
Εθνικο και Καποδιστριακο Πανεπιστημιο Αθηνων

Σχολη Θετικων Επιστημων

ΜΠΛΑ

Προγραμμα Μεταπτυχιακων Σπουδων

Διπλωματική Εργασία:

Real Solving on Algebraic Systems of Small Dimension

Φοιτητής
Διώχνος Δημήτρης

Αριθμός Μητρώου: 200306

Επιβλέπων Καθηγητής
Ιωάννης Εμίρης

Αθήνα
Ιούνιος 2007

Στην οικογένειά μου

Ευχαριστίες

Είμαι πολύ χαρούμενος που είχα την τιμή να συνεργαστώ με τον καθηγητή

κ. Γιάννη Εμίρη για τη διπλωματική μου εργασία στο µ
∏
λ∀. Τα μαθήματά του

καθώς επίσης και οι παρατηρήσεις του στις κατ' ιδίαν συζητήσεις που είχαμε,
είτε αυτές αναφέρονταν αποκλειστικά στη πεδίο της διπλωματικής μου είτε όχι,

ήταν πάντοτε μια πηγή έμπνευσης και πρόσφεραν χώρο για δημιουργική δουλειά.

Επιπλέον, ο χαρακτήρας του θα είναι πάντοτε πρότυπο για εμένα. Δουλεύοντας

δίπλα του έμαθα πως μπορεί κανείς να ασχολείται εντατικά με διάφορα προβλήματα

και να διαχειρίζεται κρίσεις χωρίς όμως να παραγκωνίζει και την προσωπική του

ζωή. Το λίγοτερο που μπορώ να κάνω είναι να τον ευχαριστήσω για κάθε στιγμή

συνεργασίας μας.

Επίσης οι καθηγητές κύριοι Ηλίας Κουτσουπιάς και Ευάγγελος Ράπτης μου

έκαναν την τιμή να είναι στην τριμελή επιτροπή μου και τους ευχαριστώ θερμά

γι' αυτό. Και οι δύο, κυρίως μέσα από τα μαθήματά τους, μου πρόσφεραν με τις
συζητήσεις τους μια νέα προοπτική σε θέματα αλγορίθμων και άλγεβρας αντίστοι-

χα. Σίγουρα η κατανόηση διαφόρων εννοιών δεν θα ήταν το ίδιο εύκολη χωρίς τη

συμβολή και των δύο.

Ακόμη, δεν μπορώ παρά να πω ένα μεγάλο ευχαριστώ και στον Ηλία Τσιγαρίδα.

Ο Ηλίας τελείωνε το διδακτορικό του την εποχή που ξεκινούσα τη διπλωματική

μου σε ένα θέμα το οποίο στην ουσία βασιζόταν σε ένα μεγάλο μέρος στη δουλειά

που είχε κάνει ο ίδιος έως τότε. Οι συζητήσεις μας ήταν πάντοτε ένα ανεκτίμητο

κράμα μαθηματικών και προγραμματισμού αφού το πάθος του για την ομορφιά που

βρίσκεται πίσω από τις εξίσωσεις καθώς επίσης και η δινή προγραμματιστική του

εμπειρία μας έφερνε πάντοτε να ασχολούμαστε με την καρδιά των προβλημάτων

που αντιμετωπίσαμε. Δίχως τη βοήθεια του Ηλία είναι αμφίβολο αν η διπλωματική

μου θα είχε την ίδια μορφή.

Φυσικά δεν μπορώ να παραλείψω και την παρέα τόσο του Ηλία όσο και των

υπολοίπων παιδιών στο γραφείο. Δεν είναι λίγες οι φορές που χρειάστηκε να δου-

λέψουμε ως αργά τη νύχτα στη σχολή και η παρέα τους αλλά και οι παρεμφερείς

ανησυχίες τους βοηθούσαν να ξεπεραστούν πιο εύκολα τα όποια εμπόδια αντιμετω-

πίζαμε. Θέλω λοιπόν να πω κι ένα ευχαριστώ στους Χρήστο Κοναξή και Γιώργο

Τζούμα.

Τέλος θα ήθελα να ευχαριστήσω θερμά και τους καθηγητές μου κυρίους Γιάν-

νη Μοσχοβάκη και Κώστα Δημητρακόπουλο που μου έδωσαν την ευκαιρία να

φοιτήσω στο µ
∏
λ∀. Μέσα από τα μαθήματα των ίδιων αλλά και των υπολοίπων

συναδέλφων τους στο µ
∏
λ∀ είχα την ευκαιρία να γνωρίσω μια πιο μαθηματική

πλευρά της πληροφορικής την οποία δύσκολα πιστεύω πως θα μπορούσα να βρω σε

οποιοδήποτε άλλο μεταπτυχιακό πρόγραμμα στην Ελλάδα. Τους είμαι πραγματικά

ευγνώμων.

Δημήτρης Διώχνος,

Αθήνα, 14 Ιουνίου 2007.

Περίληψη

Η παρούσα διπλωματική ασχολείται με την ακριβή (exact) επίλυση στους πραγ-

ματικούς αριθμούς, καλώς ορισμένων πολυωνυμικών συστημάτων. Το κύριο πρό-

βλημα είναι η εύρεση όλων των πραγματικών λύσεων του συστήματος και ο υπολο-

γισμός των πολλαπλοτήτων στα σημεία τομής. Για το σκοπό αυτό παρουσιάζονται

τρεις αλγόριθμοι και αναλύεται η δυαδική πολυπλοκότητά τους. Οι δύο από τους

τρεις αλγορίθμους επιτυγχάνουν ένα φράγμα ÕB(N12) [DET07a, DET07b], ξε-

χνώντας λογαριθμικούς παράγοντες, ενώ το προηγούμενο καλύτερο φράγμα ήταν

ÕB(N14), όπου το N φράσσει το βαθμό και το δυαδικό μήκος των συντελεστών
των πολυωνύμων εισόδου. Η έξοδος των αλγορίθμων είναι οι ακριβείς συντεταγ-

μένες των σημείων τομής, δηλαδή διατεταγμένα ζεύγη πραγματικών αλγεβρικών

αριθμών και δίνονται υπό μορφή διαστημάτων απομόνωσης (isolating interval re-

presentation).

Το κύριο εργαλείο είναι οι ακολουθίες υποαπαλοιφουσών (subresultants) και

Sturm-Habicht, οι οποίες εξετάζονται σε πολλές μεταβλητές μέσω της τεχνικής

της δυαδικής κατάτμησης. Για την επίτευξη των φραγμάτων χρησιμοποιούνται πρό-

σφατα αποτελέσματα πολυπλοκότητας στην απομόνωση των ριζών πολυωνύμων

μιας μεταβλητής. Ακόμη παρουσιάζεται νέο φράγμα στον υπολογισμό προσήμου

πολυωνύμου σε δύο μεταβλητές. Επίσης, οι αλγόριθμοι επίλυσης σε δύο μετα-

βλητές εφαρμόζονται και για τον υπολογισμό της τοπολογίας μιας πραγματικής

αλγεβρικής καμπύλης.

Τέλος, όλοι οι αλγόριθμοι έχουν υλοποιηθεί στο maple με πολύ ενθαρρυν-

τικά αποτελέσματα. Η υλοποίηση χρησιμοποιεί αριθμητικά φίλτρα προκειμένου

να επιταχύνονται οι υπολογισμοί όταν οι ρίζες είναι καλά διαχωρισμένες. Η δυ-

ναμική της βιβλιοθήκης παρουσιάζεται με τη βοήθεια πειραμάτων συγκριτικά με

άλλες ευρέως διαδεδομένες βιβλιοθήκες όπως είναι το fgb/rs, τρεις αλγόριθμοι

της synaps (sturm, subdiv και newmac), και δύο ελαφρά αλλαγμένες μορφές

των insulate και top τα οποία υπολογίζουν την τοπολογία μιας πραγματικής

αλγεβρικής καμπύλης.

Abstract

This thesis is concerned with exact real solving of well-constrained, bivariate

algebraic systems. The main problem is to isolate all real solutions of the

system and determine their intersection multiplicities. Three projection-based

algorithms are presented and their asymptotic bit complexity is analyzed. This

leads to a bound of ÕB(N12) [DET07a, DET07b], when ignoring polylogarithmic

factors, whereas the previous record bound was in ÕB(N14), where N bounds

the degree and the bitsize of the input polynomials. The output of the solvers

are pairs of real algebraic numbers in isolating interval representation.

The main tool is Sturm-Habicht and subresultant remainder sequences, ex-

tended to several variables by the technique of binary segmentation. In order

to achieve the bounds, recent advances on the complexity of univariate root

isolation are exploited. New bound for the sign evaluation of bivariate poly-

nomials over a pair of real algebraic numbers is also presented. Moreover, the

algorithms for bivariate real solving are applied to compute the topology of real

plane algebraic curves.

Lastly, all algorithms have been implemented in maple with very encour-

aging results. The implementation uses numeric filtering to speed up computa-

tion when the roots are well-separated. We illustrate it by experiments against

well-established libraries such as fgb/rs, 3 synaps solvers (sturm, subdiv,

and newmac), and modified versions of insulate and top which compute the

topology of real plane algebraic curves.

Contents

1 Introduction 7

1.1 Previous Work . 8

1.2 Contributions . 8

1.3 Outline . 9

2 Foundations 11

2.1 Notation and Basic Complexity Results 11

2.1.1 Evaluation at a point x0 ∈ Z using Horner’s rule 11

2.1.2 Pseudo-Division and Pseudo-Remainder 12

2.1.3 Greatest Common Divisor 13

2.1.4 Resultant . 13

2.1.5 Discriminant . 14

2.1.6 Mahler Bound . 15

2.1.7 Classical Fan-In / Fan-Out 15

2.2 Representing Real Algebraic Numbers 17

2.3 Polynomial Remainder Sequences 17

2.3.1 Signed Polynomial Remainder Sequences 19

2.4 Univariate Polynomials . 20

2.4.1 Bounding Roots . 20

2.4.2 Root Isolation and Sturm’s algorithm 21

2.4.3 Univariate sign determination 21

2.4.4 Bounding root separation 23

2.5 Multivariate polynomials . 23

2.5.1 Bivariate sign evaluation 24

3 Real Solving of Bivariate Systems 27

3.1 The grid algorithm . 27

3.1.1 Deterministic shear and counting multiplicities 29

3.2 The m_rur algorithm . 30

3.2.1 Projection. 31

3.2.2 The sub-algorithm compute_k 32

3.2.3 Matching solutions and algorithm find 32

3.3 The g_rur algorithm . 33

3.4 Applications . 34

3.4.1 Real root counting. 34

1 D. I. D iochnos

2 CONTENTS

3.4.2 Simultaneous inequalities in two variables. 36

3.4.3 The complexity of topology. 36

4 Implementation and Experiments 39
4.1 Augmenting performance . 39

4.2 Bivariate solving and slv library 40

4.2.1 Comparing slv solvers . 41

4.2.2 Decomposing running times 43

4.2.3 The effect of filtering . 47

4.3 Bivariate solving and other packages 49

4.3.1 g_rur and other solvers 52

4.4 Computing multiplicities . 58

4.4.1 Comparing slv solvers . 59

4.4.2 Decomposing running times 61

4.4.3 The effect of filtering . 66

5 Conclusion 71
5.1 Future Work . 71

A Test-Bed Polynomials 73
A.1 Input Polynomials . 73

B Sample Usage 77

D. I. D iochnos

List of Tables

4.1 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 41

4.2 The performance of grid and g_rur implementations on bi-

variate solving and the speedup that is achieved when choosing

g_rur. 42

4.3 The performance of m_rur and g_rur implementations on bi-

variate solving and the speedup that is achieved when choosing

g_rur. 43

4.4 Statistics on the performance of slv’s algorithms in bivariate solv-

ing. 44

4.5 Analyzing the percent of time required for various procedures

in each algorithm. Values in m_rur refer to sheared systems

(whenever it was necessary). A column about Sorting in the

case of grid and g_rur is not shown. 46

4.6 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 47

4.7 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 48

4.8 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 51

4.9 The performance of fgb/rs and g_rur on bivariate solving and

the speedup that is achieved when choosing g_rur. 52

4.10 The performance of synaps/sturm and g_rur on bivariate

solving and the speedup that is achieved when choosing g_rur. 53

4.11 The performance of synaps/subdiv and g_rur on bivariate

solving and the speedup that is achieved when choosing g_rur. 54

4.12 The performance of synaps/newmac and g_rur on bivariate

solving and the speedup that is achieved when choosing g_rur. 56

4.13 The performance of insulate and g_rur on bivariate solving

and the speedup that is achieved when choosing g_rur. 57

4.14 The performance of top with precision set to 60 digits and g_rur

on bivariate solving and the speedup that is achieved when choos-

ing g_rur. 58

3 D. I. D iochnos

4 LIST OF TABLES

4.15 The performance of top with precision set to 500 digits and

g_rur on bivariate solving and the speedup that is achieved

when choosing g_rur. 59

4.16 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 60

4.17 The performance of grid and g_rur implementations when

computing multiplicities on the intersections and the speedup

that is achieved when choosing g_rur. 61

4.18 The performance of m_rur and g_rur implementations when

computing multiplicities on the intersections and the speedup

that is achieved when choosing g_rur. 62

4.19 The performance of grid and m_rur implementations when

computing multiplicities on the intersections and the speedup

that is achieved when choosing m_rur. 63

4.20 Statistics on the performance of slv’s algorithms when computing

multiplicities. 64

4.21 Analyzing the percent of time required for various procedures in

each algorithm. All values refer to the sheared systems (whenever

it was necessary). A column about Sorting in the case of grid

and g_rur is not shown. 65

4.22 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 66

4.23 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 67

4.24 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 68

4.25 Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM. 69

D. I. D iochnos

List of Algorithms

1 Sturm::univariate. 22

2 univariate-sign_at. 23

3 bivariate-sign_at. 25

4 Sturm::grid. 28

5 Sturm::m_rur. 31

6 Sturm::g_rur. 33

5 D. I. D iochnos

6 LIST OF ALGORITHMS

D. I. D iochnos

Chapter 1

Introduction

The problem of well-constrained algebraic system solving is fundamental. How-

ever, most of the algorithms treat the general case or consider solutions over

an algebraically closed field [Can87, LL91, Emi95, EV99, Mou96, MP97, MP98,

Mou99]. This thesis is based on the results presented in [DET07a, DET07b]

and focuses on real solving in the bivariate case in order to provide precise

complexity bounds and study different algorithms in practice. The work can be

considered as an extension to the bivariate solvers presented in [Tsi06]. The idea

is that if someone treats specific cases on their own it is possible to obtain better

bounds than those provided in the general case. This is important in several ap-

plications ranging from nonlinear computational geometry and computer-aided

geometric design to real quantifier elimination and robotics. A question of in-

dependent interest is to compute the topology of a plane real algebraic curve,

which is also studied in this thesis.

The algorithms isolate all common real roots inside non-overlapping ratio-

nal rectangles, and determine the intersection multiplicity per root. The output

is pairs of real algebraic numbers. Three projection-based algorithms are pre-

sented and their asymptotic bit complexity is analyzed. Similarly to other

works, OB means bit complexity and Õ, ÕB means that we are ignoring poly-

logarithmic factors. This leads to a bound of ÕB(N12), whereas the previous

record bound was ÕB(N14) [GVEK96, BPM06], derived from the closely re-

lated problem of computing the topology of real plane algebraic curves, where

N bounds the degree and the bitsize of the input polynomials. The approach

in [GVEK96] depends on Thom’s encoding for representing the real roots of a

univariate polynomial. Real algebraic numbers in this thesis are represented in

isolating interval representation, since it is more intuitive, it is used in applica-

tions, and the preliminary experiments that were conducted in this thesis (see

also [DET07a, DET07b]) demonstrate that it supports as efficient algorithms as

other representations. In [GVEK96] it is stated that “isolating intervals provide

worst [sic] bounds”. Moreover, it is widely believed that isolating intervals do

not produce good theoretical results. [DET07a, DET07b] suggest that isolating

intervals should be re-evaluated.

The main tool is Sturm-Habicht and subresultant remainder sequences, ex-

7 D. I. D iochnos

8 INTRODUCTION

tended to several variables by the technique of binary segmentation. Recent

breakthroughs on univariate root isolation are exploited. These have reduced

complexity by 1-3 orders of magnitude to ÕB(N6) [DSY05, ESY06, EMT07].

Note that the complexity that is achieved by numerical methods [Pan02] is

ÕB(N4) and hence the gap between the two approaches has narrowed. Hence,

new bounds are derived for the sign evaluation of bivariate polynomials over

two real algebraic numbers.

1.1 Previous Work

In [KSP05], 2 × 2 systems are solved and the multiplicities computed under

the assumption that a generic shear has been obtained, based on [SF90]. In

[Wol02], 2× 2 systems of bounded degree were studied, obtained as projections

of the arrangement of 3D quadrics. This algorithm is a precursor of ours, see

also [ET05], except that matching and multiplicity computation was simpler.

In [MP05], a subdivision algorithm is proposed, exploiting the properties of the

Bernstein basis, with unknown bit complexity, and arithmetic complexity based

on the characteristics of the graphs of the polynomials. For other approaches

based on multivariate Sturm sequences the reader may refer to e.g. [Mil92,

PRS93].

Determining the topology of a real algebraic plane curve is a closely related

problem. The best bound is ÕB(N14) [BPM06, GVEK96]. In [WS05] three

projections are used; this is implemented in insulate, with which we make

several comparisons. Work in [EKW07] is based on Sturm-Habicht sequences

and solves the problem of singularities and vertical asymptotes with the Bit-

stream Descartes method [EKK+05]. For an alternative using Gröbner bases

the reader may refer to [CFPR06]. To the best of our knowledge the only result

in topology determination using isolating intervals is [AM88], where a ÕB(N30)
bound is proved.

We establish a bound of ÕB(N12) using the isolating interval representation.

It seems that the complexity in [GVEK96] could be improved to ÕB(N10) us-

ing fast multiplication algorithms, fast algorithms for computations of signed

subresultant sequences and improved bounds for the bitsize of the integers ap-

pearing in computations. To put the bounds that are presented in this thesis

and [DET07a, DET07b] into perspective, note that the input is OB(N3), and

the bitsize of all output isolation points for univariate solving is ÕB(N2), and

this is tight.

1.2 Contributions

The main contributions of [DET07a, DET07b] and this thesis are the following:

An improved complexity bound for bivariate sign evaluation (theorem 2.37) is

established, which helps us derive bounds for root counting in an extension

field (lemma 3.7) and for the problem of simultaneous inequalities (corollary

3.10). We study the complexity of bivariate polynomial real solving, using

D. I. D iochnos

1.3 OUTLINE 9

three projection-based algorithms: a straightforward grid method (theorem

3.1), a specialized RUR approach (theorem 3.5), and an improvement of the

latter using fast GCD (theorem 3.6). The first two algorithms also appeared

in [Tsi06]. The best bound is ÕB(N12); within this bound, root multiplicities

are computed as well. Computing the topology of a real plane algebraic curve

is in ÕB(N12) (theorem 3.12). Moreover, a maple package has been developed

which allows computations with real algebraic numbers and for implementing

our algorithms presented also in [DET07a, DET07b]. It is easy to use and it

integrates seminumerical filtering to speed up computations when the roots are

well-separated. It guarantees exactness and completeness of results; moreover,

the runtimes seem very encouraging. We illustrate it by experiments against

well-established C/C++ libraries fgb/rs and synaps. We also examine maple

libraries insulate and top, which compute curve topology. Our software is

robust and effective; its runtime is within a small constant factor with respect

to the fastest C/C++ library.

1.3 Outline

The thesis is divided as follows. Chapter 2 presents basic tools and complex-

ity results in univariate solving and on operations of Sturm sequences. Having

formed a solid background chapter 3 presents the three projection based algo-

rithms that are also presented in [DET07a, DET07b]. Chapter 4 presents exten-

sive experiments that were conducted with the library that was developed in this

thesis. Chapter 5 summarizes the most important results and states the goals

for future work with Sturm sequences and projection based solvers. Chapter A

in the appendix presents the polynomials that were used for testing. Finally,

chapter B in the appendix gives an overview of the commands that are provided

through the library at the moment. Sample executions of the basic commands

are shown and the output is explained. For an up-to-date coverage of the com-

mands available for the library bundled with sample execution and explanation

of each command, the reader is urged to visit the homepage of the slv (Sturm

soLVer) library: http://www.di.uoa.gr/~erga/soft/SLV_index.html.

D. I. D iochnos

10 INTRODUCTION

D. I. D iochnos

Chapter 2

Foundations

This chapter is devoted to basic tools and complexity results that will be used by

the three algorithms for real solving bivariate systems in chapter 3. The heart

of the algorithms relies on Sturm sequences. Therefore most of the results of

this chapter deal with or are based on sequences generation and evaluation on

rational points. Moreover, Fan-In / Fan-Out techniques are described in section

2.1.7 for completeness, although they are not applied in bivariate solving since

at the moment seem not to yield better bounds there.

2.1 Notation and Basic Complexity Results

This section sets the necessary notation and covers basic complexity results

mainly on primitive operations with univariate polynomials.

In what follows OB means bit complexity and the ÕB-notation means that

we are ignoring polylogarithmic factors. For f ∈ Z[y1, . . . , yk, x], deg(f) denotes

its total degree, while degx(f) denotes its degree if we consider it as a univariate

polynomial with respect to x. L (f) bounds the bitsize of the coefficients of

f (including a bit for the sign). We assume L (deg(f)) = O(L (f)). For a ∈

Q, L (a) is the maximum bitsize of numerator and denominator. Let M (τ)

denote the bit complexity of multiplying two integers of bit size at most τ and

M (d, τ) denote the bit complexity of multiplying two univariate polynomials

of degrees 6 d and coefficient bit size 6 τ. Using FFT, M (τ) = OB(τ lgc1 τ),
M (d, τ) = OB(dτ lgc2 (dτ)) = ÕB(dτ), for suitable constants c1, c2. Let f,g ∈
Z[x], deg(f) = p > q = deg(g) and L (f) ,L (g) 6 τ. rem (f,g) and quo (f,g)
denote the Euclidean remainder and quotient, respectively. We compute f1 mod
f2 in ÕB(d(δτ2 + τ1)), where d > deg(fi), δ = deg(f1) − deg(f2),L (fi) = τi.

2.1.1 Evaluation at a point x0 ∈ Z using Horner’s rule

Given f =
∑d

i=1 cix
i such that L (ci) 6 τ and x0 ∈ N such that L(x0) = σ we

can perform the evaluation with Horner’s rule by applying only dmultiplications

11 D. I. D iochnos

12 FOUNDATIONS

plus d + 1 additions, since Horner’s rule implies

c0 + x0 · (c1 + x0 · (. . . (cd−1 + x0 · cd) . . .)).
More formally, the evaluation EvalHorner(f, x0) can be described with the fol-

lowing recursive equations:

EvalHorner(f, x0) = h(f,d+ 1, x0)
h(f, i+ 1, x0) = cd−i + x0 · h(f, i, x0)

h(f, 0, x0) = cd

The running time is asymptotically bounded by the d multiplications, hence it

is ÕB(dmax{dσ, τ}). The bitsize of the result is L (f(x0)) = O(dσ+ τ).
2.1.2 Pseudo-Division and Pseudo-Remainder

In cases where the coefficients of the polynomials do not belong to a field, then

classical division has to be redefined. This redefinition is the following:

Definition 2.1. Let f,g ∈ Z[x]. There exist unique polynomials Q,R ∈ Z[x]

such that

lead(g)δ−1f = Qg+ R

and deg(R) < deg(g) and δ = max{1, deg(f) − deg(g)}. Q and R are called

pseudo-quotient and pseudo-remainder respectively. Q is denoted as pquo

and R as prem.

Note that for simplicity in the above definition f,g ∈ Z[x]. However, the

definition still applies for f,g ∈ K[x], for any commutative ring K.

Lemma 2.2. Let f,g ∈ Z[x] such that deg(f) = m > n = deg(g) and L (f) =

σ, L (g) = τ. Then L (prem (f,g)) = L (pquo (f,g)) = Õ(δτ + σ), where δ =

m− n.

Proof. Let f =
∑m

i=0 aix
i and g =

∑n
i=0 bix

i and consider

M =

bn bn−1 . . . b0
bn . . . b1 b0

. . .
. . .

bn bn−1 . . . b1 b0
am am−1 . . . am−n am−n−1 . . . a1 a0

The dimension is (m−n+2)×(m+1). The coefficients of the remainder can be

computed as determinants of certain sub-matrices of M [BPM06, Yap00]. By

Bareiss’ algorithm, this also holds for pseudo-remainders.

The coefficient of xn−1−j in the remainder, where n − 1 > j > 0, is the

determinant of matrix Mj, formed by taking the first m− n+ 1 columns of M

and column m− n + 2 + j.

D. I. D iochnos

2.1 NOTATION AND BASIC COMPLEXITY RESULTS 13

Using Hadamard’s inequality on the rows

|cj| = | detMj| 6 ((δ+ 2) 2τ)
δ+1 · 2σ(δ+ 2):

The coefficients of pquo (f,g) can be computed as principal minors of

am am−1 . . . am−n am−n−1 . . . a1 a0
bn bn−1 . . . b0

bn . . . b1 b0
. . .

. . .

bn bn−1 . . . b1 b0

2.1.3 Greatest Common Divisor

Let K be a unique factorization domain. For example K = Z or K = Z[y]. Then

we can define the greatest common divisor of two polynomials f,g ∈ K[x] as

the polynomial of maximal degree that divides the two polynomials f and g.
This is denoted as gd(f,g).

The greatest common divisor is of extreme importance in what follows. It

allows us to compute the number of common roots between two different poly-

nomials as well as compute the number of different roots of a polynomial f.
Given f,g ∈ K[x] such that deg(f) = d1, deg(g) = d2,L (f) 6 τ and

L (g) 6 τ, we can compute the gd in ÕB(d1d2τ). The bitsize of its coeffi-

cients is O(max{d1,d2}τ). Due to the importance of the gd in the computations

that arise in the subsequent algorithms, more details will be discussed at the

appropriate points.

2.1.4 Resultant

Another significant tool that forms the basis for all algorithms that will be

discussed in chapter 3 is the resultant of two polynomials.

Theorem 2.3. Given f,g ∈ K[x] such that f =
∑n

i=1 aix
x and g =

∑m
j=1 bjx

j

with anbm 6= 0, there is a unique (up to sign) irreducible polynomial

res(f,g) ∈ K[an, . . . ,a0,bm, . . . ,b0] which is zero iff f,g have a common

factor. It is homogeneous and deg(res(f,g)) = deg(f) + deg(g) = n + m.
This polynomial is called resultant.

Theorem 2.4. Given f,g ∈ K[x] we can compute the resultant res(f,g) via

the Sylvester matrix Syl(f,g). More specifically, we have:

res(f,g) = det(Syl(f,g)).
Definition 2.5 (Sylvester Matrix). The Sylvester matrix of f and g is the

D. I. D iochnos

14 FOUNDATIONS

(n +m)× (n +m) matrix defined as follows:

Syl(f,g) =

an an−1 an−2 a0
an an−1 an−2 a0

. . .
. . .

. . .
. . .

. . .
. . .

an an−1 an−2 a0
bm bm−1 bm−2 . . . b0

bm bm−1 bm−2 . . . b0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

bm bm−1 bm−2 . . . b0

Note that we can compute the resultant in time ÕB(nmτ), where τ is a

bound on the bitsize of the coefficients of f and g.
2.1.5 Discriminant

Definition 2.6. Let f =
∑d

i=0 aix
i ∈ K[x],d > 2 and ρ1, . . . , ρd ∈ K its roots.

The discriminant of f is the quantity

disc(f) = a2d−2
n

∏16i<j6d

(ρi − ρj)
2

In order to compute the discriminant we need the following theorem:

Theorem 2.7. Given f =
∑d

i=0 aix
i ∈ K[x],d > 2 we have:

res(f, f ′) = ±andisc(f) = (−1)n(n−1)2 andisc(f)

A useful remark that will be used later on in section 3.1.1 is the following:

Remark 2.8 (Multiplicities). The definition of the discriminant does not

require only different roots of the polynomial. Therefore, if a polynomial

has a multiple root, then the discriminant must be zero (0). Equivalently,

res(f, f ′) = 0 if and only if f has multiple roots. If f ∈ Z[x] does not contain

multiple roots, then disc(f) > 1.
An upper bound on the discriminant can be obtained with the following

theorem:

Theorem 2.9. Let f =
∑d

i=0 aix
i ∈ Z[x]. Then:

|disc(f)| 6 ddM(f)2(d−1)
6 dd||f||

2(d−1)2 ,
where ||f||2 =

√
∑d

i=0 a2i and M(f) is the Mahler bound of f which will be

described in the following paragraph.

D. I. D iochnos

2.1 NOTATION AND BASIC COMPLEXITY RESULTS 15

2.1.6 Mahler Bound

Definition 2.10. Let A =
∑d

i=0 aix
i ∈ C[x] \ C such that

A =

d∑

i=0 aix
i = ad

d∏

i=1(X− ρi)

with ad 6= 0. Then, the Mahler bound of A, denoted as M(A) is

M(A) = |ad|

d∏

j=1max{1, |ρj|}

The following identities are presented without proof:

Proposition 2.11. Given A,B ∈ C[x]\C, such that Mahler bound is defined

and deg(A) = d and n ∈ N∗, the following hold:

a. M(xdA(1
x
)) = M(A(x)).

b. M(A · B) = M(A) ·M(B).
c. M(A(xk)) = M(A(x)).

2.1.7 Classical Fan-In / Fan-Out

Consider the setting of the previous paragraph but this time assume we want

to evaluate f over a set J of natural numbers such that |J| 6 d. The obvious

technique would be to apply |J| times Horner’s rule, thereby evaluating f over

all |J| numbers in ÕB(|J|dmax{dσ, τ}) = ÕB(max{d3σ,d2τ}). However, we can

do better. This is a classic result [EP99] called Fan-In / Fan-Out and is based

on an extension of the following lemma.

Lemma 2.12. Given a,b, c ∈ N, (a mod (bc)) mod b = a mod b.
Proof. a mod (bc) = k → a = jbc + k. a mod b = m → a = ib + m.
Therefore, k = ib +m− jbc→ k mod b = m.
Corollary 2.13. The following holds:

p(x) mod (x− xi) =

p(x) mod ∏

j∈J

(x− xj)

 mod (x− xi), i ∈ J (N.

Example 2.1. Let f(x) = x3 − 2x + 1 and assume we want to evaluate the

function on {−2,−1, 0, 1}. The evaluation consists of two parts.

Fan-In: In the first part we generate products of the form
∏

j(x−xj). Thus
we start with the polynomials that have as roots the required integers; in
this case we have (x + 2), (x + 1), x, (x − 1). In the following step we take
two polynomials each time and generate their product, thereby obtaining
this time (x2 + 3x + 2) and (x2 − x). Finally, we compute the product p =

(x2 + 3x + 2)(x2 − x) of these two polynomials that occurred. Working this
way we generated a binary tree bottom-up as shown below:

−
→

2 x4 + 2x3 − x2 − 2x

1 x2 + 3x + 2 x2 − x
0 x + 2 x + 1 x x − 1

D. I. D iochnos

16 FOUNDATIONS

Fan-Out: The next step consists of computing the required remainders.
This time we traverse the tree top-down and store the results of each
level. Therefore on the first level we must compute the pseudo-remainder
prem (f,p) . Note that f remains intact since deg(p) = 4 > 3 = deg(f).
On each subsequent level we work similarly; i.e. we compute the pseudo-
remainder between the polynomial of the previous level and the polynomial
that is directed by the fan-in tree at the respective position. Hence on level 2
we compute prem

(
x3 − 2x+ 1, x2 + 3x+ 2) = 5x+7 and prem

(
x3 − 2x+ 1, x2 − x

)
=

−x + 1. Finally, on the third level we compute the pseudo-remainders
prem (5x+ 7, x+ 2) = −3, prem (5x+ 7, x+ 1) = 2, prem (−x+ 1, x) = 1, and
prem (−x+ 1, x− 1) = 0. The whole process and the new binary tree that has
been formed is shown below:

−
→

0 x3 − 2x + 1
1 5x + 7 1 − x

2 −3 2 1 0
Note that the requested values have been computed; i.e. f(−2) = −3, f(−1) =2, f(0) = 1, and f(1) = 0.
Theorem 2.14 (Fan-In / Fan-Out). Let f ∈ Z[x] such that deg(f) 6 d and

L (f) 6 τ. We can evaluate f at n 6 2m 6 d + 1 natural numbers of bitsize

σ in time ÕB(d2σ+ dτ).
Proof. For simplicity assume that d is of the form 2m − 1 and n = d+ 1.
Fan-In: Generating

∏
j(x − xj). We form a binary tree with leaves the

polynomials (x−xj), nodes the various polynomials that arise as products from

the nodes of the previous level, and root the polynomial
∏06i6d(x− xj). If we

start counting from 0 at the leaf-level, then at level j we have n2j polynomials

of degree 2j. Moreover, the bitsize of these polynomials is Õ((j + 1)σ). The

cost for computing the n2j polynomials of degree 2j, where j = 1, 2, . . . , lgn, is

ÕB((n/2j)M(2j−1, jσ)) = ÕB(njσ), since M(a,b) = ÕB(ab) denotes the cost

of multiplying two polynomials of degree bounded by a and coefficient bitsize

bounded by b. Overall, the complexity for this step is OB(nσ lg2 n) = ÕB(nσ) =

ÕB(dσ).
Fan-Out: Subdivision. We now traverse the tree in the inverse direction.

Moving from level j to j + 1 (j = 0, . . . , (lgn − 1)) we have to perform 2j+1
divisions with remainder with polynomials of degree n2j and respective bitsize

βj = O((lgn + 1 − j)σ). Let’s have a look on the degrees of the resulting poly-

nomials (remainders). At root level the given polynomial f does not change.

Dividing this polynomial with polynomials of degree n2 we obtain polynomials

of degree n2 −1. Similarly, at level j (again counting from 0 at root level) we have

polynomials of degree n2j −1, j = 1, . . . , lgn. Now, let’s examine their respective

bitsizes. Moving from level 0 to level 1 we perform division on polynomials with

bitsize b0 = τ (bound for coefficients of f) and β1 = O(σ lgn). Thus, the result

has bitsize b1 = O(δ1β1+b0) = O(δ1σ lgn+τ), where δ1 = (n−1)− n2 = n2 −1.
Similarly, when reaching level j we have performed division with polynomials of

bitsize bj−1 and βj which results in bj = O(δjβj +bj−1). Note that βj is defined

as βj = O((lgn + 1 − j)σ), j = 0, . . . , lgn. Also, δj = n2j − 1, j = 1, . . . , lgn.
D. I. D iochnos

2.2 REPRESENTING REAL ALGEBRAIC NUMBERS 17

Hence for all j = 0, . . . , lgn, bj 6 O(nσ lgn+τ) = Õ(nσ+τ). As a consequence,

the running time complexity for this phase is:

T =

lgn−1∑

j=0 2j+1OB((
n2j

− 1)(n2j
)(nσ lgn + τ))

= OB((nσ lgn + τ)

lgn−1∑

j=0 n2j
)

= OB((nσ lgn + τ)2(n− 1))
= ÕB(n2σ+ nτ)

since we perform 2j+1 divisions per level j and the degrees are (n2j − 1) and n2j

and the bitsizes are bounded by O(nσ lgn+ τ).
2.2 Representing Real Algebraic Numbers

We choose to represent a real algebraic number α ∈ Ralg by the isolating

interval representation. because it is more intuitive, it facilitates geometric ap-

plications, and turns out to be as efficient as other representations. It includes a

square-free polynomial which vanishes on α and a (rational) interval containing

α and no other root. More particularly, assume that α is the unique root of

the square-free polynomial f in the interval I = [IL, IR], where IL, IR ∈ Q. We

denote this with the following representation:

α ≃ [f, I] = [f, [IL, IR]].
Remark 2.15 (Bolzano). Note that since f is square-free and I is an iso-

lating interval of the unique root α of f in the interval, then f satisfies the

Bolzano criterion in the interval, i.e. f(IL) · f(IR) < 0.
Remark 2.16 (Derivative). Moreover, it is easy to compute the sign of the

derivative of f when evaluating at x = α. Since f is square-free, there exists

an interval J ⊆ I containing α such that f is monotone. Moreover, since

the square-free f satisfies the Bolzano criterion in I it does not change sign

on the intervals [IL,α) and (α, IR] by construction. Therefore,

sign
(
f ′(α)

)
= sign

(
sign

(
f(IR)

)
− sign

(
f(IL)

)).
2.3 Polynomial Remainder Sequences

We now return to the problem of computing the gd of two polynomials. In

applications the interest relies on the roots (or the factorization) of the gd .
Hence, it is acceptable to compute the gd up to similarity. An easy way of

computing the gd of two polynomials f,g ∈ Z[x] would be to perform suc-

cessive pseudo-divisions (see section 2.1.2), thereby producing the sequence of

(remainder) polynomials

R0 = f,R1 = g,R2 = prem (f,g) , . . . ,Rk = prem (Rk−2,Rk−1) ,
D. I. D iochnos

18 FOUNDATIONS

such that prem (Rk−1,Rk) = 0. Therefore, any sequence that mimics the

above remainder sequence is called Polynomial Remainder Sequence (PRS

for short). Moreover, if the degree at each step drops by 1, we call the sequence

regular (or normal). The variations of the possible sequences rely on different

computations of the parameters k, λ of the following identity

λif = Qg+ kR.
Hence, apart from the Pseudo-Euclidean PRS which is rarely, if ever, used in

practice, other PRSs are the Primitive-PRS which maintains primitive polyno-

mials at each step, as well as the most commonly used in practice Subresultant

PRS and Sturm-Habicht PRS. The Subresultant and the Sturm-Habicht se-

quences avoid the costly computation of the gd at each step (contrary to the

Primitive-PRS) and the bitsize of the coefficients of the polynomials that arise

in the sequence increases only linearly contrary to the Pseudo-Euclidean PRS

where the bitsize of the coefficients exhibits exponential growth. The following

example illustrates this fact:

Example 2.2. Given

f = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5
g = 3x6 + 5x4 − 4x2 − 9x+ 21

we obtain the following Remainder Sequences:

Euclidean:

−15x4 + 3x2 − 915795x2 + 30375x− 595351254542875143750x− 165460833843750012593338795500743100931141992187500
Primitive Part:

−5x4 + x2 − 313x2 + 25x− 494663x− 61501
Subresultant: 15x4 − 3x2 + 965x2 + 125x− 2459326x− 12300260708
The reader may refer to [Yap00] for a detailed treatment of the Polynomial

Remainder Sequences. We now switch to the class of Polynomial Remainder

Sequences that are actually used in real solving and are the heart of all compu-

tations that are described in this thesis.

D. I. D iochnos

2.3 POLYNOMIAL REMAINDER SEQUENCES 19

2.3.1 Signed Polynomial Remainder Sequences

Definition 2.17. [LR01] The signed polynomial remainder sequence of f and

g is denoted by sPRS (f,g) and is a polynomial sequence similar to the

R0 = f,R1 = g,R2 = − prem (f,g) , . . . ,Rk = − prem (Rk−2,Rk−1) ,
where prem (Rk−1,Rk) = 0. The quotient sequence contains the {Qi}06i6k,

where Qi = pquo (Ri,Ri+1), and the quotient boot is (Q0, . . . ,Qk−1,Rk).

There is a huge bibliography on signed polynomial remainder sequences (c.f

[BPM06, vzGG03, Yap00] and references therein). Here, we consider signed

subresultant sequences, which contain polynomials similar to the polynomials

in the signed polynomial remainder sequence; see [vzGL03] for a unified ap-

proach to subresultants. We consider the signed Subresultant sequences and

Sturm-Habicht sequences (SR(f,g) and StHa(f,g) respectively) of f,g, which

contain polynomials proportional to the polynomials in sPRS (f,g) since they

achieve better bounds on the coefficient bitsize as it was demonstrated in exam-

ple 2.2 and have good specialization properties since they are defined through

determinants. To be more specific, we will consider subresultant sequences, or

Sturm-Habicht sequences, in the case where g is the derivative of f. The reader

may refer to [GVLRR89, BPM06] for information. We recall here the main

results regarding the computation and the evaluation of such sequences. Bysr(f,g) the sequence of the principal subresultant coefficients, by SQ(f,g) the

corresponding quotient boot, and by SR(f,g; a) the evaluated sequence over

a ∈ Q. If the polynomials are multivariate, then the aforementioned sequences

are considered w.r.t. variable x, except if explicitly stated otherwise.

Proposition 2.18. [LR01, LRSED00, Rei97] Assuming p > q, SR(f,g)
is computed in ÕB(p2qτ) and L (SRj(f,g)) = O(pτ). For any f,g, their

quotient boot, any polynomial in SR(f,g), their resultant, and their gd are

computed in ÕB(pqτ).

Lemma 2.19. [LR01, Rei97] Let p > q. We can compute SR(f,g; a), where

a ∈ Q∪ {±∞} and L (a) = σ, in ÕB(pqτ+ q2σ+ p2σ). If f(a) is known, then

the bound becomes ÕB(pqτ+ q2σ).
Proof. Let SRq+1 = f and SRq = g. For the moment we forget SRq+1. We

may assume that SRq−1 is computed, since the cost of computing one element

of SR is the same as that of computing SQ(f,g) (proposition 2.18).

We follow Lickteig and Roy [LR01]. For two polynomials A,B of degree

bounded by D and bit size bounded by L, we can compute SR(A,B)(a), where

L (a) 6 L, in ÕB(M (D, L)). In our case D = O(q) and L = O(pτ + qσ), thus

the total costs is ÕB(pqτ + q2σ).
It remains to compute the evaluation SRq+1(a) = f(a). This can be done

using Horner’s scheme in ÕB(pmax{τ,pσ}). Thus, the whole procedure has

complexity

ÕB(pqτ + q2σ+ pmax{τ,pσ}),
where the term pτ is dominated by pqτ.

D. I. D iochnos

20 FOUNDATIONS

If L (f) = τf 6= τg = L (g) then τ = max{τf, τg} in the previous theorem.

When q > p, SR(f,g) is f,g,−f,−(g mod (−f)) . . . , thus SR(f,g; a) starts

with a sign variation irrespective of sign(g(a)). If only the sign variations are

needed, there is no need to evaluate g, so prop. 2.19 yields ÕB(pqτ + p2σ).
Definition 2.20. Let L denote a list of real numbers. VAR(L) denotes the

number of (possibly modified, see e.g. [BPM06, GVLRR89]) sign varia-

tions.

Corollary 2.21. For any f,g, VAR(SR(f,g; a)) is computed in ÕB(pqτ +min{p,q}2σ), provided sign(f(a)) is known.

2.4 Univariate Polynomials

The heart of the algorithms that are presented in chapter 3 relies on real solving

univariate polynomials. Starting with some bounds, Sturm’s algorithm will be

briefly presented in the sequel, as well as the algorithm for determining the

sign of a polynomial when evaluated at a real algebraic number. Finally, some

bounds on root separation are going to be presented. These are critical on the

complexity analysis of all the subsequent algorithms .

2.4.1 Bounding Roots

Let f =
∑d

i=0 aix
i ∈ Z[x]. Then we can obtain a bound for the roots of f with

the following lemmas.

Maximal Bounds

Maximal bounds for roots are presented first.

Lemma 2.22. [Cauchy, Mignotte] Let α be a root of f. Then

|α| 6 1 + max(∣∣∣∣
ad−1
ad

∣∣∣∣, . . . , ∣∣∣∣a0ad

∣∣∣∣
).

Note that the bound in lemma 2.22 is invariant if we multiply the polynomial

by a constant. However, it behaves badly under the transformation x 7→ x2 ,
which only changes the roots by a factor of 2, but may change the bound by a

factor of 2d. The following bounds do not have this effect.

Lemma 2.23. [Cauchy] Let α be a root of f. Then

|α| 6 max(∣∣∣∣
dad−1
ad

∣∣∣∣, ∣∣∣∣dad−2
ad

∣∣∣∣

12 , . . . , ∣∣∣∣da0ad

∣∣∣∣

1
d
).

Lemma 2.24. [Zassenhaus] Let α be a root of f. Then

|α| 6 2max(∣∣∣∣
ad−1
ad

∣∣∣∣, ∣∣∣∣ad−2
ad

∣∣∣∣
12 , . . . , ∣∣∣∣ a0ad

∣∣∣∣
1
d
).

D. I. D iochnos

2.4 UNIVARIATE POLYNOMIALS 21

Complexity: All the above bounds can be computed in time ÕB(dτ).
Minimal Bounds

The above lemmas 2.22, 2.23, 2.24 can be used for obtaining a bound on the

minimal absolute value of a root of a polynomial (assuming that the constant

coefficient is not zero - which is easy to check). The idea and algorithm for

computing a bound comes from the following remark:

Remark 2.25. Let f =
∑d

i=0 aix
i ∈ Z[x] and assume that α 6= 0 is a root of

f. Then it holds that
d∑

i=0 aiα
i = 0. (2.1)

Consider the reciprocal polynomial g(x) = xdf(1
x
) =

∑d
i=0 aix

d−i. Then by

equation (2.1) and the hypothesis it follows that 1
α

is a root of g. Hence,

obtaining an upper bound on the roots of g we actually obtain a lower

bound on the roots of f.
2.4.2 Root Isolation and Sturm’s algorithm

Algorithm 1 presents Sturm’s algorithm for computing isolating intervals of

the roots of a polynomial f ∈ Z[x]. For simplicity, the input polynomial f is

square-free.

Proposition 2.26. [DSY05, ESY06, EMT07] Let f ∈ Z[x] have degree p

and bitsize τf. We compute the isolating interval representation of its

real roots and their multiplicities in ÕB(p6 + p4τ2f). The endpoints of the

isolating intervals have bitsize O(p2 + p τf) and L (fred) = O(p+ τf).

There is no need to evaluate fred over the interval’s endpoints because its

sign is known; moreover, fred(a)fred(b) < 0.
2.4.3 Univariate sign determination

Corollary 2.27. [BPM06, EMT07] Given a real algebraic number α ∼=

(f, [a, b]), where L (a) = L (b) = O(pτf), and g ∈ Z[x], such that deg(g) =

q,L (g) = τg, we compute sign(g(α)) in bit complexity ÕB(pqmax{τf, τg} +

pmin{p,q}2τf).

Proof. Assume that α is not a common root of f and g in [a, b], then it is known

that signg(α) = [VAR(SR(f,g; a)) − VAR(SR(f,g; b))] sign(f ′(α)).
Actually the previous relation holds in a more general context, when f domi-

nates g, see [Yap00] for details. Notice that sign(f ′(α)) = sign(f(b))−sign(f(b)),

which is known from the real root isolation process. The complexity of the oper-

ation is dominated by the computation of VAR(SR(f,g; a)) and VAR(SR(f,g; b)),

i.e. we compute SQ and evaluate it on a and b.

D. I. D iochnos

22 FOUNDATIONS

Algorithm 1: Sturm::univariate.

Input: A square-free polynomial f ∈ Z[x]

Output: A list of isolating intervals of the roots of f.

S ←− SR(f, f ′);1

N ←− VAR(S; −∞) − VAR(S; +∞);2

if N = 0 then return ∅;3

if N = 1 then return [−∞,+∞];4

M ←− Maximal_Bound(f);5

Intervals ←− ∅;6

Stack ←− {[−M,M, VAR(S,−∞), VAR(S,+∞)]};7

while Stack 6= ∅ do8

[a,b,Va,Vb] ←− Pop(Stack);9

c = a+b2 ;10

if f(c) = 0 then11

Intervals ←− Intervals ∪ {[c, c]};12

M ←− Minimal_Bound(Subst(x= x− c, f)/x);13

Vc+ ←− VAR(S; c+M);14

Vc− ←− Vc+ − 1;15

if Va = Vc− + 1 then Intervals ←− Intervals ∪ {[a, c−M]};16

if Va > Vc− + 1 then Push(Stack, {[a, c−M,Va,Vc−]});17

if Vb = Vc+ − 1 then Intervals ←− Intervals ∪ {[c+M,b]};18

if Vb < Vc+ − 1 then Push(Stack, {[c+M,b,Vc+,Vb]});19

else20

Vc ←− VAR(S; c);21

if Va = Vc + 1 then Intervals ←− Intervals ∪ {[a, c]};22

if Va > Vc + 1 then Push(Stack, {[a, c,Va,Vc]});23

if Vb = Vc − 1 then Intervals ←− Intervals ∪ {[c,b]};24

if Vb < Vc − 1 then Push(Stack, {[c,b,Vc,Vb]});25

return Intervals ;26

As explained above, there is no need to evaluate the polynomial of the biggest

degree, i.e. the first (and the second if p < q) of SR(f,g) over a and b. Thus

the complexity is that of corollary 2.21, viz.

ÕB(pqmax{τf, τg} + min{p,q}2p τf)

Thus the complexity of the operation is two times the complexity of the

evaluation of the sequence over the endpoints of the isolating interval.

If α is a common root of f and g, or if f and g are not relative prime, then

their gcd, which is the last non-zero polynomial in SR(f,g) is not a constant.

Hence, we evaluate SR on a and b, we check if the last polynomial is not a

constant and if it changes sign on a and b. If this is the case, then sign(g(α)) = 0.
Otherwise we proceed as above.

D. I. D iochnos

2.5 MULTIVARIATE POLYNOMIALS 23

Algorithm 2: univariate-sign_at.

Input: A Polynomial g ∈ Z[x] and α ∼= (f, [a,b]) ∈ Ralg.

Output: The sign of g(α).
PRS ←− SR(f,g);1

vL ←− VAR(SR(PRS; a));2

vR ←− VAR(SR(PRS; b));3

return Sign([vL − vR] · [f ′(α)]);4

2.4.4 Bounding root separation

Theorem 2.28 (Davenport-Mahler-Mignotte). [TE06] Let A ∈ Z[X], withdeg(A) = d and L (A) = τ, where A(0) 6= 0. Let Ω be any set of k pairs of

indices (i, j) such that 1 6 i < j 6 d and let the non-zero (complex) roots

of A be 0 < |γ1| 6 |γ2| 6 · · · 6 |γd|. Then2kM(A)k
>

∏

(i,j)∈Ω

|γi − γj| > 2k−
d(d−1)2 M(A)

1−d−k
√

disc(A).
Proposition 2.26 expresses the state-of-the-art in univariate root isolation. It

relies on the previous propositions for fast computation of polynomial sequences,

and extensions of the Davenport-Mahler bound on aggregate root separation.

The following lemma, derived from Davenport-Mahler’s bound, is crucial.

Lemma 2.29 (Aggregate separation). Given f ∈ Z[x], the sum of the bitsize

of all isolating points of the real roots of f is O(p2 + p τf).

Proof. Let there be r 6 p real roots. The isolating point between two consecu-

tive real roots αj,αj+1 is of magnitude at most 12 |αj −αj+1| := 12∆j. Thus their

product is 12r

∏
j∆j. Using the Davenport-Mahler-Mignotte bound by theorem

2.28,
∏

j ∆j > 2−O(p2+pτf) and we take logarithms.

Corollary 2.30 (Intermediate Points). Given the list of real roots of f in iso-

lating interval representation, we compute rational numbers between them

in ÕB(p2 + pτf).

2.5 Multivariate polynomials

We discuss multivariate polynomials, using binary segmentation [Rei97]. An al-

ternative approach could be [Klo95]. Let f,g ∈ (Z[y1, . . . ,yk])[x] with degx(f) =

p > q = degx(g), degyi
(f) 6 di and degyi

(g) 6 di. Let d =
∏k

i=1 di and

L (f) ,L (g) 6 τ. The yi-degree of every polynomial in SR(f,g), is bounded by

degyi
(res(f,g)) 6 (p + q)di. Thus, the homomorphism ψ : Z[y1, . . . ,yk] →

Z[y], where

y1 7→ y, y2 7→ y(p+q)d1 , . . . ,yk 7→ y(p+q)k−1d1···dk−1 ,
allows us to decode res(ψ(f),ψ(g)) = ψ(res(f,g)) and obtain res(f,g). The

same holds for every polynomial in SR(f,g). Now ψ(f),ψ(g) ∈ (Z[y])[x] have

D. I. D iochnos

24 FOUNDATIONS

y−degree d = (p+q)k−1d1 · · ·dk since, in the worst case, f or g hold a monomial

such as yd11 yd22 . . .ydk

k .

Thus, degy(res(ψ(f),ψ(g))) < (p + q)kd.

Proposition 2.31. [Rei97] We can compute SQ(f,g), any polynomial inSR(f,g), and res(f,g) in ÕB(q(p + q)k+1dτ).
Lemma 2.32. SR(f,g) is computed in ÕB(q(p + q)k+2dτ).
Proof. Every polynomial in SR(f,g) has coefficients of magnitude bounded by2c(p+q)τ, for a suitable constant c, assuming τ > lg(d). Consider the map χ :

Z[y] 7→ Z, such that y 7→ 2⌈c(p+q)τ⌉, and let φ = ψ ◦ χ : Z[y1,y2 . . . ,yk]→ Z.

Then L (φ(f)) ,L (φ(g)) 6 c (p+ q)k dτ. Now apply proposition 2.18.

Theorem 2.33. We can evaluate SR(f,g) at x = α, where a ∈ Q ∪ {∞} and

L (a) = σ, in ÕB(q(p + q)k+1dmax{τ,σ}).
Proof. By proposition 2.31 SQ(f,g) can be computed and then evaluated it

over a using binary segmentation in ÕB(q(p + q)k+1dτ). For this we need to

bound the bitsize of the resulting polynomials.

The polynomials in SR(f,g) have total degree in y1, . . . ,yk bounded by

(p+q)
∑k

i=1 di and coefficient bitsize bounded by (p+q)τ. With respect to x,

the polynomials in SR(f,g) have degrees in O(p), so substitution x = a yields

values of size Õ(pσ). After the evaluation we obtain polynomials in Z[y1, . . . ,yk]

with coefficient bitsize bounded by max{(p + q)τ,pσ} 6 (p + q)max{τ,σ}.
Consider χ : Z[y] → Z, such that y 7→ 2⌈c(p+q)max{τ,σ}⌉, for a suitable

constant c. Apply the map φ = ψ ◦ χ to f,g. Now, L (φ(f)) ,L (φ(g)) 6

cd(p + q)k max{τ,σ}. By proposition 2.19, the evaluation costs ÕB(q(p +

q)k+1dmax{τ,σ}).
We obtain the following corollaries for f,g ∈ (Z[y])[x], such that degx(f) = p,

q = degx(g), degy(f), degy(g) 6 d and L (f) ,L (g) 6 τ.

Corollary 2.34. We compute SR(f,g) in ÕB(pq(p+q)2dτ). For any polyno-

mial SRj(f,g) in SR(f,g), degx(SRj(f,g)) = O(max{p,q}), degy(SRj(f,g)) =

O(max{p,q}d), and also L (SRj(f,g)) = O(max{p,q}τ).
Corollary 2.35. We compute SQ(f,g), any polynomial in SR(f,g), and

res(f,g) in ÕB(pqmax{p,q}dτ).
Corollary 2.36. We compute SR(f,g ; a), where a ∈ Q∪ {∞} and L (a) = σ,

in ÕB(pqmax{p,q}dmax{τ,σ}). For the polynomials SRj(f,g ; a) ∈ Z[y], ex-

cept for f,g, we have degy(SRj(f,g ; a)) = O((p+q)d) and L (SRj(f,g ; a)) =

O(max{p,q}τ+ min{p,q}σ).
2.5.1 Bivariate sign evaluation

We now reduce the computation of the sign of f ∈ Z[x,y] over (α,β) ∈ R2
alg

to that over several points in Q2. Let degx(f) = degy(f) = n1, L (f) = σ and

α ∼= (A, [a1, a2]), β ∼= (B, [b1, b2]), where A,B ∈ Z[X], deg(A) = deg(B) = n2,
D. I. D iochnos

2.5 MULTIVARIATE POLYNOMIALS 25

Algorithm 3: bivariate-sign_at.

Input: α = [A, [AL,AR]],β = [B, [BL,BR]] and f ∈ R[x,y]; A,B
square-free.

Output: sign(f(α,β))

PRS←− SR(A, f, x);1

PRS1 ←− (PRS(AL));2

for i←− 1 to |PRS| do3

PRS1[i] = SignAt(PRS1[i],β);4

VL ←− VAR(PRS1);5

PRS2 ←− (PRS(AL));6

for i←− 1 to |PRS| do7

PRS2[i] = SignAt(PRS2[i],β);8

VR ←− VAR(PRS2);9

return sign((VL − VR) ·A ′(α));10

L (A) = L (B) = σ. We assume n1 6 n2, which is relevant below. Algorithm

3 presents the whole procedure in pseudocode, see [Sak89], and generalizes the

univariate case, e.g. [EMT07, Yap00] (algorithm 2). One has to obtain the sign

variations of SR(A, F ; a1), respectively SR(A, F ; a2) and substract them. After

the evaluation of the sequence on a1, respectively a2, polynomials in Z[y] occur.

In order to obtain the sign variations, the sign of these polynomials over β has

to be computed. This is performed with algorithm 2. For A, respectively B, we

assume that we know their values on a1, a2, respectively b1, b2.
Theorem 2.37 (Bivariate sign_at). Let f ∈ Z[x,y] such that degx(f) =

degy(f) = n1 and L (f) = σ and two real algebraic numbers α ∼= (A, Iα) =

[a1, a2], β ∼= (B, Iβ) = [b1, b2] where A,B ∈ Z[X], deg(A) = deg(B) = n2,
L (A) = L (B) = σ and Iα, Iβ ∈ Q2. Then, one computes the sign of f eval-

uated over α and β with complexity ÕB(n21 n32 σ), assuming that n1 6 n2.
Proof. First, we compute SQx(A, f) so as to evaluate SR(A, f) on the endpoints

of α, in ÕB(n21n22σ) (corollary 2.35).

We compute SR(A, f; a1). The first polynomial in the sequence is A, but we

already know its value on a1. This computation costs ÕB(n21 n32 σ) by corollary

2.36 with q = n1, p = n2, d = n1, τ = σ, and σ = n2σ, where the latter

corresponds to the bitsize of the endpoints. After the evaluation we obtain a

list L1, which contains O(n1) polynomials, say h ∈ Z[y], such that deg(h) =

O(n1n2). To bound the bitsize, notice that the polynomials in SR(f,g) are of

degrees O(n1) with respect to x and of bitsize O(n2σ). After we evaluate on a1,
L (f) = O(n1n2σ).

For each h ∈ L1 we compute its sign over β and count the sign variations.

We could apply directly corollary 2.27, but we can do better. If deg(h) > n2
then SR(B,h) = (B,h,−B, g = − prem (h,−B) , . . .). We start the evalua-

tions at g: it is computed in ÕB(n21n32σ) (proposition 2.18), deg(g) = O(n2)
and L (g) = O(n1n2σ). Thus, we evaluate SR(−B,g; a1) in ÕB(n1n32σ), by

D. I. D iochnos

26 FOUNDATIONS

corollary 2.27, with p = q = n2, τh = σ, τ = n1n2σ. If deg(h) < n2 the

complexity is dominated. Since we perform O(n1) such evaluations, all of them

cost ÕB(n21n32σ).
We repeat for the other endpoint of α, subtract the sign variations, and

multiply by sign(A ′(α)), which is known from the process that isolated α. If

the last sign in the two sequences is alternating, then sign(f(α,β)) = 0.

D. I. D iochnos

Chapter 3

Real Solving of Bivariate
Systems

This chapter studies algorithms and their complexity for real solving the system

f = g = 0, for given f,g ∈ Z[x,y]. For simplicity, let f,g be relatively prime

polynomials. This hypothesis is not restrictive because it can be verified and

if it does not hold, it can be imposed within the same asymptotic complexity.

The main idea is to project the roots on the x and y axes, to compute the

coordinates of the real solutions and somehow to match them. The difference

between the algorithms is the way they match solutions. Projection is performed

with resultants and signed polynomial remainder sequences. The output of the

algorithms is a list with pairs of real algebraic numbers and, if possible, the

multiplicities of the solutions. In what follows d bounds the total degree of f

and g and σ bounds the bitsize of their respective coefficients.

3.1 The grid algorithm

The first algorithm that is studied is named grid and is straightforward, see also

[ET05, Wol02]. The first step consists of computing the x− and y−coordinates

of the real solutions, as real roots of the resultants resx(f,g) and resy(f,g).
Then, matching is performed using the algorithm sign_at (th. 2.37) by testing

all rectangles in this grid. The output is a list of pairs of real algebraic numbers

represented in isolating interval representation. The algorithm also outputs ra-

tional axis-aligned rectangles, guaranteed to contain a single root of the system.

Algorithm 4 presents the solver in pseudocode.

Surprisingly, the first time that the algorithm’s complexity was studied

seems to be [DET07a, DET07b]. The disadvantage of the algorithm is that

exact implementation of sign_at (algorithm 3) is not efficient. However, its

simplicity makes it attractive. The algorithm requires no genericity assumption

on the input. Moreover, a generic shear that brings the system to generic posi-

tion in order to compute the multiplicities within the same complexity bound

will be discussed.

27 D. I. D iochnos

28 REAL SOLVING OF BIVARIATE SYSTEMS

Algorithm 4: Sturm::grid.

Input: f ∈ Z[x,y],g ∈ Z[x,y].
Output: A list S of solutions (x,y) ∈ Ralg × Ralg.

X←− Solve(Resultant(f, g, y));1

Y←− Solve(Resultant(f, g, x));2

S←− ∅;3

foreach x ∈ X do4

foreach y ∈ Y do5

if BivSignAt(f, x, y) = 0 and BivSignAt(g, x, y) = 0 then6

S←− S ∪ (x,y);7

The algorithm allows the use of heuristics. In particular, we may exploit

easily computed bounds on the number of roots, such as the Mixed Volume or

count the roots with a given abscissa α by lemma 3.7.

Theorem 3.1. Isolating all real roots of system f = g = 0 using grid has

complexity ÕB(d14 + d13σ), provided σ = O(d3).
Proof. First we compute the resultant of f and g w.r.t. variable y, i.e. Rx. The

complexity is ÕB(d4σ), using corollary 2.35. Notice that deg(Rx) = O(N2) and

L (Rx) = O(Nσ). Applying proposition 2.26 help us isolate its real roots in time

ÕB(d12 +d10σ2) and store them in list Lx. This complexity shall be dominated.

The same procedure is done on y axis and the roots are stored this time in list

Ly.

The representation of the real algebraic numbers that we have computed

contains the square-free part of Rx, or Ry. In both cases the bitsize of the

polynomial is O(d2 + dσ) [BPM06, EMT07]. Moreover, the isolating intervals

have endpoints of size O(d4 + d3 σ).
Let rx, respectively ry be the number of real roots of the corresponding

resultants. Both are bounded by O(d2). We form all possible pairs of real

algebraic numbers from lists Lx and Ly and check for every such pair if both

f and g polynomials vanish. This check is performed with bivariate sign_at

function. Applying theorem 2.37 with n1 = d, n2 = d2 and σ = d2+dσ the cost

of each evaluation is: ÕB(d10 + d9σ). Overall, we have rx ry = O(d4) different

pairs.

The above algorithm suffices for bivariate solving. Another interesting prob-

lem is the the multiplicity of a root (α,β) ∈ Ralg × Ralg of the system. Refer

to [BK86, sec.II.6] for its definition as the exponent of factor (βx − αy) in the

resultant of the (homogenized) polynomials, under certain assumptions.

The algorithm reduces to bivariate sign determination and does not require

bivariate factorization. For this purpose, resultant is used, since it allows for

multiplicities to “project”. Previous work includes [GVEK96, SF90, WS05]. The

sum of multiplicities of all roots (α,βj) equals the multiplicity of x = α in the

respective resultant. It is possible to apply a shear transform to the coordinate

D. I. D iochnos

3.1 THE GRID ALGORITHM 29

frame so as to ensure that different roots project to different points on the

x-axis.

3.1.1 Deterministic shear and counting multiplicities

One can determine an adequate (horizontal) shear such that

Rt(x) = resy (f(x+ ty,y),g(x + ty,y)) , (3.1)

when t 7→ t0 ∈ Z, has simple roots corresponding to the projections of the com-

mon roots of the system f(x,y) = g(x,y) = 0 and the degree of the polynomials

remains the same. Notice that this shear does not affect inherently multiple

roots, which exist independently of the reference frame. Rred ∈ (Z[t])[x] is the

squarefree part of the resultant, as an element of UFD (Z[t])[x], and its discrim-

inant, with respect to x, is ∆ ∈ Z[t]. Then t0 must be such that ∆(t0) 6= 0.
Example 3.1. Take the circle f = (x − 1)2 + y2 − 1, and the double line

g = y2 with two double roots (0, 0), (2, 0). We shall project roots on the

y-axis under the vertical shear:

f(x,y+ tx) = x2(1 + t2) + 2x(ty− 1) + y2,g(x,y+ tx) = y2 + 2txy+ (tx)2.
Then, R(y) = y2[y2(t4 + 1) + 2t3y + t2]. The square-free part is Rred(y) =

y[y2(t4 + 1) + 2t3y + t2] and ∆(t) = t6(t4 + 1)(3t4 + 4). Clearly, one must

avoid the value t = 0, but any other integer is valid.

Lemma 3.2. Computing t0 ∈ Z, such that the corresponding shear is suf-

ficiently generic, has complexity ÕB(d10 + d9σ).
Proof. Suppose t0 is such that the degree does not change. It suffices to find,

among d4 integer numbers, one that does not make ∆ vanish; note that all

candidate values are of bitsize O(logd).
We perform the substitution (x,y) 7→ (x+ ty,y) to f and g and we compute

the resultant w.r.t. y in ÕB(d5σ), which is a polynomial in Z[t, x], of degree

O(d2) and bitsize Õ(dσ). We consider this polynomial as univariate in x and

we compute first its square-free part, and then the discriminant of its square-free

part. Both operations cost ÕB(d10 +d9σ) and the discriminant is a polynomial

in Z[t] of degree O(d4) and bitsize Õ(d4 + d3σ).
We can evaluate the discriminant over all the first d4 positive integers, in

ÕB(d8+d3σ), using the multipoint evaluation algorithm. Among these integers,

there is at least one that is not a root of the discriminant.

The idea here is to use explicit candidate values of t0 right from the start. In

practice, the above complexity becomes ÕB(d5σ), because a constant number

of tries or a random value will typically suffice. For an alternative approach see

[GVN02], also [BPM06]. It is straightforward to compute the multiplicities of

the sheared system. Then, we need to match the latter with the roots of the

original system, which is nontrivial in practice.

D. I. D iochnos

30 REAL SOLVING OF BIVARIATE SYSTEMS

Theorem 3.3. Consider the setting of th. 3.1. Having isolated all real roots

of f = g = 0, it is possible to determine their multiplicities in ÕB(d12+d11σ+

d10σ2).
Proof. By the previous lemma, t ∈ Z is determined, with L (t) = O(logd),
in ÕB(d10 + d9σ). Using this value, we isolate all the real roots of Rt(x),

defined in (3.1), and determine their multiplicities in ÕB(d12 + d10σ2). Let

ρj ≃ (Rt(x), [rj, r ′j]) be the real roots, for j = 0, . . . , r− 1.
By assumption, we have already isolated the roots of the system, denoted

by (αi,βi) ∈ [ai,a ′
i] × [bi,b ′

i], where ai,a ′
i,bi,b ′

i ∈ Q for i = 0, . . . , r − 1.
It remains to match each pair (αi,βi) to a unique ρj by determining function

φ : {0, . . . , r− 1}→ {0, . . . , r− 1}, such that φ(i) = j iff (ρj,βi) ∈ R2
alg is a root

of the sheared system and αi = ρj + tβi.

Let [ci, c′i] = [ai,a ′
i] − t[bi,b ′

i] ∈ Q2. These intervals may be overlapping.

Since the endpoints have bitsize O(d4 + d3σ), the intervals [ci, c′i] are sorted

in ÕB(d6 + d5σ). The same complexity bounds the operation of merging this

interval list with the list of intervals [rj, r ′j]. If there exist more than one [ci, c′i]
overlapping with some [rj, r ′j], some subdivision steps are required so that the

intervals reach the bitsize of sj, where 2sj bounds the separation distance asso-

ciated to the j-th root. By proposition 2.29,
∑

i si = O(d4 + d3σ).
Our analysis resembles that of [EMT07] for proving proposition 2.26. The

total number of steps is O(
∑

i si) = O(d4 + d3σ), each requiring an evaluation

of R(x) over a endpoint of size 6 si. This evaluation costs ÕB(d4si), leading to

an overall cost of ÕB(d8 + d7σ) per level of the tree of subdivisions. Hence the

overall complexity is bounded by ÕB(d12 + d11σ+ d10σ2).
3.2 The m_rur algorithm

m_rur assumes that the polynomials are in Generic Position: different roots

project to different x-coordinates and leading coefficients w.r.t. y have no com-

mon real roots.

Proposition 3.4. [GVEK96, BPM06] Let f,g be co-prime polynomials, in

generic position. If SRj(x,y) = srj(x)yj + srj,j−1(x)yj−1 + · · ·+ srj,0(x), and

(α,β) is a real solution of the system f = g = 0, then there exists k, such

that sr0(α) = · · · = srk−1(α) = 0, srk(α) 6= 0 and β = − 1
k

srk,k−1(α)srk(α)
.

This expresses the ordinate of a solution in a Rational Univariate Repre-

sentation (RUR) of the abscissa. The RUR applies to multivariate algebraic

systems [Ren89, Can88, Rou99, BPM06]; it generalizes the primitive element

method by Kronecker. Here we adapt it to small-dimensional systems.

m_rur is similar to [GVN02, GVEK96]. However, their algorithm computes

only a RUR using proposition 3.4, so the representation of the ordinates remains

implicit. Often, this representation is not sufficient (we can always compute the

minimal polynomial of the roots, but this is highly inefficient). We modified

the algorithm [ET05], so that the output includes isolating rectangles, hence the

name modified-RUR (m_rur). The most important difference with [GVEK96]

D. I. D iochnos

3.2 THE M_RUR ALGORITHM 31

is that they represent algebraic numbers by Thom’s encoding while the approach

of this thesis is isolating intervals, which were thought of having high theoretical

complexity. It has been proved that this is not the case [DET07a, DET07b].

The pseudo-code of m_rur is in algorithm 5. Initially, projection is

Algorithm 5: Sturm::m_rur.

Input: f ∈ Z[x,y],g ∈ Z[x,y].
Output: A list S of solutions (x,y) ∈ Ralg × Ralg.

X←− Solve(Resultant(f, g, y));1

Y←− Solve(Resultant(f, g, x));2

S←− ∅;3

PRS←− StHa (f,g,y);4

Q←− IntermediatePoints(Y);5

K←− Compute_K(PRS,X);6

for i←− 1 to |X| do7

S←− S ∪ (Xi, Find(Xi,Ki,PRS,Y,Q))8

performed on the x and the y-axis; for each real solution on the x-axis its

ordinate is computed using proposition 3.4. Using corollary 2.34 the sequenceSR(f,g) w.r.t. y is computed in ÕB(d5 σ) time.

3.2.1 Projection.

This is similar to grid. By corollary 2.35 the computation of Rx has complexity

ÕB(d4 σ). An alternative approach would be to compute Rx as the first non-

vanishing polynomial, counting from the end, of the sequence SR(f,g), since this

step is not the bottleneck of the algorithm. Now Rx ∈ Z[X], deg(Rx) = O(d2),
and L (Rx) = O(dσ). By proposition 2.26 its roots are isolated in ÕB(d12 +

d10 σ2). The representation contains the square-free part of Rx, with bitsize

O(d2+dσ), whereas the intervals’ endpoints are rationals with aggregate bitsize

O(d3 σ). Let the roots be

α1 < α2 < · · · < αm−1 < αm (3.2)

where m 6 2d2 is the number of real roots of Rx. The multiplicity of αi is the

multiplicity of (αi,βj) as a solution of the system, βj ∈ Ralg.

For projection on the y-axis a similar procedure is performed. The real

roots of Ry are in list Ly and their multiplicities in My. We compute rational

numbers qj between the real roots in ÕB(d5σ); the qj have aggregate bitsize

O(d3 σ):
q0 < β1 < q1 < β2 < · · · < βℓ−1 < qℓ−1 < βℓ < qℓ, (3.3)

where ℓ 6 2d2. Every βj corresponds to a unique αi. The multiplicity of αi as

a root of Rx is the multiplicity of a real solution of the system, that has it as

abscissa.

D. I. D iochnos

32 REAL SOLVING OF BIVARIATE SYSTEMS

3.2.2 The sub-algorithm compute_k

In order to apply proposition 3.4, for every αi one must compute k ∈ N∗ such

the assumptions of the theorem are fulfilled; this is possible by genericity. Let

Φ0(x) =
sr0(x)

gcd(sr0(x), sr ′0(x)) .
Following [MPS+06, GVEK96] one can define recursively the polynomials Γj(x):

Φ1(X) = gcd(Φ0(X), sr1(X)) Γ1 =
Φ0(X)

Φ1(X)

Φ2(X) = gcd(Φ1(X), sr2(X)) Γ2 =
Φ1(X)

Φ2(X)

...
...

Φn−1(X) = gcd(Φn−2(X), srn−1(X)) Γn−1 =
Φn−2(X)

Φn−1(X)

Now sri(x) ∈ Z[x] is the principal subresultant coefficient of SRi ∈ (Z[x])[y], and

Φ0(x) is the square-free part of Rx = sr0(x). By construction, Φ0(x) =
∏

j Γj(x)

and gcd(Γj, Γi) = 1, if j 6= i. Hence every αi is a root of a unique Γj and

the latter switches sign at the interval’s endpoints. Then, sr0(α) = sr1(α) =0, . . . , srj(α) = 0, srj+1(α) 6= 0; thus k = j+ 1.
It holds that deg(Φ0) = O(d2) and L (Φ0) = O(d2 + dσ). Moreover,

∑
j deg(Γj) =

∑
j δj = O(d2) and, by Mignotte’s bound [MS99], L (Γj) =

O(d2 + dσ). To compute the factorization Φ0(x) =
∏

j Γj(x) as a product

of the srj(x), we perform O(d) gd computations of polynomials of degree

O(d2) and bitsize Õ(d2 + dσ). By proposition 2.18 each gd computation costs

ÕB(d6 + d5 σ) and thus the overall cost is ÕB(d7 + d6 σ).
By lemma 2.29 the sign of the Γj over all the O(d2) isolating endpoints of

the αi, which have aggregate bitsize O(d4+d3 σ) can be computed in ÕB(δjd
4+

δjd
3σ+δ2j (d4+d3σ)), using Horner’s rule. Summing over all δj, the complexity

is ÕB(d8 + d7σ). Thus the overall complexity is ÕB(d9 + d8 σ).
3.2.3 Matching solutions and algorithm find

The process takes a real root of Rx and computes ordinate β of the corresponding

root of the system. For some real root α of Rx one represents the ordinate

A(α) = −
1
k

srk,k−1(α)srk(α)
=
A1(α)

A2(α)
.

The generic position assumption guarantees that there is a unique βj, in Py,

such that βj = A(α), where 1 6 j 6 ℓ. By 3.3 one can compute j such that:

qj < A(α) =
A1(α)

A2(α)
= βj < qj+1.

Thus j can be computed by binary search in O(lg ℓ) = O(lgd) comparisons

of A(α) with the qj. This is equivalent to computing the sign of Bj(X) =

A1(X) − qjA2(X) over α by executing O(lgd) times, sign_at(Bj,α).

D. I. D iochnos

3.3 THE G_RUR ALGORITHM 33

Now, L (qj) = O(d4 +d3σ) and deg(A1) = deg(srk,k−1) = O(d2), deg(A2) =

deg(srk) = O(d2), L (A1) = O(dσ), L (A2) = O(dσ). Thus deg(Bj) = O(d2)
and L (Bj) = O(d4 + d3 σ). Therefore, by corollary 2.27, sign_at(Bj,α) and

find have complexity ÕB(d8 + d7σ). As for the overall complexity of the loop

(lines 7-8) the complexity is ÕB(d10 + d9σ), since it is executed O(d2) times.

Theorem 3.5. Let f,g ∈ Z[x,y] such that they are in generic position, their

total degrees are bounded by d, and their bitsize by σ. If the polynomials

are not relatively prime, the algorithm reports this and stops. Otherwise,

it isolates all real roots of the system f = g = 0 with complexity ÕB(d12 +

d10σ2).
The generic position assumption is without loss of generality since we can

always put the system in such position by applying a shear transform; (X, Y) 7→

(X + tY, Y), where t is either a random number or computed deterministically,

see [GVEK96, SF90] or section 3.1.1. The bitsize of the polynomials of the

(sheared) system becomes Õ(d+ σ) [GVEK96] and does not change the bound

of theorem 3.5. However, now is raised the problem of expressing the real roots

in the original coordinate system (see also the proof of theorem 3.3).

3.3 The g_rur algorithm

The last algorithm for bivariate solving that is presented uses some ideas from

RUR but relies on GCD computations of polynomials with coefficients in an

extension field to achieve efficiency (hence the name g_rur). For the GCD

computations the algorithm (and the implementation) of [vHM02] is used. The

algorithm is presented in pseudocode in algorithm 6.

Algorithm 6: Sturm::g_rur.

Input: f ∈ Z[x,y],g ∈ Z[x,y].
Output: A list S of solutions (x,y) ∈ Ralg × Ralg.

X←− Solve(Resultant(f, g, y));1

Y←− Solve(Resultant(f, g, x));2

Inter←− IntermediatePoints(Y);3

S←− ∅;4

for i← 1 to |X| do5

fXi
(y)←− Square-Free-Part(f(Xi,y)) ∈ Z[Xi][y];6

gXi
(y)←− Square-Free-Part(g(Xi,y)) ∈ Z[Xi][y];7

H←− gd(fXi
(y),gXi

(y));8

for j← 1 to |Inter| − 1 do9

if H(Interj) ·H(Interj+1) < 0 then10

S←− S ∪ (Xi,Yj)11

The first steps are similar to the previous algorithms: Projecting on both

axes, real solving the respective resultants and computing the intermediate

D. I. D iochnos

34 REAL SOLVING OF BIVARIATE SYSTEMS

points on the y-axis. It has already been shown that the complexity of these

steps is ÕB(d12 + d10σ2).
For each x-coordinate, say α, we compute the square-free part of f(α,y) and

g(α,y), say �f and �g. The complexity is that of computing the gd with the

derivative. In [vHM02] the cost is ÕB(mMND+mN2D2 +m2kD), where M is

the bitsize of the largest coefficient, N is the degree of the largest polynomial,D

is the degree of the extension, k is the degree of the gd, andm is the number of

primes needed. The complexity does not assume fast multiplication algorithms,

thus, under this assumption, it becomes ÕB(mMND+mND+mkD).

In this case M = O(σ), N = O(d), D = O(d2), k = O(d), and m = O(dσ).

The cost is ÕB(d4σ2) and since we have to do it O(d2) times, the overall cost

is ÕB(d6σ2). Notice the bitsize of the result is ÕB(d + σ) [BPM06].

Now for each α, we compute H = gd(�f, �g). We have M = O(d + σ),

N = O(d), D = O(d2), k = O(d), and m = O(d2 + dσ) and so the cost of each

operation is ÕB(d6+d4σ2) and overall ÕB(d8+d6σ2). The size ofm comes from

Mignotte’s bound [MS99]. Notice thatH is a square-free polynomial in (Z[α])[y],

of degree O(d) and bitsize O(d2 + dσ), the real roots of which correspond to

the real solutions of the system with abscissa α. It should change sign only

over the intervals that contain its real roots. To check these signs, we have to

substitute y in H by the intermediate points, thus obtaining a polynomial in

Z[α], of degree O(d) and bitsize O(d2 + dσ+ dsj), where sj is the bitsize of the

j-th intermediate point.

Now, we consider this polynomial in Z[x] and evaluate it over α. Using

corollary 2.27 with p = d2, τf = d2 + dσ, q = d, and τg = d2 + dσ + dsj, this

costs ÕB(d6 + d5σ+ d4sj). Summing over O(d2) points and using lemma 2.29,

we obtain ÕB(d8 + d7σ). Thus, the overall complexity is ÕB(d10 + d9σ).
Theorem 3.6. Isolating all real roots of the system f = g = 0, using g_rur

in ÕB(d12 + d10σ).
3.4 Applications

This section deals with applications of the algorithms and the complexity results

that were presented earlier in this chapter in closely related problems.

3.4.1 Real root counting.

Let F ∈ Z[x,y], such that degx(F) = degy(F) = n1 and L (F) = σ. Let α,β ∈
Ralg, such that α = (A, [a1, a2]) and β = (B, [b1, b2]), where deg(A), deg(B) =

n2,L (A) ,L (B) 6 τ and c ∈ Q, such that L (c) = λ. Moreover, assume that

n21 = O(n2). We want to count the number of real roots of �F = F(α,y) ∈
(Z(α))[y] in (−∞,+∞), in (c,+∞) and in (β,+∞).

We may assume that the leading coefficient of �F is nonzero. This is without

loss of generality since we can easily check it, and/or we can use the good

specialization properties of the subresultants [LR01, GVLRR89, GVEK96].

D. I. D iochnos

3.4 APPLICATIONS 35

Using Sturm’s theorem, e.g. [BPM06, Yap00], the number of real roots of�F is VAR(SR(�F, �Fy;−∞)) − VAR(SR(�F, �Fy;+∞)). Hence, we have to compute

the sequence SR(�F, �Fy) with respect to variable y, and evaluate it on ±∞,

or equivalently to compute the signs of the principal subresultant coefficients,

which lie in Z(α).

The above procedure is equivalent, due to the good specialization properties

of subresultants [BPM06, GVLRR89], to that of computing the principal subre-

sultant coefficients of SR(F, Fy), which are polynomials in Z[x], and to evaluate

them over α. In other words the good specialization properties assure us that

we can compute a nominal sequence by considering the bivariate polynomials,

and then perform the substitution x = α.

The sequence, sr, of the principal subresultant coefficients can be computed

in ÕB(n41σ), using corollary 2.35 with p = q = d = n1, and τ = σ. The sequencesr, contains O(n1) polynomials in Z[x], each of degree O(n21) and bitsize O(n1σ).
We compute the sign of each one evaluated over α in

ÕB(n21n2 max{τ,n1σ} + n2min{n21,n2}2τ)
using corollary 2.27 with p = n2, q = n21, τf = τ, and τg = n1σ. This proves

the following:

Lemma 3.7. We count the number of real roots of �F in ÕB(n41n2σ+n51n2τ).
In order to compute the number of real roots of �F in (β,+∞), we use again

Sturm’s theorem. The complexity of the computation is dominated by the cost

of computing VAR(SR(�F, �Fy;β)), which is equivalent to computing SR(F, Fy) with

respect to variable y, which contains bivariate polynomials, and to compute

their signs over (α,β). The cost of computing SR(F, Fy) is ÕB(n51σ) using

corollary 2.34 with p = q = d = n1, and τ = σ. The sequence contains O(n1)
polynomials in Z[x,y] of degrees O(n1) and O(n21), with respect to variables x

and y respectively, and bitsize O(n1σ). We can compute the sign of each of

them evaluated it over (α,β) in ÕB(n41n32max{n1σ, τ}) (theorem 2.37). This

proves the following:

Lemma 3.8. We can count the number of real roots of �F in (β,+∞) in

ÕB(n51n32max{n1σ, τ}).
By a more involved analysis, taking into account the difference in the degrees

of the bivariate polynomials, we can gain a factor. This is omitted for simplicity

reasons.

Finally, in order to count the real roots of �F in (c,+∞), it suffices to eval-

uate the sequence SR(F, Fy) with respect to variable y on c, thus obtaining

polynomials in Z[x] and compute the signs of these polynomials evaluated over

α.

The cost of the evaluation SR(F, Fy; c) is ÕB(n41max{σ, λ}), using corollary

2.36 with p = q = d = n1, τ = σ and σ = λ. The evaluated sequence contains

O(n1) polynomials in Z[x], of degree O(n21) and bitsize O(n1 max{σ, λ}). The

sign of each one evaluated over α can be compute in

ÕB(n21n2 max{τ,n1σ,n1λ} + n41n2τ),
D. I. D iochnos

36 REAL SOLVING OF BIVARIATE SYSTEMS

using corollary 2.27 with p = n2, q = n21, τf = τ and τg = n1max{σ, λ}. This

leads to the following:

Lemma 3.9. We can count the number of real roots of �F in (c,+∞) in

ÕB(n41n2max{n1τ,σ, λ}).
3.4.2 Simultaneous inequalities in two variables.

Let P,Q, A1, . . . ,Aℓ1 , B1, . . . ,Bℓ2 , C1, . . . ,Cℓ3 ∈ Z[X, Y], such that their total

degrees are bounded by n and their bitsize by σ. We wish to compute (α,β) ∈

R2
alg such that P(α,β) = Q(α,β) = 0 and also Ai(α,β) > 0, Bj(α,β) < 0 and

Ck(α,β) = 0, where 1 6 i 6 ℓ1, 1 6 j 6 ℓ2, 1 6 k 6 ℓ3. Let ℓ = ℓ1 + ℓ2 + ℓ3.
Corollary 3.10. There is an algorithm that solves the problem of ℓ simulta-

neous inequalities of degree 6 n and bitsize 6 σ, in ÕB(ℓn12+ℓn11σ+n10σ2).
Proof. Initially we compute the isolating interval representation of the real roots

of P = Q = 0 in ÕB(n12+n10σ2), using g_rur. There are O(n2) real solutions,

which are represented in isolating interval representation, with polynomials of

degrees O(n2) and bitsize O(n2 + nσ).

For each real solution, say (α,β), for each polynomial Ai, Bj, Ck we com-

pute the signs of sign(Ai(α,β)), sign (Bi(α,β)) and sign (Ci(α,β)). Each sign

evaluation costs ÕB(n10 + n9σ), using theorem 2.37 with n1 = n, n2 = n2 and

σ = n2 +nσ. In the worst case we need n2 of them, hence, the cost for all sign

evaluations is ÕB(ℓn12 + ℓ n11 σ).
3.4.3 The complexity of topology.

The complexity of computing the topology of a real plane algebraic curve is also

improved. See [BPM06, GVEK96, MPS+06] for the algorithm.

In studying Algebraic curves we use the following:

Lemma 3.11. Given f ∈ Z[x,y], the shear transformation commutes with

differentiation with respect to variable x, while it does not commute with

differentiation with respect to variable y. In other words the following hold:

d

dx
f(x,y)∣∣∣∣∣

x=x+ty

=
d

dx
f(x+ ty,y), t ∈ Z

d

dy
f(x,y)∣∣∣∣∣

x=x+ty

6=
d

dy
f(x+ ty,y), t ∈ Z

Proof. Regarding the first part that deals with variable x it holds that:

d

dx
f(x,y) =

d

dx

N∑

i=0 aix
ihi(y) =

N∑

i=1 aihi(y)ix
i−1

D. I. D iochnos

3.4 APPLICATIONS 37

and

d

dx
f(x+ ty,y) =

d

dx

N∑

i=1 ai(x+ ty)ihi(y) +
d

dx
h0(y)

=

N∑

i=1 aihi(y)i(x + ty)i−1.
However, assuming that f depends on x the shear transform does not com-

mute with differentiation with respect to variable y. For a counter-example,

take f(x,y) = x.

We consider the curve, in generic position, defined by F ∈ Z[x,y], such that

deg(F) = n and L (F) = σ. We compute the critical points of the curve, i.e. solve

F = Fy = 0 in ÕB(n12 + n10σ2). Next, we compute the intermediate points on

the x axis, in ÕB(n4 +n3σ) (lemma 2.29). For each intermediate point, say qj,

we need to compute the number of branches of the curve that cross the vertical

line x = qj. This is equivalent to computing the number of real solutions of the

polynomial F(qj,y) ∈ Z[y], which has degree d and bitsize O(nL (qj)). For this

we use Sturm’s theorem and theorem 2.19 and the cost is ÕB(n3L (qj)). For all

qj’s the cost is ÕB(n7 + n6σ).
For each critical point, say (α,β) we need to compute the number of branches

of the curve that cross the vertical line x = α, and the number of them that

are above y = β. The first task corresponds to computing the number of real

roots of F(α,y), by application of lemma 3.7, in ÕB(n9 + n8σ), where n1 = n,

n2 = n2, and τ = n2 + nσ. Since there are O(n2) critical values, the overall

cost of the step is ÕB(n11 + n10σ).
Finally, we compute the number of branches that cross the line x = α and

are above y = β. We do this by lemma 3.8, in ÕB(n13 +n12σ). Since there are

O(n2) critical points, the complexity is ÕB(n15 + n14σ). It remains to connect

the critical points according to the information that we have for the branches.

The complexity of this step is dominated. It now follows that the complexity

of the algorithm is ÕB(n15 + n14σ + n10σ2), or ÕB(N15), which is worse by a

factor than [BPM06].

We improve the complexity of the last step since m_rur computes the

RUR representation of the ordinates. Thus, instead of performing bivariate

sign evaluations in order to compute the number of branches above y = β,

we can substitute the RUR representation of β and perform univariate sign

evaluations. This corresponds to computing the sign of O(n2) polynomials of

degree O(n2) and bitsize O(n4 +n3σ), over all the α’s [GVEK96]. Using lemma

2.29 for each polynomial the cost is ÕB(n10 +n9σ), and since there are ÕB(n2)
of them, the total cost is ÕB(n12 + n11σ).
Theorem 3.12. The topology of a real plane algebraic curve, defined by a

polynomial of degree n and bitsize σ, can be computed in ÕB(n12 + n11σ+

n10σ).
D. I. D iochnos

38 REAL SOLVING OF BIVARIATE SYSTEMS

Thus the overall complexity of the algorithm improves the previously known

bound by a factor of N2. We assumed generic position, since we can apply a

shear to achieve this; refer to section 3.1.1.

D. I. D iochnos

Chapter 4

Implementation and
Experiments

This chapter describes the open source maple implementation1 that was cre-

ated as part of this thesis and illustrates its capabilities through comparative

experiments. The design is based on object oriented programming and the

generic programming paradigm in view of transferring the implementation to

C++ in the future.

The class of real algebraic numbers represents them in isolating interval

representation. We provide algorithms for computing signed polynomial re-

mainder sequences; more particularly euclidean, primitive-part, subsresultant

and Sturm-Habicht sequences. In addition to that, we perform real solving of

univariate polynomials using Sturm’s algorithm, and allow computations with

one and two real algebraic numbers, such as sign evaluation and comparison.

Finally, the current implementation exhibits the algorithms for real solving of

bivariate systems that were mentioned in chapter 3.

However, in order to speedup the various computations and create a more

real-world library, filtering techniques have been used. For this purpose, two

instances of the rational endpoints that define the isolating intervals of the

various real algebraic numbers are stored; one pair of endpoints (usually with

larger bitsize) is used in filtering techniques, while the other one is used for

exact computations via Sturm sequences.

4.1 Augmenting performance

This section is devoted to the filtering techniques that are currently used in the

library.

a. Pre-computation filtering in m_rur

Recall that m_rur binary-searches for solutions along the y-axis. For

1www.di.uoa.gr/~erga/soft/SLV_index.html

39 D. I. D iochnos

40 IMPLEMENTATION AND EXPERIMENTS

this reason the intervals of candidate solutions along the x-axis are re-

fined [Abb06] in order to help the interval arithmetic filters (refer to the

following paragraph) that will be used inside the find procedure.

b. Interval Arithmetic
In cases where one wants to compute the sign of a polynomial evaluated at

a real algebraic number, the first attempt is to yield the result via interval

arithmetic techniques. The reader may refer to [Neu90] for details in the

evaluations that arise. This filter is applied heuristically several times,

based on the total degree of the input polynomials, with a combination of

quadratic refinement of the defining intervals [Abb06] between executions

in each loop.

c. GCD
In cases where the above filter fails to yield a result and one either wants

to compare two real algebraic numbers or perform univariate sign_at thegd of the two polynomials that are involved is computed. By definition,

the gd of the two polynomials has a root in (the intersection of) the

intervals if and only if both polynomials have a same root, in which case

the two numbers are equal, or equivalently the required sign is zero.

Concluding, if both of the above filtering techniques fail, the library switches

to exact and costly computations via Sturm sequences. Note however, that in

these computations the rational endpoints with higher bitsize that have arisen

through the above filtering techniques are not used; instead the initial endpoints

with smaller bitsize are used.

4.2 Bivariate solving and slv library

In order to evaluate the implementation we have performed tests with the poly-

nomial systems that are presented in section A.1. The performance of the

implemented algorithms for bivariate solving is averaged over 10 iterations in

maple 9.5 console and is shown in table 4.1. Polynomial systems Ri,Mi, and

Di are presented in [ET05], systems Ci in [GVN02], and Wi are the Ci after

swapping the x and y variables. Note that systems Ci and Wi are of the form

f = ∂f
∂y

= 0 that arise in the topology of real plane algebraic curves. Finally, the

polynomial system W5 is not generated since the initial curve is a symmetric

polynomial.

Recall that computations are performed first using intervals with floating

point arithmetic (as it was described in section 4.1) and, if they fail, then an

exact algorithm using rational arithmetic is called. For GCD computations in an

extension field the maple package of [vHM02] is used. Finally, also note that

the optimal algorithms for computing and evaluating polynomial remainder

sequences have not yet been implemented. Hence, it is reasonable to expect

more efficient computations on a future release of the library.

It seems that g_rur is the solver of choice since it is faster than grid and

m_rur in 17 out of the 18 instances. However, this may not hold when the

D. I. D iochnos

4.2 BIVARIATE SOLVING AND SLV LIBRARY 41

system
deg Ralg Average Time (msecs)f g solutions grid m_rur g_rur

R1 3 4 2 5 9 5
R2 3 1 1 66 21 36
R3 3 1 1 1 2 1
M1 3 3 4 87 72 10
M2 4 2 3 4 5 4
M3 6 3 5 803 782 110
M4 9 10 2 218 389 210
D1 4 5 1 6 12 6
D2 2 2 4 667 147 128
C1 7 6 6 1, 896 954 222
C2 4 3 6 177 234 18
C3 8 7 13 580 1, 815 75
C4 8 7 17 5, 903 80, 650 370
C5 16 15 17 > 20 ′ 60, 832 3, 877
W1 7 6 9 2, 293 2, 115 247
W2 4 3 5 367 283 114
W3 8 7 13 518 2, 333 24
W4 8 7 17 5, 410 77, 207 280

Table 4.1: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

extension field is of high degree. g_rur yields solutions in less than a second,

apart from system C5. Overall, for total degrees 6 8, g_rur requires less than0.4 secs to respond. On average, g_rur is 7-11 times faster than grid, and

about 38 times than m_rur. The inefficiency of m_rur can be justified by

the fact that m_rur solves sheared systems which are dense and of increased

bitsize w.r.t. the original systems. Finally, it should be noted that grid reaches

a stack limit with the default maple stack size (8, 192) when trying to solve

system C5. However, even when we increased the stack ten times, grid could

not yield all solutions within 20 minutes. Setting the stack size to the required

limit can be done with the following maple command:

kernelopts(stacklimit=81920);

4.2.1 Comparing slv solvers

The following two paragraphs will briefly compare g_rur with grid and m_rur

in bivariate solving.

D. I. D iochnos

42 IMPLEMENTATION AND EXPERIMENTS

g_rur vs. grid

Table 4.2 presents running times for bivariate solving between grid and g_rur.

The final column in this table indicates the speedup that is achieved when pre-

ferring g_rur for bivariate solving. In other words, speedup =
TIMEgrid

TIMEg_rur
.

As it is shown from the table g_rur can be up to 21.58 times faster than grid

system
Average Time

speedup
grid g_rur

R1 5 5 1.00
R2 66 36 1.83
R3 1 1 1.00
M1 87 10 8.70
M2 4 4 1.00
M3 803 110 7.30
M4 218 210 1.04
D1 6 6 1.00
D2 667 128 5.21
C1 1, 896 222 8.54
C2 177 18 9.83
C3 580 75 7.73
C4 5, 903 370 15.95
C5 > 20 ′ 3, 877 −

W1 2, 293 247 9.28
W2 367 114 3.22
W3 518 24 21.58
W4 5, 410 280 19.32

Table 4.2: The performance of grid and g_rur implementations on bivariate

solving and the speedup that is achieved when choosing g_rur.

with an average speedup of around 7.27 among the input systems and excluding

system C5 where grid failed to reply within 20 minutes. Moreover, in terms

of total computing times for the entire test-set (again excluding system C5) we

can observe that:� Total time for grid = 19, 001 msecs.� Total time for g_rur = 1, 860 msecs.

In other words, the speedup in terms of total computing time is about 10.22.
g_rur vs. m_rur

Table 4.3 presents running times for bivariate solving between m_rur and

g_rur. Similarly with the previous table, the final column indicates the

speedup that is achieved when preferring g_rur for bivariate solving. As it

D. I. D iochnos

4.2 BIVARIATE SOLVING AND SLV LIBRARY 43

system
Average Time

speedup
m_rur g_rur

R1 9 5 1.80
R2 21 36 0.58
R3 2 1 2.00
M1 72 10 7.20
M2 5 4 1.25
M3 782 110 7.11
M4 389 210 1.85
D1 12 6 2.00
D2 147 128 1.15
C1 954 222 4.30
C2 234 18 13.00
C3 1, 815 75 24.20
C4 80, 650 370 217.97
C5 60, 832 3, 877 15.69
W1 2, 115 247 8.56
W2 283 114 2.48
W3 2, 333 24 97.21
W4 77, 207 280 275.74

Table 4.3: The performance of m_rur and g_rur implementations on bivari-

ate solving and the speedup that is achieved when choosing g_rur.

is shown from the table g_rur can be up to 275.74 times faster than m_rur

with an average speedup of around 38.01 among the input polynomial systems.

Moreover, in terms of total computing times for the entire test-set we can ob-

serve that:� Total time for m_rur = 227, 862 msecs.� Total time for g_rur = 5, 737 msecs.

In other words, the speedup in terms of total computing time is about 39.72.
Again, it should be noted that m_rur solves sheared systems which are

dense and of increased bitsize. In addition to that, since the polynomial systems

are sheared (whenever necessary) in m_rur’s case, m_rur also computes the

multiplicities on the intersections. A more accurate comparison will follow when

all solvers will compute solutions on the same sheared systems and hence all of

them will be able to decide the multiplicities on the intersections.

4.2.2 Decomposing running times

The following paragraphs demonstrate the decomposition of computing-time

required by each algorithm in its respective major function calls as these timings

were measured in the test-bed polynomial systems. Table 4.5 presents detailed

D. I. D iochnos

44 IMPLEMENTATION AND EXPERIMENTS

statistics of every algorithm on every polynomial system from the test-set, while

table 4.4 tries to capture the basic statistical properties of the previous table.

The major function calls and thereby the decomposition of running times

and the respective entries on the above tables can be summarized as follows.

Projections shows the time for the computation of the resultants, Univ. Solving

for real solving the resultants, and Sorting for sorting solutions. In grid’s and

m_rur’s case, biv. solving corresponds to matching. In g_rur’s case tim-

ings for matching are divided between rational biv. and Ralg biv.; the first

refers to when at least one of the co-ordinates is a rational number, while the lat-

ter indicates timings when both co-ordinates are not rational. Inter. points

refers to computation of the intermediate points between resultant roots along

the y-axis. StHa seq. refers to the computation of the StHa sequence. Filter

x-cand shows the time for additional filtering. Compute K reflects the time for

sub-algorithm compute-k.

phase of the interval
median mean

std

algorithm min max dev

g
r
id

projections 00.00 00.53 00.04 00.08 00.13
univ. solving 02.05 99.75 07.08 26.77 35.88
biv. solving 00.19 97.93 96.18 73.03 36.04
sorting 00.00 01.13 00.06 00.12 00.26

m
r
u
r

projection 00.00 00.75 00.06 00.14 00.23
univ. solving 00.18 91.37 15.55 17.47 20.79
StHa seq. 00.08 38.23 01.17 05.80 09.91
inter. points 00.00 03.23 00.09 00.32 00.75
filter x-cand 00.68 72.84 26.68 23.81 21.93
compute K 00.09 34.37 02.04 07.06 10.21
biv. solving 01.77 98.32 51.17 45.41 28.71

g
r
u
r

projections 00.02 03.89 00.23 00.48 00.88
univ. solving 07.99 99.37 39.83 41.68 25.52
inter. points 00.02 03.81 00.54 01.11 01.28
rational biv. 00.07 57.07 14.83 15.89 19.81
Ralg biv. 00.00 91.72 65.30 40.53 36.89
sorting 00.00 01.50 00.22 00.32 00.43

Table 4.4: Statistics on the performance of slv’s algorithms in bivariate solving.

In a nutshell, grid spends more than 73% of its time in matching. Recall

that this percent includes the application of filters and does not take into ac-

count the polynomial system C5 where grid failed to reply within 20 minutes.

m_rur spends about 45-50% of its time in matching and about 24-27% in

the pre-computation filtering technique. g_rur spends 55-80% of its time in

matching, including gd computations in an extension field.

Note also the significance of table 4.5 in order to draw further conclusions

regarding the current implementation. Table 4.4 provides a mean of around

D. I. D iochnos

4.2 BIVARIATE SOLVING AND SLV LIBRARY 456% for the computation of the StHa sequence of f and g required by m_rur.

However, we can observe that this step might very well take up to 38.23% of

the total computing time. Indeed, a closer look on table 4.5 reveals that this is

the case for the difficult system C5. Moreover, by table 4.1 we can observe that

m_rur requires about 61 seconds to solve system C5. Hence, we can obtain

a practical lower bound of about 23 seconds for m_rur in this case, which

is already bad compared to the performance of g_rur for the entire problem

(solving the system). This is a consequence and also a reminder for future

work on the implementation of optimal algorithms on subresultant and Sturm-

Habicht sequences. As a very important sidenote it should be stressed that

implementing these optimal algorithms in sequences computations, the overall

performance results for all solvers will be improved since the entire library is

based on Sturm sequences to perform computations, such as pure univariate

solving (root isolation), comparison of real algebraic numbers, and univariate

and bivariate sign determination of functions evaluated respectively over one or

a pair of real algebraic numbers.

D. I. D iochnos

4
6

IM
P

L
E

M
E

N
T

A
T

IO
N

A
N

D
E

X
P

E
R

IM
E

N
T

S

grid m_rur g_rur
S
y
st

e
m

P
ro

je
ct

io
n
s

U
n
iv

a
ri

a
te

B
iv

a
ri

a
te

P
ro

je
ct

io
n

o
n

x
-a

x
is

U
n
iv

a
ri

a
te

S
tH

a
S
e
q
u
e
n
ce

In
te

rm
.

P
o
in

ts

F
il
te

ri
n
g

o
n

x
-a

x
is

C
o
m

p
u
te

K

F
IN

D
(B

iv
.

S
o
l.
)

P
ro

je
ct

io
n
s

U
n
iv

a
ri

a
te

In
te

rm
.

P
o
in

ts

R
a
ti

o
n
a
l
B

iv
a
ri

a
te

R
a

l
g

B
iv

a
ri

a
te

R1 0.19 73.71 25.78 0.06 28.30 17.91 0.64 1.21 19.79 32.09 0.22 53.75 2.08 43.71 0.02
R2 0.01 4.47 95.52 0.00 16.30 0.61 0.09 72.84 3.50 6.66 0.07 7.99 0.12 0.10 91.72
R3 0.53 78.46 20.84 0.17 33.04 20.01 0.97 2.79 27.45 15.57 0.67 40.29 1.85 57.07 0.04
M1 0.04 10.13 89.75 0.05 21.06 1.46 0.14 35.63 2.97 38.69 0.14 79.62 2.83 16.13 0.02

M2 0.13 56.29 42.45 0.12 32.57 9.49 3.23 0.68 34.37 19.54 0.48 39.83 3.81 55.07 0.00

M3 0.00 4.98 95.02 0.02 7.39 0.16 0.02 60.60 1.18 30.62 0.03 28.60 0.67 0.50 70.14

M4 0.06 99.75 0.19 0.74 91.37 0.44 0.00 1.25 4.43 1.77 0.07 99.37 0.03 0.54 0.00

D1 0.11 95.25 4.61 0.06 33.81 9.47 0.20 21.14 19.57 15.75 1.20 81.26 0.54 16.93 0.00

D2 0.01 3.80 96.18 0.00 15.55 0.31 0.11 57.51 1.99 24.53 0.02 17.94 0.22 0.07 81.69

C1 0.04 2.69 97.27 0.27 5.02 2.37 0.04 28.19 2.02 62.09 0.23 21.00 0.16 2.32 76.25

C2 0.02 6.60 93.32 0.01 9.40 0.44 0.08 20.57 2.04 67.46 0.22 75.83 2.47 21.08 0.01

C3 0.01 2.88 97.03 0.04 2.05 1.17 0.00 28.66 1.62 66.46 0.33 16.47 0.16 14.83 67.69

C4 0.18 2.07 97.74 0.02 0.18 0.08 0.00 1.30 0.09 98.32 0.55 33.57 0.32 3.23 62.00

C5 − − − 0.75 1.92 38.23 0.00 6.43 1.49 51.17 3.89 30.43 0.02 0.35 65.30

W1 0.04 2.67 97.27 0.07 3.60 1.03 0.02 26.68 1.47 67.13 0.04 20.56 0.16 1.66 77.55

W2 0.00 7.08 92.89 0.00 11.02 0.22 0.18 39.44 1.72 47.42 0.03 21.78 0.27 0.95 76.89

W3 0.02 2.18 97.73 0.05 1.63 0.94 0.00 22.26 1.27 73.84 0.41 48.02 3.69 46.37 0.00

W4 0.01 2.05 97.93 0.00 0.23 0.12 0.00 1.36 0.10 98.19 0.02 33.85 0.51 5.17 60.18

Table 4.5: Analyzing the percent of time required for various procedures in each algorithm. Values in m_rur refer to sheared systems

(whenever it was necessary). A column about Sorting in the case of grid and g_rur is not shown.

D
.
I
.
D
io
ch
n
o
s

4.2 BIVARIATE SOLVING AND SLV LIBRARY 47

4.2.3 The effect of filtering

In the following paragraphs we measure the effect of interval arithmetic filters.

grid

Table 4.6 presents running times for grid solver in cases where no filtering is

performed in computations, i.e. all computations rely on Sturm sequences, or

all filters have been applied as these were described in section 4.1. The final

column speedup indicates the speedup achieved by filters in every case. Based

sy
st

e
m

deg

so
ls

Average Time (msecs)
SpeedupSLV-gridf g NO FILTERS FILTERED

R1 3 4 2 5 5 1.00
R2 3 1 1 41 66 0.62
R3 3 1 1 1 1 1.00
M1 3 3 4 22 87 0.25
M2 4 2 3 4 4 1.00
M3 6 3 5 1, 231 803 1.53
M4 9 10 2 262 218 1.20
D1 4 5 1 6 6 1.00
D2 2 2 4 583 667 0.87
C1 7 6 6 2, 601 1, 896 1.37
C2 4 3 6 65 177 0.37
C3 8 7 13 106 580 0.18
C4 8 7 17 35, 168 5, 903 5.98
C5 16 15 17 > 20 ′ > 20 ′ −

W1 7 6 9 2, 895 2, 293 1.26
W2 4 3 5 514 367 1.40
W3 8 7 13 104 518 0.20
W4 8 7 17 35, 054 5, 410 6.48

Table 4.6: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

on the numbers of the above table, the average speedup achieved by filtering

techniques is about 1.51. However, in terms of total computing time for the

entire test-set we can observe that:� Total time without filtering = 78, 662 msecs.� Total time with filtering = 19, 001 msecs.

Hence, the speedup achieved for the entire test-set is about 4.14. Note that

in both of the above computations system C5 has been excluded since neither

variation of grid was able to solve the system within 20 minutes. However,

D. I. D iochnos

48 IMPLEMENTATION AND EXPERIMENTS

there are indications that filtering techniques help more in other cases, see for

example section 4.4.3.

m_rur

The effect of filtering techniques in the case of m_rur will be discussed in

section 4.4.3 where all solvers deal with bivariate systems in generic position.

g_rur

A similar table with that in the case of grid is table 4.7. This time the average

sy
st

e
m

deg

so
ls

Average Time (msecs)
SpeedupSLV-g_rurf g NO FILTERS FILTERED

R1 3 4 2 6 5 1.20
R2 3 1 1 36 36 1.00
R3 3 1 1 1 1 1.00
M1 3 3 4 10 10 1.00
M2 4 2 3 4 4 1.00
M3 6 3 5 141 110 1.28
M4 9 10 2 201 210 0.96
D1 4 5 1 6 6 1.00
D2 2 2 4 171 128 1.34
C1 7 6 6 236 222 1.06
C2 4 3 6 18 18 1.00
C3 8 7 13 75 75 1.00
C4 8 7 21* 382 370 1.03
C5 16 15 17 3, 861 3, 877 1.00
W1 7 6 9 277 247 1.12
W2 4 3 5 141 114 1.23
W3 8 7 13 24 24 1.00
W4 8 7 17 318 280 1.13

Table 4.7: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

speedup achieved by filtering is about 1.08. In terms of total computing time

for the entire test-set we can observe that:� Total time without filtering = 5, 908 msecs.� Total time with filtering = 5, 737 msecs.

In other words, the speedup that is achieved by filtering for the entire test-set

is about 1.03. Thus g_rur seems not to be affected at a significant level by

filtering. However, this is more or less expected since g_rur relies heavily on

D. I. D iochnos

4.3 BIVARIATE SOLVING AND OTHER PACKAGES 49gd computations in extension fields and maple’s built-in function for factoring.

Even when computing the multiplicities of the given system, g_rur seems not

to be affected much from filtering. For a more concrete comparison, please refer

to section 4.4.3 that discusses the problem of computing the multiplicities of

the given system.

4.3 Bivariate solving and other packages

For the sake of completeness on the evaluation of the initial release of the slv li-

brary tests have been made with other solvers on the same polynomial systems.

First of all, fgb/rs 2 [Rou99], which performs exact real solving using Gröb-

ner bases and RUR, through its maple interface has been tested. It should be

underlined though that communication with maple increases the runtimes and

additional tuning might offer 20-30% efficiency increase. Moreover, 3 synaps
3 solvers have been tested: sturm is a naive implementation of grid [ET05];

subdiv implements [MP05], and is based on Bernstein basis and double arith-

metic. It needs an initial box for computing the real solutions of the system

and in all the cases the box [−10, 10] × [−10, 10] was used. newmac [MT00],

is a general purpose solver based on computations of generalized eigenvectors

using lapack, which computes all complex solutions.

Other maple implementations have also been tested: insulate is a package

that implements [WS05] for computing the topology of real algebraic curves,

and top implements [GVN02]. Both packages were kindly provided by their

authors. We tried to modify the packages so as to stop them as soon as they

compute the real solutions of the corresponding bivariate system and hence

achieve an accurate timing in every case. Finally, it should be noted that top

has an additional parameter that sets the initial precision (decimal digits). A

very low initial precision or a very high one results in inaccuracy or performance

loss; but there is no easy way for choosing a good value. Hence, we followed

[EKW07] and recorded its performance on initial values of 60 and 500 digits.

It should be underlined that experiments are not considered as competition,

but as a crucial step for improving existing software. Moreover, it is very difficult

to compare different packages, since in most cases they are made for different

needs. In addition, accurate timing in maple is hard, since it is a general

purpose package and a lot of overhead is added to its function calls. For example

this is the case for fgb/rs.

Overall performance results are shown on tab. 4.8, averaged over 10 itera-

tions. Although the current solver of choice for slv library is g_rur, the other

solvers are presented as well for completeness. Note that for the first data set,

there are no timings for insulate and top since it was not easy to modify

their code so as to deal with general polynomial systems. The rest (systems

Ci and Wi) correspond to algebraic curves, i.e. polynomial systems of the form

f = ∂f
∂y

= 0, that all packages can deal with.

2http://www-spaces.lip6.fr/index.html
3http://www-sop.inria.fr/galaad/logiciels/synaps/

D. I. D iochnos

50 IMPLEMENTATION AND EXPERIMENTS

In cases where the solvers failed to find the correct number of real solutions

we indicate so with an asterisk (*). In the case of newmac where all complex

solutions are computed, the (*) is placed in one more case: since newmac

computes all complex solutions, a further computing step is required so as to

distinguish the ones that reflect the real solutions.

D. I. D iochnos

4
.3

B
IV

A
R

IA
T

E
S

O
L

V
IN

G
A

N
D

O
T

H
E

R
P

A
C

K
A

G
E

S
5
1

sy
st

e
m

deg

so
lu

ti
o
n
s Average Time (msecs)

BIVARIATE SOLVING TOPOLOGY
slv

fgb/rs
synaps

insulate
topf g grid m_rur g_rur sturm subdiv newmac 60 500

R1 3 4 2 5 9 5 26 2 2 5* − − −

R2 3 1 1 66 21 36 24 1 1 1* − − −

R3 3 1 1 1 2 1 22 1 2 1* − − −

M1 3 3 4 87 72 10 25 2 1 2* − − −

M2 4 2 3 4 5 4 24 1 289* 2* − − −

M3 6 3 5 803 782 110 30 230 5, 058* 7* − − −

M4 9 10 2 218 389 210 158 90 3* 447* − − −

D1 4 5 1 6 12 6 28 2 5 8* − − −

D2 2 2 4 667 147 128 26 21 1* 2 − − −

C1 7 6 6 1, 896 954 222 93 479 170, 265* 39* 524 409 1, 367
C2 4 3 6 177 234 18 27 12 23* 4* 28 36 115

C3 8 7 13 580 1, 815 75 54 23 214* 25* 327 693 2, 829

C4 8 7 17 5, 903 80, 650 370 138 3, 495 217* 190* 1, 589 1, 624 6, 435

C5 16 15 17 > 20 ′ 60, 832 3, 877 4, 044 > 20 ′ 6, 345* 346* 179, 182 91, 993 180, 917

W1 7 6 9 2, 293 2, 115 247 92 954 55, 040* 39* 517 419 1, 350

W2 4 3 5 367 283 114 29 20 224* 3* 27 20 60

W3 8 7 13 518 2, 333 24 56 32 285* 25* 309 525 1, 588

W4 8 7 17 5, 410 77, 207 280 148 4, 086 280* 207* 1, 579 1, 458 4, 830

Table 4.8: Performance averages over 10 runs in maple 9.5 on a 2GHz AMD64@3K+ processor with 1GB RAM.

D
.
I
.
D
io
ch
n
o
s

52 IMPLEMENTATION AND EXPERIMENTS

4.3.1 g_rur and other solvers

In the following paragraphs we will try to compare the performance of g_rur

with the rest of the solvers. For this purpose, we conduct speedup-tables like

the ones that were drawn in section 4.2.1.

g_rur vs. fgb/rs

Table 4.9 presents running times for fgb/rs and g_rur as well as the speedup

that one gains when choosing g_rur instead of fgb/rs for bivariate solving.

As it is shown from the table g_rur is faster than fgb/rs in 8 out of the 18
system

Average Time
speedup

fgb/rs g_rur

R1 26 5 5.20
R2 24 36 0.67
R3 22 1 22.00
M1 25 10 2.50
M2 24 4 6.00
M3 30 110 0.27
M4 158 210 0.75
D1 28 6 4.67
D2 26 128 0.20
C1 93 222 0.42
C2 27 18 1.50
C3 54 75 0.72
C4 138 370 0.37
C5 4, 044 3, 877 1.04
W1 92 247 0.37
W2 29 114 0.25
W3 56 24 2.33
W4 148 280 0.53

Table 4.9: The performance of fgb/rs and g_rur on bivariate solving and

the speedup that is achieved when choosing g_rur.

instances, including the difficult system C5. The speedup factor ranges from0.2 to 22 with an average of 2.62. However, in terms of total computing times

for the entire test-set we can observe that:� Total time for fgb/rs = 5, 044 msecs.� Total time for g_rur = 5, 737 msecs.

Hence, the speedup in terms of total computing time is about 0.88. This is an

indication that although the computation of the ideal of the given system is a

more expensive operation on average, it may be faster when someone faces a

set of different polynomial systems.

D. I. D iochnos

4.3 BIVARIATE SOLVING AND OTHER PACKAGES 53

g_rur vs. synaps/sturm

Let’s move on with a comparison between g_rur and synaps’s sturm imple-

mentation. Table 4.10 presents running times for synaps/sturm and g_rur

and the speedup gained when preferring g_rur. g_rur is faster than sturm

system
Average Time

speedup
sturm g_rur

R1 2 5 0.40
R2 1 36 0.03
R3 1 1 1.00
M1 2 10 0.20
M2 1 4 0.25
M3 230 110 2.09
M4 90 210 0.43
D1 2 6 0.33
D2 21 128 0.16
C1 479 222 2.16
C2 12 18 0.67
C3 23 75 0.31
C4 3, 495 370 9.45
C5 > 20 ′ 3, 877 −

W1 954 247 3.86
W2 20 114 0.18
W3 32 24 1.33
W4 4, 086 280 14.59

Table 4.10: The performance of synaps/sturm and g_rur on bivariate solving

and the speedup that is achieved when choosing g_rur.

in 6 out of the 18 instances. On the other hand, g_rur behaves worse usually

in polynomial systems that are solved by both implementations in less than 100
msecs, something that is expected since sturm is implemented in C++. How-

ever, as the dimension of the polynomial systems increases, g_rur outperforms

sturm and the latter’s lack of modular algorithms for computing resultants is

more and more evident. Overall, an average speedup of about 2.2 is achieved

when someone prefers g_rur. In terms of total computing times for the entire

test-set (excluding system C5 where sturm failed to reply within 20 minutes)

we can observe that:� Total time for synaps/sturm = 9, 451 msecs.� Total time for g_rur = 1, 860 msecs.

Hence, if someone considers the speedup that is achieved in terms of total com-

puting time for the entire test set, it can be observed that g_rur is about 5.08
times faster than sturm highlighting the previous remark regarding resultants

in synaps.

D. I. D iochnos

54 IMPLEMENTATION AND EXPERIMENTS

g_rur vs. synaps/subdiv

We now switch to a comparison between g_rur and synaps’s subdiv imple-
mentation. Table 4.11 presents running times for synaps/subdiv and g_rur,
and as in the earlier tables, the last column shows the speedup gained when
preferring g_rur. It should be mentioned however, that subdiv requires an
initial box where all the real solutions of the system reside. In the experiments,
the box [−10, 10]× [−10, 10] was used in every case. The solver was called with
the following command:

sols = solve(pols, SBDSLV< NT, SBDSLV_RDL >(1e-10), box);

where pols are of type Seq< MPOL > and sols are of type Seq< VectDse<

NT> >. Finally, in cases where subdiv failed to compute the correct number

of real solutions, an asterisk (*) is placed to indicate so. g_rur is faster

system
Average Time

speedup
subdiv g_rur

R1 2 5 0.40
R2 1 36 0.03
R3 2 1 2.00
M1 1 10 0.10
M2 289* 4 72.25
M3 5, 058* 110 45.98
M4 3* 210 0.01
D1 5 6 0.83
D2 1* 128 0.01
C1 170, 265* 222 766.96
C2 23* 18 1.28
C3 214* 75 2.85
C4 217* 370 0.59
C5 6, 345* 3, 877 1.64
W1 55, 040* 247 222.83
W2 224* 114 1.96
W3 285* 24 11.88
W4 280* 280 1.00

Table 4.11: The performance of synaps/subdiv and g_rur on bivariate solv-

ing and the speedup that is achieved when choosing g_rur.

than subdiv in half of the instances. However, the case is similar to sturm’s.

g_rur may require more computing time on polynomial systems that are solved

in less than 400 msecs by both solvers, while on system C5 g_rur is faster

than subdiv by about 2.47 seconds. A striking experimental result though is

subdiv’s inefficiency on polynomial systems C1 and W1. Note that the initial

box [−10, 10]× [−10, 10] is not large enough to justify easily such deficiency. For

example, all real solutions of the system C1 can be found inside the rectangle

D. I. D iochnos

4.3 BIVARIATE SOLVING AND OTHER PACKAGES 55

[−2, 2] × [−1, 2] while the x-coordinates can take both of the extreme values;

i.e. −2 and 2. On average, g_rur achieves a speedup of 62.92 which is the

result of the problematic behavior of subdiv in systems C1 and W1. If these

systems are omitted from the computation, then g_rur achieves a speedup of8.93. In terms of total computing times for the entire test-set we can observe

that:� Total time for synaps/subdiv = 238, 255 msecs.� Total time for g_rur = 5, 737 msecs.

Hence, the speedup under these terms is about 41.53 favoring g_rur. However,

this value is again greatly increased due to systems C1 and W1. Omitting these

systems, we can observe that total computing times are as follows:� Total time for synaps/subdiv = 12, 950 msecs.� Total time for g_rur = 5, 268 msecs.

This time the speedup in terms of total computing time is about 2.46. As a final

comment, one can not forget that subdiv is based on finite precision arithmetic

and consequently numerical errors occur in the computations of the solutions

as this is signified by an asterisk (*) in tables 4.8 and 4.11.

g_rur vs. synaps/newmac

A comparison between g_rur and synaps’s newmac implementation can be
made with the help of table 4.12 which has similar structure with the previous
tables. The solver was called with the following command:

sols = solve(pols, Newmac<coeff_t,sol_t>());

where pols are of type std::list<MPOL> and sols are of type sol_t. Note

that an asterisk (*) indicates incorrect number of real solutions. The problem is

that newmac computes all complex solutions of the input polynomial system

and some considerations are needed in these cases. But these will be addressed

in the following paragraph. g_rur is faster than newmac in systems M4,D1
and W3 and exhibits similar performance in systems R1 and R3. This time the

average speedup is about 0.53 if someone prefers g_rur, and in terms of total

computing times for the entire test-set we have:� Total time for synaps/newmac = 1, 353 msecs.� Total time for g_rur = 5, 737 msecs.

In other words, g_rur is slower than newmac about 4.24 times for the entire

test-set.

However, these numbers do not necessarily reflect the truth for various rea-

sons. First of all, newmac is based on computations of generalized eigenvectors

using lapack, which computes all complex solutions. This can be really fast in

D. I. D iochnos

56 IMPLEMENTATION AND EXPERIMENTS

system
Average Time

speedup
newmac g_rur

R1 5* 5 1.00
R2 1* 36 0.03
R3 1* 1 1.00
M1 2* 10 0.20
M2 2* 4 0.50
M3 7* 110 0.06
M4 447* 210 2.13
D1 8* 6 1.33
D2 2 128 0.02
C1 39* 222 0.18
C2 4* 18 0.22
C3 25* 75 0.33
C4 190* 370 0.51
C5 346* 3, 877 0.09
W1 39* 247 0.16
W2 3* 114 0.03
W3 25* 24 1.04
W4 207* 280 0.74

Table 4.12: The performance of synaps/newmac and g_rur on bivariate

solving and the speedup that is achieved when choosing g_rur.

practice, but an additional problem arises; that of classifying the real solutions

among all complex solutions computed by newmac. This is not as trivial as it

may sound, since finite precision arithmetic is used, resulting in numerical errors

while computing all complex solutions. So, there is one problem on retracting

only the real solutions among all complex solutions computed (with the possible

numerical errors that these may contain). In addition to that, finite precision

has further impacts on the solution set that is computed. There are cases where

newmac may not compute some of the real solutions. A representative example

in this class of problems is system C4 which has 17 real solutions and newmac

claims that the total number of real and complex solutions is exactly 0.
Hence, newmac requires a better and more accurate implementation than

lapack when computing the various eigenvectors and eigenvalues that are

needed in order to solve the input systems. However, this might still not elimi-

nate all numerical errors that are introduced in the entire complex solution set.

Even with this enhancement, some additional time will be possibly required in

order to filter the few (in general) real solutions among the entire complex solu-

tion set. For instance, newmac computes 90 complex solutions in system M4
while the number of real solutions for the system is only 2. Concluding, having

all these observations in mind, g_rur seems to be a competitive alternative to

newmac since it is not affected by these problems.

D. I. D iochnos

4.3 BIVARIATE SOLVING AND OTHER PACKAGES 57

g_rur vs. insulate

Let’s turn our attention on a comparison between g_rur and insulate which

computes the topology of real plane algebraic curves. In this case insulate

has been modified so as to stop as soon as it computes all real solutions. A

comparative performance table similar to the ones in the previous paragraphs

is presented in table 4.13. Note that the comparison takes place on the second

set of the test-set where the polynomial systems are of the form f = ∂f
∂y

= 0
that both packages can manage. g_rur is faster in all but W2 system yielding

system
Average Time

speedup
insulate g_rur

C1 524 222 2.36
C2 28 18 1.55
C3 327 75 4.36
C4 1, 589 370 4.29
C5 179, 182 3, 877 46.22
W1 517 247 2.09
W2 27 114 0.24
W3 309 24 12.88
W4 1, 579 280 5.64

Table 4.13: The performance of insulate and g_rur on bivariate solving and

the speedup that is achieved when choosing g_rur.

an average speedup this time of 8.85. However, as the dimension of the input

polynomial systems increases, g_rur seems to be more efficient. In terms of

total computing time for the entire test set we can observe:� Total time for insulate = 184, 082 msecs.� Total time for g_rur = 5, 227 msecs.

Hence the speedup under this point of view is about 35.22. In any case though,

the amount of experiments is relatively small in order to draw safe conclusions on

the relative performance of the two implementations in real solving of bivariate

polynomial systems.

g_rur vs. top

Finally, a comparison between g_rur and top which computes the topology

of real plane algebraic curves is performed. Recall that top requires an extra

parameter which sets the initial precision in computations (decimal digits). As

it has already been stated, this is a problem since there is no easy way on

computing a good value and furthermore, a very low initial precision might

result in loss in the number of real solutions, while a very high initial precision

might result in performance deficiency. For this purpose, the route of [EKW07]

has been followed and the performance of top was recorded for initial precisions

D. I. D iochnos

58 IMPLEMENTATION AND EXPERIMENTS

of 60 and 500 digits. Similarly with insulate case, the comparison takes place

on the systems Ci and Wi that are of the form f = ∂f
∂y

= 0 that both packages

can manage.60 digits precision: The comparison in this case is shown in table 4.14.

g_rur is faster in all but W2 system yielding an average speedup this time

system
Average Time

speedup
top60 g_rur

C1 409 222 1.84
C2 36 18 3.00
C3 693 75 9.24
C4 1, 624 370 4.39
C5 91, 993 3, 877 23.73
W1 419 247 1.70
W2 20 114 0.18
W3 525 24 21.88
W4 1, 458 280 5.21

Table 4.14: The performance of top with precision set to 60 digits and g_rur

on bivariate solving and the speedup that is achieved when choosing g_rur.

of 7.79. Similarly with insulate’s case, as the dimension of the input polyno-

mial systems increases, g_rur seems to be more efficient. In terms of total

computing time for the entire test set we can observe:� Total time for top60 = 97, 177 msecs.� Total time for g_rur = 5, 227 msecs.

Hence the speedup under this point of view is about 18.59.500 digits precision: The comparison in this case is shown in table 4.15. An

interesting result is that although top computations have been slowed down

with this precision, top is still faster in solving system W2. This time the

average speedup that is achieved by g_rur is 22.64. In terms of total computing

time for the entire test set this time we have:� Total time for top500 = 199, 491 msecs.� Total time for g_rur = 5, 227 msecs.

Hence the speedup under this point of view is about 38.17.
4.4 Computing multiplicities

This section presents the performance of slv library when someone wants to

compute the multiplicities at the various intersecting points. Moreover, the

effect of filtering will be discussed once more.

D. I. D iochnos

4.4 COMPUTING MULTIPLICITIES 59

system
Average Time

speedup
top500 g_rur

C1 1, 367 222 6.16
C2 115 18 6.39
C3 2, 829 75 37.72
C4 6, 435 370 17.39
C5 180, 917 3, 877 46.66
W1 1, 350 247 5.47
W2 60 114 0.53
W3 1, 588 24 66.17
W4 4, 830 280 17.25

Table 4.15: The performance of top with precision set to 500 digits and g_rur

on bivariate solving and the speedup that is achieved when choosing g_rur.

Overall performance results for the three projection based algorithms are

shown on table 4.16. In order to compute the multiplicities the initial systems

were sheared whenever it was necessary based on the algorithm that was pre-

sented in section 3.1.1. Since the polynomial systems were in generic position,

the algorithms stopped searching for solution along the various vertical lines as

soon as a solution was computed. Note that running times in m_rur’s case

have not changed from table 4.1 since m_rur by default requires a system in

generic position.

Once again g_rur presents the best performance. It is faster in 17 out of

the 18 instances and apart from system C5 provides solutions in less than a

second. Moreover, now that the sheared systems have little or no linear factors

and slightly increased bitsize grid’s high complexity starts to become more

apparent: m_rur is faster in 10 out of the 18 instances. In addition to that,

it should be stressed once again that m_rur’s inefficiency is basically due to

the lack of optimal algorithms for computing the various Sturm sequences. For

example, when solving system C5 m_rur requires more than 23 seconds simply

to generate the StHa sequence of the input polynomials f and g.

4.4.1 Comparing slv solvers

The following paragraphs will briefly compare g_rur with grid and m_rur

when computing multiplicities. Moreover, this time a comparison between

m_rur and grid will be performed.

g_rur vs. grid

Table 4.17 presents running times for grid and g_rur when computing mul-

tiplicities. Again, the final column indicates the speedup that is achieved when

someone prefers g_rur. As it is shown from the table 4.17 g_rur can be up

to 15.81 times faster than grid with an average speedup of around 5.26 among

D. I. D iochnos

60 IMPLEMENTATION AND EXPERIMENTS

system
deg Ralg Average Time (msecs)f g solutions grid m_rur g_rur

R1 3 4 2 6 9 6
R2 3 1 1 66 21 36
R3 3 1 1 1 2 1
M1 3 3 4 183 72 45
M2 4 2 3 4 5 4
M3 6 3 5 4, 871 782 393
M4 9 10 2 339 389 199
D1 4 5 1 6 12 6
D2 2 2 4 567 147 126
C1 7 6 6 1, 702 954 247
C2 4 3 6 400 234 99
C3 8 7 13 669 1, 815 152
C4 8 7 17 7, 492 80, 650 474
C5 16 15 17 > 20 ′ 60, 832 6, 367
W1 7 6 9 3, 406 2, 115 393
W2 4 3 5 1, 008 283 193
W3 8 7 13 1, 769 2, 333 230
W4 8 7 17 5, 783 77, 207 709

Table 4.16: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

the input systems and excluding system C5 where grid failed to reply within20 minutes. Moreover, in terms of total computing times for the entire test-set

(again excluding system C5) we can observe that:� Total time for grid = 28, 272 msecs.� Total time for g_rur = 3, 313 msecs.

In other words, the speedup in terms of total computing time is about 8.53.
g_rur vs. m_rur

Table 4.18 presents running times for m_rur and g_rur when computing

multiplicities. Similarly with the previous table, the final column indicates the

speedup that is achieved when preferring g_rur. This time g_rur can be up

to 170.15 times faster than m_rur with an average speedup of around 18.77
among the input polynomial systems. Moreover, in terms of total computing

times for the entire test-set we can observe that:� Total time for m_rur = 227, 862 msecs.� Total time for g_rur = 9, 680 msecs.

In other words, the speedup in terms of total computing time is about 23.54.
D. I. D iochnos

4.4 COMPUTING MULTIPLICITIES 61

system
Average Time

speedup
grid g_rur

R1 6 6 1.00
R2 66 36 1.83
R3 1 1 1.00
M1 183 45 4.07
M2 4 4 1.00
M3 4, 871 393 12.39
M4 339 199 1.70
D1 6 6 1.00
D2 567 126 4.50
C1 1, 702 247 6.89
C2 400 99 4.04
C3 669 152 4.40
C4 7, 492 474 15.81
C5 > 20 ′ 6, 367 −

W1 3, 406 393 8.67
W2 1, 008 193 5.22
W3 1, 769 230 7.69
W4 5, 783 709 8.16

Table 4.17: The performance of grid and g_rur implementations when com-

puting multiplicities on the intersections and the speedup that is achieved when

choosing g_rur.

m_rur vs. grid

Table 4.19 presents running times for grid and g_rur when computing mul-

tiplicities. The final column in this table indicates the speedup that is achieved

when preferring m_rur for this operation. Excluding system C5 where grid

failed to reply within 20 minutes, m_rur can be up to 6.23 times faster, yield-

ing an average speedup of around 1.71 among the input systems. Moreover, in

terms of total computing times for the entire test-set (again excluding system

C5) we can observe that:� Total time for grid = 28, 272 msecs.� Total time for g_rur = 167, 030 msecs.

In other words, the speedup in terms of total computing time is about 0.17.
However, it should be mentioned once again that system C5 is not considered

in these values.

4.4.2 Decomposing running times

This section is similar to 4.2.2. It presents statistics for the various solvers in

the sheared case of the test-set polynomial systems. Hence, the interpretation

D. I. D iochnos

62 IMPLEMENTATION AND EXPERIMENTS

system
Average Time

speedup
m_rur g_rur

R1 9 6 1.50
R2 21 36 0.58
R3 2 1 2.00
M1 72 45 1.60
M2 5 4 1.25
M3 782 393 1.99
M4 389 199 1.95
D1 12 6 2.00
D2 147 126 1.17
C1 954 247 3.86
C2 234 99 2.36
C3 1, 815 152 11.94
C4 80, 650 474 170.15
C5 60, 832 6, 367 9.55
W1 2, 115 393 5.38
W2 283 193 1.47
W3 2, 333 230 10.14
W4 77, 207 709 108.90

Table 4.18: The performance of m_rur and g_rur implementations when

computing multiplicities on the intersections and the speedup that is achieved

when choosing g_rur.

of the two tables is identical to the tables presented in section 4.2.2.

Things have not changed much from section 4.2.2 in grid’s and m_rur’s

case. In a nutshell, grid spends more than 72% of its time in matching. Simi-

larly with table 4.4, this percent includes the application of filters and does not

take into account the polynomial system C5 where grid failed to reply within20 minutes. m_rur spends about 45-50% of its time in matching and about24-27% in the pre-computation filtering technique. Finally, g_rur spends 68-80% of its time in matching, including gd computations in an extension field.

This time, in absence of excessive factoring g_rur spends significantly more

time in bivariate solving.

The equivalent table to table 4.5 is table 4.21. It presents the running-

time breakdown for the various algorithms in the various cases. Again note,

that values presented in m_rur’s case are identical in both tables due to the

requirements of the algorithm, i.e. m_rur has to solve sheared systems.

D. I. D iochnos

4.4 COMPUTING MULTIPLICITIES 63

system
Average Time

speedup
grid m_rur

R1 6 9 0.67
R2 66 21 3.14
R3 1 2 0.50
M1 183 72 2.54
M2 4 5 0.80
M3 4, 871 782 6.23
M4 339 389 0.87
D1 6 12 0.50
D2 567 147 3.86
C1 1, 702 954 1.78
C2 400 234 1.71
C3 669 1, 815 0.37
C4 7, 492 80, 650 0.09
C5 > 20 ′ 60, 832 −

W1 3, 406 2, 115 1.61
W2 1, 008 283 3.56
W3 1, 769 2, 333 0.76
W4 5, 783 77, 207 0.07

Table 4.19: The performance of grid and m_rur implementations when com-

puting multiplicities on the intersections and the speedup that is achieved when

choosing m_rur.

D. I. D iochnos

64 IMPLEMENTATION AND EXPERIMENTS

phase of the interval
median mean

std

algorithm min max dev

g
r
id

projections 00.00 00.53 00.06 00.08 00.12
univ. solving 01.65 99.63 05.42 27.39 37.65
biv. solving 00.30 98.33 96.75 72.42 37.82
sorting 00.00 01.15 00.02 00.11 00.27

m
r
u
r

projection 00.00 00.75 00.06 00.14 00.23
univ. solving 00.18 91.37 15.55 17.47 20.79
StHa seq. 00.08 38.23 01.17 05.80 09.91
inter. points 00.00 03.23 00.09 00.32 00.75
filter x-cand 00.68 72.84 26.68 23.81 21.93
compute K 00.09 34.37 02.04 07.06 10.21
biv. solving 01.77 98.32 51.17 45.41 28.71

g
r
u
r

projections 00.02 03.73 00.11 00.58 01.14
univ. solving 06.60 99.16 22.35 30.27 23.48
inter. points 00.01 03.93 00.20 00.59 01.05
rational biv. 00.07 55.59 02.61 11.91 19.22
Ralg biv. 00.00 93.04 77.51 56.50 35.53
sorting 00.00 00.83 00.08 00.14 00.21

Table 4.20: Statistics on the performance of slv’s algorithms when computing

multiplicities.

D. I. D iochnos

4
.4

C
O

M
P

U
T

IN
G

M
U

L
T

IP
L

IC
IT

IE
S

6
5

grid m_rur g_rur

S
y
st

e
m

P
ro

je
ct

io
n
s

U
n
iv

a
ri

a
te

B
iv

a
ri

a
te

P
ro

je
ct

io
n

o
n

x
-a

x
is

U
n
iv

a
ri

a
te

S
tH

a
S
e
q
u
e
n
ce

In
te

rm
.

P
o
in

ts

F
il
te

ri
n
g

o
n

x
-a

x
is

C
o
m

p
u
te

K

F
IN

D
(B

iv
.

S
o
l.
)

P
ro

je
ct

io
n
s

U
n
iv

a
ri

a
te

In
te

rm
.

P
o
in

ts

R
a
ti

o
n
a
l
B

iv
a
ri

a
te

R
a

l
g

B
iv

a
ri

a
te

R1 0.11 84.14 15.40 0.06 28.30 17.91 0.64 1.21 19.79 32.09 0.30 45.69 1.08 52.68 0.00
R2 0.01 4.26 95.73 0.00 16.30 0.61 0.09 72.84 3.50 6.66 0.04 6.60 0.10 0.21 93.04
R3 0.53 82.86 16.43 0.17 33.04 20.01 0.97 2.79 27.45 15.57 0.57 40.79 2.94 55.59 0.04
M1 0.00 7.94 92.04 0.05 21.06 1.46 0.14 35.63 2.97 38.69 0.03 25.53 0.40 5.57 68.39
M2 0.14 60.80 37.92 0.12 32.57 9.49 3.23 0.68 34.37 19.54 3.73 38.23 3.93 53.28 0.00
M3 0.01 1.66 98.33 0.02 7.39 0.16 0.02 60.60 1.18 30.62 0.02 12.38 0.09 0.31 87.20
M4 0.06 99.63 0.30 0.74 91.37 0.44 0.00 1.25 4.43 1.77 0.26 99.16 0.03 0.55 0.00

D1 0.11 95.32 4.54 0.06 33.81 9.47 0.20 21.14 19.57 15.75 1.20 81.22 0.60 16.91 0.00

D2 0.01 4.13 95.86 0.00 15.55 0.31 0.11 57.51 1.99 24.53 0.02 17.96 0.22 0.07 81.67

C1 0.09 2.82 97.09 0.27 5.02 2.37 0.04 28.19 2.02 62.09 0.05 17.60 0.15 2.61 79.54

C2 0.01 5.42 94.54 0.01 9.40 0.44 0.08 20.57 2.04 67.46 0.03 22.35 0.33 2.35 74.40

C3 0.02 4.71 95.23 0.04 2.05 1.17 0.00 28.66 1.62 66.46 0.06 21.66 0.12 10.70 67.25

C4 0.18 1.65 98.16 0.02 0.18 0.08 0.00 1.30 0.09 98.32 0.27 26.36 0.11 2.53 70.62

C5 − − − 0.75 1.92 38.23 0.00 6.43 1.49 51.17 3.69 20.07 0.01 0.27 75.95

W1 0.03 2.16 97.79 0.07 3.60 1.03 0.02 26.68 1.47 67.13 0.11 18.79 0.09 1.64 79.32

W2 0.00 3.25 96.75 0.00 11.02 0.22 0.18 39.44 1.72 47.42 0.02 16.27 0.14 1.05 82.47

W3 0.02 1.98 97.98 0.05 1.63 0.94 0.00 22.26 1.27 73.84 0.04 13.55 0.14 6.58 79.57

W4 0.02 2.86 97.11 0.00 0.23 0.12 0.00 1.36 0.10 98.19 0.09 20.60 0.20 1.54 77.51

Table 4.21: Analyzing the percent of time required for various procedures in each algorithm. All values refer to the sheared systems

(whenever it was necessary). A column about Sorting in the case of grid and g_rur is not shown.D
.
I
.
D
io
ch
n
o
s

66 IMPLEMENTATION AND EXPERIMENTS

4.4.3 The effect of filtering

Similarly with section 4.2.3 this section examines the effect of filtering tech-

niques on the performance of all solvers.

grid

Table 4.22 presents running times for grid solver in cases where no filtering is

performed in computations, i.e. all computations rely on Sturm sequences, or

all filters have been applied as these were described in section 4.1. The final

column speedup indicates the speedup achieved by filters in every case. Based

sy
st

e
m

deg

so
ls

Average Time (msecs)
SpeedupSLV-gridf g NO FILTERS FILTERED

R1 3 4 2 4 6 0.67
R2 3 1 1 40 66 0.61
R3 3 1 1 1 1 1.00
M1 3 3 4 172 183 0.94
M2 4 2 3 4 4 1.00
M3 6 3 5 118, 215 4, 871 24.27
M4 9 10 2 404 339 1.19
D1 4 5 1 6 6 1.00
D2 2 2 4 418 567 0.74
C1 7 6 6 5, 162 1, 702 3.03
C2 4 3 6 464 400 1.16
C3 8 7 13 155 669 0.23
C4 8 7 17 27, 126 7, 492 3.62
C5 16 15 17 > 20 ′ > 20 ′ −

W1 7 6 9 10, 091 3, 406 2.96
W2 4 3 5 1, 508 1, 008 1.50
W3 8 7 13 1, 338 1, 769 0.76
W4 8 7 17 50, 808 5, 783 8.79

Table 4.22: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

on the numbers of the above table, the average speedup achieved by filtering

techniques is about 3.14. However, in terms of total computing time for the

entire test-set we can observe that:� Total time without filtering = 215, 916 msecs.� Total time with filtering = 28, 272 msecs.

Hence, the speedup achieved for the entire test-set is about 7.64. Note that

in both of the above computations system C5 has been excluded since neither

variation of grid was able to solve the system within 20 minutes.

D. I. D iochnos

4.4 COMPUTING MULTIPLICITIES 67

m_rur

Table 4.23 presents the performance of the m_rur solver with the application

of all filters or not. Recall, that m_rur uses one more heuristic technique (refer

to section 4.1). This heuristic was present in the running times that are shown

in filtered case in table 4.23. m_rur was unable to solve system C5 within 20
sy

st
e
m

deg
so

ls
Average Time (msecs)

SpeedupSLV-m_rurf g NO FILTERS FILTERED

R1 3 4 2 9 9 1.00
R2 3 1 1 8 21 0.38
R3 3 1 1 2 2 1.00
M1 3 3 4 49 72 0.68
M2 4 2 3 4 5 0.80
M3 6 3 5 2, 054 782 2.63
M4 9 10 2 323 389 0.83
D1 4 5 1 10 12 0.83
D2 2 2 4 88 147 0.60
C1 7 6 6 22, 006 954 23.07
C2 4 3 6 138 234 0.59
C3 8 7 13 38, 307 1, 815 21.11
C4 8 7 17 784, 613 80, 650 9.73
C5 16 15 17 > 20 ′ 60, 832 −

W1 7 6 9 45, 323 2, 115 21.43
W2 4 3 5 249 283 0.88
W3 8 7 13 50, 724 2, 333 21.74
W4 8 7 17 839, 708 77, 207 10.88

Table 4.23: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

minutes when filtering techniques were not present in the computations. In the

rest of the cases, the average speedup achieved by filtering techniques is about6.95. In terms of total computing time for the entire test-set (again excluding

system C5 from the computations) we can observe that:� Total time without filtering = 1, 783, 615 msecs.� Total time with filtering = 167, 030 msecs.

Hence, the speedup achieved for the entire test-set is about 10.68.
The effect of preprocessing x-candidates However, it is interesting to

investigate the effect of preprocessing x-candidates on m_rur’s performance.

For this purpose, table 4.24 presents running times when this heuristic technique

is applied or not (but interval arithmetic and gcd filtering are applied) and

D. I. D iochnos

68 IMPLEMENTATION AND EXPERIMENTS

sy
st

e
m

deg

so
ls

Average Time (msecs)
SpeedupSLV-m_rurf g −Preprocess +Preprocess

R1 3 4 2 10 9 1.11
R2 3 1 1 10 21 0.48
R3 3 1 1 2 2 1.00
M1 3 3 4 64 72 0.89
M2 4 2 3 5 5 1.00
M3 6 3 5 591 782 0.76
M4 9 10 2 290 389 0.75
D1 4 5 1 10 12 0.83
D2 2 2 4 126 147 0.86
C1 7 6 6 2, 672 954 2.80
C2 4 3 6 246 234 1.05
C3 8 7 13 14, 276 1, 815 7.87
C4 8 7 17 282, 798 80, 650 3.51
C5 16 15 17 > 20 ′ 60, 832 −

W1 7 6 9 9, 239 2, 115 4.37
W2 4 3 5 354 283 1.25
W3 8 7 13 13, 235 2, 333 5.67
W4 8 7 17 242, 199 77, 207 3.14

Table 4.24: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

the speedup that is achieved with its application. Hence, the preprocessing

heuristic provides m_rur a speedup of about 2.20 on average. In terms of total

computing time for the entire test-set we can observe that:� Total time without preprocessing = 566, 127 msecs.� Total time with preprocessing = 167, 030 msecs.

In other words, the speedup achieved for the entire test-set due to preprocessing

is about 3.39. Note that in both of the above computations system C5 has been

excluded since neither variation of grid was able to solve the system within 20
minutes.

g_rur

Table 4.25 presents the performance of the g_rur solver with the application

of filters or not. Based on the numbers of the above table, the average speedup

achieved by filtering techniques is about 1.22. In terms of total computing time

for the entire test-set we have:� Total time without filtering = 12, 727 msecs.

D. I. D iochnos

4.4 COMPUTING MULTIPLICITIES 69

sy
st

e
m

deg

so
ls

Average Time (msecs)
SpeedupSLV-g_rurf g NO FILTERS FILTERED

R1 3 4 2 6 6 1.00
R2 3 1 1 36 36 1.00
R3 3 1 1 1 1 1.00
M1 3 3 4 54 45 1.20
M2 4 2 3 5 4 1.25
M3 6 3 5 619 393 1.58
M4 9 10 2 273 199 1.37
D1 4 5 1 6 6 1.00
D2 2 2 4 171 126 1.36
C1 7 6 6 278 247 1.13
C2 4 3 6 137 99 1.38
C3 8 7 13 146 152 0.96
C4 8 7 17 494 474 1.04
C5 16 15 17 8, 448 6, 367 1.33
W1 7 6 9 482 393 1.23
W2 4 3 5 297 193 1.54
W3 8 7 13 296 230 1.29
W4 8 7 17 978 709 1.38

Table 4.25: Performance averages over 10 runs in maple 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.� Total time with filtering = 9, 680 msecs.

Hence, the speedup achieved for the entire test-set is about 1.31. Once again

we observe that filtering techniques do not help much g_rur.

D. I. D iochnos

70 IMPLEMENTATION AND EXPERIMENTS

D. I. D iochnos

Chapter 5

Conclusion

Concluding, three projection-based algorithms have been proposed for the prob-

lem of real solving of bivariate polynomial systems. Two of them, m_rur and

g_rur, achieve an ÕB(N12) bound which is also the theoretical bound for real

solving the projections on x and y axes. Moreover, it is crucial to keep in mind

that the input of the problem is of order OB(N3) and the output is OB(N4) since

the projection implies univariate polynomials of degree O(N2) with coefficients’

size bounded by O(N2). Hence these algorithms are O(I4) and O(O3) compared

to the input and output respectively. Under this viewpoint, grid solver’s bound

ÕB(N14) is closer to the bounds achieved by m_rur and g_rur than a plain

comparison between 12 and 14 would indicate.

Our solver of choice, as it has already been stated, is g_rur. Its perfor-

mance is within a small constant factor with respect to the fastest C and C++

libraries (table 4.8). Of course for an accurate comparison between g_rur and

other solvers one must bear in mind all the comments that were made in section

4.3. The use of Sturm’s algorithm and the isolating interval representation for

real algebraic numbers guarantee exactness that some solvers can not demon-

strate. Moreover, the library slv as a whole, allows a generic platform in maple

where one can work with algorithms that manipulate real algebraic numbers in

isolating interval representation. In addition to that, it is easily extensible in

higher dimensions due to the intuitive (recursive) projection-based solvers for

well-constrained multivariate polynomial systems.

Finally, theorem 2.37 for bivariate sign evaluation signifies the extension of

computations on real solving for polynomials with coefficients in an extension

field. This was shown in lemmas 3.7, 3.8.

5.1 Future Work

Extending theorem 2.37 to an arbitrary number of variables is of foremost con-

cern. The bounds that will be achieved with this extension have a dual impact

on applications. First of all, it will allow the extension of our projection-based

solvers of polynomial systems in higher dimension. Secondly, we will be able to

determine the sign of a uni- or multi-variate polynomial which has coefficients

71 D. I. D iochnos

72 CONCLUSION

in a multiple extension field of Z, assuming that real algebraic numbers are

given in isolating interval representation.

Extending algorithm 3 to a higher dimension is straight-forward. Hence slv

library can be easily augmented to cover projection-based solvers for polynomial

systems of higher dimension. Moreover, extending theorem 2.37 to an arbitrary

number of variables will also allow the computation of real solutions to polyno-

mial systems composed by polynomials with coefficients composed by various

algebraic numbers.

Another idea that needs to be reconsidered is that of multipoint evaluation

based on Fan-In/Fan-Out techniques that were presented in section 2.1.7. We

expect such an application to yield better performance in practice, although our

preliminary analysis does not provide better bounds on our solvers than that

of iterative Horner.

Finally, of extreme importance is to transfer the slv library (and the ex-

tensions mentioned above) in a fast programming language such as C or C++.

However, this project is not as easy as it may sound since optimal (modular)

algorithms for core computations should be implemented as well. To highlight

the problems that need to be tackled, consider that at the moment there is no

open-source modular algorithm for computing the resultant in many variables;

and this lies in the heart of our projection-based solvers of polynomial systems.

D. I. D iochnos

Appendix A

Test-Bed Polynomials

In what follows the polynomial systems that were used for testing the library are

presented. Note that systems Wi differ from the respective Ci only on function

g. In the case of the Wi the derivative of f is computed with respect to variable

x, while on Ci the derivative is computed with respect to variable y.
A.1 Input Polynomials

System R1:
f = 1 + 2x − 2x2y − 5xy + x2 + 3x2y

g = 2 + 6x − 6x2y − 11xy + 4x2 + 5x3y
System R2:

f = x3 + 3x2 + 3x − y2 + 2y − 2
g = 2x + y − 3

System R3:
f = x3 − 3x2 − 3xy + 6x + y3 − 3y2 + 6y − 5

g = x + y − 2
System M1:

f = y2 − x2 + x3
g = y2 − x3 + 2x2 − x

System M2:
f = x4 − 2x2y + y2 + y4 − y3

g = y − 2x2
System M3:

f = x6 + 3x4y2 + 3x2y4 + y6 − 4x2y2
g = y2 − x2 + x3

System M4:
f = x9 − y9 − 1

g = x10 + y10 − 1
System D1:

f = x4 − y4 − 1
g = x5 + y5 − 1

73 D. I. D iochnos

74 TEST-BED POLYNOMIALS

System D2:
f = −312960 − 2640x2 − 4800xy − 2880y2 + 58080x + 58560y

g = −584640 − 20880x2 + 1740xy + 1740y + 274920x − 59160y
System C1:

f = (x3 + x − 1 − xy + 3y − 3y2 + y3)
(x4 + 2x2y2 − 4x2 − y2 + y4)

g = diff(f,y)

System C2:
f = y4 − 6y2x + x2 − 4x2y2 + 24x3

g = diff(f,y)

System C3:
f = ((x − 1)2 + y2 − 2)((x + 1)2 + y2 − 2)

((x − 1)2 + (y + 2)2 − 2)((x + 1)2 + (y + 2)2 − 2)
g = diff(f,y)

System C4:
f = (x2 − 2x − 1 + y2)(x2 + 2x − 1 + y2)

(x2 − 2x + 3 + y2 + 4y)

(100000x2 + 200000x + 299999 + 100000y2 + 400000y)

g = diff(f,y)

System C5:
f = (x4 + 4x3 + 6x2 + 4x + y4 + 4y3 + 6y2 + 4y)

(x4 + 4x3 + 6x2 + 4x + y4 − 4y3 + 6y2 − 4y)

(x4 − 4x3 + 6x2 − 4x + y4 + 4y3 + 6y2 + 4y)

(100000x4 − 400000x3 + 600000x2 − 400000x
−1 + 100000y4 − 400000y3 + 600000y2 − 400000y)

g = diff(f,y)

System W1:
f = (x3 + x − 1 − xy + 3y − 3y2 + y3)

(x4 + 2x2y2 − 4x2 − y2 + y4)
g = diff(f,x)

System W2:
f = y4 − 6y2x + x2 − 4x2y2 + 24x3

g = diff(f,x)

System W3:
f = ((x − 1)2 + y2 − 2)((x + 1)2 + y2 − 2)

((x − 1)2 + (y + 2)2 − 2)((x + 1)2 + (y + 2)2 − 2)
g = diff(f,x)

System W4:
f = (x2 − 2x − 1 + y2)(x2 + 2x − 1 + y2)

(x2 − 2x + 3 + y2 + 4y)

(100000x2 + 200000x + 299999 + 100000y2 + 400000y)

g = diff(f,x)

D. I. D iochnos

A.1 INPUT POLYNOMIALS 75

System W5:
f = (x4 + 4x3 + 6x2 + 4x + y4 + 4y3 + 6y2 + 4y)

(x4 + 4x3 + 6x2 + 4x + y4 − 4y3 + 6y2 − 4y)

(x4 − 4x3 + 6x2 − 4x + y4 + 4y3 + 6y2 + 4y)

(100000x4 − 400000x3 + 600000x2 − 400000x
−1 + 100000y4 − 400000y3 + 600000y2 − 400000y)

g = diff(f,x)

D. I. D iochnos

76 TEST-BED POLYNOMIALS

D. I. D iochnos

Appendix B

Sample Usage

For a more up-to-date coverage of the capabilities of the slv library the reader is
urged to visit http://www.di.uoa.gr/~erga/soft/SLV_index.html which is
the official homepage of the library. slv library requires a definition for variable
LIBPATH which should point on the appropriate path where the source code is
stored in your system. On the following, we assume that slv is located under
/opt/AlgebraicLibs/SLV/. The following is an example for univariate solving:

> LIBPATH := "/opt/AlgebraicLibs/SLV/":
> read cat (LIBPATH, "system.mpl"):
> f := 3*x^3 - x^2 - 6*x + 2:
> sols := SLV:-solveUnivariate(f):
> SLV:-display_1 (sols);

< x^2-2, [-93/64, -45/32], -1.414213568 >
< 3*x-1, [1/3, 1/3], 1/3 >
< x^2-2, [45/32, 93/64], 1.414213568 >

Note, that the multiplicities of the roots do not appear, although they have

been computed. Instead, the third argument of each component in the printed

list is an approximation of the root. However, whenever possible we provide

rational representation of the root.
The following is an example for bivariate solving, where the second root lies

in Z2:
> LIBPATH := "/opt/AlgebraicLibs/SLV/":
> read cat (LIBPATH, "system.mpl"):
> f := 1+2*x+x^2*y-5*x*y+x^2:
> g := 2*x+y-3:
> bivsols := SLV:-solveGRID (f, g):
> SLV:-display_2 (bivsols);

< 2*x^2-12*x+1, [3, 7], 5.915475965 > ,
< x^2+6*x-25, [-2263/256, -35/4], -8.830718995 >

< x-1, [1, 1], 1 > , < x-1, [1, 1], 1 >

< 2*x^2-12*x+1, [3/64, 3/32], .8452400565e-1 > ,
< x^2+6*x-25, [23179/8192, 2899/1024], 2.830943108 >

Again, just like in the case of univariate solving, the third argument that is
printed on the component that describes each algebraic number is an approxi-
mation of the number and not the multiplicity of the root. Similarly, one could
have used one of the other solvers on the above example by referring to their
names, i.e. call the solvers with one of the following commands:

77 D. I. D iochnos

78 SAMPLE USAGE

> bivsols := SLV:-solveMRUR (f, g):
> bivsols := SLV:-solveGRUR (f, g):

For those interested in the numerical values or rough approximations of
the solutions one can get the appropriate output via display_float_1 and
display_float_2 procedures. Hence, for the above examples we have:

> SLV:-display_float_1 (sols);
< -1.4142136 >
< 0.3333333 >
< 1.4142136 >

> SLV:-display_float_2 (bivsols);
[5.9154759, -8.8309519,]
[1.0000000, 1.0000000,]
[0.0845241, 2.8309519,]

Consider the list sols of Ralg numbers that was returned in the univariate
case above; the following are examples on the usage of the signAt function
provided by our Filtered Kernel1:

> FK:-signAt(2*x + 3, sols[1]);
1

> FK:-signAt(x^2*y + 2, sols[3], sols[1]);
-1

Our class on Polynomial Remainder Sequences2 exports functions allow-
ing the computation of Subresultant and Sturm-Habicht sequences. Let f,g ∈
Z[x,y], then you can use any of the following commands in order to compute
the desired PRS:

L := PRS:-StHa (f, g, y):
L := PRS:-StHaByDet (f, g, y):
L := PRS:-subresPRS (f, g, y):
L := PRS:-SubResByDet (f, g, y):

PrintPRS is used for viewing the PRS. For example, let f,g be those from
the example on Bivariate Solving above:

> L := PRS:-subresPRS (f, g, y):
> PRS:-PrintPRS(L);

/ 2 \ 2
\x - 5 x/ y + 1 + 2 x + x

y + 2 x - 3
3 2

2 x - 14 x + 13 x - 1

Finally, the variance of the above sequence evaluated at (1, 0) can be com-
puted by:

> G := PRS:-Eval (L, 1, 0);
G := [4, -1, 0]

> PRS:-var(G);
1

1Located in file: FK.mpl
2Located in file: PRS.mpl

D. I. D iochnos

Bibliography

[Abb06] J. Abbott. Quadratic interval refinement for real roots. In ISSAC

2006, poster presentation, 2006. http://www.dima.unige.it/ ab-

bott/.

[AM88] D. Arnon and S. McCallum. A polynomial time algorithm for the

topological type of a real algebraic curve. JSC, 5:213–236, 1988.

[BK86] E. Brieskorn and H. Knörrer. Plane Algebraic Curves.

Birkhäuser, Basel, 1986.

[BPM06] S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic

Geometry, volume 10 of Algorithms and Computation in Math-

ematics. Springer-Verlag, 2nd edition, 2006.

[Can87] J. Canny. The Complexity of Robot Motion Planning. ACM –

MIT Press Doctoral Dissertation Award Series. MIT Press, Cam-

bridge, MA, 1987.

[Can88] J. Canny. Some algebraic and geometric computations in PSPACE.

In Proc. STOC, pages 460–467, 1988.

[CFPR06] Frédéric Cazals, Jean-Charles Faugère, Marc Pouget, and Fabrice

Rouillier. The implicit structure of ridges of a smooth parametric

surface. Comput. Aided Geom. Des., 23(7):582–598, 2006.

[DET07a] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the complex-

ity of real solving bivariate systems. In International Symposium

on Symbolic and Algebraic Computation, 2007.

[DET07b] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the com-

plexity of real solving bivariate systems. Research Report 6116,

INRIA, 02 2007. https://hal.inria.fr/inria-00129309.

[DSY05] Z. Du, V. Sharma, and C. K. Yap. Amortized bound for root

isolation via Sturm sequences. In D. Wang and L. Zhi, editors,

Int. Workshop on Symbolic Numeric Computing, pages 81–93,

Beijing, China, 2005.

[EKK+05] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt,

and N. Wolpert. A descartes algorithm for polynomials with bit-

stream coefficients, 2005.

79 D. I. D iochnos

80 BIBLIOGRAPHY

[EKW07] A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and exact ge-

ometric analysis of real algebraic plane curves. In International

Symposium on Symbolic and Algebraic Computation, 2007.

[Emi95] I.Z. Emiris. A general solver based on sparse resultants, March

1995. Available also as Tech. Report 3110, INRIA Sophia-Antipolis,

Jan. 1997.

[EMT07] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Alge-

braic Numbers: Complexity Analysis and Experimentation. In

P. Hertling, C. Hoffmann, W. Luther, and N. Revol, editors, Reli-

able Implementations of Real Number Algorithms: Theory and

Practice, LNCS (to appear). Springer Verlag, 2007. also available

in www.inria.fr/rrrt/rr-5897.html.

[EP99] I.Z. Emiris and V.Y. Pan. Applications of FFT. In M.J. Atallah,

editor, Handbook of Algorithms and Theory of Computation,

chapter 17. CRC Press, Boca Raton, Florida, 1999.

[ESY06] A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion

tree bounds for the descartes method. In ISSAC, pages 71–78,

New York, NY, USA, 2006. ACM Press.

[ET05] I. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate poly-

nomial systems. In V. Ganzha and E. Mayr, editors, Proc. Com-

puter Algebra in Scientific Computing (CASC), volume 3718 of

LNCS, pages 150–161. Springer, 2005.

[EV99] I.Z. Emiris and J. Verschelde. How to count efficiently all affine

roots of a polynomial system. Discrete Applied Math., Special

Issue on Comput. Geom., 93(1):21–32, 1999.

[GVEK96] L. González-Vega and M. El Kahoui. An improved upper complex-

ity bound for the topology computation of a real algebraic plane

curve. J. Complexity, 12(4):527–544, 1996.

[GVLRR89] L. González-Vega, H. Lombardi, T. Recio, and M-F. Roy. Sturm-

Habicht Sequence. In ISSAC, pages 136–146, 1989.

[GVN02] L. Gonzalez-Vega and I. Necula. Efficient topology determination

of implicitly defined algebraic plane curves. Computer Aided Ge-

ometric Design, 19(9):719–743, December 2002.

[Klo95] J. Klose. Binary segmentation for multivariate polynomials. J.

Complexity, 11(3):330–343, 1995.

[KSP05] K.H. Ko, T. Sakkalis, and N.M. Patrikalakis. Resolution of multiple

roots of nonlinear polynomial systems. Int. J. of Shape Modeling,

11(1):121–147, 2005.

D. I. D iochnos

BIBLIOGRAPHY 81

[LL91] Y.N. Lakshman and D. Lazard. On the complexity of zero-

dimensional algebraic systems. In T. Mora and C. Traverso,

editors, Effective Methods in Algebraic Geometry, volume 94

of Progress in Mathematics, pages 217–225, Boston, 1991.

Birkhäuser. (Proc. MEGA ’90, Livorno, Italy).

[LR01] T. Lickteig and M-F. Roy. Sylvester-Habicht Sequences and Fast

Cauchy Index Computation. JSC, 31(3):315–341, 2001.

[LRSED00] H. Lombardi, M-F. Roy, and M. Safey El Din. New Structure

Theorem for Subresultants. JSC, 29(4-5):663–689, 2000.

[Mil92] P.S. Milne. On the solution of a set of polynomial equations. In

B. Donald, D. Kapur, and J. Mundy, editors, Symbolic and Nu-

merical Computation for Artificial Intelligence, pages 89–102.

Academic Press, 1992.

[Mou96] B. Mourrain. Enumeration problems in geometry, robotics and vi-

sion. In L. Gonzalez-Vega and T. Recio, editors, Effective Meth-

ods in Algebraic Geometry, Progress in Mathematics. Birkhäuser,

1996. (Proc. MEGA ’94, Santander, Spain).

[Mou99] B. Mourrain. A new criterion for normal form algorithms. In

M. Fossorier, H. Imai, Shu Lin, and A. Poli, editors, Proc.

AAECC, volume 1719 of LNCS, pages 430–443, 1999.

[MP97] B. Mourrain and V.Y. Pan. Solving special polynomial systems by

using structured matrices and algebraic residues. In F. Cucker and

M. Shub, editors, Proc. Workshop on Foundations of Computa-

tional Mathematics, pages 287–304, Berlin, 1997. Springer-Verlag.

[MP98] B. Mourrain and V.Y. Pan. Asymptotic acceleration of solving

polynomial systems. In Proc. ACM Symp. Theory of Comput-

ing, pages 488–496. ACM Press, New York, 1998.

[MP05] B. Mourrain and J-P. Pavone. Subdivision methods for solving

polynomial equations. Technical Report RR-5658, INRIA Sophia-

Antipolis, 2005.

[MPS+06] Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Té-

court, Elias Tsigaridas, and Nicola Wolpert. Algebraic issues in

computational geometry. In Jean-Daniel Boissonnat and Monique

Teillaud, editors, Effective Computational Geometry for Curves

and Surfaces, pages 117–155. Springer-Verlag, 2006.

[MS99] M. Mignotte and D. Stefanescu. Polynomials: An algorithmic

approach. Springer, 1999.

[MT00] B. Mourrain and P. Trébuchet. Solving projective complete in-

tersection faster. In C. Traverso, editor, Proc. Intern. Symp. on

D. I. D iochnos

82 BIBLIOGRAPHY

Symbolic and Algebraic Computation, pages 231–238. New-York,

ACM Press., 2000.

[Neu90] Arnold Neumaier. Interval Methods for Systems of Equations.

Cambridge University Press, 1990.

[Pan02] V.Y. Pan. Univariate polynomials: Nearly optimal algorithms for

numerical factorization and rootfinding. JSC, 33(5):701–733, 2002.

[PRS93] P. Pedersen, M-F. Roy, and A. Szpirglas. Counting real zeros in the

multivariate case. In F. Eyssette and A. Galligo, editors, Compu-

tational Algebraic Geometry, volume 109 of Progress in Math-

ematics, pages 203–224. Birkhäuser, Boston, 1993.

[Rei97] D. Reischert. Asymptotically fast computation of subresultants.

In ISSAC, pages 233–240, 1997.

[Ren89] J. Renegar. On the worst-case arithmetic complexity of approx-

imating zeros of systems of polynomials. SIAM J. Computing,

18:350–370, 1989.

[Rou99] F. Rouillier. Solving zero-dimensional systems through the rational

univariate representation. J. of AAECC, 9(5):433–461, 1999.

[Sak89] T. Sakkalis. Signs of algebraic numbers. Computers and Mathe-

matics, pages 131–134, 1989.

[SF90] T. Sakkalis and R. Farouki. Singular points of algebraic curves.

JSC, 9(4):405–421, 1990.

[TE06] E. P. Tsigaridas and I. Z. Emiris. Univariate polynomial real root

isolation: Continued fractions revisited. In Y. Azar and T. Er-

lebach, editors, In Proc. 14th ESA, volume 4168 of LNCS, pages

817–828, Zurich, Switzerland, 2006. Springer Verlag.

[Tsi06] Elias P. Tsigaridas. Algebraic Algorithms and Applications to

Geometry. PhD thesis, Dept. of Informatics and Telecommunica-

tions, Univarsity of Athens, 2006.

[vHM02] M. van Hoeij and M. Monagan. A modular GCD algorithm over

number fields presented with multiple extensions. In ISSAC, pages

109–116, July 2002.

[vzGG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.

Cambridge Univ. Press, Cambridge, U.K., 2nd edition, 2003.

[vzGL03] J. von zur Gathen and T. Lücking. Subresultants revisited. TCS,

1-3(297):199–239, 2003.

[Wol02] N. Wolpert. An Exact and Efficient Approach for Computing

a Cell in an Arrangement of Quadrics. PhD thesis, MPI fuer

Informatik, October 2002.

D. I. D iochnos

BIBLIOGRAPHY 83

[WS05] N. Wolpert and R. Seidel. On the Exact Computation of the Topol-

ogy of Real Algebraic Curves. In SoCG, pages 107–115. ACM,

2005.

[Yap00] C.K. Yap. Fundamental Problems of Algorithmic Algebra. Ox-

ford University Press, New York, 2000.

D. I. D iochnos

