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Abstract

Stable belief sets were introduced by R. Stalnaker in the early ’80s, as a formal
representation of the epistemic state for an ideal introspective agent. This
notion motivated Moore’s autoepistemic logic and greatly influenced modal
nonmonotonic reasoning. Stalnaker stable sets possess an undoubtedly sim-
ple and intuitive definition and can be elegantly characterized in terms of S5
universal models or KD45 situations. However, they do model an extremely
perfect introspective reasoner and suffer from a KR version of the logical om-
niscience problem. We vary the context rules underlying the positive and/or
negative introspection conditions in the original definition of R. Stalnaker,
to obtain variant notions of a stable epistemic state, which appear to be
more plausible under the epistemic viewpoint. For these alternative notions
of stable belief set, we obtain representation theorems using possible world
models with non-normal (impossible) worlds and neighborhood modal models.
En route, we identify some modal axioms which appear to be of some inter-
est in KR and develop the proof theory of some regular and classical modal
logics with a notion of strong provability. This stream of research resembles
the questions posed and (partly) settled in classical (monotonic) epistemic
reasoning about logical omniscience, now examined under the perspective of
Knowledge Representation.

Additionally we investigate the minimal knowledge approach of Halpern-
Moses ‘only knowing ’ in the context of the aforementioned syntactic variants.
The ‘only knowing ’ approach of J. Halpern and Y. Moses provides equivalent
characterizations of ‘honest ’ formulas and characterizes the epistemic state of
an agent that has been told only a finite number of facts. The formal account
of what it means for an agent to ‘only know α’ is actually based on ‘mini-
mal’ epistemic states and is closely related to ground modal non-monotonic
logics. We examine here the behaviour of the HM-‘only knowing ’ approach
in the realm of our weaker variants of stable epistemic states. We define
the ‘honest ’ formulas - formulas which can be meaningfully ‘only known’ -
and characterize them in several ways, including model-theoretic characteri-
zations using impossible worlds. As expected, the generalized ‘only knowing ’
approach lacks the simplicity and elegance shared by the approaches based
on Stalnaker’s but it is more realistic and can be handily fine-tuned.



1 Introduction

Classical epistemic reasoning has been born and bred within the realm of
Philosophical Logic and always had a modal flavour, already from its early
inception in Hintikka’s seminal work [Hin62]. The epistemic/doxastic logic
stream of research was very active for more than two decades and mainly
revolved around constructing and discussing axiomatic systems which accu-
rately describe the phenomena of knowledge and belief, from the perspec-
tive of a philosopher ‘externally’ reasoning about other entities’ knowledge
[Len79]. Many axiomatic systems have been proposed and several problems
around this axiomatic approach to knowledge and belief have been identi-
fied and discussed (see [Len78, HM92]); in more recent years, epistemic and
doxastic modal logics have found important applications in Knowledge Rep-
resentation and Computer Science [FHMV03].

AI has created a completely new battlefield for epistemic reasoning, with
the attempts to construct nonmonotonic logics in Knowledge Representa-
tion. The perspective of KR is much different, as the objective now is to
describe ‘internally’ the epistemic capabilities of an intelligent agent reason-
ing on his/her own beliefs. The use of modal languages and the import of
techniques from classical epistemic reasoning have been employed from as
early as the beginning of the ‘80s, when nonmonotonic logics have been an-
nounced. Modal nonmonotonic reasoning has been introduced through the
work of D. McDermott and J. Doyle [MD80], with the use of a fixpoint con-
struction which has been seriously criticized initially. Stable belief sets were
introduced by R. Stalnaker at the same time; the short note [Sta93] was writ-
ten as a commentary on modal nonmonotonic logic and proposed the notion
of a stable set of beliefs as a formal representation of the epistemic state of
an ideally rational agent, with full introspective capabilities. Assuming a
propositional language, endowed with a modal operator ✷ϕ, interpreted as
‘ϕ is believed ’, a set of formulas S is a stable set if it is ‘stable’ under classical
inference and epistemic introspection:

(i) CnPC(S) ⊆ S

(ii) ϕ ∈ S implies ✷ϕ ∈ S

(iii) ϕ /∈ S implies ¬✷ϕ ∈ S
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This notion proved to be of major importance in nonmonotonic modal
logics. According to [Sta93], R. Moore has written that this notion ‘ ..
was a very important influence on the development of autoepistemic logic’
[Moo85]; it also played a role in the logical investigations of Marek, Schwarz
and Truszczyński on the McDermott & Doyle family of modal nonmonotonic
modal logics [MT93]. Actually, the definition of stable sets was the first
important step towards the idea of constructing epistemic logic(s) in non-
monotonic reasoning, without any appeal to classical modal logic (known as
the ‘Modality Si, Modal Logic No! ’ motto of J. McCarthy).

The syntactic definition of stable sets is very natural and intuitive. Fur-
ther research quickly revealed that they possess interesting properties while
they do also admit simple and elegant semantic characterizations: they can
be represented as the theories of universal (S5) Kripke models, or alterna-
tively, as the set of beliefs of an agent residing in a KD45 situation (see
[MT93, Chapt.8], [Hal97a]).

It is not hard to see however, that Stalnaker’s stable sets model an ex-
tremely perfect reasoner. In a sense, the situation is reminiscent of the ‘log-
ical omniscience’ problem in classical epistemic logic: normal modal logics
of knowledge describe a reasoner who knows all the logical consequences of
his/her beliefs; more on this, in section 2. Actually, the situation in Stal-
naker’s stable sets is a bit more uncomfortable: all tautologies are known
and a stable set is a theory maximally consistent with provability in S5.
This raises some important philosophical and technical questions in modal
non-monotonic reasoning, observed in [Hal97a] and addressed from a fine
viewpoint in the work of Marek, Schwarz and Truszczyński [MST93].

So, stable sets are defined by calling for closure under (classical propo-
sitional logic and) suitable context rules, intended to capture positive and
negative introspection on self beliefs. They are characterized by (and rep-
resented as theories of) well-known epistemic possible-worlds models, which
have emerged in logics of classical epistemic reasoning (S5, KD45). It is
absolutely natural to investigate whether one can define in a natural way,
variants of this notion which represent a less ideal and less omniscient agent,
while retaining some of their interesting and useful properties; in this direc-
tion it is interesting from the KR viewpoint to work on the following two
questions, related to the interplay between syntax and semantics of stable
epistemic states:

• can we weaken the positive and/or negative introspection conditions
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(seen henceforth as context-dependent rules) in Stalnaker’s original
definition and still obtain a plausible (and perhaps, more pragmatic)
notion of stable epistemic state? For such an emerging notion, does
there exist a good model-theoretic representation?

• can we suitably replace S5 and KD45 in the semantic characteriza-
tion of stable sets, with a possible-worlds model (possibly with non-
normal worlds or a neighborhood model) determining some other clas-
sical modal logic and prove that the emerging notion of an epistemic
state admits a syntactic definition in terms of (closure under) natural
positive and negative introspection conditions?

We work on the first of these two questions, actually the most important
from the KR viewpoint. We vary conditions (ii) and (iii) in Stalnaker’s defini-
tion to obtain three weaker notions of an epistemic state. We obtain semantic
characterizations for the notions of stable sets we define; not surprisingly, we
have to employ impossible worlds and neighborhood modal models.

The other axis around which the content of this thesis revolves, is the
notion of ‘only knowing ’ introduced by J. Halpern and Y. Moses in [HM85],
which aims in characterizing the epistemic state of a rational agent who
has been told only a finite number of facts. The idea is to obtain a meta-
level formal account of the epistemic state asserting the agent’s knowledge
contains no more than the information conveyed by some epistemic formula
a (intuitively, the conjunction of the finite knowledge base), which in turn,
implies a description of the situation in which the agent ‘only knows a’.

The HM-‘only knowing ’ approach is intuitively clear, mathematically in-
teresting and pioneered a stream of research on ‘minimal knowledge’ logics
which are ‘of essential importance for knowledge representation and infer-
ence’ [vdHJT99]. The single-agent approach of [HM85] is based on the notion
of Stalnaker stable sets and is essentially an S5-centered approach. Syntac-
tically, it amounts in attempting to single out the ‘propositionally minimum’
stable belief set which contains a (if it exists); semantically - and equivalently-
it attempts to maximize the set of ‘possibilities’ (in terms of epistemically
alternative states) in the relevant possible-worlds model. A subsequent pa-
per by J. Halpern ([Hal97b]) generalized ‘only knowing ’ in the multi-agent
setting, elaborating on the question ‘what counts as a possibility in the multi-
agent case’ and clarifying that ‘only knowing ’ can be also (and perhaps more
meaningfully) understood in the context of KD45 situations (rather that
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S5 universal models). Of particular importance in this approach is the logi-
cal characterization of the ‘honest’ formulas, the formulas that can actually
represent ‘all the agent knows ’. The idea of ‘minimal knowledge’ has been
further investigated in AI; the approaches include the work of G. Schwarz
and M. Truszczyński [ST94], the results of W. van der Hoek, J. Jaspars and
E. Thijsse [vdHJT99, HJT96] and the work of Donini, Nardi and Rosati on
the relation of ‘minimal knowledge’ to ground modal nonmonotonic logics
[DNR97].

The original, single-agent HM-‘only knowing ’ approach is strongly based
on the influential notion of stable belief sets. In this document, we employ
these alternative non-omniscient epistemic states to define an ‘only knowing’
approach for minimal knowledge à la Halpern & Moses, in a less idealized
setting. We prove that such a project is feasible by defining appropriate no-
tions of ‘honesty’ for our weak stable sets. Of course, as it has been shown
in [KMZ14], leaving the ‘perfect’ setting of the S5 Stalnaker stable sets and
moving to the ‘wild’ world of (say) ‘regular’ RM-stable sets, implies leaving
behind many of the mathematically elegant (but philosophically controver-
sial) properties of Stalnaker stability. However, as we show, the situation can
be technically controlled through the device of formulas like ✷⊤, ¬✷⊤, ✷⊥,
¬✷⊥ that allow us to ‘navigate’ through possible and impossible worlds, ‘full’
or empty neighborhoods. On the other hand, the philosophical discussion on
the meaning (if any) of impossible worlds readily emerges.

In Section 2 we gather the necessary technical background needed for our
results, establishing notation and terminology. In Section 3 we very briefly
mention some results we have obtained on the determination of classical and
regular modal logics, with a notion of strong provability from premises. These
results are later used for obtaining our representation theorems. Sections 4
and 5 form the core of our results. In Section 6 we comment on related work
and discuss open questions for future research.
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2 Background Material

In this section we gather the necessary background material and results.
For the basics of Modal Logic the reader is refered to the books [BdRV01,
Che80, HJ96] and for the essentials of modal nonmonotonic logics to [MT93].
We assume a modal propositional language L✷, endowed with an epistemic
operator ✷ϕ, read as ‘it is believed that ϕ holds ’. Sentence symbols include
⊤ (for truth) and ⊥ (for falsity).
Some of the important axioms in epistemic/doxastic logic are:

K. (✷ϕ ∧ ✷(ϕ ⊃ ψ)) ⊃ ✷ψ 1

T. ✷ϕ ⊃ ϕ (axiom of true, justified knowledge)

D. ✷ϕ ⊃ ¬✷¬ϕ or ¬(✷ϕ ∧✷¬ϕ) (consistent belief)

4. ✷ϕ ⊃ ✷✷ϕ (positive introspection)

5. ¬✷ϕ ⊃ ✷¬✷ϕ (negative introspection)

w5. (ϕ ∧ ¬✷ϕ) ⊃ ✷¬✷ϕ (weak negative introspection)

p5. (¬✷ϕ ∧ ¬✷¬ϕ) ⊃ ✷¬✷ϕ (weak negative introspection)

Modal logics are sets of modal formulas containing classical propositional
logic (i.e. containing all tautologies in the augmented language L✷) and
closed under rule MP.ϕ,ϕ⊃ψ

ψ
. The smallest modal logic is denoted as PC

(propositional calculus in the augmented language). A set T of formulas is
called consistent iff (∀n ∈ N, ∀ϕ0, . . . , ϕn ∈ T ) ϕ0 ∧ . . . ∧ ϕn ⊃ ⊥ /∈ PC;
otherwise, T is called inconsistent. Normal are called those modal logics,
which contain all instances of axiom K and are closed under rule

RN.
ϕ

✷ϕ

By KA1 . . .An we denote the normal modal logic axiomatized by axioms A1

to An. Well-known epistemic logics comprise KT45 (S5) (a strong logic of
knowledge) and KD45 (a logic of consistent belief ).

Normal modal logics are interpreted over Kripke models: a Kripke model
M = 〈W,R, V 〉 consists of a set of possible worlds W and a binary relation
between them R ⊆W ×W : whenever wRv, we say that world w ‘sees ’ world
v. The valuation V determines which propositional variables are true inside

1In our notation K is the axiomatic scheme (✷ϕ∧✷(ϕ ⊃ ψ)) ⊃ ✷ψ i.e. K = US
(

(✷p∧

✷(p ⊃ q)) ⊃ ✷q
)

, where US(ϕ) is the set of all universal substitution instances of ϕ.

7



each possible world. Within a world w, the propositional connectives (¬, ⊃,
∧, ∨) are interpreted classically, while ✷ϕ is true at w iff it is true in every
world ‘seen’ by w, notation: (M, w  ✷ϕ iff (∀v ∈ W )(wRv ⇒ M, v  ϕ)).

A logic Λ is determined by a class of models iff it is sound and complete
with respect to this class; it is known that S5 is determined by the class
of Kripke models with a universal relation, while KD45 is determined by
the class of models where each world w ‘sees ’ a ’cluster ’ (i.e. a universally
connected subset) of worlds; every model of this class has the form 〈{w} ∪
W, ({w} ∪W )×W,V 〉).

Normal modal epistemic logics suffer from the so-called logical omni-
science problem, which can be attributed to axiom K and rule RN. Because
of the latter, all tautologies are known. Also, because of the axiom K, logical
consequences of knowledge constitute knowledge, something unreasonable in
realistic situations. Note however that axiom K and axioms as simple as
N.✷⊤ are unavoidable in Kripke models and ubiquitous in normal modal
logics.

A first step towards solving the logical omniscience problem is by defining
regular modal logics which contain K, but substitute rule RN for rule

RM.
ϕ ⊃ ψ

✷ϕ ⊃ ✷ψ

We denote by KA1 . . .AnR the regular modal logic axiomatized by axioms
A1 to An. Regular modal logics are interpreted on a strange species of
possible world models, introduced by Kripke too; we will call them q-models
here (M = 〈W,N,R, V 〉). We now have two kinds of worlds: normal worlds
(N), which behave in the way we described above and non-normal (also called
queer or impossible) worlds (W \N), where nothing is known/believed (✷ϕ
is never true there) and everything is consistent to our state of affairs (¬✷¬ϕ
is always true there). Within a world w, the propositional connectives are
interpreted classically and ✷ϕ is true at w iff w ∈ N and (∀v ∈ W )(wRv ⇒
M, v  ϕ)).

This however does not avoid the effect of K: to be able to eliminate K we
have to resort to neighborhood (also called Montague or minimal in [Che80])
semantics. In this kind of models, which we will call n-models, each world
does not ‘see’ other worlds but it is associated to possible ‘neighborhoods ’
(subsets) of possible worlds: an n-model is a triple N = 〈W,E, V 〉, where

8



W is any set of worlds, E is any function assigning to any world, its sets of
‘neighboring’ worlds (i.e. E : W → P(P(W ))) and V is again a valuation.
The interpretation of any formula is exactly as in Kripke models, except
of the formulas of the form ✷ϕ; such a formula is true at w iff the set of
worlds where ϕ holds, belong to the possible neighborhoods of w: V (ϕ) =
{v ∈ W | N, v  ϕ} ∈ E(w). Theory of a (Kripke, q- or n-) model M
(denoted as Th(M)) is the set of all formulas being true in every world of
M.
Having a q-model, we can define a pointwise equivalent n-model:

Definition 2.1 Let M = 〈W,N,R, V 〉 be a q-model and NM = 〈W,E, V 〉
the n-model, where E(w) = {X ⊆ W | Rw ⊆ X}2, if w ∈ N , and E(w) = ∅,
if w ∈ W \N . NM is called the equivalent n-model produced by M.

This notion of ‘equivalence’ seems to be appropriate, because of the fol-
lowing result:

Proposition 2.2 Let M = 〈W,N,R, V 〉 be a Kripke q-model. Then

(∀ϕ ∈ L✷)(∀w ∈ W )(M, w  ϕ ⇐⇒ NM, w  ϕ)

Proof. By induction on the complexity of ϕ. Induction base and boolean
cases of induction step are obvious. So, let us focus on ✷ϕ.

M, w  ✷ϕ ⇐⇒ w ∈ N ∧ (∀v ∈ W )(wRv ⇒ M, v  ϕ)
Ind.Hyp.
⇐⇒ w ∈ N ∧ (∀v ∈ W )(v ∈ Rw ⇒ NM, v  ϕ)
⇐⇒ w ∈ N ∧ Rw ⊆ V (ϕ)
Def.2.1
⇐⇒ V (ϕ) ∈ E(w)
⇐⇒ NM, w  ✷ϕ

The directed graph F = 〈W,R〉, underlying a (Kripke, q-, or n-) model, is
called a frame. A modal logic Λ is called classical iff it is closed under the
rule

RE.
ϕ ≡ ψ

✷ϕ ≡ ✷ψ

2Rw = {v ∈ W | wRv}

9



See [Che80] for results on the characterization of classical modal logics in
terms of Montague semantics. By A1 . . .AnC we denote the classical modal
logic axiomatized by axioms A1 to An.

It is convenient in our paper to consider the following context-dependent
versions of the modal rules mentioned up to this point: assuming a set S of
modal formulas, we denote the rules

RNc.
ϕ ∈ S

✷ϕ ∈ S
NIc.

ϕ /∈ S

¬✷ϕ ∈ S

RMc.
ϕ ⊃ ψ ∈ S

✷ϕ ⊃ ✷ψ ∈ S
REc.

ϕ ≡ ψ ∈ S

✷ϕ ≡ ✷ψ ∈ S

Stalnaker stable sets are closed under propositional reasoning (i), under
rule RNc (ii) and rule NIc (iii). The following theorem gathers some of their
useful properties; see [MT93] for a proof.

Theorem 2.3

(i) A Stalnaker stable set is uniquely determined by its objective (non
modal) part.

(ii) If a set S is stable, then it is closed under strong S5 provability. In
particular, it contains every instance of K, T, 4, and 5.

(iii) A set S is stable iff it is the theory of a Kripke model with a universal
accessibility relation.

(iv) A set S is stable iff it is the set of formulas believed in a world w
of a KD45-model, i.e. S is stable iff there is a KD45-model M =
〈W,R, V 〉 and (∃w ∈ W ) S = {ϕ ∈ L✷ | M, w  ✷ϕ}.
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3 Regular and Classical Modal Logics

To be able to characterize the stable sets introduced in the subsequent sec-
tions, we have to work on the proof theory of regular and classical modal
logics with a notion of strong provability from premises. The results are
original, in the sense that they have not been developed elsewhere.

Regular modal logics Firstly, we employ the axioms:

4⊤. ✷ϕ ⊃ ✷(✷⊤ ⊃ ✷ϕ)

B⊤. (ϕ ∧✷⊤) ⊃ ✷¬✷¬ϕ

5⊤. ¬✷ϕ ∧ ✷⊤ ⊃ ✷¬✷ϕ

The first of them appears in [Seg71] and all of them seem useful in our
KR investigations. Furthermore, for a q-frame F = 〈W,N,R〉, we employ
following property:

(Uq) (∀w ∈ N)(∀v ∈ W )wRv

The notion of strong provabillity from premises in a regular modal logic
is defined as usual.

Definition 3.1 If {A0, . . . , An} ⊆ L✷ is a set of axioms of regular modal
logic Λ (i.e. Λ = KA0 . . .AnR is the smallest regular modal logic containing
A0, . . . , An) and I ⊆ L✷ is a set of premises, then for any formula ϕ we say
that there is an RM-proof of ϕ from premises I in Λ (I ⊢Λ ϕ) iff there
is a Hilbert-style proof, where each step of the proof is either a formula in
PC∪K∪US(A0)∪ . . .∪US(An)∪ I or a result of applying MP or RM to
formulas of previous steps and the last formula in this proof is ϕ.

The consistency of theories is also defined as usual.

Definition 3.2 A theory I ⊆ L✷ is called consistent with regular modal
logic Λ (abbr. cΛ-theory) iff I 0Λ ⊥; otherwise, I is called inconsistent with
Λ (abbr. incΛ-theory).
Supposed that I is a cΛ-theory, a set of formulas T is called I-consistent with
Λ (abbr. IcΛ-theory) iff (∀n ∈ N, ∀ϕ0, . . . , ϕn ∈ T ) I 0Λ ϕ0 ∧ . . . ∧ ϕn ⊃ ⊥;
otherwise, T is called I-inconsistent with Λ (abbr. IincΛ-theory).
T is called maximal I-consistent with Λ (abbr. mIcΛ-theory) iff T is IcΛ
and (∀ψ /∈ T ) T ∪ {ψ} is IincΛ.
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Following lemma contains useful properties for maximal consistent theo-
ries.

Lemma 3.3 Let I be a cΛ-theory and Γ a mIcΛ-theory. Then

(i) Γ is closed under (MP)

(ii) (∀ϕ ∈ L✷)(ϕ ∈ Γ or ¬ϕ ∈ Γ)

(iii) (∀ϕ ∈ L✷)(I ⊢Λ ϕ⇒ ϕ ∈ Γ)

(iv) (∀ϕ ∈ L✷)(ϕ ∧ ψ ∈ Γ ⇔ (ϕ ∈ Γ and ψ ∈ Γ))

Proof. Consider any ϕ, ψ ∈ L✷.
(i)
Suppose that ϕ, ϕ ⊃ ψ ∈ Γ and, for the sake of contradiction, that ψ /∈ Γ.
Then, Γ ∪ {ψ} would be an IincΛ-theory, i.e. there are n ≥ 0 and ϕ1, . . .,
ϕn ∈ Γ s.t. I ⊢Λ ϕ1 ∧ . . .∧ ϕn ∧ ψ ⊃ ⊥, hence, I ⊢Λ ϕ1 ∧ . . .∧ ϕn ∧ ϕ ∧ (ϕ ⊃
ψ) ⊃ ⊥, i.e. Γ is IincΛ, which is a contradiction.
(ii)
Suppose, for the sake of contradiction, that ϕ,¬ϕ /∈ Γ. Then, Γ ∪ {ϕ},
Γ ∪ {¬ϕ}, would be both IincΛ-theories, i.e. there are n ≥ 0, m ≥ 0 and
ϕ1,. . .,ϕn ∈ Γ s.t. I ⊢Λ ϕ1∧ . . . ∧ϕn∧ϕ ⊃ ⊥ and ψ1,. . .,ψm ∈ Γ s.t. I ⊢Λ ψ1∧
. . . ∧ψm ∧ ¬ϕ ⊃ ⊥.
– If n > 0 or m > 0, then I ⊢Λ ϕ1∧ . . . ∧ϕn ∧ ψ1∧ . . . ∧ψm ⊃ ¬ϕ ∧ ϕ,
therefore, I ⊢Λ ϕ1∧ . . . ∧ϕn ∧ ψ1∧ . . . ∧ψm ⊃ ⊥, so Γ is IincΛ, which is a
contradiction.
– If n = 0 and m = 0, then I ⊢Λ ϕ ∧ ¬ϕ, i.e. I ⊢Λ ⊥, so I is incΛ, which
is again a contradiction.
(iii)
Suppose that I ⊢Λ ϕ and, for the sake of contradiction, that ϕ /∈ Γ. Then,
Γ ∪ {ϕ} would be an IincΛ-theory, i.e. there are n ≥ 0 and ϕ1, . . ., ϕn ∈ Γ
s.t. I ⊢Λ ϕ1 ∧ . . . ∧ ϕn ∧ ϕ ⊃ ⊥.
– If n > 0, then I ⊢Λ ϕ1∧ . . . ∧ϕn ⊃ ¬ϕ, and, since I ⊢Λ ϕ, I ⊢Λ ϕ1∧ . . .
∧ϕn ⊃ ⊥, i.e. Γ is IincΛ, which is a contradiction.
– If n = 0, then I ⊢Λ ϕ ⊃ ⊥, and, since I ⊢Λ ϕ, I ⊢Λ ⊥, so I is incΛ,
which is again a contradiction.
(iv)
(⇒) Suppose that ϕ∧ψ ∈ Γ. Since I ⊢Λ ϕ∧ψ ⊃ ϕ, by (iii), ϕ∧ψ ⊃ ϕ ∈ Γ,
hence, by (i), ϕ ∈ Γ. In exactly the same way, it can be proved that ψ ∈ Γ.
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(⇐) Suppose that ϕ, ψ ∈ Γ. Since I ⊢Λ ϕ ⊃ (ψ ⊃ ϕ ∧ ψ), by (iii),
ϕ ⊃ (ψ ⊃ ϕ ∧ ψ) ∈ Γ, hence, by (i), ϕ ∧ ψ ∈ Γ.

Aiming to construct a model, whose theory contains exactly all formulas,
which can be proved from I in Λ, we firstly prove following lemmata:

Lemma 3.4 Let I be a cΛ-theory. Then, there exist a nonempty IcΛ-theory.

Proof. Since I is cΛ, there is a ϕ ∈ L✷ s.t. I 0Λ ϕ. Hence, {¬ϕ} is IcΛ.

Lemma 3.5 (Lindenbaum) Let I be a cΛ-theory and T an IcΛ-theory.
Then, there is a mIcΛ theory Γ s.t. T ⊆ Γ.

Proof. Since the infinite set Φ of propositional variables of our language
L✷ is countable, there is an enumeration ϕ0, ϕ1, ϕ2, . . . of L✷. Now, let us
define recursively following sequence of sets

T0 = T

Tn+1 =

{

Tn ∪ {ϕn} if Tn ∪ {ϕn} is IcΛ
Tn ∪ {¬ϕn} otherwise

(a)
Firstly, we will prove by induction on n, that (∀n ∈ N)(Tn is IcΛ). It suffices
to show (in the ind. step) that if Tn ∪ {ϕn} is IincΛ, then Tn ∪ {¬ϕn} is
IcΛ. So, if Tn ∪ {ϕn} is IincΛ, then there are m ≥ 0 and ψ1,. . .,ψm ∈ Tn s.t.
I ⊢Λ ψ1∧ . . . ∧ψm ∧ ϕn ⊃ ⊥
(if I ⊢Λ ψ1∧ . . . ∧ψm ⊃ ⊥, then Tn would be IincΛ, which is contradictory to
ind. hypothesis, hence, ϕn must appear in the conjunction). Now, suppose,
for the sake of contradiction, that Tn∪{¬ϕn} were IincΛ. Then, there would
be p ≥ 0 and χ1,. . .,χp ∈ Tn s.t. I ⊢Λ χ1∧ . . . ∧χp ∧ ¬ϕn ⊃ ⊥ (as before,
¬ϕn must appear in the conjunction).
– if m > 0 or p > 0, then I ⊢Λ ψ1∧ . . . ∧ψm∧ χ1∧ . . . ∧χp ⊃ ⊥, i.e. Tn is
IincΛ, which is a contradiction, by ind. hypothesis.
– if m = 0 and p = 0, then I ⊢Λ ¬ϕn and I ⊢Λ ϕn, hence, I ⊢Λ ⊥, i.e. I is
incΛ, which is also a contradiction.
(b)
It can be proved, by a trivial induction, that (∀i, j ∈ N)(i ≤ j ⇒ Ti ⊆ Tj)
(c)
Now, let us define Γ =

⋃

n∈N Tn. Suppose, for the sake of contradiction, that Γ
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is IincΛ, i.e. there are m ≥ 0 and ψ0, . . . , ψm ∈ Γ s.t. I ⊢Λ ψ0∧. . .∧ψm ⊃ ⊥.
Since ψ0, . . . , ψm appear in the enumeration of L✷, there must be k0, . . . , km ∈
N s.t. ϕk0 = ψ0, . . . , ϕkm = ψm. Furthermore, since ϕk0, . . . , ϕkm ∈ Γ, all
Tk0 ∪ {ϕk0}, . . . , Tkm ∪ {ϕkm} are IcΛ and ϕk0 ∈ Tk0+1, . . . , ϕkm ∈ Tkm+1,
hence, by (b), ϕk0 , . . . , ϕkm ∈ Tmax{k0,...,km}+1, consequently, Tmax{k0,...,km}+1 is
IincΛ, which is a contradiction, by (a).
(d)
Let now ϕ ∈ L✷\Γ. Since ϕ appears in the enumeration of L✷, there must be
a k ∈ N s.t. ϕk = ϕ. Then, since ϕ /∈ Γ, Tk ∪ {ϕk} is IincΛ and ¬ϕ ∈ Tk+1,
so ¬ϕ ∈ Γ. But then, since I ⊢Λ ϕ ∧ ¬ϕ ⊃ ⊥, Γ ∪ {ϕ} is IincΛ.
So, it has been proved that T = T0 ⊆ Γ and, by (c), (d), Γ is a mIcΛ-theory.

Last two lemmata do guarantee that the model defined next, does exist.

Definition 3.6 Let Λ be any regular modal logic and I be any cΛ-theory. The
canonical model MΛ,I for Λ and I is the Kripke q-model, which is defined as
the quadruple 〈WΛ,I , NΛ,I , RΛ,I , V Λ,I〉, where:

(i) WΛ,I = {Γ ⊆ L✷ | Γ : mIcΛ}

(ii) NΛ,I = {Γ ∈ WΛ,I | ✷⊤ ∈ Γ}

(iii) (∀Γ,∆ ∈ WΛ,I)(ΓRΛ,I
∆ iff (∀ϕ ∈ L✷)(✷ϕ ∈ Γ ⇒ ϕ ∈ ∆))

(iv) (∀p ∈ Φ)(V Λ,I(p) = {Γ ∈ WΛ,I | p ∈ Γ})

Frame FΛ,I = 〈WΛ,I , NΛ,I , RΛ,I〉 underlying MΛ,I is called the canonical
frame for Λ and I.

In a case of a normal modal logic Λ, ✷⊤ ∈ Λ. Hence, every proof I ⊢Λ ϕ is
equivalent to a proof using RN instead of RM and vice versa. Furthermore,
by Lem.3.3(iii), (∀Γ ∈ WΛ,I) ✷⊤ ∈ Γ, hence, by Def.3.6(ii), NΛ,I =WΛ,I . So,

Fact 3.7 If Λ is a normal modal logic, then NΛ,I = WΛ,I and MΛ,I co-
incides with the canonical model defined for normal modal logics (and the
corresponding cΛ-theories) in bibliography.

Now, we come to the key-lemma towards proving that the theory of MΛ,I

contains exactly all formulas, which can be proved from I in Λ:
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Lemma 3.8 (Truth Lemma) Let Λ be a regular modal logic and I be a
cΛ-theory. Then, (∀ϕ ∈ L✷)(∀Γ ∈ WΛ,I)(MΛ,I , Γ  ϕ ⇐⇒ ϕ ∈ Γ)

Proof. By induction on the complexity of ϕ. Induction base follows from
Def.3.6(iv) and ϕ ⊃ ψ – part of induction step follows immediately from
induction hypothesis using (i) to (iv) of Lem.3.3. Now, to the ✷ϕ – case.
MΛ,I , Γ  ✷ϕ iff (∀∆ ∈ WΛ,I)(ΓRΛ,I

∆ ⇒ MΛ,I
∆  ϕ)∧ Γ ∈ NΛ,I iff (by

Ind.Hyp.) (∀∆ ∈ WΛ,I)(ΓRΛ,I
∆ ⇒ ϕ ∈ ∆) ∧ Γ ∈ NΛ,I

It suffices to show that this is equivalent to the fact that ✷ϕ ∈ Γ.
(⇒)
Suppose that ✷ϕ /∈ Γ and Γ ∈ NΛ,I . Since Γ is a mIcΛ-theory, by Lem.3.3(ii),
¬✷ϕ ∈ Γ. Now, let us define ∆ = {ψ ∈ L✷ | ✷ψ ∈ Γ} and Θ = {¬ϕ} ∪
∆. Suppose, for the sake of contradiction, that Θ is IincΛ i.e. there exist
ψ1, . . . , ψn ∈ Θ s.t. I ⊢Λ ψ1 ∧ . . . ∧ ψn ⊃ ⊥.

• if n = 1 and ψ1 = ¬ϕ i.e. I ⊢Λ ¬ϕ ⊃ ⊥, then I ⊢Λ ⊤ ⊃ ϕ, and,
by (RM), I ⊢Λ ✷⊤ ⊃ ✷ϕ. Then, by Lem.3.3(iii), ✷⊤ ⊃ ✷ϕ ∈ Γ.
But Γ ∈ NΛ,I , so, by Def.3.6(ii) and Lem.3.3(i), ✷ϕ ∈ Γ, which is a
contradiction, since ¬✷ϕ ∈ Γ and Γ is an IcΛ-theory.

• if ψ1, . . . , ψn ∈ ∆, then I ⊢Λ ψ1 ∧ . . . ∧ ψn ⊃ ϕ, since ⊥ ⊃ ϕ ∈ PC.
if n > 1 and ψ1, . . . , ψn−1 ∈ ∆ and ψn = ¬ϕ, then I ⊢Λ ψ1∧ . . .∧ψn−1 ⊃
ϕ.
So, in both cases, there are ψ1, . . . , ψn ∈ ∆ with n ≥ 1 s.t. I ⊢Λ

ψ1 ∧ . . . ∧ ψn ⊃ ϕ. Hence, by RM, I ⊢Λ ✷(ψ1 ∧ . . . ∧ ψn) ⊃ ✷ϕ (1)
But, I ⊢Λ ψ1 ⊃ (ψ2 ⊃ ψ1 ∧ ψ2), so, by RM, I ⊢Λ ✷ψ1 ⊃ ✷(ψ2 ⊃
ψ1 ∧ ψ2), and, by K, I ⊢Λ ✷ψ1 ⊃ (✷ψ2 ⊃ ✷(ψ1 ∧ ψ2)) i.e. I ⊢Λ

✷ψ1 ∧ ✷ψ2 ⊃ ✷(ψ1 ∧ ψ2). Hence, by a trivial induction, I ⊢Λ ✷ψ1 ∧
. . .∧✷ψn ⊃ ✷(ψ1 ∧ . . .∧ψn), and by (1), I ⊢Λ ✷ψ1 ∧ . . .∧✷ψn ⊃ ✷ϕ,
so, by Lem.3.3(iii), ✷ψ1 ∧ . . . ∧✷ψn ⊃ ✷ϕ ∈ Γ (2)
But, since ψ1, . . . , ψn ∈ ∆, ✷ψ1, . . . ,✷ψn ∈ Γ, therefore, by Lem.3.3(iv),
✷ψ1 ∧ . . .∧✷ψn ∈ Γ, and finally, by (2) and Lem.3.3(i), ✷ϕ ∈ Γ, which
is again a contradiction.

So, Θ is an IcΛ-theory, and by Lindenbaum’s lemma (3.5), there is a
mIcΛ-theory Ξ s.t. Θ ⊆ Ξ. Hence, ¬ϕ ∈ Ξ, which entails, by Lem.3.3(ii), that
ϕ /∈ Ξ.
Furthermore, (∀ψ ∈ L✷) if ✷ψ ∈ Γ, then ψ ∈ ∆ i.e. ψ ∈ Θ i.e. ψ ∈ Ξ.
Therefore, by Def.3.6(iii), ΓRΛ,I

Ξ.
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So, the contrapositive was proved.
(⇐)
Suppose that ✷ϕ ∈ Γ. Then, for any ∆ ∈ WΛ,I , if ΓRΛ,I

∆, then by Def.3.6(iii),
ϕ ∈ ∆. Furthermore, I ⊢Λ ϕ ⊃ ⊤, hence, by RM, I ⊢Λ ✷ϕ ⊃ ✷⊤. Then,
by Lem.3.3(iii), ✷ϕ ⊃ ✷⊤ ∈ Γ. But ✷ϕ ∈ Γ, so, by Lem.3.3(i), ✷⊤ ∈ Γ,
consequently, by Def.3.6(ii), Γ ∈ NΛ,I .

Using Truth Lemma 3.8, we can prove (see Section 3.1) the following
characterization of a useful regular modal logic, namely S5′

R = KT4⊤B⊤R

Theorem 3.9 S5′
R is strongly complete with respect to all q-frames, for

which (Uq) holds.

Actually, the following, more general result can be proved, which will be
useful in subsequent sections.

Proposition 3.10 Let Λ be a regular modal logic and I be a cΛ-theory.
Then,

(∀ϕ ∈ L✷)(M
Λ,I

 ϕ ⇐⇒ I ⊢Λ ϕ)

Proof. (⇒)
Suppose that I 0Λ ϕ. If {¬ϕ} were IincΛ, then, by definition, I ⊢Λ ¬ϕ ⊃ ⊥,
which is a contradiction, so {¬ϕ} is a IcΛ-theory, and, by Lindenbaum’s
lemma (3.5), there is a Γ ∈ WΛ,I s.t. ¬ϕ ∈ Γ. Hence, by Lem.3.8, MΛ,I , Γ 
¬ϕ, so, MΛ,I 1 ϕ.
(⇐)
Suppose that I ⊢Λ ϕ. Then, by Lem.3.3(iii), (∀Γ ∈ WΛ,I) ϕ ∈ Γ. Hence, by
Lem.3.8, (∀Γ ∈ WΛ,I) MΛ,I , Γ  ϕ, so, MΛ,I

 ϕ.

Classical modal logics Analogously to regular modal logics, the notion
of strong provabillity from premises in a classical modal logic is defined.

Definition 3.11 If {A0, . . . , An} ⊆ L✷ is a set of axioms of classical modal
logic Λ (i.e. Λ = A0 . . .AnC is the smallest classical modal logic containing
A0, . . . , An) and I ⊆ L✷ is a set of premises, then for any formula ϕ we
say that there is an RE-proof of ϕ from premises I in Λ (I ⊢Λ ϕ) iff
there is a Hilbert-style proof, where each step of the proof is either a formula
in PC ∪ US(A0) ∪ . . . ∪ US(An) ∪ I or a result of applying MP or RE to
formulas of previous steps and the last formula in this proof is ϕ.
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Definition of a theory, which is consistent with a classical modal logic,
or I-consistent with a classical modal logic, or maximal I-consistent with
a classical modal logic, is exactly as for regular modal logics. In fact, an
observation of the proofs of lemmata 3.3, 3.4 and 3.5 (Lindenbaum) reveals
that the only requirement for Λ is to be a modal logic. So, they are true
for classical modal logics too. Now, let us construct the following model,
for which it will be proved afterwards, that its theory contains exactly all
formulas, which can be proved (by an RE-proof) from premises in a classical
modal logic Λ.

Definition 3.12 Let Λ be a classical modal logic and I be a cΛ-theory. The
canonical model NΛ,I for Λ and I is the n-model, which is defined as the
triple 〈WΛ,I, EΛ,I , V Λ,I〉, where:
(i) WΛ,I = {Γ ⊆ L✷ | Γ : mIcΛ}
(ii) (∀Γ ∈ WΛ,I)(∀ϕ ∈ L✷)(|ϕ|Λ,I ∈ EΛ,I(Γ) ⇐⇒ ✷ϕ ∈ Γ)

where |ϕ|Λ,I = {Γ ∈ WΛ,I | ϕ ∈ Γ}
(iii) (∀p ∈ Φ)(V Λ,I(p) = {Γ ∈ WΛ,I | p ∈ Γ})

Again, Lemmata 3.4 and 3.5 guarantee that WΛ,I 6= ∅, but it must be
proved that EΛ,I in (ii) is well-defined, i.e. that for any mIcΛ-theory Γ and
(∀ϕ, ψ ∈ L✷), if |ϕ|Λ,I = |ψ|Λ,I , then ✷ϕ ∈ Γ ⇐⇒ ✷ψ ∈ Γ. This will be
established by proving following Lemma.

Lemma 3.13 |ϕ|Λ,I ⊆ |ψ|Λ,I ⇒ I ⊢Λ ϕ ⊃ ψ

Proof. Suppose that |ϕ|Λ,I ⊆ |ψ|Λ,I . Then, for any mIcΛ-theory Γ, Γ ∈
|ϕ|Λ,I ⇒ Γ ∈ |ψ|Λ,I , i.e., by Def.3.12(ii), ϕ ∈ Γ ⇒ ψ ∈ Γ, hence, ϕ /∈ Γ or
ψ ∈ Γ, so, by Lem.3.3(ii), ¬ϕ ∈ Γ or ψ ∈ Γ, therefore, by Lem.3.3(ii),(iv),
¬ϕ∨ψ ∈ Γ, hence, ϕ ⊃ ψ ∈ Γ. Now, if {¬(ϕ ⊃ ψ)} were an IcΛ-theory, then,
by Lindenbaum’s lemma, it would exist a mIcΛ-theory Γ s.t. ¬(ϕ ⊃ ψ) ∈ Γ,
hence, since Γ is consistent, ϕ ⊃ ψ /∈ Γ, which is a contradiction. Therefore,
{¬(ϕ ⊃ ψ)} is an IincΛ-theory, i.e. I ⊢Λ ϕ ⊃ ψ.

So, if |ϕ|Λ,I = |ψ|Λ,I , then, by the previous Lemma, I ⊢Λ ϕ ⊃ ψ and I ⊢Λ ψ ⊃
ϕ, hence, I ⊢Λ ϕ ≡ ψ, and, with anRE-step in the proof, I ⊢Λ ✷ϕ ≡ ✷ψ, so,
by Lem.3.3(iii), ✷ϕ ≡ ✷ψ ∈ Γ, hence, by Lem.3.3(i), ✷ϕ ∈ Γ ⇐⇒ ✷ψ ∈ Γ.
So, the well-definition of EΛ,I is proved.

Now, a ‘Truth Lemma’ for canonical models of classical logics can be
easily proved.
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Lemma 3.14 (Truth Lemma) Let Λ be a classical modal logic and I be a
cΛ-theory. Then, (∀ϕ ∈ L✷)(∀Γ ∈ WΛ,I)(NΛ,I , Γ  ϕ ⇐⇒ ϕ ∈ Γ)

Proof. By induction on the complexity of ϕ. Ind.Base follows from Def.3.6
(iv) and ϕ ⊃ ψ – part of Ind.Step follows immediatelly from Ind.Hypothesis
using (i) to (iv) of Lem.3.3. Now, to the ✷ϕ – case.

Firstly, let ∆ be any mIcΛ-theory. Then, ∆ ∈ V (ϕ) ⇐⇒ NΛ,I ,∆  ϕ
Ind.Hyp.
⇐⇒

ϕ ∈ ∆ ⇐⇒ ∆ ∈ |ϕ|Λ,I . Hence, V (ϕ) = |ϕ|Λ,I (1)

So, ✷ϕ ∈ Γ ⇐⇒ |ϕ|Λ,I ∈ EΛ,I(Γ)
(1)
⇐⇒ V (ϕ) ∈ EΛ,I(Γ) ⇐⇒ NΛ,I , Γ  ✷ϕ.

Exactly as in the proof of Prop.3.10, but using Truth Lemma 3.14 instead of
Truth Lemma 3.8, we come up with the following result (for classical modal
logics this time).

Proposition 3.15 Let Λ be a classical modal logic and I be a cΛ-theory.
Then,

(∀ϕ ∈ L✷)(N
Λ,I

 ϕ ⇐⇒ I ⊢Λ ϕ)

3.1 Regular Modal Logic S5′
R

Firstly, let us point out that although any regular modal logic Λ is closed
under uniform substitution (US) and every proof in Λ does not contain any
US-step, one can prove (see final part of this Subsection) that

Lemma 3.16 (∀ϕ ∈ L✷)(⊢Λ ϕ ⇐⇒ ϕ ∈ Λ)

We remind following definitions: 5⊤ = US(¬✷p ∧✷⊤ ⊃ ✷¬✷p) and S5′
R =

KT4⊤B⊤R. Then,

Lemma 3.17 S5′
R = KT5⊤R

Proof. By Lem.3.16, we can work with syntactical proofs.
(⊆)

Following proof shows that ⊢KT5⊤R
B⊤

1. ϕ ⊃ ¬✷¬ϕ (T)
2. ϕ ∧ ✷⊤ ⊃ ¬✷¬ϕ ∧✷⊤ (1. PC)
3. ¬✷¬ϕ ∧ ✷⊤ ⊃ ✷¬✷¬ϕ (5⊤)
4. ϕ ∧ ✷⊤ ⊃ ✷¬✷¬ϕ (2. 3. PC)
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Next proof shows that ⊢KT5⊤R
4⊤

1. ϕ ⊃ ⊤ (PC)
2. ✷ϕ ⊃ ✷⊤ (1. RM)
3. ✷ϕ ⊃ ✷ϕ ∧ ✷⊤ (2. PC)
4. ✷ϕ ⊃ ¬✷¬✷ϕ (T)
5. ✷ϕ ∧ ✷⊤ ⊃ ¬✷¬✷ϕ ∧ ✷⊤ (4. PC)
6. ¬✷¬✷ϕ ∧✷⊤ ⊃ ✷¬✷¬✷ϕ (5⊤)
7. ✷ϕ ∧ ✷⊤ ⊃ ✷¬✷¬✷ϕ (5. 6. PC)
8. ✷ϕ ⊃ ✷¬✷¬✷ϕ (3. 7. PC)
9. ¬✷¬✷ϕ ⊃ (✷⊤ ⊃ ✷ϕ) (5⊤)
10. ✷¬✷¬✷ϕ ⊃ ✷(✷⊤ ⊃ ✷ϕ) (9. RM)
11. ✷ϕ ⊃ ✷(✷⊤ ⊃ ✷ϕ) (8. 10. PC)

(⊇)
Following proof shows that ⊢KT4⊤B⊤R

5⊤

1. (✷⊤ ⊃ ✷ϕ) ⊃ ¬¬(✷⊤ ⊃ ✷ϕ) (PC)
2. ✷(✷⊤ ⊃ ✷ϕ) ⊃ ✷¬¬(✷⊤ ⊃ ✷ϕ) (1. RM)
3. ¬✷¬¬(✷⊤ ⊃ ✷ϕ) ⊃ ¬✷(✷⊤ ⊃ ✷ϕ) (2. PC)
4. ✷¬✷¬¬(✷⊤ ⊃ ✷ϕ) ⊃ ✷¬✷(✷⊤ ⊃ ✷ϕ) (3. RM)
5. ¬(✷⊤ ⊃ ✷ϕ) ∧ ✷⊤ ⊃ ✷¬✷¬¬(✷⊤ ⊃ ✷ϕ) (B⊤)
6. ¬(✷⊤ ⊃ ✷ϕ) ∧ ✷⊤ ⊃ ✷¬✷(✷⊤ ⊃ ✷ϕ) (5. 4. PC)
7. ¬✷ϕ ∧✷⊤ ⊃ ¬(✷⊤ ⊃ ✷ϕ) ∧✷⊤ (PC)
8. ¬✷ϕ ∧✷⊤ ⊃ ✷¬✷(✷⊤ ⊃ ✷ϕ) (7. 6. PC)
9. ¬✷(✷⊤ ⊃ ✷ϕ) ⊃ ¬✷ϕ (4⊤)
10. ✷¬✷(✷⊤ ⊃ ✷ϕ) ⊃ ✷¬✷ϕ (9. RM)
11. ¬✷ϕ ∧✷⊤ ⊃ ✷¬✷ϕ (8. 10. PC)

Furthermore, for a q-frame F = 〈W,N,R〉, we employ following properties:

(Eq) (∀w, v ∈ N)(∀u ∈ W )(wRv ∧ wRu⇒ vRu)

(ERq) (R is an equivalence relation in N and
(∀w ∈ N)(∀u ∈ W \N)(wRu⇒ (∀v ∈ [w]R)vRu)

3

Then, following correspondence results can be proved.

Proposition 3.18

(i) F  5⊤ ⇐⇒ (Eq) holds for F

(ii) F  T ⇐⇒ F is reflexive in N

3[w]R is the equivalence class of w, i.e. [w]R = {v ∈ N | wRv}.
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Proof.

(i)(⇒)
The contrapositive will be proved. Suppose that (∃w, v ∈ N)(∃u ∈ W )(wRv∧
wRu∧¬vRu). Now, let V be a valuation s.t. V (p) = {s ∈ W | vRs}. Then,
〈F, V 〉, v  ✷p, hence, since wRv, 〈F, V 〉, w  ¬✷¬✷p. Furthermore, since
¬vRu, 〈F, V 〉, u  ¬p, so, since wRu, 〈F, V 〉, w  ¬✷p. But w ∈ N , so,
〈F, V 〉, w  ✷⊤. Putting all together: 〈F, V 〉, w  ¬✷p ∧ ✷⊤ ∧ ¬✷¬✷p.
(⇐)
Let ϕ be a formula, V a valuation and w a world s.t. 〈F, V 〉, w  ✷⊤ ∧
¬✷¬✷ϕ. Then, w ∈ N and there is a v ∈ W s.t. wRv and 〈F, V 〉, v  ✷ϕ.
But then, v ∈ N . Consider now any u ∈ W s.t. wRu. Since wRv and
w, v ∈ N , by (Eq), vRu, therefore, since 〈F, V 〉, v  ✷ϕ, 〈F, V 〉, u  ϕ.
Hence, 〈F, V 〉, w  ✷ϕ, i.e. 〈F, V 〉, w  ✷⊤ ∧ ¬✷¬✷ϕ ⊃ ✷ϕ.
(ii)(⇒)
The contrapositive will be proved. Suppose that (∃w ∈ N)¬wRw. Now, let
V be a valuation s.t. V (p) =W \{w}. Then of course, 〈F, V 〉, w  ¬p. Con-
sider now any v ∈ W s.t. wRv. If 〈F, V 〉, v  ¬p, then v = w, hence wRw,
which is a contradiction. So, 〈F, V 〉, v  p, and since w ∈ N , 〈F, V 〉, w  ✷p.
(⇐)
Let ϕ be a formula, V a valuation and w a world s.t. 〈F, V 〉, w  ✷ϕ.
Then, w ∈ N and since F is reflexive in N , wRw, hence 〈F, V 〉, w  ϕ, i.e.
〈F, V 〉, w  ✷ϕ ⊃ ϕ.

Corollary 3.19 F  T ∧ 5⊤ ⇐⇒ (ERq) holds for F

Proof. By Prop.3.18, it suffices to show

(Eq) holds for F and F is reflexive in N ⇐⇒ (ERq) holds for F

(⇒)
Reflexivity in N is guaranteed. For symmetry in N , consider any w, v ∈ N
s.t. wRv. Since wRw, by (Eq), vRw. For transitivity in N , consider any
w, v, u ∈ N s.t. wRv and vRu. Then, by symmetry, vRw, and by (Eq), wRu.
Hence, R is an equivalence relation in N .
Let now w be a normal world and u be a non-normal world s.t. wRu.
Furthermore, consider any v ∈ [w]R, i.e. v ∈ N and wRv. Then, by (Eq),
vRu.
(⇐)
Since R is an equivalence relation in N , F is reflexive in N . Consider now
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any w, v ∈ N and u ∈ W s.t. wRv and wRu. If u ∈ N , then, since wRv, by
symmetry, vRw, and since wRu, by transitivity, vRu. If u ∈ W \ N , then,
since v ∈ [w]R, by (ERq), again vRu. Hence, (Eq) holds for F.

Next two lemmas will be helpful for proving the completeness result for
S5′

R. Fix any regular modal logic Λ. Then,

Lemma 3.20

(i) If Λ is consistent, then ∅ is a cΛ-theory.

(ii) I ∪ {¬ϕ} : ∅incΛ ⇒ I ⊢Λ ϕ ⇒ I ∪ {¬ϕ} : incΛ

(iii) If I is a ∅cΛ-theory, then it is a consistent theory.

Proof.

(i)
If ∅ is an incΛ-theory, then, ⊢Λ ⊥, consequently, by Lem.3.16, ⊥ ∈ Λ, i.e.,
since ⊥ ⊃ ⊥ ∈ PC, Λ is inconsistent.
(ii)
Supposed that I ∪ {¬ϕ} is ∅incΛ, there are n > 0 and ϕ1, . . ., ϕn ∈ I s.t.
⊢Λ ϕ1∧ . . . ∧ϕn ∧¬ϕ ⊃ ⊥ or ⊢Λ ϕ1∧ . . . ∧ϕn ⊃ ⊥ or ⊢Λ ¬ϕ ⊃ ⊥. Hence,
I ⊢Λ ϕ1∧ . . . ∧ϕn ⊃ ϕ or I ⊢Λ ϕ. Now, by adding to the first proof, formulas
ϕ1, . . ., ϕn and by applying MP n times, we get again a proof of ϕ from I
in Λ (I ⊢Λ ϕ).
Furthermore, I ⊢Λ ϕ implies that I ∪{¬ϕ} ⊢Λ ϕ, and since, I ∪{¬ϕ} ⊢Λ ¬ϕ,
it follows that I ∪ {¬ϕ} ⊢Λ ⊥, i.e. I ∪ {¬ϕ} : incΛ.
(iii)
If I is an inconsistent theory, then there are n > 0 and ϕ1, . . ., ϕn ∈ I s.t.
ϕ1∧ . . . ∧ϕn ⊃ ⊥ ∈ PC, hence, ⊢Λ ϕ1∧ . . . ∧ϕn ⊃ ⊥, i.e., I is ∅incΛ.

Lemma 3.21 Let S be any class of structures (frames or models) and sup-
pose that for every ∅cΛ-theory I, there is a S ∈ S, in which I is satisfiable.
Then, Λ is strongly complete with respect to the class of structures S. 4

Proof. The contrapositive will be proved. So, assume that Λ is not strongly
complete with respect to S, i.e. there are I ⊆ L✷, ϕ ∈ L✷ s.t. I S ϕ and
I 0Λ ϕ. Then, by Lem.3.20(ii), I∪{¬ϕ} is a ∅cΛ-theory. Furthermore, let S

4i.e. (∀I ⊆ L✷)(∀ϕ ∈ L✷)(I S ϕ ⇒ I ⊢Λ ϕ). I S ϕ means local semantic conse-
quence, i.e. (∀M = 〈W,R, V 〉 ∈ S)(∀w ∈W )(M, w  I ⇒ M, w  ϕ).
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be any structure from S and suppose, for the sake of contradiction, that there
is a world w in S s.t. S, w  I ∪ {¬ϕ}. Hence, S, w  ¬ϕ and S, w  I,
but, since I S ϕ, S, w  ϕ, which is a contradiction. Consequently, in all
structures of S, I ∪ {¬ϕ} is not satisfiable.

And now we come to the main results.

Theorem 3.22 (Soundness)

(∀Γ ∪ {ϕ} ⊆ L✷)(Γ ⊢S5′
R
ϕ⇒ Γ 

g
Uq
ϕ) 5

Proof. By Lem.3.17, it suffices to show (since the rest is nearly obvious)
that T and 5⊤ are valid in any q-frame F = 〈W,N,R〉 s.t. (∀w ∈ N)
(∀v ∈ W )wRv. But, such a frame is reflexiv in N and property (Eq) holds,
so, by Prop.3.18, T and 5⊤ are valid.

Proposition 3.23 Let Λ be a consistent regular modal logic. If MΛ,∅ belongs
to a class S of structures, then Λ is strongly complete with respect to S.

Proof. By Lem.3.20(i), ∅ is cΛ, so, MΛ,∅ does exist. Let I be a ∅cΛ-
theory. Then, by Lindenbaum’s lemma, there is a m∅cΛ-theory Γ s.t. I ⊆ Γ.
Hence, by Lem.3.8, MΛ,∅, Γ  I, so, since MΛ,∅ belongs to S, by Lem.3.21,
Λ is strongly complete with respect to S.

Theorem 3.24 S5′
R is strongly complete with respect to all q-frames, for

which (ERq) holds.

Proof. By Prop.3.23, it suffices to show that (ERq) holds for canonical
frame FS5′

R,∅. Hence, by Prop.3.18 and Corol.3.19, it suffices to show that
FS5′

R,∅ is reflexiv in NS5′
R,∅ and that property (Eq) holds for FS5′

R,∅. For
simplicity, let us denote as F′ = 〈W ′, N ′, R′〉 the canonical frame FS5′

R,∅.
For reflexivity.
Let Γ be a m∅cS5′

R-theory and ϕ ∈ L✷ s.t. ✷ϕ ∈ Γ. But, ∅ ⊢S5′
R
(T ),

hence, by Lem.3.3(iii), ✷ϕ ⊃ ϕ ∈ Γ, and, by Lem.3.3(i), ϕ ∈ Γ. So, by
Def.3.6(iii), ΓR′

Γ.
For (Eq)

5If S is a class of frames, Γ 
g
S
ϕ means global semantic consequence, i.e. (∀F ∈ S)(F 

Γ ⇒ F  ϕ).
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Let Γ,∆, Θ be m∅cS5′
R-theories s.t. ✷⊤ ∈ Γ,∆ and ΓR′

∆, ΓR′
Θ. Let, further-

more, be any ϕ ∈ L✷ s.t. ✷ϕ ∈ ∆. Suppose that ✷¬✷ϕ ∈ Γ. Then, since
ΓR′

∆, ¬✷ϕ ∈ ∆, which is a contradiction, since ∆ is, by Lem.3.20(iii), consis-
tent. So, ✷¬✷ϕ /∈ Γ, hence, by Lem.3.3(ii), ¬✷¬✷ϕ ∈ Γ. But, by Lem.3.17,
⊢S5′

R
(5′), hence, by Lem.3.3(iii), ✷⊤ ∧ ¬✷¬✷ϕ ⊃ ✷ϕ ∈ Γ. Furthermore,

✷⊤ ∈ Γ, so, by Lem.3.3(i), ✷ϕ ∈ Γ. Finally, since ΓR′
Θ, ϕ ∈ Θ. Hence, it has

been proved that, if ✷ϕ ∈ ∆, then ϕ ∈ Θ, so, by Def.3.6(iii), ∆R′
Θ.

The result in the previous theorem can be proved for another, simpler class of
q-frames, by introducing and using generated q-submodels. They are defined
in the obvious way, but by omitting R-edges starting from impossible worlds.

Definition 3.25 Let M = 〈W,N,R, V 〉, M′ = 〈W ′, N ′, R′, V ′〉 be two q-
models. M′ is called a generated q-submodel of M (in symbols: M′

 M)
iff

• W ′ ⊆W

• N ′ = N ∩W ′

• R′ = R ∩ (N ′ ×W ′)

• (∀p ∈ Φ)V ′(p) = V (p) ∩W ′

• (∀w ∈ N ′)(∀v ∈ W )(wRv ⇒ v ∈ W ′)

If D ⊆ W , then the smallest generated q-submodel of M containing D is
called the q-submodel of M generated by D.

The expected fact about modal satisfaction invariance under generated q-
submodels, can be easily proved.

Proposition 3.26 If M′
 M, then

(∀ϕ ∈ L✷)(∀w ∈ W ′)(M, w  ϕ ⇐⇒ M′, w  ϕ)

Finally, using Theor.3.24 and Prop.3.26 one can prove the following result.

Corollary 3.27 (Completeness)
S5′

R is strongly complete with respect to all q-frames, for which (Uq) holds,
i.e.

(∀Γ ∪ {ϕ} ⊆ L✷)(Γ Uq
ϕ⇒ Γ ⊢S5′

R
ϕ)

23



Proof. Firstly, let us denote as SU the class of all q-frames, for which (Uq)
holds and as SER the class of all q-frames, for which (ERq) holds. Now,
let Γ ⊆ L✷ and ϕ ∈ L✷ s.t. Γ SU ϕ. Furthermore, assume any F =
〈W,N,R〉 ∈ SER, any V : Φ → P(W ) and any w ∈ W s.t. 〈F, V 〉, w  Γ. Let
now M′ = 〈W ′, N ′, R′, V ′〉 be the q-submodel of 〈F, V 〉 generated by {w}. If
w /∈ N , then, by Def.3.25, W ′ = {w} and N ′ = ∅, so, 〈W ′, N ′, R′〉 ∈ SU. If
w ∈ N , then N ′ = [w]R and since M′ is the smallest q-submodel containing
{w}, (∀v ∈ W ′ \ N ′)(∃u ∈ N ′)uR′v. So again, since (ERq) holds for F,
〈W ′, N ′, R′〉 ∈ SU.
But, by Prop.3.26, M′, w  Γ. Hence, since 〈W ′, N ′, R′〉 ∈ SU and Γ SU ϕ,
M′, w  ϕ. Consequently, again by Prop.3.26, 〈F, V 〉, w  ϕ.
Hence, it has been proved that Γ SER ϕ. So, by Theor.3.24, Γ ⊢S5′

R
ϕ.

Proof of Lemma 3.16
Firstly, recall that regular modal logic is any set of formulas, containing all
propositional tautologies (Taut) and axiom K (i.e. the formula ✷p ∧✷(p ⊃
q) ⊃ ✷q), and which is closed under Modus Ponens (MP), uniform substitu-
tion (US) and rule RM. Furthermore, given formulas (axioms) A1, . . . , An,
the set

⋂

{Λ ⊆ L✷ | Λ : regular modal logic and A1, . . . , An ∈ Λ}

is the smallest regular modal logic containing A1, . . . , An, and it is denoted
as KA1 . . .AnR. Recall also, that ⊢Λ ϕ means that there is a Hilbert-style
proof, where each step of the proof is either a member of US(K)∪US(A1)∪
. . .∪US(An)∪PC or a result of applying MP or RM to formulas of previous
steps and where the last formula in this proof is ϕ.

Now, let us define recursively the following sequence of sets

Λ0 = {K,A1, . . . , An} ∪Taut
Λn+1 = Λn ∪ ΛMP

n+1 ∪ ΛUS
n+1 ∪ ΛRM

n+1 , where
ΛMP
n+1 = {ϕ ∈ L✷ | ψ, ψ ⊃ ϕ ∈ Λn},

ΛUS
n+1 = {ϕ[ϕ0/p0, . . . , ϕk/pk] ∈ L✷ |

ϕ ∈ Λn, k ∈ N, ϕ0, . . . , ϕk ∈ L✷, p0, . . . , pk ∈ Φ},
ΛRM
n+1 = {✷ϕ ⊃ ✷ψ ∈ L✷ | ϕ ⊃ ψ ∈ Λn} (n ∈ N)

and set Λ =
⋃

n∈N Λn. Then it follows, by a trivial induction, that Λ ⊆
KA1 . . .AnR, and by observing that Λ is a regular modal logic containing
A1, . . . , An, that KA1 . . .AnR ⊆ Λ. Therefore, KA1 . . .AnR = Λ. Hence,
to prove Lemma 3.16, it suffices to show that

24



(∀ϕ ∈ L✷)(ϕ ∈ Λ ⇐⇒ ⊢Λ ϕ)

Proof. (⇒)
We will firstly show, by induction, that

(∀k ∈ N)(∀ϕ ∈ L✷)((ϕ ∈ Λk ∧ k = min{n ∈ N | ϕ ∈ Λn}) ⇒ ⊢Λ ϕ) (∗)

Ind.Base is trivial, since ϕ ∈ Λ0 implies ⊢Λ ϕ. Supposed the statement is
true ∀i ≤ k, we continue with Ind.Step. Let ϕ ∈ L✷ s.t. ϕ ∈ Λk+1 and
(∀i ≤ k)ϕ /∈ Λi. Since ϕ /∈ Λk, there are three cases left:

• If ϕ ∈ ΛMP
k+1, then ψ, ψ ⊃ ϕ ∈ Λk. Now, let us define i = min{n ∈

N | ψ ∈ Λn} and j = min{n ∈ N | ψ ⊃ ϕ ∈ Λn}. Then, i, j ≤ k, hence
by Ind.Hypothesis, ⊢Λ ψ and ⊢Λ ψ ⊃ ϕ, hence, ⊢Λ ϕ.

• If ϕ ∈ ΛRM
k+1 , then ϕ = ✷ψ ⊃ ✷χ and ψ ⊃ χ ∈ Λk. Now, let us define

i = min{n ∈ N | ψ ⊃ χ ∈ Λn}. Then, i ≤ k, hence, by Ind.Hypothesis,
⊢Λ ψ ⊃ χ, so, ⊢Λ ✷ψ ⊃ ✷χ, i.e. ⊢Λ ϕ.

• If ϕ ∈ ΛUS
k+1, then ϕ = ψ[ϕ0/p0, . . . , ϕn/pn], where ψ ∈ Λk (and

ϕ0, . . . , ϕn ∈ L✷, p0, . . . , pn ∈ Φ). Let us define i = min{n ∈ N | ψ ∈
Λn}. Then, i ≤ k.

– If i = 0, then ψ ∈ Λ0, hence, ϕ ∈ US(K)∪US(A1)∪. . .∪US(An)∪
PC, so, ⊢Λ ϕ.

– If i > 0, then ψ /∈ Λi−1 and if, ad absurdum, ψ ∈ ΛUS
i , then

ψ = χ[ψ0/q0, . . . , ψm/qm], where χ ∈ Λi−1 (and ψ0, . . . , ψm ∈ L✷,
q0, . . . , qm ∈ Φ). But then,
ϕ = χ[ϕ0/p0, . . . , ϕn/pn, ψ0/q0, . . . , ψm/qm], hence, ϕ ∈ ΛUS

i , i.e.
ϕ ∈ Λi, which is a contradiction, since i ≤ k. So, there are only
two cases left:
∗ If ψ ∈ ΛMP

i , then χ, χ ⊃ ψ ∈ Λi−1, hence,
χ[ϕ0/p0, . . . , ϕn/pn] ∈ ΛUS

i and (χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn] ∈
ΛUS
i , therefore, χ[ϕ0/p0, . . . , ϕn/pn] ∈ Λi

and (χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn] ∈ Λi. Now, let s = min{n ∈
N | χ[ϕ0/p0, . . . , ϕn/pn] ∈ Λn} and t = min{n ∈ N | (χ ⊃
ψ)[ϕ0/p0, . . . , ϕn/pn] ∈ Λn}. Then, s, t ≤ i ≤ k, hence, by
Ind.Hypothesis, ⊢Λ χ[ϕ0/p0, . . . , ϕn/pn] and
⊢Λ (χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn], therefore, since,
(χ ⊃ ψ)[ϕ0/p0, . . . , ϕn/pn] = χ[ϕ0/p0, . . . , ϕn/pn]
⊃ ψ[ϕ0/p0, . . . , ϕn/pn], by MP,
⊢Λ ψ[ϕ0/p0, . . . , ϕn/pn], i.e. ⊢Λ ϕ.
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∗ If ψ ∈ ΛRM
i , then ψ = ✷χ0 ⊃ ✷χ1 and χ0 ⊃ χ1 ∈ Λi−1,

hence, (χ0 ⊃ χ1)[ϕ0/p0, . . . , ϕn/pn] ∈ ΛUS
i , therefore, (χ0 ⊃

χ1)[ϕ0/p0, . . . , ϕn/pn] ∈ Λi. Now, let s = min{n ∈ N | (χ0 ⊃
χ1)[ϕ0/p0, . . . , ϕn/pn] ∈ Λn}. Then, s ≤ i ≤ k, hence, by
Ind.Hypothesis, ⊢Λ (χ0 ⊃ χ1)[ϕ0/p0, . . . , ϕn/pn],
i.e. ⊢Λ χ0[ϕ0/p0, . . . , ϕn/pn] ⊃ χ1[ϕ0/p0, . . . , ϕn/pn], there-
fore, by RM,
⊢Λ ✷χ0[ϕ0/p0, . . . , ϕn/pn] ⊃ ✷χ1[ϕ0/p0, . . . , ϕn/pn], so,
⊢Λ (✷χ0 ⊃ ✷χ1)[ϕ0/p0, . . . , ϕn/pn],
hence, ⊢Λ ψ[ϕ0/p0, . . . , ϕn/pn], i.e. ⊢Λ ϕ.

The inductive proof of (∗) is complete. Assume now any ϕ ∈ Λ. Then,
(∃n ∈ N)ϕ ∈ Λn and for k = min{n ∈ N | ϕ ∈ Λn} result (∗) is applicable,
hence, ⊢Λ ϕ.
(⇐)
We will show, by induction on the length of proof, that

(∀k ∈ N)(∀ϕ ∈ L✷)(⊢
k
Λ ϕ⇒ ϕ ∈ Λ)6 (⋆)

For the Ind.Base, if ⊢0
Λ ϕ, then ϕ ∈ US(K) ∪ US(A1) ∪ . . . ∪ US(An) ∪PC,

hence, ϕ ∈ ΛUS
1 , i.e. ϕ ∈ Λ. For Ind.Step, let ⊢k+1

Λ ϕ.

• If ϕ ∈ US(K) ∪ US(A1) ∪ . . . ∪ US(An) ∪ PC, then exactly as in
Ind.Base, ϕ ∈ Λ.

• If (k+1)-th step is an application of MP, then there are ψ, ψ ⊃ ϕ ∈ L✷

s.t. ⊢kΛ ψ and ⊢kΛ ψ ⊃ ϕ, hence, by Ind.Hypothesis, ψ, ψ ⊃ ϕ ∈ Λ, so,
since Λ is a modal logic, ϕ ∈ Λ.

• If (k + 1)-th step is an application of RM, then ϕ = ✷ψ ⊃ ✷χ and
⊢kΛ ψ ⊃ χ, consequently, by Ind.Hypothesis, ψ ⊃ χ ∈ Λ, hence, since Λ
is a regular modal logic, ✷ψ ⊃ ✷χ ∈ Λ, i.e. ϕ ∈ Λ.

The inductive proof of (⋆) is complete. Now, for any ϕ ∈ L✷, if ⊢Λ ϕ, then
there is a k ∈ N s.t. ⊢kΛ ϕ, hence, by (⋆), ϕ ∈ Λ.

6⊢k
Λ
means an RM-proof in Λ with at most k steps.
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4 Syntactic variants of stable belief sets

4.1 RM-stable theories

Having set the appropriate background, we proceed to define our first variant
of a stable belief set by taking the most obvious road: substituting RMc for
RNc in Stalnaker’s definition.

Definition 4.1 A theory S ⊆ L✷ is called RM-stable iff

(i) PC ⊆ S and S is closed under MP

(ii) S is closed under rule RMc.
ϕ⊃ψ ∈ S

✷ϕ⊃✷ψ ∈ S

(iii) S is closed under rule NIc.
ϕ /∈ S

¬✷ϕ ∈ S

The first observation is that the axiom ✷⊤ plays here a role similar to the
one encountered in non-normal modal logics, where ✷⊤ eliminates queer
worlds and leads to the realm of normal modal logics. Addition of ✷⊤ to an
RM-stable set leads to the classical Stalnaker notion.

Fact 4.2 A theory S is a Stalnaker stable set iff it is an RM-stable set con-
taining ✷⊤.

From the proof-theoretic viewpoint, the following result shows that RM-
stable sets stand to the regular logic S5′

R, as Stalnaker (RN-)stable sets
stand to S5. The following Theorem should be compared to Theor.2.3(i).

Theorem 4.3 Let S be an RM-stable set.

(i) K, T, 5⊤ are contained in S.

(ii) S is closed under strong S5′
R provability, i.e. S = {ϕ ∈ L✷ | S ⊢S5′

R

ϕ}.

(iii) If S is consistent, then it is a consistent with S5′
R theory (cS5′

R-theory).

Proof.

(i) Consider any ϕ, ψ ∈ L✷.

• If ¬✷(ϕ ⊃ ψ) ∈ S, then ✷(ϕ ⊃ ψ) ⊃ (✷ϕ ⊃ ✷ψ) ∈ S.
If ¬✷(ϕ ⊃ ψ) /∈ S, then, by NIc, ϕ ⊃ ψ ∈ S, and, by RMc, ✷ϕ ⊃
✷ψ ∈ S, so again, ✷(ϕ ⊃ ψ) ⊃ (✷ϕ ⊃ ✷ψ) ∈ S.
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• If ¬✷ϕ ∈ S, then, by Def.4.1(i), ✷ϕ ⊃ ϕ ∈ S.
If ¬✷ϕ /∈ S, then, by NIc, ϕ ∈ S, and again, by Def.4.1(i), ✷ϕ ⊃ ϕ ∈
S.

• If✷⊤ ⊃ ✷ϕ ∈ S, then, by Def.4.1(i), (✷⊤ ⊃ ✷ϕ)∨(✷⊤ ⊃ ✷¬✷ϕ) ∈ S.
If ✷⊤ ⊃ ✷ϕ /∈ S, then, by RMc, ⊤ ⊃ ϕ /∈ S, hence, by Def.4.1(i),
ϕ /∈ S, so, by NIc, ¬✷ϕ ∈ S, and again by Def.4.1(i), ⊤ ⊃ ¬✷ϕ ∈ S,
consequently, by RMc, ✷⊤ ⊃ ✷¬✷ϕ ∈ S, and finally, by Def.4.1(i),
(✷⊤ ⊃ ✷ϕ)∨(✷⊤ ⊃ ✷¬✷ϕ) ∈ S. Therefore, in any case, (✷⊤ ⊃ ✷ϕ)∨
(✷⊤ ⊃ ✷¬✷ϕ) ∈ S. But it is easy to see that (✷⊤ ⊃ ✷ϕ) ∨ (✷⊤ ⊃
✷¬✷ϕ) ≡ (¬✷ϕ ∧ ✷⊤ ⊃ ✷¬✷ϕ) ∈ PC. Therefore, by Def.4.1(i),
¬✷ϕ ∧✷⊤ ⊃ ✷¬✷ϕ ∈ S.

(ii)
It is obvious that, if ϕ ∈ S, then S ⊢S5′

R
ϕ. Conversely, suppose that

S ⊢S5′

R
ϕ. Then, since S5′

R = KT5⊤ (see Lem.3.17), there is a Hilbert-
style proof, in which every step is a formula of PC ∪ K ∪ T ∪ 5⊤ ∪ S or
a result of applying MP or RM to formulas of previous steps. It will be
proved by induction on the proof’s length, that ϕ ∈ S. For Ind.Basis, if
ϕ ∈ PC, then, by Def.4.1(i), ϕ ∈ S; if ϕ ∈ K ∪T ∪ 5⊤, then, by (i), ϕ ∈ S.
For Ind.Step, if ψ and ψ ⊃ ϕ are formulas of the proof in previous steps,
then, by Ind.Hypothesis, ψ, ψ ⊃ ϕ ∈ S and so, by Def.4.1(i), ϕ ∈ S; if
ϕ = ✷ψ ⊃ ✷χ and ψ ⊃ χ is a formula of the proof in a previous step, then,
by Ind.Hypothesis, ψ ⊃ χ ∈ S and so, by RMc, ϕ ∈ S.
(iii)
Suppose that S is an incS5′

R-theory. Then S ⊢S5′

R
⊥, hence, by (ii), ⊥ ∈ S,

and so, because ⊥ ⊃ ⊥ ∈ PC, by definition, S is inconsistent.

Representation theory for RM-stable sets. We can provide model-
theoretic characterizations of RM-stable theories in terms of q-models and
n-models. We can set RM-stable theories in an one-to-one-correspondence
to theories of q-models consisting of a cluster of normal worlds ‘seeing’ every
non-normal world (if any). We can also characterize RM-stable sets as the
set of beliefs held within a normal world in such a q-model.

Theorem 4.4 Let S ⊆ L✷ be a consistent theory. S is RM-stable iff there
is a q-model M = 〈W,N,R, V 〉 satisfying property (Uq) s.t. Th(M) = S.

Proof. (⇒) Since S is RM-stable and consistent, by Theor.4.3(iii), S is a
cS5′

R-theory. So, model MS5′
R,S does exist and, by Prop.3.10,
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Th(MS5′
R,S) = {ϕ ∈ L✷ | S ⊢S5′

R
ϕ}. Consequently, by Theor.4.3(ii),

Th(MS5′
R,S) = S.

Now, consider any Γ ∈ NS5′R,S and ∆ ∈ W S5′R,S. For any ψ ∈ L✷ s.t. ✷ψ ∈ Γ,
since Γ is ScS5′R, ¬✷ψ /∈ Γ. Suppose now that ¬✷ψ were in S. Then,
S ⊢S5′

R
¬✷ψ, hence, by Lem.3.3(iii), ¬✷ψ ∈ Γ, which is a contradiction.

So ¬✷ψ /∈ S. But, S is RM-stable, so, by NIc, ψ ∈ S, hence, S ⊢S5′
R
ψ,

consequently, again by Lem.3.3(iii), ψ ∈ ∆. So, by Def.3.6, ΓRS5′
R,S∆.

(⇐)
For Def.4.1(i). Th(M) contains every tautology in L✷ and is closed under
MP.
For Def.4.1(ii)(RMc). Let ϕ, ψ ∈ L✷ s.t. ϕ ⊃ ψ ∈ Th(M) and w ∈ W s.t.
M, w  ✷ϕ. Then, w ∈ N and (∀v ∈ W ) wRv ⇒ M, v  ϕ. Therefore, since
ϕ ⊃ ψ ∈ Th(M), M, v  ψ, hence, M, w  ✷ψ. So, ✷ϕ ⊃ ✷ψ ∈ Th(M).
For Def.4.1(iii)(NIc). Let ϕ ∈ L✷ s.t. ϕ /∈ Th(M) i.e. there is v ∈ W s.t.
M, v 1 ϕ. Let now be any w ∈ W . If w ∈ W \ N , then, by definition of
q-models, M, w  ¬✷ϕ. If w ∈ N , then again, since wRv and M, v 1 ϕ,
M, w  ¬✷ϕ.
So, ¬✷ϕ ∈ Th(M).

The following characterization is the parallel to the characterization of Stal-
naker stable sets in terms of beliefs held ‘inside’ a KD45 situation, and as
such, seems amenable to generalization in multi-agent situations (as argued
convincingly in [Hal97c]).

Proposition 4.5 Let S ⊆ L✷ be a consistent theory. S is RM-stable iff
there is a q-model M = 〈W,N,R, V 〉 and u ∈ N s.t. S = {ϕ ∈ L✷ | M, u 

✷ϕ} and (∀w ∈ N)(∀v ∈ W \ {u})wRv.

Proof. Firstly, it will be proved that, if M′ = 〈W ′, N ′, R′, V ′〉 is a q-model
s.t. (∀w ∈ N ′)(∀v ∈ W ′)wR′v and M = 〈W,N,R, V 〉 is another q-model s.t.
W = W ′ ∪ {u} (where u /∈ W ′), N = N ′ ∪ {u}, R = R′ ∪ ({u} ×W ′) and
V = V ′, then, Th(M′) = {ϕ ∈ L✷ | M, u  ✷ϕ}.
Proof: Since (∀w ∈ W ′)¬wRu, it can be proved (by a trivial induction on
ϕ) that (∀w ∈ W ′)M′, w  ϕ iff (∀w ∈ W ′)M, w  ϕ, hence, ϕ ∈ Th(M′) iff
M, u  ✷ϕ.
Now, Theor.4.4 is applicable (on M′), and the proof is complete.

By using again Theor.4.4, we obtain a representation for RM-stable sets, in
terms of neighborhood semantics.
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Proposition 4.6 Let S ⊆ L✷ be a consistent theory. S is RM-stable iff
there is an n-model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈ W )(E(w) =
∅ or E(w) = {W}).

Proof. (⇒) By Theor.4.4, there is a q-model M = 〈W,N,R, V 〉
s.t. Th(M) = S and (∀w ∈ N)(∀v ∈ W )wRv. Consider now NM =
〈W,E, V 〉, the equivalent n-model produced by M (see Def.2.1). By Prop.2.2
follows immediately that Th(NM) = Th(M) = S. Furthermore, if w ∈ W \
N , then E(w) = ∅ and if w ∈ N , then E(w) = {X ⊆W | Rw ⊆ X} = {W},
since (∀v ∈ W )wRv.
(⇐)
For Def.4.1(i). Th(N) contains every tautology in L✷ and is closed under
(MP).
For Def.4.1(ii)(RMc). Let ϕ, ψ ∈ L✷ s.t. ϕ ⊃ ψ ∈ Th(N) and w ∈ W s.t.
N, w  ✷ϕ. Then, V (ϕ) ∈ E(w), hence, E(w) = {W} and V (ϕ) = W .
Therefore, since ϕ ⊃ ψ ∈ Th(N), (∀w ∈ W )N, w  ψ, i.e. V (ψ) = W , so,
V (ψ) ∈ E(w), hence, N, w  ✷ψ. So, ✷ϕ ⊃ ✷ψ ∈ Th(N).
For Def.4.1(iii)(NIc). Let ϕ ∈ L✷ s.t. ϕ /∈ Th(N) i.e. V (ϕ) 6= W . Let now
be any w ∈ W . E(w) = ∅ or E(w) = {W}, so in both cases, V (ϕ) /∈ E(w).
Hence, N, w  ¬✷ϕ. So, ¬✷ϕ ∈ Th(N).

Furthermore, Theorem 2.3 (ii) is derived readily from Theorem 4.4.

Corollary 4.7 A consistent theory is stable iff it is a theory of a standard
Kripke model (without impossible worlds), equipped with a universal relation.

Proof. (⇒)
Let S be a consistent and stable theory. By Fact.4.2, it is RM-stable and
contains ✷⊤, so, S ⊢S5′

R
✷⊤, hence, by Lem.3.3(iii), for any mScS5′

R-
theory Γ, ✷⊤ ∈ Γ, so, NS5′

R,S = W S5′
R,S. Consequently, by Theor.4.4,

Th(MS5′
R,S) = S and MS5′

R,S has a universal relation.
(⇐)
Let M = 〈W,R, V 〉 be a universal, standard Kripke model. Then, Mq =
〈W,W,R, V 〉 is a q-model, and by definition of truth in q-models, Th(M) =
Th(Mq). But, by Theor.4.4 (applied for Mq), Th(Mq) is RM-stable. Fur-
thermore, since M is standard, ✷⊤ ∈ Th(M), hence, by Fact.4.2, Th(M) is
stable.
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Analogously, Theor.2.3(iii) follows readily from Prop.4.5. Finally, as a result
of Prop.4.6, we obtain immediately the following representation of Stalnaker
stable sets, in terms of n-models, given for the first time.

Proposition 4.8 Let S ⊆ L✷ be a consistent theory. S is stable iff there
is an n-model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈ W )E(w) = {W}.

4.2 RE-stable theories

Following a typical route, it is tempting to attempt weakening further the
positive introspection condition. Rule REc seems the obvious candidate,
but we have soon to face the obvious problem that the introspective reasoner
should be able to distinguish tautologies as equivalent formulas. We have
then to consider the addition of ✷⊤ and this leads us to the following generic
notion:

Definition 4.9 A theory S ⊆ L✷ is called RE-stable iff

(i) PC ⊆ S and S is closed under MP

(ii) ✷⊤ ∈ S

(iii) S is closed under rule REc.
ϕ≡ψ ∈ S

✷ϕ≡✷ψ ∈ S

With proofs identical to Theorem’s 4.3(ii) and (iii), we can conclude that
RE-stable theories are consistent with strong provability in classical modal
logics.

Proposition 4.10 Let S be an RE-stable set containing every instance of
axiomatic schemes A0, . . . ,An.

(i) S is closed under strong A0 . . .AnC provability,
i.e. S = {ϕ ∈ L✷ | S ⊢A0...A1C

ϕ}.

(ii) If S is consistent, then it is a consistent with A1 . . .AnC theory
(cA1 . . .AnC-theory)

But, it comes that by adding ✷⊤, we get nothing less than RNc, as in the
original definition.

Lemma 4.11 Any RE-stable theory is closed under RNc.
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Proof. Let S be an RE-stable theory and ϕ ∈ S. Since ϕ ⊃ (⊤ ⊃ ϕ) ∈ S,
by Def.4.9(i), ⊤ ⊃ ϕ ∈ S. Furthermore, ϕ ⊃ ⊤ ∈ S, so, by Def.4.9(i), ⊤ ≡
ϕ ∈ S, hence, by REc, ✷⊤ ≡ ✷ϕ ∈ S, and, by Def.4.9(i), ✷⊤ ⊃ ✷ϕ ∈ S,
and finally, by Def.4.9(ii) and (i), ✷ϕ ∈ S.

This means we have to proceed to different notions of negative introspection
and by doing so, we obtain two different notions of RE-stable sets.

4.3 REw-stable theories

We introduce the following context rule for negative introspection:

NIc−w.
¬ϕ /∈ S

✷ϕ ∈ S ∨ ¬✷ϕ ∈ S

which ‘says’ that if ϕ is consistent with what is believed, something is known
about it.

Definition 4.12 An RE-stable theory S is called REw-stable iff it is closed
under NIc−w.

We readily prove the presence of axiom w5 and then, we can obtain a rep-
resentation theorem for REw-stable theories in terms of n-models.

Lemma 4.13 Every instance of axiomatic scheme w5 is contained in any
REw-stable theory.

Proof. Let S be an REw-stable theory and ϕ ∈ L✷.
If ¬ϕ ∈ S or ✷ϕ ∈ S, then, by Def.4.9(i), (ϕ ∧ ¬✷ϕ) ⊃ ✷¬✷ϕ ∈ S.
If ¬ϕ /∈ S and ✷ϕ /∈ S, then, by NIc−w, ¬✷ϕ ∈ S, and , by Lem.4.11,
✷¬✷ϕ ∈ S, hence again, (ϕ ∧ ¬✷ϕ) ⊃ ✷¬✷ϕ ∈ S.

Theorem 4.14 Let S ⊆ L✷ be a consistent theory. S is REw-stable iff there
is an n-model N = 〈W,E, V 〉 s.t. Th(N) = S and

(∀w ∈ W )W ∈ E(w) (1) and (∀v ∈ W )(E(v) \ E(w) ⊆ {∅}) (2)

Proof. (⇒) Since S is REw-stable, by Lem.4.13, S contains w5, hence,
since S is RE-stable and consistent, by Prop.4.10(ii), S is a cw5C-theory.
So, model Nw5C ,S does exist. For simplicity, let us denote Nw5C ,S as N =
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〈W,E, V 〉. Then, by Prop.3.15, Th(N) = {ϕ ∈ L✷ | S ⊢w5C
ϕ}. Conse-

quently, by Prop.4.10(i), Th(N) = S. Now, fix any Γ ∈ W .
(1) By Def.4.9(i), ⊤ ∈ S, so, by Lem.3.3(iii), (∀∆ ∈ W )⊤ ∈ ∆, hence, since
every ∆ is a mScw5C-theory, |⊤|w5C ,S = W . But, by Def.4.9(ii), ✷⊤ ∈ S,
i.e., by Lem.3.3(iii), ✷⊤ ∈ Γ, hence, by Def.3.12(ii), |⊤|w5C ,S ∈ E(Γ). Conse-
quently, W ∈ E(Γ).
(2) Consider any ∆ ∈ W and let Y ⊆W s.t. Y ∈ E(∆) but Y /∈ E(Γ). Then,
by Def.3.12(ii), there must be a ϕ ∈ L✷ s.t. Y = |ϕ|w5C ,S and ✷ϕ ∈ ∆ (I)
But, since Y /∈ E(Γ), ✷ϕ /∈ Γ, hence, by Lem.3.3(iii), ✷ϕ /∈ S (II)
Suppose now, for the sake of contradiction, that Y 6= ∅. Then, there is a
Ξ ∈ Y . Since Y = |ϕ|w5C ,S, ϕ ∈ Ξ, and since Ξ is consistent, ¬ϕ /∈ Ξ, so, by
Lem.3.3(iii), ¬ϕ /∈ S (III)
Now, (II) and (III) imply by NIc−w, ¬✷ϕ ∈ S, therefore, by Lem.3.3(iii),
¬✷ϕ ∈ ∆, hence, by (I), ∆ is inconsistent, which is a contradiction. So,
Y = ∅.
(⇐)
For Def.4.9(i). Th(N) contains every tautology in L✷ and is closed under
(MP).
For Def.4.9(ii). Since V (⊤) = W and, by (1), (∀w ∈ W )W ∈ E(w),
✷⊤ ∈ Th(N).
For Def.4.9(iii)(REc). Let ϕ, ψ ∈ L✷ s.t. ϕ ≡ ψ ∈ Th(N). Then, V (ϕ) =
V (ψ), hence, (∀w ∈ W ) (V (ϕ) ∈ E(w) ⇐⇒ V (ψ) ∈ E(w)), consequently,
✷ϕ ≡ ✷ψ ∈ Th(N).
For Def.4.12(NIc−w). Let ϕ ∈ L✷ s.t. ¬ϕ /∈ Th(N) and ✷ϕ /∈ Th(N).
Then, V (¬ϕ) 6= W and (∃w ∈ W ) N, w 1 ✷ϕ, i.e. V (ϕ) 6= ∅ and
(∃w ∈ W )V (ϕ) /∈ E(w). Now, suppose for the sake of contradiction, that
there is a v ∈ W s.t. V (ϕ) ∈ E(v). Then, V (ϕ) ∈ E(v) \ E(w), hence, by
(2), V (ϕ) = ∅, which is a contradiction. So, (∀v ∈ W ) V (ϕ) /∈ E(v), i.e.
(∀v ∈ W ) N, v  ¬✷ϕ, hence ¬✷ϕ ∈ Th(N).

4.4 REp-stable theories

We can alternatively consider the following rule for negative introspection:

NIc−p.
ϕ /∈ S ∧ ¬ϕ /∈ S

¬✷ϕ ∈ S

which ‘says’ that if nothing is known to hold about ϕ, then it is known that
ϕ is not known.
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Definition 4.15 An RE-stable theory S is called REp-stable iff it is closed
under NIc−p.

This notion is stronger than the previous one and contains every instance of
axiom p5, introduced in [KZ09].

If S is an REp-stable theory, then ✷ϕ /∈ S implies, by Lem.4.11, ϕ /∈ S,
hence, ¬ϕ /∈ S and ✷ϕ /∈ S imply ¬ϕ /∈ S and ϕ /∈ S, so, by NIc−p, ¬ϕ /∈ S
and ✷ϕ /∈ S imply ¬✷ϕ ∈ S. This proves the following.

Fact 4.16 Every REp-stable theory is REw-stable.

Lemma 4.17 Every instance of axiomatic scheme p5 is contained in any
REp-stable theory.

Proof. Let S be an REp-stable theory and ϕ ∈ L✷.
If ✷ϕ ∈ S or ✷¬ϕ ∈ S, then, by Def.4.9(i), (¬✷ϕ ∧ ¬✷¬ϕ) ⊃ ✷¬✷ϕ ∈ S.
If ✷ϕ /∈ S and ✷¬ϕ /∈ S, then, by Lem.4.11, ϕ /∈ S and ¬ϕ /∈ S, so,
by NIc−p, ¬✷ϕ ∈ S, and, by Lem.4.11, ✷¬✷ϕ ∈ S, hence again, (¬✷ϕ ∧
¬✷¬ϕ) ⊃ ✷¬✷ϕ ∈ S.

Furthermore, we can prove a representation theorem for REp-stable sets.

Theorem 4.18 Let S ⊆ L✷ be a consistent theory. S is REp-stable iff there
is an n-model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈ W )(E(w) =
{W} or E(w) = {∅,W}).

Proof. (⇒) Since S is REp-stable, by Lem.4.17, S contains p5, hence, since
S is RE-stable and consistent, by Prop.4.10(ii), S is a cp5C-theory. So, model
Np5C ,S does exist. For simplicity, let us denote Np5C ,S as N = 〈W,E, V 〉.
Then, by Prop.3.15, Th(N) = {ϕ ∈ L✷ | S ⊢p5C

ϕ}. Consequently, by
Prop.4.10(i), Th(N) = S.
Now, let Γ ∈ W . Exactly as in Theor.4.14(1), one can prove that W ∈ E(Γ).
Consider now any Y ∈ E(Γ) s.t. Y 6= W . Then, by Def.3.12(ii), there must
be a ϕ ∈ L✷ s.t. Y = |ϕ|p5C ,S and ✷ϕ ∈ Γ (I)
But, since |ϕ|p5C ,S ⊂ W , there is a mScp5C-theory ∆ s.t. ∆ /∈ |ϕ|p5C ,S,
hence, ϕ /∈ ∆, consequently, by Lem.3.3(iii), ϕ /∈ S (II)
Suppose now, for the sake of contradiction, that Y 6= ∅. Then, there is a
Ξ ∈ Y . Since Y = |ϕ|p5C ,S, ϕ ∈ Ξ, and since Ξ is consistent, ¬ϕ /∈ Ξ, so, by
Lem.3.3(iii), ¬ϕ /∈ S (III)
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Now, (II) and (III) imply by NIc−p, ¬✷ϕ ∈ S, therefore, by Lem.3.3(iii),
¬✷ϕ ∈ Γ, hence, by (I), Γ is inconsistent, which is a contradiction. So,
Y = ∅.
(⇐)
Properties (i), (ii) and (iii)(REc) in Def.4.9 can be proved exactly as in
Theor.4.14. So, let us prove property NIc−p (of Def.4.15). Let ϕ ∈ L✷ s.t.
ϕ /∈ Th(N) and ¬ϕ /∈ Th(N). Then, V (ϕ) 6= W and V (ϕ) 6= ∅, hence,
for any w ∈ W , since E(w) = {W} or E(w) = {∅,W}, V (ϕ) /∈ E(w),
consequently, (∀w ∈ W ) N, w  ¬✷ϕ, hence ¬✷ϕ ∈ Th(N).

Remark 4.19 If (∀w ∈ W )(E(w) = {W} or E(w) = {∅,W}), then E
satisfies properties (1) and (2) of Theor.4.14. So, using Theor.4.18 and
Theor.4.14, we see again that every REp-stable theory is REw-stable.

Theorem 4.18 and Fact 4.16 allow us to prove that REp-stable (and hence,
REw-stable) theories do not suffer from the presence of all known epistemic
axioms.

Corollary 4.20 There is an REp-stable theory (which is also REw-stable),
which does not contain an instance of K, of T, of 4 and of 5.

Proof. Consider the n-model N = 〈W,E, V 〉 where W = {w, v}, E(w) =
{∅,W}, E(v) = {W}, V (p) = ∅ and V (q) = {w}. Then, by Theor.4.18,
Th(N) is REp-stable. Furthermore,

• V (p ⊃ q) = W ∈ E(w), V (p) ∈ E(w) but V (q) /∈ E(w), hence N, w 

✷(p ⊃ q) ∧✷p ∧ ¬✷q, therefore (✷p ∧✷(p ⊃ q)) ⊃ ✷q /∈ Th(N).

• V (p) ∈ E(w) but w /∈ V (p), hence N, w  ✷p∧¬p, therefore ✷p ⊃ p /∈
Th(N).

• V (p) ∈ E(w) but {w} /∈ E(w), hence, {u ∈ W | V (p) ∈ E(u)} /∈ E(w),
so, V (✷p) /∈ E(w), i.e. N, w  ✷p ∧ ¬✷✷p, therefore ✷p ⊃ ✷✷p /∈
Th(N).

• V (p) /∈ E(v) but {v} /∈ E(v), hence, W \ {u ∈ W | V (p) ∈ E(u)} /∈
E(v), so, V (¬✷p) /∈ E(v), i.e. N, w  ¬✷p∧¬✷¬✷p, therefore ¬✷p ⊃
✷¬✷p /∈ Th(N).
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5 Only-knowing in the Halpern-Moses style

A stable set is intended to capture the epistemic state of a rational agent
with full introspective capabilities. Being interested in the knowledge of
an agent if ‘all she knows is α’ it is only natural to consider the minimum
among all stable sets that contain α. However, different Stalnaker stable
sets cannot strictly include one another. Based on the fact that stable sets
are uniquely determined by their propositional part, J. Y. Halpern and Y.
Moses in [HM85] suggest that we consider the stable set with the minimum
propositional part among those that include α (when it exists); they then
show it is equal to the theory of the largest S5 model, among those whose
theory contains α. The existence of such sets or theories depends on the
honesty of formula α. In [HM85], several intuitive notions of honesty are
provided, and proven equivalent in order to support the robustness of this
approach to only-knowing. Not every formula can be ‘only known’: the
archetypical HM-dishonest formula is ✷p ∨ ✷q; there can be no ‘minimal’
epistemic state containing this formula. In this Section, we provide respective
notions for ‘only knowing’ in the context of our versions of stable sets. The
original definitions are:

Definition 5.1 A formula α is HM-honest
S
iff there exists a stable set Sα

containing α such that Sα ∩L ⊆ S ∩L for all stable sets S such that α ∈ S.

Definition 5.2 Let Mα be the union of all S5 models M such that α ∈
Th(M).
A formula α is HM-honest

M
iff α ∈ Th(Mα).

Definition 5.3 A formula α is HM-honest
K
iff whenever ✷α ⊃ ✷ϕ1∨...∨

✷ϕn is S5-valid, where ϕ1, ..., ϕn ∈ L, then ✷α ⊃ ϕj is S5-valid for some
1 ≤ j ≤ n.

along with a definition of honesty (HM-honest
D
) of algorithmic nature.

5.1 Only-knowing with RM-stable sets

The first variant of a stable belief set is defined by substituting RMc for
RNc in Stalnaker’s definition (Def. 4.1). These sets seem peculiar when
compared to Stalnaker stable sets. Yet, they appear more familiar to eyes
acquainted with regular modal logics. In particular, RM-stable sets are not
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uniquely determined by their ‘objective’ part; rather, they are completely
‘governed’ by a set of formulas of modal depth 1, involving the formulas that
characterize the normal and the ‘queer’ worlds. The following ‘disjunction’
properties are very useful.

Theorem 5.4 ([KMZ14]) Let S ⊆ L✷ be a consistent RM-stable set. Then
for any formulas ϕi, ψj, θ

(i) ✷ϕ1 ∨ ... ∨ ✷ϕk ∨ θ ∈ S iff (θ ∈ S) or (¬✷⊤ ⊃ θ ∈ S and ϕi ∈ S for
some i ∈ {1, ..., k})

(ii) ¬✷ϕ1 ∨ ... ∨ ¬✷ϕk ∨ θ ∈ S iff (✷⊤ ⊃ θ ∈ S) or

(ϕi /∈ S for some i ∈ {1, ..., k})

(iii) ✷ϕ1 ∨ ... ∨✷ϕk ∨ ¬✷ψ1 ∨ ... ∨ ¬✷ψm ∨ θ ∈ S iff (✷⊤ ⊃ θ ∈ S) or
(ϕi ∈ S for some i ∈ {1, ..., k}) or (ψi /∈ S for some i ∈ {1, ..., m})

Theorem 5.5 An RM-stable set S is uniquely determined by its formulas in
S ∩Q, where

Q = L ∪ {✷⊤ ⊃ ϕ | ϕ ∈ L} ∪ {¬✷⊤ ⊃ ϕ | ϕ ∈ L}

Proof. So let S1, S2 be two RM-stable sets and S1 ∩ Q = S2 ∩ Q. For an
arbitrary formula ϕ we prove ϕ ∈ S1 ⇔ ϕ ∈ S2 by induction on the modal
depth of ϕ. Let ϕ be of modal depth n. By propositional reasoning, we
know that ϕ ≡ ϕ1 ∧ ... ∧ ϕk where each ϕi is of the form ✷a1 ∨ ... ∨ ✷am ∨
¬✷b1∨ ...∨¬✷bl ∨ψ, m, l ≥ 0, with the ai’s and bi’s formulas of lesser modal
depth and ψ a purely propositional formula. Also, for any RM-stable set S,
ϕ ∈ S ⇔ ϕ1 ∈ S & ... & ϕk ∈ S.
Base cases: n = 0. If ϕ is propositional the claim is evident.
n = 1. We have that a1, ..., am, b1, ..., bl, ψ are propositional.
(i) ϕi is ✷a1 ∨ ... ∨ ✷am ∨ ψ. By Theorem 5.4 (i) (ϕi ∈ S1 ⇔ ψ ∈ S1)
or (¬✷⊤ → ψ ∈ S1 and aj ∈ S1 for some j ∈ {1, ..., m}) ⇔ (ψ ∈ S2) or
(¬✷⊤ → ψ ∈ S2 and aj ∈ S2 for some j ∈ {1, ..., m}) ⇔ ϕi ∈ S2

(ii) ϕi is ¬✷b1∨ ...∨¬✷bl ∨ψ. By Theorem 5.4 (ii) ϕi ∈ S1 ⇔ ✷⊤ → ψ ∈ S1

or bj /∈ S1 for some j ∈ {1, ..., l} ⇔ ✷⊤ → ψ ∈ S2 or bj /∈ S2 ⇔ ϕi ∈ S2

(iii) ϕi is ✷a1 ∨ ... ∨ ✷am ∨ ¬✷b1 ∨ ... ∨ ¬✷bl ∨ ψ. By Theorem 5.4 (iii)
ϕi ∈ S1 ⇔ ✷⊤ → ψ ∈ S1 or aj ∈ S1 for some j ∈ {1, ..., m} or bj /∈ S1 for
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some j ∈ {1, ..., l} ⇔ ✷⊤ → ψ ∈ S2 or aj ∈ S2 for some j ∈ {1, ..., m} or
bj /∈ S2 for some j ∈ {1, ..., l} ⇔ ϕi ∈ S2

Induction step: Essentially the same, we can now use the induction hy-
pothesis instead of the initial assumptions.

The RM-stable sets stand to S5′
R in very much the same way Stalnaker stable

sets stand to S5. The reader is also reminded of representation Theorem 4.5
which will prove very useful.
Proviso. We explicitly state that for the purposes of the rest of this section,
we refer to consistent RM-stable sets that do not contain ¬✷⊤. The
second requirement is due to technical reasons having to do with our third
notion of ‘honesty’, based on a kind of disjunction property.
The first notion of ‘honesty’ we introduce is based on our formal represen-
tation of the agent’s epistemic state as an RM-stable set. We seek to define
the ‘minimal’ epistemic state for a, assuming the agent ‘only knows a’. It
is now recognized [vdHJT99] that minimality-via-stability depends on the
background logic, and so is the case for our notion of RM-stability.

Definition 5.6 Consider an RM-stable S and set Q as

Q = L ∪ {✷⊤ ⊃ ϕ | ϕ ∈ L} ∪ {¬✷⊤ ⊃ ϕ | ϕ ∈ L}

A formula α is RM-honest
S
iff there exists an RM-stable set Sα containing

α such that Sα ∩Q ⊆ S ∩Q for all RM-stable sets S such that α ∈ S.

The second notion of ‘honesty’ (a form of ‘information order’ [vdHJT99])
involves possible (and, in our case, also impossible) worlds, and requires that
an agent ‘only knowing α’ has the maximum set of ‘possibilities’. In our case,
‘maximum’ means the union of all models; as noted in [ST94], we seek for an
inclusion-maximal preferred model, and the formulas true in the maximum
model are to be considered as autoepistemic consequences of α. In order for
a notion of maximum q-model to have meaning, we need consider only the
q-models in which each world is a truth assignment, and their normal and
queer parts have at most one copy of such worlds each. Having that in mind,
the union has as normal part the union of the normal parts, and as queer
part the union of the queer.

Definition 5.7 Let Mα be the union of all universal q-models M such that
α ∈ Th(M).
A formula α is RM-honest

M
iff α ∈ Th(Mα).

38



We are now ready to prove that the two definitions of RM-honesty coincide.

Theorem 5.8 Let α ∈ L✷.

1. α is RM-honest
S

⇐⇒ α is RM-honest
M

2. Sα = Th(Mα)

Proof. First, we show that Th(Mα)∩Q is minimum among the theories of
all universal q-models M such that α ∈ Th(M). Let θ ∈ Th(Mα) ∩ Q and
let S be an RM-stable set that contains α. By Theorem 4.5 there exists a
universal q-model M such that S = Th(M). Obviously M is included in the
union Ma.

• Case 1 : θ ∈ L. θ is true for all worlds/valuations of Ma, which include
those of M. Hence θ ∈ Th(M) ∩ L ⊆ S ∩Q.

• Case 2 : θ = ✷⊤ ⊃ ϕ, for some ϕ ∈ L. Then ϕ is true for all the normal
words of Mα, which include those of M. Hence θ ∈ Th(M) ∩ {✷⊤ ⊃
ϕ|ϕ ∈ L} ⊆ S ∩Q.

• Case 3 : θ = ¬✷⊤ ⊃ ϕ, for some ϕ ∈ L. Essentially, the same argu-
ment. ϕ is true for all the queer words of Ma, which include those of
M. Hence

θ ∈ Th(M) ∩ {¬✷⊤ ⊃ ϕ|ϕ ∈ L} ⊆ S ∩Q

(⇒) Since Th(Mα)∩Q is minimum, and the RM-stable set with this property
is unique (Theorem 5.5), it follows that Th(Mα) = Sα and so α ∈ Th(Mα).

(⇐) It suffices to define Sα = Th(Mα).

The following syntactic definition of RM-honesty relies on the properties of
S5′

R.

Definition 5.9 A formula α is RM-honest
K

iff whenever (✷⊤ ⊃ ✷α) ⊃
[✷((✷⊤ ⊃ ϕ1) ∧ (¬✷⊤ ⊃ ψ1))] ∨ ...∨ [✷((✷⊤ ⊃ ϕn) ∧ (¬✷⊤ ⊃ ψn))]∨¬✷⊤
is S5′

R-valid, where ϕ1, ..., ϕn, ψ1, ..., ψn ∈ L, then (✷⊤ ⊃ ✷α) ⊃ (✷⊤ ⊃
ϕj) ∧ (¬✷⊤ ⊃ ψj) is S5

′
R-valid for some 1 ≤ j ≤ n.
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With the following theorem all three notions of honesty provided are proven
equivalent.

Theorem 5.10 Let α ∈ L✷.

1. α is RM-honest
S

=⇒ α is RM-honest
K

2. α is RM-honest
K

=⇒ α is RM-honest
M

Proof. (1) Suppose a formula (✷⊤ ⊃ ✷α) ⊃ [✷((✷⊤ ⊃ ϕ1) ∧ (¬✷⊤ ⊃
ψ1))] ∨ ... ∨ [✷((✷⊤ ⊃ ϕn) ∧ (¬✷⊤ ⊃ ψn))] ∨ ¬✷⊤ is S5′

R-valid, thus, every
RM-stable set containing α must also contain ✷⊤ ⊃ ✷α and consequently
[✷((✷⊤ ⊃ ϕ1)∧ (¬✷⊤ ⊃ ψ1))]∨ ...∨ [✷((✷⊤ ⊃ ϕn)∧ (¬✷⊤ ⊃ ψn))]∨¬✷⊤.
By Theorem 5.4 (iii) they must also contain (✷⊤ ⊃ ϕj) ∧ (¬✷⊤ ⊃ ψj) for
some j. Given that α is RM-honest

S
, Sα is an RM-stable set containing α,

so let (✷⊤ ⊃ ϕj) ∧ (¬✷⊤ ⊃ ψj) ∈ Sα. Obviously (✷⊤ ⊃ ϕj) ∈ Sα and
(¬✷⊤ ⊃ ψj) ∈ Sα. These formulas belong to Sα ∩ Q so by definition of
RM-honest

S
they exist in every RM-stable set containing α. It follows that

(✷⊤ ⊃ ✷α) ⊃ (✷⊤ ⊃ ϕj) ∧ (¬✷⊤ ⊃ ψj) is S5
′
R-valid.

(2) α involves a finite number of primitive propositions, say p1, ..., pn. We
need only consider models, whose worlds/valuations are the ones available
for p1, ..., pn, so there are at most a finite number of q-models. Now suppose
α is not RM-honest

M
, that is there is no maximum model of α, only a finite

number of maximals, say M1, ...,Mk. With a finite number of propositional
formulas we can fully describe each world with a formula (its valuation conju-
gated with ✷⊤ or ¬✷⊤ for being normal or queer, respectively). Since these
models are different, each Mi has a world wi, described by the formula gi, not
existing inMi+1(modk). It is obvious that ¬gi ∈ Th(Mi+1(modk)). Also ¬gi is of
the form ¬(P ∧✷⊤) or ¬(P ∧¬✷⊤), P propositional (conjugation of literals),
so ¬gi ∈ Q and consequently ¬gi ≡ (✷⊤ ⊃ ¬gi) ∧ (¬✷⊤ ⊃ ¬gi) ∈ Th(M′)
for any M′ ⊆ Mi+1(modk). These M′ over all i cover all q-models in which
α is valid, so we have that (✷⊤ ⊃ ✷α) ⊃ [✷((✷⊤ ⊃ ϕ1) ∧ (¬✷⊤ ⊃ ψ1))] ∨
... ∨ [✷((✷⊤ ⊃ ϕn) ∧ (¬✷⊤ ⊃ ψn))] ∨ ¬✷⊤ is an S5′R-valid formula. Since
α is RM-honest

K
we have that (✷⊤ ⊃ ✷α) ⊃ (✷⊤ ⊃ ¬gi) ∧ (¬✷⊤ ⊃ ¬gi)

is S5′
R-valid for some i ∈ {1, ..., k}. But Mi, wi |= a ∧ gi ∧ (✷⊤ ∨ ¬✷⊤). A

contradiction.

A natural question is whether RM-honesty implies HM-honesty or vice
versa. The archetypical HM-dishonest formula ✷p∨✷q is RM-dishonest too;
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if there was a maximum universal q-model for which ✷p ∨ ✷q was valid,
that q-model would have zero queer worlds i.e. it would be an S5 model.
However, as the following two examples show, neither of the aforementioned
implications hold.

Proposition 5.11 RM − honesty ; HM − honesty.

Proof. We prove that ✷✷⊤ ⊃ (✷p ∨✷q) is RM-honest but HM-dishonest.
Consider the largest universal q-model possible, that is its normal and queer
parts each, are a copy of all possible truth assignments. The formula ✷✷⊤ ⊃
(✷p∨✷q) is valid in this maximum model, because ¬✷✷⊤ is valid. Therefore
the formula in question is RM-honest. On the other hand, assume the formula
is HM-honest i.e. there exists a minimum (wrt to propositional formulas)
stable set S than contains it. ✷✷⊤ is also contained in all stable sets, because
⊤ is contained in all stable sets. Consequently (✷p ∨ ✷q) ∈ S and S is
minimum i.e. (✷p ∨✷q) is HM-honest. We derive a contradiction.

Proposition 5.12 HM − honesty ; RM − honesty.

Proof. We prove that ✷⊤ ⊃ (✷(¬✷⊤ ⊃ p) ∨ ✷(¬✷⊤ ⊃ q)) is HM-honest
but RM-dishonest. Consider the largest S5 model possible, that is its worlds
are all possible truth assignments. The formula in question is valid in this
maximum model therefore it is HM-honest. Next, consider universal q-
models M1,M2 such that M1,M2 contain some normal world, say w, the
queer part of M1 consists of all valuations that make p true, and the queer
part of M2 consists of all valuations that make q true. It is easy to see that
✷⊤ ⊃ (✷(¬✷⊤ ⊃ p) ∨ ✷(¬✷⊤ ⊃ q)) is valid in both models but not in
M1 ∪M2.

5.2 Only-knowing with REp-stable sets

Having in mind Def. 4.2 and Theorem 4.18 we proceed with the following
theorem, also useful in understanding the structure of REp-stable sets.

Theorem 5.13 ([KMZ14]) Let S be an REp-stable set. Then S is uniquely
determined by its formulas in S ∩Q, where

Q = L ∪ {✷⊥ ⊃ ϕ | ϕ ∈ L} ∪ {¬✷⊥ ⊃ ϕ | ϕ ∈ L}
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Having proven Theorem 5.13 we can see a pattern emerging when we try
to extend our results for REp-stable sets. Syntactically, we know which part
of these stable sets uniquely determines them. Semantically, our represen-
tation theorem 4.18, show us that the models involved also have two kinds
of worlds, which can be distinguished by some formula (✷⊤ in the case of
RM-stable sets, ✷⊥ in the case of REp-stable sets). Thus we can repeat
the definitions and proofs of the previous section, with only a few changes.
The exception is the ones involving the validity in some logic, as we have no
corresponding characterization for REp-stable sets. Finally, we only require
our REp-stable sets to be consistent.

Definition 5.14 Consider an REp-stable set S and Q as in Theorem 5.13.
A formula α is REp-honest

S
iff there exists an REp-stable set Sα containing

α such that Sα ∩Q ⊆ S ∩Q for all REp-stable sets S such that α ∈ S.

Definition 5.15 Let Mα be the union of all n-models M as in Theorem 4.18
such that α ∈ Th(M). A formula α is REp-honest

M
iff α ∈ Th(Mα).

Theorem 5.16 Let α ∈ L✷.
(i) α is REp-honest

S
⇐⇒ α is REp-honest

M
.

(ii) Sα = Th(Mα).

Proof. First, we show that Th(Mα) ∩ Q is minimum among the theories
of all n-models M as in Theorem 4.18, such that α ∈ Th(M). Let θ ∈
Th(Mα) ∩ Q and let S be an REp-stable set that contains α. By Theorem
4.18 there exists a corresponding n-model, such that S = Th(M). Obviously
M is included in the union Ma.

• Case 1 : θ ∈ L. θ is true for all worlds/valuations of Ma, which include
those of M. Hence θ ∈ Th(M) ∩ L ⊆ S ∩Q

• Case 2 : θ = ✷⊥ ⊃ ϕ, for some ϕ ∈ L. Then ϕ is true for all words
w of Mα, such that E(w) = {W,∅}, which include those of M. Hence
θ ∈ Th(M) ∩ {✷⊥ ⊃ ϕ|ϕ ∈ L} ⊆ S ∩Q

• Case 3 : θ = ¬✷⊥ ⊃ ϕ, for some ϕ ∈ L. Essentially, the same argu-
ment. ϕ is true for all words w of Ma such that E(w) = W , which
include those of M. Hence θ ∈ Th(M) ∩ {¬✷⊥ ⊃ ϕ|ϕ ∈ L} ⊆ S ∩Q
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(⇒) Since Th(Mα)∩Q is minimum, and the REp-stable set with this property
is unique (Theorem 5.13), it follows that Th(Mα) = Sα and so α ∈ Th(Mα)

(⇐) It suffices to define Sα = Th(Mα).
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6 Conclusions

The notion of a stable belief set has been very useful in modal nonmonotonic
reasoning. Investigations on stable sets have mainly focused on identify-
ing their technical properties and representing them with the aid of model-
theoretic constructions known from classical modal logic. It seems natural
however to investigate, both from the logician’s and the KR engineer’s view-
point, what can be obtained by loosening the conditions in the original defi-
nition of R. Stalnaker. The results contained in this thesis comprise the first
attempt at this kind of investigation by varying the positive and negative
introspection closure conditions. Up to now, there have been approaches
which build belief sets by changing classical logic in condition (i) to a weaker
one (intuitionistic logic) [ACP97] or generalizing the notion of stability in a
way somewhat related to the second question of our introduction [Jas91].

The basic motivation of the research conducted, is to define more plausible
notions of an epistemic state and the ultimate goal is to employ these notions
in new mechanisms for nonmonotonic modal logics, à la McDermott and
Doyle. The latter goal is the first step in the roads of future research, along
with the investigation on the assessment of epistemic states which emerge
if we adopt even weaker notions of positive introspection, for instance by
employing a context-dependent version of Oscar Becker’s rule which has
been employed in the study of modal systems which go some way towards
solving the logical omniscience problem [Fit93].

Furthermore, we have provided results which exhibit that it is completely
feasible to transfer the enterprise of ‘minimal knowledge’ approaches to the
area of non-normal (in particular, regular) modal logics. We have defined
notions of ‘honesty’ and HM-‘only knowing’ in the realm of stable epistemic
states strongly connected to non-normal modal logics with impossible worlds
or Scott-Montague semantics.

Other approaches to ‘honesty’ and ‘only knowing’ exist: see [HJT96,
vdHJT99, Jas91]. However, we claim that our work further contributes in
two important directions, with a philosophical and a technical interest:

• We bring ‘impossible’ worlds in the field of ‘minimal knowledge’ log-
ics. This is, of course, something that requires justification. Given
the intuitive appeal of relational, possible-worlds, epistemic semantics
(where an alternative epistemic state implies epistemic indistinguisha-
bility), it is difficult to explain at the first place what does a ‘queer’
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world represent. However, despite the (empiricist) philosophical objec-
tions against the ‘impossible’, it goes back to Hegel7 that ‘... one of
the fundamental prejudices of logic as hitherto understood .. is that the
contradictory cannot be imagined or thought ...’. It is also conceivable
that impossible worlds represent contradictory states of affairs in appli-
cations of Epistemic Logic in CS, where a processor can receive highly
contradictory information from trusted sources.

• Even more interesting, is the implicit adoption of the proof-theoretic
machinery of regular (and other non-normal) modal logics in our in-
vestigations for modal nonmonotonic reasoning. Modal NMR has been
dominated hitherto by the McDermott and Doyle paradigm, seeking
for solutions T of the equation

T = CnΛ(I ∪ {¬✷ϕ | ϕ /∈ T})

parameterized by the underlying monotonic modal logic Λ. The strong
provability notion involved in this approach, in particular Rule RN,
actually suffices for providing stable solutions in this equation and
importing S5 in the agent’s expansion, independently of the logic Λ
adopted. It was found by Marek, Schwarz and Truszczyński that there
exist whole intervals in the lattice of (monotonic) modal logics that
generate the same nonmonotonic logic [MST93] and actually, those in-
tervals often include subnormal modal logics (containing the minimum
set of axioms needed, the rest is left to rule RN) unknown hitherto
to modal logicians. It seems quite natural then to consider notions of
strong provability not involving RN and ask to what kind of logics do
they lead. It is however necessary to define and investigate the geogra-
phy of candidate expansions, that is, the nature and behaviour of the
epistemic states that will replace the Stalnaker stable sets. We have
made the first steps in this direction, firstly by identifying variants of
stable belief sets - in relation to regular logics with strong provabil-
ity from premises - and now, by transferring the HM-‘only knowing’
approach to the ‘wild’ world of RM-stable and REp-stable belief sets.

Obviously, much remains to be done in this direction and we do hope that
interesting results will emerge.

7See the ‘Stanford Encyclopedia of Philosophy’ entry on ‘Impossible Worlds’.
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