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Abstract

In this thesis, we investigate the Braess’s Paradox from a computational
viewpoint. The motivation is to provide simple ways of improving network
performance by exploiting the essence of the Braess’s Paradox, namely the
fact the network performance at equilibrium can be improved by edge re-
moval. We first present approximation algorithms for the best subnetwork
problem in random networks with linear latencies and polynomially many
paths, each of polylogarithmic length. Moreover, we improve on the best
known running time for the best subnetwork problem in certain classes of
networks.
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Chapter 1

Preliminaries

In this chapter, we present some basic notions of selfish routing which will
be necessary for our study. We will then try to define the concept of Nash
equilibrium (aka a Wardrop equilibrium) and make a distinction between the
corresponding Nash equilibrium flow and the Optimal flow. Then, we will
give a definition of the famous Price of Anarchy (PoA), giving some more
details about the correlation of this term to the network performance.

After all these, we will be ready to move on and talk about a special
network, a rather peculiar instance, which is the main subject of this thesis.
This phenomenon is called the Braess’s Paradox.

For an elementary introduction to selfish routing the reader is referred
to [1] and [2]. For a detailed reference to the PoA and the Braess’s Paradox,
he is asked to look at [3], [4] and [5].

1.1 Introduction

Routing games, are a special case of congestion games, where the major
question is how to route traffic in a large network, like the internet, where
there is no central authority that controls the flow of the links, in order to
avoid congestion and consequently delays.

Here, we deal with one of the two widely known models of routing games,
the nonatomic selfish routing. This model assumes that there is a huge
amount of players, with each one of them controlling a negligible portion of
the total traffic (the other model, called atomic deals with users that control
a non-negligible amount of traffic).

The network is given by a directed graph G, with a vertex set V and an
edge set E, G = (V,E). It has also source-sink vertex pairs (s1, t1), (s2, t2),
. . . , (sk, tk), where si 6= ti, called commodities. Each source si is connected
with sink ti via a set of paths Pi. We define P =

∑k
i=1 Pi. The network

may have parallel edges, and each vertex may participate in more than one
path.

1



CHAPTER 1. PRELIMINARIES 2

As we mentioned earlier, each player controls a negligible portion of the
total traffic. The total traffic r, is referred to as the traffic rate, and the
portion of r that the player uses, is symbolized as ri. Each ri travels through
the paths, via flows. The flow travelled on a path P ∈ Pi is symbolized as
fP , whereas the sum of the flows that travel through edge e is symbolized
by fe, fe =

∑
P∈P:e∈P fP .

A flow f is called feasible for r if it routes all of the traffic, which means
that for each i ∈ {1, 2, . . . , k},

∑
P∈Pi fP = ri.

Each edge of the network has a cost function, le : R+ → R+, which is
always considered nonnegative, continuous and nondecreasing. Also, le is
considered semiconvex, that is x · le(x) is convex on [0,∞). We will call such
latency functions as standard.

The cost of a path P with respect to a flow f , is the sum of the costs of
the constituent edges:

lP (f) =
∑
e∈P

le(fe) (1.1)

Since we have defined the cost of a path or the cost of an edge, it’s time
to define the cost of a flow f as:

C(f) =
∑
P∈P

lP (f)fP (1.2)

Using (1.1), the relation (1.2) becomes equivalently:

C(f) =
∑
e∈E

le(fe)fe (1.3)

We define an instance of the nonatomic selfish routing model or a
nonatomic selfish routing game, as G = (G, r, l).

1.2 Nash equilibrium flow

Having in mind all the above, it is time to define the Nash equilibrium flow
for an instance G.

Definition 1.1. Let f be a feasible flow for an instance G. The flow f is
a Nash equilibrium flow if for every commodity i ∈ {1, 2, . . . , k} and every
pair P, P̃ ∈ Pi of si − ti paths with fP > 0:

lP (f) ≤ lP̃ (f)

This means that the player has nothing to gain by changing his route
from path P to path P̃ , since path’s P cost is lower.

If we would like to formalize this idea, we can use the following definition:
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Definition 1.2. A flow f feasible for an instance G is at Nash equilibrium if
for all i ∈ {1, 2, . . . , k}, P1, P2 ∈ Pi and δ ∈ [0, fP1 ], we have lP1(f) ≤ lP2(f̃),
where:

f̃P =


fP − δ if P = P1,
fP + δ if P = P2,

fP if P /∈ {P1, P2}.

Letting δ tend to 0, continuity and monotonicity of the edge latency
functions, entail the above definition 1.1 of a flow at Nash equilibrium, oc-
casionally called a Wardrop equilibrium (WE), due to an influential paper
of Wardrop [6].

We conclude that if f is at Nash equilibrium then all si − ti paths share
equal latency, say Li(f). Using relation (1.2) we conclude that C(f) =∑k

i=1 Li(f)ri.
For a single commodity instance, we have a common latency for all paths,

namely Leq(G), and also the following relation:

C(f) = Leq(G) · r (1.4)

1.3 Existence and Uniqueness of WE flows

A very nice property of convex functions on a convex set is that the local
and global optima coincide to a unique optimum value. Let’s for now define
the following term:

Φ(f) =
∑
e∈E

∫ fe

0
le(x) dx

Since the latency functions are standard, Φ(f) is a convex function wrt
path and edge flows. By convexity, Φ(f) attains a unique minimum value
Φ(fmin), let’s say at a flow fmin (although there can be many “minimum”
flow values). Having in mind definition 1.2, if a portion δ > 0 leaves path
P1 to enter P2, inducing flow f̃min, it is relatively easy for the reader [1], [2],
to check the following equivalence:

Φ(fmin) ≤ Φ(f̃min)⇔ lP1(fmin) ≤ lP2(f̃min)

Function Φ(·) is called Potential, since Nash equilibrium flows are the
global minimizers of it. So, we reach to the point of defining the follow-
ing Nonlinear Program (NLP), which solution gives the corresponding Nash
equilibrium flows:
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(NLP 1):

min
∑
e∈E

∫ fe

0
le(x) dx

(
= min Φ(f)

)
subject to∑

P∈Pi

fP = ri

fe =
∑

P∈P:e∈P
fP

fP ≥ 0

Now, that we have proved the Existence of equilibrium flows, we may
move on to the following theorem which refers to the Uniqueness of equilib-
rium flows. For more details the reader is advised to visit [1] and corollaries
2.6.2, 2.6.4 of [5]:

Theorem 1.3. Let G be a nonatomic instance. Then, if f and f̃ are equi-
librium flows for G then le(fe) = le(f̃e) for every edge e.

WE flows f and f̃ minimize the potential function Φ(·). If we consider
all convex combinations of f and f̃ , λf + (1 − λ)f̃ in particular, where
λ ∈ [0, 1], these are feasible flows too. Since function Φ(·) is convex, we
have that Φ(λf + (1− λ)f̃) ≤ λΦ(f) + (1− λ)Φ(f̃). But f and f̃ are global
minima, which means that the latter relation must hold with equality. This
means that every summand

∫ x
0 le(y) dy must be linear between the values fe

and f̃e. The latter implies that every cost function le is constant between
fe and f̃e. Since there is no way to have increased cost values, under the
same factor for every edge, but with the same total traffic r as input, this
leads us to the fact that the edge costs must be equal.

Now, if the latency functions are strictly increasing, the following lemma
is straightforward:

Lemma 1.4. Let G be a nonatomic instance with standard strictly increasing
latency functions. If f and f̃ are equilibrium flows for G then fe = f̃e for
every edge e.

1.4 Characterization of Optimal flows

Apparently, optimal flows minimize the total cost of a flow C(f), defined in
(1.2), (1.3). Then, by using the relation (1.3), it is obvious that the following
(NLP) finds the minimum-latency feasible flows, named optimal:
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(NLP 2):

min
∑
e∈E

le(fe)fe

subject to∑
P∈Pi

fP = ri

fe =
∑

P∈P:e∈P
fP

fP ≥ 0

Optimal flows should not be confused with Nash equilibrium flows. The
former are flows that minimize the total latency, with some players suffering
probably by long delays in favor of the rest who may travel faster to their
destination. This means, that there might (most of the instances should) be
players who have a serious motive to change their path to another one with
lesser delays. Obviously, this is a description of a state that is unstable. The
latter are selfish-optimum flows, where everyone suffers such a delay, that
has no incentive in changing his route towards his destination to another,
reaching an equilibrium state for all players.

Looking more carefully at the objective functions of the two (NLP)s,
explicitly (NLP 1) and (NLP 2), if at the place of (NLP 1) objective func-

tions’s le(x) we put l∗e(x) = d(x·le(x))
dx , then we’ve got the objective function

of (NLP 2).
So, we come to the following corollary, which shows the equivalence of

equilibrium and optimal flows:

Corollary 1.5. Let G be a nonatomic instance such that, for every edge e,
the function x · le(x) is convex and continuously differentiable. Then o is
an optimal flow for G = (G, r, l) if and only if it is an equilibrium flow for
(G, r, l∗).

The next lemma is a straightforward consequence of theorem 1.3 and
corollary 1.5:

Lemma 1.6. Let G be a nonatomic instance such that, for every edge e,
the function x · le(x) is convex and continuously differentiable. Then o is
an optimal flow for G = (G, r, l) if and only if for every commodity i ∈
{1, 2, . . . , k} and every pair P, P̃ ∈ Pi of si − ti paths with oP > 0:

l∗P (o) ≤ l∗
P̃

(o)

Function l∗(·) is called marginal cost function. The reason is that when

analyzing l∗e(x) = d(x·le(x))
dx = le(x) + x · d(le(x))

dx , one term of it describes the
latency incurred by the flow, while the second one describes the “anomaly”
or increased congestion caused by that flow.
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Existence and uniqueness of optimal flows is now obvious, for the same
reasons described in section 1.3, since l∗(·) is a convex function. It is rela-
tively easy to prove that the following lemmas are valid:

Lemma 1.7. Let G be a nonatomic instance. Then, if o and õ are optimal
flows for G then le(oe) = le(õe) for every edge e.

Lemma 1.8. Let G be a nonatomic instance with standard strictly increasing
latency functions. If o and õ are optimal flows for G then oe = õe for every
edge e.

Having in mind relation (1.2), and since the latency incurred by the
players is not the same, then the term average latency makes sense. So, we
can conclude that C(f) =

∑k
i=1 L

i
opt(f)ri, where Liopt is the average latency

per commodity si − ti.
For a single commodity instance, all players may suffer the same average

latency Lopt(G). We then have the following relation:

C(o) = Lopt(G) · r (1.5)

Before moving further on to the next section, it is time to present some
useful lemmas that are straightforward proofs of the facts that we have
already available in our hands:

Lemma 1.9. Let G be a nonatomic instance with standard latency functions.
A feasible flow f is a Nash flow if and only if for any feasible flow g:∑

e∈E
le(fe)fe ≤

∑
e∈E

le(fe)ge (1.6)

Also, a feasible flow o is an optimal flow if and only if for any feasible
flow g: ∑

e∈E
l∗e(oe)oe ≤

∑
e∈E

l∗e(oe)ge (1.7)

Lemma 1.10. Let G be a nonatomic instance with constant latency func-
tions or latency functions of the form le(x) = ae · x only. A feasible flow f
is optimal if and only if it is at Nash equilibrium.

1.5 Time Complexity

In 1984, Minoux [7] showed that the scaling technique of Edmonds and Karp
[8], which for linear cost flows gives a polynomial time bound for the out-
of-kilter method, can be also applied to quadratic separable min cost flows.
Thus, we have the following lemma:
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Lemma 1.11. Let G be a nonatomic instance with linear latency functions
le(fe) = ae · fe + be ≥ 0 with nonnegative rational coefficients ae, be. Then,
(NLP 1) and (NLP 2) are solved in polynomial time.

Hochbaum and Shanthikumar [9] proved that solving non-quadratic con-
vex separable min-cost flow problems is not much harder than linear opti-
mization. Their algorithm computes optimal solution to any specified accu-
racy in polynomial time

(
where optimal solution is the one that minimizes

the objective function of (NLP 1), (NLP 2)
)
. More precisely the algorithm

finds a feasible solution that is ε-accurate from an optimal solution. The
algorithm’s running time is polynomial in log (1

ε ) and the input size.

1.6 Price of Anarchy (PoA)

It is time to present a term that was introduced at first by Koutsoupias and
Papadimitriou [10] as a way to measure the (in)efficiency of a network G.
This term is called Price of Anarchy (PoA) and is defined as the following
ratio:

PoAG =
cost of worst WE of selfish routing on G

cost of optimal routing on G

Since the cost of optimal routing could be at most the cost of worst WE
of selfish routing on G, we have that PoAG ≥ 1. Having in mind lemma
1.10, there may be cases where the optimal and WE costs are equal, leading
to PoAG = 1, as we will see later in this thesis.

Using relations (1.4) and (1.5), for a single commodity instance we have
that:

PoAG =
Leq(G)

Lopt(G)
(1.8)

1.6.1 Pigou’s example

Consider the single commodity instance in Fig. 1.1, referred to as Pigou’s
example.

We consider total traffic rate r = 1. At the case where l1(x) = 1 and
l2(x) = x, it is easy for the reader to prove that at the equilibrium state all
traffic is routed through the lower link, which suffers delay l2(1) = 1, while
the upper link is visited by no player. The total cost is C(f) = 1·1+0·1 = 1.
The optimal case, is when half of the traffic uses the lower link, while the
other half uses the upper one, causing total cost C(o) = 1

2 ·
1
2 + 1

2 · 1 = 3
4 .

Consequently, the Price of Anarchy is PoA = C(f)
C(o) = 4

3 .
The inefficiency of selfish routing could be more severe. Consider the

nonlinear case of the Pigou’s example, with r = 1 and l1(x) = 1, l2(x) = xp,



CHAPTER 1. PRELIMINARIES 8

s t

l2(x)

l1(x)

Figure 1.1: Pigou’s example.

where p ≥ 2. Again, at the equilibrium state all traffic is routed through
the lower link, which suffers delay l2(1) = 1, while the upper link is visited
by no player. The total cost is the same, C(f) = 1 · 1 + 0 · 1 = 1. However,
the optimal case is different. The marginal cost functions are l∗1(x) = 1 and
l∗2(x) = (p+1) ·xp for upper and lower links respectively, which consequently

means that (p+ 1)
− 1
p users will prefer the lower link, while the rest 1− (p+

1)
− 1
p users will prefer the upper link. The total cost of the optimal case

turns out to be C(o) = 1 − p · (p + 1)
− p+1

p and the Price of Anarchy is

PoA = (1 − p · (p + 1)
− p+1

p )−1 = Θ( p
ln p). What happens if p is too large,

p → ∞? Then the the optimal cost gets too small, C(o) → 0, while the
equilibrium cost is too big, C(f) = 1, causing PoA→∞.

All the above were mentioned at first, in order to see how PoA captures
the inefficiency of the network, and secondly because the following term,
that we will describe shortly, formalizes a bound on the PoA. This term is
called Pigou Bound and was introduced by Roughgarden in [1] and [3].

Definition 1.12. Let C be a nonempty set of cost functions. The Pigou
Bound a(C) for C is:

a(C) = sup
l∈C

sup
x,r≥0

r · l(r)
x · l(x) + (r − x) · l(r)

with the understanding that 0
0 = 1.

In [3], Roughgarden calls it Anarchy Value, but it is defined slightly dif-
ferently, than in [1]. In [3], Roughgarden gives a proof that the inefficiency
of the network, described by the factor PoA, is bounded by the Anarchy
Value. In other words, network’s inefficiency does not depend on the topol-
ogy of the network itself rather, but on the links’ latencies. It is proven, for
example, that for polynomial latency functions that contain all constant cost
functions, the worst equilibrium to optimal cost ratio is the one described in
the case of the linear or nonlinear Pigou’s example. For the linear case, the
reader is also advised to study [11]. So, having also in mind lemma 1.10, we
have that no nonatomic instance with linear or nonlinear latency functions
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has PoA larger than 4
3 or (1 − p · (p + 1)

− p+1
p )−1 = Θ( p

ln p), where p ≥ 2 is
the degree of the polynomial, respectively.

Here, we present a shorter proof of the fact that PoA is bounded by the
Pigou Bound ([1]).

Lemma 1.13. Let C be a set of cost functions that contains all the constant
cost functions. Then the PoA can be lower bounded by a(C).

At first, if x ≥ r then a(C) ≤ 1. So, since PoA ≥ 1 the lemma holds.
Assuming now that x < r, then by the Pigou’s example, by setting the traffic
rate to r, l1(y) = r, l2(y) = l(y) and l2(r) = r, there is an equilibrium state
where all traffic will prefer the lower link, yielding a cost CPG(f) = r · l(r),
where PG stands for the Pigou’s graph. On the other hand, routing x units
of traffic on the lower link and r−x on the upper link, this is a feasible flow
with cost CPG(g) = x · l(x) + (r − x) · l(r). Clearly, CPG(g) ≤ CPG(f) and

PoA ≥ CPG(f)
CPG(g) ≥ a(C).

The hypothesis of lemma 1.13 that C must contain the constant cost
functions, can be relaxed at first by the hypothesis that the class must be
diverse, which means that ∀c > 0 there is a latency function l ∈ C such that
l(0) = c, and secondly by an even weaker condition that the class must be
inhomogenius, in the sense that ∃l ∈ C such that l(0) > 0. For more details
the reader is advised to study [3].

Lemma 1.14. Let C be a set of cost functions. Then the PoA can be upper
bounded by a(C).

Let f and o be equilibrium and optimal flows respectively. Then, if at
the definition of the Pigou Bound we let x = oe and r = fe, we have that
le(oe)oe = le(fe)fe

a(C) + (oe − fe)le(fe). But, by the definition of optimal and

equilibrium costs, we have that C(o) = C(f)
a(C) +

∑
e∈E le(fe)(oe − fe). But,

since o is a feasible flow, by relation (1.6) letting ge = oe, we have that∑
e∈E le(fe)(oe − fe) ≥ 0. The lemma now follows easily.
Before closing this chapter, we should mention a nice bicriteria result

that came out of the joint work of Roughgarden and Tardos. For more
details the reader is advised to visit [11]. This theorem says that the total
latency incurred by a flow at Nash equilibrium is at most that of a feasible
flow forced to route twice as much traffic between each source - destination
pair.

Theorem 1.15. If f is a Nash equilibrium flow for the instance (G, r, l)
and g is feasible for the instance (G, 2r, l), then C(f) ≤ C(g).

Now we are ready to move on to the main study of this work, the Braess’s
Paradox.



Chapter 2

Braess’s Paradox

2.1 The Paradox

A paradox is a statement or group of statements that leads to a contradiction
or a situation which (if true) defies logic or reason.

Imagine a network, where adding an extra link with extra capacity to
it, this can lead to a reduction of the overall performance of this network.
The paradox gets more intensive if the link causes nearly zero delays for
everyone who uses it. One could expect that the players will reach their
destination faster. Put it differently, removing a link from the network,
instead of creating obstacles for the users on their route to their destination,
their life becomes easier, where everyone individually enjoys fewer delays.
The performance of the network gets improved than the opposite.

Consider the single commodity network s− t, that is shown in Fig. 2.1.
The total traffic rate r = 1 and the latencies are x for links (s, u), (w, t)

and 1 for links (s, w), (u, t). Link (u,w) has 0 latency. Fig. 2.2 shows the
equilibrium state.

At the equilibrium state, all traffic is routed via links (s, u), (u,w), (w, t)
since every player, leaving source s, will prefer link (s, u) to (s, w) because
the latter suffers bigger latency 1 than the former, then will choose link
(u,w) since it has 0 latency, significantly smaller than link’s (u, t) latency
1. Finally, will end his trip following the remaining link (w, t). Since this a

s

u

w

t

x

1

0

1

x

r = 1

G :

Figure 2.1: The original Braess’s paradox instance.
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s

u

w

t

x

1

0

1

x

r = 1

G :

Figure 2.2: Equilibrium state.

s

u

w

t

x

1

0

1

x

1
2

1
2

r = 1

G :

Figure 2.3: Optimal flow case.

single commodity instance, then the total latency is Leq(G) = 1 + 0 + 1 = 2
and the total cost is given by relation (1.4) and is C(f) = 2 · 1 = 2.

In Fig. 2.3 the optimal flow case is shown.
The reason is that according to corollary 1.5, the optimal flows of (G, 1, l)

are the equilibrium flows of (G, 1, l∗). In Fig. 2.4 the corresponding marginal
costs and edge flows above them are presented.

Since link’s (u,w) users enjoy 0 latencies, (2ε)+1 = (2ε)+2(1− ε+λ) =
1+2(1−ε+λ) must hold. Solving this simple equation, we have that λ = 0,
ε = 1

2 .
So, since the upper links’s

(
specifically links (s, u), (u, t)

)
total latency

equals the lower links’s
(
specifically links (s, w), (w, t)

)
total latency, to

ε+ 1 = 1
2 + 1, the total latency is Lopt(G) = 1

2 + 1 = 3
2 per link (to be more

specific we should talk about average latency according to section 1.4, but
at this case the average latency coincides with the latency of the upper or
lower links). The total cost is given by relation (1.5) and is C(o) = 3

2 ·1 = 3
2 .

The Price of Anarchy is given by relation (1.8) and is therefore PoAG =

s

u

w

t

2x

1

0

1

2x

r = 1

ε ε− λ

λ

1− ε 1− ε+ λ

Figure 2.4: Marginal costs and edge flows.
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G′ :

Figure 2.5: Subgraph G′ = (V ′, E′) - Link (u,w) removal.

s

u

w

t

x

1

1

x

r = 1

ε ε

1− ε 1− ε

G′ :

Figure 2.6: New Equilibrium state.

Leq(G)
Lopt(G) = 4

3 .

If we now remove link (u,w), we are going to have a subnetwork of the
original one (Fig. 2.5), constituting of the subgraph G′ = (V ′, E′), where
V ′ = V and E′ = E \ {(u,w)}.

At the equilibrium state, half of the total traffic rate will use the upper
links while the other half will use the lower links (see Fig. 2.6).

The upper links’ overall latency should be the same with the lower link’s.
So, equation ε+ 1 = 1 + (1− ε) must hold. Solving this simple equation, we
have that ε = 1

2 . The total latency turns out to be Leq(G
′) = 1

2 + 1 = 3
2 and

the total cost is given by relation (1.4) and is C(f) = 3
2 · 1 = 3

2 .
At the optimal flow case, according again to corollary 1.5, the optimal

flows of (G′, 1, l) are the equilibrium flows of (G′, 1, l∗). In Fig. 2.7 the
corresponding marginal costs and edge flows above them are shown.

Again, the upper links’ overall latency should be the same with the
lower link’s. So, equation (2ε) + 1 = 1 + 2(1 − ε) must hold. Solving this
simple equation, we have that ε = 1

2 , the same flow with the equilibrium
one! The total latency turns out to be Lopt(G

′) = 1
2 + 1 = 3

2 and the total

s

u

w

t

2x

1

1

2x

r = 1

ε ε

1− ε 1− ε

G′ :

Figure 2.7: New Optimal flow case.
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PoAG =
Leq(G)
Lopt(G) = 2

3
2

= 4
3

s

u

w

t

x

1

1

x

PoAG′ =
Leq(G′)
Lopt(G′)

=
3
2
3
2

= 1

Leq(G) = 2

r = 1

G :

Leq(G
′) = Lopt(G

′) = Lopt(G) = 3
2

r = 1

G′ :
(G′ ⊂ G)

Figure 2.8: Original Braess’s Paradox.

cost is given by relation (1.5) and is C(o) = 3
2 · 1 = 3

2 , which means that
Lopt(G

′) = Leq(G
′) and consequently C(o) = C(f)!

This means that the Price of Anarchy turns out to be PoAG′ =
Leq(G′)
Lopt(G′)

=

1!
The great surprise, and consequently the heart of the paradox, arises

from the fact that removing a link with 0 latency from a partly inefficient
network, described by the PoA = 4

3 > 1, we get a new network that instead
of being more inefficient (since the link removed has 0 latency), it turns out
to be “perfectly efficient” in someway, since its PoA = 1!

Fig. 2.8 summarizes the paradox.
The paradox was first observed and presented by Braess [12] and history

says that this phenomenon occurs quite frequently. For more details the
reader is kindly requested to visit [2] and its references.

2.2 Paradox-Free vs Paradox-Ridden Networks

Having defined the paradox, it is time to define paradox-ridden networks.
What we have just proved in the paradox above, is that by deleting an

edge from the network G, we get a subnetwork H ⊂ G, where Leq(H) =

Lopt(G) =
Leq(G)
PoAG

, and as a consequence, PoAH = 1. Let’s generalize this
fact:

Definition 2.1. An instance G is paradox-ridden if there is a subnetwork

H of G, obtained by edge removals, such that Leq(H) = Lopt(G) =
Leq(G)
PoAG

.

So, paradox-ridden instances are networks, such that by edge removals
their PoA get’s better, to such a degree, that the PoA of the residual graph
turns out to be 1.
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But there are instances that do not suffer from the paradox. These are
called paradox-free, such that by edge removals the residual network H has
equilibrium latency Leq(H) ≥ Leq(G). So, we have the following definition:

Definition 2.2. An instance G is paradox-free if for every subnetwork H of
G, Leq(H) ≥ Leq(G).

Apparently, there might be instances that are neither paradox-ridden
nor paradox-free. If we remove edges from these instances, then for the
corresponding network H, Lopt(G) < Leq(H) < Leq(G) should hold.

So, from all the above, we understand that if we take all the resid-
ual networks H of G, there should be a best subnetwork, HB, which will
minimize the equilibrium latency among all subnetworks of G. Namely,
(∀H ⊂ G)(∃HB ⊂ G)[Leq(H

B) ≤ Leq(H)].
So, knowing the best subnetwork, is a crucial fact since if Leq(H

B) ≥
Leq(G) then the network is paradox-free, if Lopt(G) < Leq(H

B) < Leq(G)
then the network can be “reduced” to a network more efficient than the
initial network G, and finally if Lopt(G) = Leq(H

B) then the network is
paradox-ridden and may be reduced to an efficient network with PoA = 1.

2.3 Hardness of Detecting Paradox-Ridden Net-
works

Since the answer to the question “given a network instance G, what is the
best subnetwork HB of G?” is critical, the definitions for the following
optimization problems should not surprise us:

Definition 2.3. LINEAR LATENCY NETWORK DESIGN PROBLEM:
Given a single commodity instance with linear latency functions, find the
best subnetwork HB.

Definition 2.4. GENERAL LATENCY NETWORK DESIGN PROBLEM:
Given a single commodity instance with standard latency functions, find the
best subnetwork HB.

In [4], [5] Roughgarden presents strong evidences that detecting the best
subnetwork is not a simple problem. He proved for example, that detecting
paradox-ridden networks is as hard as solving the P = NP problem.

Before moving on to the central theorems of this section, we should give
the following definition:

Definition 2.5. A c - approximation algorithm for a minimization problem,
runs in polynomial time and returns a solution no more than c times as
costly as an optimal solution. The value c is the approximation ratio of the
algorithm.
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2.3.1 Linear Latency Functions - An Approximability Thresh-
old of 4

3

From section 1.6 we have ended to the conclusion that for linear latencies
the PoA cannot be larger than 4

3 , or equivalently, C(f)
C(o) =

Leq(G)
Lopt(G) ≤

4
3 .

Then, since Leq(H
B) ≥ Lopt(G), we have that

Leq(G)
Leq(HB)

≤ Leq(G)
Lopt(G) ≤

4
3 . So,

by definition 2.5 the latter means that the trivial algorithm that returns
the same network G, is a 4

3 - approximation algorithm for the LINEAR
LATENCY NETWORK DESIGN PROBLEM, since Leq(G) ≤ 4

3 ·Leq(H
B).

So we come to the following conclusion:

Theorem 2.6. The trivial algorithm is a 4
3 - approximation algorithm for

the LINEAR LATENCY NETWORK DESIGN PROBLEM.

Now, the question that arises, is whether we could find a less than 4
3

- approximation algorithm for the LINEAR LATENCY NETWORK DE-
SIGN PROBLEM. The following theorem by Roughgarden [4], [5] clears the
picture:

Theorem 2.7. For networks with linear latency functions, and for every

ε > 0, there is no (4
3 − ε) - approximation algorithm that finds the Best

Subnetwork HB
(
unless P = NP

)
. Equivalently, for every ε > 0, there is no

(4
3 − ε) - approximation algorithm for the LINEAR LATENCY NETWORK

DESIGN PROBLEM
(
unless again P = NP

)
.

Proof. At first we assume that the graph G = (V,E) has at least 4 vertices.
That is, |V | ≥ 4.

The proof depends on a reduction from a problem, known to be NP-
complete, the Two Directed Disjoint Paths (2DDP) problem. This problem
states that “given a directed graph G = (V,E) and distinct vertices si, ti ∈
V , where i ∈ {1, 2}, are there two si− ti paths Pi, such that P1 and P2 share
no vertex?”

The reduction is polynomial in time, since we add two more vertices
s and t, four edges more, (s, s1), (s, s2), (t1, t), (t2, t), and assign latencies
equal to 0 for all the edges in E, plus latencies equal to x, 1, 1, x for the
just mentioned four edges respectively. The total traffic rate is assigned
to 1, as input in source s. The new graph is named G′ = (V ′, E′), where
V ′ = V ∪ {s, t}, E′ = E ∪ {(s, s1), (s, s2), (t1, t), (t2, t)} and the reduction is
shown in Fig. 2.9.

The 2DDP instance is applied to the big network G′. So, the problem
should be restated as follows: “given a directed graph G′ = (V ′, E′) and
distinct vertices si, ti ∈ V ′, where i ∈ {1, 2}, are there two si − ti paths Pi,
such that P1 and P2 share no vertex?”

The proof is by contradiction. Suppose that there exists an algorithm
A that approximates the Best Subnetwork H ′B with approximation ratio
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Blue Dotted Area: Arbitrary Network G
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Figure 2.9: Reduction from the 2DDP problem.
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r = 1

Leq(H
′) = lP1 = 3

2

Leq(H
′) = lP2 = 3

2

Figure 2.10: Leq(H
′
A) ≥ 2 - Assuming 2DDP instance is ‘Yes’.

4
3 − ε, ε > 0. That is, the algorithm A returns subgraph H ′A with common

latency Leq(H
′
A), such that

Leq(H′A)

Leq(H′B)
≤ 4

3 − ε. We claim that the algorithm

decides the 2DDP problem.

• Leq(H ′A) ≥ 2:

We prove that the 2DDP instance is ‘No’. So, let’s assume by contra-
diction that the 2DDP instance is ‘Yes’.

This means that there exist two paths, namely the s1− t1 path P1 and
the s2 − t2 path P2, that share no vertex. It can be shown easily that
there exists a subnetwork H ′ with Leq(H

′) = 3
2 (see Fig. 2.10).

This means that
Leq(H′A)

Leq(H′B)
≥ 2

Leq(H′B)
≥ 2

Leq(H′)
= 2

3
2

= 4
3 . But the

latter contradicts the hypothesis which says that
Leq(H′A)

Leq(H′B)
≤ 4

3 − ε.

• Leq(H ′A) < 2:

We prove that the 2DDP instance is ‘Yes’. So, let’s assume by contra-
diction that the 2DDP instance is ‘No’.
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This means that there do not exist two paths, namely the s1− t1 path
P1 and the s2 − t2 path P2, that share no vertex.

So we have that either (i) there are no paths, or that (ii) there is only
one path

[
namely (iia) path s1 − t1, or (iib) path s2 − t2, or (iic)

path s1 − t2, or (iid) path s2 − t1
]
, or that (iii) there are two paths

s1− t2 and s2− t1 which do not share any vertex, or that (iv) there are
two paths s1− t1 and s2− t2 which share at least one common vertex.
It can be shown easily that for every case and for every subnetwork
H ′, Leq(H

′) ≥ 2. There is also an extra case, where there are two
paths s1 − t2 and s2 − t1 that share at least one common vertex. But
apparently, this case is equivalent to case (iv).

Case (i) follows easily, since if there are no paths that connect s1, s2

with t1, t2, then there is no way that traffic leaving s1 or s2, could ever
reach t1 or t2. This means that for every subnetwork H ′, L(H ′)→∞,
or Leq(H

′)→∞, so Leq(H
′) > 2.

For case (iia) there is only one path s→ s1 → t1 → t with respective
latencies x, 0, 1. Since r = 1, we have that for every subnetwork H ′,
L(H ′) = 2 or Leq(H

′) = 2.

For case (iib) there is only one path s→ s2 → t2 → t with respective
latencies 1, 0, x. Since r = 1, we have that for every subnetwork H ′,
L(H ′) = 2 or Leq(H

′) = 2.

For case (iic) there is only one path s→ s1 → t2 → t with respective
latencies x, 0, x. Since r = 1, we have that for every subnetwork H ′,
L(H ′) = 2 or Leq(H

′) = 2.

For case (iid) there is only one path s→ s2 → t1 → t with respective
latencies 1, 0, 1. Since r = 1, we have that for every subnetwork H ′,
L(H ′) = 2 or Leq(H

′) = 2.

For case (iii) there is one path, namely P1 : s → s1 → t2 → t, with
respective latencies x, 0, x. Also, there is one additional path, namely
P2 : s → s2 → t1 → t, with respective latencies 1, 0, 1. Since at the
equilibrium state, all players will prefer the minimum latency path P1,
all of them will use this path, causing overall latency equal to 2. So,
we have that for every subnetwork H ′, Leq(H

′) = 2.

Now, for case (iv), the network resembles the equilibrium case of the
Braess’s original network presented in section 2.1, before the link (u,w)
is removed (see Fig. 2.11). At that case, Leq(H

′) = 2, for every sub-
network H ′.

Thus, for every case and for every subnetwork H ′, Leq(H
′) ≥ 2. But

this leads us to contradiction, since by the hypothesis, there exists a
subnetwork H ′A returned by the algorithm, such that Leq(H

′
A) < 2.
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Case (iv): Two Adjoint Paths

Figure 2.11: Leq(H
′
A) < 2 - Assuming 2DDP instance is ‘No’.

Now, since subnetworks H ′, H ′A, H ′B are applied to the big network G′,
it is relatively easy to apply the results of the proof to the subnetworks H,
HA, HB of the original network G respectively, by just removing vertices
s, t, and edges (s, s1), (s, s2), (t1, t), (t2, t). The proof is complete.

2.3.2 Two Useful Lemmas

Before moving on to the next two theorems, we should plug into this section
two useful lemmas.

The first lemma [4], [13], [14] gives as the lengths of all vertices, with
respect to shortest paths at the equilibrium state.

Lemma 2.8. Let f be a feasible flow for (G, r, l). For a vertex v in G,
let ds(v) denote the length, with respect to edge lengths {le(fe)}e∈E, of a
shortest s− v path in G. Then f is at Nash equilibrium if and only if

ds(w)− ds(v) ≤ le(fe) (2.1)

for all edges e = (v, w), with equality holding whenever fe > 0.

Proof. Relation (2.1) holds by the “triangle inequality”, for all kinds of flows,
and by the definition of shortest path labels d. Let P ∈ P be an s− t path.
Then:

lP (f) =
∑
e∈P

le(fe)

≥
∑

e=(v,w)∈P

ds(w)− ds(v)

= ds(t)− ds(s) = ds(t)

But, since ds(t) is the minimum latency of the path P , we have that
lP (f) = ds(t). Thus, in relation (2.1), the ≥ sign should be =, which is true
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Figure 2.12: Case ds(w)− ds(v) < le(fe), where e = (v, w).
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Figure 2.13: Case ds(w)− ds(v) = le(fe), where e = (v, w).

if and only if for every link e that belongs to the path P :

ds(w)− ds(v) = le(fe)

The lemma then follows easily from the definition 1.1 of the Nash equilib-
rium flows, which says that minimum latencies occur to paths or equivalently
links with positive equilibrium flows.

The following two pictures, give us an intuitive notion of the outcomes
of lemma 2.8.

In Fig. 2.12, the equilibrium flow prefers the upper path P1. So, we have
that ds(w) < ds(v) + le(fe), or equivalently ds(w) − ds(v) < le(fe), where
e = (v, w).

In Fig. 2.13, the equilibrium flow prefers the lower path P2. So, we have
that ds(w) = ds(v) + le(fe), or equivalently ds(w)− ds(v) = le(fe).

The second lemma [4] states that there should always be acyclic Nash
flows.
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Figure 2.14: A cycle C : v → v1 → v2 → . . .→ vk.

Lemma 2.9. An instance (G, r, l) admits an acyclic flow at Nash equilib-
rium.

Proof. In section 1.3 we proved the existence of Nash equilibrium flows. But
these flows may not be acyclic. So, let’s consider a non - acyclic Nash flow.
We will first show that the flow edges of a cycle must have zero latency, and
then we will show how to remove such cycles.

• A cycle must contain only zero - latency links:

At first, the previous lemma 2.8 states that for every e = (v, w) with
fe > 0, we must have that ds(w) = ds(v) + l(v,w)(f(v,w)).

So, let’s consider a path P , consisting of a sub-path s→ v, links (v, v1),
(v1, v2), . . . , (vk, v), k ≥ 2, and a sub-path v → t.

Let’s also consider a cycle C in P , with C = (VC , EC), where VC =
{v, v1, v2, . . . , vk} and EC = {(v, v1), (v1, v2), . . . , (vk, v)} (see Fig. 2.14),
and let’s assume for simplicity, that the links’ flows of that cycle do
not participate in another path with positive equilibrium flow.

The equilibrium flow of the path P is fP > 0.

By lemma 2.8, since fP > 0, the following equations must hold:

ds(v1) = ds(v) + l(v,v1)(f(v,v1))

ds(v2) = ds(v1) + l(v1,v2)(f(v1,v2))

.

.

.

ds(vk) = ds(vk−1) + l(vk−1,vk)(f(vk−1,vk))

ds(v) = ds(vk) + l(vk,v)(f(vk,v))

The sum of all the equations’ lhs should be equal to the sum of all the
equations’ rhs.
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So we have that 0 = 0+
∑

e∈EC le(fe), or equivalently,
∑

e∈EC le(fe) =
0.

The latter means that ds(v) = ds(v1) = ds(v2) = . . . = ds(vk) and that
(∀e ∈ EC)[le(fe) = 0].

• Removing zero - latency flow cycles:

As we have just mentioned, removing zero - latency flow cycles is not
entirely trivial because the different edges of a flow cycle may have
different flow paths, as they may participate in more than one cycle.

We should always have in mind that f is defined as a function on paths,
rather than on edges, and that by section 1.1, fe =

∑
P∈P:e∈P fP .

So, by the previous bullet, since these edges have zero latency, we may
subtract flows from every link of every cycle, obtaining new edge flows
for every edge of a cycle, and consequently obtaining new path flows.
This process is called path decomposition and may be found in [15].

After all path decompositions, from every original flow fe per edge we
should obtain flow f̃e, and the following should hold:

� fe = f̃e, if e does not belong to a cycle.

� fe > f̃e, with le(fe) = 0, if e belongs to a cycle. But le(·) is
standard, which means that it is nondecreasing. So, le(f̃e) = 0.

From all the above, we have proved that for every case, le(fe) = le(f̃e),
for every edge e = (v, w) of the network.

But ds(w) = ds(v) + le(fe). So, by induction on every vertex v that
carries flow f and consequently flow f̃ , and with base case the vertex
s, we obtain that ds(v) = d′s(v), where d′s(v) we define the length of
the same s− v path induced by f , but now with respect to f̃ .

Since f is an equilibrium flow, the values of d′s(·) are the minimal once.
So f̃ is an equilibrium flow too, and this completes the proof.

2.3.3 General Latency Functions - An Approximability Thresh-
old of bn

2
c

2.3.3.1 Trivial Algorithm - An bn2 c - Approximation Algorithm

Now we are ready to move on to the main results of this subsection.

Theorem 2.10. Let (G, r, l) be an instance, with G = (V,E) and |V | =
n. Then the trivial algorithm is a bn2 c - approximation algorithm for the
GENERAL LATENCY NETWORK DESIGN PROBLEM.
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Proof. We will prove that in the general case, Leq(G) ≤ bn2 c·Leq(H) for every
subnetwork H, which means equivalently that Leq(G) ≤ bn2 c ·Leq(H

B). So,
let H be a subgraph of G.

Let f and f∗ be the equilibrium flows for G and H respectively. Let also
lemma’s 2.8 ds(·) values be with respect to equilibrium flow f . The length
of the shortest s−v path with respect to f∗ is given by d∗s(v). By lemma 2.9
we may also assume that f is acyclic, and that every vertex of G is incident
to a flow-carrying edge. The latter is obviously the worst case scenario.

Now, we can order every vertex of G, with respect to ds(·) values. Let
the order be non-decreasing, we may call it ≤o, and let R = {v0, v1, v2, . . . ,
vn−1, vn} be the outcome of that order, where v0 = s and vn = t. It should
be clear that v ≤o u⇔ ds(v) ≤ ds(u). If there are vertices with equal ds(·)
values, we may break ties arbitrarily, and place one of them in front of the
other in that order.

Let’s assume wlog that n is odd (if n is even, we may subdivide some
edge and create a new vertex). We will show by induction, that ds(v2i) ≤
i · Leq(H).

• Base case, i = 0:

This is trivial since ds(s) = 0.

• Induction hypothesis, ds(v2(i−1)) ≤ (i− 1) · Leq(H):

We assume that ds(v2(i−1)) ≤ (i − 1) · Leq(H) holds, where i ∈ {1, 2,
. . . , n−1

2 }, and we shall prove that also ds(v2i) ≤ i · Leq(H) holds.

• Prove that ds(v2i) ≤ i · Leq(H):

Let’s now call an arbitrary edge e light, if fe ≤ f∗e and f∗e > 0. Then,
since latency functions are standard, we have that le(fe) ≤ le(f

∗
e ) ≤

Leq(H).

Consider now an s− t cut, S ⊂ R with S = {s = v0, v1, v2, . . . , vk} and
ds(vk) < ds(t), that consists of consecutive vertices of R. It should
be obvious, that (∀v ∈ R)(∀u ∈ S)

[(
v ≤o u

)
⇒
(
v ∈ S

)]
, since all

vertices are sorted with respect to f .

Let’s call δ+(S) the set of edges that their tail is a vertex of S, but
their head is a vertex that does not belong to S. On the contrary,
δ−(S) is exactly the set of edges that their head is a vertex of S, but
their tail is a vertex that does not belong to S.

Obviously, if g is a feasible flow, since s is included in S but not t,
then

∑
e∈δ+(S) ge −

∑
e∈δ−(S) ge = r should always hold.

Apparently, since S is an s−t cut, and all vertices in S are sorted with
respect to flow f , we should have that

∑
e∈δ+(S) fe = r, since there are

no incoming flows
(∑

e∈δ−(S) fe = 0
)
. But f∗ is also a feasible flow.
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So, having in mind that the vertices of S are sorted with respect to f
and not to f∗, this means that

∑
e∈δ−(S) f

∗
e ≥ 0, or equivalently that∑

e∈δ+(S) f
∗
e ≥ r.

We conclude that there should be at least one edge e ∈ δ+(S) such
that f∗e − fe ≥ 0 with f∗e > 0 or that e is a light edge.

Now, consider s − t cut S′ = {s, v1, . . . , v2(i−1)}. Then, after all the
above, there should be an integer j ≤ 2(i − 1), and an integer k >
2(i− 1) with the property that it is the largest integer such that there
is a path of light edges from vj to vk (and there should be one consisting
of at least one light edge as we have already proved).

But k 6= 2i − 1, because if k = 2i − 1, then since vk is the end of
this maximal path of light edges, all light edges of δ+(S′) should end
at (or have head) vk = v2i−1. But no light edge begins at (or has
tail) vk, because then k should not be the maximum such integer. So,
for the set S′′ = S′ ∪ {v2i−1} there are no light edges in δ+(S′′), and
since S′′ = {s, v1, . . . , v2(i−1), 2i − 1} is also an s − t cut, we lead to
contradiction. So, k ≥ 2i.

What we have just proved, is that there is a path of light edges from vj
to vk with j ≤ 2(i−1) and k maximal, such that k ≥ 2i. So, by lemma
2.8 and induction hypothesis, we have that ds(vj) ≤ ds(v2(i−1)) ≤
(i− 1) · Leq(H).

Since vj ≤o v2(i−1) ≤o v2i ≤o vk, what remains to be proven is
that ds(vk)− ds(vj) ≤ Leq(H), because thereafter we easily have that
ds(v2i)− ds(v2(i−1)) ≤ ds(vk)− ds(vj), which equivalently means that
ds(v2i) ≤ ds(v2(i−1)) +Leq(H), and by induction hypothesis the result
follows.

But vj and vk are vertices that participate in a path of light edges, so
they induce equilibrium flow f∗. Then, by lemma 2.8, we should have
that 0 = d∗s(s) ≤ d∗s(vj) ≤ d∗s(vk) ≤ d∗s(t) = Leq(H).

Let vj+1, vj+2, . . . , vk−1 be all the intermediate vertices of this light -
edge path that begins from vj and ends to vk. Then, since every edge
e(vm,vm+1) with m ∈ [j, k − 1] is light, and by lemma 2.8, we should
have the following:

ds(vk)− ds(vj) = ds(vk)− ds(vk−1) + . . .+ ds(vj+1)− ds(vj)
≤ d∗s(vk)− d∗s(vk−1) + . . .+ d∗s(vj+1)− d∗s(vj)
= d∗s(vk)− d∗s(vj) ≤ Leq(H)

The proof is complete.
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2.3.3.2 Braess Graphs

Theorem 2.10 gives us an upper bound on the performance of the trivial
algorithm. But there are some special graphs [4] that the trivial algorithm
performs poorly, in the sense that it approximates the optimal solution with
a ratio of at least the upper bound of bn2 c. These graphs are called Braess
graphs.

For every positive integer k, there is a special graph called the k-th Braess
graph, Bk = (Vk, Ek), that has 2k+2 vertices, Vk = {s, t, v1, v2, . . . , vk, w1, w2,
. . . , wk}, and 4k + 1 edges, Ek = {(s, vi), (vi, wi), (wi, t) : 1 ≤ i ≤ k} ∪
{(vi, wi−1) : 2 ≤ i ≤ k} ∪ {(s, wk), (v1, t)}.

We next define edge latencies lke (·), as follows:

� if e = (vi, wi), then lke (x) = 0, for i ∈ [1, k],

� if e = (vi, wi−1) or (s, wk) or (v1, t), then lke (x) = 1, for i ∈ [2, k],

� if e = (wi, t) or e = (s, vk−i+1), then lke (x) is a standard function that
satisfies lke ( k

k+1) = 0 and lke (1) = i, for i ∈ [1, k].

Obviously, the B1 graph is the original paradox graph (section 1.1),
where vertices u, w of section’s 1.1 graph play now the role of vertices w1,
v1 respectively, but with one crucial difference. The edges (w1, t) and (s, v1)
have the latencies defined above and not latency equal to x as in section
1.1., and that is the reason why the results of the next lemma are different
if the same methodology is applied to the original paradox graph.

Lemma 2.11. For any integer n ≥ 2, there is an instance with n vertices
for which the trivial algorithm produces a solution which is at least bn2 c times
larger than the optimal solution.

Proof. For n = 2, consider the simplest graph G with two vertices s and
t, and one edge linking them. Since there is only one subgraph that links
vertices s and t too, that is subgraph H = HB = G, then we have that
Leq(G) = 1 · Leq(HB). For n = 3, consider again the previous graph, but
with the edge subdivided in order to produce one vertex more. Here again
we have the same results.

For n ≥ 4, the instance (G, r, l) is the one with G = Bk, traffic rate
r = k, and edge latencies lke (·).

For n ≥ 4 even, the k-th Braess graph is the one with n = 2k+2 vertices.
For n ≥ 4 odd however, imagine a k-th Braess graph such that n−1 = 2k+2,
but one edge of this graph is subdivided to produce one more vertex.

Let the traffic rate be k. Let also be the following paths Pi : s → vi →
wi → t where i ∈ [1, k], Q1 : s → v1 → t, Qi : s → vi → wi−1 → t where
i ∈ [2, k] and Qk+1 : s→ wk → t.

Routing one unit of flow on each of the P1, P2, . . . , Pk paths, gives a Nash
equilibrium flow with Leq(G) = k + 1.
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Let H be the subnetwork that is produced from Bk by deleting all
edges of the form (vi, wi). If we route k

k+1 units of flow on each of the
Q1, Q2, . . . , Qk, Qk+1 paths, gives a Nash equilibrium flow with Leq(H) = 1.

Thus we have that:

Leq(G)

Leq(HB)
≥ Leq(G)

Leq(H)
= k + 1 = bn

2
c

What follows now, is a demonstration of the proof for n = 4. Obviously
k = 2, and the graph is the 2-nd Braess graph, G = B2 (see Fig. 2.15).

At the equilibrium state above, the r = 2 traffic rate is divided equally
to one unit of flow per each path, P1 : s → v1 → w1 → t (red path) and
P2 : s→ v2 → w2 → t (green path). Thus, Leq(G) = lP1 = lP2 = 2 + 0 + 1 =
1 + 0 + 2 = 3.

If H is the subnetwork that is produced from B2 by deleting edges
(v1, w1), (v2, w2), then at the equilibrium state below, 2

3 units of flow are
routed through each path, Q1 : s→ v1 → t (red path), Q2 : s→ v2 → w1 →
t (green path) and Q3 : s → w2 → t (brown path). Thus, Leq(H) = lQ1 =
lQ2 = lQ3 = 0 + 1 = 0 + 1 + 0 = 1 + 0 = 1. Fig. 2.16 shows this instance.

Thus,
Leq(G)
Leq(HB)

≥ Leq(G)
Leq(H) = 3 = b6

2c.

Until now, we have found an upper bound, namely bn2 c, on the perfor-
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mance of the trivial algorithm. We have also found some special graphs,
namely the Braess graphs, that the network’s equilibrium latency to the
best subnetwork’s equilibrium latency rate exceeds the bn2 c upper bound.

2.3.3.3 General Latency Functions - An Approximability Thresh-
old of bn2 c

Consequently, the question that arises, is whether we could find a less than
bn2 c - approximation algorithm for the GENERAL LATENCY NETWORK
DESIGN PROBLEM. The following theorem by Roughgarden [4] clears the
picture:

Theorem 2.12. For every ε > 0, there is no (bn2 c − ε) - approximation
algorithm for the GENERAL LATENCY NETWORK DESIGN PROBLEM(
unless P = NP

)
.

Proof. At first we assume that the graph G = (V,E) has at least 4 vertices.
That is, n ≥ 4. Also, as in lemma 2.11, we may assume that n is even.

The proof depends on a reduction from a problem, known to be NP-
hard, the Partition problem. This problem states that “given a set of p
positive integers a1, a2, . . . , ap, is there a subset S ⊆ {1, 2, . . . , p}, such that∑

j∈S aj = 1
2

∑p
j=1 aj?”

Here again, the graph G is the k-th Braess graph, G = Bk, with n =
2k + 2.

The reduction is polynomial in time, since we replace every edge of the
form (vi, wi) by p parallel edges, where p is the total number of the positive
integers a1, a2, . . . , ap of the Partition problem. Let’s denote these edges as
e1
i , e

2
i , . . . , e

p
i .

We will now introduce a new property that characterizes an edge, called
capacity. The capacity of an edge, is the maximum amount of flow that the
edge can handle. So, if the flow that enters the link is below its capacity,
then the flow will face acceptable delays. On the contrary, if the flow exceeds
the link’s capacity then the price paid will be by no means negligible. Thus,
we will correlate the capacity of an edge with its latency. Roughly speaking,
if the flow that passes through an edge e, exceeds its capacity by at least a
small portion δ, then it becomes oversaturated and the latency grows too
big, lets say by a very large constant M .

The capacity of an edge of the form eji , where j ∈ [1, p], is defined as the
Partition problem’s positive integer aj . Wlog we may assume that each aj
is even. Let A =

∑p
j=1 aj , and the traffic rate r = kA2 + k + 1. Let also δ

be a sufficiently small constant, δ = 1
p+k , and M be a large positive integer,

M = n
2 .

We next define edge latencies le(·) with respect to edge capacities he, as
follows:
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� if e = (vi, wi−1) or (s, wk) or (v1, t), i ∈ [2, k] then:

• le(x) = 1, for x ≤ 1,

• le(x) = M , for x ≥ 1 + δ.

The capacity therefore is he = 1.

� if e = (wi, t) or e = (s, vk−i+1), i ∈ [1, k] then:

• le(x) = 0, for x ≤ 1
2A+ 1,

• le(x) = i, for x = 1
2A+ k+1

k ,

• le(x) = M , for x ≥ 1
2A+ k+1

k + δ.

The capacity therefore is he = 1
2A+ k+1

k .

� if e = eji , i ∈ [1, k] and j ∈ [1, p] then:

• le(x) = 0, for x ≤ aj − δ,
• le(x) = 1, for x = aj ,

• le(x) = M , for x ≥ aj + δ.

The capacity is he = aj .

The proof then follows from the following approach. If there is a solu-
tion to the Partition problem, then we can find this subset S, remove the
unnecessary edges and get a subnetwork H that has equilibrium latency in
reasonable numbers. But if there is no solution to the Partition problem,
then we can either remove too few edges and have links where the excess of
their capacity leads to flows at the limits of those capacities causing delays,
or remove too many edges causing insufficient capacity to some links and
thus oversaturated edges.

We are ready now to move on to the main part of the proof. The proof
is by contradiction, and thus suppose that there exists an algorithm A that
approximates the Best Subnetwork HB with approximation ratio bn2 c − ε,
ε > 0. That is, the algorithm A returns subgraph HA with common latency

Leq(HA), such that
Leq(HA)
Leq(HB)

≤ bn2 c− ε. We claim that the algorithm decides

the Partition problem.

• Leq(HA) ≥ bn2 c:
We prove that the Partition instance is ‘No’. So, let’s assume by
contradiction that the Partition instance is ‘Yes’.

Then, there is a subset S ⊆ {1, 2, . . . , p}, such that
∑

j∈S aj = 1
2A.

Consider all edges eji , j ∈ [1, p]. We will keep those eji edges, where

j ∈ S and destroy the rest, that is destroy eji edges for every i ∈ [1, k],
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Figure 2.17: Leq(HA) ≥ bn2 c - Assuming Partition instance is ‘Yes’.

where j ∈ {1, 2, . . . , p} \S. The new graph obtained, H, is a subgraph
of G, H ⊂ G.

Consider again the Q1, Q2, . . . , Qk+1 paths, as they were defined in
lemma 2.11. Consider also a feasible flow f such that aj units of flow

are routed on each unique path containing edge eji , and 1 unit of flow is
routed on each path Qi, i ∈ [1, k+1]. Then it is not hard to show that
this is a Nash equilibrium flow for the subgraph H, with Leq(H) = 1.

This means that
Leq(HA)
Leq(HB)

≥ bn
2
c

Leq(H) =
bn

2
c

1 = bn2 c. But the latter

contradicts the hypothesis which says that
Leq(HA)
Leq(HB)

≤ bn2 c − ε.

What follows now, is a demonstration of this case for n = 4, which
shows that Leq(H) = 1. Obviously k = 2, and the graph is the 2-nd
Braess graph, G = B2.

If H is the subnetwork that is produced from B2 by sustaining only
those edges eji , j ∈ S, then at the equilibrium state below, from the
total traffic rate r = 2A2 + 2 + 1, aj units of flow are routed on each

unique path containing edge eji , and 1 unit of flow is routed on each
path Q1, Q2, Q3. Thus, every path has equal equilibrium latency,
Leq(H) = 1.

In Fig. 2.17, the blue colored numbers are the latencies of each link,
while the red ones are the corresponding edge flows.

• Leq(HA) < bn2 c:
We prove that the Partition instance is ‘Yes’. So, let’s assume by
contradiction that the Partition instance is ‘No’. This means that for
every subset S ⊆ {1, 2, . . . , p}, we have that

∑
j∈S aj 6=

1
2A. So, we

have two cases to consider:
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�
∑

j∈S aj >
1
2A:

Since every aj is even, then we have that
∑

j∈S aj ≥
1
2A+ 2. We

will keep again, those eji edges, where j ∈ S and destroy the rest,

that is destroy eji edges, where j ∈ {1, 2, . . . , p} \ S. The new
graph obtained, H, is a subgraph of G, H ⊂ G.

Obviously, since
∑

j∈S aj ≥
1
2A+ 2, then

aj∑
j∈S aj

(A2 + k+1
k ) < aj

should hold.

So, if we route
aj∑
j∈S aj

(A2 + k+1
k ) units of flow along the unique

s − t path containing edge eji , path P ji : (s, vi), e
j
i , (wi, t), then

we have an equilibrium flow with common equilibrium latency,
Leq(H) = l

P ji
= k + 1 = bn2 c.

Here again, is a demonstration of this case for n = 4, or k = 2.

If H is the subnetwork that is produced from B2 by sustaining
only those edges eji , j ∈ S, then at the equilibrium state below,
from the total traffic rate r = 2A2 + 2 + 1,

aj∑
j∈S aj

(A2 + 3
2) units

of flow are routed on each unique path containing edge eji . Thus,

every path P ji : (s, vi), e
j
i , (wi, t) has equal equilibrium latency,

Leq(H) = l
P ji

= 2 + 1 = b6
2c.

In Fig. 2.18, the red colored paths are the ones that route equi-
librium flow, while the blue colored edges carry no flow at all. If
we sum up each red path’s latencies (blue numbers), we get the
common equilibrium latency.

�
∑

j∈S aj <
1
2A:

Since every aj is even, then we have that
∑

j∈S aj ≤
1
2A− 2. We
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will keep again, those eji edges, where j ∈ S and destroy the rest,

that is destroy eji edges, where j ∈ {1, 2, . . . , p} \ S. The new
graph obtained, H, is a subgraph of G, H ⊂ G.

This is the case where we will exploit the property that every
edge has, that of capacity.

Since each eji has capacity aj (meaning that if the flow passed
through that edge is bigger than the ‘maximum’ flow that it can
carry, this then causes latency equal to M), all graph’s eji edges
have total capacity

∑
j∈S aj , which is at most A

2 − 2, per each
i ∈ [1, k]. But every (vi, wi−1), i ∈ [2, k] or (v1, t) edge has
capacity equal to 1. This equivalently means that the total flow
that can be entered in every vertex vi cannot be more than A

2 −1

units, or else at least one edge, eji or (vi, wi−1) for i ∈ [2, k], ej1 or
(v1, t) for i = 1, will be oversaturated.

However, we have k vertices of type vi inH, so the overall capacity
will be kA2 − k units of flow. Now, having in mind that the total
traffic rate is kA2 + k + 1, what only remains is that 2k + 1 units
of flow should be routed on edge (s, wk). Since edge (s, wk) has
capacity 1, this means that it will be oversaturated, causing path
latency at least lP = M ≥ bn2 c.
The meaning of all these that we have already described, is that
we cannot avoid at least one edge of being oversaturated.

Here again, is a demonstration of this case for n = 4, or k = 2.

At the first case, edge (s, w2) gets flow equal to its capacity, the
worst case scenario. As we can see, the only solution that will
cause none of the edges (s, v1) or (s, v2) to be oversaturated, is
that the rest of the traffic be equally shared to A

2 + 1. But this

will oversaturate ej1 or (v1, t) for i = 1, ej2 or (v2, w1) for i = 2.

In Fig. 2.19, the paths in red are those that have at least one
link oversaturated. Here, paths P1 : s → v2 → w1 → t and P j2 :

(s, v1), eji , (w1, t), for every j ∈ S, have latency lP1 = l
P j2

= M .

At the second and final case as it is shown in Fig. 2.20, our efforts
will be to avoid edges ej1 or (v1, t) for i = 1, ej2 or (v2, w1) for i = 2
of being oversaturated, as we have described earlier. But this will
cause extra flow on edge (s, w2), beyond its capacity, and thus it
gets oversaturated. In that case, path P : s→ w2 → t (red path)
has latency lP = M .

Since for every feasible flow, at least one link will be oversatu-
rated, we come to the conclusion that at the equilibrium flow, all
paths’ latencies will be at least M . Thus, Leq(H) ≥M ≥ bn2 c.

Thus, for every case and for every subnetwork H, Leq(H) ≥ bn2 c. But
this leads us to contradiction, since by the hypothesis, there exists a
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Figure 2.19: Leq(HA) < bn2 c - Assuming Partition instance is ‘No’. (b)∑
j∈S aj <
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subnetwork HA returned by the algorithm, such that Leq(HA) < bn2 c.
This completes the proof.

2.4 Recognizing Paradox-Ridden Instances

We have just proved that detecting paradox-ridden networks with standard
general or even linear latency functions is as hard as solving the P = NP
problem.

But if we relax our assumptions a little, by having latencies linear but
strictly increasing, then things become easier. More details on these, in [16]
and [2].

Theorem 2.13. Paradox-ridden instances can be detected in polynomial
time if the latency functions are strictly increasing and linear.

Proof. Let’s assume that we have an instance (G, r, l) with G = (V,E).
In lemma 1.11 we have proved that given an instance with linear latency

functions, then we can find its optimum flows in polynomial time. But by
lemma 1.8, since the latencies are strictly increasing, then this optimum
solution should be unique, say o.

Now, by definition 2.1, if the instance is paradox-ridden then there ex-

ists a subnetwork H ⊂ G, such that Leq(H) = Lopt(G) =
Leq(G)
PoAG

. Put it
differently, flow o of G should be equilibrium flow for H.

But lemma 2.8 gives us a convenient way of checking whether a feasible
flow is an equilibrium one. Just verify if for every link e = (v, w) with oe > 0,
ds(w)− ds(v) = le(oe) holds.

Apparently, this verification can be accomplished in polynomial time,
since E = O(n2), if |V | = n. Also, if the network is paradox-ridden, then
H = (VH , EH), where VH = V and EH = E \ {e : oe = 0}.

Now, imagine an instance (G, r, l), with G = (V,E), where latency func-
tions are linear, le(x) = ae ·x+be, where ae ≥ 0. This means that there could
be links with strictly increasing latencies, ae > 0, and links with constant
latencies, ae = 0. Let Ec ⊆ E, where Ec = {e ∈ E : ae = 0}, the set of
edges with constant latencies, and Ei = E \Ec the set of edges with strictly
increasing latencies.

By lemmas 1.7 and 1.8, it should be clear that links with strictly increas-
ing latencies induce the same optimal flow, while different optimal flows may
travel through links with constant latencies. Thus, let’s assume that we have
in our hands an optimal flow o. The following linear program then, gives us
the set of all optimal flows:
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(LP):

minC(f) = min
∑
e∈Ec

le(fe)fe = min
∑
e∈Ec

be · fe

subject to ∑
u:(v,u)∈Ei

o(v,u) +
∑

u:(v,u)∈Ec
f(v,u)

=
∑

u:(u,v)∈Ei
o(u,v) +

∑
u:(u,v)∈Ec

f(u,v), ∀v ∈ V \ {s, t}

∑
u:(s,u)∈Ei

o(s,u) +
∑

u:(s,u)∈Ec
f(s,u) = r, flow − out s ∈ V

∑
u:(u,t)∈Ei

o(u,t) +
∑

u:(u,t)∈Ec
f(u,t) = r, flow − in t ∈ V

fe ≥ 0, ∀e ∈ Ec

In particular, it should be clear that the solutions to the above (LP)
are feasible flows, since they are flows that come out of s and end into t,
summing up to the traffic rate r.

Moreover, a solution to the (LP) agrees with the given optimal flow
o on all edges in Ei. Two different solutions of the (LP) differ only on
edges belonging in Ec. Additionally, they minimize the objective function,
which includes only the term

∑
e∈Ec be · fe, and does not include the term∑

e∈Ei ae · o2
e + be · oe, since it is fixed for every solution to the (LP) above.

Thus, every solution corresponds to an optimal flow.
Conversely, consider an optimal flow õ, other than the optimal flow o

given. It should be clear that it induces the same latency with o, for all
e ∈ Ei. It only causes different be · fe values, for every e ∈ Ec, than o does
(although the sum will be the same). That is, optimal flow õ minimizes
the objective function. It also satisfies all (LP)’s conditions, at first since it
is a feasible flow, and secondly since it differs only on edges with constant
latencies. Thus, it is a solution to (LP).

But we can find this optimal flow o by solving section’s 1.4 (NLP 2),
which by lemma 1.11 can be computed in polynomial time. Moreover, if
(LP) has a unique optimal solution, this by [17] theorem 2, can be computed
also in polynomial time. Thus we have the following theorem:

Theorem 2.14. For instances with linear latency functions, the problem of
detecting paradox-ridden networks can be decided in polynomial time, where
(LP) has a unique optimal solution.

In fact, if (LP) has a small number of feasible solutions, that means a
polynomial number of feasible solutions, the problem of detecting paradox-
ridden networks can also be decided in polynomial time. After all, if o is a
feasible optimal solution that is a Nash equilibrium at the same time, then
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any other optimal solution o′ with {e : o′e > 0} ⊆ {e : oe > 0} is also a Nash
equilibrium.

A network with a small number of constant latency functions, is such an
example, which is usually the case, since in real networks there are not so
many constant latency links.

In section 1.5 (Hochbaum, Shanthikumar [9]) we have referred to a way
of finding ε - accurate optimum solution to the (NLP), in time polynomial
in log (1

ε ) and the input size. This means that, given an instance (G, r, l)
where G = (V,E), we can compute rather efficiently an optimal flow of G,
within any specified accuracy level.

Let’s assume now that the latency functions are polynomials. That is,
le(x) =

∑d
i=0 ae,ix

i, where ae,i ≥ 0, for every e ∈ E.
So, having computed optimal flow o, it should be rather tempting, due

to monetary reasons, to try to modify coefficients ae,i in such a way that
optimal flow o is turned into a Nash flow!

This modification should be the minimum one, which means that the
Euclidean distance of each edge’s e new coefficients ãe,i with the original
ones ae,i, should be the minimum possible. Also, the equilibrium latency of
every path P , with oP > 0, should be equal to Lopt(G).

This problem is called MINIMUM LATENCY MODIFICATION PROB-
LEM.

Theorem 2.15. For instances with polynomial latency functions, the MINI-
MUM LATENCY MODIFICATION PROBLEM can be solved in polynomial
time.

Proof. Let’s assume that the optimum flow is traversed through the network
Go = (V,Eo), where Go ⊆ G.

After all the above mentioned, the following quadratic program (QP)
should give solution to the problem:

(QP):

min
∑
e∈Eo

d∑
i=0

(ae,i − ãe,i)2

subject to∑
e∈P

d∑
i=0

ãe,io
i
e = Lopt(G),∀P ∈ PGo

ãe,i ≥ 0, ∀e ∈ Eo,∀i ∈ {0, 1, . . . , d}

Since o is computed efficiently, by the first equality constraint of (QP),
all positive flow driven paths have equal latency Lopt(G).

Also, (LP) always admits a feasible solution. Indeed, by corollary 1.5,
optimum flow o is a Nash flow on (Go, r, l

∗).
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But l∗e(x) = d(x·le(x))
dx =

∑d
i=0(i+ 1)ae,ix

i.
This means that there exists a common equilibrium latency Λ > 0 for all

paths in Go. So, if we scale every edge’s e coefficient (i+ 1)ae,i by a factor
Lopt(G)

Λ , then we get the (QP)’s first equality constraint.
But (QP) is a convex separable quadratic program, that can be solved in

polynomial time within any specified accuracy (for more on this, the reader
is advised to visit [19]), and this completes the proof.



Chapter 3

Braess’s Paradox in Large
Random Graphs

3.1 Braess Ratio

Having described all the above about the Braess’s Paradox, it is time to ad-
dress the following fundamental question: “Is Braess’s paradox a widespread
phenomenon, or is it such a rare case that can be ignored in practice?” This
question has been addressed by [20], [21], [22], and is answered in the affir-
mative.

Before getting into the details of that answer, it is time to introduce a
factor, called the Braess ratio. The Braess ratio is the largest factor by which
the equilibrium latency of all traffic can be decreased by edge removals. More
formally:

Definition 3.1. The Braess ratio β(G, r, l) of an instance G = (G, r, l) is
defined as:

β(G, r, l) = max
H⊆G

k
min
i=1

Lieq(G, r, l)

Lieq(H, r, l)

where H ranges over all the subnetworks of G that contain an si − ti
path for each i.

In a single commodity network, definition 3.1 simplifies to:

β(G, r, l) = max
H⊆G

Leq(G, r, l)

Leq(H, r, l)
(3.1)

where Leq(H, r, l) denotes the equilibrium latency of the subnetwork H
with traffic rate r and cost functions l(·).

The following three lemmas show the Braess ratio’s relationship with the
PoAG factor, and the paradox-free, paradox-ridden instances. The proofs
are quick and easy.

36
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Lemma 3.2. If G is a single commodity network then:

β(G, r, l) ≤ PoAG

Proof. By relations (1.8) and (3.1) we have:

β(G, r, l) = max
H⊆G

Leq(G, r, l)

Leq(H, r, l)
≤ Leq(G, r, l)

Lopt(G, r, l)
= PoAG

Lemma 3.3. If a single commodity network G is paradox-free then:

β(G, r, l) ≤ 1

Proof. By relations (1.8), (3.1) and definition 2.2 we have:

β(G, r, l) = max
H⊆G

Leq(G, r, l)

Leq(H, r, l)
≤ 1

since ∀H ⊆ G : Leq(H, r, l) ≥ Leq(G, r, l).

Lemma 3.4. If a single commodity network G is paradox-ridden then:

β(G, r, l) = PoAG

Proof. By relations (1.8), (3.1) and definition 2.1 we have:

β(G, r, l) = max
H⊆G

Leq(G, r, l)

Leq(H, r, l)
=

Leq(G,R, l)

Lopt(G,R, l)
= PoAG

since ∃G′ ⊆ G, such that ∀H ⊆ G:
L(G′, r, l) ≤ L(H, r, l) and L(G′, r, l) = Lopt(G, r, l).

3.1.1 Two Useful Lemmas

Before moving on, we should plug into this section two useful lemmas, lemma
3.5 and lemma 3.8.

Lemma 3.5. If f is a Nash equilibrium flow for (G, r, l), then for every
vertex v we have that:

ds(v) + dt(v) ≥ Leq(G, r, l)

where dt(v) denotes the length, with respect to edge lengths {le(fe)}e∈E,
of the shortest v − t path in G, with equality holding if v is a flow carrying
vertex.
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s t

le1(x) = x

f̃e1 = 1

(a) Original graph

s t

le2(x) = 0

le1(x) = x

fe2 = 1

(b) Added lower link

Figure 3.1: (f, f̃)-light and heavy edges, (f, f̃)-alternating paths. e1 is a
forward (f, f̃)-light edge and alternating path, e2 is a forward (f, f̃)-heavy
edge.

Proof. If v ≡ s or v ≡ t, then this case is trivial.
It is easy to see, that the above relation holds by the “triangle inequal-

ity”, for all kinds of flows, and by the definition of shortest path labels
d.

Now, if v is a flow carrying vertex, then it cannot be the case ds(v) +
dt(v) > Leq(G, r, l), because this contradicts the concept of the equilibrium
flow, since there would be a path with latency bigger than that of Leq(G, r, l).

But if we accept this fact for that specific path, then all of the rest paths,
should suffer from the same equilibrium overall latency ds(v) + dt(v) = L′.
This means that all paths have the same latency L′ > Leq(G, r, l), which
contradicts the meaning of the equilibrium latency Leq(G, r, l).

Lemma 3.8 states that the equilibrium latency is a non-decreasing or
strictly increasing function of the traffic rate, if the latencies are non-decreasing
or strictly increasing respectively. In order to prove that, we have to define
the idea of an “alternating path”, which I guess it’s worth mentioning.

Definition 3.6. Let f and f̃ be flows feasible for the instances (G, r, l) and
(G, r̃, l), respectively:

� An edge e of G is (f, f̃)-light if fe ≤ f̃e and f̃e > 0, (f, f̃)-heavy if
fe > f̃e, and (f, f̃)-null if fe = f̃e = 0.

� An undirected path is (f, f̃)-alternating if it comprises only forward
light edges and / or backward heavy edges.

Consider the instance of Fig. 3.1.
It is obvious that adding the lower link, the overall latency decreases from

1 to 0. The upper link is then a forward light edge, since fe1 = 0 < 1 = f̃e1 ,
while the lower link is a forward heavy edge, since fe2 = 1 > 0 = f̃e2 . The



CHAPTER 3. BRAESS’S PARADOX IN LARGE RANDOM GRAPHS39

s t

heavy

light

e2

e1

Figure 3.2: An overall demonstration - e1 is a forward (f, f̃)-light edge and
alternating path, e2 is a forward (f, f̃)-heavy edge.

s

u

w

t

x 1

1 x

The flows are named f̃

(a) Original graph

s

u

w

t

x 1

0

1 x

The flows are named f

(b) Added (u,w) link

Figure 3.3: Original Braess’s paradox instance - (f, f̃)-light and heavy edges,
(f, f̃)-alternating paths.

undirected upper path is apparently (f, f̃)-alternating. Fig. 3.2 summarizes
this fact.

Now, consider the original Braess’s paradox instance in Fig. 3.3.
As we have already mentioned, adding the (u,w) link, the overall latency

now increases from 1 to 2. The (u, t) and (s, w) links are then forward light
edges, since f(u,t) = f(s,w) = 0 < 1

2 = f̃(u,t) = f̃(s,w), while (s, u), (u,w) and

(w, t) links are forward heavy edges, since f(s,u) = f(w,t) = 1 > 1
2 = f̃(s,u) =

f̃(w,t) and f(u,w) = 1 > 0 = f̃(u,w). Since (u,w) is a forward heavy edge,
(w, u) is then a backward heavy edge. The undirected path (s, w), (w, u)
and (u, t) is apparently (f, f̃)-alternating. Fig. 3.4 summarizes this fact.

The idea behind this schema is that, according to [23], along an (f, f̃)-
alternating path, call it P , with no added edges, we can prove by induction
that ds(v) ≤ d̃s(v), ∀v ∈ P , like the first instance above, whereas if the
alternating path contains the added edge, like the original Braess’s paradox
instance does, ds(v) ≥ d̃s(v), ∀v ∈ P .

It can be proven, that an s− t alternating path always exists ([13]):

Lemma 3.7. Let f and f̃ be flows feasible for the single-commodity in-
stances (G, r, l) and (G, r̃, l), respectively, with r ≤ r̃. Let also G = (V,E).
Then there is an (f, f̃)-alternating s − t path. Moreover, if f is directed
acyclic, then every such path begins and ends with an (f, f̃)-light edge.
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s

u

w

t

heavy light

heavy

light heavy

Figure 3.4: Original Braess’s paradox instance - (a) (u, t) and (s, w) are
forward (f, f̃)-light edges. (b) (s, u), (u,w) and (w, t) are forward (f, f̃)-
heavy edges. (c) The undirected path (s, w), (w, u) and (u, t) is (f, f̃)-
alternating.

Proof. The proof is by contradiction. Suppose that there is no (f, f̃)-
alternating s − t path. Let S denote the maximal set of nodes reachable
from s via (f, f̃)-alternating paths. This means that S contains s, but it
does not contain t, since then there would be at least one (f, f̃)-alternating
s− t path. Apparently, S is an s− t cut. Thus:

∑
e∈δ+(S)

fe −
∑

e∈δ−(S)

fe = r (3.2)

∑
e∈δ+(S)

f̃e −
∑

e∈δ−(S)

f̃e = r̃ (3.3)

where δ+(S) and δ−(S) are similar sets of edges defined in theorem 2.10.
Edges that exit S cannot be light, since then the corresponding vertices

that these edges have as head, should belong to S, which contradicts the
hypothesis of S’s maximality. This means that all edges that belong to
δ+(S), should be (f, f̃)-heavy or null.

For the same reason, edges that enter S cannot be heavy, since then
the corresponding vertices that these edges have as tail, should belong to
S, which contradicts the hypothesis of S’s maximality. So, all edges that
belong to δ−(S), should be (f, f̃)-light or null.

Also, at least one edge that belongs to δ+(S), should be (f, f̃)-heavy.
That is, because if all edges were (f, f̃)-null, then by relations (3.2) and
(3.3) we should have that 0−

∑
e∈δ−(S) fe = r, 0−

∑
e∈δ−(S) f̃e = r̃ or that

r ≤ 0, r̃ ≤ 0 respectively. Then, the only one valid case would be that
r = r̃ = 0, which is a trivial case.

So,
∑

e∈δ+(S) fe >
∑

e∈δ+(S) f̃e, since edges that belong to δ+(S) are

(f, f̃)-heavy or null, with at least one edge being (f, f̃)-heavy. Also,
∑

e∈δ−(S)

fe ≤
∑

e∈δ−(S) f̃e or −
∑

e∈δ−(S) fe ≥ −
∑

e∈δ−(S) f̃e, since edges that belong

to δ−(S) are (f, f̃)-light or null. Thus, combining the last with the relations
(3.2) and (3.3) above, we have that:
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r =
∑

e∈δ+(S)

fe −
∑

e∈δ−(S)

fe >
∑

e∈δ+(S)

f̃e −
∑

e∈δ−(S)

f̃e = r̃

which contradicts our hypothesis.
Moreover, if f is directed acyclic, then it sends no flow into s or out of

t. Thus, the first and last edges of every (f, f̃)-alternating s − t path are
light.

Lemma 3.8. For any network G and continuous, non-decreasing or strictly
increasing latency functions le(·), Leq(G, r, l) is continuous and non-decreasing
or strictly increasing function of r, respectively.

Proof. The proof of this lemma, is due to [13], and uses lemma 3.7.
Let’s assume that r ≤ r̃ and that the latency functions are non-decreasing.

What we need to prove is that Leq(G, r, l) ≤ Leq(G, r̃, l) or equivalently that
ds(t) ≤ d̃s(t), since Leq(G, r, l) = ds(t), Leq(G, r̃, l) = d̃s(t).

But we are going to prove a stronger result, that ds(v) ≤ d̃s(v) for every
v that belongs to an (f, f̃)-alternating s−t path, which by lemma 3.7 always
exists.

The proof is by induction.
The base case, ds(s) = d̃s(s) is trivial.
So, let’s suppose that ds(v) ≤ d̃s(v), which is the induction hypothesis,

and assume that the next vertex on the (f, f̃)-alternating s − t path is w.
Then there are only two possibilities:

� Edge e = (v, w) is forward light:

Then fe ≤ f̃e, and since le(·) is a non-decreasing latency function, we
have that le(fe) ≤ le(f̃e).
But from lemma 2.8, inequality (2.1) and by the induction hypothesis,
we have that:

ds(w) ≤ ds(v) + le(fe) ≤ d̃s(v) + le(f̃e) = d̃s(w)

since f̃e > 0 (by lemma 2.8).

� Edge e = (w, v) is backward heavy:

Then fe > f̃e, and since le(·) is a non-decreasing latency function, we
have that le(fe) > le(f̃e).

Since fe > f̃e, then fe > 0, which by lemma 2.8 means that ds(v) =
ds(w)+le(fe). Also, by the same lemma, we have that d̃s(v) ≤ d̃s(w)+
le(f̃e). Then, using also the induction hypothesis, we have that:

ds(w) = ds(v)− le(fe) < d̃s(v)− le(f̃e) ≤ d̃s(w)
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The induction is complete.
Now, if we have strictly increasing latency functions, things are still

simple. We just have to modify the base case, since ds(s) = d̃s(s), and check
that for the first node v of the (f, f̃)-alternating s − t path, ds(v) < d̃s(v).
This is simple to check using the same method as described above. Just
replace relation le(fe) ≤ le(f̃e) with le(fe) < le(f̃e) for forward light edge
e = (s, v), and conclude that ds(v) < d̃s(v). The same thing applies for the
main body of the induction.

The proof is complete.

3.2 Graph Models

To show that the Braess’s paradox is or is not likely to happen, papers [20],
[21] make extent use of the Erdös-Rényi random graph model. Paper [22]
uses the notion of Expanders, graphs with some special attributes.

The Erdös-Rényi random graph model is used to prove the existence of
graphs satisfying various properties, or equivalently, to provide a rigorous
definition of what it means for a property to hold for almost all graphs.

It is a model for generating G ∈ G(n, p) random graphs with:

• n nodes.

• equal probability p of setting an edge between each pair of nodes,
independently of the other edges.

The Erdös-Rényi random graph model, has the following properties:

� G ∈ G(n, p) has
(
n
2

)
p edges on average.

� The degree distribution is binomial [24]:

P
(
deg(v) = k

)
=

(
n− 1

k

)
pk(1− p)(n−1−k)

� As n grows large enough, the degree distribution approximates Poisson
distribution:

P
(
deg(v) = k

)
−→ (np)ke(−np)

k!

as n→∞ and np = const. Thus:

E[deg(v)] = np (3.4)

� lnn
n is a sharp threshold of the connectedness of a graph G in G(n, p)

[25]:
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• if np = 1 then a graph G ∈ G(n, p) will almost surely have a

largest component whose size is of order n
2
3 .

• If np tends to a constant c > 1, then a graph G ∈ G(n, p) will al-
most surely have a unique giant component containing a positive
fraction of the vertices. No other component will contain more
than O(log n) vertices.

• if np < (1− ε) lnn or better p < (1− ε) lnn
n , then G ∈ G(n, p) will

almost surely contain isolated vertices, and thus be disconnected.

• if np > (1 + ε) lnn or better p > (1 + ε) lnn
n , then G ∈ G(n, p) will

almost surely be connected.

The (α, β)-Expander, α, β > 0, is a special family of graphs G = (E, V ),
where the expansion factor is constant:

min
U⊂V,|U |≤ |V |

2

|Γ(U)|
|U |

= Ω(1)

where Γ(U) is the neighborhood of U . Formally speaking, what follows is
the definition of the (α, β)-Expander graphs:

Definition 3.9. (α, β)-Expander graphs:
A graph with n vertices is an

(
α, β

)
-Expander if for every set of vertices U :

|Γ(U) ∪ U | ≥ min {(1 + α)|U |, (1 + β)
n

2
}

Intuitively, an Expander is a graph that has strong connectivity proper-
ties. It is a graph with a constant average degree, where beginning from s
and moving towards t, every set of vertices (including the singleton set that
contains only one vertex), expand themselves with a constant expansion fac-
tor α until they reach about half of the vertices V of the graph, precisely a
factor 1 + β of |V |2 . The same applies conversely, moving from t to s.

Many real world networks are (α, β)-Expanders. Networks with highly
skewed degree distributions, such as power-laws, belong to this family.

For a fixed value γ > 1, we say that a graph is a power law graph with
exponent γ, if the number of vertices of degree k is proportional to k−γ .

The Internet is such a network. It has been proven that in the Internet,
the frequency of nodes with degree d, fd, is proportional to some power of
d:

fd ∝ dζ

where ζ < 0.
For the Internet again, a node’s degree dv is proportional to some power

of the node’s rank rv, where rank is the node’s index, when we sort all nodes
in decreasing order:
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dv ∝ rηv
where η < 0.

More on this can be found in [26], [27], [28], [29] and [30].
It is now time to quote three more lemmas without proof. The first one

is the expansion property of the Erdös-Rényi graphs, similar with the one of
the (α, β)-Expanders (definition 3.9).The second one is a probability theory’s
useful tool that gives exponentially decreasing bounds on tail distributions
of sums of independent random variables, while the third one is the Law
of Large Numbers, which relates the mean with the expected value of an
experiment, when it is being performed a large number of times.

Lemma 3.10. There is some c > 1 such that, if p > c lnn
n , then with high

probability every subset U of G in G(n, p) is such that:

|Γ(U)| ≥
(e− 1

e
− o(1)

)
min {np|U |, n}

where Γ(U) is the neighborhood of U .
Now, since e−1

e > 3
5 , we have that:

|Γ(U)| ≥
(3

5
− o(1)

)
min {np|U |, n}

Lemma 3.11. Chernoff-Hoeffding Bound: Let Xi be a collection of inde-
pendent random variables such that ai ≤ Xi ≤ bi. Define X =

∑
iXi, then

for all ε ∈ (0, 1):

P
(
|X − E[X]| ≥ εE[X]

)
≤ 2e

− 2ε2E[X]2∑
i(bi−ai)2

or equivalently:

P
(
(1− ε)E[X] ≤ X ≤ (1 + ε)E[X]

)
≥ 1− 2e

− 2ε2E[X]2∑
i(bi−ai)2 (3.5)

If in addition the Xi are identically distributed with Xi ∈ {0, 1}, then:

P
(
X − E[X] ≥ εE[X]

)
≤ e−

ε2E[X]
3

P
(
X − E[X] ≤ −εE[X]

)
≤ e−

ε2E[X]
2

or equivalently:

P
(
(1− ε)E[X] ≤ X ≤ (1 + ε)E[X]

)
≥ 1− e−

ε2E[X]
3 (3.6)

P
(
X ≤ (1 + ε)E[X]

)
≥ 1− e−

ε2E[X]
3 (3.7)

P
(
X ≥ (1− ε)E[X]

)
≥ 1− e−

ε2E[X]
2 (3.8)
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Lemma 3.12. Law of Large Numbers: The average Xn of the results ob-
tained from a large number of trials, n, should be close to the expected value
E[Xn], and will tend to become closer as more trials are performed:

Xn −−−→
n→∞

E[Xn]

where Xn = X1+X2+...+Xn
n .

In [20] Valiant and Roughgarden proved that for graphs G ∈ G(n, p),

where p >> n−
1
2

+ζ > (1 + ε) lnn
n for some ζ > 0, which means by the above

that G is not only almost surely connected, but is dense in some sense, then
Braess’s paradox occurs with high probability.

In [21] Chung and Young proved that for graphs G ∈ G(n, p), where
p ≥ c

P(B≤ δ
ln (n)

)
lnn
n = (1 + ε) lnn

n , c > 1 and B is a reasonable distribution

(as will be explained later on), which means by the above that G is almost
surely connected, but is sparse in some sense, then Braess’s paradox occurs
with high probability.

In [22] Chung, Young and Zhao proved that for the family of (α, β)-
Expander graphs, Braess’s paradox occurs with high probability. It can be
shown that the standard Erdös-Rényi graph with p > (1+ε) lnn

n is a (3
5np,

1
4)-

Expander.

3.3 Reasonable Distributions

In order to fully exploit the idea of a random graph, we have to define a way
to make the values of the latency functions random.

In [20] and [21] the graphs G ∈ G(n, p) have affine latency functions,
le(x) = ae · x + be, strictly increasing, while in [22] the (α, β)-Expander
graphs have polynomial latency functions of the form le(x) = he(x) + be,
where he(x) = a1,ex + a2,ex

2 + . . . + ak,ex
k is a strictly increasing function

too.
The randomness of the latency function values is succeeded via the fol-

lowing.
For the affine latency functions le(x) = ae · x+ be, the factors ae, be are

independently drawn from distributions A, B respectively, that satisfy some
mild technical conditions which are:

• A has bounded support [Amin, Amax] with Amin > 0.

• ae coefficients are dense in a closed interval IA, |IA| > 0, meaning that
∀J ⊆ IA and |J | > 0, P(ae ∈ J) > 0.

• be coefficients are dense around zero in a closed interval IB = [0, η],
η > 0, meaning that ∀J ⊆ IB and |J | > 0, P(be ∈ J) > 0.



CHAPTER 3. BRAESS’S PARADOX IN LARGE RANDOM GRAPHS46

The distributions A, B under the above restrictions are called reasonable
distributions.

For the polynomial latency functions le(x) = he(x) + be where he(x) =
a1,ex+ a2,ex

2 + . . .+ ak,ex
k, (he, be) are drawn independently from distribu-

tions (H,B). We call (H,B) reasonable if:

• P(H ∈ H∗) = 1, where H∗ is the set of convex, strictly increasing
functions he such that he(0) = 0.

• there exist Hmin, Hmax ∈ H∗ such that Hmax(0) = Hmin(0) = 0 and
P(Hmin ≤ H ≤ Hmax) = 1.

• there exist H1, H2 ∈ H∗ where H1(0) = H2(0) = 0 and H1 < H2

otherwise, such that for all ε > 0, P
(
(1 − ε)H1 ≤ H ≤ H1

)
> 0 and

P
(
(1− ε)H2 ≤ H ≤ H2

)
> 0.

• there is some interval IB = [0, ν] with ν > 0 such that for every non-
trivial subinterval J ⊆ IB, P[be ∈ J ] > 0.

Actually, H includes a large natural class of random convex functions,
where the distribution over polynomials is a sub-class of it. LetA1, A2, . . . , Ak
be continuously distributed positive random variables. Then the distribu-
tion over polynomials A1x+A2x

2 +. . .+Akx
k, satisfies the conditions for H.

Thus, these reasonable distributions can be viewed as a strict generalization
of the reasonable distributions of the affine latency functions described just
above.

We will also say that an instance (G, r, l) of an (α, β)-Expander graph
G is δ-reasonable if:

• B is a continuous distribution except potentially at 0.

• αP(B ≤ δ
ln (n)) > 4.

• κ = minv∈Γ(s)∪Γ(t) deg(v)− 1 is such that κ is ω(1).

• min{deg(s), deg(t)} is o
(
ακP

(
B ≤ δ

)
P
(
B ≤ δ

ln (n)

))
.

• L(G, r, l) is O(1).

It is now time to give formal definitions of the three problems [20], [21],
[22]:

Theorem 3.13. Braess’s Paradox occurs in Large Dense Random
Graphs with linear edge latency functions:

Let G be an Erdös-Rényi random graph on n vertices with edge probability
p = Ω(n−( 1

2
)+ζ), ζ > 0. Let A and B be reasonable distributions and let all

latency functions have the form le(fe) = aefe+be where (ae, be) is distributed
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according to A×B. There is a constant ρ > 1 such that, with high probability,
network G admits a flow rate r such that the instance (G, r, l) has Braess’s
Ratio at least ρ.

Recall section 3.2. Here, p >> n−
1
2

+ζ > (1 + ε) lnn
n .

Theorem 3.14. Braess’s Paradox occurs in Large Sparse Random
Graphs with linear edge latency functions:

Let G be an Erdös-Rényi random graph on n vertices with edge probability
p. Let A and B be reasonable distributions and let all latency functions have
the form le(fe) = aefe + be where (ae, be) is distributed according to A× B.
There are constants δ > 0, c > 1, and ρ > 1 such that, if P

(
B ≤ δ

ln (n)

)
pn ≥

c ln (n), then there is a flow rate r such that the instance (G, r, l) has Braess’s
Ratio at least ρ with high probability.

Recall section 3.2. Here, p ≥ c
P(B≤ δ

ln (n)
)

lnn
n = (1 + ε) lnn

n , c > 1.

Theorem 3.15. Braess’s Paradox occurs in (α, β)-Expanders with
“polynomial edge latency” functions:

Let G be an (α, β)-Expander, let s and t be a source and sink pair such
that deg(t) =

(
1+o(1)

)
deg(s), let l = {le}e∈E(G) be the latency functions for

G and let r be a traffic rate. If for any sufficiently small fixed δ > 0, (G, r, l)
be a δ-reasonable instance, then with probability at least 1− e−Ω(minκ,deg(s))

Braess’s Paradox occurs.

3.4 Proof Idea

The proof of theorems 3.13, 3.14, 3.15 ([20], [21], [22]) is based on the
following idea:

Let G = (V,E) be a graph of a single commodity instance (G, r, l).
In order to prove that instance (G, r, l) is not paradox-free, by lemma

3.3 we have to prove that:

β(G, r, l) > 1

In the next few lines, we are going to show that in order to prove the
above, it is adequate to show that:

rG
′

l

(
2B(1− µ)

)
> r̃Gl (2B)

where 0 < µ < 1 and G′ = (V ′, E′) is a subgraph of G such that:

G′ ⊂ G
V ′ = V

E′ ⊂ E
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r̃Gl (2B) is a way of symbolizing the traffic rate r̃, that induces a total
Nash equilibrium latency Leq(G) equal to 2B.

Indeed, the reason is the following:
Since rG

′
l

(
2B(1 − µ)

)
> r̃Gl (2B), then there exists a Nash equilibrium

latency Lo of the instance (G′, r̃, l) such that:

rG
′

l

(
2B(1− µ)

)
> r̃G

′
l (Lo) = r̃Gl (2B)

But, making use of lemma 3.8, since the latency functions are strictly
increasing, if rG

′
l

(
2B(1− µ)

)
> r̃G

′
l (Lo), then 2B(1− µ) > Lo.

Thus, if by L(G, r, l) we symbolize the Nash equilibrium latency Leq(G)
of the instance (G, r, l), that is induced by the traffic rate r, then we have
the following:

L(G, r̃, l) = L(G, r̃Gl (2B), l) = 2B

L(H ′, r̃, l) ≤ L(G′, r̃, l) = L(G′, r̃G
′

l (Lo), l) = Lo

where H ′ ⊆ G such that ∀H ⊆ G, we have that Leq(H
′) ≤ Leq(H).

So we conclude that:

β(G, r̃, l) = max
H⊆G

L(G, r̃, l)

L(H, r̃, l)

=
L(G, r̃, l)

L(H ′, r̃, l)

≥ 2B

Lo
>

2B

2B(1− µ)
=

1

1− µ
> 1

Thus, by lemma 3.3, G is not paradox-free.
Fig. 3.5 gives an intuitive approach of the proof idea.
On the left hand side is the original Braess’s paradox, and on the right

hand side the random network’s Braess’s paradox.
At the original Braess’s paradox, the removal of the link (u,w), as fully

described in section 2.1, leads to a subnetwork G′ ⊂ G, such that for
the same traffic rate the equilibrium latency is decreased from 2 to 3

2 . On
the right hand side, we have the same basic idea.

By removing some links, that will be described shortly, we are leaded
again to a subnetwork G′ ⊂ G, such that for a bigger traffic rate r than the
original one r̃, the equilibrium latency is less than 2B (equilibrium latency
of G for traffic rate r̃), actually 2B(1− µ). So, by lemma 3.8, and since the
latency functions are strictly increasing, this is the same as saying that for
a traffic rate r̃ less than r, the equilibrium latency is more decreased to Lo
than that of 2B(1 − µ). Equivalently, this means that for the same traffic
rate r̃ of the original network G, the decrement is bigger, from 2B to Lo.
Thus, G is not paradox-free.
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(a) Original Braess’s Paradox (b) Random Network’s Braess’s Paradox

G

G′

G

G′

r = 1 LGeq = 2

r = 1 LG
′

eq = 3
2 < 2

r̃ LGeq = 2B

r

r̃

LG
′

eq = 2B(1− µ)

LG
′

eq = Lo < 2B(1− µ) < 2B

↘ ↘

rG
′

l

(
2B(1− µ)

)
> r̃G

′
l (Lo) = r̃Gl (2B)

Figure 3.5: An intuitive approach of the proof idea.

Let’s now see what links should be removed in order to obtain the sub-
network G′ ⊂ G.

Remember, that in the original Braess’s paradox, in section 2.1, besides
the (u,w) link that has 0 latency, we have two types of links. The links with
latency 1, (s, w), (u, t), and the links with latency x, (s, u), (w, t). This fact
guides us to the next definitions for the random graph G:

For the Erdös-Rényi random graphs ([20], [21]), let IA, IB be defined as
in section 3.3 and choose A1, A2 ∈ IA such that A1 < A2, B ∈ IB. Also, fix
0 < ε < 1 so that A1 < (1− ε)A2.

An edge e adjacent to s or t, with latency function of the form le(x) =
aex+ be, is called 1-type if:

� ae ≤ A1

� be ∈
(
B, (1 + ε)B

)
An edge e adjacent to s or t, with latency function of the form le(x) =

aex+ be, is called X-type if:

� ae ∈
(
(1− ε)A2, A2

)
� be ≤ εB

For the (α, β)-Expander graphs ([22]), let (H,B) be Reasonable Distri-
butions, defined as in section 3.3 and fix 0 < ε < 1, c constant.

An edge e adjacent to s or t, with latency function of the form le(x) =
he(x) + be, is called 1-type if:

� (1− ε)H1 ≤ he ≤ H1

� c ≤ be ≤ (1 + ε)c

An edge e adjacent to s or t, with latency function of the form le(x) =
he(x) + be, is called X-type if:
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� (1− ε)H2 ≤ he ≤ H2

� 0 ≤ be ≤ εc

Intuitively, 1-type edges have latencies of the form η · x + θ, where η
is “small” enough while θ is “big” enough so as to resemble the 1 latency
edges of the original Braess’s paradox. On the contrary, X-type edges have
latencies of the form η · x + θ, where η is “big” enough while θ is “small”
enough so as to resemble the x latency edges of the original Braess’s paradox.

What we are going to do, is group all the vertices of G in three groups.
The first group, G1X = (V1X , E1X), contains all the 1-type edges adja-

cent to s and all the X-type edges adjacent to t. Thus, it has the corre-
sponding vertices of these edges, plus the edges and vertices that connect
them.

The second group, GX1 = (VX1, EX1), contains all the X-type edges
adjacent to s and all the 1-type edges adjacent to t. Thus, it has the cor-
responding vertices of these edges, plus the edges and vertices that connect
them.

The third group, GU = (VU , EU ), contains all the rest edges adjacent to
s and t, that do not belong to G1X and to GX1. Again, it has the corre-
sponding vertices of these edges, plus the edges and vertices that connect
them.

Now, if the probability of being a 1-type edge, call it p1, is greater than
the probability of being an X-type edge, call it pX , we will randomly move
1-type edges to GU so that the expected degrees of s and t are the same in
G1X and GX1. The opposite process is followed when pX is greater than
p1. So, it must be clear enough that the following two equations are valid
(actually a formal proof will be presented using Chernoff-Hoeffding bounds):

E[ΓG1X
(s)] ' E[ΓGX1

(s)] ' E[ΓG1X
(t)] ' E[ΓGX1

(t)]

E[ΓGU (s)] ' E[ΓGU (t)]

Fig. 3.6 describes all the above and two more issues. The first is that
for any internal vertices u and v, we have that |ds(u)− ds(v)| ≤ δ, where δ
is a small positive number. This will be noted as the δ-lemma. The second
is that the latencies of all internal vertices are balanced in such a way that
ds(v) / ds(t)

2 . This will be noted as the balance lemma.
Now we are ready to answer the question given above, which asks what

links should be removed in order to obtain the subnetwork G′ ⊂ G.
G′ = (V ′, E′) has the same vertices with G = (V,E), V ′ = V , but does

not have the edges, which link together the groups G1X , GX1 and GU . Thus,
E′ ⊂ E.

Fig. 3.7 explains the above.
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s t

1−
typ
e

1−
typ
e

X − type

X − type

G
G1X

GX1

GU

G1X(V1X , E1X)

GX1(VX1, EX1)

GU (VU , EU )

δds(t)
2

ds(t)
2

Figure 3.6: 1-type and X-type edges - G1X , GX1, GU subgraphs - δ and
balance lemmas.

s t

1−
typ
e

1−
typ
e

X − type

X − type

G′
G1X

GX1

GU

G′(V ′, E′) ⊂ G(V,E)

V ′ = V

E′ ⊂ E

δds(t)
2

ds(t)
2

Figure 3.7: Resemblance with the original Braess’s paradox - In the original
Braess’s paradox, the link being removed is the “middle” one (u,w). Here,
the links being removed are again the “middle” ones, that link together
G1X , GX1 and GU .
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The resemblance with the original Braess’s paradox is obvious. In the
original Braess’s paradox, the link being removed is the “middle” one (u,w),
while in the random graph, the links being removed are again the “middle”
ones, that link together G1X , GX1 and GU .

In the remaining lines of this chapter, we will prove that rG
′

l

(
2B(1−µ)

)
>

r̃Gl (2B).

3.5 Proof

The section 3.4 gave a brief description of the proof idea that papers [20],
[21] and [22] present.

In this chapter we will focus on paper [21], that proves that Braess’s
paradox occurs in large random sparse graphs. We will try to approach
the proofs by giving pictures that make things easier and more attractive.
Of course, the proofs of the other two papers are not the same, but they
are based on the same ideas, as was dictated earlier in this chapter. Any
differences, will be explicitly made in order for the reader to have a good
idea of these proofs.

3.5.1 Sizes of G1X , GX1 and GU

Under the same proof ideas described in the previous chapter, the following
should be obvious:

Let’s define p∗ = min {p1, pX}.

� For each v ∈ Γ(s) \ {t}, if the edge (s, v) is 1-type assign v to V1X

with probability p∗

p1
. If it is X-type assign v to VX1 with probability

p∗

pX
. Otherwise, assign v to VU .

� For each v ∈ Γ(t)\{s}, if the edge (v, t) is 1-type assign v to VX1 with
probability p∗

p1
. If it is X-type assign v to V1X with probability p∗

pX
.

Otherwise, assign v to VU .

� For each v /∈ Γ(s) ∪ Γ(t) \ {s, t} assign v uniformly at random to one
of V1X , VX1 or VU .

G1X , GX1 and GU are defined according to section 3.4, with the edge
(s, t) assigned to GU , if it exists.

Let’s find the expected sizes of ΓG1X
(s),ΓG1X

(t),ΓGX1
(s),ΓGX1

(t). What
is in general the expected size of Γ(v), E[Γ(v)], where v ∈ V ? By relation
(3.4), E[Γ(v)] = E[deg(v)] = np. Thus, by all the above we should have
that:

E[ΓG1X
(s)] ' E[ΓGX1

(t)] ' p∗

p1
· p1 · (np) = p∗pn

E[ΓGX1
(s)] ' E[ΓG1X

(t)] ' p∗

pX
· pX · (np) = p∗pn
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Similarly, the expected sizes of ΓGU (s),ΓGU (t) should be:

E[ΓGU (s)] ' E[ΓGU (t)] '
(
1− (

p∗

p1
· p1 +

p∗

pX
· pX)

)
· (np) = (1− 2p∗)pn

Now, by relation (3.6), for ΓG1X
(s)
(
the same applies for ΓG1X

(t),ΓGX1
(s),ΓGX1

(t)
)
,

we have that:

P
(
(1− ε)E[ΓG1X

(s)] ≤ |ΓG1X
(s)| ≤ (1 + ε)E[ΓG1X

(s)]
)
≥ 1− e−

ε2E[ΓG1X
(s)]

3 ⇒

P
(
(1− ε)p∗pn ≤ |ΓG1X

(s)| ≤ (1 + ε)p∗pn
)
≥ 1− e−

ε2p∗pn
3

Similarly, using relation (3.6) again, then for ΓGU (s) we have that:

P
(
(1− ε)(1− 2p∗)pn ≤ |ΓGU (s)| ≤ (1 + ε)(1− 2p∗)pn

)
≥ 1− e−

ε2(1−2p∗)pn
3

The same applies for ΓGU (t) too.

Now, since 1− e−
ε2p∗pn

3 and 1− e−
ε2(1−2p∗)pn

3 are numbers very close to 1
as n grows large enough, this means that with high probability we have that:

(1− ε)p∗pn ≤ |ΓG1X
(s)| ' |ΓGX1

(s)|
' |ΓG1X

(t)| ' |ΓGX1
(t)| ≤ (1 + ε)p∗pn (3.9)

(1− ε)(1− 2p∗)pn ≤ |ΓGU (s)| ' |ΓGU (t)| ≤ (1 + ε)(1− 2p∗)pn (3.10)

3.5.1.1 Differences with Large Dense Random Graphs

In [20] the sets G1X , GX1 and GU differ in some way. Specifically, for the
vertex sets V1X , VX1 and VU , we have:

V1X = S1 ∪ T2 ∪Q1

VX1 = S2 ∪ T1 ∪Q2

VU = U ∪Q3

The sets S1, S2, T1, T2, Q1, Q2, Q3, U will be described just after we give
the following definition of probabilities P1, P2.

If v is a vertex such that v ∈ V \ {s, t}, then this paper defines also the
following probabilities:

• P1 is the probability that edge (s, v)
(
(v, t) respectively

)
is 1-type,

while edge (v, t)
(
(s, v) respectively

)
is either absent or not 1-type.

Obviously:
P1 = p · p1 · (1− p · p1)
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• PX is the probability that edge (s, v)
(
(v, t) respectively

)
is X-type,

while edge (v, t)
(
(s, v) respectively

)
is either absent or not X-type.

Obviously:
P1 = p · pX · (1− p · pX)

Let’s also define P ∗ = min {P1, PX}.
Then, by defining the following, we have analogous behavior of the dis-

tributions of all the vertices to the groups S1∪T2∪Q1, S2∪T1∪Q2, U ∪Q3,
with the [21] distribution of the vertices to the sets V1X , VX1 and VU :

� For each v ∈ Γ(s), if the edge (s, v) is 1-type, while edge (v, t) is either
absent or not 1-type, assign v to S1 with probability P ∗

P1
. If it is X-

type, while edge (v, t) is either absent or not X-type, assign v to T1

with probability P ∗

PX
. Otherwise, assign v to U .

� For each v ∈ Γ(t), if the edge (v, t) is 1-type, while edge (s, v) is either
absent or not 1-type, assign v to S2 with probability P ∗

P1
. If it is X-

type, while edge (s, v) is either absent or not X-type, assign v to T2

with probability P ∗

PX
. Otherwise, assign v to U .

� For each v /∈ Γ(s)∪Γ(t) or if (s, v) or (v, t) has its b-coefficient at least
(1 + ε)B, assign v uniformly at random to one of Q1, Q2 or Q3.

� Otherwise, unclassified vertices are assigned to U .

Again, by Chernoff - Hoeffding bounds relation (3.6), we have that:

(1− ε)Ω(pn) ≤ |S1| ' |S2| ' |T1| ' |T2|
' |Q1| ' |Q2| ' |Q3| ' |U | ≤ (1 + ε)Ω(pn)

where ε = 1
(pn)3 , and Ω(pn) is the expected size of each of the above groups.

Recall by section 3.2 that Ω(pn) >> (1 + ε) lnn.

3.5.1.2 Differences with Expander Graphs

In [22] the sets G1X , GX1 and GU differ under the following manner.
The only thing that changes, is the way the vertices are distributed in

the sets V1X , VX1 and VU .
By defining the following, we have analogous behavior of the distribu-

tions of all the vertices to the above groups, with the [21] distribution of the
vertices to the corresponding sets V1X , VX1 and VU :

� For each v ∈
(
Γ(s) ∪ Γ(t)

)
\
(
Γ(s) ∩ Γ(t)

)
:

• If the edge (s, v) is 1-type, assign v to V1X with probability pX .

• If the edge (s, v) is X-type, assign v to VX1 with probability p1.
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• If the edge (v, t) is 1-type, assign v to VX1 with probability pX .

• If the edge (v, t) is X-type, assign v to V1X with probability p1.

• Otherwise assign v to VU with the remaining probability.

� For each v ∈ Γ(s) ∩ Γ(t):

• If the edge (s, v) is 1-type and (v, t) is X-type, assign v to V1X .

• If the edge (s, v) is X-type and (v, t) is 1-type, assign v to VX1.

• Otherwise assign v to VU with the remaining probability.

� The remaining vertices are assigned with probability p1pX to V1X , with
the same probability p1pX to VX1, and with probability 1− 2p1pX to
VU .

What are the expected sizes of the sets V1X , VX1 and VU? Apparently
they are as follows:

E[|V1X |] = E[|VX1|] = p1pXn

E[|VU |] = (1− 2p1pX)n

The rest follow easily.

3.5.2 δ-Lemma

Now we are going to prove the δ-lemma, which says that for any internal
vertices u and v, then |ds(u)−ds(v)| ≤ δ, where δ is a small positive number.
At the beginning we prove the following lemma:

Lemma 3.16. For any sufficiently small fixed δ > 0, there are some con-
stants c > 1 and n0 > 0 such that, if n > n0, np > c ln (n) and P

(
B ≤

δ
ln (n)

)
pn ≥ 4, then for any two flow carrying vertices u, v other than

s, t in the instance (G, r̃Gl (2B), l), we have |ds(u)− ds(v)| ≤ 7δ and |dt(u)−
dt(v)| ≤ 7δ with high probability.

Proof. The proof is by induction.
Let vs, vt be flow carrying vertices that minimize ds(vs), dt(vt) respec-

tively.
Since for any flow vertex v we have that ds(v)+dt(v) = 2B, it is adequate

to prove that:

ds(vt)− ds(vs) ≤ 7δ

Obviously, the flow carrying edge es = (s, vs) has flow that is given by

fes = les−bes
aes

≤ 2B
Amin

. Fig. 3.8 describes this fact.
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s vs
esdeg(s)

fes ≤ 2B
Aminr̃Gl (2B)

Figure 3.8: The flow of edge es = (s, vs).

s vs
es

deg(s) ≤ 3
2np

fes ≤ 2B
Aminr̃Gl (2B) ≈ fesdeg(s) ≤ 3Bnp

Amin

Figure 3.9: A bound of r̃Gl (2B).

By Chernoff - Hoeffding bounds relation (3.7), and since by relation (3.4)
E[deg(s)] = np and np > c ln (n), then for ε = 1

2 we have that:

P(deg(s) ≤ 3

2
np) ≥ 1− e−

1
2

2
np

3 > 1− e−
1
2

2
c ln (n)

3

But 1−e−
1
2

2
c ln (n)

3 is a number close to 1 as n grows large enough. Thus,
with high probability, deg(s) ≤ 3

2np. Then, since r̃Gl (2B) ≈ fesdeg(s), we
have that:

r̃Gl (2B) ≈ fes · deg(s) ≤ 2B

Amin
· 3

2
np =

3Bnp

Amin

Fig. 3.9 shows the above.
Now, we are going to focus on the neighborhood Γ(vs) of vs. From this

set, there is a subset call it Γδ(vs), where each e = (vs, v) with latency
ae · x+ be, has be ≤ δ.

Intuitively, by relation (3.4), E[Γδ(vs)] = P(B ≤ δ)np.
Then, doing again the same job as above and since np > c ln (n), then

for ε = 1
3 , relation (3.8) gives that with high probability, |Γδ(vs)| ≥ 2

3P(B ≤
δ)np.

Fig. 3.10 shows the above.
Now, since the flow entering vs is at most 2B

Amin
, then at most half of the

Γδ(vs) links should have flow at least
2B
Amin
|Γδ(vs)|

2

. This means that at least half

of the Γδ(vs) links should have flow at most:

2B
Amin

|Γδ(vs)|
2

≤
( 2B

Amin

) 1
1
3P(B ≤ δ)np

Let’s call the corresponding vertex set of these links U0, and let’s also
pick a random vertex v ∈ U0. Fig. 3.11 shows what we have just described.
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|Γδ(vs)| ≥ 2
3P(B ≤ δ)np

s vs

v

be >
δ

es
deg(s) ≤ 3

2np

fes ≤ 2B
Amin

r̃Gl (2B) ≈ fesdeg(s) ≤ 3Bnp
Amin

Figure 3.10: The subset of neighbors of vs, Γδ(vs), where each e = (vs, v)
has latency ae · x+ be, with be ≤ δ.

|Γδ(vs)| ≥ 2
3P(B ≤ δ)np

U0

s vs

v

b (vs
,v)
≤ δ

fv
≤ (

2B

Am
in
)

1

1
3
P(B≤

δ)n
p

be >
δ

fv > ( 2B
Amin

) 1
1
3
P(B≤δ)np

es
deg(s) ≤ 3

2np

fes ≤ 2B
Amin

r̃Gl (2B) ≈ fesdeg(s) ≤ 3Bnp
Amin

Figure 3.11: The flow of a link e = (vs, v) with latency ae · x+ be and with
be ≤ δ. v belongs to the vertex subset U0, with incoming flow at most(

2B
Amin

)
1

1
3
P(B≤δ)np .
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Let’s define c0 as:

c0 = ds(vs) +Amax
6B

AminP(B ≤ δ)np
+ δ (3.11)

Then what is an upper bound of the minimum latency ds(v) of vertex
v? It should be apparent that ds(v) ≤ c0. Also, it should be obvious that
U0 = {v|ds(v) ≤ c0} and that:

|U0| ≥
|Γδ(vs)|

2
=

1

3
P(B ≤ δ)np (3.12)

The pair (U0, c0) is the base case of the induction.
Our induction hypothesis, will be the pair of the flow carrying set of

vertices and its corresponding minimum latency, (Ui, ci). Obviously U0 ⊆ Ui
and c0 ≤ ci.

We are going to prove that Ui ⊂ Ui+1 and that ci < ci+1. But this should
not happen forever. Remember, by lemma 3.10, that this applies only while
3
5np|Ui| ≤ |Γ(Ui)| < 3n

5 . This sequence has to stop when |Γ(Ui)| ≥ 3n
5 .

Now, let’s call by Ūi the complement of Ui, and by U ′i ⊆ Ūi the set of
vertices, where each e with tail in Ui and head in U ′i has be ≤ γ, γ = δ

ln(n) ,
where edge’s e latency is ae · x+ be.

What is the expected size of U ′i?
Relation (3.4) gives the expected size of a single vertex neighbourhood,

which is equal to np. Now, since U ′i is the neighborhood set of all the vertices
belonging to Ui, it should be clear that E[U ′i ] = P(B ≤ γ)np|Ui|.

Then, by Chernoff - Hoeffding bounds relation (3.8), and for ε = 1
2 , since

np > c ln (n), we should have that with high probability, |U ′i | ≥ 1
2P(B ≤

γ)np|Ui|, as n grows large enough.
Now, since (Ui, Ūi) is an s− t cut, the flow crossing the cut should be at

most 3Bnp
Amin

. Then at most half of the Ui −U ′i links should have flow at least
3Bnp
Amin
|U′
i
|

2

. This means that at least half of the Ui − U ′i links should have flow

at most:

3Bnp
Amin

|U ′i |
2

=
6Bnp

Amin|U ′i |

Let v be one of those vertices, belonging to this kind of Ui − U ′i links,
that have flow at most the above mentioned.

Fig. 3.12 shows all the above.
What is the minimum latency of the vertex v? It should be clear that

ds(v) ≤ ci +Amax
6Bnp

Amin|U ′i |
+ γ.

But |U ′i | ≥ 1
2P(B ≤ γ)np|Ui|. Thus:
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Ui

Ūi

Γ(Ui)

U ′i
r̃Gl (2B)

≤ 3Bnp
Amin

v

be ≤ γ fe >
6Bnp

Amin|U ′i |

be > γ

be ≤ γ =
δ

ln (n)
fe ≤

6Bnp

Amin|U
′
i
|

(Ui, Ūi) : s− t cut

Figure 3.12: (Ui, Ūi) : s− t cut. The flow crossing the cut should be at most
the bound of r̃Gl (2B), 3Bnp

Amin
. v belongs to the set U ′i , where be ≤ γ and the

incoming flow is at most 6Bnp
Amin|U ′i |

.

ds(v) ≤ ci +
12AmaxB

AminP(B ≤ γ)|Ui|
+ γ

We define (Ui+1, ci+1) as follows:

ci+1 = ci +
12AmaxB

AminP(B ≤ γ)|Ui|
+ γ (3.13)

Ui+1 = {v|ds(v) ≤ ci+1}

Also, since P
(
B ≤ δ

ln (n)

)
pn ≥ 4, we have that:

|Ui+1| ≥ |U ′i | ≥
1

2
P(B ≤ γ)np|Ui| ≥

(1

4
P(B ≤ γ)np+ 1

)
|Ui|

Thus, doing all the math we have that:

|Ui+1| ≥
(1

4
P(B ≤ γ)np+ 1

)i
|U0|

If i∗ is the first i such that |Γ(Ui)| ≥ 3n
5 then, since pn ≥ ln (n), we have

that:

i∗ ≤
ln
( |Ui+1|
|U0|

)
ln
(

1
4P(B ≤ γ)np+ 1

) ≤ ln
( 3n

5
|U0|
)

ln
(

1
4P(B ≤ γ)np+ 1

)
Now, since P

(
B ≤ γ

)
pn ≥ c ln (n), then by relation (3.12), it is relatively

easy to check that the latter is not bigger than ln (n). So, we have that:

i∗ ≤ ln (n) (3.14)
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By relation (3.13), it is easy to conclude that:

ci∗ ≤ c0 + γi∗ +
i∗∑
i=0

12AmaxB

AminP(B ≤ γ)|Ui|

Then, by the above relation and relations (3.11), (3.14) we have that:

ci∗ ≤ c0 + γi∗ +

i∗∑
i=0

12AmaxB

AminP(B ≤ γ)|Ui|

≤ c0 +
δ

ln (n)
ln (n) +

ln (n)∑
i=0

12AmaxB

AminP(B ≤ γ)|Ui|

≤ . . . ≤ ds(vs) + 2δ +
AmaxB(6P(B ≤ γ) + 72)

AminP(B ≤ γ)P(B ≤ δ)np

So we have proved that:

ci∗ ≤ ds(vs) + 2δ +
AmaxB(6P(B ≤ γ) + 72)

AminP(B ≤ γ)P(B ≤ δ)np
(3.15)

Ui∗ = {v|ds(v) ≤ ci∗}

Working in a similar way, but now beginning from the sink t, we should
eventually come to the following result:

c′j∗ ≥ ds(vt)− 2δ − AmaxB(6P(B ≤ γ) + 72)

AminP(B ≤ γ)P(B ≤ δ)np
(3.16)

Vj∗ = {v|ds(v) ≥ c′j∗}

Without loss of generality, we may assume that:

c′j∗ − ci∗ ≥ 0

Vj∗ ∩ Ui∗ = ∅

Now, since |Γ(Ui∗)| + |Γ(Vj∗)| ≥ 6n
5 there are at least n

5 edge disjoint
paths of length at most 2 between Ui∗ and Vj∗ .

Fig. 3.13 gives a good view.
Now, by Chernoff - Hoeffding bounds relation (3.8), and for E[Y ] =

P(B ≤ δ)2 · n5 , ε = 7
12 , then, for sufficiently large n, with high probability

there are at least 1
12P(B ≤ δ)2n 2-hop paths, call them Y , where all edges e

on that path have be ≤ δ.
But since (Ui∗ , Vj∗) is an s − t cut, the flow crossing the cut should

be r̃Gl (2B). Then at most half of the Y paths should have flow at least
r̃Gl (2B)

1
12 P(B≤δ)2n

2

. This means that at least half of the Y paths, name them X,

should have flow at most:
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s t

be ≤
δ

fe ≤
r̃Gl

(2B
)

1
12

P(B≤
δ)

2n

2

be ≤ δ

be ≤ δ
fe >

r̃Gl (2B)
1
12 P(B≤δ)2n

2

be ≤ δ

be > δ be ≤ δ

be > δ be >
δ

|Γ(Ui∗)|+ |Γ(Vj∗)| ≥ 6n
5

|Ui∗ | ≤ 2n
5 |Vj∗ | ≤ 2n

5

X

Y

Z
|Z| ≥ n

5 Chernoff Bounds:
|Y | ≥ 1

12P(B ≤ δ)2n
ci∗

c′j∗

Figure 3.13: The “limit” sets Ui∗ and Vj∗ .

r̃Gl (2B)
1
12

P(B≤δ)2n

2

Then it should be obvious that:

c′j∗ − ci∗ ≤ 2
(
δ +Amax

r̃Gl (2B)
1
12

P(B≤δ)2n

2

)
≤ 2δ +

144AmaxBp

AminP(B ≤ δ)2

So, by the above relation and relations (3.15), (3.16) we have that:

ds(vt)− ds(vs) ≤ 6δ +
144AmaxBp

AminP(B ≤ δ)2 + 2
AmaxB(6P(B ≤ γ) + 72)

AminP(B ≤ γ)P(B ≤ δ)np

which for large n, is at most 7δ.

Completing the proof above, it is time to prove the δ-lemma:

Lemma 3.17. δ-lemma:
For any sufficiently small fixed δ > 0, there are some constants c > 1

and n0 > 0 such that, if n > n0, and P
(
B ≤ δ

ln (n)

)
pn ≥ c ln (n), then for

any two vertices u, v other than s, t in the instance (G, r̃Gl (2B), l), we have
|ds(u)− ds(v)| ≤ 8δ and |dt(u)− dt(v)| ≤ 8δ with high probability.

Proof. In order to prove the lemma, first of all we have to prove the following:
Let X be a connected set of vertices, that is a restriction of G \ {s, t}

to those edges e, where be ≤ δ
ln (n) . If c is large enough, then with high

probability:
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|diam(X)| ≤ ln (n) (3.17)

where diam(X) is the diameter of X.
The proof is quite easy. What is the expected number of |diam(X)|? It

is easy to see that:

E[|diam(X)|] =
(
P
(
B ≤ δ

ln (n)

))O(n)

O(n) · p

Let k = O(n). Actually, it should be that k ≤ n − 3, since X does not
contain s, t.

So we have that:

E[|diam(X)|] =
(
P
(
B ≤ δ

ln (n)

))k
· kp

Then, by Chernoff - Hoeffding bounds relation (3.7), with high proba-
bility:

|diam(X)| ≤ (1 + ε)
(
P
(
B ≤ δ

ln (n)

))k
· kp

where ε ∈ (0, 1), as n grows large enough.
So, it is adequate to prove that:

(1 + ε)
(
P
(
B ≤ δ

ln (n)

))k
· kp ≤ ln (n)

which will yield to the result.
Since P

(
B ≤ δ

ln (n)

)
pn ≥ c ln (n), there is a c′ ≥ c such that P

(
B ≤

δ
ln (n)

)
pn = c′ ln (n).

Combining all together, we have that:

c ≤ c′ ≤ 1(
k(1 + ε)

) 1
k

·
( p

ln (n)

) k−1
k · n

which is large enough, considering the size of n.
Now, let P ∈ P be a path from u to v. Suppose also that ds(u) ≤ ds(v).

Then, we have two cases:

• First Case: P contains at most one flow carrying vertex:

Then, no e ∈ P carries flow. So, by lemma 2.8 and by relation (3.17)
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s

u

v
t

uf

vf

fP(u,uf
)

= 0
|EP(u,uf

)
| = gu

fP(vf,
v)

= 0

|EP(vf,
v)
| = gv

P = P(u,uf ) ∪ P(uf ,vf ) ∪ P(vf ,v)

dt(u) ≤ dt(uf ) + lP(u,uf )
(f)

ds(v) ≤ ds(vf ) + lP(vf ,v)
(f)

ds(uf ) + dt(uf ) = 2B

ds(u) + dt(u) ≥ 2B

Figure 3.14: δ-lemma, the second case: path P contains at least two flow
carrying vertices.

we have that:

ds(v) ≤ ds(u) + lP(u,v)
(f)

= ds(u) +
∑
e∈P

(ae · fe +
δ

ln (n)
)

= ds(u) +
∑
e∈P

(ae · 0 +
δ

ln (n)
)

≤ ds(u) +

ln (n)∑
i=1

δ

ln (n)
= ds(u) + δ

• Second Case: P contains at least two flow carrying vertices:

Let:

� uf be the closest flow carrying vertex to u on P .

� vf be the closest flow carrying vertex to v on P .

� gu be the number of edges between u and uf on P .

� gv be the number of edges between v and vf on P .

Fiq. 3.14 describes the above.

The following relations are valid:

◦ dt(u) ≤ dt(uf ) + lP(u,uf )
(f)

It is valid since it is the analogous relation of that of lemma’s 2.8.

◦ ds(v) ≤ ds(vf ) + lP(vf ,v)
(f)

It is valid, by lemma 2.8.
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◦ ds(uf ) + dt(uf ) = 2B
It is valid, by lemma 3.5.

◦ ds(u) + dt(u) ≥ 2B
It is valid, by lemma 3.5 again.

Thus we have:

ds(u) ≥ 2B − dt(u)

≥ 2B − dt(uf )− lP(u,uf )
(f)

= ds(uf )−
∑

e∈P(u,uf )

(ae · fe +
δ

ln (n)
)

= ds(uf )−
∑

e∈P(u,uf )

(ae · 0 +
δ

ln (n)
)

= ds(uf )−
gu∑
i=1

δ

ln (n)
= ds(uf )− gu

δ

ln (n)

So, by the relation just above, the relation (3.17) and lemma 3.16,
then, because ds(v) ≤ ds(vf ) + lP(vf ,v)

(f), we have:

ds(v)− ds(u) ≤ ds(vf ) + lP(vf ,v)
(f)− ds(u)

= ds(vf )− ds(u) +

gv∑
i=1

δ

ln (n)

≤ ds(vf )− ds(uf ) + (gu + gv)
δ

ln (n)
≤ 7δ + δ = 8δ

3.5.2.1 Differences with Large Dense Random Graphs

Recall by section 3.2 that Ω(pn) >> (1 + ε) lnn, where Ω(pn) is the ex-
pected size of the sets S1, S2, T1, T2, Q1, Q2, Q3, U . Generally, as relation
(3.4) dictates, Ω(pn) is the expected size of deg(v), for every v ∈ V .

As a consequence of the above is that the graph G should be connected in
such a degree, that if we choose two random vertices u, v of the graph, then
with high possibility, there exists a 2-hop path P : u → w → v connecting
the two vertices u and v, where w is a vertex belonging in Q1, Q2 or Q3.
Thus, by Chernoff - Hoeffding bounds, we can safely assume that the b-
coefficients of both links (u,w) and (w, v) are at most γ, for γ > 0 small
enough. This is property (P4) of [20].



CHAPTER 3. BRAESS’S PARADOX IN LARGE RANDOM GRAPHS65

The δ-lemma of [20], says that for both instances (G, r̃Gl (2B), l) and
(G′, rG

′
l (2B(1 − µ)), l), we have that |ds(u) − ds(v)| ≤ 2 max {γ, δ} = 2δ,

where γ < δ, with high probability (actually, in [20], Valiant and Rough-
garden prove it only for the instance (G′, rG

′
l (2B(1−µ)), l), since this is the

only one necessary for the proof of theorem 3.13).
Valiant and Roughgarden prove at first that |ds(u)−ds(v)| ≤ δ, where u

and v are flow carrying vertices. At the beginning they sort the flow carrying
vertices in nondecreasing order of d-values, s = v1, v2, . . . , vk = t. The aim
is to prove that ds(vk−1)− ds(v2) ≤ δ.

The proof uses property (P4), by assuming that the number of the 2-
hop paths is κ. Consequently, strictly more than half of them carry at most

5B
κAmin

units of flow. This means that ds(vk−1)− ds(v2) ≤ 2(Amax
5B

κAmin
) + γ.

But by Chernoff - Hoeffding bounds and property (P4), κ = Ω(n2ζ).
So, for γ < δ

3 and n larger than a constant n0, the right hand side is at
most δ. This proof is the same for both instances.

Now, for any kind of vertices u and v, and this is the δ-lemma, |ds(u)−
ds(v)| ≤ 2δ, for both instances (G, r̃Gl (2B), l) and (G′, rG

′
l (2B(1− µ)), l).

Again, by property (P4) and Chernoff - Hoeffding bounds, any two ran-
dom vertices in S1 ∪ T2 ∪ Q1, S2 ∪ T1 ∪ Q2 or U ∪ Q3 are connected by a
2-hop path with b-coefficients of both links at most γ. Now, since every link
is bounded by δ, if the vertices are flow carrying, or by γ < δ in the opposite
case, the proof of the lemma follows.

3.5.2.2 Differences with Expander Graphs

The proof of the δ-lemma is analogous to the [21] proof described above.
Chung, Young and Zhao prove first the lemma for two random flow

carrying vertices u and v. They show that for the instance (G, r, l), we have
that |ds(u) − ds(v)| ≤ 7δ or equivalently |dt(u) − dt(v)| ≤ 7δ. The proof
follows the same lines with lemma 3.16, but instead of using lemma 3.10 for
the graph expansion it uses the expansion factor of section 3.2.

Now, if v′ is a random vertex non flow carrying, then by using again the
same proof lines as with lemma 3.16, they prove that |ds(v) − ds(v′)| ≤ 5δ
or equivalently |dt(v) − dt(v

′)| ≤ 5δ, where v is flow carrying and is the
“nearest”, in terms of the latency, vertex to v′.

As a result they prove easily that with high probability, |ds(u′)−ds(v′)| ≤
12δ or |dt(u′) − dt(v

′)| ≤ 12δ, where u′, v′ are random non flow carrying
vertices.

3.5.3 Balance Lemma

Now, we are going to prove the balance lemma, which says that the latencies
of all internal vertices are balanced in such a way that ds(v) / ds(t)

2 .

Lemma 3.18. Balance lemma:



CHAPTER 3. BRAESS’S PARADOX IN LARGE RANDOM GRAPHS66

For any sufficiently small fixed δ > 0, there are some constants c > 1
and n0 > 0 such that, if n > n0, and P

(
B ≤ δ

ln (n)

)
pn ≥ c ln (n), then for

any vertex v other than s, t in the instance (G, r̃Gl (2B), l), we have ds(v) ≤
B + 10δ with high probability.

Proof. The proof is by contradiction.
Suppose that there exists a vertex v such that ds(v) > B + 10δ.
Then for every vertex u we have that ds(u) > B + 2δ. Indeed, this is

true. We have the following two cases:

• First Case: ds(u) ≤ ds(v):

Then by the delta lemma we have that:

ds(u) ≥ ds(v)− 8δ > B + 10δ − 8δ = B + 2δ

• Second Case: ds(u) ≥ ds(v):

Then we have that:

ds(u) ≥ ds(v) > B + 10δ > B + 2δ

So, ds(u) > B + 2δ is true under our assumption.
Now, for every flow carrying vertex w, and since ds(w) > B + 2δ, then

by lemma 3.5 we have that:

dt(w) = 2B − ds(w) < 2B −B − 2δ = B − 2δ

Let e = (s, v) be an edge adjacent to the sink s. Then aefe+be = ds(v) >
B + 2δ. Now, if be ≤ B + 2δ, then it should be that:

fe >
B + 2δ − be

ae
> 0

Let Es be the set of edges Es ⊆ E, such that Es = {e ∈ E|∃u : e =
(s, u) ∧ be ≤ B + 2δ}.

By Chernoff bounds relation (3.8), and by relation (3.4), then |Es| ≥
(1− ε′)P

(
B ≤ B + 2δ

)
pn with high probability, as n grows large enough.

Now, by the Law of Large Numbers lemma 3.12, we have that:

∑
e∈Es be

|Es|
' E[B[0,B+2δ]]∑

e∈Es
1
ae

|Es|
' E[

1

A
]
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Then, by the above two relations, we have:

r̃Gl (2B) ≥
∑
e∈Es

B + 2δ − be
ae

= (B + 2δ − E[B[0,B+2δ]]− o(1))·(
E[

1

A
] + o(1)

)
|Es|

So, the above in conjunction with |Es| ≥ (1− ε′)P
(
B ≤ B+2δ

)
pn, gives:

r̃Gl (2B) ≥ (1− ε′)
B + 2δ − E[B[0,B+2δ]]− o(1)

E[A] + o(1)
· P
(
B ≤ B + 2δ

)
pn (3.18)

Working in a similar way with the edges adjacent to the tank t we have
that:

r̃Gl (2B) ≤ (1 + ε′)
B − 2δ − E[B[0,B−2δ]] + o(1)

E[A]− o(1)
· P
(
B ≤ B − 2δ

)
pn (3.19)

Then, by the above relations (3.18) and (3.19) we have that:

r̃Gl (2B)

r̃Gl (2B)
≥

(1− ε′)B+2δ−E[B[0,B+2δ]]−o(1)

E[A]+o(1) P
(
B ≤ B + 2δ

)
pn

(1 + ε′)
B−2δ−E[B[0,B−2δ]]+o(1)

E[A]−o(1) P
(
B ≤ B − 2δ

)
pn

It is not hard to see that by the choice of B and δ and the reasonableness
of B, the latter relation is greater than 1. So we have proven that r̃Gl (2B) >
r̃Gl (2B), which is a contradiction.

3.5.3.1 Differences with Large Dense Random Graphs

The balance lemma says that for the instance (G, r̃Gl (2B), l) and for a
flow carrying vertex v, ds(v) ≤ B+2δ, whereas for the instance (G′, rG

′
l (2B(1−

µ)), l) and for every vertex v ∈ U , ds(v) ≥ B(1− µ)− 4δ.
The proof is in a way similar with the above one of the sparse graphs.
Again, commenting for the instance (G, r̃Gl (2B), l), the proof is by con-

tradiction. It uses again the δ-lemma and gives bounds for the flows of the
vertices v ∈ Γ(s) and u ∈ Γ(t). Thus, it gives a lower bound for the factor
f(s,v)

f(u,t)
that is a number c > 1.

By making use of the Chernoff - Hoeffding bounds, and by summing over
all flows for the neighbors of s and t respectively, Valiant and Roughgarden
prove that the total flow exiting the source s is at least a c

(1+(pn)−
1
3 )

2 factor

times that entering the sink t. The only way that this could be valid, since
the above total flows must be equal to the total traffic rate, is that the
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number of the vertices, n, should be bounded above by a constant, which is
a contradiction.

The same idea stands for the instance (G′, rG
′

l (2B(1 − µ)), l) too, but
limited to the subgraph G′ = U ∪Q3 ∪ {s, t}. The proof is by contradiction
for a flow carrying vertex v ∈ U under similar lines, and then it uses property
(P4) to prove the lemma for an arbitrary vertex in U .

3.5.3.2 Differences with Expander Graphs

For the Expander graphs, the balance lemma says that for the instance
(G, r̃Gl (2B), l) and for any vertex v, ds(v) ≤ cs + 13δ, where cs ∈ [0, 2B].
Also, for the instance (G′, rG

′
l (2B(1 − µ)), l) and for every vertex v ∈ U ,

ds(v) ≥ c′s − 13δ, where c′s ∈ [0, 2B(1 − µ)]. cs, c
′
s are unique values that

depend on the reasonable distributions (H,B), the degrees of s and t, and
B.

The proof is in a way similar with the above one of the sparse graphs.
Again, the proof is by contradiction. The details of the proof are some-

how technical, but the result is the same. The traffic rate that leaves sink s
is bigger than that of the tank t, by a factor Ω

(
deg(s) + deg(t)

)
.

3.5.4 Theorem’s Main Proof

Working in a similar manner as with the lemmas 3.17 and 3.18, δ-lemma
and balance lemma respectively, the following lemma holds for the instance
(G′, rG

′
l (2B(1− µ)), l):

Lemma 3.19. For any sufficiently small fixed δ > 0, there are some con-
stants c > 1 and n0 > 0 such that, if n > n0, and P

(
B ≤ δ

ln (n)

)
pn ≥ c ln (n),

and G1X , GX1, GU are defined as above, then the instance (G′, rG
′

l (2B(1 −
µ)), l) satisfies that:

• (δ-lemma) For any vertices u, v other than s, t both in one of G1X , GX1

or GU , |ds(v)− ds(u)| ≤ 8δ with high probability.

• (Balance lemma) For any vertex v other than s, t in GU , we have
B − 10δ ≤ ds(v) with high probability.

We are now ready to move on to the main proof of the theorem.

Proof. Remember that in section 3.4, we emphasized that the only thing
that we have to prove is that rG

′
l

(
2B(1− µ)

)
> r̃Gl (2B).

So, let f, f ′ be the equilibrium flows of G,G′ respectively.
Suppose that e is adjacent to s in GU . Then by the balance lemmas for

G and G′, lemmas 3.18 and 3.19 respectively, we have that:

aefe + be ≤ B + 10δ

aef
′
e + be ≥ B − 10δ
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So:

fe − f ′e ≤
B + 10δ − be

ae
− B − 10δ − be

ae
=

20δ

ae
≤ 20δ

Amin

Then by relation (3.10) we have that:

r̃GUl (2B)− rGUl (2B(1− µ)) ≤ (1 + ε∗)(1− 2p∗)pn
20δ

Amin
(3.20)

Now, let es be adjacent to s, et be adjacent to t in G1X . Then by the
lemmas (3.5) and (3.19) (δ-lemma) for the instance (G′, rG

′
l (2B(1 − µ)), l)

we have:

2B(1− µ) ≤ aesf ′es + bes + 8δ + aetf
′
et + bet

≤ A1f
′
es + (1 + ε)B + 8δ +A2f

′
et + εB

Thus,
B − 2µB − 2εB − 8δ ≤ A1f

′
es +A2f

′
et

Then by relation (3.9), and by summing over all choices of es, et we have:

rG1X
l

(
2B(1− µ)

)
≥ |ΓG1X

(s)||ΓG1X
(t)| · (B − 2µB − 2εB − 8δ)

A1|ΓG1X
(t)|+A2|ΓG1X

(s)|

≥ (1− ε∗)2

1 + ε∗
· B − 2µB − 2εB − 8δ

A1 +A2
p∗pn

Similarly, for GX1 we have the same:

rGX1
l

(
2B(1− µ)

)
≥ (1− ε∗)2

1 + ε∗
· B − 2µB − 2εB − 8δ

A1 +A2
p∗pn

Let’s consider now instance (G, r̃Gl (2B), l). By relation (3.9) and by
lemma 3.18 (balance lemma) we have for G1X :

r̃G1X
l (2B) ≤ (1 + ε∗)pp∗n

10δ

Amin

Similarly, for GX1 we have respectively:

r̃GX1
l (2B) ≤ (1 + ε∗)pp∗n

B + 10δ

(1− ε)A2

By the above we have:

rG1X∪GX1
l

(
2B(1− µ)

)
− r̃G1X∪GX1

l (2B) ≥

≥ (2
(1− ε∗)2

1 + ε∗
· B − 2µB − 2εB − 8δ

A1 +A2

−(1 + ε∗)(
10δ

Amin
+

B + 10δ

(1− ε)A2
))pp∗n (3.21)
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So, by relations (3.20) and (3.21) we have that:

rG
′

l

(
2B(1− µ)

)
− r̃Gl (2B) = [rG1X∪GX1

l

(
2B(1− µ)

)
− r̃G1X∪GX1

l (2B)]

+[rGUl
(
2B(1− µ)

)
− r̃GUl (2B)] ≥

≥ [(2
(1− ε∗)2

1 + ε∗
· B − 2µB − 2εB − 8δ

A1 +A2
− (1 + ε∗)(

10δ

Amin
+

B + 10δ

(1− ε)A2
))pp∗n]−

− [(1 + ε∗)(1− 2p∗)pn
20δ

Amin
]

Now, by letting ε, ε∗, δ, µ→ 0, the relation above gives:

rG
′

l

(
2B(1− µ)

)
− r̃Gl (2B) ≥ (

2B

A1 +A2
− B

A2
)pp∗n > 0

Thus, rG
′

l

(
2B(1− µ)

)
> r̃Gl (2B).

3.5.4.1 Differences with Large Dense Random Graphs

The resemblance of the theorem’s 3.13 and 3.14 (section 3.5.4) main proofs is
striking. It is sufficient for the reader to replace the above relations with the
applicable ones for the dense random graphs, having in mind the outcomes
of sections 3.5.1.1, 3.5.2.1 and 3.5.3.1.

3.5.4.2 Differences with Expander Graphs

The same things apply for the Expander graphs too. The main proofs of the
theorems 3.15 and 3.14 (section 3.5.4) are again too close, but with different
content. The reader is advised to visit [22].



Chapter 4

Best Subnetwork
Approximation in Random
Graphs

We have already seen how difficult it is to detect the best subnetwork. So,
it should be always worthy to try to give an approximation of the best
subnetwork, given the difficulty of detecting it.

We begin this chapter by proving that for networks with strictly increas-
ing linear latencies, there is an upper bound of 4

3 for the approximation ratio
of the problem of finding the best subnetwork.

We end up, by proving two theorems that are an improvement of theo-
rem 4 of [16], and provide approximating methods to random instances with
polynomially many paths, each of polylogarithmic length, and linear laten-
cies. By these theorems we may achieve quasipolynomial running times, for
traffic rates of the size O(1) (or more generally O(poly(ln lnm))) or even
for traffic rates up to O(poly(lnm)), where m is the total number of the
network’s edges.

The following theorem is due to a joint work of Fotakis, Kaporis and
Spirakis [16], [2].

Theorem 4.1. For instances with strictly increasing linear latency func-
tions, the problem of finding the best subnetwork can be approximated in
polynomial time within a factor of (4

3 − δ), where δ > 0 depends on the
instance itself.

Proof. Wlog we may assume that r = 1. We have to distinguish the following
two cases:

� Paradox-ridden networks:

71
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In theorem 2.13 we have proved that paradox ridden instances can be
detected in polynomial time. Thus, for this case, the approximation
ratio is 1.

� Networks not paradox-ridden:

Let G be the corresponding network. In section 1.6 we have shown
that PoAG is upper bounded by 4

3 .

Let f be a Nash flow on HB, and o be an optimal flow of G. Since
the instance is not paradox-ridden, f 6= o. By Taylor expansion for
quadratic functions we have that:

C(f) =
∑
e∈E

le(fe)fe =
∑
e∈E

(aef
2
e + befe)

=
∑
e∈E

(aeo
2
e + beoe) +

∑
e∈E

(2aeoe + be)(fe − oe) +
∑
e∈E

ae(fe − oe)2

= C(o) + σ

where σ =
∑

e∈E(2aeoe + be)(fe − oe) +
∑

e∈E ae(fe − oe)2.

Apparently, σ > 0, since by relation (1.7), letting ge = fe and l∗e(x) =
d(x·le(x))

dx = 2aex+be, we have easily that
∑

e∈E(2aeoe+be)(fe−oe) ≥ 0.
Now, since f 6= o, there exists at least one e ∈ E such that fe 6= oe.
So,

∑
e∈E(2aeoe + be)(fe − oe) > 0.

Thus, by relations (1.4), (1.5) we have that:

Leq(H
B) = Lopt(G) + σ ⇒

1 =
Lopt(G)

Leq(HB)
+

σ

Leq(HB)
⇒

Lopt(G)

Leq(HB)
= 1− σ

Leq(HB)

But, by relation (1.8) we have that:

Lopt(G) =
Leq(G)

PoAG

So,

Leq(G)

Leq(HB)
· 1

PoAG
= 1− σ

Leq(HB)
⇒

Leq(G)

Leq(HB)
= PoAG − PoAG ·

σ

Leq(HB)



CHAPTER 4. BEST SUBNETWORKAPPROXIMATION IN RANDOMGRAPHS73

If we set δ = PoAG · σ
Leq(HB)

> 0, then the trivial algorithm that

returns the whole network G is a (4
3 − δ) - approximation algorithm

for the problem of finding the best subnetwork HB.

Before moving on, we should mention the following useful lemma, that
is another way to define the Chernoff-Hoeffding bound described in lemma
3.11:

Lemma 4.2. Chernoff-Hoeffding Bound: Let Xi, i ∈ {1, 2, . . . , k}, be a
collection of random variables independently distributed in [0, 1]. Define
X = 1

k

∑k
i=1Xi. Then, for all ε > 0:

P[|X − E[X]| > ε] ≤ 2e−2ε2k

The next theorem is also a joint work of Fotakis, Kaporis and Spirakis
[16], [2].

Given a network G = (V,E), this lemma declares that any flow can be
approximated by a “sparse” flow that traverses a number of paths, at most
logarithmic in m, where m = |E|.

Specifically, let (G, 1, l) be an instance, with linear latencies le(x) =
ae · x+ be and rational coefficients ae, be ≥ 0. Let also α = maxe∈E {ae}.

Let also µ = |P| ≤ md1 be the total number of the original network’s
paths, where m = |E|. Let also |P | ≤ lnd2 m for all P ∈ P.

The proof is based on Althöfer’s specification lemma [18].

Lemma 4.3. Let (G, 1, l) be an instance defined on a network G = (V,E),
and let f be any feasible flow. Then, for any ε > 0, there exists a feasible

flow f̃ that assigns traffic to at most
⌈

ln (2m)
2ε2

⌉
paths, such that

∣∣∣f̃e − fe∣∣∣ ≤ ε,
for all edges e.

Proof. First of all, the traffic rate r is normalized to 1. Then, every kind
of a feasible flow, can be considered as a probability distribution among the
paths that the flow selects to traverse.

Let µ = |P| denote the total number of paths of the network. Then,
every s− t path can be identified by a number j ∈ {1, 2, . . . , µ}.

Thus, if j is one of the µ s− t paths, then, since r = 1, fj can be viewed
as the probability that j path is selected.

We will prove that selecting a specific number of κ paths, out of the
total µ, uniformly at random with replacement according to the unknown
(probability distribution) f , and assign to each one of the µ paths a flow f̃j
equal to the number of times path j is selected divided by κ, we obtain a
flow f̃ which is an ε - approximation to f with positive probability.
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The number κ depends on a suitable logarithmic size of m. Also observe
that nor f neither f̃ need to be known. In fact, it is necessary that distribu-

tion f̃ should be appropriately ‘tuned’ as to imply that P
( ∣∣∣f̃e − fe∣∣∣ ≤ ε) > 0.

This probability is known as “the probability of a good event”.
Having in mind all the above, we will give the proof of this lemma under

the following approach:

• The number κ is defined as κ :=
⌈

ln (2m)
2ε2

⌉
.

• We define κ independent identically distributed random variables P1,
P2, . . . , Pκ each taking an integer value in {1, 2, . . . , µ}, with repetition,
according to f . Thus, P[Pi = j] = fj , for all i ∈ {1, 2, . . . , κ} and
j ∈ {1, 2, . . . , µ}.

• Let Fj be a random variable defined as Fj = |{i∈{1,2,...,κ}:Pi=j}|
κ .

• By linearity of expectation, E[Fj ] = fj . Indeed, let’s define Xi,j as
follows:

Xi,j =

{
1 if Pi = j,
0 otherwise.

Then we have that:

E[Xi,j ] = 1 · P[Xi,j = 1] + 0 · P[Xi,j = 0] = P[Pi = j] = fj

So,

E[Fj ] = E[
1

κ

κ∑
i=1

Xi,j ] =
1

κ

κ∑
i=1

E[Xi,j ] =
1

κ
· κ · fj = fj

• For each e ∈ E and each Pi, i ∈ {1, 2, . . . , κ} we define an indicator
variable Fe,i that is:

Fe,i =

{
1 if e ∈ Pi,
0 otherwise.

• The random variables Pi are independent, for every edge e. Thus, Fe,i,
i ∈ {1, 2, . . . , κ} are independent as well.

• Let Fe be a random variable defined as Fe = 1
κ

∑κ
i=1 Fe,i. Then, by

the definition of the random variables Fj we have that:

Fe =
∑
j:e∈j

Fj =
1

κ

κ∑
i=1

Fe,i

• Again, by linearity of expectation, E[Fe] = fe, for all edges e.
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• Each Fj , Fe can be interpreted as the amount of flow traversing each
path j, edge e respectively.

• Also, since
∑µ

j=1 Fj = 1, then the random variables F1, F2, . . . , Fµ
define a feasible flow that assigns positive traffic to at most κ paths
and agrees with f in expectation.

• By applying lemma 4.2’s Chernoff-Hoeffding Bound, then by all the
above, we obtain that for every edge e:

P[|Fe − fe| > ε] = P[|Fe − E[Fe]| > ε]

≤ 2e−2ε2κ

< 2e−2ε2[
ln (2m)

2ε2
]

<
1

m

• By applying the union bound, we have that P[∃e ∈ E : |Fe − fe| >
ε] < m · 1

m = 1.

• Thus, for any ε > 0, there exists a feasible flow f̃ = F that assigns traf-

fic to at most κ =
⌈

ln (2m)
2ε2

⌉
paths, such that with positive probability∣∣∣f̃e − fe∣∣∣ ≤ ε, for all edges e ∈ E.

Lemma 4.3 guarantees that there exists an ε - approximation flow, f̃ , to

the best subnetwork’s Nash flow f , that assigns traffic to at most
⌈

ln (2m)
2ε2

⌉
paths.

If at first the number of paths, and secondly all paths’ latencies, are
polynomial in size, then by exhaustive search, we can find this specific flow
f̃ that is an ε

2 - Nash flow on the best subnetwork HB, with latency at most
Leq(H

B) + ε
2 , in subexponential time. More specifically:

Theorem 4.4. Let (G, 1, l) be an instance, with G = (V,E) and linear
latencies le(x) = ae · x + be. Let α = maxe∈E {ae}, and let HB be the Best
Subnetwork of G. For some constants d1, d2, let |P| ≤ md1 and |P | ≤ lnd2 m,
for all P ∈ P. Then, for any ε > 0, we can compute in time:

mO
(
d1α

2 ln2d2+1 (2m)

ε2

)
(4.1)

a flow f̃ that is an ε
2 - Nash flow on Gf̃ and satisfies lP (f̃) ≤ Leq(HB) + ε

2 ,
for all paths P in Gf̃ .
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Proof. Let ε > 0 be any fixed constant. Also, let ε = ε
2α lnd2 (2m)

, and f be

a Nash flow on subnetwork HB. By lemma 2.9, we may assume that f is
acyclic, and let HB be the network Gf = (V,Ef ). By applying the previous
lemma to HB with approximation parameter ε we get that there exists a fea-

sible flow f̃ that assigns traffic to at most κ =
⌈

ln (2m)
2ε2

⌉
=
⌈

2α2 ln2d2+1 (2m)
ε2

⌉
paths, such that with positive probability

∣∣∣f̃e − fe∣∣∣ ≤ ε, for all edges e ∈ HB.

Since f is acyclic, f̃ is acyclic too.
Now, we have to distinguish the following two cases:

� ∀e ∈ HB, f̃e ≤ fe + ε:
By all the above we have that:

lP (f̃) ≤
∑
e∈P

(
ae(fe + ε) + be

)
=
∑
e∈P

(ae · fe + be) +
∑
e∈P

(ae · ε)

= Leq(H
B) +

∑
e∈P

(ae · ε)

≤ Leq(HB) + |P | · α · ε
≤ Leq(HB) + lnd2 m · α · ε

2α lnd2 (2m)

≤ Leq(HB) +
ε

2

� ∀e ∈ HB, f̃e ≥ fe − ε:
By all the above we have that:

lP (f̃) ≥
∑
e∈P

(
ae(fe − ε) + be

)
=
∑
e∈P

(ae · fe + be)−
∑
e∈P

(ae · ε)

= Leq(H
B)−

∑
e∈P

(ae · ε)

= Leq(H
B)− ε

2α lnd2 (2m)
·
∑
e∈P

ae

≥ Leq(HB)− ε

2α lnd2 (2m)
·
∑
e∈P

α

≥ Leq(HB)− ε

2α lnd2 (2m)
· lnd2 m · α

≥ Leq(HB)− ε

2

So, there exists a feasible acyclic flow f̃ that assigns positive flow to at
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most κ paths, that is an ε
2 - Nash flow on the best subnetwork HB, with

latency at most Leq(H
B) + ε

2 .
Therefore,

• For every set of κ paths, out of the total µ, we find the lemma 4.3’s
corresponding flow g. Total number of paths, µ: less than md1 .

• If the corresponding network Gg is acyclic, we check whether g is an ε
- Nash flow, by computing the minimum and maximum latency paths
and then finding their difference. If they differ by at most ε, then g is
an ε - Nash flow. This computation is polynomial in time.

• Among all acyclic ε - Nash flows, we return the one that has maximum
latency, the minimum of the rest flows’ maximum latencies. It must
be clear that this latency cannot be more than Leq(H

B) + ε
2 , since by

exhaustive search we should encounter f̃ that has the above proven
property.

• Since the total number of paths is less than md1 , there are at most
md1·κ different sets of κ paths. Thus, the total computational time is
mO(d1·κ).

Before we move on to the main theorems of this section, we present the
following two useful theorems:

Theorem 4.5. McDiarmid’s inequality: Let Z1, Z2, . . . , Zm ∈ Z be inde-
pendent random variables and f : Zm → R be a function of Z1, Z2, . . . , Zm.
If for all i ∈ [m] and for all z1, z2, . . . , zm, z

′
i ∈ Z the function f satisfies:∣∣f(z1, z2, . . . , zi, . . . , zm)− f(z1, z2, . . . , z

′
i, . . . , zm)

∣∣ ≤ ci
then for t > 0:

P(|f − E[f ]| ≥ t) ≤ 2e
−2t2∑m
i=1

c2
i

Theorem 4.6. Kahane’s inequality: Let r1, r2, . . . , rm be a sequence of iden-
tically and independently distributed (i.i.d.) Rademacher ±1 random vari-
ables, i.e., P(ri = ±1) = 1

2 for all i ∈ [m]. In addition, let u1, u2, . . . , um ∈
Rd be a deterministic sequence of vectors. Then, for 2 ≤ p <∞:

E

∥∥∥∥∥
m∑
i=1

riui

∥∥∥∥∥
p

≤ √p
( m∑
i=1

‖ui‖2p
) 1

2
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Now, we prove the following theorem that is a generalization of Barman’s
theorem 4 in [31] for . In order to proceed to the proof, we use the following
version of Hoeffding’s inequality:

Lemma 4.7. Hoeffding’s inequality: Let X1, X2, . . . , Xn be independent ran-

dom variables with P
(
Xi ∈ [ai, bi]

)
= 1. Then:

P
( ∣∣∣∣∣ 1n

n∑
i=1

Xi − E[
1

n

n∑
i=1

Xi]

∣∣∣∣∣ ≥ ε) ≤ 2e
− 2n2ε2∑n

i=1
(bi−ai)2

Theorem 4.8. Let X = {x1, x2, . . . , xn} ⊂ Rd be a set of vectors with
γ = maxx∈X ‖x‖∞ and ε > 0. Then, for every µ ∈ conv(X) there exists a⌈

2γ2·lnn
ε2

⌉
uniform vector µ̃ ∈ conv(X) such that:

‖µ− µ̃‖∞ ≤ ε

Proof. Since µ ∈ conv(X), it can be expressed as a convex combination
of the xi’s: µ =

∑n
i=1 βixi, where

∑n
i=1 βi = 1, βi ≥ 0,∀i ∈ [n]. Then

β = (β1, β2, . . . , βn) corresponds to a probability distribution over vectors
x1, x2, . . . , xn. The latter means that under probability distribution β, vec-
tor xi is drawn with probability βi. The vector µ is the mean of this distri-
bution. More specifically, the jth component of µ is the expected value of
the random variable vj that takes value xi,j with probability βi, where xi,j
is the jth component of vector xi, j ∈ [d]. Specifically:

µj = E[vj ] =

n∑
i=1

P(vj = xi,j) · xi,j =

n∑
i=1

βi · xi,j

and

µ = Ev∼β[v]

Let v′1, v
′
2, . . . , v

′
m be m i.i.d. draws from β. The sample mean vector is

defined to be:

µ̃ =
1

m

m∑
i=1

v′i

Also, in expectation, the sample mean should be equal to µ. Specifically:

µ = Ev′1,v′2,...,v′m∼β
1

m

m∑
i=1

v′i

Thus, we have the following:
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P
(
‖µ− µ̃‖∞ ≥ ε

)
=

P
(∥∥∥∥∥µ̃−

(
Ev′1,v′2,...,v′m∼β

1

m

m∑
i=1

v′i

)∥∥∥∥∥
∞

≥ ε
)

=

P
(∥∥∥∥∥ 1

m

m∑
i=1

v′i −
(
Ev′1,v′2,...,v′m∼β

1

m

m∑
i=1

v′i

)∥∥∥∥∥
∞

≥ ε
)

P
(∥∥∥∥∥ 1

m

m∑
i=1

v′i − E
[

1

m

m∑
i=1

v′i

]∥∥∥∥∥
∞

≥ ε
)

=

P
(∥∥∥∥∥ 1

m

m∑
i=1

v′i −
1

m

m∑
i=1

E[v′i]

∥∥∥∥∥
∞

≥ ε
)

=

P
(∥∥∥∥∥ 1

m

( m∑
i=1

v′i −
m∑
i=1

E[v′i]

)∥∥∥∥∥
∞

≥ ε
)

=

P
(∥∥∥∥∥ 1

m

( m∑
i=1

(
v′i,1, v

′
i,2, . . . , v

′
i,d

)
−

m∑
i=1

(E[v′i,1],E[v′i,2], . . . ,E[v′i,d]
))∥∥∥∥∥

∞

≥ ε
)

=

P
(∥∥∥∥∥ 1

m

m∑
i=1

v′i,1 −
1

m

m∑
i=1

E[v′i,1], . . . ,
1

m

m∑
i=1

v′i,d −
1

m

m∑
i=1

E[v′i,d]

∥∥∥∥∥
∞

≥ ε
)

(4.2)

Let’s assume that for an l ∈ [d]:

∣∣∣∣∣ 1

m

m∑
i=1

v′i,l −
1

m

m∑
i=1

E[v′i,l]

∣∣∣∣∣ =

max
{ ∣∣∣∣∣ 1

m

m∑
i=1

v′i,1 −
1

m

m∑
i=1

E[v′i,1]

∣∣∣∣∣ ,
∣∣∣∣∣ 1

m

m∑
i=1

v′i,2 −
1

m

m∑
i=1

E[v′i,2]

∣∣∣∣∣ , . . . ,
∣∣∣∣∣ 1

m

m∑
i=1

v′i,d −
1

m

m∑
i=1

E[v′i,d]

∣∣∣∣∣ }

Then from the definition of the ∞ norm, relation (4.2) becomes:

P
(
‖µ− µ̃‖∞ ≥ ε

)
= P

( ∣∣∣∣∣ 1

m

m∑
i=1

v′i,l −
1

m

m∑
i=1

E[v′i,l]

∣∣∣∣∣ ≥ ε
)

(4.3)

But since v′ ∼ β, each v′i,l takes value xk,l with probability βk, for a

k ∈ [n]. Thus, |v′i,l| ≤ γ = maxx∈X ‖x‖∞ and P
(
v′i,l ∈ [−γ, γ]

)
= 1 for every

i ∈ [m], l ∈ [d].
Then, because v′1,l, v

′
2,l, . . . , v

′
m,l are independent random variables, then

from Hoeffding’s inequality, lemma 4.7, relation (4.3) becomes:
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P
(
‖µ− µ̃‖∞ ≥ ε

)
=

P
( ∣∣∣∣∣ 1

m

m∑
i=1

v′i,l −
1

m

m∑
i=1

E[v′i,l]

∣∣∣∣∣ ≥ ε) ≤ 2e
− 2m2ε2∑m

i=1
(2γ)2 = 2e

−mε
2

2γ2 (4.4)

So, for m ≥ 2γ2·lnn
ε2

, we have that P
(
‖µ− µ̃‖∞ ≥ ε

)
≤ 2

n . So it suffices

for m to be m :=
⌈

2γ2·lnn
ε2

⌉
. The conclusion follows.

Having in mind the above three theorems 4.5, 4.6, 4.8 and due to the
work of Barman in [31], we will prove the following two theorems:

Theorem 4.9. Let (G, 1, l) be an instance, with G = (V,E) and linear
latencies le(x) = ae · x+ be, with rational coefficients ae, be ≥ 0 and let HB

be the Best Subnetwork of G. Let also µ = |P| ≤ md1 be the total number of
paths, |P | ≤ lnd2 m for all P ∈ P and α = maxe∈E {ae}. Then, there exist
a flow f̃ , to at most k ≤ κ paths P with f̃P = ρ

κ , ρ ∈ [κ], that is an ε
2 - Nash

flow on Gf̃ and satisfies lP (f̃) ≤ Leq(HB) + ε
2 , for all paths P in Gf̃ . This

flow can be computed in time:

mO(
d1pα

2m

2d1
p ln2d2 m

ε2
) (4.5)

for p norm with 2 ≤ p < ∞, where the number of paths, k, is less than or

equal to κ =

⌈
64pα2m

2d1
p ln2d2 m
ε2

⌉
,

or:

mO(
d21α

2 ln2d2+1 m

ε2
) (4.6)

for the p =∞ norm, where the number of paths, k, is less than or equal to

κ =
⌈

8d1α2 ln2d2+1 m
ε2

⌉
.

Proof. Let A be the following matrix:

A =


a11 a12 a13 . . . a1µ

a12 a22 a23 . . . a2µ
...

...
. . .

...
...

a1µ a2µ a3µ . . . aµµ


with:

aii=
∑
e∈Pi

ae

aij=
∑

e∈Pi,Pj

ae
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and B the following one:

B =


bP1

bP2

...
bPµ


where:

bPi =
∑
e∈Pi

be

It should be clear that for every aij ∈ A it should be:

aij =
∑

e∈Pi,Pj

ae =
∑

e∈Pj ,Pi

ae = aji

Then, every path Pi’s latency should be the following ∀i ∈ [µ]:

lPi(f) = a1ifP1 + a2ifP2 + . . .+ aiifPi + ai+1ifPi+1 + . . .+ aµifPµ + bPi

Now, let the Nash Equilibrium flow of the Best Subnetwork HB be feq.

Then, there will be an S ⊆ [µ] such that ∀i, j ∈ S : feqPi , feqPj > 0

and lPi(feq) = lPj (feq) = Leq(H
B). If S ⊂ [µ], then T = [µ] − S and

∀i ∈ T : feqPi = 0 and lPi(feq) 6= Leq(H
B).

Let amax = max {aij |aij ∈ A,∀i, j ∈ [µ]}. Then:

amax = max {aij |aij ∈ A,∀i, j ∈ [µ]}

≤
max {|P |}∑

l=1

α

≤ α · lnd2 m

Now, let’s define the following vector:

ν = A(1) · feqP1
+A(2) · feqP2

+ . . .+A(µ) · feqPµ (4.7)

It should be obvious that ν ∈ conv({A(j)}j).

Using McDiarmid’s and Kahane’s inequalities, we will find a vector ν̃ ∈
conv({A(j)}j) such that ‖ν − ν̃‖p ≤

ε
2 .

Indeed. feq = (feqP1
, feqP2

, . . . , feqPµ ) could be interpreted as a probabil-

ity distribution over vectors A(1), A(2), . . . , A(µ). That is, under probability
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distribution feq vector A(i) is drawn with probability feqPi . The vector ν is
the mean of this distribution. Specifically, the jth component of ν is the
expected value of the random variable that takes value aij with probability
feqPi , where aij is the jth component of vector A(i). We succinctly express
these component-wise equalities as follows:

Ev∼feq [v] = ν

Let v1, v2, . . . , vκ be κ i.i.d. draws from feq. The sample mean vector
is defined to be 1

κ

∑κ
i=1 vi. Below we specify function g : {A(j)}j

κ → R to
quantify the p-norm distance between the sample mean vector and the ν.

g(v1, v2, . . . , vκ) :=

∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

where p is norm, with 2 ≤ p <∞.
Now, for every j ∈ [µ] the following is valid:

∥∥∥A(j)
∥∥∥
p

=
( µ∑
i=1

apij

) 1
p

≤
( µ∑
i=1

apmax

) 1
p

= µ
1
p · amax ≤ α ·m

d1
p · lnd2 m

We will use McDiarmid’s inequality. In particular, we will establish
that with positive probability the sample mean vector defined over κ :=⌈

64pα2m
2d1
p ln2d2 m
ε2

⌉
draws, is ε

2 close to ν in p-norm. Hence, the stated claim

is implied by the probabilistic method.
For any κ tuple (v1, v2, . . . , vi, . . . , vκ) ∈ {A(j)}j

κ
and v′i ∈ {A(j)}j , we

show that |g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ)| is no more than

2·α·m
d1
p ·lnd2 m
κ . We can assume without loss of generality that g(v1, v2, . . . , vi,

. . . , vκ) ≥ g(v1, v2, . . . , v
′
i, . . . , vκ), since the other case is symmetric.

Setting u := 1
κ

∑
j 6=i vj − ν we have:

g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ) =

∥∥∥∥u+
1

κ
vi

∥∥∥∥
p

−
∥∥∥∥u+

1

κ
v′i

∥∥∥∥
p

≤ ‖u‖p +
1

κ
‖vi‖p − ‖u‖p +

1

κ

∥∥v′i∥∥p
≤ 1

κ
‖vi‖p +

1

κ

∥∥v′i∥∥p
≤ 1

κ
max {

∥∥∥A(j)
∥∥∥
p
}+

1

κ
max {

∥∥∥A(j)
∥∥∥
p
}

=
2

κ
max {

∥∥∥A(j)
∥∥∥
p
}

≤ 2

κ
α ·m

d1
p · lnd2 m
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Given that g satisfies |g(v1, v2, . . . , vi, . . . , vκ)−g(v1, v2, . . . , v
′
i, . . . , vκ)| ≤

2αm
d1
p lnd2 m
κ , we can apply Mc-Diarmid’s inequality, with ci = 2αm

d1
p lnd2 m
κ

for all i ∈ [κ], to obtain:

P(|g − E[g]| ≥ t) ≤ 2e

−2t2κ

4α2m

2d1
p ln2d2 m (4.8)

At first, we are going to prove that E[g] ≤ 2Evi,ri
∥∥∑κ

i=1 ri
vi
κ

∥∥
p
, where

r1, r2, . . . , rκ be a sequence of i.i.d. Rademacher ±1 random variables.
Recall that in expectation the sampled mean is equal to ν:

Ev′1,v′2,...,v′κ∼feq
κ∑
i=1

v′i = ν

Hence, we have that:

E[g] = Ev1,v2,...,vκ

∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

= Ev1,v2,...,vκ

∥∥∥∥∥1

κ

κ∑
i=1

vi − Ev′1,v′2,...,v′κ
1

κ

κ∑
i=1

v′i

∥∥∥∥∥
p

= Ev1,v2,...,vκ

∥∥∥∥∥Ev′1,v′2,...,v′κ
(

1

κ

κ∑
i=1

vi −
1

κ

κ∑
i=1

v′i

)∥∥∥∥∥
p

(4.9)

Since ‖·‖ is convex for p ≥ 1, Jensen’s inequality gives:

Ev1,v2,...,vκ

∥∥∥∥∥Ev′1,v′2,...,v′κ
(

1

κ

κ∑
i=1

vi −
1

κ

κ∑
i=1

v′i

)∥∥∥∥∥
p

≤ Ev1,v2,...,vκEv′1,v′2,...,v′κ

∥∥∥∥∥
(

1

κ

κ∑
i=1

vi −
1

κ

κ∑
i=1

v′i

)∥∥∥∥∥
p

=
1

κ
Evi,v′i

∥∥∥∥∥
( κ∑
i=1

(vi − v′i)
)∥∥∥∥∥

p

(4.10)

Let r1, r2, . . . , rκ be a sequence of i.i.d. Rademacher ±1 random vari-
ables, i.e., P(ri = ±1) = 1

2 for all i ∈ [κ]. Since, for all i ∈ [κ], vi and v′i are
i.i.d. copies we can write:
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1

κ
Evi,v′i

∥∥∥∥∥
( κ∑
i=1

(vi − v′i)
)∥∥∥∥∥

p

=
1

κ
Evi,v′i,ri

∥∥∥∥∥
( κ∑
i=1

ri(vi − v′i)
)∥∥∥∥∥

p

≤ 1

κ
Evi,v′i,ri

[ ∥∥∥∥∥
κ∑
i=1

rivi

∥∥∥∥∥
p

+

∥∥∥∥∥
κ∑
i=1

riv
′
i

∥∥∥∥∥
p

]

=
1

κ
Eri
[
Evi,v′i

(∥∥∥∥∥
κ∑
i=1

rivi

∥∥∥∥∥
p

+

∥∥∥∥∥
κ∑
i=1

riv
′
i

∥∥∥∥∥
p

∣∣∣∣r1, . . . , rκ

)]

=
1

κ
Eri
[
Evi
(∥∥∥∥∥

κ∑
i=1

rivi

∥∥∥∥∥
p

∣∣∣∣r1, . . . , rκ

)
+ Ev′i

(∥∥∥∥∥
κ∑
i=1

riv
′
i

∥∥∥∥∥
p

∣∣∣∣r1, . . . , rκ

)]

=
1

κ
Eri
[
2Evi

(∥∥∥∥∥
κ∑
i=1

rivi

∥∥∥∥∥
p

∣∣∣∣r1, . . . , rκ

)]

= 2Evi,ri

∥∥∥∥∥
κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

(4.11)

The penultimate equality follows from the following:

Evi
(∥∥∥∥∥

κ∑
i=1

rivi

∥∥∥∥∥
p

∣∣∣∣r1, . . . , rκ

)
= Ev′i

(∥∥∥∥∥
κ∑
i=1

riv
′
i

∥∥∥∥∥
p

∣∣∣∣r1, . . . , rκ

)

Overall, relations (4.9), (4.10), (4.11) imply that:

E[g] ≤ 2Evi,ri

∥∥∥∥∥
κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

(4.12)

Now, having proved that E[g] ≤ 2Evi,ri
∥∥∑κ

i=1 ri
vi
κ

∥∥
p
, we will show that

P(g ≥ ε) ≤ 2e−2.
Indeed, by applying Kahane’s inequality with ui = vi

κ we obtain:

Evi,ri

∥∥∥∥∥
κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

= Evi
[
Eri
[ ∥∥∥∥∥

κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

∣∣∣∣v1 . . . vκ

]]

≤ Evi
[
√
p

( κ∑
i=1

∥∥∥vi
κ

∥∥∥2

p

) 1
2
]
≤ Evi

[
√
p

( κ∑
i=1

(
max {

∥∥A(j)
∥∥
p
}
)2

κ2

) 1
2
]

≤ √pαm
d1
p lnd2 m√
κ

(4.13)
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By relations (4.12) and (4.13) we have:

E[g] ≤ 2
√
p
αm

d1
p lnd2 m√
κ

For sample size:

κ ≥ 16 · pα
2m

2d1
p ln2d2 m

ε2
(4.14)

where ε > 0, we have:

E[g] ≤ 2
√
p
αm

d1
p lnd2 m√
κ

≤ 2
√
p

αm
d1
p lnd2 m

4 ·
√
pαm

d1
p lnd2 m
ε

≤ ε

2

Setting t = ε
2 in relation (4.8) we have the following two cases:

• g − E[g] ≥ 0:

P(|g − E[g]| ≥ t) ≤ 2e

−2t2κ

4α2m

2d1
p ln2d2 m ⇒

P(g − E[g] ≥ ε

2
) ≤ 2e

−2ε2κ

16α2m

2d1
p ln2d2 m ⇒

P(g ≥ E[g] +
ε

2
) ≤ 2e

−2ε2
16pα2m

2d1
p ln2d2 m

ε2

16α2m

2d1
p ln2d2 m ⇒

P(g ≥ E[g] +
ε

2
) ≤ 2e−2p ⇒

P(g ≥ ε

2
) ≤ 2e−2 ⇒

P(g ≥ ε) ≤ 2e−2

• g − E[g] ≤ 0:

|g − E[g]| ≥ t⇒
E[g]− g ≥ t⇒
g ≤ E[g]− t⇒
g ≤ ε

2
− ε

2
⇒

g ≤ 0
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which is a contradiction.

So, P(g ≥ ε) ≤ 2e−2 or P
(∥∥ 1

κ

∑κ
i=1 vi − ν

∥∥
p
≥ ε

)
≤ 2e−2. Therefore,

with positive probability: ∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

≤ ε

or for ε = ε
2 : ∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

≤ ε

2
(4.15)

The latter means that we have found a vector ν̃ := 1
κ

∑κ
i=1 vi, such that

ν̃ ∈ conv({A(j)}j) and ‖ν − ν̃‖p ≤
ε
2 .

Since v1, v2, . . . , vκ are κ i.i.d. draws from feq, vector ν̃ could be ex-
pressed as:

ν̃ = A(1) · f̃P1 +A(2) · f̃P2 + . . .+A(µ) · f̃Pµ (4.16)

=
κ1

κ
·A(iκ1 ) +

κ2

κ
·A(iκ2 ) + . . .+

κk
κ
·A(iκk ) (4.17)

where κ1 + κ2 + . . .+ κk = κ and 1 ≤ κ1, κ2, . . . , κk ≤ κ.
Taking into account relations (4.7) and (4.16), relation (4.15) could be

analyzed as follows:

‖ν − ν̃‖p ≤
ε

2
⇒∥∥∥A(1) · (feqP1
− f̃P1) +A(2) · (feqP2

− f̃P2) + . . .+A(µ) · (feqPµ − f̃Pµ)
∥∥∥
p
≤ ε

2
⇒∥∥∥A(1) · (feqP1

− f̃P1) +A(2) · (feqP2
− f̃P2) + . . .+A(µ) · (feqPµ − f̃Pµ) +B −B

∥∥∥
p
≤ ε

2
⇒∥∥∥A · (feq − f̃) +B −B

∥∥∥
p
≤ ε

2
⇒∥∥∥(A · feq +B)− (A · f̃ +B)

∥∥∥
p
≤ ε

2
⇒∥∥∥(lP1(feq)− lP1(f̃), lP2(feq)− lP2(f̃), . . . , lPµ(feq)− lPµ(f̃)

)∥∥∥
p
≤ ε

2
⇒∣∣∣lP1(feq)− lP1(f̃)

∣∣∣p +
∣∣∣lP2(feq)− lP2(f̃)

∣∣∣p + . . .+
∣∣∣lPµ(feq)− lPµ(f̃)

∣∣∣p ≤ εp

2p

Thus, ∀i ∈ S:
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∣∣∣Leq(HB)− lPi(f̃)
∣∣∣ ≤ ε

2

or better:

lPi(f̃) ≤ Leq(HB) +
ε

2
(4.18)

Now, since by relation (4.14) κ ≥ 16 · pα
2m

2d1
p ln2d2 m
ε2

, then for ε = ε
2 it

suffices to consider only a κ :=
⌈

64pα2m
2d1
p ln2d2 m
ε2

⌉
number of paths.

Therefore, since µ ≤ md1 for some d1 > 0, then by exhaustive search in
time T = mO(d1·κ) we can find a subnetwork (the one that minimizes the
latency of the maximum latency path) such that:

T = mO(
d1pα

2m

2d1
p ln2d2 m

ε2
)

Hence, by the relation above and relations (4.17), (4.18) we come to the
theorem’s conclusion for p norm with 2 ≤ p <∞.

——————————————————————————————
Now, for the p =∞ case, we are going to use theorem 4.8.
More specifically, feq = (feqP1

, feqP2
, . . . , feqPµ ) could be interpreted again

as a probability distribution over vectors A(1), A(2), . . . , A(µ).
Then, γ = maxA(j)

∥∥A(j)
∥∥
∞ = amax ≤ α · lnd2 m.

So, since µ ≤ md1 , for κ :=
⌈

2d1α2 ln2d2+1 m
ε2

⌉
we have that:

‖ν̃ − ν‖∞ ≤ ε

or for ε = ε
2 , we have for κ :=

⌈
8d1α2 ln2d2+1 m

ε2

⌉
that:

‖ν̃ − ν‖∞ ≤
ε

2

where:

ν = A(1) · feqP1
+A(2) · feqP2

+ . . .+A(µ) · feqPµ
ν̃ = A(1) · f̃P1 +A(2) · f̃P2 + . . .+A(µ) · f̃Pµ

=
κ1

κ
·A(iκ1 ) +

κ2

κ
·A(iκ2 ) + . . .+

κk
κ
·A(iκk )

and κ1 + κ2 + . . . + κk = κ, 1 ≤ κ1, κ2, . . . , κk ≤ κ, as previously stated.
Obviously ν, ν̃ ∈ conv({A(j)}j).

Thus:
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‖ν − ν̃‖∞ ≤
ε

2
⇒∥∥∥A(1) · (feqP1
− f̃P1) +A(2) · (feqP2

− f̃P2) + . . .+A(µ) · (feqPµ − f̃Pµ)
∥∥∥
∞
≤ ε

2
⇒∥∥∥A(1) · (feqP1

− f̃P1) +A(2) · (feqP2
− f̃P2) + . . .+A(µ) · (feqPµ − f̃Pµ) +B −B

∥∥∥
∞
≤ ε

2
⇒∥∥∥A · (feq − f̃) +B −B

∥∥∥
∞
≤ ε

2
⇒∥∥∥(A · feq +B)− (A · f̃ +B)

∥∥∥
∞
≤ ε

2
⇒∥∥∥(lP1(feq)− lP1(f̃), lP2(feq)− lP2(f̃), . . . , lPµ(feq)− lPµ(f̃)

)∥∥∥
∞
≤ ε

2

Hence, max
{ ∣∣∣lP1(feq)− lP1(f̃)

∣∣∣ , ∣∣∣lP2(feq)− lP2(f̃)
∣∣∣ , . . . , ∣∣∣lPµ(feq)− lPµ(f̃)

∣∣∣ } ≤
ε
2 , so again we conclude at relation (4.18).

Therefore, since µ ≤ md1 for some d1 > 0, then by exhaustive search in
time T = mO(d1·κ) we can find a subnetwork (the one that minimizes the
latency of the maximum latency path) such that:

T = mO(
d21α

2 ln2d2+1 m

ε2
)

Hence, we come to the theorem’s conclusion for p norm with p =∞.

Next we proceed to a theorem which is a variation of the former, for
different bounds of the flow’s f̃ number of paths and corresponding time of
finding them. The method is the same, though the idea differs.

Theorem 4.10. Let (G, 1, l) be an instance, with G = (V,E) and linear
latencies le(x) = ae · x+ be, with rational coefficients ae, be ≥ 0 and let HB

be the Best Subnetwork of G. Let also µ = |P| ≤ md1 be the total number of
paths and α = maxe∈E {ae}. Then, there exist a flow f̃ , to at most k ≤ κ
paths P with f̃P = ρ

κ , ρ ∈ [κ], that is an ε
2 - Nash flow on Gf̃ and satisfies

lP (f̃) ≤ Leq(H
B) + ε

2 , for all paths P in Gf̃ . This flow can be computed in
time:

mO(
d1pα

2m
2
p+2

ε2
) (4.19)

for p norm with 2 ≤ p < ∞, where the number of paths, k, is less than or

equal to κ =
⌈

64pα2m
2
p+2

ε2

⌉
,

or:

mO(
d21α

2m2 lnm

ε2
) (4.20)

for the p =∞ norm, where the number of paths, k, is less than or equal to

κ =
⌈

8d1α2m2 lnm
ε2

⌉
.
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Proof. Again, let the Nash Equilibrium flow of the Best Subnetwork HB be feq.

Then, there will be an S ⊆ [µ], where µ is the number of paths, such that
∀i, j ∈ S : feqPi , feqPj > 0 and lPi(feq) = lPj (feq) = Leq(H

B). If S ⊂ [µ],

then T = [µ]− S and ∀i ∈ T : feqPi = 0 and lPi(feq) 6= Leq(H
B).

Suppose that we have the following set of vectors X = {x1, x2, . . . , xµ}.
Every xi, i ∈ [µ], is a vector of m = |E| elements, and corresponds to the
path Pi. The vector xi’s component xij , represents the presence of edge ej
at the corresponding path Pi. That is, if edge ej belongs to the path Pi,
then xij = 1, else xij = 0.

For example, if the edges e1, e2, e4, e8 belong to the path Pi, where m =
|E| = 10, then:

xi = (1, 1, 0, 1, 0, 0, 0, 1, 0, 0)

If fPi is the path Pi’s corresponding flow, then fPi · xi gives fPi ’s con-
tribution to each edge of that path. Specifically, for the example above
fPi · xi = (fPi , fPi , 0, fPi , 0, 0, 0, fPi , 0, 0).

Now, let’s define the following vector:

ν = feqP1
x1 + feqP2

x2 + . . .+ feqPµxµ (4.21)

Then, the following is valid:

ν = feqP1
x1 + feqP2

x2 + . . .+ feqPµxµ

= (
∑

P∈P:e1∈P
feqP ,

∑
P∈P:e2∈P

feqP , . . . ,
∑

P∈P:em∈P
feqP )

= (feqe1 , feqe2 , . . . , feqem ) (4.22)

It should be obvious that ν ∈ conv(X).

Using McDiarmid’s and Kahane’s inequalities, we will find a vector ν̃ ∈
conv(X) such that ‖ν − ν̃‖p ≤ ε, where ε is a positive constant.

Indeed. feq = (feqP1
, feqP2

, . . . , feqPµ ) could be interpreted as a prob-
ability distribution over vectors x1, x2, . . . , xµ. That is, under probability
distribution feq vector xi is drawn with probability feqPi . The vector ν is
the mean of this distribution. Specifically, the jth component of ν is the
expected value of the random variable that takes value xij with probability
feqPi , where xij is the jth component of vector xi. We succinctly express
these component-wise equalities as follows:

Ev∼feq [v] = ν
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Now, let v1, v2, . . . , vκ be κ i.i.d. draws from feq. The sample mean
vector is defined to be 1

κ

∑κ
i=1 vi. Below we specify function g : Xκ → R to

quantify the p-norm distance between the sample mean vector and the ν.

g(v1, v2, . . . , vκ) :=

∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

where p is norm, with 2 ≤ p <∞.
Also, for every j ∈ [µ] the following is valid:

max
x∈X
‖x‖p ≤ (1p + 1p + . . .+ 1p︸ ︷︷ ︸

m=|E| times

)
1
p = m

1
p

We will use McDiarmid’s inequality. In particular, we will establish
that with positive probability the sample mean vector defined over κ :=⌈

64pα2m
2
p+2

ε2

⌉
draws, is ε = ε

2mα close to ν in p-norm, where α = maxe∈E {ae}.
Hence, the stated claim is implied by the probabilistic method.

For any κ tuple (v1, v2, . . . , vi, . . . , vκ) ∈ Xκ and v′i ∈ X, we show that

|g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ)| is no more than 2

κ · m
1
p .

We can assume without loss of generality that g(v1, v2, . . . , vi, . . . , vκ) ≥
g(v1, v2, . . . , v

′
i, . . . , vκ), since the other case is symmetric.

Setting u := 1
κ

∑
j 6=i vj − ν we have:

g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ) =

∥∥∥∥u+
1

κ
vi

∥∥∥∥
p

−
∥∥∥∥u+

1

κ
v′i

∥∥∥∥
p

≤ ‖u‖p +
1

κ
‖vi‖p − ‖u‖p +

1

κ

∥∥v′i∥∥p
≤ 1

κ
‖vi‖p +

1

κ

∥∥v′i∥∥p
≤ 1

κ
max {‖x‖p}+

1

κ
max {‖x‖p}

=
2

κ
max {‖x‖p}

≤ 2

κ
·m

1
p

Given that g satisfies |g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ)| ≤

2
κm

1
p , we can apply Mc-Diarmid’s inequality, with ci = 2

κm
1
p for all i ∈ [κ],

to obtain:

P(|g − E[g]| ≥ t) ≤ 2e

−κt2

2m
2
p (4.23)

By using the same approach as in the proof of theorem 4.9 we can prove
that:
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E[g] ≤ 2Evi,ri

∥∥∥∥∥
κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

(4.24)

where r1, r2, . . . , rκ be a sequence of i.i.d. Rademacher ±1 random vari-
ables.

Now, by applying Kahane’s inequality with ui = vi
κ we obtain:

Evi,ri

∥∥∥∥∥
κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

= Evi
[
Eri
[ ∥∥∥∥∥

κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

∣∣∣∣v1 . . . vκ

]]

≤ Evi
[
√
p

( κ∑
i=1

∥∥∥vi
κ

∥∥∥2

p

) 1
2
]

≤ Evi
[
√
p

( κ∑
i=1

(
maxx∈X ‖x‖p

)2
κ2

) 1
2
]

≤ √pm
1
p

√
κ

(4.25)

By using relations (4.24) and (4.25) we have that:

E[g] ≤ 2
√
p
m

1
p

√
κ

Thus, for sample size:

κ ≥ 16 · pm
2
p

ε2
(4.26)

we have E[g] ≤ ε
2 .

Setting t = ε
2 in relation (4.23), and by following the same guidelines

of theorem 4.9, we may prove that P(g ≥ ε) ≤ 2e−2 or equivalently that

P
(∥∥ 1

κ

∑κ
i=1 vi − ν

∥∥
p
≥ ε
)
≤ 2e−2.

Therefore, with positive probability:∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

≤ ε (4.27)

The latter means that we have found a vector ν̃ := 1
κ

∑κ
i=1 vi, such that

ν̃ ∈ conv(X) and ‖ν − ν̃‖p ≤ ε.

Since v1, v2, . . . , vκ are κ i.i.d. draws from feq, vector ν̃ could be ex-
pressed as:
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ν̃ = x1 · f̃P1 + x2 · f̃P2 + . . .+ xµ · f̃Pµ (4.28)

=
κ1

κ
· xκ1 +

κ2

κ
· xκ2 + . . .+

κk
κ
· xκk (4.29)

where κ1 + κ2 + . . .+ κk = κ and 1 ≤ κ1, κ2, . . . , κk ≤ κ.
Also, vector ν̃ could be expressed in a form similar to (4.22) as follows:

ν̃ = (f̃e1 , f̃e2 , . . . , f̃em) (4.30)

Taking into account relations (4.22) and (4.30), relation (4.27) could be
analyzed as follows:

‖ν − ν̃‖p ≤ ε⇒∥∥∥(feqe1 − f̃e1 , feqe2 − f̃e2 , . . . , feqem − f̃em)∥∥∥p ≤ ε⇒
m∑
i=1

∣∣∣feqei − f̃ei∣∣∣p ≤ εp ⇒∣∣∣feqei − f̃ei∣∣∣ ≤ ε,∀i ∈ [m] (4.31)

Now, let’s consider a path Pi with feqPi > 0. Suppose now that Pi’s
edges are ez1 , ez2 , . . . , ezM . Then by relation (4.31) we have:

∣∣∣Leq(HB)− lPi(f̃)
∣∣∣ =

∣∣∣aez1 (feqez1 − f̃ez1 ) + . . .+ aezM (feqezM
− f̃ezM )

∣∣∣
≤ α

M∑
i=1

∣∣∣feqezi − f̃ezi ∣∣∣ ≤ αMε ≤ αmε

Thus, ∀i ∈ S,
∣∣∣Leq(HB)− lPi(f̃)

∣∣∣ ≤ αmε. So, if we choose ε = ε
2αm then:∣∣∣Leq(HB)− lPi(f̃)

∣∣∣ ≤ ε

2

or better:

lPi(f̃) ≤ Leq(HB) +
ε

2
(4.32)

Now, since ε = ε
2αm , relation (4.26) should be:

κ ≥ 16 · pm
2
p

ε2

≥ 64 · pα
2m

2
p

+2

ε2
(4.33)
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Thus, it suffices to consider only a κ :=
⌈

64pα2m
2
p+2

ε2

⌉
number of paths.

Therefore, since µ ≤ md1 for some d1 > 0, then by exhaustive search in
time T = mO(d1·κ) we can find a subnetwork (the one that minimizes the
latency of the maximum latency path) such that:

T = mO(
d1pα

2m
2
p+2

ε2
)

Hence, we come to the theorem’s conclusion for p norm with 2 ≤ p <∞.
——————————————————————————————
Now, for the p =∞ case, we are going to use theorem 4.8.
More specifically, feq = (feqP1

, feqP2
, . . . , feqPµ ) could be interpreted again

as a probability distribution over vectors x1, x2, . . . , xµ.
Then, γ = maxx∈X ‖x‖∞ = 1.
So, since µ ≤ md1 , for κ ≥ 2d1 lnm

ε2
we have that:

‖ν̃ − ν‖∞ ≤ ε

where:

ν = x1 · feqP1
+ x2 · feqP2

+ . . .+ xµ · feqPµ
ν̃ = x1 · f̃P1 + x2 · f̃P2 + . . .+ xµ · f̃Pµ

=
κ1

κ
· xκ1 +

κ2

κ
· xκ2 + . . .+

κk
κ
· xκk

and κ1 + κ2 + . . .+ κk = κ, 1 ≤ κ1, κ2, . . . , κk ≤ κ.
Also, as previously stated:

ν = (feqe1 , feqe2 , . . . , feqem )

ν̃ = (f̃e1 , f̃e2 , . . . , f̃em)

Obviously ν, ν̃ ∈ conv(X).
Thus:

‖ν − ν̃‖∞ ≤ ε⇒∥∥∥(feqe1 − f̃e1 , feqe2 − f̃e2 , . . . , feqem − f̃em)∥∥∥∞ ≤ ε⇒
max

{ ∣∣∣feqei − f̃ei∣∣∣ , i ∈ [m]
}
≤ ε⇒∣∣∣feqei − f̃ei∣∣∣ ≤ ε, ∀i ∈ [m]

Now, by doing the same work as previously, ∀i ∈ S,
∣∣∣Leq(HB)− lPi(f̃)

∣∣∣ ≤
αmε. So, if we choose ε = ε

2αm then:
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lPi(f̃) ≤ Leq(HB) +
ε

2

Again, since ε = ε
2αm , we should have:

κ ≥ 2d1 lnm

ε2

≥ 8d1α
2m2 lnm

ε2

Thus, it suffices to consider only a κ :=
⌈

8d1α2m2 lnm
ε2

⌉
number of paths.

Therefore, since µ ≤ md1 for some d1 > 0, then by exhaustive search in
time T = mO(d1·κ) we can find a subnetwork (the one that minimizes the
latency of the maximum latency path) such that:

T = mO(
d21α

2m2 lnm

ε2
)

Hence, we come to the theorem’s conclusion for p norm with p =∞.

The following lemma makes a comparison of the relevant computational
times of theorem 4.9’s p = ∞ and 2 ≤ p < ∞ norm. It demonstrates that
the computational time of the p = ∞ norm is always less than the same
theorem’s computational time of the 2 ≤ p <∞ norm:

Lemma 4.11. Let T 4.9
p=∞ and T 4.9

2≤p<∞ be the corresponding computational
times of theorem 4.9’s p = ∞ and 2 ≤ p < ∞ norm. Then, by assuming
that the constant terms of the formulas O(·) are all equal:

T 4.9
p=∞ ≤ T 4.9

2≤p<∞

Proof.

T 4.9
p=∞ ≤ T 4.9

2≤p<∞ ⇔

mO(
d21α

2 ln2d2+1 m

ε2
) ≤ mO(

d1pα
2m

2d1
p ln2d2 m

ε2
) ⇔

d1 lnm ≤ pm
2d1
p ⇔

d1

p
lnm ≤ m2

d1
p

Since the above inequality, for a constant total number of edges m > 1,
depends on the changeable factor d1

p , it suffices to prove that:

f(x) ≤ g(x), ∀x > 0

where f(x) := x lnm, g(x) := m2x, where variable x := d1
p > 0.
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At first it is simple to prove that when x→ 0+, then f(x) ≤ g(x). So:

lim
x→0+

f(x) = 0 ≤ 1 = lim
x→0+

g(x)

Then we show that both f, g are strictly increasing functions:

f ′(x) = lnm > 0

and

g′(x) = 2m2x lnm > 0

Moreover:

f ′(x) = lnm ≤ 2m2x lnm = g′(x)⇒

lim
h→0

f(x+ h)− f(x)

h
≤ lim

h→0

g(x+ h)− g(x)

h
⇒

lim
h→0

g(x)− f(x)

h
≤ lim

h→0

g(x+ h)− f(x+ h)

h
⇒

g(x)− f(x) ≤ g(x+ h)− f(x+ h) (4.34)

for h > 0 with h→ 0.
Now, since both f, g are strictly increasing and since for the ‘base’ case

(x→ 0+), f(x) ≤ g(x), then from relation (4.34) we have:

f(x+ h) ≤ g(x+ h)− g(x) + f(x) ≤ g(x+ h)− g(x) + g(x) ≤ g(x+ h)

Hence, for every x > 0, f(x) ≤ g(x).

The following lemma makes a comparison of the relevant computational
times of theorem 4.10’s p =∞ and 2 ≤ p <∞ norm:

Lemma 4.12. Let T 4.10
p=∞ and T 4.10

2≤p<∞ be the corresponding computational
times of theorem 4.10’s p = ∞ and 2 ≤ p < ∞ norm. Then, by assuming
that the constant terms of the formulas O(·) are all equal:

• If d1
p ≤

m
2
p

lnm (or less strictly, d1
p ≤ m

2
p
−1

) then:

T 4.10
p=∞ ≤ T 4.10

2≤p<∞

• If d1
p ≥

m
2
p

lnm (or less strictly, d1
p ≥

m
2
p+1

m−1 ) then:

T 4.10
p=∞ ≥ T 4.10

2≤p<∞
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The less strict constraints may be used when building an instance (they seem
simpler in use).

Proof. The function ln(·) is strictly increasing (since the logarithm’s base is
greater than 1). So, the following inequalities are valid:

lnx < ln(x+ 1) ≤ (x+ 1)− 1 = x (4.35)

Also,
x− 1

x
≤ lnx (4.36)

Now, by using inequality (4.35) for the first case, and inequality (4.36)
for the second case we have lemma’s conclusion.

Having in mind lemma 4.11 above, the following lemma makes a com-
parison between the minimum computational time of theorem 4.9, T 4.9

p=∞
specifically, and 4.10’s T 4.10

p=∞ and T 4.10
2≤p<∞ computational times.

Lemma 4.13. Let T 4.10
p=∞ and T 4.10

2≤p<∞ be the corresponding computational

times of theorem 4.10’s p =∞ and 2 ≤ p <∞ norm. Let also T 4.9
p=∞ be the

computational time of theorem 4.9’s p = ∞ norm. Then, by assuming that
the constant terms of the formulas O(·) are all equal:

• If lnm ≥ m
1
d2 then:

T 4.9
p=∞ ≥ T 4.10

p=∞

• If lnm ≤ m
1
d2 then:

T 4.9
p=∞ ≤ T 4.10

p=∞

• If d1
p ≤

m
2
p+2

ln2d2+1 m
(or less strictly, d1

p ≤ m
2
p
−2d2+1

) then:

T 4.9
p=∞ ≤ T 4.10

2≤p<∞

• If d1
p ≥

m
2
p+2

ln2d2+1 m
(or less strictly, d1

p ≥
m

2
p+2d2+3

(m−1)2d2+1 ) then:

T 4.9
p=∞ ≥ T 4.10

2≤p<∞

The less strict constraints may be used when building an instance (they seem
simpler in use).

Proof. The proof is simple. For the first two cases the conclusion follows
easily. For the third and fourth case we use inequalities (4.35) and (4.36)
respectively. The conclusion follows.
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The next lemma takes into account theorem 4.4. It makes a comparison
between theorem 4.4’s computational time, T 4.4 specifically, and 4.10’s T 4.10

p=∞
and T 4.10

2≤p<∞ computational times.

Lemma 4.14. Let T 4.10
p=∞ and T 4.10

2≤p<∞ be the corresponding computational

times of theorem 4.10’s p = ∞ and 2 ≤ p < ∞ norm. Let also T 4.4 be the
computational time of theorem 4.4. Then, by assuming that the constant
terms of the formulas O(·) are all equal:

• If p ≥ ln2d2+1 (2m)

m
2
p+2

(or less strictly p ≥ 22d2+1

m
2
p−2d2+1

) then:

T 4.4 ≤ T 4.10
2≤p<∞

• If p ≤ ln2d2+1 (2m)

m
2
p+2

(or less strictly p ≤ 1
2d2+1 ·

(2m−1)2d2+1

m
2
p+2d2+3

) then:

T 4.4 ≥ T 4.10
2≤p<∞

• If d1 ≥ ln2d2+1 (2m)
m2 lnm

(or less strictly d1 ≥ 22d2+1 · m2d2

m−1 ) then:

T 4.4 ≤ T 4.10
p=∞

• If d1 ≤ ln2d2+1 (2m)
m2 lnm

(or less strictly d1 ≤ 1
22d2+1 ·

(2m−1)2d2+1

m2d2+4 ) then:

T 4.4 ≥ T 4.10
p=∞

The less strict constraints may be used when building an instance (they seem
simpler in use).

Proof. The proof is simple too. For the first and second case we use inequal-
ities (4.35) and (4.36) respectively. For the last two cases we use both the
aforementioned inequalities. The conclusion follows easily.

The next lemma compares theorem 4.4’s computational time, T 4.4 specif-
ically, with the computational time of theorem 4.9’s p = ∞ norm, T 4.9

p=∞,
which by lemma 4.11 is less than theorem 4.9’s 2 ≤ p <∞ norm.

Lemma 4.15. Let T 4.4 be the computational time of theorem 4.4 and T 4.9
p=∞

be the corresponding computational time of theorem 4.9’s p = ∞ norm.
Then, by assuming that the constant terms of the formulas O(·) are all
equal:

• If d1 ≤
(

ln (2m)
lnm

)2d2+1
then:

T 4.9
p=∞ ≤ T 4.4
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• If d1 ≥
(

ln (2m)
lnm

)2d2+1
then:

T 4.9
p=∞ ≥ T 4.4

Proof. The proof is straightforward.

Now, we are ready to present the following theorem, which makes a
comparison of the relevant computational times of theorems 4.4, 4.9, and
4.10. We are going to use lemmas 4.11 to 4.15:

Theorem 4.16. Let (G, 1, l) be an instance, with G = (V,E) and linear
latencies le(x) = ae · x+ be, with rational coefficients ae, be ≥ 0 and let HB

be the Best Subnetwork of G. Let also µ = |P| ≤ md1 be the total number of
paths, |P | ≤ lnd2 m for all P ∈ P and α = maxe∈E {ae}. Then, there exist
a flow f̃ , to at most k ≤ κ paths P with f̃P = ρ

κ , ρ ∈ [κ], that is an ε
2 - Nash

flow on Gf̃ and satisfies lP (f̃) ≤ Leq(HB) + ε
2 , for all paths P in Gf̃ . This

flow can be computed in the following minimum computational times:

• mO(
d21α

2 ln2d2+1 m

ε2
) where the number of paths, k, is less than or equal

to κ =
⌈

8d1α2 ln2d2+1 m
ε2

⌉
,

under the following strict constraints:

m
2
p

lnm
≤ d1

p
≤ m

2
p

+2

ln2d2+1m

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

or less strict constraints:

m
2
p

+1

m− 1
≤ d1

p
≤ m

2
p
−2d2+1

m2d2 ≤ m− 1

d1 ≤
( ln (2m)

lnm

)2d2+1

or

under the following strict constraints:

d1

p
≤ m

2
p

lnm

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1
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or less strict constraints:

d1

p
≤ m

2
p
−1

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

• mO
(
d1α

2 ln2d2+1 (2m)

ε2

)
where the number of paths, k, is less than or equal

to κ =
⌈

2α2 ln2d2+1 (2m)
ε2

⌉
,

under the following strict constraints:

d1

p
≥ m

2
p

lnm

p ≥ ln2d2+1 (2m)

m
2
p

+2

d1 ≥
( ln (2m)

lnm

)2d2+1

or less strict constraints:

d1

p
≥ m

2
p

+1

m− 1

p ≥ 22d2+1

m
2
p
−2d2+1

d1 ≥
( ln (2m)

lnm

)2d2+1

or

under the following strict constraints:

d1

p
≤ m

2
p

lnm

d1 ≥ max
{ ln2d2+1 (2m)

m2 lnm
,
( ln (2m)

lnm

)2d2+1}
or less strict constraints:

d1

p
≤ m

2
p
−1

d1 ≥ max
{

22d2+1 · m
2d2

m− 1
,
( ln (2m)

lnm

)2d2+1}
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• mO(
d1pα

2m
2
p+2

ε2
) where the number of paths, k, is less than or equal to

κ =
⌈

64pα2m
2
p+2

ε2

⌉
,

under the following strict constraints:

p ≤ ln2d2+1 (2m)

m
2
p

+2

d1

p
≥ m

2
p

+2

ln2d2+1m

or less strict constraints:

p ≤ 1

2d2+1
· (2m− 1)2d2+1

m
2
p

+2d2+3

d1

p
≥ m

2
p

+2d2+3

(m− 1)2d2+1

• mO(
d21α

2m2 lnm

ε2
) where the number of paths, k, is less than or equal to

κ =
⌈

8d1α2m2 lnm
ε2

⌉
,

under the following strict constraints:

d1 ≤
ln2d2+1 (2m)

m2 lnm

lnm ≥ m
1
d2

or less strict constraints:

d1 ≤
1

22d2+1
· (2m− 1)2d2+1

m2d2+4
)

lnm ≥ m
1
d2

where p is norm with 2 ≤ p <∞.
The less strict constraints may be used when building an instance (they
seem simpler in use).

Proof. By lemma 4.11 we have proved that T 0.5
p=∞ ≤ T 0.5

2≤p<∞. Thus, it is
sufficient to compare the computational times of theorems 4.4 and 4.10,
only with the T 4.9

p=∞ case, taking into account the constraints of lemmas 4.11
to 4.15.

• First case, T 4.9
p=∞ = min {T 4.10, T 4.4}:
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� T 4.10
2≤p<∞ ≤ T 4.10

p=∞:

This means that T 4.9
p=∞ = min {T 4.10

2≤p<∞, T
4.4}. Then, we have

shown that d1
p ≥

m
2
p

lnm (or less strictly, d1
p ≥

m
2
p+1

m−1 ), d1
p ≤

m
2
p+2

ln2d2+1m

(or less strictly, d1
p ≤ m

2
p
−2d2+1

), d1 ≤
(

ln (2m)
lnm

)2d2+1
.

By combining the first two strict inequalities we conclude that:

m
2
p

lnm
≤ d1

p
≤ m

2
p

+2

ln2d2+1m
⇒

m
2
p

lnm
≤ m

2
p

+2

ln2d2+1m
⇒

lnm ≤ m
1
d2

Also, by combining the first two less strict inequalities we con-
clude that:

m
2
p

+1

m− 1
≤ d1

p
≤ m

2
p
−2d2+1 ⇒

m
2
p

+1

m− 1
≤ m

2
p
−2d2+1 ⇒

m2d2 ≤ m− 1

So, for this case we conclude to the following restrictions:

m
2
p

lnm
≤ d1

p
≤ m

2
p

+2

ln2d2+1m

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

or less strictly:

m
2
p

+1

m− 1
≤ d1

p
≤ m

2
p
−2d2+1

m2d2 ≤ m− 1

d1 ≤
( ln (2m)

lnm

)2d2+1

� T 4.10
p=∞ ≤ T 4.10

2≤p<∞:

This means that T 4.9
p=∞ = min {T 4.10

p=∞, T
4.4}. Then, we have shown

that d1
p ≤

m
2
p

lnm (or less strictly, d1
p ≤ m

2
p
−1

), lnm ≤ m
1
d2 , d1 ≤(

ln (2m)
lnm

)2d2+1
.
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So, for this case we conclude to the following restrictions:

d1

p
≤ m

2
p

lnm

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

or less strictly:

d1

p
≤ m

2
p
−1

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

• Second case, T 4.4 = min {T 4.10, T 4.9
p=∞}:

� T 4.10
2≤p<∞ ≤ T 4.10

p=∞:

This means that T 4.4 = min {T 4.10
2≤p<∞, T

4.9
p=∞}. Then, we have

shown that d1
p ≥

m
2
p

lnm (or less strictly, d1
p ≥

m
2
p+1

m−1 ), p ≥ ln2d2+1 (2m)

m
2
p+2

(or less strictly p ≥ 22d2+1

m
2
p−2d2+1

), d1 ≥
(

ln (2m)
lnm

)2d2+1
.

So, for this case we conclude to the following restrictions:

d1

p
≥ m

2
p

lnm

p ≥ ln2d2+1 (2m)

m
2
p

+2

d1 ≥
( ln (2m)

lnm

)2d2+1

or less strictly:

d1

p
≥ m

2
p

+1

m− 1

p ≥ 22d2+1

m
2
p
−2d2+1

d1 ≥
( ln (2m)

lnm

)2d2+1
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� T 4.10
p=∞ ≤ T 4.10

2≤p<∞:

This means that T 4.4 = min {T 4.10
p=∞, T

4.9
p=∞}. Then, we have shown

that d1
p ≤

m
2
p

lnm (or less strictly, d1
p ≤ m

2
p
−1

), d1 ≥ ln2d2+1 (2m)
m2 lnm

(or

less strictly d1 ≥ 22d2+1 · m2d2

m−1 ), d1 ≥
(

ln (2m)
lnm

)2d2+1
.

So, for this case we conclude to the following restrictions:

d1

p
≤ m

2
p

lnm

d1 ≥ max
{ ln2d2+1 (2m)

m2 lnm
,
( ln (2m)

lnm

)2d2+1}
or less strictly:

d1

p
≤ m

2
p
−1

d1 ≥ max
{

22d2+1 · m
2d2

m− 1
,
( ln (2m)

lnm

)2d2+1}
• Third case, T 4.10

2≤p<∞ = min {T 4.4, T 4.9
p=∞}:

We have shown that p ≤ ln2d2+1 (2m)

m
2
p+2

(or less strictly p ≤ 1
2d2+1 ·

(2m−1)2d2+1

m
2
p+2d2+3

), d1
p ≥

m
2
p+2

ln2d2+1 m
(or less strictly, d1

p ≥
m

2
p+2d2+3

(m−1)2d2+1 ).

So, for this case we conclude to the following restrictions:

p ≤ ln2d2+1 (2m)

m
2
p

+2

d1

p
≥ m

2
p

+2

ln2d2+1m

or less strictly:

p ≤ 1

2d2+1
· (2m− 1)2d2+1

m
2
p

+2d2+3

d1

p
≥ m

2
p

+2d2+3

(m− 1)2d2+1

• Fourth case, T 4.10
p=∞ = min {T 4.4, T 4.9

p=∞}:

We have shown that d1 ≤ ln2d2+1 (2m)
m2 lnm

(or less strictly d1 ≤ 1
22d2+1 ·

(2m−1)2d2+1

m2d2+4 ), lnm ≥ m
1
d2 .
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So, for this case we conclude to the following restrictions:

d1 ≤
ln2d2+1 (2m)

m2 lnm

lnm ≥ m
1
d2

or less strictly:

d1 ≤
1

22d2+1
· (2m− 1)2d2+1

m2d2+4
)

lnm ≥ m
1
d2

Now, it is relatively easy to introduce traffic rates r > 0 (not only for the
special case r = 1) to each proof of lemma 4.3 and of theorems 4.4, 4.9, 4.10,
by applying new flows fP := fP

r for every path P ∈ P, and / or fe := fe
r for

every edge e ∈ E. Specifically, ε := ε
r and thus both the bounds κ and the

computational times should be multiplied by a factor of r2.
Then, the following comparison theorem is valid:

Theorem 4.17. First Comparison Theorem: Let (G, r, l) be an instance,
r > 0, with G = (V,E) and linear latencies le(x) = ae · x+ be, with rational
coefficients ae, be ≥ 0 and let HB be the Best Subnetwork of G. Let also
µ = |P| ≤ md1 be the total number of paths, |P | ≤ lnd2 m for all P ∈ P
and α = maxe∈E {ae}. Then, there exists a flow f̃ , to at most k ≤ κ
paths P with f̃P = ρ

κ , ρ ∈ [κ], that is an ε
2 - Nash flow on Gf̃ and satisfies

lP (f̃) ≤ Leq(H
B) + ε

2 , for all paths P in Gf̃ . This flow can be computed in
the following minimum computational times:

• mO(
d21α

2r2 ln2d2+1 m

ε2
) where the number of paths, k, is less than or equal

to κ =
⌈

8d1α2r2 ln2d2+1m
ε2

⌉
,

under the following strict constraints:

m
2
p

lnm
≤ d1

p
≤ m

2
p

+2

ln2d2+1m

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

or less strict constraints:

m
2
p

+1

m− 1
≤ d1

p
≤ m

2
p
−2d2+1

m2d2 ≤ m− 1

d1 ≤
( ln (2m)

lnm

)2d2+1
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or

under the following strict constraints:

d1

p
≤ m

2
p

lnm

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

or less strict constraints:

d1

p
≤ m

2
p
−1

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

• mO
(
d1α

2r2 ln2d2+1 (2m)

ε2

)
where the number of paths, k, is less than or

equal to κ =
⌈

2α2r2 ln2d2+1 (2m)
ε2

⌉
,

under the following strict constraints:

d1

p
≥ m

2
p

lnm

p ≥ ln2d2+1 (2m)

m
2
p

+2

d1 ≥
( ln (2m)

lnm

)2d2+1

or less strict constraints:

d1

p
≥ m

2
p

+1

m− 1

p ≥ 22d2+1

m
2
p
−2d2+1

d1 ≥
( ln (2m)

lnm

)2d2+1

or

under the following strict constraints:

d1

p
≤ m

2
p

lnm

d1 ≥ max
{ ln2d2+1 (2m)

m2 lnm
,
( ln (2m)

lnm

)2d2+1}
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or less strict constraints:

d1

p
≤ m

2
p
−1

d1 ≥ max
{

22d2+1 · m
2d2

m− 1
,
( ln (2m)

lnm

)2d2+1}

• mO(
d1pα

2r2m
2
p+2

ε2
) where the number of paths, k, is less than or equal to

κ =
⌈

64pα2r2m
2
p+2

ε2

⌉
,

under the following strict constraints:

p ≤ ln2d2+1 (2m)

m
2
p

+2

d1

p
≥ m

2
p

+2

ln2d2+1m

or less strict constraints:

p ≤ 1

2d2+1
· (2m− 1)2d2+1

m
2
p

+2d2+3

d1

p
≥ m

2
p

+2d2+3

(m− 1)2d2+1

• mO(
d21α

2r2m2 lnm

ε2
) where the number of paths, k, is less than or equal to

κ =
⌈

8d1α2r2m2 lnm
ε2

⌉
,

under the following strict constraints:

d1 ≤
ln2d2+1 (2m)

m2 lnm

lnm ≥ m
1
d2

or less strict constraints:

d1 ≤
1

22d2+1
· (2m− 1)2d2+1

m2d2+4
)

lnm ≥ m
1
d2

where p is norm with 2 ≤ p <∞.
The less strict constraints may be used when building an instance (they
seem simpler in use).
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Having a thorough look at the values of p that minimize the expression

f(p) = p · m
2
p (that appears explicitly in the 3rd case above), it could be

easily shown that it takes the minimum value when p = 2 lnm. After that,
theorem 4.17 is modified as follows:

Theorem 4.18. Second Comparison Theorem: Let (G, r, l) be an instance,
r > 0, with G = (V,E) and linear latencies le(x) = ae · x+ be, with rational
coefficients ae, be ≥ 0 and let HB be the Best Subnetwork of G. Let also
µ = |P| ≤ md1 be the total number of paths, |P | ≤ lnd2 m for all P ∈ P
and α = maxe∈E {ae}. Then, there exists a flow f̃ , to at most k ≤ κ
paths P with f̃P = ρ

κ , ρ ∈ [κ], that is an ε
2 - Nash flow on Gf̃ and satisfies

lP (f̃) ≤ Leq(H
B) + ε

2 , for all paths P in Gf̃ . This flow can be computed in
the following minimum computational times:

• mO(
d21α

2r2 ln2d2+1 m

ε2
) where the number of paths, k, is less than or equal

to κ =
⌈

8d1α2r2 ln2d2+1m
ε2

⌉
,

under the following strict constraints:

2m
1

lnm ≤ d1 ≤
2m

1
lnm

+2

ln2d2 m

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

or less strict constraints:

m
1

lnm
+1

m− 1
≤ d1

2 lnm
≤ m

1
lnm
−2d2+1

m2d2 ≤ m− 1

d1 ≤
( ln (2m)

lnm

)2d2+1

or

under the following strict constraints:

d1 ≤ 2m
1

lnm

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1

or less strict constraints:

d1 ≤ 2m
1

lnm
−1 lnm

lnm ≤ m
1
d2

d1 ≤
( ln (2m)

lnm

)2d2+1
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• mO
(
d1α

2r2 ln2d2+1 (2m)

ε2

)
where the number of paths, k, is less than or

equal to κ =
⌈

2α2r2 ln2d2+1 (2m)
ε2

⌉
,

under the following strict constraints:

d1 ≥ 2m
1

lnm

m
1

lnm
+2 ≥ ln2d2+1 (2m)

2 lnm

d1 ≥
( ln (2m)

lnm

)2d2+1

or less strict constraints:

d1

2 lnm
≥ m

1
lnm

+1

m− 1

2 lnm ≥ 22d2+1

m
1

lnm
−2d2+1

d1 ≥
( ln (2m)

lnm

)2d2+1

or

under the following strict constraints:

d1 ≤ 2m
1

lnm

d1 ≥ max
{ ln2d2+1 (2m)

m2 lnm
,
( ln (2m)

lnm

)2d2+1}
or less strict constraints:

d1 ≤ 2m
1

lnm
−1 lnm

d1 ≥ max
{

22d2+1 · m
2d2

m− 1
,
( ln (2m)

lnm

)2d2+1}

• mO(
d1α

2r2m
1

lnm
+2

lnm

ε2
) where the number of paths, k, is less than or

equal to κ =
⌈

128α2r2m
1

lnm
+2 lnm

ε2

⌉
,

under the following strict constraints:

m
1

lnm
+2 ≤ ln2d2+1 (2m)

2 lnm

d1 ≥
2m

1
lnm

+2

ln2d2 m

or less strict constraints:

2d2+2 · lnm ≤ (2m− 1)2d2+1

m
1

lnm
+2d2+3

d1

2 lnm
≥ m

1
lnm

+2d2+3

(m− 1)2d2+1
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• mO(
d21α

2r2m2 lnm

ε2
) where the number of paths, k, is less than or equal to

κ =
⌈

8d1α2r2m2 lnm
ε2

⌉
,

under the following strict constraints:

d1 ≤
ln2d2+1 (2m)

m2 lnm

lnm ≥ m
1
d2

or less strict constraints:

d1 ≤
1

22d2+1
· (2m− 1)2d2+1

m2d2+4
)

lnm ≥ m
1
d2

The less strict constraints may be used when building an instance (they
seem simpler in use).

We summarize our conclusions. In this section we proved two theorems
which are an improvement of theorem 4 of [16]. They provide approximat-
ing methods to random instances with polynomially many paths, each of
polylogarithmic length, and linear latencies.

If the traffic rate is of the size O(1) (or more generally O(poly(ln lnm))),
then quasipolynomial computational running times may be achieved. The
same result is valid also for traffic rates up to O(poly(lnm)), where m = |E|.



Chapter 5

Resolving Braess’s Paradox
in Good Random Networks

In this chapter we study the approximation of the best subnetwork, given
a large random network that satisfies some “good” properties, defined later
on. It is based on Chapter 3’s studies by [20], [21], [22] on the likeliness
of the Paradox on large random graphs, and on the joint work of Fotakis,
Kaporis, Lianeas and Spirakis in [32].

A polynomial time approximation preserving reduction to a simplified
network is presented in this chapter, where all neighbors of s and t are
directly connected by 0 latency edges.

Building on this, an approximation scheme is obtained such that for any
constant ε > 0 and with high probability, it computes a subnetwork and
an ε-Nash flow with maximum latency at most (1 + ε)Leq(H

B) + ε, where
Leq(H

B) is the equilibrium latency of the best subnetwork.
This thesis contribution is an improvement on the best known running

time for approximating the best subnetwork and its equilibrium latency for
this kind of networks, which was originally presented in [32].

Overall, the approximation scheme runs in polynomial time if the random
network has average degreeO(poly(lnn)) and the traffic rate isO(poly(ln lnn))
and in quasipolynomial time for average degrees up to o(n) and traffic rates
of O(poly(lnn)), where n ≡ |V |.

5.1 Problem Specific Definitions

Best Subnetwork Equilibrium Latency Problem. An approximation
scheme of the Best Subnetwork is the main output of this chapter. In the
Best Subnetwork Equilibrium Latency problem, or BestSubEL in short, we
are given an instance (G, r, l), and seek for the best subnetwork HB of
(G, r, l) and its equilibrium latency Leq(H

B).

110
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Good Networks. We restrict our attention to undirected s − t networks
G(V,E). We let n ≡ |V | and m ≡ |E|. For any vertex v, we let Γ(v) =
{u ∈ V : {u, v} ∈ E} denote the set of v’s neighbors in G. Similarly, for
any non-empty S ⊆ V , we let Γ(S) =

⋃
v∈S Γ(v) denote the set of neighbors

of the vertices in S, and let G[S] denote the subnetwork of G induced by
S. For convenience, we let Vs ≡ Γ(s), Es ≡ {{s, u} : u ∈ Vs}, Vt ≡ Γ(t),
Et ≡ {{v, t} : v ∈ Vt}, and Vm ≡ V \ ({s, t}∪Vs ∪Vt). We also let ns = |Vs|,
nt = |Vt|, n+ = max{ns, nt}, n− = min{ns, nt}, and nm = |Vm|. We
sometimes write V (G), n(G), Vs(G), ns(G), . . ., if G is not clear from the
context.

It is convenient to think that the network G has a layered structure
consisting of s, the set of s’s neighbors Vs, an “intermediate” subnetwork
connecting the neighbors of s to the neighbors of t, the set of t’s neighbors
Vt, and t. Then, any s−t path starts at s, visits some u ∈ Vs, proceeds either
directly or through some vertices of Vm to some v ∈ Vt, and finally reaches
t. Thus, we refer to Gm ≡ G[Vs ∪ Vm ∪ Vt] as the intermediate subnetwork
of G. Depending on the structure of Gm, we say that:

• G is a random G(n, p) network if (i) ns and nt follow the binomial
distribution with parameters n and p, and (ii) if any edge {u, v}, with
u ∈ Vm ∪ Vs and v ∈ Vm ∪ Vt, exists independently with probability
p. Namely, the intermediate network Gm is an Erdös-Rényi random
graph with n− 2 vertices and edge probability p, except from the fact
that there are no edges in G[Vs] and in G[Vt].

• G is internally bipartite if the intermediate network Gm is a bipartite
graph with independent sets Vs and Vt. G is internally complete bi-
partite if every neighbor of s is directly connected by an edge to every
neighbor of t.

• G is 0-latency simplified if it is internally complete bipartite and every
edge e connecting a neighbor of s to a neighbor of t has latency function
le(x) = 0.

The 0-latency simplification G0 of a given network G is a 0-latency
simplified network obtained from G by replacing G[Vm] with a set of 0-
latency edges directly connecting every neighbor of s to every neighbor of
t. Moreover, we say that a 0-latency simplified network G is balanced, if
|ns − nt| ≤ 2n− .

We say that a network G(V,E) is (n, p, k)-good, for some integer n ≤ |V |,
some probability p ∈ (0, 1), with pn = o(n), and some constant k ≥ 1, if G
satisfies that:

1. The maximum degree of G is at most 3np/2, i.e., for any v ∈ V ,
|Γ(v)| ≤ 3np/2.
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Algorithm 1: Approximation Scheme for BestSubEL in Good Net-
works

Input: Good network G(V,E), rate r > 0, approximation guarantee
ε > 0

Output: Subnetwork H of G and ε-Nash flow g in H with
Lg(H) ≤ (1 + ε)Leq(H

B) + ε
1 if Leq(G) < ε, return G and a Nash flow of (G, r, l)
2 create the 0-latency simplification G0 of G
3 if r ≥ (Bmaxn+)/(εAmin), then let H0 = G0 and let f be a Nash flow

of (G0, r)
4 else, let H0 be the subnetwork and f the ε/6-Nash flow of Thm. 5.6

applied with error ε/6
5 let H be the subnetwork and let g be the ε-Nash flow of Lemma 5.8

starting from H0 and f
6 return the subnetwork H and the ε-Nash flow g

2. G is an expander graph, namely, for any set S ⊆ V , |Γ(S)| ≥ min{np |S| ,
n}/2.

3. The edges of G have random reasonable latency functions distributed
according to A × B, and for any constant η > 0, P[B ≤ η/ lnn]np =
ω(1).

4. If k > 1 and we randomly partition Vm into k sets V 1
m, . . . , V

k
m, each of

cardinality |Vm| /k, all the induced subnetworks G[{s, t}∪Vs∪V i
m∪Vt]

are (n/k, p, 1)-good, with a possible violation of the maximum degree
bound by s and t.

If G is a random G(n, p) network, with n sufficiently large and p ≥ ck lnn
n

for some large enough constant c > 1 (which by section 3.2 means that it
will almost surely be connected), then G is a (n, p, k)-good network with
high probability (see e.g., [33]), provided that the latency functions satisfy
condition (3) above. Similarly, the random instances considered in [34] are
good with high probability. Also note that the 0-latency simplification of a
good network is balanced, due to conditions (1) and (2).

5.2 The Approximation Scheme and Outline of
the Analysis

In this section, we describe the main steps of the approximation scheme
(see also Algorithm 1), and give an outline of its analysis. We let ε > 0 be
the approximation guarantee, and assume that Leq(G) ≥ ε. Otherwise, any
Nash flow of (G, r, l) suffices.
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Algorithm 1 is based on an approximation-preserving reduction of BestSubEL
for a good network G to BestSubEL for the 0-latency simplification G0 of
G. The first step of our approximation-preserving reduction is to show that
the equilibrium latency of the best subnetwork does not increase when we
consider the 0-latency simplification G0 of a network G instead of G it-
self. Since decreasing the edge latencies (e.g., decreasing l(u,w)(x) = 1 to
l(u,w)(x) = 0 in Fig. 2.1) may trigger Braess’s paradox, we need lemma 5.2
and its careful proof to make sure that zeroing out the latency of the inter-
mediate subnetwork does not cause an abrupt increase in the equilibrium
latency.

Next, we focus on the 0-latency simplification G0 of G (step 2 in Algo-
rithm 1). We show that if the traffic rate is large enough, i.e., if r = Ω(n+/ε),
the paradox has a marginal influence on the equilibrium latency. Thus, any
Nash flow of (G0, r, l) is an (1+ε)-approximation of BestSubEL (lemma 5.3,
step 4). If r = O(n+/ε), we use an approximate version of Caratheodory’s
theorem (see theorem 3 of [31] and also its wide use in chapter 4) and obtain
an ε/6-approximation of BestSubEL for (G0, r, l) (theorem 5.6, step 4).

We now have a subnetwork H0 and an ε/6-Nash flow f that com-
prise a good approximate solution to BestSubEL for the simplified instance
(G0, r, l). The next step of our approximation-preserving reduction is to
extend f to an approximate solution to BestSubEL for the original instance
(G, r, l). The intuition is that due to the expansion and the reasonable la-
tencies of G, any collection of 0-latency edges of H0 used by f to route flow
from Vs to Vt can be “simulated” by an appropriate collection of low-latency
paths of the intermediate subnetwork Gm of G. We first prove this claim
for a small part of H0 consisting only of neighbors of s and neighbors of t
with approximately the same latency under f (lemma 5.7, the proof draws
ideas from [21]’s lemma 5). Then, using a careful latency-based grouping of
the neighbors of s and of the neighbors of t in H0, we extend this claim to
the entire H0 (lemma 5.8). Thus, we obtain a subnetwork H of G and an
ε-Nash flow g in H such that Lg(H) ≤ (1 + ε)Leq(H

B) + ε (step 5).
We summarize our main result. The proof follows by combining lemma 5.2,

theorem 5.6, and lemma 5.8 in the way indicated by Algorithm 1 and the
discussion above.

Theorem 5.1. Let G(V,E) be (n, p, k)-good network, where k ≥ 1 is a
large enough constant, let r > 0 be any traffic rate, and let HB be the best
subnetwork of (G, r, l). Then, for any ε > 0, Algorithm 1 computes in time

n
O(r2A2

max/ε
2)

+ poly(|V |), a flow g and a subnetwork H of G such that with high
probability, wrt the random choice of the latency functions, g is an ε-Nash
flow of (H, r, l) and has equilibrium latency Lg(H) ≤ (1 + ε)Leq(H

B) + ε.

By the definition of reasonable latencies, Amax is a constant. Also,
by lemma 5.3, r affects the running time only if r = O(n+/ε). In fact,



CHAPTER 5. RESOLVING BRAESS’S PARADOX IN GOODRANDOMNETWORKS114

previous work on selfish network design assumes that r = O(1), see e.g.,
[5]. Thus, if r = O(1) (or more generally, if r = O(poly(ln lnn))) and
pn = O(poly(lnn)), in which case n+ = O(poly(lnn)), theorem 5.1 gives a
randomized polynomial-time approximation scheme for BestSubEL in good
networks. Moreover, the running time is quasipolynomial for traffic rates up
to O(poly(lnn)) and average degrees up to o(n), i.e., for the entire range of
p in [20], [21].

The next sections are devoted to the proofs of lemmas 5.2 and 5.8, and
of theorem 5.6.

5.3 Network Simplification

We first show that the equilibrium latency of the best subnetwork does not
increase when we consider the 0-latency simplification G0 of a network G
instead of G itself.

Lemma 5.2. Let G be any network, let r > 0 be any traffic rate, and
let HB be the best subnetwork of (G, r, l). Then, there is a subnetwork H ′

of the 0-latency simplification of HB (and thus, a subnetwork of G0) with
Leq(H

′) ≤ Leq(HB).

Proof. Throughout the proof, we assume wlog that all the edges of HB are
used by the HB’s equilibrium flow f (otherwise, we can remove all unused
edges from HB). The proof is constructive, and at the conceptual level,
proceeds in two steps.

For the first step, given the equilibrium flow f of the best subnetwork
HB of G, we construct a simplification H1 of HB that is internally bipartite
and has constant latency edges connecting Γ(s) to Γ(t). H1 also admits f
as an equilibrium flow, and thus Leq(H1) = Leq(H

B). We also show how to
further simplify H1 so that its intermediate bipartite subnetwork becomes
acyclic.

To construct the simplification H1 of HB, we let f be the equilibrium
flow of HB, and let L ≡ Leq(H

B). For each ui ∈ Γ(s) and vj ∈ Γ(t), we let
fij =

∑
p=(s,ui,...,vj ,t)

fp be the flow routed by f from ui to vj . The network

H1 is obtained from HB by replacing the intermediate subnetwork of HB

with a bipartite subnetwork connecting Γ(s) and Γ(t) with constant latency
edges. More specifically, instead of the intermediate subnetwork of HB, for
each ui ∈ Γ(s) and vj ∈ Γ(t) with fij > 0, we have an edge (ui, vj) of
constant latency bij = L− (a(s,ui)f(s,ui) + b(s,ui))− (a(vj ,t)f(vj ,t) + b(vj ,t)) (the
corresponding a(ui,vj) is set to 0). If fij = 0, ui and vj are not connected in
H1. We note that by construction, H1 admits f as an equilibrium flow, and
thus Leq(H1) = L.

Furthermore, we modify H1 by deleting some edges from its intermediate
subnetwork so that the induced bipartite subgraph H1[Γ(s)∪Γ(t)] becomes
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Figure 5.1: In (a), we have a cycle C = (u1, v2, u2, . . . , vk, uk, v1, u1) in the
intermediate subnetwork H1[Γ(s) ∪ Γ(t)]. We assume that fk1 is the mini-
mum amount flow through an edge of C in the equilibrium flow f . In (b), we
remove the edge ek1 and we show the corresponding change in the amount
of flow on the remaining edges of C. Since the latency functions of the edges
in C are constant, the change in the flow does not affect equilibrium.

acyclic. Therefore, in the resulting network, for each ui ∈ Γ(s) and each
vj ∈ Γ(t), there is at most one (s, ui, vj , t) path in H1. Hence, the resulting
network admits a unique equilibrium flow with a unique path decomposition.

To this end, let us assume that there is a cycle C = (u1, v2, u2, . . . , vk, uk,
v1, u1) in the intermediate subnetwork H1[Γ(s)∪Γ(t)]. We let ek1 = (uk, v1)
be the edge of C with the minimum amount of flow in f , and let fk1 be the
flow through ek1 (see also Fig. 5.1). Then, removing ek1, and updating the
flows along the remaining edges of C so that f ′ii = fii + fk1, 1 ≤ i ≤ k, and
f ′i(i+1) = fi(i+1)− fk1, 1 ≤ i ≤ k− 1, we “break” the cycle C, by eliminating

the flow in ek1, and obtaining a new equilibrium flow f ′ of the same rate r and
with the same latency L as that of f . Applying this procedure repeatedly
to all cycles, we end up with an internally bipartite network H1 with an
acyclic intermediate subnetwork that includes constant latency edges only.
Moreover, H1 admits an equilibrium flow f of latency L. This concludes the
first part of the proof.

The second part of the proof is to show that we can either remove some of
the intermediate edges of H1 or zero their latencies, and obtain a subnetwork
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H ′ of the 0-latency simplification of HB with Leq(H
′) ≤ Leq(H

B). To this
end, we describe a procedure where in each step, we either remove some
intermediate edge of H1 or zero its latency, without increasing the latency
of the equilibrium flow.

Let us focus on an edge ekl = (uk, vl) with bkl > 0, and attempt to set
its latency function to b′kl = 0. We have also to change the equilibrium flow
f to a new flow f ′ that is an equilibrium flow of latency at most L in the
modified network with b′kl = 0. We let rp be the amount of flow moving
from an s − t path p = (s, ui, vj , t) to the path pkl = (s, uk, vl, t) during
this change. We note that rp may be negative, in which case, |rp| units of
flow actually move from pkl to p. Thus, rp’s define a rerouting of f to a
new flow f ′, with f ′p = fp − rp, for any s − t path p other than pkl, and
f ′kl = fkl +

∑
p rp.

Next, we show how to compute rp’s so that f ′ is an equilibrium flow
of cost at most L in the modified network (where we want to set b′kl = 0).
We let P = PH1 \ {pkl} denote the set of all s − t paths in H1 other than
pkl. We let ~F be the |P| × |P| matrix, indexed by the paths p ∈ P, where
~F [p1, p2] =

∑
e∈p1∩p2

ae−
∑

e∈p1∩pkl ae, and let ~r be the vector of rp’s. Then,

the p-th component of ~F~r is equal to lp(f) − lp(f ′). In the following, we

consider two cases depending on whether ~F is singular or not.
If ~F is non-singular, the linear system ~F~r = ε~1 has a unique solution ~rε,

for any ε > 0. Moreover, due to linearity, for any α ≥ 0, the unique solution
of the system ~F~r = α ε~1 is α~rε. Therefore, for an appropriately small
ε > 0, the linear system Qε = {~F~r = ε~1, fp − rp ≥ 0 ∀p ∈ P, fkl +

∑
p rp ≥

0, lpkl(f
′) ≤ L+ bkl − ε} admits a unique solution ~r.

We keep increasing ε until one of the inequalities of Qε becomes tight.
If it first becomes rp = fp for some path p = (s, ui, vj , t) ∈ P, we remove
the edge (ui, vj) from H1 and adjust the constant latency of ekl so that
lpkl(f

′) = L−ε. Then, the flow f ′ is an equilibrium flow of cost L−ε for the
resulting network, which has one edge less than the original network H1. If∑

p rp < 0 and it first becomes
∑

p rp = −fkl, we remove the edge ekl from
H1. Then, f ′ is an equilibrium flow of cost L− ε for the resulting network,
which again has one edge less than H1. If

∑
p rp > 0 and it first becomes

lpkl(f
′) = L+ bkl − ε, we set the constant latency of the edge ekl to b′kl = 0.

In this case, f ′ is an equilibrium flow of cost L− ε for the resulting network
that has one edge of 0 latency more than the initial network H1.

If ~F is singular, proceeding similarly, we compute rp’s so that f ′ is an
equilibrium flow of cost L in a modified network that includes one edge less
than the original network H1.

When ~F if singular, the homogeneous linear system ~F~r = ~0 admits a
nontrivial solution ~r 6= ~0. Moreover, due to linearity, for any α ∈ R, α~r
is also a solution to ~F~r = ~0. Therefore, the linear system Q0 = {~F~r =
~0, fp − rp ≥ 0 ∀p ∈ P, fkl +

∑
p rp ≥ 0} admits a solution ~r 6= ~0 that makes
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at least one of the inequalities tight.
We recall that the p-th component of ~F~r is equal to lp(f)−lp(f ′). There-

fore, for the flow f ′ obtained from the particular solution ~r of Q0, the latency
of any path p ∈ P is equal to L.

If ~r is such that rp = fp for some path p = (s, ui, vj , t) ∈ P, we remove
the edge (ui, vj) from H1 and adjust the constant latency of ekl so that
lpkl(f

′) = L. Then, the flow f ′ is an equilibrium flow of cost L for the
resulting network, which has one edge less than the original network H1.

If ~r is such that
∑

p rp = −fkl, we remove the edge ekl from H1. Then,
f ′ is an equilibrium flow of cost L for the resulting network, which again
has one edge less than H1.

Each time we apply the procedure above either we decrease the number
of edges of the intermediate network by one or we increase the number of
0-latency edges of the intermediate network by one, without increasing the
latency of the equilibrium flow. Moreover, if pkl is disjoint to the paths
p ∈ P, ~F is non-singular (next paragraph) and the procedure above leads
to a decrease in the equilibrium latency, and eventually to setting b′kl = 0.
So, by repeatedly applying these steps, we end up with a subnetwork H ′ of
the 0-latency simplification of HB with Leq(H

′) ≤ Leq(HB).

To show that if pkl is disjoint to the paths p ∈ P, ~F is non-singular we
show that the matrix ~F is positive definite (which implies that ~F is non-
singular1). We first note that if pkl is disjoint to all p ∈ P, then for all
p1, p2 ∈ P, ~F [p1, p2] =

∑
e∈p1∩p2

ae.

Hence, for all ~x ∈ R|P|, ~xT ~F~x =
∑

e∈E(P) aex
2
e ≥ 0, where E(P) denotes

the set of edges included in the paths of P and xe =
∑

p:e∈p xp. Since the
intermediate network of H1 is acyclic and any flow in H1 has a unique path
decomposition, if ~x has one or more non-zero components, there is at least
one edge e adjacent to either s or t such that xe > 0, and thus ~xT ~F~x > 0.
Otherwise, the difference of the flow defined by ~x with the trivial flow defined
by ~0 would indicate the existence of a cycle in the intermediate subnetwork
of H1. This is a contradiction, since by the first part of the proof, the
intermediate part of H1 is acyclic.

5.4 Approximating the Best Subnetwork of Sim-
plified Networks

We proceed to show how to approximate the BestSubEL problem in a bal-
anced 0-latency simplified network G0 with reasonable latencies. We may
always regard G0 as the 0-latency simplification of a good network G. We

1or else there exists a vector ~x 6= 0 such that ~F~x = 0, or ~xT ~F~x = 0, which means that
~F is not positive definite.
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first prove two useful lemmas (lemmas 5.3 and 5.4) about the maximum
traffic rate r up to which BestSubEL remains interesting, and about the
maximum amount of flow routed on any edge / path in the best subnet-
work.

We first show that for 0-latency simplified instances (G0, r, l), we can
assume, essentially wlog, that the traffic rate r = O(n+/ε). Otherwise,
a Nash flow f of (G0, r, l) is an (1 + ε)-approximation of the BestSubEL
problem in (G0, r, l):

Lemma 5.3. Let G0 be any 0-latency simplified network, let r > 0, and let
H∗0 be the best subnetwork of (G0, r, l). For any ε > 0, if r > Bmaxn+

Aminε
, then

Leq(G0) ≤ (1 + ε)Leq(H
∗
0 ).

Proof. We assume that r > Bmaxn+

Aminε
and we let f be a Nash flow of (G0, r, l).

We consider how f allocates r units of flow to the edges of Es ≡ Es(G0) and
to the edges Et ≡ Et(G0). For simplicity, we let L ≡ Leq(G0) denote the
equilibrium latency of G0, and let As =

∑
e∈Es 1/ae and At =

∑
e∈Et 1/ae.

Since G0 is a 0-latency simplified network and f is a Nash flow of
(G0, r, l), there are L1, L2 > 0, with L1 + L2 = L, such that all used edges
incident to s (resp. to t) have latency L1 (resp. L2) in the Nash flow f .
Since r > Bmaxn+

Amin
, then by an averaging argument, L1, L2 > Bmax and all

edges in Es ∪Et are used by f . Moreover, by an averaging argument again,
we have that there is an edge e ∈ Es with aefe ≤ r/As, and that there
is an edge e ∈ Et with aefe ≤ r/At. Therefore, L1 ≤ (r/As) + Bmax and
L2 ≤ (r/At) +Bmax, and thus, L ≤ r

As
+ r

At
+ 2Bmax.

On the other hand, if we ignore the additive terms be of the latency
functions, the optimal average latency of the players is r/As + r/At, which
implies that Leq(H

∗
0 ) ≥ r/As + r/At. Therefore, L ≤ Leq(H

∗
0 ) + 2Bmax.

Moreover, since r > Bmaxn+

Aminε
, As ≤ ns/Amin, and At ≤ nt/Amin, we have

that:

Leq(H
∗
0 ) ≥ r

As
+

r

At

≥ Bmaxns
Aminε

Amin

ns
+
Bmaxnt
Aminε

Amin

nt
≥ 2Bmax/ε

Therefore, 2Bmax ≤ εLeq(H∗0 ), and L ≤ (1 + ε)Leq(H
∗
0 ).

Now, since we have shown that for traffic rates r = Ω(n+/ε), the paradox
has a minimal influence on the equilibrium latency (step 2 in Algorithm 1),
then wlog, we may focus on traffic rates r = O(n+/ε):

Lemma 5.4. Let G0 be a balanced 0-latency simplified network with reason-
able latencies, let r > 0 with r ≤ Bmaxn+

Aminε
, and let f be a Nash flow of the best
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subnetwork of (G0, r, l). For any ε > 0, if P[B ≤ ε/4] ≥ δ, for some constant
δ > 0, there exists a constant ρ = 24AmaxBmax

δεA2
min

such that with probability at

least 1− e−δn−/8, fe ≤ ρ, for all edges e.

Proof. We proceed to show that in a 0-latency simplified instance (G0, r, l),
the best subnetwork Nash flow routes O(r/n+) units of flow on any edge and
on any s−t path with high probability (where the probability is with respect
to the random choice of the latency function coefficients). Intuitively, we
show that in the best subnetwork Nash flow, with high probability, all used
edges and all used s− t paths route a volume of flow not significantly larger
than their fair share. We first prove the following technical lemma:

Lemma 5.5. Let G0 be a balanced 0-latency simplified network with rea-
sonable latencies, let r > 0 be any traffic rate, and let f be any Nash flow
of the best subnetwork of (G0, r, l). For any ε > 0, if Leq(G) ≥ ε and
P[B ≤ ε/4] ≥ δ, for some constant δ > 0, there exists a constant γ = 24Amax

δAmin

such that with probability at least 1− e−δn−/8, for all edges e, fe ≤ γr/n+.

Proof. We let L ≡ Leq(G0) denote the equilibrium latency and g denote a
Nash flow of the original instance (G0, r, l). Since G0 is a 0-latency simplified
network and g is a Nash flow of (G0, r, l), there are L1, L2 > 0, with L1+L2 =
L, such that: (i) for any edge e incident to s, if be < L1, ge > 0 and
aege + be = L1, while ge = 0, otherwise, and (ii) for any edge e incident to t,
if be < L2, ge > 0 and aege + be = L2, while ge = 0, otherwise. Namely, all
used edges incident to s (resp. to t) have latency L1 (resp. L2) in the Nash
flow g. Wlog we assume that L1 ≥ L2, and thus, L1 ≥ L/2 ≥ ε/2.

We next show that (i) if L ≥ ε and P[B ≤ ε/4] ≥ δ, then with probability
at least 1− e−δn−/8, L ≤ 24Amaxr

δn+
, and (ii)that for any e, fe ≤ L/Amin. The

lemma follows by combining (i) and (ii).
We start with the proof of (i). Let e be any edge incident to s with

be ≤ ε/4. By the discussion above, in the Nash flow g of (G0, r, l), ge > 0
and aege + be = L1. Using that L1 ≥ L/2 ≥ ε/2, we obtain that:

L1 = aege + be ≤ aege + ε/4⇒ ge ≥
L1 − ε/4

ae
≥ L1

2ae
≥ L

4Amax
(5.1)

Moreover, since P[B ≤ ε/4] ≥ δ, we use Chernoff bounds2, and obtain that:

P[|{e ∈ Es(G0) with be ≤ ε/4}| ≥ δns/2] ≥ 1− e−δns/8 (5.2)

Combining (5.1) and (5.2), we obtain that if L ≥ ε and P[B ≤ ε/4] ≥ δ,
with probability at least 1 − e−δn−/8, the flow rate r is at least Lδns

8Amax
, or

equivalently, that:

L ≤ 8Amaxr

δns
≤ 24Amaxr

δn+
(5.3)

2We use the Chernoff bound form of relation 3.8, where X =
{e ∈ Es(G0) with be ≤ ε/4}, (1− ε)E[X] = δns/2 and E[X] = δns.
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The last inequality holds because |ns − nt| ≤ 2n− (G0 is balanced)3. This
concludes the proof of (i).

To prove (ii), we observe that in the best subnetwork equilibrium flow
f , no used edge e has latency greater than L. Therefore, for any used edge
e incident to either s or t, we have that:

aefe + be ≤ L⇒ fe ≤
L

ae
≤ L

Amin
(5.4)

Moreover, any edge e in the intermediate subnetwork of G has fe ≤ L/Amin

due to the flow conservation constraints. This concludes the proof of (ii).

Having proved lemma 5.5, lemma 5.4 is straight forward.
We recall that we always assume that Leq(G) ≥ ε, since otherwise the

problem of approximating BestSubEL is trivial. Moreover, by the definition
of reasonable latency functions, we have that for any constant ε > 0, there
is a constant δ > 0, such that P[B ≤ ε/4] ≥ δ.

So from now on, we can assume, with high probability and wlog, that
the Nash flow in the best subnetwork of any simplified instance (G0, r, l)
with r ≤ Bmaxn+

Aminε
, routes O(1) units of flow on any used edge and on any

used path.

Approximating the Best Subnetwork of Simplified Networks. We
proceed to derive an approximation scheme for the best subnetwork of any
simplified instance (G0, r, l). Again, we will use Barman’s work on [31] and
produce a proof analogous to theorem 4.10’s first part of the proof.

Theorem 5.6. Let G0 be a balanced 0-latency simplified network with rea-
sonable latencies, let r > 0, and let H∗0 be the best subnetwork of (G0, r, l).

Then, for any ε > 0, we can compute, in time n
O(A2

maxr
2/ε2)

+ , a flow f and
a subnetwork H0 consisting of the edges used by f , such that (i) f is an ε-
Nash flow of (H0, r, l) and (ii) lPi(f) ≤ Leq(H∗0 ) +ε/2 for every Pi ∈ P with

feqPi > 0. Moreover, if r ≤ Bmaxn+

Aminε
and P[B ≤ ε/4] ≥ δ for some constant

δ > 0, then (iii) there exists a constant ρ > 0, such that fe ≤ ρ + ε, for all
e.

Proof. Let the Nash Equilibrium flow of the Best Subnetwork H∗0 be feq.

Then, there will be an S ⊆ [µ], where µ = n+ ·n− is the number of paths,
such that ∀i, j ∈ S : feqPi , feqPj > 0 and lPi(feq) = lPj (feq) = Leq(H

B). If

S ⊂ [µ], then T = [µ]− S and ∀i ∈ T : feqPi = 0 and lPi(feq) 6= Leq(H
B).

Suppose that we have the following set of vectors X = {x1, x2, . . . , xµ}.
Every xi, i ∈ [µ], is a vector of m = |E| elements, and corresponds to the

3It is relatively easy to show that n+ ≤ 3ns. If ns = n+ then this is trivial. If on
the other hand ns = n−, then nt = n+. Now, since |ns − nt| ≤ 2n− we have that
n+ − n− ≤ 2n− or n+ ≤ 3n− = 3ns.
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path Pi. The vector xi’s component xij , represents the presence of edge ej
at the corresponding path Pi. That is, if edge ej belongs to the path Pi,
then xij = 1, else xij = 0.

Obviously, for every path only 3 xij ’s should have value equal to 1, while
all the rest should have value equal to 0.

If gPi is the path Pi’s corresponding flow, then gPi · xi gives gPi ’s contri-
bution to each edge of that path.

Let’s normalize all feqPi to a new f ′eqPi
, such that

∑µ
i=1 f

′
eqPi

= 1. Then,

f ′eqPi
should be defined as:

f ′eqPi
=
feqPi
r

Let’s also define the following vector:

ν = f ′eqP1
x1 + f ′eqP2

x2 + . . .+ f ′eqPµxµ (5.5)

Then, the following is valid:

ν = f ′eqP1
x1 + f ′eqP2

x2 + . . .+ f ′eqPµxµ

=
1

r
(feqP1

x1 + feqP2
x2 + . . .+ feqPµxµ)

=
1

r
(
∑

P∈P:e1∈P
feqP ,

∑
P∈P:e2∈P

feqP , . . . ,
∑

P∈P:em∈P
feqP )

=
1

r
(feqe1 , feqe2 , . . . , feqem ) (5.6)

It should be obvious that ν ∈ conv(X).

Using McDiarmid’s and Kahane’s inequalities, we will find a vector ν ′ ∈
conv(X) such that ‖ν − ν ′‖p ≤ ε, where ε is a positive constant.

Indeed. f ′eq = (f ′eqP1
, f ′eqP2

, . . . , f ′eqPµ ) could be interpreted as a prob-

ability distribution over vectors x1, x2, . . . , xµ. That is, under probability
distribution f ′eq vector xi is drawn with probability f ′eqPi

. The vector ν is
the mean of this distribution. Specifically, the jth component of ν is the
expected value of the random variable that takes value xij with probability
f ′eqPi

, where xij is the jth component of vector xi. We succinctly express
these component-wise equalities as follows:

Ev∼f ′eq [v] = ν

Now, let v1, v2, . . . , vκ be κ i.i.d. draws from f ′eq. The sample mean

vector is defined to be 1
κ

∑κ
i=1 vi. Below we specify function g : Xκ → R to

quantify the p-norm distance between the sample mean vector and the ν.
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g(v1, v2, . . . , vκ) :=

∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

where p is norm, with 2 ≤ p <∞.
Now, for every j ∈ [µ] the following is valid:

max
x∈X
‖x‖p = (1p + 1p + 1p)

1
p = 3

1
p

We will use McDiarmid’s inequality. In particular, we will establish
that with positive probability the sample mean vector defined over κ :=⌈

256pA2
maxr

23
2
p

ε2

⌉
draws, is ε = ε

4Amaxr
close to ν in p-norm. Hence, the stated

claim is implied by the probabilistic method.
For any κ tuple (v1, v2, . . . , vi, . . . , vκ) ∈ Xκ and v′i ∈ X, we show that

|g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ)| is no more than 2

κ · 3
1
p .

We can assume without loss of generality that g(v1, v2, . . . , vi, . . . , vκ) ≥
g(v1, v2, . . . , v

′
i, . . . , vκ), since the other case is symmetric.

Setting u := 1
κ

∑
j 6=i vj − ν we have:

g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ) =

∥∥∥∥u+
1

κ
vi

∥∥∥∥
p

−
∥∥∥∥u+

1

κ
v′i

∥∥∥∥
p

≤ ‖u‖p +
1

κ
‖vi‖p − ‖u‖p +

1

κ

∥∥v′i∥∥p
≤ 1

κ
‖vi‖p +

1

κ

∥∥v′i∥∥p
≤ 1

κ
max {‖x‖p}+

1

κ
max {‖x‖p}

=
2

κ
max {‖x‖p}

=
2

κ
· 3

1
p

Given that g satisfies |g(v1, v2, . . . , vi, . . . , vκ)− g(v1, v2, . . . , v
′
i, . . . , vκ)| ≤

2
κ3

1
p , we can apply Mc-Diarmid’s inequality, with ci = 2

κ3
1
p for all i ∈ [κ], to

obtain:

P(|g − E[g]| ≥ t) ≤ 2e

−κt2

2·3
2
p (5.7)

By using the same approach as in the proof of theorem 4.9 we can prove
that:

E[g] ≤ 2Evi,ri

∥∥∥∥∥
κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

(5.8)
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where r1, r2, . . . , rκ be a sequence of i.i.d. Rademacher ±1 random vari-
ables.

At this point we can apply Kahane’s inequality with ui = vi
κ to obtain:

Evi,ri

∥∥∥∥∥
κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

= Evi
[
Eri
[ ∥∥∥∥∥

κ∑
i=1

ri
vi
κ

∥∥∥∥∥
p

∣∣∣∣v1 . . . vκ

]]

≤ Evi
[
√
p

( κ∑
i=1

∥∥∥vi
κ

∥∥∥2

p

) 1
2
]

≤ Evi
[
√
p

( κ∑
i=1

(
maxx∈X ‖x‖p

)2
κ2

) 1
2
]

=
√
p

3
1
p

√
κ

(5.9)

By using relations (5.8) and (5.9) we have that:

E[g] ≤ 2
√
p

3
1
p

√
κ

Thus, for sample size:

κ ≥ 16 · p3
2
p

ε2
(5.10)

we have E[g] ≤ ε
2 .

Setting t = ε
2 in relation (5.7), and by following the same guidelines

of theorem 4.9, we may prove that P(g ≥ ε) ≤ 2e−2 or equivalently that

P
(∥∥ 1

κ

∑κ
i=1 vi − ν

∥∥
p
≥ ε
)
≤ 2e−2.

Therefore, with positive probability:∥∥∥∥∥1

κ

κ∑
i=1

vi − ν

∥∥∥∥∥
p

≤ ε (5.11)

The latter means that we have found a vector ν ′ := 1
κ

∑κ
i=1 vi, such that

ν ′ ∈ conv(X) and ‖ν − ν ′‖p ≤ ε.

Since v1, v2, . . . , vκ are κ i.i.d. draws from f ′eq, vector ν ′ could be ex-
pressed as:

ν ′ = x1 · f ′P1
+ x2 · f ′P2

+ . . .+ xµ · f ′Pµ (5.12)

=
κ1

κ
· xκ1 +

κ2

κ
· xκ2 + . . .+

κk
κ
· xκk (5.13)
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where κ1 + κ2 + . . .+ κk = κ and 1 ≤ κ1, κ2, . . . , κk ≤ κ.
Also, it should be clear that all f ′Pi are the normalized values. So f ′Pi =

fPi
r , where

∑µ
i=1 fPi = r.

Vector ν ′ could be expressed in a form similar to (5.6) as follows:

ν ′ =
1

r
(fe1 , fe2 , . . . , fem) (5.14)

Taking into account relations (5.6) and (5.14), relation (5.11) could be
analyzed as follows:

∥∥ν − ν ′∥∥
p
≤ ε⇒∥∥∥∥1

r

(
feqe1 − fe1 , feqe2 − fe2 , . . . , feqem − fem

)∥∥∥∥
p

≤ ε⇒

m∑
i=1

∣∣feqei − fei∣∣p ≤ rp · εp ⇒∣∣feqei − fei∣∣ ≤ r · ε,∀i ∈ [m] (5.15)

Now, let’s consider a path Pi with feqPi > 0. Suppose now that Pi’s
edges are ez1 , ez2 , ez3 , with lez2 (x) = 0 · x + 0 = 0. Then by relation (5.15)
we have:

|Leq(H∗0 )− lPi(f)| =
∣∣∣aez1 (feqez1 − fez1 ) + 0 + aez3 (feqez3 − fez3 )

∣∣∣
≤ Amax

( ∣∣∣feqez1 − fez1 ∣∣∣+
∣∣∣feqez3 − fez3 ∣∣∣ ) ≤ 2Amaxrε

Thus, ∀i ∈ S, |Leq(H∗0 )− lPi(f)| ≤ 2Amaxrε. So, if we choose ε = ε
4Amaxr

then:

|Leq(H∗0 )− lPi(f)| ≤ ε

2

or better:

lPi(f) ≤ Leq(H∗0 ) +
ε

2
(5.16)

Now, since ε = ε
4Amaxr

, relation (5.10) should be:

κ ≥ 16 · p3
2
p

ε2

≥ 256 · pA
2
maxr

23
2
p

ε2
(5.17)

Thus, it suffices to consider only a κ :=
⌈

256pA2
maxr

23
2
p

ε2

⌉
number of paths.
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Also, relation (5.15) becomes:∣∣feqei − fei∣∣ ≤ ε

4Amax
(5.18)

Now, for p = 2 · ln 3 (which is the case that κ gets its minimum value)

we have that 256 · 2 · ln 3 · 3
1

ln 3 ' 1529.005, which means that κ suffices to

be κ :=
⌈

1530A2
maxr

2

ε2

⌉
.

Therefore, since µ = n+n−, then by exhaustive search in time T =

n
O(κ)
+ we can find a subnetwork (the one that minimizes the latency of the

maximum latency path) such that:

T = n
O(

A2
maxr

2

ε2
)

+

Moreover, from lemma 5.4 we have that for all edges e, feqe ≤ ρ. So,
having found the suitable flow f , and by the use of relation (5.18), property
(iii) is easy to be proved.

5.5 Extending the Solution to the Good Network

Given a good instance (G, r, l), we create the 0-latency simplification G0 of
G, and using theorem 5.6, we compute a subnetwork H0 and an ε/6-Nash
flow f , that comprise an approximate solution to BestSubEL for (G0, r, l).
Next, we show how to extend f to an approximate solution to BestSubEL
for the original instance (G, r, l). The intuition is that the 0-latency edges
of H0 used by f to route flow from Vs to Vt can be “simulated” by low-
latency paths of Gm. We first formalize this intuition for the subnetwork
of G induced by the neighbors of s with (almost) the same latency Bs and
the neighbors of t with (almost) the same latency Bt, for some Bs, Bt with
Bs+Bt ≈ Lf . We may think of the networks G and H0 in the lemma below
as some small parts of the original network G and of the actual subnetwork
H0 of G0. Thus, we obtain the following lemma, which serves as a building
block in the proof of lemma 5.8.

Lemma 5.7. We assume that G(V,E) is an (n, p, 1)-good network, with
a possible violation of the maximum degree bound by s and t, but with
|Vs|, |Vt| ≤ 3knp/2, for some constant k > 0. Also, the latencies of the
edges in Es ∪Et are not random, but there exist constants Bs, Bt ≥ 0, such
that for all e ∈ Es we have that le(x) = Bs, and for all e ∈ Et we have that
le(x) = Bt. We let r > 0 be any traffic rate, let H0 be any subnetwork of
the 0-latency simplification G0 of G, and let f be any flow of (H0, r). We
assume that there exists a constant ρ′ > 0, such that for all e ∈ E(H0),
0 < fe ≤ ρ′. Then, for any ε1 > 0, with high probability, wrt the random
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choice of the latency functions of G, we can compute in poly(|V |) time a
subnetwork G′ of G, with Es(G

′) = Es(H0) and Et(G
′) = Et(H0), and a

flow g of (G′, r, l) such that (i) ge = fe for all e ∈ Es(G′) ∪Et(G′), (ii) g is
a 7ε1-Nash flow in G′, and (iii) Lg(G

′) ≤ Bs +Bt + 7ε1.

Proof. For convenience and wlog, we assume that Es(G) = Es(H0) and
that Et(G) = Et(H0), so that we simply write Vs, Vt, Es, and Et from now
on. For each e ∈ Es ∪ Et, we let ge = fe. So, the flow g satisfies (i), by
construction.

We compute the extension of g through Gm as an “almost” Nash flow in
a modified version of G, where each edge e ∈ Es ∪Et has a capacity ge = fe
and a constant latency le(x) = Bs if e ∈ Es, and le(x) = Bt if e ∈ Et.
All other edges e of G have an infinite capacity and a (randomly chosen)
reasonable latency function le(x).

We let g be the flow of rate r that respects the capacities of the edges
in Es ∪ Et and minimizes Pot(g) =

∑
e∈E

∫ ge
0 le(x)dx. Such a flow g can

be computed in strongly polynomial time (see e.g., [35]). The subnetwork
G′ of G is simply Gg, namely, the subnetwork that includes only the edges
used by g. It could have been that g is not a Nash flow of (G, r, l), due to
the capacity constraints on the edges of Es ∪ Et. However, since g is the
expression’s Pot(g) minimizer, for any u ∈ Vs and v ∈ Vt, and any pair of
s− t paths P , P ′ going through u and v, if gP > 0, then lP (g) ≤ lP ′(g).

We next adjust the proof of [21]’ lemma 5 (or lemma 3.16 above), and
show that for any s− t path P used by g, lP (g) ≤ Bs +Bt + 7ε1. To prove
this, we let P = (s, u, . . . , v, t) be the s − t path used by g that maximizes
lP (g). We show the existence of a path P ′ = (s, u, . . . , v, t) in G of latency
lP ′(g) ≤ Bs + Bt + 7ε1. Therefore, since g is a minimizer of Pot(g), the
latency of the maximum latency g-used path P , and thus the latency of
any other g-used s − t path, is at most Bs + Bt + 7ε1, i.e., g satisfies (iii).
Moreover, since for any s− t path P , lP (g) ≥ Bs +Bt, g is an 7ε1-Nash flow
in G′.

Let P = (s, u, . . . , v, t) be the s − t path used by g that maximizes
lP (g). To show the existence of a path P ′ = (s, u, . . . , v, t) in G of latency
lP ′(g) ≤ Bs + Bt + 7ε1, we start from S0 = {u} and grow a sequence of
vertex sets S0 ⊆ S1 ⊆ · · · ⊆ Si∗ , stopping when |Γ(Si∗)| ≥ 3n/5 for the first
time.

We use the expansion properties of G, and condition (3), on the distribu-
tion of B, in the definition of good networks, and show that these sets grow
exponentially fast, and thus, i∗ ≤ lnn, with high probability. Moreover, we
show4 that there are edges of latency ε1 +o(1) from S0 = {u} to each vertex

4The intuition is that if among the edges e incident to Vs ∪Vt, we keep only those with
be ≤ ε1, and among all the remaining edges e, we keep only those with be ≤ ε1/ lnn, then
due to condition (3) on the distribution of B

(
∀η > 0, P[B ≤ η/ lnn]np = ω(1)

)
, a good

network G remains an expander.
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of S1, and edges of latency ε1/ lnn+o(1/ lnn) from Si to each vertex of Si+1,
for all i = 1, . . . , i∗ − 1. Thus, there is a path of latency at most 2ε1 + o(1)
from u to each vertex of Si∗ . Similarly, we start from T0 = {v} and grow a
sequence of vertex sets T0 ⊆ T1 ⊆ · · · ⊆ Tj∗ , stopping when |Γ(Tj∗)| ≥ 3n/5
for the first time. By exactly the same reasoning, we establish the existence
of a path of latency at most 2ε1 + o(1) from each vertex of Tj∗ to v.

Finally, since |Γ(Si∗)| ≥ 3n/5 and |Γ(Tj∗)| ≥ 3n/5, the neighborhoods of
Si∗ and Tj∗ contain at least n/10 vertices in common. With high probability,
most of these vertices can be reached from Si∗ and from Tj∗ using edges of
latency ε1 +o(1). Putting everything together, we find a u−v path (in fact,
many of them) of length O(lnn) and latency at most 6ε1 + o(1) ≤ 7ε1.

For completeness, we next give a detailed proof, by adjusting the argu-
ments in the proof of lemma 3.16. For convenience, for each vertex x, we let
ds(x) (resp. dt(x)) be the latency (wrt g) of the shortest latency path from s
to x (resp. from x to t). Also, for any δ > 0, we let Pb(δ) ≡ P[B ≤ δ] denote
the probability that the additive term of a reasonable latency is at most δ.
Recall also that by hypothesis, there exists a constant ρ′ > 0, such that for
all e ∈ E(H0), fe ≤ ρ′. Hence, the total flow through G (and through H0)
is r ≤ ρ′n+.

At the conceptual level, the proof proceeds as explained above. We
start with S0 = {u}. By hypothesis, the flow entering u is at most ρ′. By
the expansion property of good networks and by Chernoff bounds5. Now,
since , with high probability, there are at least Pb(ε1)np/4 edges e adjacent
to u with be ≤ ε1. At most half of these edges have flow greater than

8ρ′

Pb(ε1)np , thus there are at least Pb(ε1)np/8 edges adjacent to u with latency,

wrt g, less than 8Amaxρ′

Pb(ε1)np + ε1. We now let d1 = Bs + 8Amaxρ′

Pb(ε1)np + ε1 and

S1 = {x ∈ V : ds(x) ≤ d1}. By the discussion above, |S1| ≥ Pb(ε1)np/8.
We now inductively define a sequence of vertex sets Si and upper bounds

di on the latency of the vertices in Si from s, such that Si ⊆ Si+1 and
di < di+1. This sequence stops the first time that |Γ(Si)| ≥ 3n/5. We
inductively assume that the vertex set Si and the upper bound di on the
latency of the vertices in Si are defined, and that |Γ(Si)| < 3n/5. By the
expansion property of good networks |Γ(Si) \ Si| ≥ np|Si|/3, for sufficiently
large n. Thus, with probability at least 1− e−Pb(ε1/ lnn)np|Si|/24, there are at
least Pb(

ε1
lnn)np|Si|/6 vertices outside Si that are connected to a vertex in

Si by an edge e with be ≤ ε1/ lnn (we use of Chernoff bounds again6). Let

5We repeatedly use the following form of the Chernoff bound (Let X1, . . . , Xk be ran-
dom variables independently distributed in {0, 1}, and let X =

∑k
i=1 Xi. Then, for

all ε ∈ (0, 1), P[X < (1 − ε)IE[X]] ≤ e−ε
2 IE[X]/2, where e is the basis of natural loga-

rithms. The latter means that P[X ≥ (1− ε)IE[X]] ≥ 1− e−ε
2 IE[X]/2. Here we have that

X = {e ∈ Γ(u) with be ≤ ε1}, (1 − ε)E[X] = Pb(ε1)np/4 and from relation 3.4 we have
that E[X] = Pb(ε1)np. We should also have in mind that np ≥ lnn.

6Here we have that X = {e ∈ Γ(Si) \ Si with be ≤ ε1/ lnn}, (1 − ε)E[X] =
1
2
Pb(ε1/ lnn)np|Si|/3 and E[X] = Pb(ε1/ lnn)np|Si|/3.
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S′i be the set of such vertices, and let Ei be the set of edges that for each
vertex v ∈ S′i, includes a unique edge e ∈ Ei with be ≤ ε1/ lnn connecting v
to a vertex in Si. Since the flow g may be assumed to be acyclic, a volume
r ≤ ρ′n+ of flow is routed through the cut (Si, V \ Si). Then, at most half
of the edges in Ei have flow greater than 2ρ′n+/|S′i|. Consequently, at least
half of the vertices v ∈ S′i have latency from s:

ds(x) ≤ di +
ε1

lnn
+Amax

2ρ′n+

|S′i|

≤ di +
ε1

lnn
+

12Amaxρ
′n+

Pb(
ε1

lnn)np|Si|

Thus, we define the next latency upper bound di+1 in the sequence as:

di+1 = di +
ε1

lnn
+

12Amaxρ
′n+

Pb(
ε1

lnn)np|Si|
,

and we let Si+1 = {x ∈ V (G)|ds(x) ≤ di+1}. By the discussion above,
and using the inductive definition of Si’s, we obtain that:

|Si+1| ≥
(

1
12Pb(ε1/ lnn)np+ 1

)
|Si|

≥
(

1
12Pb(ε1/ lnn)np+ 1

)i
|S1|

We recall that i∗ is the first index i such that |Γ(Si)| ≥ 3n/5. Then, the
inequality above implies that:

i∗ ≤ ln (3n/(5|S1|))
ln
(

1
12Pb(ε1/ lnn)np+ 1

) ≤ ln (24n/(5Pb(ε1)np))

ln
(

1
12Pb(ε1/ lnn)np+ 1

)
Using that pn ≥ lnn and that Pb(ε1/ lnn)np = ω(1), the inequality

above implies that i∗ ≤ lnn, for sufficiently large n.
Therefore, we obtain an upper bound on the latency from s of any vertex

in Si∗ :
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di∗ ≤ d0 + i∗
ε1

lnn
+

i∗∑
i=1

12Amaxρ
′n+

Pb(
ε1

lnn)np|Si|

≤ d1 +
ε1

lnn
lnn+

lnn∑
i=1

12Amaxρ
′n+

Pb(
ε1

lnn)np
(

1
12Pb(

ε1
lnn)np+ 1

)i |S1|

= d1 + ε1 +
12Amaxρ

′n+

Pb(
ε1

lnn)np|S1|

lnn∑
i=1

(
1
12Pb(

ε1
lnn)np+ 1

)−i
≤
(
Bs +

8Amaxρ
′

Pb(ε1)np
+ ε1

)
+ ε1 +

96Amaxρ
′n+

Pb(
ε1

lnn)Pb(ε1)(np)2

∞∑
i=1

2−i

≤ Bs + 2ε1 +
8Amaxρ

′

Pb(ε1)np
+

144Amaxρ
′k

Pb(
ε1

lnn)Pb(ε1)np

For the penultimate inequality, we use that Pb(ε1/ lnn)np = ω(1), which
implies that 1 + Pb(ε1/ lnn)np/12 ≥ 2, for n sufficiently large. For the
last inequality, we use that n+ ≤ 3knp/2, for some constant k > 0, by
hypothesis.

Moreover, we observe that the probability that the above construction
fails is at most:

i∗∑
i=1

e−Pb(ε1/ lnn)np|Si|/24 ≤
i∗∑
i=1

e−( 1
12
Pb(ε1/ lnn)np+1)

i|S1|/24

≤ lnn e−( 1
12
Pb(ε1/ lnn)np+1)Pb(ε1)np/192

Therefore, the construction above succeeds with high probability.
Similarly, we start from T0 = {v}, and inductively define a sequence of

vertex sets T0 ⊆ T1 ⊆ · · · ⊆ Tj∗ , and a sequence of upper bounds d′0 <
d′1 < · · · < d′j∗ on the latency from t of the vertices in each Tj . We let
Tj = {x ∈ V (G)|dt(x) ≤ d′j}. The sequence stops as soon as |Γ(Tj)| ≥ 3n/5
for the first time. Namely, j∗ is the first index with |Γ(Tj∗)| ≥ 3n/5. Using
exactly the same arguments, we can show that with high probability, we
have that j∗ ≤ lnn, and that:

d′j∗ ≤ Bt + 2ε1 +
8Amaxρ

′

Pb(ε1)np
+

144Amaxρ
′k

Pb(
ε1

lnn)Pb(ε1)np

Wlog we assume that Si∗ ∩ Tj∗ = ∅. Since |Γ(Si∗)| + |Γ(Tj∗)| ≥ 6n/5,
there are at least n/5 edge disjoint paths of length at most 2 between Si∗

and Tj∗ . Furthermore, by Chernoff bounds7, with high probability, there

7Here we have that X = { Edge disjoint paths of length at most 2 between Si∗ and
Tj∗ with both edges e on the path having be ≤ ε1 }, (1 − ε)E[X] = 5

12
Pb(ε1)2n/5 and

E[X] = Pb(ε1)2n/5.
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are at least Pb(ε1)2n/12 such paths with both edges e on the path having

be ≤ ε1. At most half of these paths have flow more than 2 12ρ′n+

Pb(ε1)2n
and thus

there is a path from a vertex of Si∗ to a vertex of Tj∗ that costs at most

2ε1 + 2Amax
24ρ′n+

Pb(ε1)2n
.

Putting everything together, we have that there is a path P ′ that starts
from s, moves to u, goes through vertices of the sequence S1, . . . , Si∗ , pro-
ceeds to a vertex of Γ(Si∗) ∩ Γ(Tj∗), and from there, continues through
vertices of the sequence Tj∗ , . . . , T1, until finally reaches v, and then t. The
latency of this path is:

lP ′(g) ≤ Bs +Bt + 6ε1 + 2
( 8Amaxρ

′

Pb(ε1)np
+

48Amaxρ
′k

Pb(
ε1

lnn)Pb(ε1)np

)
+

48Amaxρ
′n+

Pb(ε1)2n

We recall that since the flow g is a the minimizer of Pot(g), for any
g-used path P = (s, u, . . . , v, t), lP (g) ≤ lP ′(g). Thus we obtain that any
g-used path P = (s, u, . . . , v, t) has latency:

lP (g) ≤ Bs +Bt + 6ε1 + 2
( 8Amaxρ

′

Pb(ε1)np
+

48Amaxρ
′k

Pb(
ε1

lnn)Pb(ε1)np

)
+

48Amaxρ
′n+

Pb(ε1)2n

Using the hypothesis that n+ ≤ 3knp/2, for constant k > 0, and that
Pb(ε1/ lnn)np = ω(1), which is condition (3) in the definition of good net-
works, we obtain that for any constant ε1 > 0, lP (g) ≤ Bs + Bt + 7ε1, for
sufficiently large n.

Grouping the Neighbors of s and t. Let us now consider the entire
network G and the entire subnetwork H0 of G0. Lemma 5.7 can be applied
only to subsets of edges in Es(H0) and in Et(H0) that have (almost) the same
latency under f . Hence, we partition the neighbors of s and the neighbors
of t into classes V i

s and V j
t according to their latency. For convenience, we

let ε2 = ε/6, i.e., f is an ε2-Nash flow, and L ≡ Lf (H0). By theorem 5.6,
applied with error ε2 = ε/6, there exists a ρ such that for all e ∈ E(H0),
0 < fe ≤ ρ+ε2. Hence, L ≤ 2Amax(ρ+ε2)+2Bmax is bounded by a constant.

We partition the interval [0, L] into κ = dL/ε2e subintervals, where the
i-th subinterval is Ii = (iε2, (i + 1)ε2], i = 0, . . . , κ − 1. We partition the
vertices of Vs (resp. of Vt) that receive positive flow by f into κ classes V i

s

(resp. V i
t ), i = 0, . . . , κ − 1. Precisely, a vertex x ∈ Vs (resp. x ∈ Vt),

connected to s (resp. to t) by the edge ex = (s, x) (resp. ex = (x, t)), is
in the class V i

s (resp. in the class V i
t ), if lex(fex) ∈ Ii. If a vertex x ∈ Vs

(resp. x ∈ Vt) does not receive any flow from f , x is removed from G
and does not belong to any class. Hence, from now on, we assume that all
neighbors of s and t receive positive flow from f , and that V 0

s , . . . , V
κ−1
s

(resp. V 0
t , . . . , V

κ−1
t ) is a partitioning of Vs (resp. Vt). In exactly the same
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way, we partition the edges of Es (resp. of Et) used by f into k classes Eis
(resp. Eit), i = 0, . . . , κ− 1.

To find out which parts of the subnetwork H0 will be connected through
the intermediate subnetwork of G, using the construction of lemma 5.7, we
further classify the vertices of V i

s and V j
t based on the neighbors of t and

on the neighbors of s, respectively, to which they are connected by f -used
edges in the subnetwork H0. In particular, a vertex u ∈ V i

s belongs to the

classes V
(i,j)
s , for all j ∈ {0, . . . , κ − 1} such that there is a vertex v ∈ V j

t

with f{u,v} > 0. Similarly, a vertex v ∈ V j
t belongs to the classes V

(i,j)
t , for

all i ∈ {0, . . . , κ − 1} such that there is a vertex u ∈ V i
s with f{u,v} > 0.

We note that a vertex u ∈ V i
s (resp. v ∈ V j

t ) may belong to many different

classes V
(i,j)
s (resp. to V

(i,j)
t ), and that the class V

(i,j)
s is non-empty iff the

class V
(i,j)
t is non-empty, i.e., non-empty classes V

(i,j)
s and V

(i,j)
t appear in

pairs. We let k ≤ κ2 be the number of pairs (i, j) for which V
(i,j)
s and V

(i,j)
t

are non-empty. We note that k is a constant, i.e., does not depend on |V |
and r. We let E

(i,j)
s be the set of edges connecting s to the vertices in V

(i,j)
s

and E
(i,j)
t be the set of edges connecting t to the vertices in V

(i,j)
t .

Building the Intermediate Subnetworks of G. The last step is to
replace the 0-latency simplified parts connecting the vertices of each pair

of classes V
(i,j)
s and V

(i,j)
t in H0 with a subnetwork of Gm. To this end,

we randomly partition the set Vm of intermediate vertices of G into k sub-
sets, each of cardinality (roughly) |Vm|/k, and associate a different such

subset V
(i,j)
m with any pair of non-empty classes V

(i,j)
s and V

(i,j)
t . For each

pair (i, j) for which the classes V
(i,j)
s and V

(i,j)
t are non-empty, we consider

the induced subnetwork G(i,j) ≡ G[{s, t} ∪ V (i,j)
s ∪ V (i,j)

m ∪ V (i,j)
t ], which is

a (n/k, p, 1)-good network, by condition (4) in the definition of good net-
works, and because G is a (n, p, k)-good network. Therefore, we can apply

lemma 5.7 to G(i,j), with H
(i,j)
0 ≡ H0[{s, t}∪V (i,j)

s ∪V (i,j)
t ] in the role of H0,

the restriction f (i,j) of f to H
(i,j)
0 in the role of the flow f , and ρ′ = ρ+ ε2.

Moreover, we let B
(i,j)
s = max

e∈E(i,j)
s

le(fe) and B
(i,j)
t = max

e∈E(i,j)
t

le(fe)

correspond to Bs and Bt, and introduce constant latencies l′e(x) = B
(i,j)
s for

all e ∈ E(i,j)
s and l′e(x) = B

(i,j)
t for all e ∈ E(i,j)

t , as required by lemma 5.7.
Thus, we obtain, with high probability, a subnetwork H(i,j) of G(i,j) and a

flow g(i,j) that routes as much flow as f (i,j) on all edges of E
(i,j)
s ∪ E(i,j)

t ,
and satisfies the conclusion of lemma 5.7, if we keep in H(i,j) the constant

latencies l′e(x) for all e ∈ E(i,j)
s ∪ E(i,j)

t .
The final outcome is the union of the subnetworks H(i,j), denoted H

(H has the latency functions of the original instance G), and the union
of the flows g(i,j), denoted g, where the union is taken over all k pairs

(i, j) for which the classes V
(i,j)
s and V

(i,j)
t are non-empty. By construction,
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all edges of H are used by g. We obtain lemma 5.8 by showing that if
ε1 = ε/42 and ε2 = ε/6, the flow g is an ε-Nash flow of (H, r, l), and satisfies
Lg(H) ≤ Lf (H0) + ε/2.

Lemma 5.8. Let any ε > 0, let k = d12(Amax(ρ+ ε) +Bmax)/εe2, let
G(V,E) be an (n, p, k)-good network, let r > 0, let H0 be any subnetwork
of the 0-latency simplification of G, and let f be an (ε/6)-Nash flow of
(H0, r, l) for which there exists a constant ρ′ > 0, such that for all e ∈ E(H0),
0 < fe ≤ ρ′. Then, with high probability, wrt the random choice of the
latency functions of G, we can compute in poly(|V |) time a subnetwork H
of G and an ε-Nash flow g of (H, r, l) with Lg(H) ≤ Lf (H0) + ε/2.

Proof. We consider the subnetwork H (with the original latency functions
of G), computed as the union of subnetworks H(i,j), and the flow g, com-
puted as the union of the flows g(i,j), where the union is taken over all k

pairs (i, j) for which the classes V
(i,j)
s and V

(i,j)
t are non-empty. We re-

call that by construction, all edges of H are used by g. We show that if
ε1 = ε/42 and ε2 = ε/6, the flow g is an ε-Nash flow of (H, r, l), and satisfies
Lg(H) ≤ Lf (H0) + ε/2. We stress that the edge and path latencies here are
calculated with respect to the original latency functions of G and under the
edge congestion induced by the flow g (or the flow f).

For convenience, we let B(i,j) = B
(i,j)
s +B

(i,j)
t for any pair of non-empty

classes V
(i,j)
s and V

(i,j)
t . Since the difference in the latency of any edges

in the same group is at most ε2, we obtain that for any edge e ∈ E
(i,j)
s ,

B
(i,j)
s − ε2 ≤ le(fe) ≤ B

(i,j)
s , and similarly, that for any edge e ∈ E

(i,j)
t ,

B
(i,j)
t − ε2 ≤ le(fe) ≤ B

(i,j)
t . Therefore, since H0 is a 0-latency simplified

network, and since by hypothesis, all the edges of H0 are used by f , for any

pair of non-empty classes V
(i,j)
s and V

(i,j)
t , and for any s − t path p going

through a vertex of V
(i,j)
s and a vertex of V

(i,j)
t ,

B(i,j) − 2ε2 ≤ lp(f) ≤ B(i,j)

Moreover, since f is an ε2-Nash flow of (H0, r, l), for any s − t path
P ∈ PH0 ,

Lf (H0)− ε2 ≤ lP (f) ≤ Lf (H0)

Combining the two inequalities above, we obtain that for any pair of

non-empty classes V
(i,j)
s and V

(i,j)
t ,

B(i,j) − 2ε2 ≤ Lf (H0) ≤ B(i,j) + ε2 (5.19)

As for the flow g, by construction, we have that ge = fe for all edges

e ∈ Es ∪ Et. Therefore, for any edge e ∈ E(i,j)
s , B

(i,j)
s − ε2 ≤ le(ge) ≤ B(i,j)

s ,

and similarly, for any edge e ∈ E(i,j)
t , B

(i,j)
t − ε2 ≤ le(ge) ≤ B(i,j)

t . Thus, by
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lemma 5.7, and since all the edges of any subnetwork H(i,j) are used by g, for
any s− t path P in the subnetwork H(i,j), B(i,j)−2ε2 ≤ lP (g) ≤ B(i,j) +7ε1.
Using relation (5.19), we obtain that for any subnetwork H(i,j) and any s− t
path P of H(i,j),

Lf (H0)− 3ε2 ≤ lP (g) ≤ Lf (H0) + 2ε2 + 7ε1 (5.20)

Furthermore, we recall that the subnetworks H(i,j) only have in common
the vertices s and t, and possibly some vertices of Vs ∪ Vt and some edges
of Es ∪Et. They have neither any other vertices in common, nor any edges
connecting vertices in the intermediate parts of different subnetworks H(i,j)

and H(i′,j′). Hence, any s−t path p of H passes through a single subnetwork
H(i,j). Therefore, and since by construction, all the edges and the paths of
H are used by g, relation (5.20) holds for any s− t path P of H.

Thus, we have shown that g is a (5ε2 + 7ε1)-Nash flow of (H, r, l), and
that Lg(H) ≤ Lf (H0) + 2ε2 + 7ε1. Using ε2 = ε/6 and ε1 = ε/42, we obtain
the performance guarantees of g as stated in lemma 5.8.



Chapter 6

Conclusions

The motivation of this research was to provide simple ways of improving
network performance, by exploiting the essence of the Braess’s Paradox,
which as we have shown, occurs in “random” networks with high probability.

We have already seen how difficult it is to detect the so called best
subnetwork, which is the one that minimizes the equilibrium latency among
all subnetworks of the original network. Thus, it is of a notable importance
trying to give an approximating solution to the best subnetwork equilibrium
latency problem, that is an approximation of the best subnetwork and its
equilibrium latency, given the difficulty of detecting it.

Chapters 1 to 3 presented the basic issues of the paradox, which were
widely used in the Chapters that followed.

Chapter 4 presented approximation algorithms for the best subnetwork
equilibrium latency problem, in random networks with linear latencies and
polynomially many paths, each of polylogarithmic length. By these theo-
rems, quasipolynomial running times may be achieved, for traffic rates of
the size O(1) (or more generally O(poly(ln lnm))) or even for traffic rates
up to O(poly(lnm)), where m is the total number of the original network’s
edges.

Chapter 5 focused on the class of the so-called good selfish routing in-
stances. These are instances that have those properties that were used
exactly by [20] and [21] in order to demonstrate the occurrence of Braess’s
Paradox in random networks with high probability. An improvement on the
best known running time for approximating the best subnetwork equilib-
rium latency problem in this kind of networks is given, which was originally
presented in [32]. Overall, this approximation scheme runs in polynomial
time if the traffic rate is O(poly(ln lnn)) and in quasipolynomial time for
traffic rates up to O(poly(lnn)), where n is the total number of the original
network’s vertices.
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[25] P.Erdös, A. Rényi, On the Evolution of Random Graphs. Pub-
lications of the Mathematical Institute of the Hungarian Academy of
Sciences 5: 17-61, 1960.

[26] R. Andersen, F. Chung, L. Lu, Drawing power law graphs. In Pro-
ceedings of the 12th Symposium on Graph Drawing, 2004.

[27] M. Faloutsos, P. Faloutsos, C. Faloutsos, On Power-Law Relation-
ships of the Internet Topology. In Proc. SigComm. ACM, 1999.

[28] C. Gkantsidis, M. Mihail, A. Saberi, Conductance and Congestion
in Power Law Graphs. 2003.

[29] M. Makisumi, Expanders and Related Results. 2011.

[30] M. Mihail, C. Papadimitriou, A. Saberi, On Certain Connectivity
Properties of the Internet Topology. 2003.

[31] S. Barman, Approximating Caratheodory’s Theorem and Nash
Equilibria. 2014.

[32] D. Fotakis, A.C. Kaporis, T. Lianeas, P.G. Spirakis, Resolving
Braess’s Paradox in Random Networks. 2014.

[33] B. Bolobás, Random Graphs. 2nd Ed., Cambridge Studies in Ad-
vanced Mathematics, no. 73, Cambridge University Press, 2001.

[34] R. Cole, Y. Dodis, T. Roughgarden, Pricing Network Edges for
Heterogeneous Selfish Users. STOC, ACM, pp. 521530, 2003.

[35] L. Végh, Strongly Polynomial Algorithm for a Class of
Minimum-Cost Flow Problems with Separable Convex Ob-
jectives. STOC, ACM, pp. 2740, 2012.



List of Figures

1.1 Pigou’s example. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The original Braess’s paradox instance. . . . . . . . . . . . . . 10
2.2 Equilibrium state. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Optimal flow case. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Marginal costs and edge flows. . . . . . . . . . . . . . . . . . 11
2.5 Subgraph G′ = (V ′, E′) - Link (u,w) removal. . . . . . . . . . 12
2.6 New Equilibrium state. . . . . . . . . . . . . . . . . . . . . . . 12
2.7 New Optimal flow case. . . . . . . . . . . . . . . . . . . . . . 12
2.8 Original Braess’s Paradox. . . . . . . . . . . . . . . . . . . . . 13
2.9 Reduction from the 2DDP problem. . . . . . . . . . . . . . . 16
2.10 Leq(H

′
A) ≥ 2 - Assuming 2DDP instance is ‘Yes’. . . . . . . . 16

2.11 Leq(H
′
A) < 2 - Assuming 2DDP instance is ‘No’. . . . . . . . 18

2.12 Case ds(w)− ds(v) < le(fe), where e = (v, w). . . . . . . . . . 19
2.13 Case ds(w)− ds(v) = le(fe), where e = (v, w). . . . . . . . . . 19
2.14 A cycle C : v → v1 → v2 → . . .→ vk. . . . . . . . . . . . . . . 20
2.15 The 2-nd Braess Graph B2. . . . . . . . . . . . . . . . . . . . 25
2.16 The Subnetwork H of B2. . . . . . . . . . . . . . . . . . . . . 25
2.17 Leq(HA) ≥ bn2 c - Assuming Partition instance is ‘Yes’. . . . . 28
2.18 Leq(HA) < bn2 c - Assuming Partition instance is ‘No’. (a)∑

j∈S aj >
1
2A. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.19 Leq(HA) < bn2 c - Assuming Partition instance is ‘No’. (b)∑
j∈S aj <

1
2A. (b1) Edge (s, w2) gets flow equal to its ca-

pacity (worst case scenario). The paths in red are those that
have at least one link oversaturated. . . . . . . . . . . . . . . 31

2.20 Leq(HA) < bn2 c - Assuming Partition Instance is ‘No’. (b)∑
j∈S aj <

1
2A. (b2) Avoid edges ej1 or (v1, t) for i = 1, ej2

or (v2, w1) for i = 2 of being oversaturated. This will cause
extra flow on edge (s, w2), beyond its capacity, and thus it
gets oversaturated. . . . . . . . . . . . . . . . . . . . . . . . 31

138



LIST OF FIGURES 139

3.1 (f, f̃)-light and heavy edges, (f, f̃)-alternating paths. e1 is a
forward (f, f̃)-light edge and alternating path, e2 is a forward
(f, f̃)-heavy edge. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 An overall demonstration - e1 is a forward (f, f̃)-light edge
and alternating path, e2 is a forward (f, f̃)-heavy edge. . . . 39

3.3 Original Braess’s paradox instance - (f, f̃)-light and heavy
edges, (f, f̃)-alternating paths. . . . . . . . . . . . . . . . . . 39

3.4 Original Braess’s paradox instance - (a) (u, t) and (s, w) are
forward (f, f̃)-light edges. (b) (s, u), (u,w) and (w, t) are
forward (f, f̃)-heavy edges. (c) The undirected path (s, w),
(w, u) and (u, t) is (f, f̃)-alternating. . . . . . . . . . . . . . 40

3.5 An intuitive approach of the proof idea. . . . . . . . . . . . . 49
3.6 1-type and X-type edges - G1X , GX1, GU subgraphs - δ and

balance lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Resemblance with the original Braess’s paradox - In the orig-

inal Braess’s paradox, the link being removed is the “middle”
one (u,w). Here, the links being removed are again the “mid-
dle” ones, that link together G1X , GX1 and GU . . . . . . . . 51

3.8 The flow of edge es = (s, vs). . . . . . . . . . . . . . . . . . . 56
3.9 A bound of r̃Gl (2B). . . . . . . . . . . . . . . . . . . . . . . . 56
3.10 The subset of neighbors of vs, Γδ(vs), where each e = (vs, v)

has latency ae · x+ be, with be ≤ δ. . . . . . . . . . . . . . . 57
3.11 The flow of a link e = (vs, v) with latency ae ·x+ be and with

be ≤ δ. v belongs to the vertex subset U0, with incoming flow
at most

(
2B
Amin

)
1

1
3
P(B≤δ)np . . . . . . . . . . . . . . . . . . . . . 57
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