EoNIKO KAI KATIOAIZSTPIAKO ITANENISTHMIO AGHNON
YXOAH OETIKON EIIISTHMON

Bewpla Ahvoplbuwy xon

= e
2 -
'3 3
- uly ?
= wull

4 [t 3
° 5
e 7]
= =
& dhodqy peodniupiay

MITIAA

IIPOrPAMMA METAIITYXIAKON XIIOYAQN

ArwmAwupatikny Epyaoia:

Real Solving on Algebraic Systems of Small Dimension

Poutntig
Awdyvog Anurteng
Apvdudc Mntedou: 200306

Emprénowv Koadnyntig
Iodvvneg Eulence

Advva
ToOvioc 2007

H napodoa Amdwpatikn Epyacia
ekmovAOnke ota mAaioLo Twv oToLdWY
yla TY amdKTnon Tou
Metantuylakod AtmAwpatog Etdikevong
ot
Moyikn kat Oswpia AAyopiBpwv Kat YTOAOYLOHOU
TIOL QMOVEEL TO

TuRpa Madbnpatikwv

TOU

EOvikou kal Kamtodiotplakov Mavemniotnpiov ABnvwv

Eykp(Bnke tnv 8/3/2007 am EEctaoTikA EmttponA
QMoTEAODHEVN QMY TOUC:

Ovopatemwvupo BaOuida Ymoypagn
1.T. Eplpne AvamAnpwtn¢ KaBnynTtAc TUAHOTOC oo,
(EmPBAETWY)

MANPOPOPLKAC Kat THAEMKOLWVLWY
E.K.TA.

2. H. Kovtooumidg KaOnyntAc TUAKATOC MANPOPOPIKAC cvvvevcverienines
kat TnAemkowwviwy E.K.M.A.

3. E. Pamtng AvamAnpwtAc KaBnynTtAc TUAHOTOC vvvveveviererene,
Mabnuatikwv E.K.M.A.

YNy ouxoYEéveld pou

Evyoplotiec

Elyon mohb yopoluevoc mou elyo TNy TN Vo CUVERYAOTH PE ToV Xadnynth
%. Tévvn Eplen vt Simhopatnd pou epyooio oto L] [AY. To padfpotd tou
xadog enfong xan oL mapatneroelc Tou otic xat’ Wiav culntioec mou elyaye,
elte autéc avagépoviay anoxhelotixd ot nedlo Tne dimhwyatixic pou elte oy,
ATy TAVTOTE Wiot TNYY) EUTVEUCTC %Ol TROCPEQAY YWEO YLa dNULOLEYIXT| SOUAEL.
Emmiéov, o yapaxthpac tou Ya elvar ndvtote mpdtumo yia epéva. Aoviedovtag
dimho Tou éuardo e uropel xavelc vo aoyohelton eviatixd pe Sidpopa TpoAnuaTa
xon vou drayerptleton xploelc ywple dpwe va mopayxwvilel xou TNy TEocwTX Tou
LN To Ayotepo mou unop va xdve efvar var Tov euyopto T ow yia xdde oTiyun
cuvepyaolog pag.

Eniong ot xodnyntég xdpror Hhlog Kouvtooumde xaw Euvdyyehog Pdntne pou
€xovay TNV Ty Vo efval 0TV TELEAT] ETUTEOTY POV XL TOUG EUYUELOTE Yepud
yu autd. Kou ol 800, xuplwg péoa amd to porduotd toug, You npdcPepay PE TIC
ou{nthoelc Toug pal véa tpoontixh og Yéuata alyopiduwy xou dhyefpog avtiotol-
Yo Slyovpa 1 xatavonon dlopdpwy vvoldy dev Yo fTav To (Blo eUxohn ywelc T
oLpfolr) xou Twv V0.

Axobun, Sev unopdd mapd var T éva peydho euyaplotd xan otov Hilo Tovyapida.
O Hloc teleiwve to dildaxtopxd Tou TNy enoy| mou Eexvoldoa 1 JIMAWUATIXT
pou oe éva Véua to omolo otny oucia Pactldtay oe Eva YeYEAo Uépoc oTn BOVAELS
Tov elye xdvel o Brog €we tote. O oulnthoelc Hog ftay Tévtote éva avextipnto
HEGQUOL LOINUATIXWY XU TEOYPUUUATIOHOV 0pol TO TEY0C TOU Yiol TNV OHOPPLd ToU
Beloxetar tlow and Tic e&lowoeic xadoe enlong xou 1 v TEOYEUUUATIGTIXY TOU
eunelplar Lo EQepVE TEVTOTE VoL AOYONOVUAGTE UE TNV XoEdLd TwV TEOBANUETLY
nov avtipetwriooye. Alywe ™ Borleio tov Hhio eivon opgiBoro av 1 Simhwpotind
pou Yo elye tnv (Bia pope.

Puoxd dev umopdd vo mapakeldhe xar TV mapéa téco tou HAila o0 xon twv
unoholnev nadloy oto yeageto. Aev elvar Aiyeg ol @opéc mou ypeeldotnxe vo dou-
Moupe we apyd T VOYTA 0T GYOAH xou 1) Topéd TOUG AAAG oL OL TOREUPERELS
avnouyiec Toug Bondoloay va Eenepactoy mo e0xoAa ToL HTOLA EUTOBLAL AV TUIETW-
nilope. OEAn howndv va mw x éva euyaplotd otouc Xeroto Kovaéy xaw I'idpyo
Tlolpa.

Téhog Yo Hdela vo evyaplothon Fepud xou Toug xadnyntég pou xuploug I'idv-
v MooyoBdxn xoa Koota Anuntpoxénovio nou pou €dwoay v euxoupia vo
portiow oto L[[AY. Méoo and to podiuata tov By ohh xou tewv utohoinwy
oLVadEAPWY Toug oto W] [AV elyo tnv euxoupia va Yvwplon pa mo poadnpotixd
TAELEA TG TANEOPOoEXNS TNV omola Shoxoha ToTew Twe Yo uropoloa va Bpw o
onolodNnote dAAo YetanTuyloxd TedYeauua oty EANESa. Toug elpon mpayuotind
ELYVOUOV.

Anuhtene Awdyvoe,
Ad¥va, 14 Touviou 2007.

[epiAndn

H nopotoa Simhopatind aoyoheiton pe v axpr| (exact) enihuon otouc npory-
poteo0g apLilolg, XaAMS OPLOUEVKOY TOALWYUULXGY cUSTNUdTWwY. To xlpto mpod-
BAnuo etvor 1) eOEECT OAWY TWV TEAYUUTIXGY AVCEWY TOU CUCTAUATOS Xl O UTIONO-
YIopOC TwV ToAAamhoTATwY ot onueia topnc. I to oxond autd napouscidlovra
Teelg aAyOpLduol xou avokleTon 1 Buadixy ToAuThox6TNTE Toug. OL 0o and Toug
Teelg ahyoplluoug emituyydvouy éva gedyua Op(N2) [DET07a, DETO7b], Ze-
YVOVTAS Aoyaplduxols TapdyOVTIES, EVEK TO TEONYOUUEVO XAAUTEQO QEAYUO YToV
O (N™), 6mou 10 N pedooet 1o Podud xon To BuAdLXO UAXOS TWV CUVTIEAEGTEY
TV TOALVOPLY elcddov. H é€odog twv alyoplduwy elvar ou axpPeic ouvtetoy-
uévec twv onuelwv toune, dnhady Swtetayuéva Lebyr mpoyUoTiXwy ahyeBoixdy
oprdudY xou divovton untd oper| dlotnudtwy aroudveong (isolating interval re-
presentation).

To xOpto epyoreio eivan ot axorouvdec vroanolotpouchy (subresultants) xou
Sturm-Habicht, ot onolec e€etdlovian oe noAAéc yetaPAntéc uéow tng TeEYVIXAC
e duadhc xatdtunone. oty eniteun tov ppayudtwy yenotporooivTal Tpd-
OQATOL OMOTEAEGUOTA TOAUTAOXOTNTAS GTNY OMOUOVKOGT TwV LMY TOAWVIULY
plac petoBAntic. Axdun mopouctdletal VEO QpdyHo GTOV UTONOYIOUO TEOGHLOU
noAuwviuou ce dvo petafAntéc. Emlong, o alydprduol enliluvone o 80o yeto-
BIntéc eqoppdlovial xou Yo TOV UTOAOYLOUO TNG Tomohoylog Wac meotyortinic
ahyeBpuic xaumOAng.

Téhoc, 6hoL oL ahydprduol €youv LvAomoindel 6To MAPLE e TOAD evioppuv-
wxd amotehéopata. H vhomoinom yernoiwomotel aprduntxd @iltpa mpoxewwévou
vo emitoOvovton ot uohoytopol 6tav ou pilec elvar xahd daywptopéves. H Bu-
voux e Biphodfune napovoidleton ye) Pordeta melpopdTev cuYXELTIXG UE
Ghhec eupénc Sladedopéves BPhotxec dnwe elvan To FGB/RS, Tpelc ahydprdyuol
¢ SYNAPS (STURM, SUBDIV xou NEWMAC), xou 800 ehouppd ohAAaryHEVES LOppES
Twv INSULATE xou TOP ta omoia unohoyilouv tnv tomohoyio yiog meotyportinic
aAYEBpnc xoumOANC.

Abstract

This thesis is concerned with exact real solving of well-constrained, bivariate
algebraic systems. The main problem is to isolate all real solutions of the
system and determine their intersection multiplicities. Three projection-based
algorithms are presented and their asymptotic bit complexity is analyzed. This
leads to a bound of 63 (N!2) [DET07a, DET07b], when ignoring polylogarithmic
factors, whereas the previous record bound was in 6B(Nl4), where N bounds
the degree and the bitsize of the input polynomials. The output of the solvers
are pairs of real algebraic numbers in isolating interval representation.

The main tool is Sturm-Habicht and subresultant remainder sequences, ex-
tended to several variables by the technique of binary segmentation. In order
to achieve the bounds, recent advances on the complexity of univariate root
isolation are exploited. New bound for the sign evaluation of bivariate poly-
nomials over a pair of real algebraic numbers is also presented. Moreover, the
algorithms for bivariate real solving are applied to compute the topology of real
plane algebraic curves.

Lastly, all algorithms have been implemented in MAPLE with very encour-
aging results. The implementation uses numeric filtering to speed up computa-
tion when the roots are well-separated. We illustrate it by experiments against
well-established libraries such as FGB/RS, 3 SYNAPS solvers (STURM, SUBDIV,
and NEWMAC), and modified versions of INSULATE and TOP which compute the
topology of real plane algebraic curves.

Contents

1 Introduction 7
1.1 Previous Work 8
1.2 Contributions o 8
1.3 Outline e 9

2 Foundations 11
2.1 Notation and Basic Complexity Results 11

2.1.1 Evaluation at a point xg € Z using Horner’'srule 11
2.1.2 Pseudo-Division and Pseudo-Remainder 12
2.1.3 Greatest Common Divisor 13
2.14 Resultant oo 13
2.1.5 Discriminant oo 14
2.1.6 Mahler Bound 15
2.1.7 Classical Fan-In / Fan-Out 15
2.2 Representing Real Algebraic Numbers 17
2.3 Polynomial Remainder Sequences 17
2.3.1 Signed Polynomial Remainder Sequences 19
2.4 Univariate Polynomials. 20
2.4.1 Bounding Roots 20
2.4.2 Root Isolation and Sturm’s algorithm 21
2.4.3 Univariate sign determination 21
2.4.4 Bounding root separation 23
2.5 Multivariate polynomials. 23
2.5.1 Bivariate sign evaluation. oL 24
3 Real Solving of Bivariate Systems 27
3.1 The grID algorithm 27
3.1.1 Deterministic shear and counting multiplicities 29
3.2 TheMm RURalgorithm 30
3.2.1 Projection. 31
3.2.2 The sub-algorithm cOMPUTE K 32
3.2.3 Matching solutions and algorithm FIND 32
3.3 Thece RuURalgorithm 33
3.4 Applications.o 34
3.4.1 Realrootcounting.. 34

1 D. I. Diochnos

CONTENTS

D. I. Diochnos

3.4.2 Simultaneous inequalities in two variables

3.4.3 The complexity of topology.

4 Implementation and Experiments

4.1 Augmenting performance
4.2 Bivariate solving and swv library
4.2.1 Comparing SLv solvers
4.2.2 Decomposing running times
4.2.3 The effect of filtering
4.3 Bivariate solving and other packages
43.1 G_RURand othersolvers
4.4 Computing multiplicities.
44,1 Comparing SLV solvers
4.4.2 Decomposing running times
4.4.3 The effect of filtering

5 Conclusion

5.1 Future Work

A Test-Bed Polynomials

A.1 Input Polynomials

B Sample Usage

List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMDG64@3K+ processor with IGBRAM.

The performance of GRID and G RUR implementations on bi-
variate solving and the speedup that is achieved when choosing
G RUR. .+t vttt e et e e e e e
The performance of M RUR and G RUR implementations on bi-
variate solving and the speedup that is achieved when choosing
G RUR. .+t vttt e et e e e e e
Statistics on the performance of sLv’s algorithms in bivariate solv-

Analyzing the percent of time required for various procedures
in each algorithm. Values in M_RUR refer to sheared systems
(whenever it was necessary). A column about Sorting in the
case of GRID and ¢_RUR isnot shown.

Performance averages over 10 runs in MAPLE 9.5 on a 2GHz

AMDG64@3K+ processor with IGBRAM.
Performance averages over 10 runs in MAPLE 9.5 on a 2GHz

AMDG64@3K+ processor with IGBRAM.
Performance averages over 10 runs in MAPLE 9.5 on a 2GHz

AMDG64@3K+ processor with IGBRAM.
The performance of FGB/RS and ¢ RUR on bivariate solving and

the speedup that is achieved when choosing ¢ _RUR.
The performance of SYNAPS/STURM and G_RUR on bivariate

solving and the speedup that is achieved when choosing G RUR.
The performance of SYNAPS/SUBDIV and G _RUR on bivariate

solving and the speedup that is achieved when choosing G RUR.
The performance of SYNAPS/NEWMAC and G RUR on bivariate

solving and the speedup that is achieved when choosing G RUR.
The performance of INSULATE and G__RUR on bivariate solving

and the speedup that is achieved when choosing G RUR.

The performance of ToP with precision set to 60 digits and ¢ RUR
on bivariate solving and the speedup that is achieved when choos-

INEG RUR.o vttt ittt e e e e

3

52

53

54

56

57

58

D. I. Diochnos

LIST OF TABLES

D. I. Diochnos

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

The performance of TOP with precision set to 500 digits and
G _RUR on bivariate solving and the speedup that is achieved

when choosing G_RUR. 59
Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with IGBRAM. 60

The performance of GRID and G_RUR implementations when
computing multiplicities on the intersections and the speedup
that is achieved when choosing ¢ _RUR. 61
The performance of M _RUR and G RUR implementations when
computing multiplicities on the intersections and the speedup
that is achieved when choosing G _RUR. 62
The performance of GRID and M_RUR implementations when
computing multiplicities on the intersections and the speedup

that is achieved when choosing M RUR. 63
Statistics on the performance of sLv’s algorithms when computing
multiplicities. L L 64

Analyzing the percent of time required for various procedures in
each algorithm. All values refer to the sheared systems (whenever
it was necessary). A column about Sorting in the case of GRID

and G_RURisnotshown. 65
Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with IGBRAM. 66
Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with IGBRAM. 67
Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with IGBRAM. 68
Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with IGBRAM. 69

List of Algorithms

O O b W N

STURM:IUNIVARIATE. o v vt ettt e e e e e 22
UNIVARIATE-SIGN _AT. v v ittt e e 23
BIVARIATE-SIGN AT. o v ittt e e e 25
STURMIGRID. .+t v vt v v i e e e e e e e 28
STURM:M RUR. . . . o vt vt ettt e e e e 31
STURM:IIG _RUR. . « .« v vttt i et e e et e e e e e 33

D. I. Diochnos

6 LIST OF ALGORITHMS

D. I. Diochnos

Chapter 1

Introduction

The problem of well-constrained algebraic system solving is fundamental. How-
ever, most of the algorithms treat the general case or consider solutions over
an algebraically closed field [Can87, LL91, Emi95, EV99, Mou96, MP97, MP98,
Mou99]. This thesis is based on the results presented in [DET07a, DET07b]
and focuses on real solving in the bivariate case in order to provide precise
complexity bounds and study different algorithms in practice. The work can be
considered as an extension to the bivariate solvers presented in [Tsi06]. The idea
is that if someone treats specific cases on their own it is possible to obtain better
bounds than those provided in the general case. This is important in several ap-
plications ranging from nonlinear computational geometry and computer-aided
geometric design to real quantifier elimination and robotics. A question of in-
dependent interest is to compute the topology of a plane real algebraic curve,
which is also studied in this thesis.

The algorithms isolate all common real roots inside non-overlapping ratio-
nal rectangles, and determine the intersection multiplicity per root. The output
is pairs of real algebraic numbers. Three projection-based algorithms are pre-
sented and their asymptotic bit complexity is analyzed. Similarly to other
works, Op means bit complexity and 6, 63 means that we are ignoring poly-
logarithmic factors. This leads to a bound of 6B(N12), whereas the previous
record bound was 6B(N14) [GVEK96, BPMO06], derived from the closely re-
lated problem of computing the topology of real plane algebraic curves, where
N bounds the degree and the bitsize of the input polynomials. The approach
in [GVEK96] depends on Thom'’s encoding for representing the real roots of a
univariate polynomial. Real algebraic numbers in this thesis are represented in
isolating interval representation, since it is more intuitive, it is used in applica-
tions, and the preliminary experiments that were conducted in this thesis (see
also [DET07a, DET07b]) demonstrate that it supports as efficient algorithms as
other representations. In [GVEKO96] it is stated that “isolating intervals provide
worst [sic] bounds”. Moreover, it is widely believed that isolating intervals do
not produce good theoretical results. [DET07a, DET07b]| suggest that isolating
intervals should be re-evaluated.

The main tool is Sturm-Habicht and subresultant remainder sequences, ex-

7

D. I. Diochnos

INTRODUCTION

D. I. Diochnos

tended to several variables by the technique of binary segmentation. Recent
breakthroughs on univariate root isolation are exploited. These have reduced
complexity by 1-3 orders of magnitude to Og(N6) [DSYO05, ESY06, EMTO07].
Note that the complexity that is achieved by numerical methods [Pan02] is
6B(N4) and hence the gap between the two approaches has narrowed. Hence,
new bounds are derived for the sign evaluation of bivariate polynomials over
two real algebraic numbers.

1.1 Previous Work

In [KSPO05], 2 x 2 systems are solved and the multiplicities computed under
the assumption that a generic shear has been obtained, based on [SF90]. In
[Wol02], 2 x 2 systems of bounded degree were studied, obtained as projections
of the arrangement of 3D quadrics. This algorithm is a precursor of ours, see
also [ETO05], except that matching and multiplicity computation was simpler.
In [MPO05], a subdivision algorithm is proposed, exploiting the properties of the
Bernstein basis, with unknown bit complexity, and arithmetic complexity based
on the characteristics of the graphs of the polynomials. For other approaches
based on multivariate Sturm sequences the reader may refer to e.g. [Mil92,
PRS93].

Determining the topology of a real algebraic plane curve is a closely related
problem. The best bound is Og(N*) [BPM06, GVEK96]. In [WS05] three
projections are used; this is implemented in INSULATE, with which we make
several comparisons. Work in [EKWAO07] is based on Sturm-Habicht sequences
and solves the problem of singularities and vertical asymptotes with the Bit-
stream Descartes method [EKK'05]. For an alternative using Grébner bases
the reader may refer to [CFPRO6]. To the best of our knowledge the only result
in topology determination using isolating intervals is [AM88], where a 63 (N39)
bound is proved.

We establish a bound of 63 (N12) using the isolating interval representation.
It seems that the complexity in [GVEK96] could be improved to 6B(N10) us-
ing fast multiplication algorithms, fast algorithms for computations of signed
subresultant sequences and improved bounds for the bitsize of the integers ap-
pearing in computations. To put the bounds that are presented in this thesis
and [DET07a, DETO7b] into perspective, note that the input is O (N?), and
the bitsize of all output isolation points for univariate solving is 6B(N2), and
this is tight.

1.2 Contributions

The main contributions of [DET07a, DET07b] and this thesis are the following:
An improved complexity bound for bivariate sign evaluation (theorem 2.37) is
established, which helps us derive bounds for root counting in an extension
field (lemma 3.7) and for the problem of simultaneous inequalities (corollary
3.10). We study the complexity of bivariate polynomial real solving, using

1.3 OUTLINE

three projection-based algorithms: a straightforward grid method (theorem
3.1), a specialized RUR approach (theorem 3.5), and an improvement of the
latter using fast GCD (theorem 3.6). The first two algorithms also appeared
in [Tsi06]. The best bound is Og(N12); within this bound, root multiplicities
are computed as well. Computing the topology of a real plane algebraic curve
isin 6B(N12) (theorem 3.12). Moreover, a MAPLE package has been developed
which allows computations with real algebraic numbers and for implementing
our algorithms presented also in [DET07a, DETO07b]. It is easy to use and it
integrates seminumerical filtering to speed up computations when the roots are
well-separated. It guarantees exactness and completeness of results; moreover,
the runtimes seem very encouraging. We illustrate it by experiments against
well-established C/C++ libraries FGB/RS and SYNAPS. We also examine MAPLE
libraries INSULATE and TOP, which compute curve topology. Our software is
robust and effective; its runtime is within a small constant factor with respect
to the fastest C/C++ library.

1.3 Outline

The thesis is divided as follows. Chapter 2 presents basic tools and complex-
ity results in univariate solving and on operations of Sturm sequences. Having
formed a solid background chapter 3 presents the three projection based algo-
rithms that are also presented in [DETO07a, DET07b]. Chapter 4 presents exten-
sive experiments that were conducted with the library that was developed in this
thesis. Chapter 5 summarizes the most important results and states the goals
for future work with Sturm sequences and projection based solvers. Chapter A
in the appendix presents the polynomials that were used for testing. Finally,
chapter B in the appendix gives an overview of the commands that are provided
through the library at the moment. Sample executions of the basic commands
are shown and the output is explained. For an up-to-date coverage of the com-
mands available for the library bundled with sample execution and explanation
of each command, the reader is urged to visit the homepage of the swv (Sturm
soLVer) library: http://www.di.uoa.gr/ erga/soft/SLV_index.html.

D. I. Diochnos

10 INTRODUCTION

D. I. Diochnos

Chapter 2

Foundations

This chapter is devoted to basic tools and complexity results that will be used by
the three algorithms for real solving bivariate systems in chapter 3. The heart
of the algorithms relies on Sturm sequences. Therefore most of the results of
this chapter deal with or are based on sequences generation and evaluation on
rational points. Moreover, Fan-In / Fan-Out techniques are described in section
2.1.7 for completeness, although they are not applied in bivariate solving since
at the moment seem not to yield better bounds there.

2.1 Notation and Basic Complexity Results

This section sets the necessary notation and covers basic complexity results
mainly on primitive operations with univariate polynomials.

In what follows O means bit complexity and the 6B—notation means that
we are ignoring polylogarithmic factors. For f € Z[yu, ..., Yk, x|, deg(f) denotes
its total degree, while deg, (f) denotes its degree if we consider it as a univariate
polynomial with respect to x. L (f) bounds the bitsize of the coefficients of
f (including a bit for the sign). We assume L (deg(f)) = O(L (f)). For a €
Q, L (a) is the maximum bitsize of numerator and denominator. Let M (1)
denote the bit complexity of multiplying two integers of bit size at most T and
M (d,T) denote the bit complexity of multiplying two univariate polynomials
of degrees < d and coefficient bit size < T. Using FFT, M (1) = Op(tlg®! 1),
M (d,T) = Og(dtlg® (dT)) = Og(dt), for suitable constants cy,c,. Let f, g €
Z[x], deg(f) = p > q = deg(g) and L (f),L (g) < 7. rem(f, g) and quo(f,g)
denote the Euclidean remainder and quotient, respectively. We compute f; mod
fy in 6B(d(6’f2 + 711)), where d > deg(fi), 4 = deg(f1) — deg(f2), L (fi) = Ti.

2.1.1 Evaluation at a point xy € Z using Horner’s rule

Given f = Zle cix' such that £ (ci) < T and xg € N such that L(xg) = o we
can perform the evaluation with Horner’s rule by applying only d multiplications

11

D. I. Diochnos

12

FOUNDATIONS

D. I. Diochnos

plus d + 1 additions, since Horner’s rule implies
co+xo-(c1+x0-(...(ca1+x0-ca)...)).

More formally, the evaluation Evalgormer(f,Xg) can be described with the fol-
lowing recursive equations:

EvalHorner(f) XO) = h(f) d+ 1, XO)
h(f11+ 11X0)
h(f,O,Xo) = Cq

Ca—i +xo - h(f,1,%0)

The running time is asymptotically bounded by the d multiplications, hence it
is Og(d max{do, t}). The bitsize of the result is L (f(xo)) = O(do + 1).

2.1.2 Pseudo-Division and Pseudo-Remainder

In cases where the coefficients of the polynomials do not belong to a field, then
classical division has to be redefined. This redefinition is the following:

Definition 2.1. Let f,g € Z[x]. There exist unique polynomials Q,R € Z[x]
such that

lead(g)®> 'f = Qg+R

and deg(R) < deg(g) and & = max{l,deg(f) — deg(g)}. Q and R are called
pseudo-quotient and pseudo-remainder respectively. Q s denoted as pquo
and R as prem.

Note that for simplicity in the above definition f,g € Z[x]. However, the
definition still applies for f, g € K[x], for any commutative ring K.

Lemma 2.2. Let f, g € Z[x] such that deg(f) = m > n =deg(g) and L (f) =
0,L(g) =1. Then L (prem(f,g)) = L (pquo (f,g)) = O(dT + o), where b =
m-—n.

Proof. Let f =) ™ aix' and g =) ;" , bix" and consider

bn bn-1 ... bo
bn e b1 bo
M = .
bn bn_1 ... b1 Dbg
Am am—1 ... Am—-—n AGm-m-1 --.- az Ap

The dimension is (m—n+2) x (m+1). The coefficients of the remainder can be
computed as determinants of certain sub-matrices of M [BPM06, Yap00]. By
Bareiss’ algorithm, this also holds for pseudo-remainders.

The coefficient of x» 77 in the remainder, where n — 1 > j > 0, is the
determinant of matrix M;, formed by taking the first m —n + 1 columns of M
and column m —n+ 2 +j.

2.1 NOTATION AND BASIC COMPLEXITY RESULTS

13

Using Hadamard’s inequality on the rows
lcj] = | det M| < ((8+2)2%)°F! . 29(5 + 2):

The coefficients of pquo (f, g) can be computed as principal minors of

aOm aGm—1 --- Om—mn OGm—m-—-1 --- a; Qg
bn bno1 ... Dbg
bn by bo
bn bn_1 ... b1 bog

2.1.3 Greatest Common Divisor

Let X be a unique factorization domain. For example X = Z or X = Z[y]. Then
we can define the greatest common divisor of two polynomials f,g € X[x] as
the polynomial of maximal degree that divides the two polynomials f and g.
This is denoted as ged(f, g).

The greatest common divisor is of extreme importance in what follows. It
allows us to compute the number of common roots between two different poly-
nomials as well as compute the number of different roots of a polynomial f.

Given f,g € X[x] such that deg(f) = di,deg(g) = dz,L(f) < T and
L (g) < T, we can compute the gcd in 6B(d1d2’t). The bitsize of its coeffi-
cients is O(max{d;, d;}T). Due to the importance of the gcd in the computations
that arise in the subsequent algorithms, more details will be discussed at the
appropriate points.

2.1.4 Resultant

Another significant tool that forms the basis for all algorithms that will be
discussed in chapter 3 is the resultant of two polynomials.

Theorem 2.3. Given f,g € K[x] such that f =3 ' aix* and g = 3} ", bjx/
with anby, # 0, there is a unique (up to sign) irreducible polynomial
res(f,g) € Klan,...,aq,bm, ..., bg]l which is zero iff f,g have a common
factor. It is homogeneous and deg(res(f,g)) = deg(f) + deg(g) = n + m.
This polynomaal s called resultant.

Theorem 2.4. Given f, g € K[x] we can compute the resultant res(f, g) via
the Sylvester matriz Syl(f,g). More specifically, we have:

res(f, g) = det(Syl(f, g)).

Definition 2.5 (Sylvester Matrix). The Sylvester matriz of f and g is the

D. I. Diochnos

14

FOUNDATIONS

D. I. Diochnos

(n+m) x (n+m) matriz defined as follows:

an an—1 an_—2 AN PN Qo
an an—1 an—2 . . Qo
an an—1 an—2 Qo
Syl(f, g) = bm bmo1 bmo s bg
bmn bmo1 bmo ... bo
bm bm-o1 bm—2 ... bg

Note that we can compute the resultant in time 6B(nm't), where T is a
bound on the bitsize of the coefficients of f and g.

2.1.5 Discriminant

Definition 2.6. Let f = Zid:O aixt € K[x],d > 2 and py, ..., pa € K its roots.
The discriminant of f is the quantity

disc(f) = a2472 H (pi —p;)°

1<i<j<d
In order to compute the discriminant we need the following theorem:

Theorem 2.7. Given f = Zid:O aixt € X[x],d > 2 we have:

n(n—1

res(f, ') = +andisc(f) = (—1) "= andisc(f)
A useful remark that will be used later on in section 3.1.1 is the following:

Remark 2.8 (Multiplicities). The definition of the discriminant does not
require only different roots of the polynomial. Therefore, if a polynomaial
has a multiple root, then the discriminant must be zero (0). Equivalently,
res(f, ') = 0 if and only if f has multiple roots. If f € Z[x] does not contain
multiple roots, then disc(f) > 1.

An upper bound on the discriminant can be obtained with the following
theorem:

Theorem 2.9. Let f = ZLO aixt € ZIx]. Then:
|disc(f)] < ddM(f)Q(dfl) < ddHng(d_l),

where |||l = Zid:O a? and M(f) is the Mahler bound of f which will be
described in the following paragraph.

2.1 NOTATION AND BASIC COMPLEXITY RESULTS

15

2.1.6 Mahler Bound

Definition 2.10. Let A = Zflzo aixt € C[x]\ C such that
a

d
A= Z aixi = aq H(X — pi)
i=0 i=1

wtth agq # 0. Then, the Mahler bound of A, denoted as M(A) is

d
M(A) = |aql | [max{1, p;]}

j=1
The following identities are presented without proof:

Proposition 2.11. Given A, B € CIx]\C, such that Mahler bound is defined
and deg(A) = d and n € N*, the following hold:

A M(xA(L)) = M(A(x)).
B. M(A -B) =M(A) - M(B).
c. M(A(xK)) = M(A(x)).

2.1.7 Classical Fan-In / Fan-Out

Consider the setting of the previous paragraph but this time assume we want
to evaluate f over a set J of natural numbers such that |J] < d. The obvious
technique would be to apply |J| times Horner’s rule, thereby evaluating f over
all |3 numbers in Og(|3|d max{do,t}) = Op (max{d®c, d®t}). However, we can
do better. This is a classic result [EP99| called Fan-In / Fan-Out and is based
on an extension of the following lemma.

Lemma 2.12. Gwen a,b,c € N, (a mod (bc)) mod b=a mod b.

Proof. a mod (bc) = k — a = jbc+k. a modb =m — a = ib + m.
Therefore, k =ib + m —jbc — k mod b = m. O

Corollary 2.13. The following holds:

p(x) mod (x —xi) = [p(x) mod H(X—Xj) mod (x —xi), i€JCN
jET

Example 2.1. Let f(x) = x® —2x + 1 and assume we want to evaluate the

function on {—2,—1,0,1}. The evaluation consists of two parts.

Fan-In: In the first part we generate products of the form H]- (x—x;). Thus
we start with the polynomials that have as roots the required integers; in
this case we have (x +2), (x + 1), x, (x — 1). In the following step we take
two polynomials each time and generate their product, thereby obtaining
this time (x? + 3x + 2) and (x®> — x). Finally, we compute the product p =
(x2 + 3x +2)(x2 — x) of these two polynomials that occurred. Working this
way we generated a binary tree bottom-up as shown below:

1
\

2 [x*+2x7 —x7—2x |
1 [x*+3x+2] [xF—x |
0 x+2 x+1 X x—1

D. I. Diochnos

16 FOUNDATIONS

Fan-Out: The next step consists of computing the required remainders.
This time we traverse the tree top-down and store the results of each
level. Therefore on the first level we must compute the pseudo-remainder
prem (f,p). Note that f remains intact since deg(p) = 4 > 3 = deg(f).
On each subsequent level we work simailarly; t.e. we compute the pseudo-
remainder between the polynomaial of the previous level and the polynomaial
that is directed by the fan-in tree at the respective position. Hence on level 2
we compute prem (x* — 2x + 1,x? + 3x + 2) = 5x+7 and prem (x* —2x + 1,x? — x) =
—x + 1. Finally, on the third level we compute the pseudo-remainders
prem (5x + 7,x +2) = =3, prem (5x + 7,x+ 1) = 2, prem(—x+ 1,x) = 1, and
prem (—x + 1,x — 1) = 0. The whole process and the new binary tree that has
been formed is shown below:

0 [ox11]
| 1 [Bx+7] 1—x

2 [=3 (2] [O]
Note that the requested values have been computed; i.e. f(—2) = —3,f(—1) =
2,f(0) =1, and f(1) = 0.

Theorem 2.14 (Fan-In / Fan-Out). Let f € Z[x] such that deg(f) < d and
L(f) <. zVe can evaluate f at n < 2™ < d + 1 natural numbers of bitsize
o in time Og(d%o + dT).

Proof. For simplicity assume that d is of the form 2™ —1 and n=d + 1.

Fan-In: Generating [[;(x —x;). We form a binary tree with leaves the

polynomials (x —x;), nodes the various polynomials that arise as products from

the nodes of the previous level, and root the polynomial [[o<;q4(x —x;). If we
n

start counting from 0 at the leaf-level, then at level j we have 75 polynomials

of degree 2. Moreover, the bitsize of these polynomials is (5(()' + 1)o). The
cost for computing the 7+ polynomials of degree 2, where j =1,2,...,1gn, is
Op((n/2)M(21,jo)) = Op(njo), since M(a,b) = O (ab) denotes the cost
of multiplying two polynomials of degree bounded by a and coefficient bitsize
bounded by b. Overall, the complexity for this step is O (nolg®n) = Og (no) =

OB(dG)

Fan-Out: Subdivision. We now traverse the tree in the inverse direction.
Moving from level j to j+ 1 (j = 0,...,(lgn — 1)) we have to perform 2/*!
divisions with remainder with polynomials of degree 77 and respective bitsize
B; = O((lgn+1—j)o). Let’s have a look on the degrees of the resulting poly-
nomials (remainders). At root level the given polynomial f does not change.
Dividing this polynomial with polynomials of degree 7 we obtain polynomials
of degree 5 —1. Similarly, at level j (again counting from 0 at root level) we have
polynomials of degree 55 —1,j = 1,...,lgn. Now, let’s examine their respective
bitsizes. Moving from level 0 to level 1 we perform division on polynomials with
bitsize bg = T (bound for coefficients of f) and ; = O(clgn). Thus, the result
has bitsize by = O(81B1+bg) = O(8,0lgn+7), where ; = (n—1)—-5 =5 —1.
Similarly, when reaching level j we have performed division with polynomials of
bitsize bj_; and 3; which results in b; = O(8;p;+b;j_1). Note that (3; is defined
as B; = O((lgn+1—j)o), j =0,...,1gn. Also, &5 = 37 — 1, j =1,...,lgn.

D. I. Diochnos

2.2 REPRESENTING REAL ALGEBRAIC NUMBERS

17

Hence for allj =0,...,1gn, bj < O(nolgn+1) = O(no+T). As a consequence,
the running time complexity for this phase is:

Ign—1

T ZO 2i+1oa((§ —1)(%)(nolgn+m
&

lgn—1
n

= Os((nolgn+7)))

o

j
= 0Op((nolgn+1)2(n—1))

= Opnc+n1)

since we perform 2! divisions per level j and the degrees are (zr —1) and 37
and the bitsizes are bounded by O(nolgn + 1). O

2.2 Representing Real Algebraic Numbers

We choose to represent a real algebraic number o« € Rq14 by the isolating
interval representation. because it is more intuitive, it facilitates geometric ap-
plications, and turns out to be as efficient as other representations. It includes a
square-free polynomial which vanishes on « and a (rational) interval containing
« and no other root. More particularly, assume that « is the unique root of
the square-free polynomial f in the interval J = [I, Ir], where I, Iz € Q. We
denote this with the following representation:

o~ [f, 7] = [f, [IL, Ir]].

Remark 2.15 (Bolzano). Note that since f is square-free and J is an iso-
lating interval of the unique root o of f in the interval, then f satisfies the
Bolzano criterion in the interval, 1.e. f(Ir) - f(Ir) < 0.

Remark 2.16 (Derivative). Moreover, it is easy to compute the sign of the
derwatiwve of f when evaluating at x = «. Since f 1s square-free, there exists
an wnterval J C J containing « such that f 1s monotone. Moreover, since
the square-free f satisfies the Bolzano criterion in J it does not change sign
on the intervals [IL, &) and («, Ir] by construction. Therefore,

sign(f’(oc)) = sign(sign(f(IR)) — sign(f(IL))).

2.3 Polynomial Remainder Sequences

We now return to the problem of computing the gcd of two polynomials. In
applications the interest relies on the roots (or the factorization) of the gcd.
Hence, it is acceptable to compute the gcd up to similarity. An easy way of
computing the gcd of two polynomials f,g € Z[x] would be to perform suc-
cessive pseudo-divisions (see section 2.1.2), thereby producing the sequence of
(remainder) polynomials

Rp =f,R; = g,Ry = prem (f,g),...,Rx = prem (Rx_2,Rx_1),

D. I. Diochnos

18

FOUNDATIONS

D. I. Diochnos

such that prem (Rx_1,Rx) = 0. Therefore, any sequence that mimics the
above remainder sequence is called Polynomial Remainder Sequence (PRS
for short). Moreover, if the degree at each step drops by 1, we call the sequence
regular (or normal). The variations of the possible sequences rely on different
computations of the parameters k, A of the following identity

Aif = Qg+ kR.

Hence, apart from the Pseudo-Euclidean PRS which is rarely, if ever, used in
practice, other PRSs are the Primitive-PRS which maintains primitive polyno-
mials at each step, as well as the most commonly used in practice Subresultant
PRS and Sturm-Habicht PRS. The Subresultant and the Sturm-Habicht se-
quences avoid the costly computation of the gcd at each step (contrary to the
Primitive-PRS) and the bitsize of the coeflicients of the polynomials that arise
in the sequence increases only linearly contrary to the Pseudo-Euclidean PRS
where the bitsize of the coefficients exhibits exponential growth. The following
example illustrates this fact:

Example 2.2. Given

fo= x®+xf—3x*—3x*+8x*+2x—5
g = 3x84+5x* —4x? —9x+21
we obtain the following Remainder Sequences:

Fuclidean:
—15x* +3x* — 9

15795%2 + 30375x — 59535
1254542875143750x — 1654608338437500
12593338795500743100931141992187500

Primitive Part:
—5x*+x?2—3

13x? + 25x — 49
4663x — 6150
1

Subresultant:
15x* —3x% +9

65x2 + 125x — 245
9326x — 12300
260708

The reader may refer to [Yap00] for a detailed treatment of the Polynomial
Remainder Sequences. We now switch to the class of Polynomial Remainder
Sequences that are actually used in real solving and are the heart of all compu-
tations that are described in this thesis.

2.3 POLYNOMIAL REMAINDER SEQUENCES

19

2.3.1 Signed Polynomial Remainder Sequences

Definition 2.17. [LR01] The signed polynomial remainder sequence of f and
g is denoted by sPRS (f,g) and is a polynomial sequence similar to the

Rp =f,R; =g,Ry = —prem (f,g),...,Rx = —prem (Rx_2,Ri_1),

where prem (Rx_1,Rix) = 0. The quotient sequence contains the {Qiloci<k,
where Qi = pquo (R, Ri11), and the quotient boot is (Qq, ..., Qx_1,Rx).

There is a huge bibliography on signed polynomial remainder sequences (c.f
[BPMO06, vzGG03, Yap00] and references therein). Here, we consider signed
subresultant sequences, which contain polynomials similar to the polynomials
in the signed polynomial remainder sequence; see [vzGLO3| for a unified ap-
proach to subresultants. We consider the signed Subresultant sequences and
Sturm-Habicht sequences (SR(f, g) and StHa(f, g) respectively) of f, g, which
contain polynomials proportional to the polynomials in sPRS (f, g) since they
achieve better bounds on the coefficient bitsize as it was demonstrated in exam-
ple 2.2 and have good specialization properties since they are defined through
determinants. To be more specific, we will consider subresultant sequences, or
Sturm-Habicht sequences, in the case where g is the derivative of f. The reader
may refer to [GVLRR89, BPMO06| for information. We recall here the main
results regarding the computation and the evaluation of such sequences. By
sr(f, g) the sequence of the principal subresultant coefficients, by SQ(f, g) the
corresponding quotient boot, and by SR(f, g; a) the evaluated sequence over
a € Q. If the polynomials are multivariate, then the aforementioned sequences
are considered w.r.t. variable x, except if explicitly stated otherwise.

Proposition 2.18. [LR01, LRSEDO00, Rei97] Assuming p > ¢, SR(f,g)
is computed in 6B(p2q'r) and L (SR;(f,g)) = O(pt). For any f,g, their
quotient boot, any polynomial in SR(f, g), their resultant, and their gcd are
computed 1n Gg(quc).

Lemma 2.19. [LRO1, Re197] Let p > q. We can compute SR(f, g;a), where
a € QU{xoo} and L (a) = 0, in Op(pqT+ q?0+7p20). If f(a) is known, then

the bound becomes Op(pqT + q%0).

Proof. Let SRq+1 = f and SRy = g. For the moment we forget SRq41. We
may assume that SRq_; is computed, since the cost of computing one element
of SR is the same as that of computing SQ(f, g) (proposition 2.18).

We follow Lickteig and Roy [LRO1]. For two polynomials A,B of degree
bounded by D and bit size bounded by L, we can compute SR(A, B)(a), where
L) <L in 63(M (D,L)). In our case D = O(q) and L = O(pT + qo), thus
the total costs is ég(pq’r +q%0).

It remains to compute the evaluation SRq+1(a) = f(a). This can be done
using Horner’s scheme in (7)]3(]9 max{T,po}). Thus, the whole procedure has
complexity

Os(pqt + ¢*0 + p max(t, pa}),

where the term pt is dominated by pqr. O

D. I. Diochnos

20

FOUNDATIONS

D. I. Diochnos

If L(f) =7¢ #7149 = L (g) then T = max{T¢, T4} in the previous theorem.

When q > p, SR(f,g) is f,g,—f,—(g mod (—f))..., thus SR(f, g; a) starts
with a sign variation irrespective of sign(g(a)). If only the sign variations are
needed, there is no need to evaluate g, so prop. 2.19 yields 6B(quc +7p20).

Definition 2.20. Let L denote a list of real numbers. VAR(L) denotes the
number of (possibly modified, see e.g. [BPM06, GVLRR89]) sign varia-
tions.

Corollary 2.21. For any f,g, VAR(SR(f,g;a)) s computed in ég(pq’r +
min{p, q}%c), provided sign(f(a)) is known.

2.4 Univariate Polynomials

The heart of the algorithms that are presented in chapter 3 relies on real solving
univariate polynomials. Starting with some bounds, Sturm’s algorithm will be
briefly presented in the sequel, as well as the algorithm for determining the
sign of a polynomial when evaluated at a real algebraic number. Finally, some
bounds on root separation are going to be presented. These are critical on the
complexity analysis of all the subsequent algorithms .

2.4.1 Bounding Roots

Let f = Zid:O aix! € Z[x]. Then we can obtain a bound for the roots of f with
the following lemmas.

Maximal Bounds
Maximal bounds for roots are presented first.

Lemma 2.22. [Cauchy, Mignotte] Let « be a root of f. Then

Note that the bound in lemma 2.22 is invariant if we multiply the polynomial
x

27
which only changes the roots by a factor of 2, but may change the bound by a
factor of 2¢4. The following bounds do not have this effect.

Ad—1
aq

Qg

ey

|l <1+ max (’

aq

by a constant. However, it behaves badly under the transformation x +—

Lemma 2.23. [Cauchy] Let o be a root of f. Then

1
dag_1 2 dag

|| < max (‘
aq

dag—2
aq

aq

1
)

Lemma 2.24. [Zassenhaus| Let « be a root of f. Then

1 1

2 E d>

aq

Ad—1
aq

aq—2
aq

|| < 2max (

2.4 UNIVARIATE POLYNOMIALS

21

Complexity: All the above bounds can be computed in time O (dT).

Minimal Bounds

The above lemmas 2.22, 2.23, 2.24 can be used for obtaining a bound on the
minimal absolute value of a root of a polynomial (assuming that the constant
coefficient is not zero - which is easy to check). The idea and algorithm for
computing a bound comes from the following remark:

Remark 2.25. Let f = Zid:O aix! € Z[x] and assume that « # 0 is a root of
f. Then it holds that

d
Y @it =0. (2.1)
i=0

Consider the reciprocal polynomial g(x) = x4f(1) = >3 aixd i Then by
equation (2.1) and the hypothesis it follows that & 1s a root of g. Hence,
obtaining an upper bound on the roots of g we actually obtain a lower
bound on the roots of f.

2.4.2 Root Isolation and Sturm’s algorithm

Algorithm 1 presents Sturm’s algorithm for computing isolating intervals of
the roots of a polynomial f € Z[x]. For simplicity, the input polynomial f is
square-free.

Proposition 2.26. [DSY05, ESY06, EMTO07] Let f € Z[x] have degree p
and bitsize t¢. We compute the isolating interval representation of its
real Toots and their multiplicities in Og(p® + p*12). The endpoints of the
1solating intervals have bitsize O(p? +p1¢) and L (freq) = O(p + T¢).

There is no need to evaluate f,..q over the interval’s endpoints because its
sign is known; moreover, f,eq(a)frea(b) < 0.

2.4.3 Univariate sign determination

ll2

Corollary 2.27. [BPM06, EMTO07] Given a real algebraic number «
(f,[a,b]), where L (a) = L (b) = O(pt¢), and g € Z[x], such that deg(g) =
q,L (g) =14, we compute sign(g(«)) in bit complexity 6B(pq max{T¢, Tg} +
pmin{p, q}?7¢).

Proof. Assume that « is not a common root of f and g in [a, b], then it is known
that
sign g(«) = [VAR(SR(f, g;a)) — VAR(SR(f, g; b)) sign(f’(et)).

Actually the previous relation holds in a more general context, when f doma-
nates g, see [Yap00]| for details. Notice that sign(f’(x)) = sign(f(b))—sign(f(b)),
which is known from the real root isolation process. The complexity of the oper-
ation is dominated by the computation of VAR(SR(f, g;a)) and VAR(SR(f, g; b)),
i.e. we compute SQ and evaluate it on a and b.

D. I. Diochnos

22

FOUNDATIONS

D. I. Diochnos

Algorithm 1: STURM::UNIVARIATE.
Input: A square-free polynomial f € Z[x]
Output: A list of isolating intervals of the roots of f.

1 S «— SR(f,f');

2 N «— VAR(S; —0o0) — VAR(S; +o0);

3 if N =0 then return 0;

4 if N =1 then return [—oo, +00];

5 M «— Maximal_Bound(f);

6 Intervals «—— 0;

7 Stack «+— {[-M, M, VAR(S, —o0), VAR(S, +o0)]};

8 while Stack # () do

9 [a, b, Vq, Vel «—— Pop(Stack);
10 c = atb,
11 if f(c) =0 then
12 Intervals «— Intervals U {[c, c]};
13 M «— Minimal_Bound(Subst(x =x —c¢, f) /x);
14 Veq «— VAR(S; ¢+ M);
15 Ve «— Vey — 1,
16 if Vo = V._ + 1 then Intervals «—— Intervals U {[a,c — M]};
17 if Vo > V._ + 1 then Push(Stack, {[a,c — M, Vq, V._1D;
18 if Vp = Ve, — 1 then Intervals «— Intervals U {[c + M, b]};
19 if Vy < Ve — 1 then Push(Stack, {[c + M, b, Vo, Vu]D);
20 else
21 V. «— VAR(S; ¢);
22 if Vo = V. + 1 then Intervals «—— Intervals U {[q, c]};
23 if Vo > V. + 1 then Push(Stack, {[a,c, Vg4, VcID;
24 if Vy, =V, — 1 then Intervals +—— Intervals U {[c, b]};
25 if Vi, < V. — 1 then Push(Stack, {[c, b, V¢, Vul});
26 return Intervals ;

As explained above, there is no need to evaluate the polynomial of the biggest
degree, i.e. the first (and the second if p < q) of SR(f,g) over a and b. Thus
the complexity is that of corollary 2.21, viz.

O (pq max{tr, T4} + min(p, 4}*p 7r)

Thus the complexity of the operation is two times the complexity of the
evaluation of the sequence over the endpoints of the isolating interval.

If o is a common root of f and g, or if f and g are not relative prime, then
their gecd, which is the last non-zero polynomial in SR(f, g) is not a constant.
Hence, we evaluate SR on a and b, we check if the last polynomial is not a
constant and if it changes sign on a and b. If this is the case, then sign(g(«)) = 0.
Otherwise we proceed as above. [l

2.5 MULTIVARIATE POLYNOMIALS

23

Algorithm 2: UNIVARIATE-SIGN AT.
Input: A Polynomial g € Z[x] and « = (f, [a, b]) € Rag.
Output: The sign of g(«).

1 PRS «— SR(f,g);

2 vp «— VAR(SR(PRS; a));

3 vg «— VAR(SR(PRS; b));

4 return Sign([vi —vg] - [f'(a)]);

2.4.4 Bounding root separation

Theorem 2.28 (Davenport-Mahler-Mignotte). [TE06] Let A € Z[X], with
deg(A) =d and L (A) = T, where A(0) #0. Let Q be any set of k pairs of
indices (1,j) such that 1 <i<j < d and let the non-zero (complez) roots
of A be 0 < |yil <lyal <--- <lyal. Then

WA > [T hve—vil =255 MA) 4 Visc(A),
(ij)eQ

Proposition 2.26 expresses the state-of-the-art in univariate root isolation. It
relies on the previous propositions for fast computation of polynomial sequences,
and extensions of the Davenport-Mahler bound on aggregate root separation.
The following lemma, derived from Davenport-Mahler’s bound, is crucial.

Lemma 2.29 (Aggregate separation). Given f € Z[x], the sum of the bitsize
of all isolating points of the real roots of f is O(p? +pT¢).

Proof. Let there be r < p real roots. The isolating point between two consecu-

tive real roots «j, &1 is of magnitude at most 1o — xj41] := £A;. Thus their
product is 2% Hj A;. Using the Davenport-Mahler-Mignotte bound by theorem
2.28, [[; 45 > 2-0(P*+PT1) and we take logarithms. O

Corollary 2.30 (Intermediate Points). Given the list of real Toots of f in iso-
lating interval representation, we compute rational numbers between them
in Og(p? + pTe).

2.5 Multivariate polynomials

We discuss multivariate polynomials, using binary segmentation [Rei97]. An al-
ternative approach could be [Klo95]. Let f, g € (Zly1, ..., yxl)[x] with deg, (f) =
p > q = deg,(g), degy, (f) < di and deg,, (g) < di. Let d =]_[1?:1 d; and
L (f),L(g) < 7. The yi-degree of every polynomial in SR(f, g), is bounded by
deg,, (res(f,g)) < (p + q)di. Thus, the homomorphism { : Z[y1,...,yx] —
Zly], where

p+q)ds

k—1
Y — Y, Yya — y(y -~y Yk y(p+q) d, dk—l’

allows us to decode res(\(f),P(g)) = W(res(f,g)) and obtain res(f,g). The
same holds for every polynomial in SR(f,g). Now ¥ (f),{(g) € (Z[y])[x] have

D. I. Diochnos

24

FOUNDATIONS

D. I. Diochnos

y—degreed = (p+q)*1d; - - - dy since, in the worst case, f or g hold a monomial
such as yfl y2d2 .. .ygk.
Thus, deg, (res(¥(f), ¥(g))) < (p + q)*d.

Proposition 2.31. [Rez’QZ] We can compute SQ(f,g), any polynomial in
SR(f,g), and res(f,g) in Og(q(p + q)k*+tdr).

Lemma 2.32. SR(f, g) is computed in Og(q(p + q)+2d1).

Proof. Every polynomial in SR(f, g) has coefficients of magnitude bounded by
2¢(P+a)T for a suitable constant ¢, assuming T > lg(d). Consider the map x :
Zly] — Z, such that y — 2/¢P+a)T1 "and let ¢ =P o x: Zly1, Yz ..., Ux] — Z.
Then L (¢(f)),L (d(g)) < c(p + q)* dt. Now apply proposition 2.18. O

Theorem 2.33. We can evaluate SR(f,g) at x = «, where a € QU {0} and
L(a) =0, in Op(q(p + q)*"" dmax{t, 0}).

Proof. By proposition 2.31 SQ(f,g) can be computed and then evaluated it
over a using binary segmentation in 6B(q(p + g)**'d). For this we need to
bound the bitsize of the resulting polynomials.

The polynomials in SR(f,g) have total degree in yi,...,yx bounded by
(p+4q) Z};l d; and coefficient bitsize bounded by (p + q)t. With respect to x,
the polynomials in SR(f, g) have degrees in O(p), so substitution x = a yields
values of size O (po). After the evaluation we obtain polynomialsin Z[yy, - - ., Ykl
with coefficient bitsize bounded by max{(p + q)t,po} < (p + q) max{T, o}.

Consider X : Z[y] — Z, such that y — 2[c(pra)maxinoll " for 5 suitable
constant c. Apply the map ¢ = P ox to f,g. Now, L (d(f)),L (Pp(g)) <
cd(p + q)*max{T, o). By proposition 2.19, the evaluation costs Og(q(p +
q)**'d max{, o}). O

We obtain the following corollaries for f, g € (Z[y])[x], such that deg, (f) = p,
q = deg, (g), deg,(f),deg,(g) < dand L (f),L(g) < T

Corollary 2.34. We compute SR(f, g) in O 8(pq(p+q)2dt). For any polyno-
maal SR;(f, g) in SR(f, g), deg, (SR;(f, g)) = O(max{p, q}), deg, (SR;(f, g)) =
O(max{p, q}d), and also L (SR;(f, g)) = O(max{p, q}7).

Corollary 2.35. We compute SQ(f,g), any polynomial in SR(f,g), and
res(f, g) i Op(pqmax{p, q}dT).

Corollary 2.36. We compute SR(f,g; a), where a € QU{co} and L (a) = o,
m 6B(pq max{p, q}d max{t, o}). For the polynomials SR;(f,g; a) € Z[y], ez-
cept for f, g, we have deg, (SR;(f,g; a)) = O((p+q)d) and L (SR;(f,g; a)) =
O(max{p, 4}t + min{p, q}o).

2.5.1 Bivariate sign evaluation

We now reduce the computation of the sign of f € Z[x,y] over («,) € Rfﬂg

to that over several points in Q2. Let deg, (f) = deg, (f) = n1, £ (f) = o and
o = (A, [a1,az]), B = (B, [b1,b2]), where A, B € Z[X], deg(A) = deg(B) = na,

2.5 MULTIVARIATE POLYNOMIALS

25

Algorithm 3: BIVARIATE-SIGN AT.
Input: o =[A,[Ar,ARr]],p = [B,[Br,Brl] and f € R[x,y]; A,B
square-free.

Output: sign(f(«x, B))

PRS «+— SR(A, f,x);

PRS; «— (PRS(A1));
for i +— 1 to |PRS| do

| PRS;[i] = SignAt(PRS;[i], B);
VL «+— VAR(PRS;);

PRS; «—— (PRS(A1));
for i +— 1 to |PRS| do

| PRS;[i] = SignAt(PRS, i, B);

9 Vg «—— VAR(PRS,);
10 return sign((Vy — VR) - A/(«));

BWw N -

® N o w

L(A) =L (B) = 0. We assume n; < ng, which is relevant below. Algorithm
3 presents the whole procedure in pseudocode, see [Sak89], and generalizes the
univariate case, e.g. [EMTO7, Yap00| (algorithm 2). One has to obtain the sign
variations of SR(A, F; a;), respectively SR(A, F; ay) and substract them. After
the evaluation of the sequence on a;, respectively a,, polynomials in Z[y] occur.
In order to obtain the sign variations, the sign of these polynomials over 3 has
to be computed. This is performed with algorithm 2. For A, respectively B, we
assume that we know their values on aj, as, respectively b, b,.

Theorem 2.37 (Bivariate sign at). Let f € Z[x,y] such that deg,(f) =
deg, (f) =y and L (f) = o and two real algebraic numbers « = (A,Jy) =
[a1,a2], B = (B,Jg) = [b1,bs] where A,B € Z[X], deg(A) = deg(B) = ny,
L(A)=L(B) =0 and J«,Js € Q*>. Then, one computes the sign of f eval-
uated over x and [3 with complezxity 63(71% n3 o), assuming that n; < n,.

Proof. First, we compute SQ, (A, f) so as to evaluate SR(A, f) on the endpoints
of «, in Og(n2n2o) (corollary 2.35).

We compute SR(A, f;a;). The first polynomial in the sequence is A, but we
already know its value on a;. This computation costs (53 (n?n3 o) by corollary
2.36 with q = n;, p = ny, d = ny, T = 0, and 0 = n,o, where the latter
corresponds to the bitsize of the endpoints. After the evaluation we obtain a
list L;, which contains O(n;) polynomials, say h € Z[y], such that deg(h) =
O(niny). To bound the bitsize, notice that the polynomials in SR(f, g) are of
degrees O(ny) with respect to x and of bitsize O(n,0). After we evaluate on aj,
L (f) = O(ninyo).

For each h € L; we compute its sign over 3 and count the sign variations.
We could apply directly corollary 2.27, but we can do better. If deg(h) > n,
then SR(B,h) = (B,h,—B, g = —prem(h,—B),...). We start the evalua-
tions at g: it is computed in 6B(n§n§0) (proposition 2.18), deg(g) = O(ns)
and L (g) = O(ninzo). Thus, we evaluate SR(—B, g;a;) in 6B(n1n30), by

D. I. Diochnos

26

FOUNDATIONS

D. I. Diochnos

corollary 2.27, with p = q = ng, Th = 0, T = nynyo. If deg(h) < n, the
complexity is dominated. Since we perform O(n;) such evaluations, all of them
cost Op(n2ndo).

We repeat for the other endpoint of «, subtract the sign variations, and
multiply by sign(A’(a)), which is known from the process that isolated . If
the last sign in the two sequences is alternating, then sign(f(«, $)) = 0. O

Chapter 3

Real Solving of Bivariate
Systems

This chapter studies algorithms and their complexity for real solving the system
f =g =0, for given f,g € Z[x,y]. For simplicity, let f, g be relatively prime
polynomials. This hypothesis is not restrictive because it can be verified and
if it does not hold, it can be imposed within the same asymptotic complexity.
The main idea is to project the roots on the x and y axes, to compute the
coordinates of the real solutions and somehow to match them. The difference
between the algorithms is the way they match solutions. Projection is performed
with resultants and signed polynomial remainder sequences. The output of the
algorithms is a list with pairs of real algebraic numbers and, if possible, the
multiplicities of the solutions. In what follows d bounds the total degree of f
and g and o bounds the bitsize of their respective coefficients.

3.1 The grid algorithm

The first algorithm that is studied is named GRID and is straightforward, see also
[ET05, Wol02]. The first step consists of computing the x— and y—coordinates
of the real solutions, as real roots of the resultants resy(f,g) and resy(f, g).
Then, matching is performed using the algorithm sieN_ AT (th. 2.37) by testing
all rectangles in this grid. The output is a list of pairs of real algebraic numbers
represented in isolating interval representation. The algorithm also outputs ra-
tional axis-aligned rectangles, guaranteed to contain a single root of the system.
Algorithm 4 presents the solver in pseudocode.

Surprisingly, the first time that the algorithm’s complexity was studied
seems to be [DETO07a, DET07b]. The disadvantage of the algorithm is that
exact implementation of sicN AT (algorithm 3) is not efficient. However, its
simplicity makes it attractive. The algorithm requires no genericity assumption
on the input. Moreover, a generic shear that brings the system to generic posi-
tion in order to compute the multiplicities within the same complexity bound
will be discussed.

27

D. I. Diochnos

28

REAL SOLVING OF BIVARIATE SYSTEMS

D. I. Diochnos

Algorithm 4: STURM::GRID.
Input: f € Z[x,yl, g € Z[x, yl.
Output: A list S of solutions (x,y) € Rqig X Raig.
X «— Solve(Resultant(f, g, ¥));
Y «— Solve (Resultant (f, g, z));
S «— 0;
foreach x € X do
foreach y € Y do
if BivSignAt(f, z, y) =0 and BivSignAt(g, z, y) = 0 then
L | S—SU(xv);

B I = I | B N

The algorithm allows the use of heuristics. In particular, we may exploit
easily computed bounds on the number of roots, such as the Mixed Volume or
count the roots with a given abscissa « by lemma 3.7.

Theorem 3.1. Isolating all real roots of system f = g = 0 using GRID has
complezity Og(d'* + d'30), provided o = O(d?).

Proof. First we compute the resultant of f and g w.r.t. variable y, i.e. R. The
complexity is Og(d%0), using corollary 2.35. Notice that deg(Ry) = O(N?2) and
L (Ryx) = O(N o). Applying proposition 2.26 help us isolate its real roots in time
Og(d*? +d'%6?) and store them in list L. This complexity shall be dominated.
The same procedure is done on y axis and the roots are stored this time in list
Ly.

The representation of the real algebraic numbers that we have computed
contains the square-free part of Ry, or R,. In both cases the bitsize of the
polynomial is O(d? + d o) [BPMO06, EMTO07]. Moreover, the isolating intervals
have endpoints of size O(d* + d3 o).

Let T, respectively ry be the number of real roots of the corresponding
resultants. Both are bounded by ©O(d?). We form all possible pairs of real
algebraic numbers from lists L, and L, and check for every such pair if both
f and g polynomials vanish. This check is performed with bivariate SIGN AT
function. Applying theorem 2.37 with n; = d, ny = d? and o = d%2+do the cost
of each evaluation is: Og(d'® + d°c). Overall, we have Ty Ty = 0(d*) different
pairs. O

The above algorithm suffices for bivariate solving. Another interesting prob-
lem is the the multiplicity of a root (x, 3) € Rqig x Rq1g of the system. Refer
to [BK86, sec.I1.6] for its definition as the exponent of factor (fx — ary) in the
resultant of the (homogenized) polynomials, under certain assumptions.

The algorithm reduces to bivariate sign determination and does not require
bivariate factorization. For this purpose, resultant is used, since it allows for
multiplicities to “project”. Previous work includes [GVEK96, SF90, WS05]. The
sum of multiplicities of all roots («, §;) equals the multiplicity of x = « in the
respective resultant. It is possible to apply a shear transform to the coordinate

3.1 THE GRID ALGORITHM

29

frame so as to ensure that different roots project to different points on the
X-axis.

3.1.1 Deterministic shear and counting multiplicities

One can determine an adequate (horizontal) shear such that

Ri(x) = resy (f(x + ty,y), g(x + ty,y)), (3.1)

when t — tg € Z, has simple roots corresponding to the projections of the com-
mon roots of the system f(x,y) = g(x,y) = 0 and the degree of the polynomials
remains the same. Notice that this shear does not affect inherently multiple
roots, which exist independently of the reference frame. R,.q € (Z[t])[x] is the
squarefree part of the resultant, as an element of UFD (Z[t])[x], and its discrim-
inant, with respect to x, is A € Z[t]. Then tg must be such that A(tg) # 0.

Example 3.1. Take the circle f = (x — 1)?2 +y? — 1, and the double line
g = y? with two double roots (0,0),(2,0). We shall project roots on the
y-axis under the vertical shear:

f(x,y +tx) = x2(1 4+ t2) + 2x(ty — 1) +v?, g(x,y + tx) =y + 2txy + (tx)2.

Then, R(y) = y2[y?(t* + 1) + 2ty + t?]. The square-free part is Ryeq(y) =
yy2(t* + 1) + 2t3y + t?] and A(t) = t8(t* + 1)(3t* +4). Clearly, one must
avoid the value t =0, but any other integer is valid.

Lemma 3.2. Computing to € Z, such that the corresponding shear is suf-
ficiently generic, has complexity Og(d® + d°c).

Proof. Suppose tg is such that the degree does not change. It suffices to find,
among d* integer numbers, one that does not make A vanish; note that all
candidate values are of bitsize O(logd).

We perform the substitution (x,y) — (x+ty,y) to f and g and we compute
the resultant w.r.t. y in 6B(d50'), which is a polynomial in Z[t, x], of degree
O(d?) and bitsize 6((‘10‘). We consider this polynomial as univariate in x and
we compute first its square-free part, and then the discriminant of its square-free
part. Both operations cost Og(d!® 4+ d°¢) and the discriminant is a polynomial
in Z[t] of degree O(d*) and bitsize O(d* + d3o).

We can evaluate the discriminant over all the first d* positive integers, in
63 (d®+d30), using the multipoint evaluation algorithm. Among these integers,
there is at least one that is not a root of the discriminant. O

The idea here is to use explicit candidate values of tq right from the start. In
practice, the above complexity becomes 63(d5 0), because a constant number
of tries or a random value will typically suffice. For an alternative approach see
[GVNO2], also [BPMO6]. It is straightforward to compute the multiplicities of
the sheared system. Then, we need to match the latter with the roots of the
original system, which is nontrivial in practice.

D. I. Diochnos

30

REAL SOLVING OF BIVARIATE SYSTEMS

D. I. Diochnos

Theorem 3.3. Consider the setting of th. 3.1. Having isolated all real roots
of f = g =0, 1t is possible to determine their multiplicities in Og(d*2+dto+
d%q?).

Proof. By the previous lemma, t € Z is determined, with £ (t) = O(logd),
in Og(d® + d°¢). Using this value, we isolate all the real roots of Ry(x),
defined in (3.1), and determine their multiplicities in Op(d!? + d%¢?). Let
pj = (Re(x), [rj,7{]) be the real roots, for j =0,...,7— 1.

By assumption, we have already isolated the roots of the system, denoted
by (a4, Bi) € lay, afl x [by,b!], where ai,a,b;,b{ € Q fori =0,...,71—1.
It remains to match each pair (o, 3i) to a unique p; by determining function
¢:{0,...,7 =1} = {0,...,7— 1}, such that ¢(i) =j iff (p;, Bi) € R?,, is a root
of the sheared system and o = p; + tf3;.

Let [cq,c/] = [ai, al] — t[by, b{] € Q2. These intervals may be overlapping.
Since the endpoints have bitsize O(d* + d®0), the intervals [ci,c{] are sorted
in 63((16 + d%0). The same complexity bounds the operation of merging this
interval list with the list of intervals [rj, rj’ |. If there exist more than one [c;,]
overlapping with some [rj, rj’], some subdivision steps are required so that the
intervals reach the bitsize of sj, where 2% bounds the separation distance asso-
ciated to the j-th root. By proposition 2.29, Y ; s; = O(d* + d0).

Our analysis resembles that of [EMTO7] for proving proposition 2.26. The
total number of steps is O()_; si) = O(d* + d30), each requiring an evaluation
of R(x) over a endpoint of size < s;. This evaluation costs Oy (d%s;), leading to
an overall cost of 63 (d® + d70) per level of the tree of subdivisions. Hence the
overall complexity is bounded by Og(d!? + d'lo + d°0?). O

3.2 The m_rur algorithm

M _RUR assumes that the polynomials are in Generic Position: different roots
project to different x-coordinates and leading coefficients w.r.t. y have no com-
mon real roots.

Proposition 3.4. [GVEK96, BPMO06] Let f,g be co-prime polynomzals, in
generic position. If SR;j(x,y) = srj(x)y’ + stj;_1(x)y/ ! +--- +s150(x), and
(x,B) is a real solution of the system f = g = 0, then there exists k, such

that sto(ot) = -+ = sty_1 (&) =0, sri(a) # 0 and p = —L el

This expresses the ordinate of a solution in a Rational Univariate Repre-
sentation (RUR) of the abscissa. The RUR applies to multivariate algebraic
systems [Ren89, Can88, Rou99, BPMO06|; it generalizes the primitive element
method by Kronecker. Here we adapt it to small-dimensional systems.

M_RUR is similar to [GVN02, GVEK96]. However, their algorithm computes
only a RUR using proposition 3.4, so the representation of the ordinates remains
implicit. Often, this representation is not sufficient (we can always compute the
minimal polynomial of the roots, but this is highly inefficient). We modified
the algorithm [ET05], so that the output includes isolating rectangles, hence the
name modified-RUR (M_ RUR). The most important difference with [GVEK96]

3.2 THE M_RUR ALGORITHM

31

is that they represent algebraic numbers by Thom’s encoding while the approach
of this thesis is isolating intervals, which were thought of having high theoretical
complexity. It has been proved that this is not the case [DET07a, DET07b].

The pseudo-code of M_RUR is in algorithm 5. Initially, projection is

Algorithm 5: STURM::M RUR.
Input: f € Z[x,yl, g € Z[x,y].
Output: A list S of solutions (x,y) € Raig X Raig-
1 X «— Solve(Resultant(f, g, y));
2 Y «— Solve(Resultant(f, g, z));
3 S« 0
4 PRS «— StHa (f, g,y);
5 Q «— IntermediatePoints(Y);
6 K «— Compute_K(PRS,XD);
7 for i +<— 1 to |X| do
8 | S SU(Xy, Find(Xi, K, PRS, Y,Q))

performed on the x and the y-axis; for each real solution on the x-axis its
ordinate is computed using proposition 3.4. Using corollary 2.34 the sequence
SR(f,g) w.r.t. y is computed in Og(d® o) time.

3.2.1 Projection.

This is similar to GRID. By corollary 2.35 the computation of Ry has complexity
63(d4 0). An alternative approach would be to compute R, as the first non-
vanishing polynomial, counting from the end, of the sequence SR(f, g), since this
step is not the bottleneck of the algorithm. Now R, € Z[X], deg(R,) = O(d?),
and L (Ry) = O(do). By proposition 2.26 its roots are isolated in 63(d12 +
d'® ¢?). The representation contains the square-free part of R, with bitsize
O(d?+d o), whereas the intervals’ endpoints are rationals with aggregate bitsize
O(d® o). Let the roots be

o <oy << Omo1 < O (3.2)

where m < 2d? is the number of real roots of R,. The multiplicity of «; is the
multiplicity of (o, 35) as a solution of the system, ;5 € Raig.

For projection on the y-axis a similar procedure is performed. The real
roots of Ry are in list L, and their multiplicities in M. We compute rational
numbers ¢; between the real roots in 63(d5 0); the q; have aggregate bitsize
0(d® o):

do < P1 <1 <Pz < - <Peo1 < de—1 < PBe <, (3:3)
where { < 2d?. Every B; corresponds to a unique «;. The multiplicity of o; as

a root of Ry is the multiplicity of a real solution of the system, that has it as
abscissa.

D. I. Diochnos

32

REAL SOLVING OF BIVARIATE SYSTEMS

D. I. Diochnos

3.2.2 The sub-algorithm compute k

In order to apply proposition 3.4, for every «; one must compute k € N* such
the assumptions of the theorem are fulfilled; this is possible by genericity. Let

_ sto(x)
~ ged(sro(x), srp(x))”

Do (x)

Following [MPS*06, GVEK96] one can define recursively the polynomials Ij(x):

O1(X) = ged(@o(X),sr1(X)) no= 9%
Dy(X) = ged(D1(X),sra2(X)) 2 = EII;;EQ
O 1(X) = ged(®n 3(X),sr0 1(X) Moy = L9

Now sri(x) € Z[x] is the principal subresultant coefficient of SR; € (Z[x])[y], and
@q(x) is the square-free part of R, = srg(x). By construction, ®q(x) = Hj I5(x)
and gecd(l3,13) = 1, if j # 1. Hence every o4 is a root of a unique I and
the latter switches sign at the interval’s endpoints. Then, sro(x) = sri(x) =
0,...,sr5(c) =0, srjyq1 () # 0; thus k=j + 1.

It holds that deg(®q) = O(d?) and L (®y) = O(d? + do). Moreover,
D ;deg(ly) = 3 ;8 = O(d?) and, by Mignotte’s bound [MS99], L (T}) =
O(d? + do). To compute the factorization ®@g(x) =]_[]- lj(x) as a product
of the srj(x), we perform O(d) gcd computations of polynomials of degree
O(d?) and bitsize 6(d2 + do). By proposition 2.18 each gcd computation costs
Op(d® + d° o) and thus the overall cost is Og(d7 + d° o).

By lemma 2.29 the sign of the I} over all the O(d?) isolating endpoints of
the o, which have aggregate bitsize O(d* +d? o) can be computed in O (8;d*+
8;d*c+67(d* +d’0)), using Horner’s rule. Summing over all §;, the complexity

is Op(d® + d”c). Thus the overall complexity is Og(d® + d8 o).

3.2.3 Matching solutions and algorithm find

The process takes a real root of Ry and computes ordinate 3 of the corresponding
root of the system. For some real root « of R, one represents the ordinate
Istiea(a) _ As(a)

A(a):_k ste(o) As(a)

The generic position assumption guarantees that there is a unique 35, in Py,
such that f; = A(«), where 1 <j < (. By 3.3 one can compute j such that:

q; < A((X) = — = ﬁj < qj+1-

Thus j can be computed by binary search in O(lgf) = O(lgd) comparisons
of A(a) with the gj. This is equivalent to computing the sign of B;(X) =
A1(X) — g5 Az(X) over « by executing O(lgd) times, siaN_ AT(B;,).

3.3 THE G_RUR ALGORITHM

33

Now, L (q;) = O(d*+ d®0) and deg(A;) = deg (st k—1) = O(d?), deg(Az) =
deg(sry) = O(d?), L (A1) = O(do), L(Az) = O(do). Thus deg(B;) = O(d?)
and L (B;) = O(d* + d® o). Therefore, by corollary 2.27, SIGN_AT(Bj,) and
FIND have complexity 63(d® + d70). As for the overall complexity of the loop
(lines 7-8) the complexity is Op(d'® + d°c), since it is executed O(d?) times.

Theorem 3.5. Let f,g € Z[x,y] such that they are in generic position, their
total degrees are bounded by d, and their bitsize by o. If the polynomaials
are not relatively prime, the algorithm reports this and stops. Otherwise,
it 1solates all real roots of the system f = g = 0 with complexity 6B(d12 +
d%¢?).

The generic position assumption is without loss of generality since we can
always put the system in such position by applying a shear transform; (X,Y) —
(X +tY,Y), where t is either a random number or computed deterministically,
see [GVEKO96, SF90] or section 3.1.1. The bitsize of the polynomials of the
(sheared) system becomes O(d + o) [GVEK96] and does not change the bound
of theorem 3.5. However, now is raised the problem of expressing the real roots
in the original coordinate system (see also the proof of theorem 3.3).

3.3 The g rur algorithm

The last algorithm for bivariate solving that is presented uses some ideas from
RUR but relies on GCD computations of polynomials with coefficients in an
extension field to achieve efficiency (hence the name ¢ RUR). For the GCD
computations the algorithm (and the implementation) of [vHMO02] is used. The
algorithm is presented in pseudocode in algorithm 6.

Algorithm 6: STURM::G_RUR.

Input: f € Z[x,yl, g € Z[x, y].

Output: A list S of solutions (x,y) € Raig X Raig-
X «— Solve(Resultant (f, g, ¥));

Y «— Solve(Resultant(f, g, z));

Inter «—— IntermediatePoints(Y);

4 S0

5 for i — 1 to |X| do

6 fx,(y) «— Square-Free-Part(f(Xi,y)) € Z[Xillyl;
7 gx; (y) «— Square-Free-Part(g(Xi,y)) € Z[X:llyl;
8

9

W N

H «— ged(fx, (y), 9x, (y));

for j < 1 to |Inter] — 1 do

10 if H(Inter;) - H(Interj11) < 0 then
L | S—Su(Xi,Y)

The first steps are similar to the previous algorithms: Projecting on both
axes, real solving the respective resultants and computing the intermediate

D. I. Diochnos

34

REAL SOLVING OF BIVARIATE SYSTEMS

D. I. Diochnos

points on the y-axis. It has already been shown that the complexity of these
steps is Op(d!2 + d'%6?).

For each x-coordinate, say «, we compute the square-free part of f(x,y) and
g(«,y), say f and §. The complexity is that of computing the gcd with the
derivative. In [vHMO02] the cost is Op(MMND +mN2D2 + m2kD), where M is
the bitsize of the largest coefficient, N is the degree of the largest polynomial, D
is the degree of the extension, k is the degree of the gcd, and m is the number of
primes needed. The complexity does not assume fast multiplication algorithms,
thus, under this assumption, it becomes Oy (MMND + mND + mkD).

In this case M = O(0), N = O(d), D = 9(d?), k = O(d), and m = O(do).
The cost is Op(d%c?) and since we have to do it O(d?) times, the overall cost
is Op(d®c?). Notice the bitsize of the result is Og(d + o) [BPMO6].

Now for each o, we compute H = gcd(f,g). We have M = O(d + o),
N =0(d), D =0(d?), k= 0(d), and m = O(d? + do) and so the cost of each
operation is Op (d®+d*0?) and overall Oy (d8+d®a?). The size of m comes from
Mignotte’s bound [MS99]. Notice that H is a square-free polynomial in (Z[«]) [y],
of degree O(d) and bitsize O(d? + do), the real roots of which correspond to
the real solutions of the system with abscissa «. It should change sign only
over the intervals that contain its real roots. To check these signs, we have to
substitute y in H by the intermediate points, thus obtaining a polynomial in
Zl«l, of degree O(d) and bitsize O(d? + do + ds;), where s; is the bitsize of the
j-th intermediate point.

Now, we consider this polynomial in Z[x] and evaluate it over x. Using
corollary 2.27 with p = d?, 7+ = d® 4+ do, g = d, and 14 = d* + do + ds;, this
costs 63((16 + d%0 + d*s;j). Summing over O(d?) points and using lemma 2.29,
we obtain Og(d8 + d”o). Thus, the overall complexity is Og (d° + d%0).

Theorem 3.6. Isolating all real roots of the system f = g =0, using G_RUR
in Og(d!? + d'%0).

3.4 Applications

This section deals with applications of the algorithms and the complexity results
that were presented earlier in this chapter in closely related problems.

3.4.1 Real root counting.

Let F € Z[x,], such that deg, (F) = deg,(F) =n; and L (F) = 0. Let o, €
Rag, such that o = (A, [a1,a2]) and B = (B, [b1, bs]), where deg(A),deg(B) =
ny, L(A),L(B) < Tand c € Q, such that £ (c) = A. Moreover, assume that
n? = O(ny). We want to count the number of real roots of F = F(a,y) €
(Z())ly] in (—o0, +00), in (c,+oo0) and in (B, +00).

We may assume that the leading coefficient of F is nonzero. This is without
loss of generality since we can easily check it, and/or we can use the good
specialization properties of the subresultants [LR01, GVLRR89, GVEK96].

3.4 APPLICATIONS

35

Using Sturm’s theorem, e.g. [BPMO06, Yap00], the number of real roots of
F is VAR(SR(I_:,]_:U;foo)) — VAR(SRU_:,T:y;-I—OO)). Hence, we have to compute
the sequence SR(?,FU) with respect to variable y, and evaluate it on +o0,
or equivalently to compute the signs of the principal subresultant coefficients,
which lie in Z(«).

The above procedure is equivalent, due to the good specialization properties
of subresultants [BPMO06, GVLRR89], to that of computing the principal subre-
sultant coefficients of SR(F, Fy), which are polynomials in Z[x], and to evaluate
them over «. In other words the good specialization properties assure us that
we can compute a nominal sequence by considering the bivariate polynomials,
and then perform the substitution x = «.

The sequence, sr, of the principal subresultant coefficients can be computed
in 63 (n} o), using corollary 2.35 with p = g = d =n,, and T = 0. The sequence
st, contains O(n;) polynomials in Z[x], each of degree O(n?) and bitsize O(n,0).
We compute the sign of each one evaluated over « in

(53 (n?n, max{t, n;0} + ny min{n? n,}?1)

using corollary 2.27 with p = n,, ¢ =n?, 1 = 1, and 14 = n;0. This proves
the following:

Lemma 3.7. We count the number of real roots of F in BB(n‘fnzd—i—n?ngT).

In order to compute the number of real roots of F in (f3, +00), we use again
Sturm’s theorem. The complexity of the computation is dominated by the cost
of computing VAR(SR(F, Fy; B)), which is equivalent to computing SR(F, F,) with
respect to variable y, which contains bivariate polynomials, and to compute
their signs over («,). The cost of computing SR(F,Fy) is 63(1’1‘?0‘) using
corollary 2.34 with p = q = d = n4, and T = 0. The sequence contains O(n,)
polynomials in Z[x,y] of degrees O(n;) and O(n?), with respect to variables x
and y respectively, and bitsize O(n;0). We can compute the sign of each of
them evaluated it over («,) in Og(n%n2 max{n;o,t}) (theorem 2.37). This
proves the following:

Lemma 3.8. We can count the number of real roots of F in (B, +o0) in
O (nénd max{n,o,1}).

By a more involved analysis, taking into account the difference in the degrees
of the bivariate polynomials, we can gain a factor. This is omitted for simplicity
reasons.

Finally, in order to count the real roots of F in (c,+o00), it suffices to eval-
uate the sequence SR(F,F,) with respect to variable y on c, thus obtaining
polynomials in Z[x] and compute the signs of these polynomials evaluated over
.

The cost of the evaluation SR(F, Fy;c) is 6B(n‘} max{0, A}), using corollary
2.36 with p = q =d =n,, T = 0 and 0 = A. The evaluated sequence contains
O(n;) polynomials in Z[x], of degree O(n?) and bitsize O(n; max{o,A}). The
sign of each one evaluated over o can be compute in

@ 2 4
O (niny max{t, n; 0, A} + NiNaT),

D. I. Diochnos

36

REAL SOLVING OF BIVARIATE SYSTEMS

D. I. Diochnos

using corollary 2.27 with p = n,, ¢ =nj, 7 = T and 14 = n; max{o,A}. This
leads to the following:

E;emma 3.9. We can count the number of real roots of F in (c,+o00) in
O (nin, max{n;t, o,A}).

3.4.2 Simultaneous inequalities in two variables.

Let P,Q, A1,...,Aq, Bi,..., By, C1,...,Cq, € Z[X, Y], such that their total
degrees are bounded by n and their bitsize by 0. We wish to compute («,) €
Rilg such that P(«, 3) = Q(«,) =0 and also Ai(x,3) >0, Bj(«, 3) < 0 and
Cxlo,) =0, where 1 <1< 1,1 <j<, 1 <k< ;. Let £ =10 + 4+ £3.

Corollary 3.10. There is an algorithm that solves the problem of { simulta-
neous inequalities of degree < n and bitsize < o, in Og({n'2+{n'lo+n'®c?).

Proof. Initially we compute the isolating interval representation of the real roots
of P=Q =01in Og(n'2+n'%¢?), using @ RUR. There are O(n?) real solutions,
which are represented in isolating interval representation, with polynomials of
degrees O(n?) and bitsize O(n? + no).

For each real solution, say («, 3), for each polynomial A;, Bj, Cx we com-
pute the signs of sign(A;(«,)), sign (Bi(«, f)) and sign (Ci(«x, p)). Each sign
evaluation costs O (n'® + n°c), using theorem 2.37 with n; = n, n, = n? and
o =n?+no. In the worst case we need n? of them, hence, the cost for all sign
evaluations is Og ((n!2 + (n!! o). O

3.4.3 The complexity of topology.

The complexity of computing the topology of a real plane algebraic curve is also
improved. See [BPMO06, GVEK96, MPS*06] for the algorithm.

In studying Algebraic curves we use the following:

Lemma 3.11. Gwven f € Z[x,yl, the shear transformation commutes with
differentiation with respect to variable x, while it does not commute with
differentiation with respect to variable y. In other words the following hold:

d d
af(xay) = af(x+tyay)a teZ
x=x+ty
d d
d_f(xay) 7é d_f(x+tyay)a teZ
Y x=x+ty Y

Proof. Regarding the first part that deals with variable x it holds that:

z

dx

i=0

N
d _ d iy . _ h. s 1—1
—f(x,y) - a Z aix ht(y) - 1221 Cllhx(y)lx

3.4 APPLICATIONS

37

and

A d
Z (x+ty)hi(y) + ——ho(y)

d
—f(x+t
T (x +ty,y) T

4
dx
N

However, assuming that f depends on x the shear transform does not com-
mute with differentiation with respect to variable y. For a counter-example,
take f(x,y) = x. O

We consider the curve, in generic position, defined by F € Z[x, y], such that
deg(F) =nand L (F) = 0. We compute the critical points of the curve, i.e. solve
F=F, =0in Og(n'2 + n'%?). Next, we compute the intermediate points on
the x axis, in 6B(n4 +n3%0) (lemma 2.29). For each intermediate point, say qj,
we need to compute the number of branches of the curve that cross the vertical
line x = q;. This is equivalent to computing the number of real solutions of the
polynomial F(qj,y) € Z[y], which has degree d and bitsize O(nL (qgj)). For this
we use Sturm’s theorem and theorem 2.19 and the cost is (53 (n3L (qj)). For all
d;’s the cost is Og(n” +nba).

For each critical point, say («, 3) we need to compute the number of branches
of the curve that cross the vertical line x = «, and the number of them that
are above y = 3. The first task corresponds to computing the number of real
roots of F(a,y), by application of lemma 3.7, in Og(n® + n8c), where n; = n,
ny =n?, and T = n? + no. Since there are O(n?) critical values, the overall
cost of the step is Og(n'! +n%0).

Finally, we compute the number of branches that cross the line x = « and
are above y = 3. We do this by lemma 3.8, in 63 (n!% 4+n!20). Since there are
O(n?) critical points, the complexity is O (n!® + n'4c). It remains to connect
the critical points according to the information that we have for the branches.
The complexity of this step is dominated. It now follows that the complexity
of the algorithm is Og(n!® 4+ n!*o + n!6?), or Og(N!5), which is worse by a
factor than [BPMO6].

We improve the complexity of the last step since M_RUR computes the
RUR representation of the ordinates. Thus, instead of performing bivariate
sign evaluations in order to compute the number of branches above y = f3,
we can substitute the RUR representation of and perform univariate sign
evaluations. This corresponds to computing the sign of O(n?) polynomials of
degree O(n?) and bitsize O(n* +n3 o), over all the «’s [GVEK96]. Using lemma
2.29 for each polynomial the cost is (‘)B(n +n°%0), and since there are OB(2)
of them, the total cost is (‘)B(n +ntlo).

Theorem 3.12. The topology of a real plane algebraic curve, defined by a
polynomial of degree n and bitsize o, can be computed in Og(n'2 +nllo +
n1%g).

D. I. Diochnos

38

REAL SOLVING OF BIVARIATE SYSTEMS

D. I. Diochnos

Thus the overall complexity of the algorithm improves the previously known
bound by a factor of N2. We assumed generic position, since we can apply a
shear to achieve this; refer to section 3.1.1.

Chapter 4

Implementation and
Experiments

This chapter describes the open source MAPLE implementation® that was cre-
ated as part of this thesis and illustrates its capabilities through comparative
experiments. The design is based on object oriented programming and the
generic programming paradigm in view of transferring the implementation to
C++ in the future.

The class of real algebraic numbers represents them in isolating interval
representation. We provide algorithms for computing signed polynomial re-
mainder sequences; more particularly euclidean, primitive-part, subsresultant
and Sturm-Habicht sequences. In addition to that, we perform real solving of
univariate polynomials using Sturm’s algorithm, and allow computations with
one and two real algebraic numbers, such as sign evaluation and comparison.
Finally, the current implementation exhibits the algorithms for real solving of
bivariate systems that were mentioned in chapter 3.

However, in order to speedup the various computations and create a more
real-world library, filtering techniques have been used. For this purpose, two
instances of the rational endpoints that define the isolating intervals of the
various real algebraic numbers are stored; one pair of endpoints (usually with
larger bitsize) is used in filtering techniques, while the other one is used for
exact computations via Sturm sequences.

4.1 Augmenting performance

This section is devoted to the filtering techniques that are currently used in the
library.

A. Pre-computation filtering in M_RUR
Recall that M RUR binary-searches for solutions along the y-axis. For

lyww.di.uoa.gr/ erga/soft/SLV_index.html

39

D. I. Diochnos

40

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

this reason the intervals of candidate solutions along the x-axis are re-
fined [Abb06] in order to help the interval arithmetic filters (refer to the
following paragraph) that will be used inside the FIND procedure.

B. Interval Arithmetic

In cases where one wants to compute the sign of a polynomial evaluated at
a real algebraic number, the first attempt is to yield the result via interval
arithmetic techniques. The reader may refer to [Neu90] for details in the
evaluations that arise. This filter is applied heuristically several times,
based on the total degree of the input polynomials, with a combination of
quadratic refinement of the defining intervals [Abb06] between executions
in each loop.

c. GCD
In cases where the above filter fails to yield a result and one either wants
to compare two real algebraic numbers or perform univariate SIGN AT the
gcd of the two polynomials that are involved is computed. By definition,
the gcd of the two polynomials has a root in (the intersection of) the
intervals if and only if both polynomials have a same root, in which case
the two numbers are equal, or equivalently the required sign is zero.

Concluding, if both of the above filtering techniques fail, the library switches
to exact and costly computations via Sturm sequences. Note however, that in
these computations the rational endpoints with higher bitsize that have arisen
through the above filtering techniques are not used; instead the initial endpoints
with smaller bitsize are used.

4.2 Bivariate solving and slv library

In order to evaluate the implementation we have performed tests with the poly-
nomial systems that are presented in section A.1. The performance of the
implemented algorithms for bivariate solving is averaged over 10 iterations in
MAPLE 9.5 console and is shown in table 4.1. Polynomial systems R;, M, and
D; are presented in [ET05], systems C; in [GVNO2], and W; are the C; after
swapping the x and y variables. Note that systems C; and W; are of the form
f= % = 0 that arise in the topology of real plane algebraic curves. Finally, the
polynomial system Wj is not generated since the initial curve is a symmetric
polynomial.

Recall that computations are performed first using intervals with floating
point arithmetic (as it was described in section 4.1) and, if they fail, then an
exact algorithm using rational arithmetic is called. For GCD computations in an
extension field the MAPLE package of [vHMO02] is used. Finally, also note that
the optimal algorithms for computing and evaluating polynomial remainder
sequences have not yet been implemented. Hence, it is reasonable to expect
more efficient computations on a future release of the library.

It seems that ¢ RUR is the solver of choice since it is faster than GRID and
M_RUR in 17 out of the 18 instances. However, this may not hold when the

4.2 BIVARIATE SOLVING AND SLV LIBRARY 41

system deg Raig Average Time (msecs)
f | g | solutions || GRID | M_RUR | G_RUR

Ry 3 4 2 5 9 5
Ry 3 1 1 66 21 36
R3 3 1 1 1 2 1
My 3 3 4 87 72 10
M, 4 2 3 4 5 4
M3 6 3 5 803 782 110
Mgy 9 10 2 218 389 210
D 4 5 1 6 12 6
D, 2 2 4 667 147 128
C 7 6 6 1,896 954 222
Cy 4 3 6 177 234 18
Cs 8 7 13 580 1,815 75
Cy 8 7 17 5,903 80,650 370
Cs 16 | 15 17 > 20/ 60,832 3,877
W, 7| 6 2,203 | 2,115 247
Wo 4 3 5 367 283 114
W3 8 7 13 518 2,333 24
W, 8 | 7 17 5,410 | 77,207 280

Table 4.1: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with 1GB RAM.

extension field is of high degree. G RUR yields solutions in less than a second,
apart from system Cs. Overall, for total degrees < 8, G RUR requires less than
0.4 secs to respond. On average, G_RUR is 7-11 times faster than GRID, and
about 38 times than M_RUR. The inefficiency of M_RUR can be justified by
the fact that M_ RUR solves sheared systems which are dense and of increased
bitsize w.r.t. the original systems. Finally, it should be noted that GRID reaches
a stack limit with the default MAPLE stack size (8,192) when trying to solve
system Cs. However, even when we increased the stack ten times, GRID could
not yield all solutions within 20 minutes. Setting the stack size to the required
limit can be done with the following MAPLE command:

kernelopts(stacklimit=81920) ;

4.2.1 Comparing slv solvers

The following two paragraphs will briefly compare G RUR with GRID and M RUR
in bivariate solving.

D. I. Diochnos

42

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

g _rur vs. grid

Table 4.2 presents running times for bivariate solving between GRID and G RUR.

The final column in this table indicates the speedup that is achieved when pre-

ferring G RUR for bivariate solving. In other words, speedup = %.
G _ RUR

As it is shown from the table ¢ RUR can be up to 21.58 times faster than GRID

Average Time
system e speedup
Ry 5 5 1.00
R, 66 36 1.83
R3 1 1 1.00
M, 87 10 8.70
M, 4 4 1.00
Ms; 803 110 7.30
My 218 210 1.04
D, 6 6 1.00
D, 667 128 5.21
C: 1,896 222 8.54
C, 177 18 9.83
Cs 580 75 7.73
Cq 5,903 370 15.95
Cs > 20/ 3,877 —
W, 2,293 247 9.28
W, 367 114 3.22
W3 518 24 21.58
W, 5,410 280 19.32

Table 4.2: The performance of GRID and G _RUR implementations on bivariate
solving and the speedup that is achieved when choosing G RUR.

with an average speedup of around 7.27 among the input systems and excluding
system Cs where GRID failed to reply within 20 minutes. Moreover, in terms
of total computing times for the entire test-set (again excluding system Cs) we
can observe that:

e Total time for GrID = 19,001 msecs.
e Total time for ¢ RUR = 1, 860 msecs.

In other words, the speedup in terms of total computing time is about 10.22.

g rur vs. m rur

Table 4.3 presents running times for bivariate solving between M RUR and
G_RUR. Similarly with the previous table, the final column indicates the
speedup that is achieved when preferring ¢ RUR for bivariate solving. As it

4.2 BIVARIATE SOLVING AND SLV LIBRARY

43

Average Time
system v mor |G muURm speedup
Ry 9 5 1.80
Ra 21 36 0.58
R3 2 1 2.00
M, 72 10 7.20
M, 5 4 1.25
M3 782 110 7.11
My 389 210 1.85
D, 12 6 2.00
D, 147 128 1.15
Cy 954 222 4.30
Cs 234 18 13.00
Cs 1,815 75 24.20
Cq 80, 650 370 217.97
Cs 60, 832 3,877 15.69
W, 2,115 247 8.56
W, 283 114 2.48
W3 2,333 24 97.21
W, 77,207 280 275.74

Table 4.3: The performance of M_RUR and G__ RUR implementations on bivari-
ate solving and the speedup that is achieved when choosing G RUR.

is shown from the table G RUR can be up to 275.74 times faster than M_RUR
with an average speedup of around 38.01 among the input polynomial systems.
Moreover, in terms of total computing times for the entire test-set we can ob-
serve that:

e Total time for M_RUR = 227, 862 msecs.
e Total time for ¢ RUR = 5, 737 msecs.

In other words, the speedup in terms of total computing time is about 39.72.

Again, it should be noted that M_RUR solves sheared systems which are
dense and of increased bitsize. In addition to that, since the polynomial systems
are sheared (whenever necessary) in M_RUR’s case, M_ RUR also computes the
multiplicities on the intersections. A more accurate comparison will follow when
all solvers will compute solutions on the same sheared systems and hence all of
them will be able to decide the multiplicities on the intersections.

4.2.2 Decomposing running times

The following paragraphs demonstrate the decomposition of computing-time
required by each algorithm in its respective major function calls as these timings
were measured in the test-bed polynomial systems. Table 4.5 presents detailed

D. I. Diochnos

44 IMPLEMENTATION AND EXPERIMENTS

statistics of every algorithm on every polynomial system from the test-set, while
table 4.4 tries to capture the basic statistical properties of the previous table.

The major function calls and thereby the decomposition of running times
and the respective entries on the above tables can be summarized as follows.
Projections shows the time for the computation of the resultants, Univ. Solving
for real solving the resultants, and Sorting for sorting solutions. In GRID’s and
M _RUR’s case, biv. solving corresponds to matching. In G RUR’s case tim-
ings for matching are divided between rational biv. and Rgi14 biv.; the first
refers to when at least one of the co-ordinates is a rational number, while the lat-
ter indicates timings when both co-ordinates are not rational. Inter. points
refers to computation of the intermediate points between resultant roots along
the y-axis. StHa seq. refers to the computation of the StHa sequence. Filter
x-cand shows the time for additional filtering. Compute K reflects the time for
sub-algorithm COMPUTE-K.

phase of the interval . std
. - median | mean
algorithm min max dev
projections 00.00 | 00.53 00.04 00.08 | 00.13
E univ. solving | 02.05 | 99.75 | 07.08 | 26.77 | 35.88
U || biv. solving 00.19 | 97.93 96.18 73.03 | 36.04
sorting 00.00 | 01.13 00.06 00.12 | 00.26
projection 00.00 | 00.75 00.06 00.14 | 00.23
univ. solving | 00.18 | 91.37 | 15.55 | 17.47 | 20.79
e || StHa seq. 00.08 | 38.23 01.17 05.80 | 09.91
2 inter. points | 00.00 | 03.23 00.09 00.32 | 00.75
= filter x-cand 00.68 | 72.84 26.68 23.81 | 21.93
compute K 00.09 | 34.37 | 02.04 07.06 | 10.21
biv. solving 01.77 | 98.32 51.17 | 45.41 | 28.71
projections 00.02 | 03.89 00.23 00.48 | 00.88
univ. solving | 07.99 | 99.37 | 39.83 | 41.68 | 25.52
& | inter. points | 00.02 | 03.81 | 00.54 | 01.11 | 01.28
?5 rational biv. | 00.07 | 57.07 | 14.83 | 15.89 | 19.81
Rqg biv. 00.00 | 91.72 | 65.30 | 40.53 | 36.89
sorting 00.00 | 01.50 | 00.22 | 00.32 | 00.43

Table 4.4: Statistics on the performance of sLv’s algorithms in bivariate solving.

In a nutshell, GRID spends more than 73% of its time in matching. Recall
that this percent includes the application of filters and does not take into ac-
count the polynomial system Cs where GRID failed to reply within 20 minutes.
M _RUR spends about 45-50% of its time in matching and about 24-27% in
the pre-computation filtering technique. ¢ RUR spends 55-80% of its time in
matching, including gcd computations in an extension field.

Note also the significance of table 4.5 in order to draw further conclusions
regarding the current implementation. Table 4.4 provides a mean of around

D. I. Diochnos

4.2 BIVARIATE SOLVING AND SLV LIBRARY

45

6% for the computation of the StHa sequence of f and g required by M_ RUR.
However, we can observe that this step might very well take up to 38.23% of
the total computing time. Indeed, a closer look on table 4.5 reveals that this is
the case for the difficult system Cg. Moreover, by table 4.1 we can observe that
M _RUR requires about 61 seconds to solve system Cs. Hence, we can obtain
a practical lower bound of about 23 seconds for M_RUR in this case, which
is already bad compared to the performance of ¢ RUR for the entire problem
(solving the system). This is a consequence and also a reminder for future
work on the implementation of optimal algorithms on subresultant and Sturm-
Habicht sequences. As a very important sidenote it should be stressed that
implementing these optimal algorithms in sequences computations, the overall
performance results for all solvers will be improved since the entire library is
based on Sturm sequences to perform computations, such as pure univariate
solving (root isolation), comparison of real algebraic numbers, and univariate
and bivariate sign determination of functions evaluated respectively over one or
a pair of real algebraic numbers.

D. I. Diochnos

SOUYINLG ‘1 * @

GRID M _RUR G_RUR
[2)
.C>§ '2 ~ 3
® g 3 k
8 2 M 8 & g)
5 s | 2 £ 2| £
a o = o 3 O g ~ > a o © M g
S = o o] o A~ 80 o a o % ~ —_ 8
e o - i o Q . = N— = o .] 2
g | 3 = = © 5 0 g | & = B 5 g g R
o) 5} g 5 Q g < c 5 & [m) Q 8 b o
o = 2 g = 2 9 g = 2 o) e >
" o S o T Q = Z o - S
> b =] o part = e "E b) =] b =] "E] S
0 A P 4 A) 0 i 3 O = A P i o &
R1 0.19 | 73.71 | 25.78 || 0.06 | 28.30 | 17.91 | 0.64 1.21 | 19.79 | 32.09 || 0.22 | 53.75 | 2.08 | 43.71 0.02
R, 0.01 447 | 95.52 || 0.00 | 16.30 0.61 | 0.09 | 72.84 3.50 6.66 || 0.07 7.99 | 0.12 0.10 | 91.72
R3 0.53 | 78.46 | 20.84 || 0.17 | 33.04 | 20.01 | 0.97 2.79 | 27.45 | 15.57 || 0.67 | 40.29 | 1.85 | 57.07 0.04
M, || 0.04 | 10.13 | 89.75 || 0.05 | 21.06 1.46 | 0.14 | 35.63 2.97 | 38.69 || 0.14 | 79.62 | 2.83 | 16.13 0.02
M, 0.13 | 56.29 | 42.45 || 0.12 | 32.57 9.49 | 3.23 0.68 | 34.37 | 19.54 || 0.48 | 39.83 | 3.81 | 55.07 0.00
M3 0.00 498 | 95.02 || 0.02 7.39 0.16 | 0.02 | 60.60 1.18 | 30.62 || 0.03 | 28.60 | 0.67 0.50 | 70.14
M, || 0.06 | 99.75 0.19 || 0.74 | 91.37 0.44 | 0.00 1.25 4.43 1.77 || 0.07 | 99.37 | 0.03 0.54 0.00
D, 0.11 | 95.25 461 || 0.06 | 33.81 9.47 | 0.20 | 21.14 | 19.57 | 15.75 || 1.20 | 81.26 | 0.54 | 16.93 0.00
D, 0.01 3.80 | 96.18 || 0.00 | 15.55 0.31 | 0.11 | 57.51 1.99 | 24.53 || 0.02 | 17.94 | 0.22 0.07 | 81.69
Cy 0.04 2.69 | 97.27 || 0.27 5.02 2.37 | 0.04 | 28.19 2.02 | 62.09 || 0.23 | 21.00 | 0.16 2.32 | 76.25
Cq 0.02 6.60 | 93.32 || 0.01 9.40 0.44 | 0.08 | 20.57 2.04 | 67.46 || 0.22 | 75.83 | 2.47 | 21.08 0.01
Cs 0.01 2.88 | 97.03 || 0.04 2.05 1.17 | 0.00 | 28.66 1.62 | 66.46 || 0.33 | 16.47 | 0.16 | 14.83 | 67.69
Cq 0.18 2.07 | 97.74 || 0.02 0.18 0.08 | 0.00 1.30 0.09 | 98.32 || 0.55 | 33.57 | 0.32 3.23 | 62.00
Cs — — — || 0.75 1.92 | 38.23 | 0.00 6.43 1.49 | 51.17 || 3.89 | 30.43 | 0.02 0.35 | 65.30
W, || 0.04 2.67 | 97.27 || 0.07 3.60 1.03 | 0.02 | 26.68 1.47 | 67.13 || 0.04 | 20.56 | 0.16 1.66 | 77.55
W, 0.00 7.08 | 92.89 || 0.00 | 11.02 0.22 | 0.18 | 39.44 1.72 | 47.42 || 0.03 | 21.78 | 0.27 0.95 | 76.89
W3 || 0.02 2.18 | 97.73 || 0.05 1.63 0.94 | 0.00 | 22.26 1.27 | 73.84 || 0.41 | 48.02 | 3.69 | 46.37 0.00
W, || 0.01 2.05 | 97.93 || 0.00 0.23 0.12 | 0.00 1.36 0.10 | 98.19 || 0.02 | 33.85 | 0.51 5.17 | 60.18

Table 4.5: Analyzing the percent of time required for various procedures in each algorithm. Values in M_RUR refer to sheared systems

(whenever it was necessary). A column about Sorting in the case of GRID and G RUR is not shown.

04

SINHNIIAIXH ANV NOLLVINANWA TdINT

4.2 BIVARIATE SOLVING AND SLV LIBRARY

47

4.2.3 The effect of filtering

In the following paragraphs we measure the effect of interval arithmetic filters.

grid

Table 4.6 presents running times for GRID solver in cases where no filtering is
performed in computations, i.e. all computations rely on Sturm sequences, or
all filters have been applied as these were described in section 4.1. The final
column speedup indicates the speedup achieved by filters in every case. Based

% deg P Average Time (msecs)
7) SLV-GRID Speedup
w f g NO FILTERS | FILTERED
Ry 3| 4|2 5 5 1.00
Ro 3 1 1 41 66 0.62
Rs 3 1 1 1 1 1.00
M;| 3|3 | 4 22 87 0.25
M, | 4 2 3 4 4 1.00
Mz | 6 | 3 5 1,231 803 1.53
Mg | 9 |10 2 262 218 1.20
D, 4 5 1 6 6 1.00
Dy | 2 2 | 4 583 667 0.87
C. | 76|86 2,601 1,896 1.37
Cq 4 3 6 65 177 0.37
Cs | 8 7 |13 106 580 0.18
Cq 8 T 117 35,168 5,903 5.98
Cs | 16| 15| 17 > 20’ > 20’ —
W, | 7] 6 9 2,895 2,293 1.26
W, | 4 3 5 514 367 1.40
Ws | 8 7 |13 104 518 0.20
W, | 8 T 117 35,054 5,410 6.48

Table 4.6: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with 1GB RAM.

on the numbers of the above table, the average speedup achieved by filtering
techniques is about 1.51. However, in terms of total computing time for the
entire test-set we can observe that:

e Total time without filtering = 78,662 msecs.
e Total time with filtering = 19, 001 msecs.

Hence, the speedup achieved for the entire test-set is about 4.14. Note that
in both of the above computations system Cs has been excluded since neither
variation of GRID was able to solve the system within 20 minutes. However,

D. I. Diochnos

48

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

there are indications that filtering techniques help more in other cases, see for
example section 4.4.3.

m_rur

The effect of filtering techniques in the case of M_RUR will be discussed in
section 4.4.3 where all solvers deal with bivariate systems in generic position.

g _rur

A similar table with that in the case of GRID is table 4.7. This time the average

E deg P Average Time (msecs)

s) SLV-c_RUR Speedup
7 fleg NO FILTERS | FILTERED

Ry 3 4 2 6 5 1.20
Rs 3 1 1 36 36 1.00
R3 3 1 1 1 1 1.00
M; | 3 3 4 10 10 1.00
M, | 4 2 3 4 4 1.00
Ms | 6 3 5 141 110 1.28
Mg | 9 |10 2 201 210 0.96
D; | 4 5 1 6 6 1.00
D, 2 2 4 171 128 1.34
Cy 7 6 6 236 222 1.06
Cs 4 3 6 18 18 1.00
Cs 8 7 13 75 75 1.00
Cs | 8 7| 21* 382 370 1.03
Cs | 16 | 15 | 17 3, 861 3,877 1.00
W, | 7 6 9 2 247 1.12
W, | 4 3 5 141 114 1.23
Ws | 8 7 13 24 24 1.00
W, | 8 7 17 318 280 1.13

Table 4.7: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with 1GB RAM.

speedup achieved by filtering is about 1.08. In terms of total computing time
for the entire test-set we can observe that:

e Total time without filtering = 5, 908 msecs.
e Total time with filtering = 5, 737 msecs.

In other words, the speedup that is achieved by filtering for the entire test-set
is about 1.03. Thus ¢_RUR seems not to be affected at a significant level by
filtering. However, this is more or less expected since G RUR relies heavily on

4.3 BIVARIATE SOLVING AND OTHER PACKAGES

49

gcd computations in extension fields and MAPLE’s built-in function for factoring.
Even when computing the multiplicities of the given system, G _RUR seems not
to be affected much from filtering. For a more concrete comparison, please refer
to section 4.4.3 that discusses the problem of computing the multiplicities of
the given system.

4.3 Bivariate solving and other packages

For the sake of completeness on the evaluation of the initial release of the sLv li-
brary tests have been made with other solvers on the same polynomial systems.
First of all, FeB/Rs 2 [Rou99], which performs exact real solving using Gréb-
ner bases and RUR, through its MAPLE interface has been tested. It should be
underlined though that communication with MAPLE increases the runtimes and
additional tuning might offer 20-30% efficiency increase. Moreover, 3 SYNAPS
3 solvers have been tested: STURM is a naive implementation of GRID [ET05];
SUBDIV implements [MPO05], and is based on Bernstein basis and double arith-
metic. It needs an initial box for computing the real solutions of the system
and in all the cases the box [—10,10] x [—10, 10] was used. NEwMAC [MT00],
is a general purpose solver based on computations of generalized eigenvectors
using LAPACK, which computes all complex solutions.

Other MAPLE implementations have also been tested: INSULATE is a package
that implements [WSO05] for computing the topology of real algebraic curves,
and ToP implements [GVNO02]. Both packages were kindly provided by their
authors. We tried to modify the packages so as to stop them as soon as they
compute the real solutions of the corresponding bivariate system and hence
achieve an accurate timing in every case. Finally, it should be noted that Top
has an additional parameter that sets the initial precision (decimal digits). A
very low initial precision or a very high one results in inaccuracy or performance
loss; but there is no easy way for choosing a good value. Hence, we followed
[EKWO07] and recorded its performance on initial values of 60 and 500 digits.

It should be underlined that experiments are not considered as competition,
but as a crucial step for improving existing software. Moreover, it is very difficult
to compare different packages, since in most cases they are made for different
needs. In addition, accurate timing in MAPLE is hard, since it is a general
purpose package and a lot of overhead is added to its function calls. For example
this is the case for FGB/RS.

Overall performance results are shown on tab. 4.8, averaged over 10 itera-
tions. Although the current solver of choice for SLv library is G RUR, the other
solvers are presented as well for completeness. Note that for the first data set,
there are no timings for INSULATE and TOP since it was not easy to modify
their code so as to deal with general polynomial systems. The rest (systems
C; and W;) correspond to algebraic curves, i.e. polynomial systems of the form

of

f= v = 0, that all packages can deal with.

2http://www-spaces.lip6.fr/index.html
Shttp://www-sop.inria.fr/galaad/logiciels/synaps/

D. I. Diochnos

50

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

In cases where the solvers failed to find the correct number of real solutions
we indicate so with an asterisk (*). In the case of NEWMAC where all complex
solutions are computed, the (*) is placed in one more case: since NEWMAC
computes all complex solutions, a further computing step is required so as to
distinguish the ones that reflect the real solutions.

SOUYINNG ‘1 * @

g @ Average Time (msecs)

52 deg 2 BIVARIATE SOLVING TOPOLOGY

%’ % S FGB/RS SYNAPS INSULATE ToP

f g “ | GRID | M_RUR | G_RUR STURM | SUBDIV | NEWMAC 60 500

Ry | 3| 4] 2 5 9 5 26 2 2 B* - - —
Ry | 3|1 1 66 21 36 24 1 1 1* - - —
Rz | 3|1 1 1 2 1 22 1 2 1* — — —
M; | 3| 3] 4 87 72 10 25 2 1 2% - - —
Mz | 4] 2] 3 4 5 4 24 1 289%* 2% - - —
Mz | 6| 3|5 803 782 110 30 230 5,058%* * - - —
Mg | 9 |10 2 218 389 210 158 90 3* 447* - - —
D, | 4|5 |1 6 12 6 28 2 5 8* - - —
D, | 2|2 | 4 667 147 128 26 21 1* 2 — — —
Ci | 7|6 | 6 |1,89 954 222 93 479 | 170,265* 39% 524 409 1,367
Co | 43| 6 177 234 18 27 12 23* 4* 28 36 115
Cs | 8| 7 |13 580 1,815 75 54 23 214%* 25* 327 693 2,829
Cy | 8| 7 | 17| 5,903 | 80,650 370 138 | 3,495 217* 190%* 1,589 | 1,624 6,435
Cs | 16 | 15| 17 | >20" | 60,832 3,877 4,044 > 20’ 6, 345* 346* 179,182 | 91,993 | 180,917
W, | 7|6] 92293 2,115 247 92 954 | 55,040% 39% 517 419 1,350
W, | 4|3 |5 367 283 114 29 20 224% 3* 27 20 60
Wi | 8 | 7|13 518 2,333 24 56 32 285% 25* 309 525 1,588
W, | 8 | 7 | 17| 5,410 | 77,207 280 148 | 4,086 280%* 207* 1,579 | 1,458 4,830

Table 4.8: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz AMD64@3K+ processor with 1GB RAM.

SHOVIDVd HHHILO ANV ONIATOS HLVIYVAIL €V

| B¢

52

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

4.3.1 g rur and other solvers

In the following paragraphs we will try to compare the performance of G RUR
with the rest of the solvers. For this purpose, we conduct speedup-tables like
the ones that were drawn in section 4.2.1.

g _rur vs. fgb/rs

Table 4.9 presents running times for FGB/RS and G RUR as well as the speedup
that one gains when choosing ¢ RUR instead of FGB/Rs for bivariate solving.
As it is shown from the table ¢ RUR is faster than FGB/Rs in 8 out of the 18

Average Time
system speedup
FGB/RS | G_RUR
Ry 26 5 5.20
R, 24 36 0.67
R3 22 1 22.00
M, 25 10 2.50
M, 24 4 6.00
M3 30 110 0.27
M, 158 210 0.75
D, 28 6 4.67
D, 26 128 0.20
Cy 93 222 0.42
Cq 27 18 1.50
Cs 54 75 0.72
Ca 138 370 0.37
Cs 4,044 3,877 1.04
W, 92 247 0.37
W, 29 114 0.25
Ws 56 24 2.33
W, 148 280 0.53

Table 4.9: The performance of FGB/RS and G RUR on bivariate solving and
the speedup that is achieved when choosing ¢ RUR.

instances, including the difficult system Cs. The speedup factor ranges from
0.2 to 22 with an average of 2.62. However, in terms of total computing times
for the entire test-set we can observe that:

e Total time for FGB/Rs = 5, 044 msecs.
e Total time for ¢ RUR = 5, 737 msecs.

Hence, the speedup in terms of total computing time is about 0.88. This is an
indication that although the computation of the ideal of the given system is a
more expensive operation on average, it may be faster when someone faces a
set of different polynomial systems.

4.3 BIVARIATE SOLVING AND OTHER PACKAGES

53

g _rur vs. synaps/sturm

Let’s move on with a comparison between G RUR and SYNAPS’s STURM imple-
mentation. Table 4.10 presents running times for SYNAPS/STURM and G RUR
and the speedup gained when preferring G RUR. G_ RUR is faster than STURM

Average Time
system speedup
STURM | G_RUR
Ry 2 5 0.40
R, 1 36 0.03
R3 1 1 1.00
My 2 10 0.20
M, 1 4 0.25
M3 230 110 2.09
My 90 210 0.43
D, 2 6 0.33
D, 21 128 0.16
Cy 479 222 2.16
Cs 12 18 0.67
Cs 23 75 0.31
Cs 3,495 370 9.45
Cs > 20/ 3,877 —
W, 954 247 3.86
W, 20 114 0.18
Ws 32 24 1.33
W, 4,086 280 14.59

Table 4.10: The performance of SYNAPS/STURM and G__RUR on bivariate solving
and the speedup that is achieved when choosing G RUR.

in 6 out of the 18 instances. On the other hand, G RUR behaves worse usually
in polynomial systems that are solved by both implementations in less than 100
msecs, something that is expected since STURM is implemented in C++. How-
ever, as the dimension of the polynomial systems increases, G RUR outperforms
STURM and the latter’s lack of modular algorithms for computing resultants is
more and more evident. Overall, an average speedup of about 2.2 is achieved
when someone prefers G RUR. In terms of total computing times for the entire
test-set (excluding system Cs where sSTURM failed to reply within 20 minutes)
we can observe that:

e Total time for SYNAPS/STURM = 9,451 msecs.

e Total time for ¢ RUR = 1, 860 msecs.

Hence, if someone considers the speedup that is achieved in terms of total com-
puting time for the entire test set, it can be observed that ¢ RUR is about 5.08
times faster than sTURM highlighting the previous remark regarding resultants
in SYNAPS.

D. I. Diochnos

54

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

g _rur vs. synaps/subdiv

We now switch to a comparison between G RUR and SYNAPS’s SUBDIV imple-
mentation. Table 4.11 presents running times for SYNAPS/SUBDIV and G RUR,
and as in the earlier tables, the last column shows the speedup gained when
preferring ¢ RUR. It should be mentioned however, that SUBDIV requires an
initial box where all the real solutions of the system reside. In the experiments,
the box [—10, 10] x [—10, 10] was used in every case. The solver was called with
the following command:

sols = solve(pols, SBDSLV< NT, SBDSLV_RDL >(1le-10), box);

where pols are of type Seq< MPOL > and sols are of type Seq< VectDse<
NT> >. Finally, in cases where sUBDIV failed to compute the correct number
of real solutions, an asterisk (*) is placed to indicate so. G RUR is faster

Average Time
system speedup
SUBDIV | G_RUR
Ry 2 5 0.40
R, 1 36 0.03
R3 2 1 2.00
M, 1 10 0.10
M, 289%* 4 72.25
M3 5,058* 110 45.98
My 3* 210 0.01
D, 5 6 0.83
D, 1* 128 0.01
Cy 170, 265* 222 766.96
Ca 23* 18 1.28
Cs 214%* 75 2.85
Ca 217* 370 0.59
Cs 6, 345* 3,877 1.64
W, 55, 040%* 247 222.83
W, 224%* 114 1.96
Ws 285%* 24 11.88
W, 280%* 280 1.00

Table 4.11: The performance of SYNAPS/SUBDIV and G RUR on bivariate solv-
ing and the speedup that is achieved when choosing G _RUR.

than suBDIV in half of the instances. However, the case is similar to STURM’s.
G _RUR may require more computing time on polynomial systems that are solved
in less than 400 msecs by both solvers, while on system Cs G_RUR is faster
than suBDIV by about 2.47 seconds. A striking experimental result though is
SUBDIV’s inefficiency on polynomial systems C; and W;. Note that the initial
box [—10, 10] x [—10, 10] is not large enough to justify easily such deficiency. For
example, all real solutions of the system C; can be found inside the rectangle

4.3 BIVARIATE SOLVING AND OTHER PACKAGES

55

[—2,2] x [—1,2] while the x-coordinates can take both of the extreme values;
i.e. —2 and 2. On average, G_RUR achieves a speedup of 62.92 which is the
result of the problematic behavior of SUBDIV in systems C; and W;. If these
systems are omitted from the computation, then G RUR achieves a speedup of
8.93. In terms of total computing times for the entire test-set we can observe
that:

e Total time for SYNAPS/SUBDIV = 238, 255 msecs.
e Total time for ¢ RUR = 5, 737 msecs.

Hence, the speedup under these terms is about 41.53 favoring ¢ RUR. However,
this value is again greatly increased due to systems C; and W;. Omitting these
systems, we can observe that total computing times are as follows:

e Total time for SYNAPS/SUBDIV = 12,950 msecs.
e Total time for ¢ RUR = 5, 268 msecs.

This time the speedup in terms of total computing time is about 2.46. As a final
comment, one can not forget that sUBDIV is based on finite precision arithmetic
and consequently numerical errors occur in the computations of the solutions
as this is signified by an asterisk (*) in tables 4.8 and 4.11.

g rur vs. synaps/newmac

A comparison between G_RUR and SYNAPS’s NEWMAC implementation can be
made with the help of table 4.12 which has similar structure with the previous
tables. The solver was called with the following command:

sols = solve(pols, Newmac<coeff_t,sol_t>());

where pols are of type std::1ist<MPOL> and sols are of type sol_t. Note
that an asterisk (*) indicates incorrect number of real solutions. The problem is
that NEWMAC computes all complez solutions of the input polynomial system
and some considerations are needed in these cases. But these will be addressed
in the following paragraph. ¢ RUR is faster than NEWMAC in systems My, D,
and W3 and exhibits similar performance in systems R; and R3. This time the
average speedup is about 0.53 if someone prefers G RUR, and in terms of total
computing times for the entire test-set we have:

e Total time for SYNAPS/NEWMAC = 1, 353 msecs.
e Total time for ¢ RUR = 5, 737 msecs.

In other words, G_RUR is slower than newmac about 4.24 times for the entire
test-set.

However, these numbers do not necessarily reflect the truth for various rea-
sons. First of all, NEWMAC is based on computations of generalized eigenvectors
using LAPACK, which computes all complex solutions. This can be really fast in

D. I. Diochnos

56

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

Average Time
system NEwiac |G RUR speedup
R; 5* 5 1.00
Ry 1* 36 0.03
R3 1* 1 1.00
M, 2% 10 0.20
M, 2% 4 0.50
M3 * 110 0.06
My 447* 210 2.13
D, 8* 6 1.33
D, 2 128 0.02
Cy 39%* 222 0.18
Cs 4% 18 0.22
Cs 25* 75 0.33
Cq 190%* 370 0.51
Cs 346* 3,877 0.09
Wi 39% 247 0.16
W, 3* 114 0.03
W3 25* 24 1.04
W, 207* 280 0.74

Table 4.12: The performance of SYNAPS/NEWMAC and G_RUR on bivariate
solving and the speedup that is achieved when choosing G RUR.

practice, but an additional problem arises; that of classifying the real solutions
among all complex solutions computed by NEWMAC. This is not as trivial as it
may sound, since finite precision arithmetic is used, resulting in numerical errors
while computing all complex solutions. So, there is one problem on retracting
only the real solutions among all complex solutions computed (with the possible
numerical errors that these may contain). In addition to that, finite precision
has further impacts on the solution set that is computed. There are cases where
NEWMAC may not compute some of the real solutions. A representative example
in this class of problems is system C, which has 17 real solutions and NEWMAC
claims that the total number of real and complex solutions is exactly O.

Hence, NEWMAC requires a better and more accurate implementation than
LAPACK when computing the various eigenvectors and eigenvalues that are
needed in order to solve the input systems. However, this might still not elimi-
nate all numerical errors that are introduced in the entire complex solution set.
Even with this enhancement, some additional time will be possibly required in
order to filter the few (in general) real solutions among the entire complex solu-
tion set. For instance, NEWMAC computes 90 complex solutions in system M4
while the number of real solutions for the system is only 2. Concluding, having
all these observations in mind, G RUR seems to be a competitive alternative to
NEWMAC since it is not affected by these problems.

4.3 BIVARIATE SOLVING AND OTHER PACKAGES

57

g rur vs. insulate

Let’s turn our attention on a comparison between G RUR and INSULATE which
computes the topology of real plane algebraic curves. In this case INSULATE
has been modified so as to stop as soon as it computes all real solutions. A
comparative performance table similar to the ones in the previous paragraphs
is presented in table 4.13. Note that the comparison takes place on the second
set of the test-set where the polynomial systems are of the form f = % =

that both packages can manage. G _RUR is faster in all but W, system yielding

Average Time
system speedup
INSULATE | G_ RUR
Cy 524 222 2.36
() 28 18 1.55
Cs 327 75 4.36
Cq 1,589 370 4.29
Cs 179,182 3,877 46.22
W, 517 247 2.09
W, 27 114 0.24
W3 309 24 12.88
W, 1,579 280 5.64

Table 4.13: The performance of INSULATE and G RUR on bivariate solving and
the speedup that is achieved when choosing G RUR.

an average speedup this time of 8.85. However, as the dimension of the input
polynomial systems increases, G _RUR seems to be more efficient. In terms of
total computing time for the entire test set we can observe:

e Total time for INSULATE = 184, 082 msecs.
e Total time for ¢ RUR = 5,227 msecs.

Hence the speedup under this point of view is about 35.22. In any case though,
the amount of experiments is relatively small in order to draw safe conclusions on
the relative performance of the two implementations in real solving of bivariate
polynomial systems.

g rur vs. top

Finally, a comparison between ¢ _RUR and TOP which computes the topology
of real plane algebraic curves is performed. Recall that TOP requires an extra
parameter which sets the initial precision in computations (decimal digits). As
it has already been stated, this is a problem since there is no easy way on
computing a good value and furthermore, a very low initial precision might
result in loss in the number of real solutions, while a very high initial precision
might result in performance deficiency. For this purpose, the route of [EKWO07]
has been followed and the performance of TOP was recorded for initial precisions

D. I. Diochnos

58

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

of 60 and 500 digits. Similarly with INSULATE case, the comparison takes place
on the systems C; and W; that are of the form f = % = 0 that both packages
can manage.

60 digits precision: The comparison in this case is shown in table 4.14.
G _RUR is faster in all but W, system yielding an average speedup this time

system Average Time speedup
TOPgg | G_ RUR
Cy 409 222 1.84
Ca 36 18 3.00
Cs 693 75 9.24
Cq 1,624 370 4.39
Cs 91,993 3,877 23.73
W, 419 247 1.70
W, 20 114 0.18
Wi 525 24 21.88
W, 1,458 280 5.21

Table 4.14: The performance of TOP with precision set to 60 digits and G RUR
on bivariate solving and the speedup that is achieved when choosing G RUR.

of 7.79. Similarly with INSULATE’s case, as the dimension of the input polyno-
mial systems increases, G RUR seems to be more efficient. In terms of total
computing time for the entire test set we can observe:

e Total time for TOPgy = 97, 177 msecs.
e Total time for ¢ RUR = 5, 227 msecs.

Hence the speedup under this point of view is about 18.59.

500 digits precision: The comparison in this case is shown in table 4.15. An
interesting result is that although ToP computations have been slowed down
with this precision, TOP is still faster in solving system W,. This time the
average speedup that is achieved by G RUR is 22.64. In terms of total computing
time for the entire test set this time we have:

e Total time for TOP5q9 = 199,491 msecs.
e Total time for ¢ RUR = 5, 227 msecs.

Hence the speedup under this point of view is about 38.17.

4.4 Computing multiplicities

This section presents the performance of sLv library when someone wants to
compute the multiplicities at the various intersecting points. Moreover, the
effect of filtering will be discussed once more.

4.4 COMPUTING MULTIPLICITIES

59

Average Time
system speedup
TOPs500 G_RUR
Cy 1,367 222 6.16
Cs 115 18 6.39
Cs 2,829 75 37.72
Cq 6,435 370 17.39
Cs 180,917 3,877 46.66
W, 1,350 247 5.47
W, 60 114 0.53
Wi 1,588 24 66.17
W, 4,830 280 17.25

Table 4.15: The performance of TOP with precision set to 500 digits and G RUR
on bivariate solving and the speedup that is achieved when choosing G RUR.

Overall performance results for the three projection based algorithms are
shown on table 4.16. In order to compute the multiplicities the initial systems
were sheared whenever it was necessary based on the algorithm that was pre-
sented in section 3.1.1. Since the polynomial systems were in generic position,
the algorithms stopped searching for solution along the various vertical lines as
soon as a solution was computed. Note that running times in M_RUR'’s case
have not changed from table 4.1 since M_ RUR by default requires a system in
generic position.

Once again G RUR presents the best performance. It is faster in 17 out of
the 18 instances and apart from system Cs provides solutions in less than a
second. Moreover, now that the sheared systems have little or no linear factors
and slightly increased bitsize GRID’s high complexity starts to become more
apparent: M_ RUR is faster in 10 out of the 18 instances. In addition to that,
it should be stressed once again that M_RUR'’s inefficiency is basically due to
the lack of optimal algorithms for computing the various Sturm sequences. For
example, when solving system Cs M_ RUR requires more than 23 seconds simply
to generate the StHa sequence of the input polynomials f and g.

4.4.1 Comparing slv solvers

The following paragraphs will briefly compare ¢ _RUR with GRID and M_RUR
when computing multiplicities. Moreover, this time a comparison between
M _RUR and GRID will be performed.

g rur vs. grid

Table 4.17 presents running times for GRID and G RUR when computing mul-
tiplicities. Again, the final column indicates the speedup that is achieved when
someone prefers G RUR. As it is shown from the table 4.17 ¢ RUR can be up
to 15.81 times faster than GRID with an average speedup of around 5.26 among

D. I. Diochnos

60

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

system deg Raig Average Time (msecs)
f | g | solutions || GRID | M_RUR | G_RUR

Ry 3 4 2 6 9 6
Ry 3 1 1 66 21 36
R3 3 1 1 1 2 1
My 3 3 4 183 72 45
M, 4 2 3 4 5 4
M3 6 3 5 4,871 782 393
Mgy 9 10 2 339 389 199
D 4 5 1 6 12 6
D, 2 2 4 567 147 126
C, 7 6 6 1,702 954 247
C, 4 3 6 400 234 99
Cs 8 7 13 669 1,815 152
Ca 8 | 7 17 7,492 | 80,650 474
Cs 16 | 15 17 > 20/ 60,832 6,367
W, 7 6 9 3,406 2,115 393
W, 4 3 5 1,008 283 193
W3 8 7 13 1,769 2,333 230
W, 8 | 7 17 5,783 | 77,207 709

Table 4.16: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with 1GB RAM.

the input systems and excluding system Cs; where GRID failed to reply within
20 minutes. Moreover, in terms of total computing times for the entire test-set
(again excluding system Cs) we can observe that:

e Total time for GRID = 28,272 msecs.
e Total time for ¢ RUR = 3, 313 msecs.

In other words, the speedup in terms of total computing time is about 8.53.

g _rur vs. m_ rur

Table 4.18 presents running times for M_RUR and G _RUR when computing
multiplicities. Similarly with the previous table, the final column indicates the
speedup that is achieved when preferring ¢ RUR. This time G RUR can be up
to 170.15 times faster than M _RUR with an average speedup of around 18.77
among the input polynomial systems. Moreover, in terms of total computing
times for the entire test-set we can observe that:

e Total time for M_RUR = 227, 862 msecs.
e Total time for ¢ RUR = 9, 680 msecs.

In other words, the speedup in terms of total computing time is about 23.54.

4.4 COMPUTING MULTIPLICITIES

61

Average Time
system orb | ¢ mUR speedup
R; 6 6 1.00
Ry 66 36 1.83
R3 1 1 1.00
M, 183 45 4.07
M, 4 4 1.00
M3 4,871 393 12.39
My 339 199 1.70
D, 6 6 1.00
D, 567 126 4.50
Cy 1,702 247 6.89
C, 400 99 4.04
Cs 669 152 4.40
Cq 7,492 474 15.81
Cs > 20/ 6,367 —
W, 3,406 393 8.67
W, 1,008 193 5.22
W3 1,769 230 7.69
W, 5,783 709 8.16

Table 4.17: The performance of GRID and G RUR implementations when com-
puting multiplicities on the intersections and the speedup that is achieved when
choosing G RUR.

m rur vs. grid

Table 4.19 presents running times for GRID and ¢ RUR when computing mul-
tiplicities. The final column in this table indicates the speedup that is achieved
when preferring M RUR for this operation. Excluding system Cs where GRID
failed to reply within 20 minutes, M RUR can be up to 6.23 times faster, yield-
ing an average speedup of around 1.71 among the input systems. Moreover, in
terms of total computing times for the entire test-set (again excluding system
Cs) we can observe that:

e Total time for GRID = 28, 272 msecs.
e Total time for ¢ RUR = 167,030 msecs.

In other words, the speedup in terms of total computing time is about 0.17.
However, it should be mentioned once again that system Cs is not considered
in these values.

4.4.2 Decomposing running times

This section is similar to 4.2.2. It presents statistics for the various solvers in
the sheared case of the test-set polynomial systems. Hence, the interpretation

D. I. Diochnos

62

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

Average Time
system e e speedup
R; 9 6 1.50
Ry 21 36 0.58
R3 2 1 2.00
M, 72 45 1.60
M, 5 4 1.25
M3 782 393 1.99
My 389 199 1.95
D, 12 6 2.00
D, 147 126 1.17
Cy 954 247 3.86
Cs 234 99 2.36
Cs 1,815 152 11.94
Cq 80, 650 474 170.15
Cs 60,832 6,367 9.55
Wi 2,115 393 5.38
W, 283 193 1.47
W3 2,333 230 10.14
W, 77,207 709 108.90

Table 4.18: The performance of M_RUR and G_RUR implementations when
computing multiplicities on the intersections and the speedup that is achieved
when choosing G RUR.

of the two tables is identical to the tables presented in section 4.2.2.

Things have not changed much from section 4.2.2 in GRID’s and M__RUR’s
case. In a nutshell, GRID spends more than 72% of its time in matching. Simi-
larly with table 4.4, this percent includes the application of filters and does not
take into account the polynomial system Cgs where GRID failed to reply within
20 minutes. M_RUR spends about 45-50% of its time in matching and about
24-27% in the pre-computation filtering technique. Finally, ¢ RUR spends 68-
80% of its time in matching, including gcd computations in an extension field.
This time, in absence of excessive factoring ¢ RUR spends significantly more
time in bivariate solving.

The equivalent table to table 4.5 is table 4.21. It presents the running-
time breakdown for the various algorithms in the various cases. Again note,
that values presented in M_RUR’s case are identical in both tables due to the
requirements of the algorithm, i.e. M RUR has to solve sheared systems.

4.4 COMPUTING MULTIPLICITIES

63

Table 4.19: The performance of GRID and M__RUR implementations when com-
puting multiplicities on the intersections and the speedup that is achieved when

choosing M__ RUR.

Average Time

system GRID | M_RUR speedup
R, 6 9 0.67
Ro 66 21 3.14
R3 1 2 0.50
M, 183 72 2.54
M, 4 5 0.80
M3 4,871 782 6.23
My 339 389 0.87
D, 6 12 0.50
D, 567 147 3.86
Cy 1,702 954 1.78
Cs 400 234 1.71
Cs 669 1,815 0.37
Ca 7,492 | 80,650 0.09
Cs >20" | 60,832 —
W, 3,406 2,115 1.61
W, 1,008 283 3.56
W3 1,769 2,333 0.76
W, 5,783 | 77,207 0.07

D. I. Diochnos

64 IMPLEMENTATION AND EXPERIMENTS

phase of the interval . std
. - median | mean
algorithm min | max dev
projections 00.00 | 00.53 | 00.06 | 00.08 | 00.12
E univ. solving | 01.65 | 99.63 | 05.42 | 27.39 | 37.65
U || biv. solving | 00.30 | 98.33 | 96.75 | 72.42 | 37.82
sorting 00.00 | 01.15 | 00.02 | 00.11 | 00.27
projection 00.00 | 00.75 | 00.06 | 00.14 | 00.23
univ. solving | 00.18 | 91.37 | 15.55 | 17.47 | 20.79
x || StHa seq. 00.08 | 38.23 | 01.17 | 05.80 | 09.91
E inter. points | 00.00 | 03.23 | 00.09 00.32 | 00.75
= filter x-cand 00.68 | 72.84 | 26.68 | 23.81 | 21.93
compute K 00.09 | 34.37 | 02.04 | 07.06 | 10.21
biv. solving 01.77 | 98.32 | 51.17 | 45.41 | 28.71
projections 00.02 | 03.73 | 00.11 | 00.58 | 01.14
univ. solving | 06.60 | 99.16 | 22.35 | 30.27 | 23.48
§ inter. points | 00.01 | 03.93 | 00.20 00.59 | 01.05
5 rational biv. 00.07 | 55.59 | 02.61 11.91 | 19.22
Raug biv. 00.00 | 93.04 | 77.51 56.50 | 35.53
sorting 00.00 | 00.83 | 00.08 | 00.14 | 00.21

Table 4.20: Statistics on the performance of SLv’s algorithms when computing
multiplicities.

D. I. Diochnos

SOUYINNG ‘1 * @

GRID M_RUR G_RUR
E K ~ 3

: s | g | 3 2R AN

m : NE IR PR R AR

El £ 2|8l 25 |%| ol |d& |85~ £ ¢

sl 5| 5 | (L |5 | @ || & |E | |8 E|] & |G&

S| & | £ sl 2| £ g 5| 5 sl e || 8] 8| g

sl gl E| 2| g E | B | L= E |z S| g | & % 2

> o = e <] b= et = <] =}

n [al) as] A -] n — = @] = [alf) — oo &
R 0.11 | 84.14 | 15.40 || 0.06 | 28.30 | 17.91 | 0.64 1.21 | 19.79 | 32.09 || 0.30 | 45.69 | 1.08 | 52.68 0.00
R, 0.01 4.26 | 95.73 || 0.00 | 16.30 0.61 | 0.09 | 72.84 3.50 6.66 || 0.04 6.60 | 0.10 0.21 | 93.04
R3 0.53 | 82.86 | 16.43 || 0.17 | 33.04 | 20.01 | 0.97 2.79 | 27.45 | 15.57 || 0.57 | 40.79 | 2.94 | 55.59 0.04
M; || 0.00 7.94 | 92.04 || 0.05 | 21.06 1.46 | 0.14 | 35.63 2.97 | 38.69 || 0.03 | 25.53 | 0.40 5.567 | 68.39
M, || 0.14 | 60.80 | 37.92 || 0.12 | 32.57 9.49 | 3.23 0.68 | 34.37 | 19.54 || 3.73 | 38.23 | 3.93 | 53.28 0.00
M3 || 0.01 1.66 | 98.33 || 0.02 7.39 0.16 | 0.02 | 60.60 1.18 | 30.62 || 0.02 | 12.38 | 0.09 0.31 | 87.20
My || 0.06 | 99.63 0.30 || 0.74 | 91.37 0.44 | 0.00 1.25 4.43 1.77 || 0.26 | 99.16 | 0.03 0.55 0.00
D 0.11 | 95.32 4.54 || 0.06 | 33.81 9.47 | 0.20 | 21.14 | 19.57 | 15.75 || 1.20 | 81.22 | 0.60 | 16.91 0.00
D, 0.01 4.13 | 95.86 || 0.00 | 15.55 0.31 | 0.11 | 57.51 1.99 | 24.53 || 0.02 | 17.96 | 0.22 0.07 | 81.67
C 0.09 2.82 | 97.09 || 0.27 5.02 2.37 | 0.04 | 28.19 2.02 | 62.09 || 0.05 | 17.60 | 0.15 2.61 | 79.54
Cy 0.01 5.42 | 94.54 || 0.01 9.40 0.44 | 0.08 | 20.57 2.04 | 67.46 || 0.03 | 22.35 | 0.33 2.35 | 74.40
Cs 0.02 4.71 | 95.23 || 0.04 2.05 1.17 | 0.00 | 28.66 1.62 | 66.46 || 0.06 | 21.66 | 0.12 | 10.70 | 67.25
Cq 0.18 1.65 | 98.16 || 0.02 0.18 0.08 | 0.00 1.30 0.09 | 98.32 || 0.27 | 26.36 | 0.11 2.53 | 70.62
Cs — — — || 0.75 1.92 | 38.23 | 0.00 6.43 1.49 | 51.17 || 3.69 | 20.07 | 0.01 0.27 | 75.95
W; || 0.03 2.16 | 97.79 || 0.07 3.60 1.03 | 0.02 | 26.68 1.47 | 67.13 || 0.11 | 18.79 | 0.09 1.64 | 79.32
W, || 0.00 3.25 | 96.75 || 0.00 | 11.02 0.22 | 0.18 | 39.44 1.72 | 47.42 || 0.02 | 16.27 | 0.14 1.05 | 82.47
Ws || 0.02 1.98 | 97.98 || 0.05 1.63 0.94 | 0.00 | 22.26 1.27 | 73.84 || 0.04 | 13.55 | 0.14 6.58 | 79.57
W, || 0.02 2.86 | 97.11 || 0.00 0.23 0.12 | 0.00 1.36 0.10 | 98.19 || 0.09 | 20.60 | 0.20 1.54 | 77.51

Table 4.21: Analyzing the percent of time required for various procedures in each algorithm. All values refer to the sheared systems

(whenever it was necessary). A column about Sorting in the case of GRID and G RUR is not shown.

SHILIDT'TdILINI ONILAdINOD ¥

@9

66

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

4.4.3 The effect of filtering

Similarly with section 4.2.3 this section examines the effect of filtering tech-
niques on the performance of all solvers.

grid

Table 4.22 presents running times for GRID solver in cases where no filtering is
performed in computations, i.e. all computations rely on Sturm sequences, or
all filters have been applied as these were described in section 4.1. The final
column speedup indicates the speedup achieved by filters in every case. Based

% deg P Average Time (msecs)
7) SLV-GRID Speedup
w o[f g NO FILTERS | FILTERED
Ry 3| 4| 2 4 6 0.67
Ro 3 1 1 40 66 0.61
R3 3 1 1 1 1 1.00
M; | 3 3 4 172 183 0.94
M, | 4 2 3 4 4 1.00
Mz | 6 | 3 5 118,215 4,871 24.27
Mg | 9|10 2 404 339 1.19
D, | 4| 5 1 6 6 1.00
Dy | 2 2| 4 418 567 0.74
C. |7 |6]6 5,162 1,702 3.03
Cy | 4| 3|6 464 400 1.16
Cs 8 7 |13 155 669 0.23
Cis | 8| 7 |17 27,126 7,492 3.62
Cs |16 | 15| 17 > 20/ > 20’ —
W, | 7 6 9 10,091 3,406 2.96
Wy | 4 | 3 5 1,508 1,008 1.50
Wi | 8 | 7 |13 1,338 1,769 0.76
Wal| 8 | 7|17 50, 808 5,783 8.79

Table 4.22: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with 1GB RAM.

on the numbers of the above table, the average speedup achieved by filtering
techniques is about 3.14. However, in terms of total computing time for the
entire test-set we can observe that:

e Total time without filtering = 215,916 msecs.
e Total time with filtering = 28, 272 msecs.

Hence, the speedup achieved for the entire test-set is about 7.64. Note that
in both of the above computations system Cs has been excluded since neither
variation of GRID was able to solve the system within 20 minutes.

4.4 COMPUTING MULTIPLICITIES

67

m rur

Table 4.23 presents the performance of the M RUR solver with the application
of all filters or not. Recall, that M RUR uses one more heuristic technique (refer
to section 4.1). This heuristic was present in the running times that are shown
in filtered case in table 4.23. M _RUR was unable to solve system Cs within 20

% deg P Average Time (msecs)
7) SLV-M_RUR Speedup
w fleg NO FILTERS | FILTERED
R; 3 4 2 9 9 1.00
Ro 3 1 1 8 21 0.38
R3 3 1 1 2 2 1.00
M; | 3 3 4 49 72 0.68
M, | 4 2 3 4 5 0.80
Mz | 6 3 5 2,054 782 2.63
Mg | 9 |10 2 323 389 0.83
D; | 4 5 1 10 12 0.83
Dy | 2 2 4 88 147 0.60
Cy 7 6 6 22,006 954 23.07
Ca 4 | 3 6 138 234 0.59
Cs 8 7 |13 38,307 1,815 21.11
Cq 8 T 117 784,613 80, 650 9.73
Cs | 16 | 15 | 17 > 20’ 60,832 —
W, | 7 6 9 45,323 2,115 21.43
Wy | 4] 3 5 249 283 0.88
Ws | 8 7 |13 50, 724 2,333 21.74
W, | 8 T 117 839, 708 77,207 10.88

Table 4.23: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with 1GB RAM.

minutes when filtering techniques were not present in the computations. In the
rest of the cases, the average speedup achieved by filtering techniques is about
6.95. In terms of total computing time for the entire test-set (again excluding
system Cs from the computations) we can observe that:

e Total time without filtering = 1, 783, 615 msecs.

e Total time with filtering = 167, 030 msecs.
Hence, the speedup achieved for the entire test-set is about 10.68.
The effect of preprocessing x-candidates However, it is interesting to
investigate the effect of preprocessing x-candidates on M_RUR’s performance.

For this purpose, table 4.24 presents running times when this heuristic technique
is applied or not (but interval arithmetic and gcd filtering are applied) and

D. I. Diochnos

68

IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

% deg P Average Time (msecs)
s Q SLV-M_RUR Speedup
= f g —Preprocess | 4-Preprocess
R; 3 4 2 10 9 1.11
Ro 3 1 1 10 21 0.48
R3 3 1 1 2 2 1.00
M; | 3 3 4 64 72 0.89
M, | 4 2 3 5 5 1.00
Ms | 6 3 5 591 782 0.76
My | 9 |10 2 290 389 0.75
D, | 4 5 1 10 12 0.83
D, 2 2 4 126 147 0.86
Cy 7 6 6 2,672 954 2.80
Cs 4 3 6 246 234 1.05
Cs | 8| 7 |13 14,276 1,815 7.87
Cq 8 7|17 282,798 80, 650 3.51
Cs | 16 | 15 | 17 > 20’ 60, 832 —
W, | 71609 9,239 2,115 4.37
W, | 4 3 5 354 283 1.25
W; | 8 7 |13 13,235 2,333 5.67
W, | 8 7|17 242,199 77,207 3.14

Table 4.24: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz
AMD64@3K+ processor with 1GB RAM.

the speedup that is achieved with its application. Hence, the preprocessing
heuristic provides M RUR a speedup of about 2.20 on average. In terms of total
computing time for the entire test-set we can observe that:

e Total time without preprocessing = 566, 127 msecs.
e Total time with preprocessing = 167,030 msecs.

In other words, the speedup achieved for the entire test-set due to preprocessing
is about 3.39. Note that in both of the above computations system Cg has been
excluded since neither variation of GRID was able to solve the system within 20
minutes.

g _rur

Table 4.25 presents the performance of the G RUR solver with the application
of filters or not. Based on the numbers of the above table, the average speedup
achieved by filtering techniques is about 1.22. In terms of total computing time
for the entire test-set we have:

e Total time without filtering = 12, 727 msecs.

4.4 COMPUTING MULTIPLICITIES

69

% deg P Average Time (msecs)

27) SLV-G_RUR Speedup
w o[t g NO FILTERS | FILTERED

Ry | 3|4 | 2 6 6 1.00
R 3 1 1 36 36 1.00
Rz [3|1 |1 1 1 1.00
M; | 3 3 4 54 45 1.20
M, | 4 2 3 5 4 1.25
Mz | 6| 3|5 619 393 1.58
Mg | 9|10 2 273 199 1.37
D, | 4|5 |1 6 6 1.00
Dy | 2 2 4 171 126 1.36
Cy 7] 6 6 278 247 1.13
C, | 4|3 |6 137 99 1.38
Cs 8 7 | 13 146 152 0.96
Cq 8 7|17 494 474 1.04
Cs | 16 | 15 | 17 8,448 6,367 1.33
W, | 7| 6 9 482 393 1.23
Wy | 4| 3|5 297 193 1.54
W; | 8 | 7|13 296 230 1.29
W, | 8 7|17 978 709 1.38

Table 4.25: Performance averages over 10 runs in MAPLE 9.5 on a 2GHz

AMD64@3K+ processor with 1GB RAM.

e Total time with filtering = 9, 680 msecs.

Hence, the speedup achieved for the entire test-set is about 1.31. Once again

we observe that filtering techniques do not help much ¢ RUR.

D. I. Diochnos

70 IMPLEMENTATION AND EXPERIMENTS

D. I. Diochnos

Chapter 5

Conclusion

Concluding, three projection-based algorithms have been proposed for the prob-
lem of real solving of bivariate polynomial systems. Two of them, M RUR and
G _RUR, achieve an 63 (N'2) bound which is also the theoretical bound for real
solving the projections on x and y axes. Moreover, it is crucial to keep in mind
that the input of the problem is of order O (N?) and the output is Og(N*) since
the projection implies univariate polynomials of degree O(N?) with coefficients’
size bounded by O(N?). Hence these algorithms are O(I*) and ©(0O?%) compared
to the input and output respectively. Under this viewpoint, GRID solver’s bound
Op(N) is closer to the bounds achieved by M_RUR and G RUR than a plain
comparison between 12 and 14 would indicate.

Our solver of choice, as it has already been stated, is ¢ RUR. Its perfor-
mance is within a small constant factor with respect to the fastest C and C++
libraries (table 4.8). Of course for an accurate comparison between ¢ RUR and
other solvers one must bear in mind all the comments that were made in section
4.3. The use of Sturm’s algorithm and the isolating interval representation for
real algebraic numbers guarantee exactness that some solvers can not demon-
strate. Moreover, the library sLv as a whole, allows a generic platform in MAPLE
where one can work with algorithms that manipulate real algebraic numbers in
isolating interval representation. In addition to that, it is easily extensible in
higher dimensions due to the intuitive (recursive) projection-based solvers for
well-constrained multivariate polynomial systems.

Finally, theorem 2.37 for bivariate sign evaluation signifies the extension of
computations on real solving for polynomials with coefficients in an extension
field. This was shown in lemmas 3.7, 3.8.

5.1 Future Work

Extending theorem 2.37 to an arbitrary number of variables is of foremost con-
cern. The bounds that will be achieved with this extension have a dual impact
on applications. First of all, it will allow the extension of our projection-based
solvers of polynomial systems in higher dimension. Secondly, we will be able to
determine the sign of a uni- or multi-variate polynomial which has coefficients

71

D. I. Diochnos

72

CONCLUSION

D. I. Diochnos

in a multiple extension field of 7Z, assuming that real algebraic numbers are
given in isolating interval representation.

Extending algorithm 3 to a higher dimension is straight-forward. Hence sLv
library can be easily augmented to cover projection-based solvers for polynomial
systems of higher dimension. Moreover, extending theorem 2.37 to an arbitrary
number of variables will also allow the computation of real solutions to polyno-
mial systems composed by polynomials with coefficients composed by various
algebraic numbers.

Another idea that needs to be reconsidered is that of multipoint evaluation
based on Fan-In/Fan-Out techniques that were presented in section 2.1.7. We
expect such an application to yield better performance in practice, although our
preliminary analysis does not provide better bounds on our solvers than that
of iterative Horner.

Finally, of extreme importance is to transfer the siv library (and the ex-
tensions mentioned above) in a fast programming language such as C or C++.
However, this project is not as easy as it may sound since optimal (modular)
algorithms for core computations should be implemented as well. To highlight
the problems that need to be tackled, consider that at the moment there is no
open-source modular algorithm for computing the resultant in many variables;
and this lies in the heart of our projection-based solvers of polynomial systems.

Appendix A

Test-Bed Polynomials

In what follows the polynomial systems that were used for testing the library are
presented. Note that systems W; differ from the respective C; only on function
g. In the case of the W; the derivative of f is computed with respect to variable
x, while on C; the derivative is computed with respect to variable y.

A.1 Input Polynomials

System Rj:
f:1+2x—2x2y—5xy+x2+3x2y
g :2+6x—6x2y—11xy +4x2+5x3y
System Rj:
f=x3+3x2+3x—y2+2y—2
g=2x+y—3
System Rj:
f=x3—-3x2—3xy+6x+yd—3y2+6y—>5
g=x+y—2
System Mj:
f=y? —x?+x3
g:yz—x3+2x2—x
System Mj:
f=xt—oxly +y24uyt—y?
g=y—2x?
System Ms:
f=x8+3x%y? +3x2y?t 4+ y® — 4x2y?
g=y%—x2+x3
System My:
f:ngygfl
g=x10yylo 1
System Dj:

f=x*—y?t—1
g=x>4+y®—1

73

D. I. Diochnos

74

TEST-BED POLYNOMIALS

D. I. Diochnos

System Do

f = 312060 — 2640x2 — 4800xy — 2880y 2 + 58080x + 58560y
g = —584640 — 20880x> + 1740xy + 1740y -+ 274920x — 59160y

System Cj:
f=(x*+x—1—xy+3y—3y?2+1y?
(x4+2x2y2—4x2—y2+y4)
g = diff(f,y)
System Ca:
f=y?—6y?x + x? — 4x%y? + 24x3
g = diff(f,y)
System Cgs:
f=((x—1)24+y?—2)((x+1)2+y%—2)
(x—=12+(y+2)2=2)((x+ 1)+ (y+2)*—2)
g = diff(f,y)
System Cg:
f=x2—2x —1+y?)(x2+2x —1+y?)
(x? —2x +3+y? +4y)
(100000x2 + 200000x + 299999 + 100000y 2 + 400000y)
g = diff(f,y)
System Cs:
f=(x*+4x®+6x2+4ax +y? +4y® +6y2+4y)
(x* 4 4x3 +6x2 + 4x +y* — 4y® + 6y2 — 4y)
(x* —ax® +6x% —4x +y* + 4y® + 6y2 + 4y)
(100000x* — 400000x 4 600000x2 — 400000%
—1 + 100000y * — 400000y + 600000y2 — 400000y)
g = diff(f,y)
System W;i:
f=(x3+x—1—xy+3y—3y?+1y?
(x4 +2x2y? —4ax? — y2? +y?)
g = diff(f, x)
System Wo:
f=y?—6y?x +x? —4x?y? 4+ 24x3
g = diff(f, x)
System Wi
f=((x—1)24+y*=2)((x+1)* +y*—2)
(x—12+(y+2°=2)((x+1)*+ (y+2)*—2)
g = diff(f, x)
System Wy:

f=(x?—2x—14+y?)(x®>+2x —1+y?)

(x2 —2x +3+y? + 4y)

(100000)(2 + 200000x + 299999 + 1000001_,|2 + 400000y)
g = diff(f,x)

A.1 INPUT POLYNOMIALS

75

System Wi5:
f=(x*+4x3® +6x2 +4x +y* +4y® + 6y? + 4y)
(x* 4 4x3 +6x% + 4x + y* — 4y® + 6y2 — 4y)
(x* —ax® +6x% —4ax +y* + 4y + 6y + 4y)
(100000x* — 400000x® 4 600000x2 — 400000%
—1 + 100000y * — 400000y 3 + 600000y2 — 400000y)
g = diff(f, x)

D. I. Diochnos

76 TEST-BED POLYNOMIALS

D. I. Diochnos

Appendix B

Sample Usage

For a more up-to-date coverage of the capabilities of the sLv library the reader is
urged to visit http://www.di.uoa.gr/ erga/soft/SLV_index.html which is
the official homepage of the library. sLv library requires a definition for variable
LIBPATH which should point on the appropriate path where the source code is
stored in your system. On the following, we assume that SLv is located under
/opt/AlgebraicLibs/SLV/. The following is an example for univariate solving:

LIBPATH := "/opt/AlgebraicLibs/SLV/":
read cat (LIBPATH, "system.mpl"):

f 1= 3%x"3 - x72 - 6*%x + 2:

sols := SLV:-solveUnivariate(f):
SLV:-display_1 (sols);

< x~2-2, [-93/64, -45/32], -1.414213568 >
< 3*x-1, [1/3, 1/3]1, 1/3 >

< x~2-2, [45/32, 93/64], 1.414213568 >

V VV VYV

Note, that the multiplicities of the roots do not appear, although they have
been computed. Instead, the third argument of each component in the printed
list is an approximation of the root. However, whenever possible we provide

rational representation of the root.
The following is an example for bivariate solving, where the second root lies
in Z2:

LIBPATH := "/opt/AlgebraicLibs/SLV/":

read cat (LIBPATH, "system.mpl"):

f 1= 142%x+x72%y-Bkxky+x"2:

g = 2¥x+y-3:

bivsols := SLV:-solveGRID (f, g):
SLV:-display_2 (bivsols);

< 2%x~2-12xx+1, [3, 7], 5.915475965 > ,

< x~2+6%x-25, [-2263/256, -35/4], -8.830718995 >

V V.V V V VvV

<x-1, [1, 1], 1>, <x-1, [1, 1], 1>

< 2%x~2-12*xx+1, [3/64, 3/32], .8452400565e-1 > ,
< x"2+6%x-25, [23179/8192, 2899/1024], 2.830943108 >

Again, just like in the case of univariate solving, the third argument that is
printed on the component that describes each algebraic number is an approxi-
mation of the number and not the multiplicity of the root. Similarly, one could
have used one of the other solvers on the above example by referring to their
names, i.e. call the solvers with one of the following commands:

7

D. I. Diochnos

78

SAMPLE USAGE

D. I. Diochnos

> bivsols
> bivsols

SLV:-solveMRUR (f, g):
SLV:-solveGRUR (£, g):

For those interested in the numerical values or rough approximations of
the solutions one can get the appropriate output via display_float_1 and
display_float_2 procedures. Hence, for the above examples we have:

> SLV:-display_float_1 (sols);
< -1.4142136 >
< 0.3333333 >
< 1.4142136 >
> SLV:-display_float_2 (bivsols);
[5.9154759, -8.8309519,]
[1.0000000, 1.0000000,]
[0.0845241, 2.8309519,]

Consider the list sols of Rq14 numbers that was returned in the univariate
case above; the following are examples on the usage of the signAt function
provided by our Filtered Kernel®:

> FK:-signAt(2*x + 3, sols[1]);
1

> FK:-signAt(x~2xy + 2, sols[3], sols[1]);
-1

Our class on Polynomial Remainder Sequences? exports functions allow-
ing the computation of Subresultant and Sturm-Habicht sequences. Let f,g €
Z[x,y], then you can use any of the following commands in order to compute
the desired PRS:

PRS:-StHa (f, g, y):
PRS:-StHaByDet (f, g, y):
PRS:-subresPRS (f, g, y):
PRS:-SubResByDet (f, g, y):

[l ol e
o ounon

PrintPRS is used for viewing the PRS. For example, let f, g be those from
the example on Bivariate Solving above:

> L := PRS:-subresPRS (f, g, y):
> PRS:-PrintPRS(L);
/ 2 \ 2
\x -5x/y+1+2x+x
y+2x-3
3 2
2x -14x +13x -1

Finally, the variance of the above sequence evaluated at (1,0) can be com-
puted by:

> G := PRS:-Eval (L, 1, 0);
G := [4, -1, 0]
> PRS:-var(G);
1

1Located in file: FK.mpl
?Located in file: PRS.mpl

Bibliography

[Abb06]

[AM8S]

[BKS6]

[BPMO6]

[Can87]

[Can88]

[CFPRO6]

[DET07a]

[DETO7b]

[DSY05]

[EKK*05]

J. Abbott. Quadratic interval refinement for real roots. In ISSAC
2006, poster presentation, 2006. http://www.dima.unige.it/ ab-
bott/.

D. Arnon and S. McCallum. A polynomial time algorithm for the
topological type of a real algebraic curve. JSC, 5:213-236, 1988.

E. Brieskorn and H. Knorrer. Plane Algebraic Clurves.
Birkhauser, Basel, 1986.

S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic
Geometry, volume 10 of Algorithms and Computation in Math-
ematics. Springer-Verlag, 2nd edition, 2006.

J. Canny. The Complezity of Robot Motion Planning. ACM —
MIT Press Doctoral Dissertation Award Series. MIT Press, Cam-
bridge, MA, 1987.

J. Canny. Some algebraic and geometric computations in PSPACE.
In Proc. STOC, pages 460-467, 1988.

Frédéric Cazals, Jean-Charles Faugere, Marc Pouget, and Fabrice
Rouillier. The implicit structure of ridges of a smooth parametric
surface. Comput. Aided Geom. Des., 23(7):582-598, 2006.

D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the complex-
ity of real solving bivariate systems. In International Symposium
on Symbolic and Algebraic Computation, 2007.

D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the com-
plexity of real solving bivariate systems. Research Report 6116,
INRIA, 02 2007. https://hal.inria.fr/inria-00129309.

Z. Du, V. Sharma, and C. K. Yap. Amortized bound for root
isolation via Sturm sequences. In D. Wang and L. Zhi, editors,
Int. Workshop on Symbolic Numeric Computing, pages 81-93,
Beijing, China, 2005.

A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt,
and N. Wolpert. A descartes algorithm for polynomials with bit-
stream coefficients, 2005.

79

D. I. Diochnos

80

BIBLIOGRAPHY

D. I. Diochnos

[EKWO7]

[Emi95]

[EMTO07]

[EP99]

[ESY06]

[ET05]

[EV99)

[GVEKOY6]

[GVLRR89]

[GVNO2]

[Klo95]

[KSPO5]

A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and exact ge-
ometric analysis of real algebraic plane curves. In International
Symposium on Symbolic and Algebraic Computation, 2007.

I.Z. Emiris. A general solver based on sparse resultants, March
1995. Available also as Tech. Report 3110, INRIA Sophia-Antipolis,
Jan. 1997.

I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Alge-
braic Numbers: Complexity Analysis and Experimentation. In
P. Hertling, C. Hoffmann, W. Luther, and N. Revol, editors, Rel:-
able Implementations of Real Number Algorithms: Theory and
Practice, LNCS (to appear). Springer Verlag, 2007. also available
in www.inria.fr /rrrt /rr-5897.html.

I.Z. Emiris and V.Y. Pan. Applications of FFT. In M.J. Atallah,
editor, Handbook of Algorithms and Theory of Computation,
chapter 17. CRC Press, Boca Raton, Florida, 1999.

A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion
tree bounds for the descartes method. In ISSAC, pages 71-78,
New York, NY, USA, 2006. ACM Press.

I. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate poly-
nomial systems. In V. Ganzha and E. Mayr, editors, Proc. Com-
puter Algebra in Scientific Computing (CASC), volume 3718 of
LNCS, pages 150-161. Springer, 2005.

I.Z. Emiris and J. Verschelde. How to count efficiently all affine
roots of a polynomial system. Discrete Applied Math., Special
Issue on Comput. Geom., 93(1):21-32, 1999.

L. Gonzalez-Vega and M. El Kahoui. An improved upper complex-
ity bound for the topology computation of a real algebraic plane
curve. J. Complezity, 12(4):527-544, 1996.

L. Gonzélez-Vega, H. Lombardi, T. Recio, and M-F. Roy. Sturm-
Habicht Sequence. In ISSAC, pages 136—146, 1989.

L. Gonzalez-Vega and I. Necula. Efficient topology determination
of implicitly defined algebraic plane curves. Computer Aided Ge-
ometric Design, 19(9):719-743, December 2002.

J. Klose. Binary segmentation for multivariate polynomials. J.
Complezity, 11(3):330-343, 1995.

K.H. Ko, T'. Sakkalis, and N.M. Patrikalakis. Resolution of multiple
roots of nonlinear polynomial systems. Int. J. of Shape Modeling,
11(1):121-147, 2005.

BIBLIOGRAPHY

81

[LLO1]

[LRO1]

[LRSEDOO]

[Mil92]

[Mou96]

[Mou99]

[MP97]

[MP9s]

[MPOS5]

[MPS*06]

[MS99]

[MTO00]

Y.N. Lakshman and D. Lazard. On the complexity of zero-
dimensional algebraic systems. In T. Mora and C. Traverso,
editors, Effective Methods in Algebraic Geometry, volume 94
of Progress in Mathematics, pages 217-225, Boston, 1991.
Birkhduser. (Proc. MEGA ’90, Livorno, Italy).

T. Lickteig and M-F. Roy. Sylvester-Habicht Sequences and Fast
Cauchy Index Computation. JSC, 31(3):315-341, 2001.

H. Lombardi, M-F. Roy, and M. Safey El Din. New Structure
Theorem for Subresultants. JSC, 29(4-5):663—-689, 2000.

P.S. Milne. On the solution of a set of polynomial equations. In
B. Donald, D. Kapur, and J. Mundy, editors, Symbolic and Nu-
merical Computation for Artificial Intelligence, pages 89-102.
Academic Press, 1992.

B. Mourrain. Enumeration problems in geometry, robotics and vi-
sion. In L. Gonzalez-Vega and T. Recio, editors, Effective Meth-
ods in Algebraic Geometry, Progress in Mathematics. Birkh&user,
1996. (Proc. MEGA ’94, Santander, Spain).

B. Mourrain. A new criterion for normal form algorithms. In
M. Fossorier, H. Imai, Shu Lin, and A. Poli, editors, Proc.
AAECC, volume 1719 of LNCS, pages 430—443, 1999.

B. Mourrain and V.Y. Pan. Solving special polynomial systems by
using structured matrices and algebraic residues. In F. Cucker and
M. Shub, editors, Proc. Workshop on Foundations of Computa-
tional Mathematics, pages 287-304, Berlin, 1997. Springer-Verlag.

B. Mourrain and V.Y. Pan. Asymptotic acceleration of solving
polynomial systems. In Proc. ACM Symp. Theory of Comput-
ing, pages 488—496. ACM Press, New York, 1998.

B. Mourrain and J-P. Pavone. Subdivision methods for solving
polynomial equations. Technical Report RR-5658, INRIA Sophia-
Antipolis, 2005.

Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Té-
court, Elias Tsigaridas, and Nicola Wolpert. Algebraic issues in
computational geometry. In Jean-Daniel Boissonnat and Monique
Teillaud, editors, Effective Computational Geometry for Curves
and Surfaces, pages 117-155. Springer-Verlag, 2006.

M. Mignotte and D. Stefanescu. Polynomzials: An algorithmic
approach. Springer, 1999.

B. Mourrain and P. Trébuchet. Solving projective complete in-
tersection faster. In C. Traverso, editor, Proc. Intern. Symp. on

D. I. Diochnos

82

BIBLIOGRAPHY

D. I. Diochnos

[Neu90]

[Pan02]

[PRS93]

[Rei97]

[Ren89]

[Rou99]

[Sak89]

[SF90]

[TE06]

[Tsi06]

[vHMO02]

[vzGGO3]

[vzGLO03]

[Wol02]

Symbolic and Algebraic Computation, pages 231-238. New-York,
ACM Press., 2000.

Arnold Neumaier. Interval Methods for Systems of Equations.
Cambridge University Press, 1990.

V.Y. Pan. Univariate polynomials: Nearly optimal algorithms for
numerical factorization and rootfinding. JSC, 33(5):701-733, 2002.

P. Pedersen, M-F. Roy, and A. Szpirglas. Counting real zeros in the
multivariate case. In F. Eyssette and A. Galligo, editors, Compu-
tational Algebraic Geometry, volume 109 of Progress in Math-
ematics, pages 203—-224. Birkhauser, Boston, 1993.

D. Reischert. Asymptotically fast computation of subresultants.
In ISSAC, pages 233—-240, 1997.

J. Renegar. On the worst-case arithmetic complexity of approx-
imating zeros of systems of polynomials. SIAM J. Computing,
18:350-370, 1989.

F. Rouillier. Solving zero-dimensional systems through the rational
univariate representation. J. of AAECC, 9(5):433-461, 1999.

T. Sakkalis. Signs of algebraic numbers. Computers and Mathe-
matics, pages 131-134, 1989.

T. Sakkalis and R. Farouki. Singular points of algebraic curves.
JSC, 9(4):405-421, 1990.

E. P. Tsigaridas and I. Z. Emiris. Univariate polynomial real root
isolation: Continued fractions revisited. In Y. Azar and T. Er-
lebach, editors, In Proc. 14th ESA, volume 4168 of LNCS, pages
817-828, Zurich, Switzerland, 2006. Springer Verlag.

Elias P. Tsigaridas. Algebraic Algorithms and Applications to
Geometry. PhD thesis, Dept. of Informatics and Telecommunica-
tions, Univarsity of Athens, 2006.

M. van Hoeij and M. Monagan. A modular GCD algorithm over
number fields presented with multiple extensions. In ISSAC, pages
109-116, July 2002.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge Univ. Press, Cambridge, U.K., 2nd edition, 2003.

J. von zur Gathen and T. Liicking. Subresultants revisited. T'CS,
1-3(297):199-239, 2003.

N. Wolpert. An Ezact and Efficient Approach for Computing
a Cell in an Arrangement of Quadrics. PhD thesis, MPI fuer
Informatik, October 2002.

BIBLIOGRAPHY 83

[WSO05] N. Wolpert and R. Seidel. On the Exact Computation of the Topol-
ogy of Real Algebraic Curves. In SoCG, pages 107-115. ACM,
2005.

[Yap00] C.K. Yap. Fundamental Problems of Algorithmic Algebra. Ox-

ford University Press, New York, 2000.

D. I. Diochnos

