξ)| ≤ 1/k}

But, for each fixed m, m′, k, the set {ξ : |xm(ξ) − xm′(ξ)| ≤ 1/k} is the inverse
image of the Borel set (−∞, 1/k] under the function:

a(ξ) =df |xm(ξ) − xm′(ξ)|

However, a is a random variable, since the function f(x, y) =df |x − y| is con-
tinuous, hence Borel. So A ∈ F as required.

We can now speak of the probability of convergence of a sequence of random
variables. In fact, the limit of this sequence, if it exists37, is itself a random
variable.

Proposition 35. The function defined below is a random variable:

x(ξ) =df

{

limn→∞ xn(ξ), if ξ ∈ A

0, otherwise
(2.45)

37In most modern textbooks, random variables are understood to be functions from Ω to
the extended real field. Under this understanding, the qualification ‘if the limit exists’ above
only serves to cover cases of oscillating divergence and can be dropped altogether in the case
of lim sup’s and lim inf’s.
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Proof. We need to show that the set B =df {ξ | x(ξ) < a} is in F for each a.
We take cases, depending on whether a ≤ 0 or a > 0. In case a ≤ 0, then:

ξ ∈ B ⇒ the sequence (xi(ξ) : i ∈ N) converged

since otherwise, by convention, x(ξ) = 0 which contradicts x(ξ) < a ≤ 0. So:

{ξ | x(ξ) < a} = A ∩ {ξ | the limit is strictly less than a}

= A ∩ {ξ | ∃ q ∈ Q ∃N ∈ N ∀n > N, xn < a − q}

= A ∩
⋃

q∈Q

⋃

N∈N

⋂

n>N

{ξ | xn < a − q} ∈ F

This concludes the case a ≤ 0. If 0 < a, the event x(ξ) < a can occur either
because of convergence as above, or because the sequence in fact diverged, in
which case x(ξ) is set to 0 < a by convention. Hence:

{ξ | x(ξ) < a} = Ac ∪



A ∩
⋃

q∈Q

⋃

N∈N

⋂

n>N

{ξ | xn < a − q}



 ∈ F

It is useful to distinguish between the following three different types of con-
vergence of sequences of random variables.

Definition 33. Recall that (xi : i ∈ N) is said to converge pointwise to the
random variable x, given by (2.45), iff A = Ω. We now say that (xi : i ∈ N)
converges almost surely to the random variable x, given by (2.45), iff:

P (A) = 1 (2.46)

Moreover, we say that (xi : i ∈ N) converges in probability to the random
variable x, given by (2.45), iff, for every ε > 0:

lim
n→∞

P ({ω : |xn(ω) − x(ω)| > ε}) = 0 (2.47)

Kolmogorov proves several results concerning convergence which we sum-
marise in the following theorem:

Theorem 11. Consider a sequence of random variables (xi : i ∈ N) and the
respective sequence of distribution functions (Fi : i ∈ N). Then:

I. if (xi : i ∈ N) converges almost surely to x, then it also converges in
probability to x

II. if (xi : i ∈ N) converges in probability to x and also to x′, then x and x′

are equivalent

III. if (xi : i ∈ N) converges in probability to x, then (Fi : i ∈ N) converges to
the distribution function F of x at each point of continuity of F .
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Figure 2.1: A graphical illustration of the definition of xn : R → R

Proof. We only prove (I) here, since the rest of the proofs are as direct and can
be found in the Grundbegriffe. Assume (xi : i ∈ N) converges a.s. to x and let
A be the convergence set of (xi : i ∈ N). Now pick ε > 0. Then for every ξ ∈ A,

∃n ∀ p |xn+p(ξ) − x(ξ)| < ε

∴ A ⊆
⋃

n

Sn (2.48)

where Sn =df

⋂

p{ξ | |xn+p(ξ) − x(ξ)| < ε}. We now observe that

m′ ≥ m ⇒ Sm′ ⊇ Sm (S1)

and Sn ⊆ {ξ : |xn(ξ) − x(ξ)| < ε} (S2)

Therefore,

P (A) ≤
⋃

n

Sn, by (2.48)

= lim
n→∞

P (Sn), by (S1) and Axiom VI

≤ lim
n→∞

P ({ξ : |xn(ξ) − x(ξ)| < ε}), by (S2)

So, as required,

1 = P (A) ≤ lim
n→∞

P ({ξ : |xn(ξ) − x(ξ)| < ε}) ≤ 1

We conclude this section by offering a counterexample to the converse of the
statement proved above - a sequence (xi : i ∈ N) that converges in probability
but fails to converge almost surely.

Proposition 36. Convergence in probability 6⇒ Convergence almost surely.

Proof. We will provide a counterexample in the probability space (R,B(R), Leb).
Enumerate Q = {r1, r2, ...}. Then define for each n, the random variable xn(ξ) :
R → R as indicated in Figure (2.1), where:

εn =
1

22n+1
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In other words xn is zero everywhere except in the region (rn−εn, rn+εn), where
it is linearly increasing in (rn − εn, rn] and linearly decreasing in [rn, rn + εn),
attaining its maximum value 1 at rn. Moreover each xn is continuous, hence a
random variable.

We now remark that for any ε > 0 and letting x be the constant function 0:

P ({ξ : |xn(ξ) − x(ξ)| > ε}) = Leb({ξ : |xn(ξ) − x(ξ)| > ε})

≤ Leb({ξ : |xn(ξ) − x(ξ)| > 0}) = 2 · εn =
1

22n

So (xn : n ∈ N) converges in probability to the constant function 0:

lim
n→∞

P ({ξ : |xn(ξ) − x(ξ)| > ε}) ≤ lim
n→∞

1

22n
= 0

We will now show that convergence almost surely fails. The key observation is
that, for any enumeration (rn)n of the rationals, any of its tails, (rn)n>N , is
dense in [0, 1]. This means that for any ξ ∈ [0, 1], (rn)n will return arbitrarily
close to ξ infinitely often:

∀ δ > 0 ∀N ∃n > N , |rm − ξ| < δ (2.49)

So now pick an arbitrary ξ ∈ R and let M be any number. If we set N := M
and δ := 0.5 · εM in (2.49), we obtain that

∃n > M , for which |rn − ξ| < 0.5 · εM , hence xn(ξ) > 0.5.

With the same argument applied to ξ′ = ξ + 10 we obtain that

∃n′ > M , for which |rn′ − ξ| > εM , hence xn(ξ) = 0.

Since for each M we can find such numbers n and n′, we can construct two
subsequences of (xn(ξ) : n ∈ N), one of which is bounded below by 0.5 and the
other of which is identically zero. This implies that (xn(ξ) : n ∈ N) diverges.

Since ξ was arbitrary, we have just shown that the convergence set of the
sequence of random variables (xn : n ∈ N) is empty and hence has probability
0 by the properties of measure. In particular, its probability is not 1, which
completes the proof.

2.5 Mathematical Expectations

We dedicate this section to the study of mathematical expectations, an applica-
tion of Lebesgue integration on probability fields. Besides being very useful in
applications of probability theory (by way of their intuitive meaning), expec-
tations are invaluable as a formal tool for the study of random variables. In
particular, they will play a central role in the definition of conditional probabil-
ity that appears in the next section.
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Figure 2.2: A graphical illustration of Lebesgue’s ladder ; the real line, which is
the image space of f , is partitioned into intervals39 of length λ. The inverse
image operator f−1 then induces a partition over the domain, which is Ω.

Definition and Properties

Consider a probability space (Ω, F, P ) equipped with a random variable x : Ω →
R and A an arbitrary set of F. In a familiar approach, we will attempt to ap-
proximate the integral of x over A by weighted sums of the form

∑

B∈U
P (B)xB ,

where U is some partition of A and xB is some indicative value of the values
x(ω) takes for ω ∈ B. In particular, we consider the following series:

Sλ(x, A, P ) =df

k=+∞
∑

k=−∞

kλP ({ω | kλ ≤ x(ω) < (k + 1)λ} ∩ A) (2.50)

Remark. The partition U that generates this series is not defined directly in
the domain of x. Instead, we consider a regular partition of the image space
of x, the real line, into intervals [kλ, (k + 1)λ) for k ∈ Z. We then produce
the partition U by considering the inverse images of these intervals. In this
manner, we exploit the measurability of x to ensure that our partition contains
measurable sets only (ie U ⊆ F) and are also assured that the values that x takes
on each interval [kλ, (k+1)λ) are very close to our choice of indicative value kλ.
This idea of carving up in a regular manner the image space as opposed to the
domain is what differentiates Lebesgue integration from Riemann integration
and has come to be known as Lebesgue’s Ladder (see Figure 2.2).

In case the series Sλ(x, A, P ) converges absolutely for every λ and its limit as
λ → 0 exists, it is then defined to be the Lebesgue integral or simply integral40

of x over A, relative to the probability measure P :

40The standard measure theoretic notation for this integral is
R
A

xdP , which can however
prove comfusing when x is a function of several variables or defined via composition. The
notation in (2.51) makes the domain somewhat more explicit and is also closer to Kolmogorov’s
choice,

R
A

xP (dE).
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Definition 34.
∫

A

x(ω)dP (ω) =df lim
λ→0

Sλ (2.51)

Definition 35. We call x integrable on A iff (2.51) exists.

The expectation of x can now be defined as the integral of x over the entire
sample space Ω:

Definition 36. The mathematical expectation of an r.v. x is given by

E(x) =df

∫

Ω

x(ω)dP (ω) (2.52)

We now introduce certain useful properties of integrals and mathematical
expectations in the following two theorems, which we state without proof:

Theorem 12. The following all hold:

I. If x is integrable on A, then it is integrable on any A′ ⊆ A, A′ ∈ F.

II. If x is integrable on A =
⋃

n∈N An, An pairwise disjoint sets of F, then:

∫

A

x(ω)dP (ω) =
∑

n

∫

An

x(ω)dP (ω)

III. If x is integrable on A, then |x| is also integrable on A and:

∣

∣

∣

∣

∫

A

x(ω)dP (ω)

∣

∣

∣

∣

=

∫

A

|x(ω)| dP (ω)

IV. If ∀ω ∈ A, 0 ≤ y(ω) ≤ x(ω) and x is integrable on A, then y is also
integrable on A and:

∫

A

y(ω)dP (ω) ≤

∫

A

x(ω)dP (ω)

V. If ∀ω ∈ A, m ≤ x(ω) ≤ M , then:

mP (A) ≤

∫

A

x(ω)dP (ω) ≤ MP (A)

VI. If x and y are integrable on A, then Kx + Ly is also integrable and:

∫

A

(Kx(ω) + Ly(ω))dP (ω) = K

∫

A

x(ω)dP (ω) + L

∫

A

y(ω)dP (ω)
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VII. Let (xn : n ∈ N) be a sequence of random variables such that

∑

n

∫

C

|xn(ω)| dP (ω) < ∞

Then the random variable x defined by x =df

∑

n xn converges pointwise
on C \ B for some set B such that P (B) = 0. Moreover, setting x(ξ) = 0
for ξ ∈ B, we get:

∫

A

x(ω)dP (ω) =
∑

n

∫

A

xn(ω)dP (ω)

VIII. If x and y are equivalent then for any A ∈ F:

∫

A

x(ω)dP (ω) =

∫

A

y(ω)dP (ω) (2.53)

IX. If (2.53) holds for every A ∈ F, then x, y are equivalent.

X. Every bounded random variable is integrable.

Proof. Not included. Refer to [9] and [8].

Remark. Property IX makes it possible to implicitly specify a function almost
everywhere by explicitly specifying all its integrals. This will be crucial in the
construction of conditional probability with respect to probability 0 events in
the next subsection.

The following properties of mathematical expectations now follow directly
from its definition and Theorem 12:

Theorem 13. The following hold:

I. |E(x)| ≤ E(|x|)

II. If 0 ≤ y ≤ x everywhere, then E(y) ≤ E(x).

III. inf(x) ≤ E(x) ≤ sup(x)

IV. E(Kx + Ly) = KE(x) + LE(y)

V. E(
∑

n xn) =
∑

n E(xn) if
∑

n E(|xn|) converges.

VI. If x,y are equivalent, then E(x) = E(y).

VII. Every bounded random variable has a mathematical expectation.

Proof. Trivially follows from Theorem 12.
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Elementary Conditional Mathematical Expectations

It is useful to introduce a concept of elementary conditional mathematical expec-
tation, by employing the elementary conditional probability measure PB which
we encountered in Section 2.1:

Definition 37. Let x be a random variable and let B ∈ F, with P (B) > 0.
The conditional mathematical expectation of x with respect to B is given by:

EB(x) =

∫

Ω

x(ω)dPB
(ω) (2.54)

where PB is defined as in (2.1) and is a probability measure by Proposition 4:

PB(A) =df

P (A ∩ B)

P (B)
, (A ∈ F)

Conditional expectations are most useful when written in a different form,
which we now prove equivalent to (2.54):

Proposition 37. For P (B) 6= 0:

EB(x) =
1

P (B)

∫

B

x(ω)dP (ω) (2.55)

In particular, we get that:

E(x) = P (B)EB(x) + P (Bc)EBc(x) (2.56)

Proof. We observe that:

EB(x) =df

∫

E

xPB(dE) =

∫

B

x(ω)dPB
(ω) +

∫

Bc

x(ω)dPB
(ω)

by Theorem 12.II. Since PB is 0 everywhere on Bc, the series Sλ(x, Bc, PB)
consists of zero terms only and respectively the limit as λ → 0 must also be
zero, so:

∫

Bc

x(ω)dPB
(ω) = 0

On the other hand, we observe that only sets intersected with B are featured
in the series Sλ(x, B, P ). Therefore, conditioning with respect to B has the
following effect:

Sλ(x, B, PB) =
1

P (B)
Sλ(x, B, P )

∴

∫

B

x(ω)dPB
(ω) =

1

P (B)

∫

B

x(ω)dP (ω)
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as required for (2.55). Now, (2.56) follows easily from (2.55):

EB(x) =
1

P (B)

∫

B

x(ω)dP (ω), by (2.55)

=
1

P (B)

(∫

Ω

x(ω)dP (ω) −

∫

Bc

x(ω)dP (ω)

)

, by Theorem 12.(II)

=
1

P (B)
(E(x) − EBc(x) · P (Bc)) , again by (2.55)

Differentiation and Integration of Expectations

Although we will not need the results of this section for the purpose of defining
conditional probabilities, we provide them along with an example of their appli-
cation as further indication of the power of Kolmogorov’s formalism in dealing
with abstract questions in geometric probability.

Fix a probability space (Ω, F, P ) and consider a function f : Ω × Rn → R,

f(ω, t) ∈ R, (ω ∈ Ω, t ∈ Rn)

Let us call such a function an Ω-functional. It can be viewed as a family of real
functions indexed by ω ∈ Ω or equivalently as a family of probability functions
indexed by t ∈ Rn. Accordingly, an Ω-functional can be acted upon in various
ways, in particular:

• By evaluation of its first argument at ω ∈ Ω, which returns a real function
R → R, denoted by fω(t).

• By evaluation of its second argument, which returns a probability function
Ω → R denoted by ft(ω).

• By differentiation with respect to its second argument, which (when all
derivatives exist) returns an Ω-functional (Ω × R) → R, denoted by:

∂

∂t
f(ω, t)

• By Lebesgue integration along its first argument over a set A ∈ F, which
(when all integrals exist) returns a real function R → R, denoted by:

∫

A

f(ω, t)dP (ω)

Remark. As a special case, taking the expectation of f along its first
argument falls under this type of operation.

• By Riemann integration along its second argument over a rectangle S =
∏n

i=1[ai, bi], which (when all integrals exist) returns a probability function
Ω → R, denoted by:

∫

S

f(ω, t)dt =df

∫ b1

a1

∫ b2

a2

...

∫ bn

an

f(ω, t)dt1dt2...dtn
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Observe, however that the series Sλ(x, A, P ) via which we defined the Lebesgue
integral can only be defined for x a random variable (since the inverse images
of all intervals must be in F). This makes the following definition natural:

Definition 38. If x is an Ω-functional and for all t, xt(ξ) is a random variable,
then let us call x a random Ω-functional.

Finally, we introduce some useful notation for the taking the expectation of
f along its first argument (provided the Lebesgue integral converges):

Definition 39. If f is a random Ω-functional, then we define

E(f)(t) =df

∫

Ω

f(ω, t)dP (ω), if it exists

It is customary upon encountering a function on the cartesian product of two
distinct spaces to enquire whether a change of the order of certain operations is
allowed. We will now demonstrate two cases in which such a change is allowed.
Both results can be found in Section IV, Paragraph 5 of the Grundbegriffe, with
complete proofs, although Kolmogorov’s notation makes the proofs somewhat
hard to follow. We omit the proof of Theorem 14 since we will not be using
this Theorem again. However, we do reproduce the proof of Theorem 15, with
different notation and some gaps filled, since this theorem will serve as the basis
for some discussion later.

Theorem 14 (Leibniz’s Rule). Let x(ω, t) be a random Ω-functional, where
ω ∈ Ω and t ∈ R (ie we take n = 1 in the original definition). Now assume that
the following conditions hold:

1. for each t, E(f)(t) exists

2. for all ω, fω(t) is an everywhere differentiable real function

3. there exists a single constant M , such that for all ω, ∂
∂t

f(ω, t) is bounded
in absolute value by M .

Then ∂
∂t

f(ω, t) is also a random Ω-functional and:

d

dt
E(f)(t) = E

(

∂

∂t
f(ω, t)

)

(2.57)

Proof. Omitted. Can be found in [6, p.44].

Theorem 15. Let f be a random Ω-functional. If f is bounded in absolute
value by some constant K and each real function fω is integrable in the Riemann
sense, then:

∫ b

a

f(ω, t)dt

is a random variable. Moreover, its expectation exists and is equal to:
∫ b

a

E(f)(t)dt = E(

∫ b

a

f(ω, t)dt) (2.58)
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Proof. For any ω, the real function fω is Riemann integrable, so:

J(ω) =df

∫ b

a

f(ω, t)dt

exists, which of course yields a probability function J : ω 7→ J(ω). Now define:

Sn(ω) =df

1

h

n
∑

k=1

fa+kh(ω), where h =df

b − a

n
(2.59)

Then for each n, Sn is a random variable, since it is a scalar multiple of a
sum of random variables (the fa+kh’s). Moreover, for any fixed ω, the sequence
(Sn(ω) : n ∈ N) satisfies:

lim
n→∞

Sn(ω) exists and is equal to J(ω)

by definition of the Riemann integral.
Clearly then the sequence (Sn : n ∈ N) of random variables converges point-

wise to the probability function J . Pointwise convergence is a (trivial) instance
of convergence almost surely, which implies by Proposition 35 that J is a random
variable, too. Moreover, J(ω) ≤ K(b − a), by (2.59), since f is bounded above
by K. So J is in fact a bounded random variable, which means its expectation
E(J) exists by VII of Theorem 13.

Convergence a.s. also implies that the Sn’s converge to J in probability, by
I of Theorem 13. This is to say that

∀ε > 0, lim
n→∞

P ({ω : |Sn(ω) − J(ω)| > ε}) = 0

which in particular implies

∀ε > 0, ∃N, ∀n ≥ N, P ({ω : |Sn(ω) − J(ω)| > ε}) < ε (2.60)

For readability in what follows, we denote the set involved in (2.60) as follows:

A =df {ω : |Sn(ω) − J(ω)| > ε}) (2.61)

Now for each n, Sn is a random variable bounded above by K(b − a), so its
expectation exists and is equal to:

E(Sn) =
1

h

n
∑

k=1

E(ft+kh), by (IV) of Theorem 13.

We finally have:

|E(Sn) − E(J)| = |E(Sn − J)| , by Theorem 13.(IV)

≤ E(|Sn − J |), by 13.(I)

= P (A)EA(|Sn − J |) + P (Ac)EAc(|Sn − J |), by (2.56)

≤ P (A)EA(|Sn| + |J |) + P (Ac)EAc(|Sn − J |), by 13.(II) and triangle inequality

≤ P (A)(EA(|Sn|) + EA(|J |)) + P (Ac)EAc(|Sn − J |), by 13.(IV)

≤ 2K(b − a)P (A) + P (Ac)EAc(|Sn − J |) (2.62)
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by (III) of Theorem 13 and since both |J | and |Sn| are bounded by K(b − a).
We now observe that we can bound strictly the rightmost summand in (2.62)

by ε. If P (Ac) = 0, then trivially the rightmost summand is 0 < ε. If not, by
definition of A, we have that for all ω /∈ A, |Sn(ω) − J(ω)| ≤ ε. Therefore:

sup{|Sn(ω) − J(ω)| : ω ∈ Ac} ≤ ε

∴ EAc(|Sn(ω) − J(ω)|) ≤ ε, by 13.(III)

∴ P (Ac)EAc(|Sn(ω) − J(ω)|) ≤ ε, since P (Ac) ≤ 1.

Overall then we have:

|E(Sn) − E(J)| ≤ 2K(b − a)P (A) + ε

≤ (2K(b − a) + 1)ε, by (2.60).

Therefore

lim
n→∞

E(Sn) = E(J)

∴

∫ b

a

E(f)(t)dt = E(J)

assuming E(f)(t) is Riemann integrable.

Remark. Observe that the existence of
∫ b

a
E(f)(t)dt implies the existence of

limn E(Sn) but not vice versa, which is why we need to separately assume that
E(f)(t) is Riemann integrable.

The above proof holds as is for a double integral, that is, where f is now a
family of random variables indexed by (x, y) ∈ R2:

Theorem 16. Let f be a family of random variables indexed by (x, y) ∈ R2.
Then it is also a family of functions fω : R2 → R indexed by ω ∈ Ω. If all these
latter are bounded in absolute value by some constant K and are integrable in the
Riemann (double integral) sense, and the expectation E(f)(x, y) is also Riemann

integrable, then
∫ b

a

∫ d

c
f(ω, x, y) dxdy is a random variable and:

∫ b

a

∫ d

c

E(f)(x, y) dxdy = E

(

∫ b

a

∫ d

c

f(ω, x, y) dxdy

)

(2.63)

Change of order of integration: Theorem 15 or Fubini’s Theorem?

Observe that Theorems 15 and 16 are results that guarantee a change in the
order of integration is possible (although one of the two integrals is Lebesgue
and the other Riemann). It is then natural to attempt a comparison between
this theorem and the standard measure-theoretic result that is customarily used
to justify a change in the order of integration, Fubini’s Theorem:
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Theorem (Fubini’s Theorem). Consider two probability spaces (Ω1, F1, µ1),
(Ω2, F2, µ2) and consider a bounded random variable defined on the cartesian
product f : Ω1 × Ω2 → R, equipped with the product σ-algebra F1 × F2. Now
consider the following two probability functions:

If
1 (ω1) =df

∫

Ω2

f(ω1, ω2)dµ2(ω2), If
2 (ω2) =df

∫

Ω1

f(ω1, ω2)dµ1(ω1)

Then both If
1 and If

2 are bounded random variables and:

∫

Ω1

If
1 (ω1)dµ1(ω1) =

∫

Ω2

If
2 (ω2)dµ2 (ω2)

Proof. Omitted, can be found in [15].

In the next subsection, we attempt to compare the applicability of the two
theorems by way of an example in geometric probability.

An Example: Splatters on a Wall

The prototypical experiment in geometric probability on the plane is one of
‘picking a point at random’ from a bounded region S of R2, where without loss
of generality we can assume S = [a, b] × [c, d]). This is usually modelled by the
probability space (S,B(S), Leb), or, more generally, (S,B(S), P ).

Kolmogorov invites us to consider a different kind of experiment where we
are picking regions (‘shapes’) at random, not points. One is invited to throw
paint splatters on a wall, so to speak. We are hence looking to model this
experiment by a probability space of the form (Ω, F, µ), where Ω is the family
of allowable splatters. Certainly it is natural to assume that splatters be Borel
regions:

Ω ⊆ B(S)

Note then that µ assigns probabilities not to individual spatters, but rather to
families of splatters.

An Interesting Duality

Consider now the following statement:

“splatter G turns out to contain (x, y)” (S1)

We are accustomed to contexts where it is the point (x, y) that is randomly
selected, whence the probability of (S1) is given by P (G). However, in the
context of the probability space (Ω, F, µ), one imagines a fixed point on the wall
and considers the probability that it ends up painted (ends up in the region
randomly selected):

Pr(x, y) =df µ({G ∈ Ω | (x, y) ∈ G}) (2.64)
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This duality is perhaps best seen by examining the indicator function of (S1):

f(G, (x, y)) =df

{

1, if (x, y) ∈ G

0, otherwise
(G ∈ B(S), (x, y) ∈ S) (2.65)

For a fixed choice of G, fG is a probability function carried by the space
(S,B(S), Leb), whereas for fixed (x, y), f(x,y) is a probability function carried
by the space (B(S), F, P ′).

Remark. Note that for the above argument to go through, Pr(x, y) as defined
in (2.64) must be the probability of a set in F, otherwise it does not exist.
Therefore, the following assumption must be made:

X =df {G ∈ Ω | (x, y) ∈ G} ∈ F (A1)

We will now investigate the probability space (Ω, F, µ). It will turn out that
our initial assumption that Ω ⊆ B(S) is too weak to allow us to argue with
Riemann integrals, we therefore restrict further our set of elementary events:

Ω ⊆ RI(S), ie fG(x, y) is Riemann integrable

An interesting question that we may ask of our space is “what is the expected
area of a randomly selected splatter?” The following recipe for the computation
of this value seems intuitively appealing: weigh the presence of each (x, y) by
the probability Pr(x, y) that it should belong to a randomly selected splatter -
integrate over S. However, the formal response involves instead a much more
complicated integral over all splatters, rather than one over all points. The
comparison of these two approaches gives us the opportunity we were looking
for so as to contrast Theorem 16 with Fubini’s Theorem.

Theorem 17. Assume that41:

X =df {G ∈ B(S) | (x, y) ∈ G} ∈ F; (A1)

Leb is a random variable as a probability function on Ω; (A2)

Pr(x, y) is integrable as a function of (x, y) in the Riemann sense; (A3)

then
∫ b

a

∫ d

c

Pr(x, y)dxdy = E(Leb) (2.66)

Proof. First, we need a lemma:

Lemma. For each fixed (x, y), the function f(x,y) is a random variable and:

Pr(x, y) = E(f(x,y)) (2.67)

41The extra assumptions A3, A4 are in fact the minimal assumptions such that the Riemann
integral on the LHS of (2.66) and the Lebesgue integral on its RHS be well-defined.
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Proof of Lemma. Observe that f(x,y) is the indicator function of X . Hence:

f−1
(x,y)(−∞, a) =df {G | f(x,y)(G) < a} =











Ω, if a ≥ 1

Xc, if 0 ≤ a < 1

∅, if a < 0

(2.68)

Clearly Ω, ∅ ∈ F, but also Xc ∈ F by (A1). Also clearly:

E(f(x,y)) = µ(X) =df Pr(x, y)

by the properties of the integral when applied to indicator functions.

Observe now that, since G ∈ RI(S), the Lebesgue integral of the indicator
function of G matches its Riemann integral (because whenever the Riemann and
the Lebesgue integrals both exist, they agree - see Appendix on Integration):

Leb(G) =df

∫

S

fG(x, y)dLeb(x, y) =

∫ b

a

∫ d

c

fG(x, y)dx dy

Using this to write out fully either side of (2.66) we get:

RHS = E(Leb) =df

∫

Ω

Leb(G)dµ(G) =

∫

Ω

∫ b

a

∫ d

c

fG(x, y) dx dy dµ(G)

LHS =

∫ b

a

∫ d

c

Pr(x, y)dxdy =

∫ b

a

∫ d

c

∫

Ω

f(x,y)(G)dµ(G) dx dy

This makes (2.66) a straightforward application of Theorem 16, provided we
establish that f satisfies its requirements. Indeed, by the Lemma, f is a bounded
random Ω-functional and by assumptions (A2) and (A3), f and E(f) are both
Riemann integrable as functions of (x, y).

We now observe that the same theorem can be inferred under different as-
sumptions using Fubini’s Theorem:

Theorem 18. Consider the product σ-algebra F × B(S). Now define D to be
the truth-set of the relation (x, y) ∈ G:

D =df {(G, (x, y)) ∈ Ω × S | (x, y) ∈ G} =
⋃

G∈Ω

({G} × G) .

Now assume that
D ∈ F × B(S). (A4)

Then the following holds, where the LHS integral is Lebesgue:

∫

S

Pr(x, y)dLeb(x, y) = E(Leb). (2.69)
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Proof. We will apply Fubini on the spaces (S,B(S), Leb), (Ω, F, µ) and the func-
tion f . We need only show that f is measurable in the product sense, but this
holds precisely iff D ∈ F. The result then follows from (A4) and the observation:

Leb(G) =

∫

S

fG(x, y)dLeb(x, y)

Remark. That the proof we have just provided is also a proof of Theorem 17
under the extended set of assumptions (A1)-(A4) follows from the observation
that, if Pr(x, y) is Riemann integrable, the integral on the LHS of (2.69) can
be replaced by a Riemann integral, hence yielding (2.66).

We pause to make explicit the simple relationship that exists between the
set of assumptions (A1)-(A3) and the set of assumptions (A1)-(A4):

Proposition 38. Assumptions (A1) and (A2) hold precisely whenever f is
separately measurable with respect to each argument. Therefore:

(A4) ⇒ (A1) and (A2)

Proof. Assume that f is measurable in the product sense. Then, from standard
results, it is also measurable separately, so:

X =df f−1
(x,y)({1}) ∈ F

This yields (A1). Now consider the quantity If
1 (ω1) that appears in the state-

ment of Fubini’s Theorem. By setting Ω1 =df Ω and Ω2 =df S (and substituting
in the respective σ-algebras and measures), we obtain that:

If
1 (G) =df

∫

S

f(G, (x, y))dLeb(x, y) = Leb(G)

It forms part of the conclusion that If
1 is measurable, which yields (A3).

What is interesting here is that, despite appearances, none of the two the-
orems can be seen as a stronger version of the other. Theorem 18 does yield
Theorem 17 as a special case, but rests on a stronger hypothesis, A4. Con-
versely, Theorem 17 holds under a weaker set of hypotheses, which makes it a
stronger result, but it is also of more limited applicability, since it applies only
to Ω ⊆ RI(S), whereas Theorem 18 can apply to any Ω ⊆ B(S). So there
is a genuine question here as to which approach is better suited to model our
intuitive understanding of what “picking regions at random” means. In what
follows, we will provide some insight into this question by way of examples,
although we will unfortunately fail to settle it.

Various Ways of Throwing Splatters - the countable case

We will now produce specific examples of spaces (Ω, F, µ), where Ω ⊆ RI(S),
and investigate whether it is more natural to invoke Theorem 17 together with
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the set of assumptions (A1)-(A3) or Theorem 18 together with the single as-
sumption (A4).

We first show that in the countable case the question is trivialised.

Example 1 (The Countable Case). Let Ω = {S1, S2, ...} be any countable family
of Riemann Integrable regions and F be a σ-algebra over Ω that contains the
singletons. Then let µ be the (unique) measure generated by the following values
on the singletons:

µ({Si}) =df pi

Then all of (A1)-(A4) hold of (Ω, F, µ).

Proof. Recall that D as expressed in (A4) is given by

D =
⋃

G∈Ω

{G} × G

Since the singletons {G} are in F and G ∈ Ω ⊆ B(S), the expression above is
a countable union of elements of F × B(S) and so (A4) holds; hence also (A1)
and (A2) hold.

To prove that (A3) also holds, we first observe that, by countable additivity:

Pr(x, y) =df µ({Si | (x, y) ∈ Si}) =
∑

i

fSi
(x, y)pi

We now need a lemma:

Lemma. The following limit converges uniformly with respect to x and y:

lim
n→∞

n
∑

i=1

fSi
(x, y)pi = Pr(x, y)

Proof of Lemma. We know that, for all (x, y),

m
∑

i=1

fSi
(x, y)pi ≤

m
∑

i=1

pi

since 0 ≤ fSi
≤ 1. Then, as the partial sums

∑m
i=1 pi converge, so do their

weighted versions,
∑m

i=1 fSi
(x, y)pi, which proves that the convergence rate is

independent of (x, y).

We now invoke two standard results: firstly, any finite linear combination
of Riemann integrable functions is also Riemann integrable. This makes each
partial sum a Riemann integrable function, since it is a linear combination
of finitely many indicator functions of Riemann Integrable regions. Secondly,
if (fn : n ∈ N) is a sequence of Riemann integrable functions that converge
uniformly to f , then f is Riemann integrable. This result applied to the sequence
of partial sums implies that Pr(x, y) is Riemann Integrable, yielding (A3).
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Various Ways of Throwing Splatters - the uncountable case

We will now move to the uncountable case and begin by providing a general
framework which captures all cases where Ω can be parameterised by n real
parameters. Riemann Integrability here becomes quite hard to deal with in
general, so we discuss it individually for each example.

Proposition 39 (A Framework for the Uncountable Case). Let our set of ele-
mentary events be parameterised by n real parameters x1, ..., xn via an injective
function φ, ie:

Ω =df {G~z | ~z ∈ [0, 1]n} and φ(G~z) = ~z

Now define F via the the Borel sets in [0, 1]n, ie:

F =df {CS | S ∈ B([0, 1]n)}, where CS =df {G~z | ~z ∈ S}

Then, clearly, F is a σ-algebra, φ is a random variable and for every probability
measure λ on B([0, 1]n), µ =df λ ◦ φ is a probability measure on F. Moreover if
there exists some Borel function h : [0, 1]n+2 → R and some Borel set A ∈ B(R)
such that:

(x, y) ∈ G~z ⇔ h(~z, x, y) ∈ A (2.70)

then (A1), (A2) and (A4) all hold.

Proof. Since CS = φ−1(S) by construction, clearly F is a σ-algebra and φ is
a random variable. This same reasoning establishes that λ ◦ φ is a probability
measure on F. The truth of the last claim is equally easy to establish, since
in the presence of (2.70), D can be written as a composition of h−1, φ−1 and
inverse images of projections, overall acting on some Borel set A. Since all these
maps are Borel measurable, so is their composition and hence D ∈ F.

We now provide two examples that satisfy this framework; hence also (A4).

Example 2 (Picking Lines). Let S = [0, 1]2 and let Ω consist of all vertical
lines:

Ω =df {Lz | z ∈ [0, 1]}, where Lz =df {(z, y) | y ∈ [0, 1]}

We then observe that

(Lz, (x, y)) ∈ D ⇔ z − x = 0

Since h(z, x, y) = z − x and {0} are both Borel, this example falls under the
general framework.

Example 3 (Picking Disks). Let S = [0, 1]2 and let Ω contain disks as follows:

Ω =df {Br,x′,y′ | (r, x′, y′) ∈ [0, 1]3},

where Br,x′,y′ =df the disk of radius r centered at (x′, y′) intersected with S

71



We now observe that:

(Br,x′,y′ , (x, y)) ∈ D ⇔ (x − x′)2 + (y − y′)2 − r ≤ 0

Since h(r, x′, y′, x, y) = (x−x′)2 +(y− y′)2 − r and (−∞, 0] are both Borel, this
example falls under the general framework.

Since (A4) holds of the last two examples, then also (A1) and (A2) hold.
What about (A3)? Clearly the answer will depend on the measure on (Ω, F),
which in turn, via the general framework, depends on the choice of measure λ
over the parameter space. In the simplest case where λ =df Leb, (A3) holds
trivially both in the case of lines and that of disks:

Pr(x, y) = µ({Lz | (x, y) ∈ Lz}) = λ({z | x = z)}) = 0

Pr(x, y) = µ({Br,x′,y′ | (x, y) ∈ Br,x′,y′})

= λ({(r, x′, y′) | (x − x′)2 + (y − y′)2 − r ≤ 0}) = πr2

Both these quantities are independent of (x, y), hence trivially Riemann In-
tegrable. This is because our choice of λ was the choice of ‘uniform’ mea-
sure, which is translation invariant. However, the calculations above ought to
convince the reader that a wide range of well-behaved choices of measure (for
instance, measures induced by continuous distribution functions) will lead to
Riemann Integrable expressions for Pr(x, y).

Remark. It is possible to generalise further the framework above, without re-
lapsing to the abstractness of the original problem. For instance, everything
works as before if we allow ourselves to use any Borel function h : Rn → Rm

to capture the relation (x, y) ∈ G, as opposed to restricting attention to Borel
functions h : Rn → R. This generalisation allows us for instance to deal with
rectangles :

(x, y) ∈ [a, b] × [c, d] ⇔ (a − x, x − b, c − y, y − d) ∈ (−∞, 0] × ... × (−∞, 0]

where:
h(a, b, c, d, x, y) = (a − x, x − b, c − y, y − d)

The key then is to pick a parameterisation φ that makes it possible for us to
produce a toolbox of functions h : φ[Ω] × S → Ω′ known to be measurable with
respect to the respective product measure. It falls beyond the scope of this
dissertation to discuss such classes of functions other than the Borel functions.

Remark. Observe that we have not produced an example where separate mea-
surability is satisfied but product measurability is not.
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2.6 Conditional Probability

We now return to the development of the theory and the question of the correct
way to generalise the elementary definition of conditional probability.

Beyond Elementary Conditional Probability - a discussion

The Elementary Definition

The defining equation of elementary conditional probability is the following:

PA(B) =df the unique solution to ‘PA(B)P (A) = P (B)’ (Elem)

This fails to give a unique solution for PA(B) when P (A) = 0, since any value
for PA(B) would satisfy this equation. By now it should be obvious however
that there are plenty of situations where ‘P (A) = 0’ is very different from the
statement ‘A is impossible’, which urges us to provide a definition of conditional
probability that allows us to condition upon events of probability 0.

The Limit Definition

One’s first guess would presumably be that a limit operation may be used to
circumvent the ‘division by zero’ problem, in the spirit of the definition of deriv-
atives in analysis. We would in this approach think of the set A as the limit
value of a decreasing sequence of sets (An : n ∈ N) of non-zero probability:

A =
⋂

n∈N

An, where for all n, P (An) > 0

and then consider the limit of the values obtained by conditioning in an elemen-
tary manner on each set An:

PA(B) =df lim
n→∞

PAn
(B) =df lim

n→∞

P (An ∩ B)

P (An)
(Lim)

Clearly the problem here is that no canonical choice of a family (An : n ∈ N)
suggests itself in general, whereas PA(B) is not well-defined as it stands since
it can be easily seen to vary with the choice of (An : n ∈ N). Indeed the
Borel paradox of the great circle was seen precisely as a counterexample to this
definition by Borel himself, as we will see at the end of this section.

On the other hand, in most questions of geometric probability, the set A we
are conditioning on is in fact understood as a member of a partition generated
by a certain real parameter, usually a coordinate function. For instance, in
the Borel paradox, one wishes to condition on the event that the value of the
longitude coordinate function be a. This event, A =df {ω : φ(ω) = a}, is indeed
of measure 0. It is however not understood singly for a particular value of a
only, but rather as an element of the set of great circles. As a result, it can be
readily seen as the limit of ever thinner ‘bundles’ of great circles:

A = {ω : φ(ω) = a} =
⋂

n

{ω : φ(ω) ∈ [a, a + 1/n]}
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or in equivalent notation:

A = φ−1({a}) =
⋂

n

φ−1([a, a + 1/n])

We can now use (φ−1([a, a + 1/n]) : n ∈ N) as the canonical choice in (Lim) to
produce a definition of the probability of B conditional on the event φ(ω) = a:

Pφ−1({a})(B) =df lim
n→∞

P (φ−1([a, a + 1/n]) ∩ B)

P (φ−1([a, a + 1/n]))
(Rv)

The choice of label for the above equation rests on the immediate observation
that this definition can only work when φ is a random variable, since the inverse
image of the intervals [a, a + 1/n] for each n and a must be in F.

Kolmogorov’s Definition

Kolmogorov’s approach is somewhat different than the above. It rests however
on the same observation that it is impossible to define a notion of probability
conditional on a single event of probability 0, but it may be possible to define
a notion of probability conditional on the value of a probability function or,
synonymously, on a choice out of a partition of Ω indexed by an arbitrary set I:

A =df u−1(a), for some a ∈ I.

Hence, we ought to abandon the type of object employed in the elementary case,

A 7→ (B 7→ PA(B) )

for the following type of object:

u 7→ ( (B, a) 7→ Pu−1(a)(B) )

This will be a very different kind of entity than that of elementary conditional
probability. We hence replace the notation Pu−1(a)(B) with the new notation
Pu(B)(a), to keep the two notions separate42. The new notation also emphasizes
the point that, assuming we can make it precise, the notion denoted by Pu(B)(a)
will be a function from u[Ω] to [0, 1], when viewed as a function of a.

Kolmogorov’s definition of Pu(B) rests on the requirement that Pu(B) must
agree with elementary conditional probability, whenever the latter is defined.
Certainly this entails the coincidence of the two notions whenever u−1(a) has
nonzero probability:

if P (u−1(a)) 6= 0, then Pu−1(a)(B) = Pu(B)(a)

However, our new notion must also agree with the elementary values Pu−1[C](B),
whenever they are defined (i.e., whenever u−1[C] has nonzero probability).

42Kolmogorov uses Pu(a; B) in place of Pu(B)(a).
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This agreement translates to the requirement that the integral (expectation)
of Pu−1(a)(B) over a ∈ C must yield the same value as the elementary formula:

Pu−1(C)(B) =

∫

C

Pu(B)(a) dµ(a), (P (u−1[C]) 6= 0)

where the measure µ we must integrate with respect to is the measure induced
over possible values of a, appropriately conditioned (in an elementary manner):

µ =df P
(u)
u−1(C)

Remark. Using formula (2.55) we can drop the notationally awkward depen-
dence of µ on u−1(C) and rewrite the condition of interest as follows:

Pu−1(C)(B) =
1

P (u−1(C))

∫

C

Pu(B)(a) dP (u)(a), where u−1(C) 6= 0. (Kolm)

It follows from a nontrivial argument which we will produce in the next
subsection, that this equation indeed defines Pu(B) to be a random variable
u[Ω] → [0, 1], but only up to equivalence. In other words, there always exists
one random variable Pu(B) that satisfies (Kolm) and any two such random
variables are equal everywhere on a ∈ u[Ω], except possibly on a certain set of
probability 0.

In the context of definition (Rv) above, the set C would be an interval
[a, a + 1/n] and the inverse image of C would be a ‘bundle’ of great circles. In
fact, one immediately now suspects that (Rv) may prove to be a special case of
(Kolm), since ‘integrals’ are a stronger existence requirement than ‘derivatives’.
This is indeed the case, albeit with the unavoidable introduction of the ‘almost
surely’ disclaimer.

This completes our discussion of how one can motivate Kolmogorov’s notion
from that of elementary conditional probability. It is certainly a natural step
to take - although formally it is not a generalisation of the elementary notion,
but rather a different entity altogether.
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Kolmogorov’s Definition of Conditional Probability

Definition 40. Any random variable Pu(B) that satisfies (Kolm) is called a
version of the conditional probability of B with respect to the partitioning u:

∀ C ∈ F(u), P (u−1(C) ∩ B) =

∫

C

Pu(B)(a) dP (u)(a) (Kolm)

Remark. Observe that Pu(B) must be a random variable for its Lebesgue inte-
gral to be defined. Observe also that (Kolm) trivially holds if P (u−1(C)) = 0,
whereas, if not, we can divide both sides by P (u−1(C)) to obtain the statement
of (Kolm) we encountered in the previous subsection.

We would like to prove two things for Definition 40 to be satisfactory. Firstly,
we must establish existence: ie that there always exists a random variable that
satisfies (Kolm). Indeed, existence is an almost trivial application of the Radon-
Nikodým Theorem, as we will see. Secondly, we would like to establish unique-
ness, ie that there only exists one random variable that satisfies (Kolm). This
is however not true, which is why we have introduced the term ‘version of the
conditional probability’ - the best we can do is establish uniqueness up to equiv-
alence, ie that any two versions will be equal for all a ∈ u[A], except possibly
on a set C ∈ F(u) with P (u)(C) = 0. We formally state these results in the
following theorem:

Theorem 19. There always exists a random variable Pu(B) that satisfies (Kolm).
Moreover, any two such random variables are equivalent.

Proof. We first establish uniqueness up to equivalence. Consider any two ran-
dom variables x : u[Ω] → R and y : u[Ω] → R that both satisfy (Kolm) for any
C ∈ F(u). Then:

∫

C

x(a)dP (u) (a) =

∫

C

y(a)dP (u)(a) = P (B ∩ u−1(C))

by dividing (Kolm) through by P (u)(C) if it is nonzero, or trivially so otherwise.
Therefore:

∀C ∈ F(u) :

∫

C

x(a)dP (u)(a) =

∫

C

y(a)dP (u)(a)

which implies, by (IX) of Theorem 12, that x is equivalent to y, as required.
To establish existence, we need to state the Radon-Nikodým theorem ([1]):

Theorem (Radon-Nikodým). Let µ and λ be σ-finite measures on a σ-algebra
Σ associated to a set S, such that

∀C ∈ Σ, λ(C) 6= 0 ⇒ µ(C) 6= 0; (2.71)

then λ = fµ for some non-negative Borel function f : S → R (ie a non-negative
random variable), where:

λ = fµ means λ(C) =df

∫

C

f(a)dµ(a) (2.72)
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To use this theorem for our purposes, we prove that the conditions of the
theorem hold in the following case:

S =df u[Ω], Σ =df F(u)

µ =df P (u)

λ : C 7→ P (B ∩ u−1[C]), (C ∈ F(u))

Certainly µ and λ are σ-finite measures, since probability measures are by de-
finition finite, hence also σ-finite. Also λ is a measure: since inverse images
commute with all set operations, λ inherits countable additivity from P . Fi-
nally, condition (2.71) holds by virtue of the elementary observation:

∀C ∈ F(u) : µ(C) =df P (u−1[C]) ≥ P (B ∩ u−1[C]) =df λ(C)

Note that this is a very easy application of the Radon-Nikodým Theorem, since
the two measures λ and µ are related to each other in a very simple manner.
We have hence established that

∀C ∈ F(u) : P (B ∩ u−1(C)) =: λ(C) =

∫

C

f(a)dµ(a) =df

∫

C

f(a)dP (u)(a)

for some non-negative random variable f , which proves existence.

We can now investigate whether Pu(B)(a) as a function of B satisfies the
axioms of probability, as was the case in the elementary definition of PA(B).
We will see that it does ‘almost surely’ (in the sense of P (u)):

Theorem 20. Almost surely 0 ≤ Pu(B) ≤ 1

Proof. Recall that Pu(B) is almost surely equal to f in the proof of Radon-
Nikodým, which is guaranteed to be non-negative. This proves that almost
surely 0 ≤ Pu(B).

We now show that Pu(B) ≤ 1 almost surely. We assume by way of contradic-
tion that there exists some M ∈ F(u) such that P (u)(M) > 0 and Pu(B)(a) > 1
for every a in M . We can in fact make this statement stronger. Observe that

Pu(B)(a) > 1 ⇔ ∃n, Pu(B)(a) ≥ 1 + 1/n

∴ M ⊆
⋃

n

Mn, where Mn =df {a | Pu(B)(a) ≥ 1 + 1/n}

Hence P (u)(Mk) > 0 for at least one natural number k, otherwise

P (u)(M) ≤ P (u)(
⋃

n∈N

Mn ) =
∑

n

P (u)(Mn) = 0
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contradicting our hypothesis that P (u)(M) > 0. Hence, letting M ′ =df Mk,

P (B ∩ u−1(M ′)) ≥ Pu−1(M ′)(B) by definition of elementary conditional probability

= Eu−1(M ′)(Pu(B)) by (Kolm)

≥ Eu−1(M ′)(1 + 1/n) by Theorem 13.(II)

= (1 + 1/n)P (u−1(M ′)) by definition of expectations

> P (u−1(M ′)), which is a contradiction.

Theorem 21. If B =
⋃

n∈N Bn where the Bn’s are pairwise disjoint, then
almost surely Pu(B) =

∑

n Pu(Bn).

Proof. First observe that if we set C = u[Ω] in (Kolm) we get:

P (B) = E(Pu(B)) (2.73)

Now we have that:

P (B) =
∑

n

P (Bn), by countable additivity of P

=
∑

n

E(Pu(Bn)), by (2.73)

=
∑

n

E(|Pu(Bn)|), since Pu(Bn) = |Pu(Bn)| a.s., by (VI) of Theorem 13

So, in particular, this latter expression converges (since P (B) is finite). Then
for any C ∈ F(u) such that P (u)(C) > 0, we get:

Eu−1[C](Pu(B)) = Pu−1[C](B), by (Kolm)

=
∑

n

Eu−1[C](Pu(Bn)), by additivity of P and (2.73)

= Eu−1[C]

(

∑

n

Pu(Bn)

)

, by (V) of Theorem 13

since
∑

n E(|Pu(Bn)|) converges. But this latter implies that
∑

n Pu(Bn) =
Pu(B) a.s., by the same proof as the one for uniqueness a.s. in Theorem 19.

The Limit Definition of Conditional Probability

In case the partition is generated by a random variable x : Ω → R, a simpler
definition is available as we previously discussed:

Px(B)(a) =df lim
h→0

P (x−1[a, a + h] ∩ B)

P (x−1[a, a + h])
(Lim)

This presupposes that P (x−1[a, a+h]) 6= 0 and, of course, that the limit featured
exists, two assumptions somewhat hard to work with. We then amend (Lim) as
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follows to circumvent them:

Px(B)(a) =df

{

the limit in (Lim), if it exists

0, otherwise
(Lim*)

We allow ourselves to use the same notation Px(B) for the probability function
defined by either (Kolm) or (Lim*), precisely because of the following result:

Theorem 22. Fix a random variable x. Then any random variable that satisfies
(Kolm) is almost surely equal to the probability function defined in (Lim*).

Proof. Let f be a random variable that satisfies (Kolm) and let g be the prob-
ability function defined in (Lim*):

g : a 7→

{

the limit in (Lim), if it exists

0, otherwise

Both f and g are probability functions x[Ω] = R → R. Recall definition (Kolm):

∀ C ∈ F(x), P (x−1(C) ∩ B) =

∫

C

f(a) dP (x)(a) (Kolm)

We now take cases, according to whether P (B) = 0. If yes, g(a) = 0 for all a,
by definition (Lim*). Moreover, (Kolm) becomes:

∀ C ∈ F(x),

∫

C

f(a) dP (x)(a) = 0

Therefore all the integrals of f with respect to the measure P (x) are equal to
the integrals of g (since we have shown g to be identically zero). Hence by IX
of Theorem 12, it follows that f is equal to g almost surely, as required.

Now for the nontrivial case, where P (B) 6= 0. We rewrite (Kolm) as follows:

∀ C ∈ F(x), P (B)PB(x−1(C)) =

∫

C

f(a) dP (x)(a)

using the elementary definition for PB(x−1(C)). Taking C =df (−∞, t),

P (B)F
(x)
B (t) =

∫ t

−∞

f(a) dP (x)(a)

where F
(x)
B is the distribution function induced by x from the measure PB .

Kolmogorov now invokes a theorem of Lebesgue’s to finally infer that:

almost surely f(a) = P (B) lim
h→0

F
(x)
B (a + h) − F

(x)
B (a)

F (x)(a + h) − F (x)(a)
(2.74)

The RHS is of course by definition equal to g iff it exists, so we are done.
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Remark. Definition 40 suffers in intuitive content from the ‘almost surely’ dis-
claimer. In questions of geometric probability one certainly expects the theory
to provide him with a number as the answer to fully specified questions of
conditional probability. A real function defined almost everywhere is, in some
sense, too abstract an object to replace a mere number as the answer to such a
question. However, in light of Theorem 22 one may now choose a simpler route
and define conditional probability with respect to a random variable always via
(Lim*), assured that it also possesses the intuitively appealing property (Kolm).
In more abstract contexts (notably beyond geometric probability) where x is not
a random variable, one may use (Kolm) instead. There is perhaps some loss in
consistency but considerable gain in intuitive content.

As a final addition to this chapter, we proceed to investigate under which
conditions we can rewrite the definition (Lim*) using densities so that no limit
operation is involved. We can observe immediately that if the densities f (u)(a)

and f
(u)
B (a) exist and moreover f (u)(a) > 0, then by the definition of probability

densities and (Lim*) we evidently get:

Pu(B)(a) = P (B)
f

(u)
B (a)

f (u)(a)
(2.75)

which we can rewrite as follows:

P (B)f
(u)
B (a) = Pu(B)(a)f (u)(a) (2.76)

It is awkward that we need to posit the existence of both densities as well as
that f (u)(a) > 0 to obtain this formula. Especially the latter requirement is
on the whole quite arbitrary. We conclude this section then by deriving (2.76)
under less arbitrary assumptions: the existence of f (u)(a) and of the limit in
(Lim):

Proposition 40. If the limit in (Lim) and the density f (u)(a) both exist, then

f
(u)
B (a) also exists and satisfies:

P (B)f
(u)
B (a) ≤ f (u)(a) (2.77)

Remark. Note that we cannot derive (2.77) straightforwardly by claiming that
Pu(B)(a) ≤ 1 since we are only assured of this latter fact almost surely.

Proof. Assume the density f (u)(a) exists. Then by definition:

f (u)(a) =df limh→0(F
(u)(a + h) − F (u)(a))

exists. We have also assumed the limit in (Lim) exists, so by standard analysis
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the product of the limits is the limit of the products:

(

limh→0F
(u)(a + h) − F (u)(a)

)

·

(

lim
h→0

F
(u)
B (a + h) − F

(u)
B (a)

F (u)(a + h) − F (u)(a)

)

=

= lim
h→0

(

(F (u)(a + h) − F (u)(a)) ·
F

(u)
B (a + h) − F

(u)
B (a)

F (u)(a + h) − F (u)(a)

)

=

= lim
h→0

(F
(u)
B (a + h) − F

(u)
B (a)) =df f

(u)
B (a)

Finally (2.77) holds since:

P (B)f
(u)
B (a) =df P (B)limh→0(F

(u)
B (a + h) − F

(u)
B (a))

= limh→0

(

P (B)PB(u−1[(−∞, a + h)]) − P (B)PB(u−1[(−∞, a)])
)

= limh→0

(

P (B ∩ u−1[(−∞, a + h)]) − P (B ∩ u−1[(−∞, a)])
)

= limh→0P (B ∩ u−1[(a, a + h)]), since B ∩ u−1[(−∞, a)] ⊂ B ∩ u−1[(−∞, a + h)]

≤ limh→0P (u−1[[a, a + h)]), since P (B ∩ u−1[[a, a + h)]) < P (∩u−1[[a, a + h)])

= f (u)(a) by the same argument as above

So now we need only observe that in case f (u)(a) = 0, by (2.77) also f
(u)
B (a) =

0, so (2.76) holds in that case, too.
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Chapter 3

Resolving the Paradoxes

Finally we can revisit the paradoxes that we discussed in Chapter 1. Trivially
we observe that all paradoxes except that of the Great Circle utilise simple
calculations of areas, based on the assumption that some real parameter, or
a pair of them, can be modelled by the probability space (R,B(R), Leb), or
respectively the space (R2,B(R2), Leb). There is therefore no need to go over
these trivial examples, since we would in effect be precisely reproducing the
original calculations. As we explained in the Introduction, the paradoxicality
was removed de facto by Kolmogorov-style probability theory, since there the
operation of ‘picking at random’ is not solely determined by the set we are
picking from but also by the probability law that governs this selection - it is,
that is, identified with a tuple (Ω, F, P ).

Anyway, the paradox of the Great Circle provides instances of all notions of
interest which we will translate to the formal language in what follows.

3.1 The Paradox of the Great Circle

Description of the Underlying Probability Space

We model the choice of a point at random from the sphere as follows:

Ω =df {points on the surface of a unit radius sphere} ⊆ R3

F =df {Borel sets on Ω}, P (A) =df Leb(A), (A ∈ F)

where we represent R3 in the standard orthocanonical xyz-coordinate system
so that Ω be of unit radius, with its center at the origin, its North Pole set at
the point (0, 1, 0) and its South Pole at the point (0,−1, 0).

The Spherical Coordinate System

We now take some time to describe in detail the spherical coordinate system,
to avoid comfusion in what follows.
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Figure 3.1: A depiction of two points on the sphere and their respective latitudes
and longitudes.

Definition 41. We consider the following functions defined on Ω.

φ(ξ) =df co-latitude of ξ, in the range [0, π]

λ(ξ) =df longitude of ξ, in the range [0, 2π)

defined as follows:

• Define φ to be the (unique acute) polar angle of the position vector of ξ
from the positive z-axis.

• Define λ to be the angle in the equatorial plane between the projection of
the position vector of ξ and the positive x-axis, measured clockwise if one
visualises the equatorial plane from above.

Remark. Observe that the common usage terms ‘co-latitude’ and ‘longitude’ do
not numerically correspond to the functions we have defined above. For instance,
‘longitude’ is measured with positive values northwards of the equatorial plane
and negative values southwards, which is convenient for geography but not for
integration. For this reason, it is standard mathematical practice to abandon
them in favor of the conventions above. This is an insignificant matter for
our purpose eitherway since circles of latitude and half-meridians are preserved
under either convention:

Definition 42. The reader can also refer to Figure 3.2.

• A meridian, otherwise known as a great circle, is the intersection of Ω with
a plane containing the North and South Pole.

• A half-meridian is a segment of a meridian that starts from the North Pole
and ends at the South. It can be expressed as a set of points of constant
longitude {ξ ∈ Ω | λ(ξ) = c}, where c ∈ [−π, π) a half-meridian.
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Figure 3.2: A depiction of a circle of latitude and a half-meridian.

• A circle of latitude is the intersection of Ω with a plane parallel to the
Equator. It can be expressed as a set of points of constant co-latitude
{ξ ∈ Ω | φ(ξ) = c}, where c ∈ [−π/2, π/2).

Clearly, a choice of half-meridian and a circle of latitude or, equivalently, a
choice of co-latitude and longitude, uniquely identify each point on Ω.

The Formal Resolution of the Paradox

Formally φ and λ are probability functions carried by (Ω, F, P ). A simple cal-
culation establishes that they are in fact random variables.

Proposition 41. The probability functions φ and λ are both random variables.

Proof. Inverse images of half-rays under either φ or λ can be obtained as inter-
sections of simple Borel sets in R3 by considering the planes that contain the
respective circles of latitude or great circles.

Therefore, as in the section on constructing multidimensional probability
spaces via random variables, we induce the probability space (R2,B(R2), P (u)),
where u(ξ) =df (φ(ξ), λ(ξ)). The following formula will prove very useful:

Proposition 42. For any φ1, φ2 ∈ [0, π], λ1, λ2 ∈ [0, 2π), we have

P (u)([φ1, φ2] × [λ1, λ2]) =
1

4π
(λ2 − λ1)(cos(φ1) − cos(φ2)) (3.1)

Proof. By the definition of P (u) and P we get that

P (u)([φ1, φ2] × [λ1, λ2]) = Leb({ξ | φ1 ≤ φ(ξ) ≤ φ2, λ1 ≤ λ(ξ) ≤ λ2})
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But by standard results in real calculus the RHS is equal to:

∫ φ2

φ1

∫ λ2

λ1

sin φ dφdλ =
1

4π
(λ2 − λ1)(cos(φ1) − cos(φ2))

We now gradually reproduce the argument in the paradox of the great circle:

Pick two points on the sphere at random. What is the probability
that they lie within 10′ of each other? By symmetry we assume that
the first point is fixed on the North Pole of the sphere. We then
calculate the proportion of the sphere’s surface that lies within 10′

of the North Pole. This is 2.1 × 10−6.

We assume at this point that we may indeed fix the first point to be the North
Pole (we prove this leads to no loss in generality in the next subsection). Then
the angle between a point on the sphere and the North Pole is precisely given
by its co-latitude. So we can express formally the event of interest, which we
denote by B:

B =df {ξ | φ(ξ) < c}

where in this case, c = 10′ = 2π/(6 · 360) = π/1080. The set B is of course the
inverse image of [0, φ2] × [λ1 × 2π] under u. We can hence evaluate P (B) via
(3.1):

P (B) =df P (u)([0, φ2] × [λ1 × 2π]) =
1

4π
(2π − 0)(cos(0) − cos(c)) =

1 − cos(c)

2

which the reader may check evaluates to 2.115397× 10−6 when c = 10′.
We now investigate the alternative calculation that allegedly produces a

different value:

We may however observe that there exists a unique great circle that
connects the second randomly selected point with the North Pole.
Moreover, by rotational symmetry, no great circle has more chances
of being selected than any other. Therefore, we may assume we
know the great circle that connects the two points. We have now
reduced the original problem to one of picking one point on a given
great circle. The answer to the original question can hence be found
by calculating the proportion of the length of the great circle that
lies within 10′ of the North Pole, which is of course 2/(360 · 60) ≈
9.3 × 10−4, not 2.1 × 10−6.

Two separate claims are being made in this passage. The first claim is that con-
ditioning on a choice of half-meridian λ0 leaves the probability of B unaffected.
We call this the symmetry assumption and formally we write it as follows:

P (B) = Pλ(λ0; B) (sym)

where λ is now viewed as a random variable carried by (Ω,B(Ω), P ). We now
prove that this claim is indeed correct:
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Proposition 43. Assumption (sym) holds.

Proof. We may assume that c 6= 0, since the argument collapses in the (proba-
bility 0) eventuality where the two points randomly selected coincide. We then
observe that for any h > 0 and an arbitrary λ ∈ [0, 2π):

P (λ−1([λ0, λ0 + h] ∩ B)) =df P (u)([0, π] × [λ0, λ0 + h] ∩ B)

= P (u)([0, c] × [λ0, λ0 + h]), by definition of B

=
1

4π
(λ0 + h − λ0)(cos(0) − cos(c)), by (3.1)

=
h(1 − cos(c))

4π

and similarly

P (λ−1([λ0, λ0 + h]) =
1

4π
(λ0 + h − λ0)(cos(0) − cos(π)) =

h

2π

Applying the above to the definition (Lim) of Pλ(λ0; B), we obtain that

Pλ(λ0; B) =df lim
h→0

P (λ−1([λ0, λ0 + h] ∩ B))

P (λ−1([λ0, λ + h])

= lim
h→0

1 − cos(c)

2
= P (B)

as required.

Remark. Observe that this is in fact a trivial application of (Lim), since no limit
operation was actually involved.

The second claim in the quoted passage is that the probability of B condi-
tional on a choice of half-meridian is in fact the 1-dimensional Lebesgue measure
of the intersection of B with the half-meridian:

Pλ(λ0; B) allegedly is equal to Leb(B ∩ {ξ | λ(ξ) = λ0}) = c/2π (leb)

The reader can check that c/2π indeed evaluates to 9.3 × 10−3 when c = 10′.
However, since we have established (sym) to hold, our formalism automatically
rejects (leb), since the value of P (B) is given by the choice of initial proba-
bility space and cannot be revised midway. This is what we called a de facto
banishment of the paradox in the Introduction.

The Resolution of the Paradox - a discussion

The fundamental error in the informal syllogism is that it performs a revision of
the probability space midway. A moment’s thought can reveal the intuitions that
back this revision up: an ill-advised application of the Principle of Indifference
together with a misunderstanding of the notion of conditioning on probability
0 events.
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On the one hand, the correct intuition captured in (sym) precisely assures
us that P (B) ought be equal to Pλ(λ0; B). Well, since we know P (B) this
immediately determines also Pλ(λ0; B), which yields an observation that might
be surprising to someone accustomed to the principle of indifference, but is
certainly not a paradox:

The probability of B conditional on a certain fixed choice of half-
meridian is in fact not the Lebesgue measure of the arc.

We now need to separately assume, on independent grounds, that the conditional
probability is in fact given by the length of the arc, so as to turn this into a
paradox, as Kolmogorov himself clarifies in [6, p.51]:

If we assume that the probability distribution of φ ‘with the
hypothesis that ξ lies on the given meridian circle’ must be uniform,
then we have arrived at a contradiction.

Indeed, to a 19th century probabilist there were convincing independent grounds
in favour of (leb). One was inclined to extrapolate from the discrete case that

Pr(ξ ∈ B given λ(ξ) = λ0) =
Pr(B ∩ {ξ | λ(ξ) = λ0})

Pr({ξ | λ(ξ) = λ0}

=
Pr(arc)

Pr(half-meridian)
.

Now Pr corresponds of course to Lebesgue measure. A näıve substitution then
indeed yields:

Leb(arc)

Leb(half-meridian)
= c/2π (leb)

But ‘Pr’ corresponds to 2-dimensional Lebesgue measure, not 1-dimensional
Lebesgue measure. Therefore, the notion elementary conditional probability
employed above fails, since Leb(half-meridian) = 0, forcing a division by zero.

In the above sense, the temptation to employ the Lebesgue measure as the
probability of the arc is not merely an instance of the Principle of Indifference at
work, but also a failing of our intuition to accept that lengths are not additively
related to areas. It hence becomes important, in geometric probability, to drive
the point home that elementary conditional probability is not applicable when
conditioning with respect to events of probability 0 (such as a set of lower
dimension).

The Choice of Limit

Strictly speaking, the inapplicability of elementary conditional probability suf-
fices to resolve the paradox; a novel notion of conditioning with respect to
probability 0 events is not required1. Both Borel and Kolmogorov understand
this well. Borel exclaims ([11, p.19]):

1Although in the absence of such a notion we are equally unable to discuss the truth of
our correct guess, assumption (sym).
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Figure 3.3: On the left, Borel’s bundles and the sphere as a union of meridians.
On the right, the sphere as a union of circles parallel to a given meridian.

If the arcs have no width, then in order to speak rigorously, we must
assign the value zero to the probability that M and M ′ are on the
circle.

Kolmogorov similarly points out ([6, p.50]) that

[...]the concept of a conditional probability [in the elementary
sense] with regard to an isolated given hypothesis whose probability
equals 0 is inadmissible.

However, they both take the opportunity to suggest an alternative way to deal
with the problem. Borel suggests precisely what we have been referring to as
the limit definition of conditional probability ([11, p.19]):

In order to avoid this factor of zero, which makes any calculation
impossible, one must consider a thin bundle of great circles all going
through M [the North Pole], and then it is obvious that there is a
greater probability for M ′ [the randomly chosen point] to be situated
in a vicinity 90 degrees from M than in the vicinity of M itself.

Borel’s understanding of conditional probability as a limit is, as we explained
in the introduction to Section 2.6, not admissible without further specifications,
since different choices of limit operations could lead to different answers. For
instance, different results would be reached were the given meridian the limit of
an ever thinner bundle of great meridians or the limit of an ever thinner bundle
of circles parallel to the given meridian, otherwise known as a zone. The two
different limit operations are depicted in Figure 3.1 and the fact that the latter
produces a different result can be established by the following simple calculation,
resting on the standard fact that the area of spherical zone in a unit sphere is
2πh:
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lim
h→0

P (zone of height h ∩ B)

P (zone of height h)
≈ lim

h→0

c/2π · 2πh

2πh

= lim
h→0

c

2π
=

c

2π

Remark. Observe that we have obtained in this manner (leb). This explains
how the paradox of the Great Circle can be seen as a counterexample of the
validity of the näıve definition of conditional probability as a limit.

In my opinion, however, the limit of ever thinner zones does not fit the de-
scription of the problem, since at any given instance, a zone cannot be expressed
in terms of the choice of longitude. In a sense, the way Borel puts it makes it
perfectly clear that the choice of limit operation is dictated by the problem it-
self, by exactly the same token as Kolmogorov’s choice of partition is dictated
by the problem ([6, p.51]):

For we can obtain a probability distribution for [the co-latitude φ]
[...] on the meridian circle only if we regard this circle as an element
of the decomposition of the entire spherical surface into meridian
circles with the given poles.

Addendum: can we choose where the North Pole is?

Before we proceed to the conclusion of the dissertation, we briefly establish in
this subsection that we may indeed fix one point to be the North Pole without
loss of generality. Since the two choices are being made independently, the
probability space that models the random selection of two points is given by
(Ω′, F′, P ′), where

Ω′ =df Ω × Ω, F′ =df B(Ω) × B(Ω), P ′ =df P × P )

We now need to formally express the event “the two points selected lie within c
of each other”. We define the following function:

f(ξ1, ξ2) = angle of shortest arc from ξ1 to ξ2

Clearly f is well-defined and f(ξ1, ξ2) ∈ [0, π]. We now show that it is a random
variable when seen as a probability function on (Ω′, F′, P ′).

Proposition 44. The probability function f is a random variable.

Proof. Observe that (Ω′, F′, P ′) can be naturally endowed in (R6,B(R6), Leb6).
All we need to establish then is that f(ξ1, ξ2) < c is a Borel relation in R6.

All wee need to do that is elementary results from euclidean geometry. De-
note the euclidean distance between points ξ1 and ξ2 on Ω by d(ξ1, ξ2). Then

d2(ξ1, ξ2) = 12 + 12 − 2 · 1 · 1 · cos(f(ξ1, ξ2)), by the cosine rule

∴ cos(f(ξ1, ξ2)) =
2 − d2(ξ1, ξ2)

2
(3.2)
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We now observe that

f(ξ1, ξ2) < c ⇔ cos(f(ξ1, ξ2)) > cos(c), since cos is decreasing in [0, π]

⇔ 2 − d2(ξ1, ξ2) > 2 cos(c), by (3.2)

⇔ 2 −
√

(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 > 2 cos(c)

which certainly defines a Borel relation on the coordinates (ai, bi, ci) of ξi.

Finally, we can establish that we are in fact allowed to fix the first point to
be the North Pole, which can be formally expressed as follows.

Proposition 45. The following holds for all c ∈ [0, π):

P ′(f−1(−∞, c)) = P (φ−1(−∞, c)) =
1 − cos c

2

Proof. Recall that in the previous section we showed P (φ−1(−∞, c)) = 1−cos c
2

by (3.1). We will show the same of P ′(f−1(−∞, c)).
Now consider χ(ξ1, ξ2), the indicator function of the relation “f(ξ1, ξ2) < c”.

By the previous proposition, χ is measurable in the product sense, so, by the
basic properties of the Lebesgue integral we get:

P ′(f−1(−∞, c)) =

∫

C

χ(ξ1, ξ2)dP ′(ξ1, ξ2), where C =df (−∞, c).

We now apply Fubini’s Theorem to obtain:

P ′(f−1(−∞, c)) =

∫

Ω

Iχ
1 (ξ1)dP (ξ1) (3.3)

where Iχ
1 (ξ1) is given by:

Iχ
1 (ξ1) =df

∫

Ω

χ(ξ1, ξ2)dP (ξ2) = P ({ξ2 | f(ξ1, ξ2) < c})

The RHS is precisely the Lebesgue measure of a spherical cup of angle c, which
of course is equal to P (φ−1(−∞, c)) = (1 − cos c)/2, since the inverse image of
a half-ray under φ is precisely a spherical cup of angle c. So (3.3) becomes:

P ′(f−1(−∞, c)) =

∫

Ω

Iχ
1 (ξ1)dP (ξ1)

=

∫

Ω

1 − cos c

2
dP (ξ1)

=
1 − cos c

2

∫

Ω

dP (ξ1) =
1 − cos c

2
, as required.
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3.2 Conclusion

Kolmogorov’s Foundations of the Theory of Probability laid the basis for an
incredibly powerful axiomatic framework for probability theory. Its significance
lies in:

A. Its choice of the triple (Ω, F, P ), a measure-theoretic construct, as the
fundamental notion.

B. Its technical richness, which allows for advanced techniques such as infinite-
dimensional probability spaces (that eventually led to the theory of sto-
chastic processes) and conditional probability with respect to probability
0 events.

We have overviewed in full detail all aspects of the Grundbegriffe except its
treatment of infinite-dimensional probability spaces and we have placed its re-
sults in a modern measure-theoretic context, amending, completing or replacing
proofs as necessary. We have found that in most occasions the modern approach
is more streamlined, but in several cases Kolmogorov’s approach retains more
of the fundamental intuitions underpinning the measure-theoretic recasting of
probability.

Such an instance was Kolmogorov’s somewhat forlorn treatment of (Rie-
mann) integration of expectations with respect to a parameter, which we have
extensively analysed and compared to the closest popular modern result, the Fu-
bini Theorem, in the context of the intriguing experiment of randomly choosing
regions from the plane.

Finally, we motivated, developped and contrasted Kolmogorov’s notion of
conditional probability with respect to probability 0 events with Borel’s hints
towards a definition of that notion as a limit. We applied these ideas to explain
the tangled intuitions underlying the paradox of the Great Circle:

• a confusion between 2-dimensional and 1-dimensional Lebesgue measure,

• a mistaken application of elementary conditional probability,

• an ill-advised application of the Principle of Indifference.

Afterword

As a foreword to this conclusion, we must first and foremost stress that there
are several other axiomatisations of probability theory, some of which are very
popular. In particular, the Bayesian ‘degree of belief’ paradigm has been ax-
iomatised by De Finetti as well as Cox and has a great following, in particular
among statisticians and Artificial Intelligence scientists.

Despite this plurality, the measure-theoretic paradigm is still considered by
most to accurately capture the mathematical content of probability theory, as
points out one of the main proponents of the Bayesian paradigm, Edward T.
Jaynes in his seminal work, Probability: the logic of science ([5]):
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Our system of [Bayesian] probability could hardly be more dif-
ferent from that of Kolmogorov, in style, philosophy and purpose.
Yet when all is said and done we find ourselves, to our own surprise,
in agreement with Kolmogorov and in disagreement with his critics,
on nearly all technical issues.

This story of nearly unequivocal success is an essential component to the res-
olution of Bertrand paradoxes by Kolmogorov’s foundations: on the one hand,
feature [A] ensures that protection against Bertrand-type paradoxes is built in
the formalism. On the other hand, its mathematical success alluded to in fea-
ture (B) overwhelms the reader into believing that the paradoxes must be indeed
ill-phrased, if they cannot be expressed in such a potent system.

In this sense, Kolmogorov’s formalism performs a de facto resolution of the
paradoxes, without providing any criterion whatsoever for the reader to choose
a certain one among the different calculations/probability spaces as the most
natural choice for the particular problem.

The Method of Transformation Groups

Other authors have since attempted to provide such semi-formal criteria. The
most notable of these attempts is the Method of Transformation Groups, which
has been mostly argued for by Edward T. Jaynes. The general method is to
define a group of transformations under which the as of yet unknown probability
measure must remain invariant.

This method has been extensively studied independently of the context of
Bertrand paradoxes and is the cornerstone of the modern study of geometric
probability, known as integral geometry2. Jaynes however ([5]) proposed to ap-
ply it to Bertrand paradoxes by insisting that any quantity with respect to which
the statement of the problem is indifferent, must be an invariant under the choice
of probability measure. In a sense, Jaynes proposed a revision of the Principle of
Indifference, whereby indifference no longer corresponds to the choice of uniform
measure, but rather to the enforcement of an invariance constraint.

In his pointedly titled paper The Well-Posed Problem ([4]), he applies this
principle to the Paradox of the Chord with success, uniquely identifying the
uniform distribution over the distance between the midpoint of the chord and
the center of the disk as the correct choice of measure3, which he then proceeds
to verify experimentally. On the other hand, in other occasions the method fails
to work as smoothly, producing “a whole range of choices in some problems, and
no [choice of measure][...] free from all objections in others” ([2]).

The method of transformation groups has been the subject of intense study,
by Bayesian probability theorists and geometers alike. It becomes of particular
relevance in the context of identifying the right choice of prior distributions
in problems of inference, which is one of the most strongly debated topics in
statistics and machine learning.

2It is also related to Felix Klein’s Erlangen Program - see [13].
3This calculation appears second in our exposition of the paradox in the Introduction.
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Appendix A

Note on Projections and
Product Spaces

In constructing a product space out of two spaces (Ω1, F1, P1), (Ω2, F2, P2), we
obtain a probability space (Ω1 × Ω2, F, P ) such that the following holds:

Fi ⊆ F(πi) and P (πi) = Pi on Fi

Hereby agreement is interpreted as containment, rather than identity. This
is the best we can do in general. Nevertheless, in some cases, notably when
F1 = F2 = R, identity is attainable. We proceed to establish this fact, which
rests on the topological properties of the reals:

Theorem 23. Let F =df B(R) × B(R) = B(R2). Then

F(π1) = F(π2) = B(R)

Proof. We show that F(π1) = B(R). The case i = 2 follows by symmetry. Since
we know that F1 ⊆ F(π1) (see main text), we need only show the converse:

A × R ∈ B(R2) ⇒ A ∈ B(R) (A.1)

Now fix a constant c ∈ R and consider the function f : R → R2, given by

f(x) =df (x, c)

We readily observe that f−1(A×R) = A. Therefore for (A.1) it suffices to show
that f is Borel measurable. Equivalently, using a Lemma referred to often in
the main text, it is sufficient to establish that f is continuous. Let A ∈ T (R2),
an arbitrary open set of R2. Then we know we can write it as a countable union
of open rectangles, as follows:

A =
⋃

i∈N

Ai × Bi

∴ f−1(A) =
⋃

i∈N

f−1(Ai × Bi)
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since the inverse image operator commutes with countable unions (Section 2.1).
But we now observe that f−1(Ai × Bi) is always an open set:

{x | x ∈ f−1(Ai × Bi)} = {x | f(x) ∈ Ai × Bi}

= {x | x ∈ Ai, c ∈ Bi} =

{

∅, if c /∈ Bi

Ai, otherwise

where both ∅ and the interval Ai are open sets.

We are now in a position to prove a statement made in Section 2.1, when we
first introduced the construction F(u); namely, that it is not always true that
u[A] ∈ F(u) for all A ∈ F. The standard counterexample to this implication can
be obtained for u =df π1 : R2 → R, albeit in a nontrivial manner.

Proposition 46. A ∈ F 6⇒ u [A] ∈ F(u)

Proof. Fix the space (R2,B(R2), Leb) and consider the projection map π1 de-
fined via π1(x, y) =df x. It is then a standard result that

Lemma (Suslin). Not all projections of Borel sets are Borel.

Proof of Lemma. Omitted, can be found in [12].

Now note that by Theorem 23, F(u) = B(R). Therefore, any Borel set A
whose projection is not Borel is precisely an instance where A ∈ F but π1[A] /∈
F(u), as required for a counterexample. The existence of such an A is precisely
guaranteed by the Lemma.

Remark. The Lemma alluded to above has an interesting history, since Lebesgue
himself offered a mistaken proof of its negation in his seminal 1905 monograph
[7]. The mistake was spotted in 1916 by Michail Suslin, who was then only 19
years old and under the supervision of Nicolai Lusin. Suslin proceeded to prove
the negation of Lebesgue’s statement, offering the proof referred to above.

Note that the erroneous argument had been offered ‘on the fly’, so to speak,
by Lebesgue and did not compromise any of his 1905 results.

94



Appendix B

Null Sets and Completions

One of the most instrumental notion in applications of lebesgue measure (and
measure theory in general) is that of a set of measure 0, otherwise known as
a null set. This notion allows the formulation of ‘almost everywhere’ results,
whereby a property can be seen to hold for all x ∈ R except on a null set. In a
very real sense, null sets of exceptions may be ignored, which makes the correct
formalisation of what precisely a null set is an indispensable tool. Crucially, any
such formalisation of null sets is expected to satisfy the following property:

A is null and C ⊆ A implies that C is null (B.1)

This property is important because in the semantics of null sets as ‘sets of
exceptions’, it would be arbitrary to allow ourselves to exempt a certain set
A, but disallow it for a strict subset of A. However, it is clear that in the
formulation of measure so far, it may very well be that there exists a certain
A ∈ F with P (A) = 0. This produces the need for the following definition:

Definition 43. Consider a measure space (Ω, F, µ). A set A is null iff A ∈ F

and µ(A) = 0. The space is complete iff it satisfies (B.1).

It is an important fact that ((0, 1],B((0, 1]), Leb) is not a complete space:

Proposition 47. ((0, 1],B((0, 1]), Leb) is not complete.

Proof.

It turns out however that we can always extend a measure space to a com-
plete space, as follows:

Proposition 48 (Completion of Measure). Let (Ω, F, µ) be a measure space.
Then consider the family:

F∗ =df {F ⊆ Ω | ∃E, G ∈ F such that E ⊆ F ⊆ G and µ(G \ E) = 0}

Then F∗ is a σ-algebra and there exists a unique measure µ∗ on F∗ that extends
µ on F and satisfies (B.1). We call this measure the completion of µ.
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Proof. It is straightforward to establish that:

F∗ = σ(F ∪ null sets )

We then extend µ to a measure µ∗ on F∗ by setting:

∀F ∈ F∗, µ(F ) =df µ(G) = µ(E)

where we observe that the choice for each F of the ‘witnesses’ E, G ∈ F is
inessential, since any two pairs E1, G1, E2, G2 that satisfy:

Ei ⊆ F ⊆ Gi and µ(Gi \ Ei) = 0

can be easily shown to have equal measure µ∗ =df µ(E1) = µ(G1) = µ(E2) =
µ(G2). We can now check without problems that µ∗ is indeed a measure on F∗.
Finally, it is unique since it must agree with µ everywhere on F and take the
value 0 on all null sets; therefore, its values are constrained everywhere on the
set F ∪ { null sets }, which is a π-system (since the intersection of an arbitrary
set with a null set yields a null set).

In measure theory it is standard to reserve the term Lebesgue measure for the
completion of the space ((0, 1],B((0, 1]), Leb), whose existence we established in
the main text. Naturally most results that hold for the incomplete space also
hold for the complete space ‘almost everywhere’. As mentioned in the main text,
however, probability theorists prefer to work with (incomplete) Borel σ-algebras
of topological spaces unless it is necessary for the mathematics to move to their
completions. This only becomes necessary in more advanced probability theory
than we will encounter in this dissertation.

Remark. It is perhaps surprising that probability theorists do not understand
the semantics of ‘probability 0 events’ to force (B.1) inasmuch as the semantics
of ‘null sets’ do. Certainly the frequentist interpretation seems to suggest (B.1);
it seems however that this question has been pushed aside for now, there being
too many fundamental difficulties in the interpretation of probability theory
that have to be resolved first.
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Appendix C

The Shorokhod
Representation Theorem

Here, we establish that the conditions are (2.29)-(2.32) are not only necessary
for a function to be the distribution of some random variable, but they are also
sufficient:

Theorem 24 (Shorokhod Representation). Let F be any function that satisfies
(2.29)-(2.32). Then the function XF : [0, 1] → R defined by:

XF (ω) := inf{z : F (z) > ω}

is a random variable with distribution function F when understood as a proba-
bility function from the space ([0, 1],B([0, 1]), Leb). We call XF the Skorokhod
Representation1 of F .

Proof. We first establish that XF is a random variable. Observe that since F
is monotonically increasing we have that:

{z : F (z) > ω} is upwards closed

{z : F (z) > ω}c = {z : F (z) ≤ ω} is downwards closed

So:
a ∈ {z : F (z) > ω}, b ∈ {z : F (z) ≤ ω} ⇒ a < b

and therefore:

XF (ω) := inf{z : F (z) > ω} = sup{z : F (z) ≤ ω}

1Had we assumed that distributions are right-continuous, XF would have to defined as
inf{z : F (z) ≥ ω} for an analogous proof to go through. In any case, the two versions of XF

can be easily seen to agree almost everywhere.
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Now for any a ∈ R:

a < XF (ω) ⇒ a < inf{z : F (z) > ω}, by definition of XF

⇒ a /∈ {z : F (z) > ω}, by definition of sup

⇒ F (a) ≤ ω (C.1)

Now let (an : n ∈ N) be an increasing sequence that tends to XF (ω). Then:

∀n, F (an) ≤ ω, by (C.1)

∴ lim
n

F (an) ≤ ω, by elementary real analysis

∴ F (XF (ω)) ≤ ω, since XF (ω) := lim
n

an and F is left-continuous (C.2)

So:

XF (ω) ≥ a ⇒ F (XF (ω)) ≥ F (a), since F monotonic increasing

⇒ ω ≥ F (a), by (C.2)

Conversely:

ω ≥ F (a) ⇒ a ∈ {z : F (z) ≤ ω}

⇒ a ≤ sup{z : F (z) ≤ ω} =df XF (ω)

Therefore:

XF (ω) ≥ a ⇔ ω ≥ F (a)

∴ XF (ω) < a ⇔ ω < F (a)

∴ X−1
F ((−∞, a)) = {ω : ω < F (a)} =df (−∞, F (a)) ∩ [0, 1] ∈ B[0, 1]

Recall that the value of the distribution function of XF at a is defined to be
the probability of the inverse image of the half-ray (−∞, a) under XF . But
we have just shown this inverse image to be [0, F (a)), whose probability in the
space we are working in is Leb([0, F (a))) = F (a). As a result, F must be equal
everywhere to the distribution function of XF , as required.
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