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Synopsis

At the current M.Sc thesis we study Generalized Second-Price Auctions un-

der advertisement settings. In chapter 1 we make an introduction to the

basic concepts of the auctions, presenting several auction models and an-

alyzing their properties. We proceed in chapter 2 studying the equilibria

properties of the GSP auction under the advertisement position setting with

a presentation based on [1]. We provide several notices and additional proofs

regarding the comparison between the pure Nash equilibria and Envy-Free

equilibria. In chapter 3 we study the notion of budget and observe the Bud-

geted Second-Price advertisement auction with a presentation based on [2].

In section 3.6 we display notices and some results from our side, concerning

several problems that occur in the original work. Additionally we examine

the critical bid notion under the same setting when the items are not di-

visible. Finally we conclude with chapter 4, introducing two GSP auction

models for the advertisement position setting, customized under budget con-

straints. Our presentation is based on a work currently in progress [3]. We

analyze the structure of the two models and provide proofs regarding their

equilibria properties.

Keywords: Second-Price Auctions, Equilibrium, Budget, Ad Setting, Slot
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PerÐlhyh

Sthn paroÔsa diplwmatik  ergasÐa melet�me Second-Price dhmoprasÐec ge-

nikeumènhc morf c, k�tw apì to prÐsma tou perib�llontoc twn diafhmÐsewn.

Sto pr¸to kef�laio k�noume mia eisagwg  stic basikèc ènnoiec twn dhmo-

prasi¸n, parousi�zontac mia poikilÐa montèlwn kai analÔoume tic idiìthtec

touc. Sto deÔtero kef�laio melet�me tic idiìthtec isorropÐac (equilibrium)

genikeumènwn Second-Price dhmoprasi¸n se perib�llon diafhmÐsewn me mia

parousÐash pou basÐzetai sto [1]. Parèqoume prìsjetec shmei¸seic kaj¸c

sumplhrwmatik� apotelèsmata pou aforoÔn sth sÔgkrish an�mesa sthn Na-

sh kai thn Envy-Free isorropÐa. Sto trÐto kef�laio melet�me thn ènnoia

tou budget kai to montèlo dhmoprasÐac diafhmÐsewn Budgeted Second-Price

me mia parousÐash pou basÐzetai sto [2]. Sthn par�grafo 3.6 ekjètoume

k�poia dik� mac apotelèsmata sqetik� me orismèna probl mata pou up�rqoun

sthn aujentik  ergasÐa kai epiprìsjeta melet�me thn ènnoia tou critical bid

sto Ðdio perib�llon, qwrÐc wstìso thn upìjesh twn diairet¸n antikeimènwn.

KleÐnontac oloklhr¸noume me to tètarto kef�laio sto opoÐo sust noume duo

kainoÔrgia montèla genikeumènwn Second-Price dhmoprasi¸n sto perib�llon

twn diafhmÐsewn upì budget periorismoÔc, me mia parousÐash pou basÐzetai

se mia ergasÐa pou brÐsketai aut  th stigm  se exèlixh [3]. AnalÔoume thn

dom  twn duo montèlwn kai parèqoume apodeÐxeic sqetik� me tic idiìthtec i-
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sorropÐac touc. Tèloc k�noume mia sÔntomh anafor� se prot�seic oi opoÐec

eÐnai thn paroÔsa stigm  proc apìdeixh.

Lèxeic Kleidi�: Second-Price dhmoprasÐec, IsorropÐa, Oikonomik  du-

natìthta, Perib�llon diaf mishc, Topojèthsh
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Chapter 1

Auctions and Models

1.1 A general view and some basic concepts

1.1.1 Auctions History

The word auction comes from the Latin augeo which means ”I increase” or

”I augment”. Auctions are a mechanism for selling or exchanging goods and

commodities and it seems that have touched almost every century, industry

and nationality. Auctions date back so far in history that their origin is

uncertain and no one knows exactly who started them or how they started.

The earliest record that we have, comes from ancient Greek scribes and

Herodotus, containing information that auctions occurring as far back as

500 B.C.. At that time the ”items” of the auctions were women for marriage

and in fact it was considered illegal for a daughter to be sold outside the

auction method. The model of these auctions was a descending method

where the auctioneer was setting a starting high price and gradually was

decreasing it until the first bid of a potential buyer. It was a single-item

kind of model and the auctioneer initially was selling the women that he

considered most beautiful and progressed to the least. The buyer could get

a refund if he and his wife did not get along. Later on and during the time

of Roman Empire after a military success, Roman soldiers would drive a

spear into the ground, around the spoils of war were left, to start an auction.

Auctions were also popular for selling family estates, for example the roman
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emperor and philosopher Marcus Aurelius sold family furniture at auctions

for months in order to pay off debts. In the year 193 A.C. one of the most

historical auctions of all time occurred, when the whole Roman Empire was

put on an auction by the Praetorian Guard (a force of bodyguards used by

the roman emperors). The Praetorian Guard killed the emperor Pertinax

and then put the entire empire into an auction. The highest bidder was

Didius Julianus with a bid of 6.250 drachmas per guard. That initiated a

civil war and two months later Didius Julianus was beheaded when Septimus

Severus conquered Rome. After the end of the Roman Empire, auctions

popularity started to fade in Europe. Around 1600 auctions came to America

(pilgrims arrival on Americas Eastern shores) and their popularity continued

to increase during colonization with the sale of many types of goods, such

as crops, tools, tobacco and entire farms. At the American civil war era,

spoils of war and surplus were regularly auctioned at public sale by Colonels

of the division (thus today some of the auctioneers of the US also referred

as Colonels). Back to Europe and at 1674 the oldest auction house in the

world, Stockholm Auction House was established in Sweden. During the end

of the 18th century, soon after the French Revolution, auctions were held

into taverns and coffee houses to sell works of art and auction catalogs that

contained the available goods were printed. Today the world’s largest auction

is Christie’s and it was established around 1766. Recently the development

of the Internet gave a significant increase in the use of the auctions due to

the rise of the electronic markets (stores where you can buy everything you

like without the need of your physical presence). Many of these markets use

several models of auction mechanisms as the main way for selling goods.

1.1.2 Auctions as Formal Models

The origins of the auctions with more specific structures, is said to be the

year 1961 with the seminal article of William Vickrey. Although it took many

years before his work was followed up by other researchers (including Wilson,

Clarke, Groves, Milgrom Weber Myerson, Marskin and Riley), it eventually

formed a solid sector of research. Around the 80’s there was a widespread

sense that the specific research area was almost complete with little remaining

to be discovered. This perception however changed at the early 90’s due

to the occurrence of two major events: the Salomon Brothers scandal in
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the US Government securities market in 1991 (trader Paul Mozer had been

submitting false bids in an attempt to purchase more treasury bonds than

permitted by one buyer during the period between December 1990 and May

1991) and the advent of the Federal Communications Commission (FCC)

spectrum auctions in 1994. These two events brought up to the surface the

serious limitations of the existing theory since the majority of the theorems,

models, structures etc that had been developed until then, were based on

single-item auctions (auctions where the auctioneer sells only one item to a

set of buyers) while the study of multi-item auctions was at an infantile level.

So the second wave of research was triggered at the middle of 90’s and the

main focus was on the study of multi-item auctions with multiple variations

(a research that continues until today).

1.1.3 Types of single-item Auctions

As we mentioned earlier on, the term single-item auction is used when a

seller-auctioneer wants to sell only one item or a single non divisible amount

of good to a set of potential buyers. The buyers are also called bidders since

they bid, propose or submit a value which technically corresponds to the

amount of money they desire to give in order to get the item or the good.

They also can be seen as players with different strategies, in a game with

certain rules where the winner is the one who manages to get the item. Here

we will make a reference to the basic models of single-item auctions.

• Ascending-bid auctions: These auctions are also known as English

auctions and are carried out in real time. The bidders participate

either physically or electronically. The basic idea behind this model is

that the auctioneer gradually raises the price of the item that is to be

sold and the bidders drop out until only one of them remains. He is

the winner bidder and he gets the item at this final price. Examples of

this model are oral auctions in which bidders shout out prices (physical

participation), or submit them electronically (electronic participation).

• Descending-bid auctions: These auctions are also known as Dutch

auctions and are carried out in real time as well. The auctioneer, in

contrast with the previous model, gradually lowers the price of the item
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(which has some high initial value) until one of the bidders accepts the

item for the first time and pays it at the current price. The ”Dutch”

characterization comes from the fact that this model was used as way

to sell flowers in Netherlands.

• First-price sealed-bid auctions: In this kind of auction, bidders submit

simultaneous sealed bids to the auctioneer without knowledge of any

of their opponents bids. The auctioneer unseals the bids all together

and the winner is the one with the highest bid. The price he pays is

the value of his bid (hence the name first-price).

• Second-price sealed-bid auctions: This model follows the same pattern

as the first-price auctions where the bidders submit simultaneously,

sealed bids to the auctioneer without knowledge of any of their oppo-

nents bids and the auctioneer unseals the bids all together. The winner

is once again the bidder with the highest bid, the price he pays how-

ever is the second-highest bid (hence the name second-price). These

auctions are also known as Vickrey auctions in honor of William Vick-

rey, who wrote the first game-theoretic analysis of auctions (including

the second-price auction) and who won the Nobel Memorial Prize in

Economics in 1996 for this body of work.

1.1.4 Private-Values Model

It is common fact that in our daily life as consumers, we value the products

that we are interested in. When someone goes to a store for example in

order to buy a specific model of TV, he checks the specs, the technology,

the characteristics in general and comes up with a valuation on how much

money this model should cost, based on his own criteria. He asks the seller

the price of the TV and then he decides either to wait for a price drop or to

buy it depending on his valuation (if the price exceeds his valuation or not

respectively). We always value the products we are interested in and this is

one of the main ways of how we decide to buy them or not.

The same goes for potential buyers that participate in an auction. An inter-

esting question that we can come up with however is, should these buyers-

bidders expose their values to the auctioneer or not?
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Generally, each bidder i who participates in an auction have a valuation-

value vi, for the item which is sold by the auctioneer. We claim that this

type of information must be private, otherwise there is no meaning in forming

an auction at all. In order to see this, imagine a case where the auctioneer

as well as the bidders, know each other’s values. Specifically, consider that

an auctioneer is trying to sell an item that he values x and suppose that the

highest value among the bidders is some y = max{vi} > x. Bellow there is

an example of what could happen in a situation like this.

Example: If the auctioneer knows the true values of the bidders then he can

set the price of the item at a value just below y. In that case the bidder with

the highest value will buy the item and the auctioneer will have the highest

possible profit. In other words there is no need for the auctioneer to form

an auction since for the right price he can maximize his utility. From the

bidders side of view, exposing the values predetermines the outcome (who

gets the item) and leads the winner to get it at the highest possible price.

In either case there is no need for the players to bid, so there no meaning in

forming an auction at all.

So we can now take a formal look on the private-values model in the auction

setting in order to have a basic idea on how such a structure works: An auc-

tioneer wishes to allocate an item or a non divisible amount of good among

N bidders (i = 1, ..., N). Each bidder’s valuation vi for the item, is private

information and depends only on him and not on the adversary bidders. The

bidders bid simultaneously and independently. Each one of them wants to

get the item, but obviously at a price lower than their own valuation. They

also want this price to be the lowest possible. So in order to summarize, each

player’s goal is:

• Get the item only at a price smaller than your own private valuation

• Get it at the lowest possible price

In a more formal way we can say that all bidders want to maximize their

expected utility which is defined as:

ui =

 (vi − x) if i gets the item at price x

0 if i gets nothing
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Notice here that all the models that we will display from now on, follow the

basics of the private-values model structure.

1.2 Basic Models of single-item Auction

We will now describe two of the main single-item auction models, second-

price auction and first-price auction. In this work we are mainly interested

in the second-price model due to its interesting properties, however we will

make a brief description of the first-price model in order to have a wider view

on the topic. As we said earlier, an auction can be seen as a game where the

goal of each player is to maximize his utility. The strategy of each player is

the choice of his bid. From now on we will refer to bidders as players.

1.2.1 Second-Price Auction

We have N (i = 1, ..., N) players that have private values vi for the item that

is to be sold by the auctioneer. Each player’s strategy is to bid an amount

bi which is a function of his true value vi. The utility of player i with value

vi and bid bi is defined as follows:

If player i is the winner (i.e. he is the one who gets the item and has the

highest bid) then his utility is defined as vi−bj, where bj is the second highest

bid . Else if player i is a loser (i.e. he does not get the item) then his utility

is defined as zero.

ui =

 (vi − bj) if i has the highest bid (bj is the second highest bid)

0 otherwise

So in order to give a more complete description, we can say that the players

announce their bids, the auctioneer ranks them in decreasing order and he

sells the item to the first in rank player at a price which is equal to the bid of

the second in rank player. There are some additional details that we have to

mention here: How the auctioneer handles a situation where two of the peo-

ple that participate to the auction submit the same bid? A solution that we

can come up with, is to order the people with the same bids via their names

(with lexicographic order) i.e., if two or more people submit the highest bid,



Basic Models of single-item Auction 19

the auctioneer will sell the item to the player with the lower original index

(we make this is a hypothesis for all the auction models that are presented

in this work). Notice here that at situations like this the winner player gets

the item but pays the full value of his own bid.

As we said earlier, second-price auctions have some very interesting prop-

erties. Before we proceed it is important to present some definitions:

Definition 1.2.1.1 Let S = (s1, s2, ..., sn) be a set of strategies of all players

where si is the strategy of player i. As s−i we define the strategies of all

players except i′s and as ui(si, s−i) the utility of i when he chooses to play

si and the others s−i.

Definition 1.2.1.2 We call dominant strategy a strategy that is optimal

for a player i (i.e. it maximizes his utility) regardless of what the other play-

ers choose to play. In other words, if si is a dominant strategy then i does

not gain something from choosing a different strategy s′i as well as it is best

for him to stick with that strategy no matter what the other players do (i.e.

if they go from s−i to s′−i). More formally:

ui(si, s−i) ≥ ui(s
′
i, s−i) and ui(si, s

′
−i) ≥ ui(s

′
i, s
′
−i)

Lets now see why the second-price auction model is so important.

Proposition 1.2.1.1 In a second-price auction it is a dominant strategy

for every player to bid his true value, i.e. bi = vi.

Proof. We will prove this by contradiction assuming that some player i de-

cides to bid something different from his value. We shall show that with such

a deviation, player i will have either the same or lower utility (in other words

we will compare his utilities before and after the deviation assuming that the

rest players do not change their strategies). Notice here that the bid choice

affects only the winning or losing outcome i.e. if a winner alters his strategy

he can go to a winner or loser state. However, in his new winner state he

will continue to pay the same price as before since the payment amount is

determined by the player bellow him (who is the same as before). There are

two possible cases that we will examine separately,
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Case 1: bi = vi vs b′i > vi

• If player i was the winner with strategy si where bi = vi then he remains

the winner with strategy s′i where b′i > vi (he is ranked again first since

he has the highest bid) and as we said his final utility is the same

as before since he pays once again the second highest bid. Therefore

ui(si, s−i) = ui(s
′
i, s−i).

• If player i was a loser with strategy si where bi = vi then with strategy

s′i where b′i > vi is either a loser or the winner. If he becomes a loser

then his utility is zero (the same as before). If he becomes the winner

then he gets the item at a price bj. It is obvious however that b′i > bj >

bi = vi (remember that with bi = vi he was a loser) so his new utility

is vi − bj < 0. Therefore ui(si, s−i) = 0 ≥ ui(s
′
i, s−i).

Case 2: bi = vi vs b′i < vi

• If player i is the winner with strategy si where bi = vi then with strategy

s′i where b′i < vi is either the winner or a loser. If he becomes the winner

then his utility is the same as before since he gets the item at the same

price. If he becomes a loser then his utility is zero which is equal or

less than before. Therefore ui(si, s−i) ≥ ui(s
′
i, s−i).

• If player i is a loser with strategy si there bi = vi then he remains a

loser with strategy s′i where b′i < vi so his utility is once again zero.

Therefore ui(si, s−i) = ui(s
′
i, s−i) = 0.

So as we see, in both cases each player i has nothing to gain if he bids

something different from his value, thus bidding his true value is a dominant

strategy. Concluding, we can make some final comments that summarize the

previous analysis:

• In the second-price auction, your bid determines if you are a winner or

a loser but not the price of the item that you will get in case you are a

winner (since that depends to the bids of the rest players).

• In the second-price auction bidding your true value is the best strategy

you can come up with, regardless of what the other players do (whether

they also submit their true values, bid higher or lower).



Basic Models of single-item Auction 21

1.2.2 First-Price Auction

We have N (i = 1, ..., N) players that have private values vi for the item that

is to be sold by the auctioneer. Each player’s strategy is to bid an amount

bi which is a function of his true value vi. The utility of player i with value

vi and bid bi is defined as follows:

If player i is the winner (i.e. he is the one who gets the item and has the

highest bid) then his utility is defined as vi − bi. Else if player i is a loser

(i.e. he does not get the item) then his utility is defined as zero.

ui =

 (vi − bi) if i has the highest bid

0 otherwise

As we can see the bid bi of each player i, determines not only the outcome of

the auction (if i is a winner or a loser) but also the payment in the winner

case scenario (since player i pays his own bid). So this is the first gap between

the first and the second-price auctions and is also something that will create

many difficulties in the goal of tracing the optimal bid or an optimal strategy.

It is obvious that bidding your true value is not the dominant strategy this

time around since your utility is zero in both winning or losing state (even

if you win, the price you will pay is your full value, so your utility is zero by

definition). It is obvious as well, that there is no meaning in bidding higher

than your true value because if you are a loser then your utility is zero and if

you are a winner your utility is negative by definition (since pi = bi > vi). So

the only reasonable direction that you can take is bidding lower than your

true value. But what is the optimal bid in such a case? If you bid too close

to your value then in a winning case scenario you get a very small amount of

utility. On the other hand if you bid far bellow your value you increase your

utility in a winning case scenario but you also reduce the possibilities for this

scenario to happen. As we can see, finding the optimal bid in the first-price

auction is a lot more complex than it was in the second-price auction. There

are solutions to this problem, however as we mentioned at the beginning of

the section we will not present any specific results here.
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1.3 Basic Models of multi-item Auction

It is obvious that if there are multiple items to be sold, the models that we

described are incomplete. Multiple questions also emerge i.e. are these items

identical or not? Bellow we present two of the basic models for auctioning

multiple items and observe their properties. Multi-item auction models are

more general (they can be used for single-items as well) and in a way more

realistic since they have many applications in real life (electronic markets

and stores use them as mechanisms for selling items).

1.3.1 Vickrey-Clarke-Groves Mechanisms

Suppose that we have N players (i = 1, ..., N) and K items (i = 1, ..., K).

Each player i has a vector of private values Vi = [vi(1), ..., vi(K)] if the

items are non-identical (a value for each item) or a single private value vi if

the items are identical. Additionally each one of them submits a vector of

bids (or a single bid) in order to be tagged with the item of his preference

(non-identical items) or with an item in general (identical items) respectively.

Suppose also that there is a set S that contains all the possible outcomes

(all the possible assignments between the players and the items). Imagine

now that there exists a central authority (an auctioneer in our case) who

wants to provide an assignment that maximizes
∑

i bi(s) where s is a pos-

sible assignment and {bi(s)}iε{1,...,N} the bids of the players that are tagged

with an item in that specific assignment. In other words the center wants

to find the best outcome s so that
∑

i bi(s) has the highest possible value.

From now on we denote this best outcome as ŝ. Finally, the center announces

that it will pay each player i that participates in the auction with
∑

j 6=i bj(ŝ)

(the sum of the bids of the players that are tagged to an item at the best

outcome except his own) and each player i will pay to the center the amount

maxs
∑

j 6=i bj(s) (the sum of the bids of the players that are tagged to an item

at the best outcome, when he does not exists-participates in the auction at

all). The amount that the center demands from each player to pay, can be

seen as the harm that his presence causes on the rest of the players. Notice

here that since the center wants to find the best outcome,
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∑
j 6=i

bj(ŝ) ≤ maxs
∑
j 6=i

bj(s)

In order to understand why notice that
∑

j 6=i bj(ŝ) is the best outcome (the

maximum sum) of a N players game minus the bid of player i (so a common

outcome of a N −1 players game) while maxs
∑

j 6=i bj(s) is the best outcome

of a N − 1 players game. The only case where this inequality is not strict, is

when player i does not get any item at the best outcome (so his bid is not

computed into the sums). So we can conclude that,

maxs
∑
j 6=i

bj(s)−
∑
j 6=i

bj(ŝ) ≥ 0

which can be seen as the final payment of the player to the center-auctioneer

(zero if we have an equality and thus a player who gets no item),

pi = maxs
∑
j 6=i

bj(s)−
∑
j 6=i

bj(ŝ)

Finally we can define each player’s utility as,

ui =

 vi(ŝ)− pi if
∑

j 6=i bj(ŝ) < maxs
∑

j 6=i bj(s)

0 if
∑

j 6=i bj(ŝ) = maxs
∑

j 6=i bj(s)

where vi(ŝ) can be denoted as the value of player i for the item he gets at

the best outcome.

Proposition 1.3.1.1 Bidding your true value is a dominant strategy in the

Vickrey-Clarke-Groves Mechanism (VCG).
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Proof. When player i decides to be truthful, he submits the vector of his

values Vi = [vi(1), ..., vi(K)]. The auctioneer takes this vector as well as

the bid vectors of the rest players and tries to form an allocation where∑
i bi(s) is maximum. So he computes all the possible vi(s) +

∑
j 6=i bj(s) for

all possible outcomes s and finally he chooses ŝ which is the outcome where

vi(ŝ) +
∑

j 6=i bj(ŝ) = maxs{vi(s) +
∑

j 6=i bj(s)}. Player’s i utility is,

ui(ŝ) = vi(ŝ) +
∑
j 6=i

bj(ŝ)−maxs
∑
j 6=i

bj(s)

When player i decides to deviate, bidding a vector different from his valuation

vector, his new bids lead him to get either the same or a different item. In any

case the auctioneer once again decides the best allocation (which will may

be different or the same as before depending on i′s bid vector) and player’s

i utility becomes,

ui(s
′) = vi(s

′) +
∑
j 6=i

bj(s
′)−maxs

∑
j 6=i

bj(s)

where s′ is the best outcome under the new data and vi(s
′) is player’s i value

of the item he is tagged to, at outcome s′.

Notice that the amount maxs
∑

j 6=i bj(s) does not change no matter what

strategy player i chooses to play. As we said earlier it represents the sum of

the bids at the best outcome when player i does not exists at all.

So assume that player i gets a higher utility when he does not bid his true

values. Lets see if this is possible:

ui(s
′) > ui(ŝ)⇒

vi(s
′) +

∑
j 6=i

bj(s
′)−maxs

∑
j 6=i

bj(s) > vi(ŝ) +
∑
j 6=i

bj(ŝ)−maxs
∑
j 6=i

bj(s)

⇒ vi(s
′) +

∑
j 6=i

bj(s
′) > vi(ŝ) +

∑
j 6=i

bj(ŝ)
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However we know that vi(ŝ) +
∑

j 6=i bj(ŝ) = maxs{vi(s) +
∑

j 6=i bj(s)} so

we have a contradiction. Notice also that if player i gets no item at the ŝ

outcome his utility is defined as zero. In such a case and under the same

logic, if he deviates from bidding his true values his utility is either zero or

some negative amount.

So we can conclude that bidding your true values is a dominant strategy

in VCG.

Proposition 1.3.1.2 In single-item auctions the second-price and the VCG

models are exactly the same.

Proof. As we said earlier, there are two possible outcomes at the second-price

auction:

• To be the winner (getting the item) with utility ui = vi − bj where bj
is the second highest bid.

• To be a loser with utility ui = 0.

Lets see what happens if we run the same auction via the VCG model,

• Winner case: ui = vi +
∑

j 6=i bj(ŝ) − maxs
∑

j 6=i bj(s). Notice here

that
∑

j 6=i bj(ŝ) is zero since player i got the only item that exists and

there is no other player tagged to an item (remember that we take

into consideration only the bids of the players that get an item). Lets

take a look to maxs
∑

j 6=i bj(s) , if player i does not exist then since

the auctioneer wants to maximize the sum, he will give the item to

the player with the second highest bid, say j (who is first in this new

allocation). So we have that maxs
∑

j 6=i bj(s) = bj and we can clearly

conclude that i′s utility is ui = vi − bj which is the same with the

second-price run.

• Loser case: Since player i is a loser, he does not get any item. We

only need to verify that
∑

j 6=i bj(ŝ) = maxs
∑

j 6=i bj(s). It is easy to see

that the two sums are equal since both represent the highest bid (which

does not alter either player i is present or not). We can conclude that

ui = 0 which is the same as in the second-price run.
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Proposition 1.3.1.3 In an auction with N players and K < N identical

items, under the VCG run all the winners pay the K + 1 highest bid.

Proof. Suppose that player i is a winner and his utility comes as always

by the relation ui = vi +
∑

j 6=i bj(ŝ) − maxs
∑

j 6=i bj(s). Notice that since

the items are identical, each player has the one value for every item. Now

lets turn again to the amount, maxs
∑

j 6=i bj(s). This amount represents the

maximum sum when player i does not exist. It is obvious that in order for the

sum to be maximum as well as for the assignment to be complete (no item

untagged), player i′s place will be covered by the player with the highest bid

who previously was not tagged to any item (this player has the K+1 highest

bid, say b′) while the other bids will remain intact. So returning back to the

relation of the utility and more specifically to the difference of the sums we

can see that,
∑

j 6=i bj(ŝ)−maxs
∑

j 6=i bj(s) =
∑

j 6=i bj(ŝ)−
∑

j 6=i bj(ŝ)− b′ =

−b′ which is the final payment of every player i that is a winner. This is in

fact very interesting since we can say that the winners form a class which

contains people with the same properties no matter their differences. We

can actually see them as one person, the winner player of the second-price

auction setting.

1.3.2 VCG Example: Non-identical items

In order to have a better understanding on how the VCG mechanism works as

well as why bidding your true values is a dominant strategy, lets take a look

at the following example (notice here that the items are non-identical, so the

players have different values on each of them depending on their preferences),

Suppose that we have two players and two items with the following prop-

erties:

Players V alues for item 1 V alues for item 2

A 8 4

B 4 2
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We assume that both players submit their true values since as we saw, this

is a dominant strategy. Both players prefer to be tagged with item 1, how-

ever the auctioneer must decide an assignment which maximizes the amount∑
i bi(s) =

∑
i vi(s). This is achieved by giving player A item 1 and player

B item 2 which gives as a total sum of vA1 + vB2 = 8 + 2 = 10 since the

alternative possible assignment gives a total sum of vA2 + vB1 = 4 + 4 = 8.

In order to see how the VCG mechanism works, lets take a look on how the

utilities of both players are computed,

Player’s A utility: uA = vA1 +
∑

j 6=A bj(ŝ) − maxs
∑

j 6=A bj(s) = 8 + 2 −
maxs

∑
j 6=A bj(s) = 10−maxs

∑
j 6=A bj(s), notice here that if player A didn’t

exist, the auctioneer would give item 1 to player B while item 2 would remain

untagged. So finally we have that uA = 10− 4 = 6.

Player’s B utility: uB = vB2 +
∑

j 6=B bj(ŝ) − maxs
∑

j 6=B bj(s) = 2 + 8 −
maxs

∑
j 6=A bj(s) = 10−maxs

∑
j 6=B bj(s), notice here that if player B didn’t

exist, the auctioneer would, once again, give item 1 to player A while item 2

would remain untagged. So finally we have that uB = 10− 8 = 2.

As we said earlier, both players prefer item 1. So suppose now that player B

decides to deviate and does not submit his true value for the first item but

instead, he lies and bids bB1 = 9 in order to get it. In such a case we have

the following,

Players V alues for item 1 V alues for item 2 Bids for item 1 Bids for item 2

A 8 4 8 4

B 4 2 9 2

The auctioneer once again wants to maximize the amount
∑

i bi(s) so he

tags player A with item 2 and player B with item 1, an assignment that

gives a total sum of vA2 + vB1 = 4 + 9 = 13 (notice that the alternative gives

vA1 + vB2 = 8 + 2 = 10). Lets take a look at player’s B new utility,

Player’s B utility: uB = vB1 +
∑

j 6=B bj(ŝ) − maxs
∑

j 6=B bj(s) = 4 + 4 −
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maxs
∑

j 6=A bj(s) = 8−maxs
∑

j 6=B bj(s), notice here that if player B didn’t

exist, the auctioneer would give item 1 to player A while item 2 would remain

untagged. So finally we have that uB = 8− 8 = 0. It is clear that although

player B prefers to be tagged with the first item, it is best for him to say the

truth about his values and get item 2 since he has a better payoff.

1.3.3 Generalized Second-Price Auction and the Ad-

vertisement Position Setting

Generalized second-price model (GSP) is used mostly at the market of on-

line advertisements. It is very popular and its usage was rapidly increased

through recent years. Some examples are the Google’s total revenue in 2005

(about $6.14 billion) where over 98 percent of it came from the GSP auctions

as well as Yahoo’s total revenue in 2005 (about$5.26 billion) where over the

half of it derived from sales via GSP auctions. Lets take a first look on how

these auctions actually work. Imagine that you are on-line in the Internet

and you want to gather information for something via a search engine. You

enter the term that you are interested in and you get in turn relevant links

and pages as well as sponsored links like paid advertisements. When you

click on a sponsored link (we have to mention here that sponsored links are

clearly distinguishable from the original search results) , you are sent to the

advertiser’s web page. Since you found this particular page via the search

engine, the advertiser has to pay an amount of money to the engine for send-

ing you to his page. This -pay per click price- type of payment is known also

as ”pay-per-click” pricing. But how the auctions and more specifically the

GSP comes into play? The advertisements that we mentioned before have

different positions in the search engine’s web page, and obviously the ads

that are placed higher in the page have more possibilities to be clicked than

the ones that take place at the bottom or lower in general. Additionally the

number of ads that can appear in each search made by a user is limited.

So we need a mechanism that somehow can allocate the advertisers in the

appropriate positions. GSP comes as a solution to this.

The GSP model sets a keyword to an auction and the advertisers submit

their bids. Then they are rearranged at a decreasing bid order i.e. the one

with the highest bid is placed first, the one with the second highest bid is
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placed second etc. When a user enters this keyword in the search engine he

gets the relevant web links plus the sponsored links in the (position) order

that we described. Now if a user clicks the ad of the advertiser i and visit

his web page then i pays to the search engine the bid of the advertiser i+ 1.

As we can see the logic behind this mechanism is similar to the on of the

second-price auction but in a more general way (every player that gets some-

thing i.e. an allocation to the page, pays the bid of the player bellow him)

thus the characterization ”generalized” second-price.

Notice here that the GSP and the VCG have similarities on how the payments

are formed i.e. in both models, each player’s payment does not depend on his

own bid but on the bids and the allocations of the rest. However these two

mechanisms have differences as well i.e. while bidding your true value is a

dominant strategy at the VCG mechanism it is not at the GSP (we will come

into these more extensively later on). Finally when we speak about only one

single-allocation, second-price, GSP and VCG models are equivalent.

1.4 GSP and VCG under the Ad Position

Setting

At this final section of chapter 1 we will see the GSP and VCG models

under the advertisement position setting. As we said, despite the fact that

these two models have similarities, they also have many differences (we will

observe them later on at subsection 1.4.3). We need to mention that although

the VCG model has better properties than the GSP (truthfulness, smaller

payments to the auctioneer), the GSP is used a lot more due to its simpler

structure (which gives additionally much more freedom to the players in

conducting strategies).

1.4.1 GSP under the Ad Position Setting

Let us now formalize the GSP model under the advertisement position set-

ting. Consider that we have N players-advertisers (i = 1, ..., N) and that

we want to allocate them into K < N positions on a page that comes up
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when a user enters a specific keyword on the search engine. We can see these

positions as slots that are to be bought by the players. Each slot j has an

expected clickthrough rate (CTR) θj, where j = 1, ..., K. We number the

slots so that θ1 > θ2 >, ..., > θK and we assume that all players agree with

the ordering. As a parallelism you can imagine that the slot with the highest

CTR is the top position sponsored link on the page, which is expected to get

the highest number of clicks. Finally we set θj = 0 if j > K.

Each player i has a value vi > 0 so we can interpret viθj as i′s expected

profit from appearing in slot j. Additionally, i will pay a price per click for

getting slot j so we can say that his payment to the search engine will be

piθj. Therefore we can set player’s i utility to ui = θj(vi − pi).

In order to apply the GSP model, we have that these slots are sold via

an auction. Each player i submits a bid bi, the auctioneer ranks the players

in decreasing order of bids and renumbers them if necessary so that player 1

has the highest bid, player 2 has the second highest bid etc. The allocation

now is made as follows: The player with the highest bid gets the slot with

the highest CTR, the player with the second highest bid gets the slot with

the second highest CTR and so on. Since the players are renumbered it is

clear that player j gets slot j. Finally the payments are defined by the GSP

model and each player i who gets an item, pays the bid of player i + 1, so

pi = bi+1 while if he does not get an item he pays zero. The utility function

is defined as follows:

ui =

 θi(vi − bi+1) if i is tagged to a slot

0 otherwise

Example: Suppose that there are 4 players and 3 slots θ1 > θ2 > θ3, the

ordering and the prices are defined as follows,
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Position V alues Bids Prices CTRs

1 v1 b1 b2 θ1

2 v2 b2 b3 θ2

3 v3 b3 b4 θ3

4 v4 b4 0 0

1.4.2 VCG under the Ad Position Setting

We will now describe how the VCG mechanism reacts under this setting.

There are some rules that are the same in both models such us the position-

ing: the player with the i-th highest bid, gets the slot with the i-th highest

CTR (or nothing if such a slot does not exist) and is placed at the i-th posi-

tion. The payments however are different. The utility relation (for someone

who is tagged with a slot) is reformed as follows (since this setting supports

pay-per-click payments),

ui = vi − (maxs
∑

j 6=i bj′(s)θj −
∑

j 6=i bj(ŝ)θj)

where

maxs
∑

j 6=i bj′(s)θj −
∑

j 6=i bj(ŝ)θj

is the payment of player i.

Lets take a look at each sum amount separately:

•
∑

j 6=i bj(ŝ)θj = b1θ1 + ...+ bi−1θi−1 + bi+1θi+1 + ...+ bKθK represents the

optimal outcome taking into consideration every player that gets a slot

except i.

• maxs
∑

j 6=i bj′(s)θj = b1θ1+...+bi−1θi−1+bi+1θi+...+bK+1θK represents

the optimal outcome when player i does not exist (thus player i + 1

takes i′s position and is tagged with i′s slot).
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So,

maxs
∑

j 6=i bj′(s)θj −
∑

j 6=i bj(ŝ)θj =

(b1θ1 + ...+ bi−1θi−1 + bi+1θi + ...+ bK+1θK)− (b1θ1 + ...+ bi−1θi−1 + bi+1θi+1 +

...+ bKθK) = (bi+1θi − bi+1θi+1) + ...+ (bKθK−1 − bKθK) + bK+1θK =

K∑
j=i

bj+1(θj − θj+1)

So we can conclude that pi =
∑K

j=i bj+1(θj − θj+1)

1.4.3 GSP versus VCG

Although it seems that the two mechanisms have many similarities (actu-

ally they are similar when we speak about single-item auctions) they are

are not equivalent when we apply them in auctions with multiple items-

slots-positions. We will analyze some of their differences in the following

propositions.

Proposition 1.4.3.1 The payments of the advertisers in the GSP model

are at least as large as the ones in the VCG model.

Proof. Consider that we run the same data on both models and choose a

random player i. If this player is not tagged to a slot then he pays zero on

both mechanisms. If however he is tagged to a slot then he pays bi+1θi in

the GSP run and
∑K

j=i bj+1(θj − θj+1) in the VCG run. We have to compare

these two amounts,

V CGpayment −GSPpayment =
∑K

j=i bj+1(θj − θj+1)− bi+1θi

=
∑K−1

j=i θj+1(bj+2 − bj+1)

≤ 0
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since as we said bi ≤ bi−1. So we can conclude that V CGpayment ≤ GSPpayment

Proposition 1.4.3.2 Bidding your true value is not a dominant strategy

under the GSP mechanism.

Proof. We can show this with an example. Suppose that we have 3 players

and 2 slots with the following properties.

Slots CTRs

s1 5

s2 4

Players V alues

A 6

B 5

C 2

We will examine player’s A utility when he bids his true value and when

he deviates, bidding something different.

Case 1: Players bid their true values

If players bid their true values then the allocation is formed as follows:

Players V alues Bids Prices CTRs

A 6 6 5 5

B 5 5 2 4

C 2 2 0 0

Lets take a look at A′s utility:

uA = θ1(vA − bB) = 5(6− 5) = 5
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Case 2: Players B and C bid their true values while player A chooses to

deviate and bids something else

Suppose that player A wants to deviate in order to get a better utility. So

he bids bA = 4. The allocation is formed as follows:

Players V alues Bids Prices CTRs

B 5 5 4 5

A 6 4 2 4

C 2 2 0 0

Lets take a look at A′s utility after the deviation:

uA = θ2(vA − bc) = 4(6− 2) = 16

As we can see player A gets a better utility when he is not bidding his true

value. So we can conclude that bidding your true value is not a dominant

strategy in the GSP model.

As we mentioned earlier on, although the VCG model seems to have better

properties, the GSP model gives more freedom (players are not bind to bid

their true values since truthfulness is not a dominant strategy) and addi-

tionally has a much simpler structure (due to the simple definition of each

player’s payment). From now on and through the following chapters we will

stick to the GSP model 1 and its variations.

1In the following chapters we observe various GSP models under different setting. Some

of these models hold the name second-price despite the fact that they actually use the GSP

structure (the term second-price is often used, in general, to describe both singe-item and

multi-item auctions).



Chapter 2

Equilibrium at the GSP Ad

Position Setting

In this chapter we will give definitions of the pure nash equilibrium and envy-

free equilibrium at the ad position setting when we use the GSP model and we

will examine their properties and their differences. The whole presentation

is based on [1]. There is a summary of the basic results and additional notes

from our side regarding the comparison between the properties of a pure nash

equilibrium set of bids and an envy-free equilibrium set of bids (section 2.3).

We also provide more extended proofs at various points (section 2.2: Fact 3

analysis, section 2.7: Fact 6, proof part 2) .

2.1 Pure Nash Equilibrium Definiton

In an ad position auction we assume that the goal of each player is to bid

such a value so that he can maximize his expected utility. We say that we are

in a pure nash equilibrium state if each player prefers his current slot to any

alternative slot i.e. his utility at his current position-slot is at least as big as

at any other position-slot. Before we well-define the pure nash equilibrium

state lets take a look on how some player i can change his position.

Example: Suppose that there are 4 players and 3 slots. We know that
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θi > θi+1 by assumption and that bi > bi+1 by the rules of the auction (re-

member that we renumbered the players) , the ordering and the prices are

defined as follows,

Position V alues Bids Prices CTRs

1 v1 b1 b2 c1

2 v2 b2 b3 c2

3 v3 b3 b4 c3

4 v4 b4 0 0

Now consider that player 2 wants to change his position. He can move either

up in order to get a slot with bigger CTR (but more expensive) or down in

order to get a less expensive slot (but with lower CTR). Suppose that player

2 wants to move up by one position in order to be placed first. He has to beat

player’s 1 bid so his new bid must be at least as high as b1. Suppose now that

he wants to move down by one position in order to be placed third. In such

a case he has to bid lower than player 3 and also at least as high as b4 = p3
(player’s 4 bid). So notice the difference behind the logic of moving up and

down: If you want to move up you have to beat the bid of the player who

currently occupies the slot you want to get, although if you want to move

down you have to beat the price paid by the player who currently occupies

the slot you want to get. Lets now formalize the equilibrium state:

Definition 2.1.1 A pure nash equilibrium (PNE) is a set of prices such

that

θi(vi − pi) ≥ θj(vi − pj) for j > i

θi(vi − pi) ≥ θj(vi − pj−1) for j < i

where pj = bj+1. In other words, in a PNE every player is ”better off” in his

current position than in any other position.
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2.2 Envy-Free Equilibrium Definition and Prop-

erties

We will now define a subset of PNE which will simplify the analysis of the

ad position auctions. We say that player i envies player j if player i has a

bigger utility when he gets j′s slot and pays j′s price. Notice here that the

term ”envy” is different from the ”better off” term and examines if you have

a bigger utility when you are placed in another player’s shoes and not when

you are forcing your way through his position via changing your bid. As a

brief example we can say player 3 of the previous matrix envies player 2 if,

θ3(v3 − p3) < θ2(v3 − p2)⇒ θ3(v3 − b4) < θ2(v3 − b3)

while he is better off at player’s 1 position if,

θ3(v3 − p3) < θ2(v3 − p1)⇒ θ3(v3 − b4) < θ2(v3 − b2)

Definition 2.2.2 An envy-free equilibrium (EFE) is a set of prices such that

θi(vi − pi) ≥ θj(vi − pj) for all j and i

Notice that EFE state unifies the to inequalities of the PNE state (into the

first one) so it makes the whole analysis more simple since we do not have

to examine the utilities at different positions in cases.

The set of the EFE bids have many good properties. Specifically there are

5 main facts (and an additional 6-th that we will see later on) that hold for

the EFE set. These facts show that the EFE form a well-behaved subset of

the PNE. Lets take a look at these facts:

Fact 1 (Non negative surplus) In an EFE vi ≥ pi.

We can see this as a type of rationality where no player pays his slot more

than he values it.
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Fact 2 (Monotone values) In an EFE vi−1 ≥ vi for all i.

This is pretty interesting since it implies that in an EFE state, in addi-

tion with bi and θi , values also decrease when their indexes increase.

Fact 3 (Monotone prices) In an EFE pi−1θi−1 > piθi−1 and pi−1 > pi
for all i.

A property that comes from the first two facts. A question that may come

up is, can we have an EFE state if pi = pi+1 for some i ? The answer is no if

for every i we have vi > vi+1 and the bidding from the agents is conservative

i.e. vi ≥ bi. In order to understand why, take a look at the following matrix

which describes a part of an allocation,

Position V alues Bids Prices CTRs

i vi bi b θi

i+ 1 vi+1 b b θi+1

i+ 2 vi+2 b pi+2 θi+2

It is clear that in order to have players i and i + 1 paying the same price,

players i+1 and i+2 have to submit the same bid. Notice that by assumption

we know that θi > θi+1 > θi+2. In such a situation it is impossible to achieve

an EFE state since player i + 1 envies player i, θi+1(vi+1 − b) < θi(vi+1 − b)
because at i′s position he gets a slot with bigger CTR while he pays it at his

previous price. Notice also that vi+1− b 6= 0 since b we is at most equal with

vi+2 < vi+1 by assumption.

Fact 4 (EFE ⊂ PNE) If a set of prices is an EFE then it is an PNE as well.

A quick way to see why, is to take a look at the inequalities of the two

definitions

θi(vi − pi) ≥ θj(vi − pj) ≥ θj(vi − pj−1) since pj < pj−1

Fact 5 (One step solution) If a set of bids satisfy the EFE inequalities for

i+ 1 and i− 1 then it satisfies these inequalities for all i.
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In a more formal way, if for all i, θi(vi−pi) ≥ θi+1(vi−pi+1) and θi(vi−pi) ≥
θi−1(vi−pi−1) then θi(vi−pi) ≥ θj(vi−pj) for all i and j. This means that if

all players have utilities that satisfy the EFE inequalities for their neighbors

then their utilities satisfy the EFE inequalities in general.

2.3 PNE versus EFE

As Fact 4 mentions, EFE is a subset of PNE so we can expect that some

of the facts do not hold for the PNE set of bids. Lets take a look to the

following propositions.

Proposition 2.3.1 Fact 2 does not hold for PNE.

Proof. Suppose that we have 4 players and 3 slots, bellow we give the prop-

erties as well as the allocation

Position V alues Bids Prices CTRs

1 7 5 4 4

2 10 4 3 3

3 6 3 2 2

4 3 2 0 0

We claim that under these properties we are in a PNE state so Fact 2 does

not hold since v2 > v1. Lets examine the utilities of each player,

Utility of player 1:

• At his current position: (7− 4)4 = 12

• At position 2: (7− 3)3 = 12

• At position 3: (7− 2)2 = 10

• At position 4: (7− 0)0 = 0
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Utility of player 2:

• At his current position: (10− 3)3 = 21

• At position 1: (10− 5)4 = 20

• At position 3: (10− 2)2 = 16

• At position 4: (10− 0)0 = 0

Utility of player 3:

• At his current position: (6− 2)2 = 8

• At position 1: (6− 5)4 = 4

• At position 2: (6− 4)3 = 6

• At position 4: (6− 0)0 = 0

Utility of player 4:

• At his current position: (3− 0)0 = 0

• At position 1: (3− 5)4 = −8

• At position 2: (3− 4)3 = −3

• At position 3: (3− 3)2 = 0

So none of the players is better off in someone else’s position therefore we

are in a PNE state and Fact 2 does not hold.

Proposition 2.3.2 Fact 3 does not hold for PNE.

Proof. Suppose that we have 4 players and 3 slots, bellow we give the prop-

erties as well as the allocation

Position V alues Bids Prices CTRs

1 7 5 3 4

2 10 3 3 3

3 6 3 1 2

4 3 1 0 0
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As we can see here p1 = p2 (we do not have monotone prices). We claim that

this set of bids form a PNE.

Utility of player 1:

• At his current position: (7− 3)4 = 16

• At position 2: (7− 3)3 = 12

• At position 3: (7− 1)2 = 12

• At position 4: (7− 0)0 = 0

Utility of player 2:

• At his current position: (10− 3)3 = 21

• At position 1: (10− 5)4 = 20

• At position 3: (10− 1)2 = 18

• At position 4: (10− 0)0 = 0

Utility of player 3:

• At his current position: (6− 1)2 = 10

• At position 1: (6− 5)4 = 4

• At position 2: (6− 3)3 = 9

• At position 4: (6− 0)0 = 0

Utility of player 4:

• At his current position: (3− 0)0 = 0

• At position 1: (3− 5)4 = −8

• At position 2: (3− 3)3 = 0

• At position 3: (3− 3)2 = 0
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So we have that although this is a PNE state there is no need for the prices

to follow a monotone pattern.

Proposition 2.3.3 Fact 5 does not hold for PNE.

Proof. Suppose that we have 4 players and 3 slots, bellow we give the prop-

erties as well as the allocation

Position V alues Bids Prices CTRs

1 7 5 4 4

2 10 4 3 3

3 6 3 9/10 2

4 3 9/10 0 0

We claim that under these properties, for every i, the set of bids satisfy

the PNE inequalities for i + 1 and i − 1, although it does not satisfy them

for every j in general.

Utility of player 1:

• At his current position: (7− 4)4 = 12

• At position 2: (7− 3)3 = 12

Utility of player 2:

• At his current position: (10− 3)3 = 21

• At position 1: (10− 5)4 = 20

• At position 3: (10− 9/10)2 = 18.2

Utility of player 3:

• At his current position: (6− 9/10)2 = 10.2

• At position 2: (6− 4)3 = 6

• At position 4: (6− 0)0 = 0
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Utility of player 4:

• At his current position: (3− 0)0 = 0

• At position 3: (3− 3)2 = 0

So we have that for every i the set of bids satisfy the PNE inequalities for

i + 1 and i− 1. However, if we examine the utility of player 1 at position 3

we can see that (7− 9/10)2 = 12.2 > 12 so he is better off at position 3 than

his current one and the inequalities do not hold.

2.4 Bounds of the Bids-Prices at an Equilib-

rium State

We can now use these facts in order to get more information about the bids

and the prices at an equilibrium state. According to the previous definitions,

when we are in a EFE state and thus in a PNE state, we have that each

player i does not want to move down by one position so,

θi(vi − pi) ≥ θi+1(vi − pi+1)⇒

θipi ≤ vi(θi − θi+1) + θi+1pi+1

Additionally we have that each player i+1 does not want to move up by one

position so,

θi+1(vi+1 − pi+1) ≥ θi(vi+1 − pi)⇒

θipi ≥ vi+1(θi − θi+1) + θi+1pi+1

Combining these two inequalities we have that,

vi(θi − θi+1) + θi+1pi+1 ≥ θipi ≥ vi+1(θi − θi+1) + θi+1pi+1

which can be seen us the upper and lower bound of what player i totally pays

in an EFE state. We can also alter the above inequality into an equivalent

form in order to achieve bounds for the bids. Remember here that pi = bi+1

so,
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vi(θi − θi+1) + θi+1bi+2 ≥ θibi+1 ≥ vi+1(θi − θi+1) + θi+1bi+2

and finally if we set i = i− 1 we get the limits of player’s i bid,

vi−1(θi−1 − θi) + θibi+1 ≥ θi−1bi ≥ vi(θi−1 − θi) + θibi+1

Notice that the lower bound for player’s i bid contains his value as well as

the bid of the player bellow him while the upper bound contains the value

of the player above him as well as the bid of the player bellow him as convex

combinations. The interesting part is that now we can use these inequalities

recursively in order to find a sequence of PNE or EFE bids. Let us now take

a more careful look at each bound:

Upper Bound: θi−1b
U
i = vi−1(θi−1 − θi) + θibi+1 (i)

Lower Bound: θi−1b
L
i = vi(θi−1 − θi) + θibi+1 (ii)

Both equations are recursive so finding the solution of the recursions can

give us a quick way of computing the bounds. Remember here that in the

start of our analysis of the model we described that in a game with N players

and K < N slots, θj = 0 if j > K. Now if we consider player K+ 1 (the first

player who gets no slot) we have that,

vK(θK − θK+1) + θK+1bK+2 ≥ θKbK+1 ≥ vK+1(θK − θK+1) + θK+1bK+2 ⇒

vK(θK − 0) + 0 ≥ θKbK+1 ≥ vK+1(θK − 0) + 0⇒

vKθK ≥ θKbK+1 ≥ vK+1θK ⇒

vK ≥ bK+1 ≥ vK+1

This describes the base of our recursion for both bounds as well as the poten-

tial strategy of the first excluded player (the interesting part comes from the

lower bound which says that bidding lower than your value has no meaning

if you are the first player who gets no slot). So it is easy to conclude that

the solutions to these recursions are,

Upper Bound: θi−1b
U
i =

∑
j≥i vj−1(θj−1 − θj)

Lower Bound: θi−1b
L
i =

∑
j≥i vj(θj−1 − θj)

These equations represent the upper and the lower bound of each player’s

bids as well as the maximum and the minimum total payment each player

has to pay at an EFE state. In other words,
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∑
j≥i vj−1(θj−1 − θj) ≥ θi−1pi−1 = θi−1bi ≥

∑
j≥i vj(θj−1 − θj)

2.5 The meaning behind the Bounds

Suppose that player i is thinking offensively and wants to move up by one

position (exceeding the bid of player i − 1) but in addition, he wants his

utility at his new position to be at least as big as in his current position. In

other words,

worst utility in moving up = utility in current position ⇒

θi−1(vi − b∗) = θi(vi − bi+1)⇒

θi−1b
∗ = vi(θi−1 − θi) + θibi+1

So the price he must pay in order for that to happen is exactly the lower

bound recursion (ii).

Suppose now that player i is thinking defensively and does not want to bid

too high since he is afraid that he will decrease the utility of player i− 1 so

much that he might prefer to move down to his position. Thus he wants to

bid an amount so that the least utility player i−1 has, is equal to the utility

he would make if he was at his position. In other words,

i− 1′s utility now = utility if he moves into i′s position ⇒

θi−1(vi−1 − b∗) = θi(vi−1 − bi+1)⇒

θi−1b
∗ = vi−1(θi−1 − θi) + θibi+1

So the amount he has to bid is exactly the upper bound of the recursion (i).

2.6 The VCG Payment Resemblance

You may have notice by now that the equations of the bounds we just de-

scribed have a resemblance with the total payments of the players when we

run the VCG model under the same setting. Let us recall the VCG total

payment considering player i− 1,
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pi−1 =
∑K

j=i−1 bj+1(θj − θj+1)

and lets reform it a little with the proper adjustments into the indexes,

pi−1 =
∑K+1

j=i bj(θj−1 − θj)

Finally this can be seen us,

pi−1 =
∑

j≥i bj(θj−1 − θj)

since the CTR’s beyond K are defined as zero. Consider now that bidding

your true value is a dominant strategy for the VCG mechanism which gives

a PNE state, we can conclude that the equilibrium payment for the VCG is,

pi−1 =
∑

j≥i vj(θj−1 − θj)

which is exactly the same as the lower bound of the EFE total payment for

player i− 1 in the GSP model under the same setting.

2.7 Revenues of PNE and EFE

Now that we have all these informations it is our chance to look the things

from the auctioneers perspective. The term revenue refers to the total

amount of money auctioneer gets. In a more formal way, we can define

the revenue in our current setting as,

R =
∑N

i=1 piθi

The first think we can say is that since we have bounds for the payments piθi
at an EFE state we can safely assume that there are bounds for the total

revenue when we are in an EFE. A question that comes to mind is what is

the relation between the bounds of the revenue at PNE and EFE. From Fact

4 we know that EFE ⊂ PNE so we can speculate that the PNE maximum

and minimum revenue is bigger and smaller than the EFE maximum and

minimum revenue respectively (both are sets of prices and PNE contains

EFE). As we will see, there is a final Fact which claims that this is half right,

more specifically:
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Fact 6 The maximum revenue PNE yields is the same as the EFE maxi-

mum revenue while the minimum revenue PNE yields is generally less than

the EFE minimum revenue.

Proof. We will split the proof into two parts (maximum and minimum rev-

enues respectively).

Part 1: Maximum revenues are the same

Suppose that {pNi }i=1,..,K is the set of prices which is associated with the

maximum PNE revenue, maxRN and that {pEFi }i=1,..,K the set of prices as-

sociated with the maximum EFE revenue maxREF . From Fact 4 we know

that EFE ⊂ PNE which implies that maxRN ≥ maxREF (1). We will try

to show that maxRN ≤ maxREF :

From the definition of the upper bound of the recursion we have that,

pEFi θi = pEFi+1θi+1 + vi(θi − θi+1)

Setting i = K we have,

pEFK θK = pEFK+1θK+1 + vK(θK − θK+1)⇒

pEFK θK = 0 + vK(θK − 0)⇒

pEFK θK = vKθK ⇒

pEFK = vK (2)

Additionally, according to the PNE definition we have,

θi(vi − pNi ) ≥ θi+1(vi − pNi+1)⇒

θip
N
i ≤ θi+1p

N
i+1 + vi(θi − θi+1)

Setting i = K we have,

θKp
N
K ≤ θK+1p

N
K+1 + vK(θK − θK+1)⇒

θKp
N
K ≤ 0 + vK(θK − 0)⇒

θKp
N
K ≤ vKθK ⇒

pNK ≤ vK (3)
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So using the relations (2) and (3) we can conclude,

pNK ≤ pEFK

With this as a base of the recursion it is easy to see that pNi ≤ pEFi for every

i. So we have that maxRN ≤ maxREF and using (1) we can conclude that.

maxRN = maxREF

Part 2: Minimum PNE revenue is smaller than minimum EFE revenue

We will show this using the example of Proposition 2.3.1 and computing the

minREF and the RN of a random PNE set of bids. Lets remind the proper-

ties of the example:

Position V alues CTRs

1 10 4

2 7 3

3 6 2

4 3

In order to compute the minREF we need to take into consideration the lower

bound of each price pLi , given by the relation θip
L
i =

∑
j≥i+1 vj(θj−1− θj). So

we have that,

minREF =
∑4

i=1 p
L
i θi

= pL1 θ1 + pL2 θ2 + pL3 θ3 + 0

= v2(θ1 − θ2) + 2v3(θ2 − θ3) + 3v4θ3

= 7 + 12 + 18

= 37

Now for the random PNE revenue we will use the bids and the allocation of

the same example as we already know that they form a PNE. So we have the

following matrix,
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Position V alues Bids Prices CTRs

1 7 5 4 4

2 10 4 3 3

3 6 3 2 2

4 3 2 0 0

And the revenue in that case is,

RN = pL1 θ1 + pL2 θ2 + pL3 θ3 + 0 = 16 + 9 + 4 = 29

So combining the two results and since this is a random PNE revenue we can

conclude that,

minREF > RN ≥ minRN
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Chapter 3

Budgeted Second-Price Ad

Auction

In this chapter we present a generalized second-price ad auction model which

contains the notion of budgets. The whole presentation is based on [2]. We

give a basic description of the model and analyze its properties, with sev-

eral notices and additional proofs from our side (section 3.3: alternative

proof of proposition 3.3.1, section 3.4: introduction of proposition 3.4.1 and

proof, section 3.5.1: extended proof of proposition 3.5.1.2). In section 3.6

we describe several problems (regarding the pure nash equilibrium-existence

setting of proofs) that occur in the original work and introduce additional re-

sults considering the critical bid notion under the assumption of non-divisible

items.

3.1 Introduction to the new concepts

As we saw in the earlier chapters, players that participate in an auction have

a private valuation which represents how they value the item sold by the

auctioneer. However in real auctions a potential buyer always has a budget

which depends on his economic prosperity. This budget represents how much

money a buyer can spent in the auction.
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The setting that we will present introduces the notion of budget. The auc-

tioneer sells multiple identical items (such as impressions in an ad auction)

and each player is interested in getting more than one items. The true budget

B̂i of a player i, limits the number of the items he can get and in addition

with his bid, it is a part of his strategy i.e. si(bi, Bi) (he declares to the auc-

tioneer both a bid and a budget). Lets proceed to a more formal description

of the model.

3.2 The Model

We have a set of N players and K identical divisible items. Each player i

has two private values: his budget B̂i and his valuation for a single item vi.

His utility ui depends on the number of the items he received as well as the

price pi he pays each item. We can interpret xivi as his profit for getting xi
number of items and xipi as his total payment to the auctioneer. So we can

now formally define his utility as:

ui =

 xi(vi − pi) if xipi ≤ B̂i

−∞ if xipi > B̂i

Notice that xipi ≤ B̂i practically means that player i does not exceed his

budget (he does not get more items than he can afford at this price), while

he exceeds his budget when xipi > B̂i.

The auction is formed as follows: The auctioneer sets a minimum price pmin
which is known to the players. Each player i ∈ N submits two values, his

bid bi and his budget Bi (as we already mentioned, this time each strategy

si contains not only the bid of player i but also an additional amount, his

budget). The auctioneer ranks the players in decreasing order of bids (he sets

the one with highest bid first, the one with the second highest bid second etc)

and renames them if necessary so that b1 ≥ b2 ≥ ... ≥ bN . As the allocation

begins, player 1 receives items at price p1 = max{b2, pmin} until he runs out

of budget or items, i.e. x1 = min{K,B1/p1}. Then if there are still items for

sale, we get down to player 2 who receives items at price p2 = max{b3, pmin}
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until his budget or the items run out, so x2 = min{K−x1, B2/p2}. Therefore

we can say in general that for every player i,

Case 1: If there are still items left

The items he receives: xi = min{K −
∑i−1

j=1 xj, Bi/pi}
The price per item he pays: pi = max{bi+1, pmin}

Case 2: If there are not items left

The items he receives: xi = 0

The price per item he pays: pi = 0

The auction stops either when all the items are sold or when all the players

exhaust their budget. So we can conclude that the model is a variation of the

GSP auction where the input is a vector of bids ~b = (b1, ..., bN) and a vector

of budgets ~B = (B1, ..., BN) while the output is an allocation ~x = (x1, ..., xN)

such that
∑

i∈N xi ≤ K and a vector of prices ~p = (p1, ..., pN) such that for

every i = 1, ..., N , pi ∈ [pmin, bi].

Finally we have to mention the basic assumptions of the model:

1. Items are divisible goods and prices are continuous.

2. If there are identical bids the auctioneer ranks the players by lexico-

graphic order i.e. he will first sell items to the player with the lowest

original index (this is a very important assumption as we will see later

on).

3. Players always bid above the minimum price, pmin (set by the auction-

eer) i.e. bi ≥ pmin.

4. For the most part there is the assumption that the bidding is conser-

vative (no player bids above his value) i.e. bi ≤ vi.

Lets now proceed to some definitions regarding the categories-classes, each

player can be included considering that we have the outcome of the auction:

Definition 3.2.1 A player is called Border if he is the lowest ranked player

who gets a positive allocation i.e. if h is a border player then h = max{i :

xi > 0}.
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Definition 3.2.2 A player i is called Winner if i < h i.e. he is ranked

above the border. For winner players we have that xi = Bi/pi which means

that they exhaust their budgets.

Definition 3.2.3 A player i is called Loser if i > h i.e. he is ranked bellow

the border. For loser players we have that xi = 0.

Notice here that according to Definition 3.2.1 a border player is the only

player with positive allocation, xh > 0, who may not exhaust his budget (he

gets what is left).

3.3 Properties of the Model

As we saw in chapter 1, telling the truth (bidding your true value) is not a

dominant strategy at the GSP auction under the ad position setting. Now

that we have introduced the budget notion it is time to check whether this

holds in our current model in this new setting. However as we mentioned

before a strategy, si(bi, Bi) in an auction with budgets contains two amounts:

the bid and the budget that you declare. So in order to see if telling the truth

(in general) is a dominant strategy in the budgeted second-price ad auction,

we have to check what happens in two cases: telling the truth about your

value i.e. bi = vi and telling the truth about your budget i.e. Bi = B̂i.

Proposition 3.3.1 Bidding your true value is not a dominant strategy at

the budgeted second-price ad auction.

Proof. We can show this with an example. Consider that we have K = 7

items and N = 3 players with the following properties:

Players V alues Budgets

A 5 10

B 4 8

C 2 3
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where pmin = 0. We suppose that players B and C bid their true values

and budgets and we will examine player’s A utility when he bids his true

value and budget and when he chooses to deviate, bidding his true budget

but not his true value.

Case 1: Player A bids his true value

When all players say the truth, the allocation is formed as follows:

Players V alues Budgets Bids Budgets bid Prices Allocation

A 5 10 5 10 4 2

B 4 8 4 8 2 4

C 2 3 2 3 0 1

We mention here that players A and B are winners, player C is a border

while there are no losers. Player’s A utility is,

uA = xA(vA − pA) = 2(5− 4) = 2

Case 2: Player A bids something different from his value

Suppose that player A chooses to deviate and bids something lower than his

value, say bA = 3. The allocation is formed as follows:

Players V alues Budgets Bids Budgets bid Prices Allocation

B 4 8 4 8 3 2

A 5 10 3 10 2 5

C 2 3 2 3 0 0

We mention here that this time player B is a winner, A is a border and

player C is a loser. Player’s A utility is,

uA = xA(vA − pA) = 5(5− 2) = 15
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It is clear that player A has a bigger utility when he is not telling the truth

about his value so we can conclude that bidding your true value is not a

dominant strategy.

Proposition 3.3.2 Bidding your true budget is a dominant strategy at the

budgeted second-price ad auction.

Proof. The key point here to notice is that the budget you submit can affect

the number of items you receive but does not change your ranking order

(the ranking is based on the bids). Since your ranking does not change no

matter what budget you declare, we have that the price you pay for each

item also does not change. So we can say that when you are a loser you

remain a loser independently of the budget you submit (since your rank does

not change) and when you are a winner or a border, in your utility relation

ui = xi(vi−pi), different choices of budgets give different allocations xi, while

the rest amounts (the price pi you pay for instance) remain intact. Thus in

order to check the utility of a player in different choices of budget bid, we only

need to check the allocations xi in each case (specifically in the winner and

border situation since as a loser your utility is zero no matter what budget

you submit).

Case 1: Bi < B̂i

Suppose that player i submits a budget Bi which is smaller than his true one

B̂i. His allocations and utilities are xi = min{K −
∑i−1

j=1 xj, Bi/pi}, ui and

x̂i = min{K−
∑i−1

j=1 x̂j, B̂i/pi}, ûi respectively. The allocations of the higher

rank players are not effected by the budget reported by player i, so xj = x̂j
for all j < i, thus K −

∑i−1
j=1 xj = K −

∑i−1
j=1 x̂j. Since Bi/pi < B̂i/pi we can

conclude that xi ≤ x̂i which implies that ui ≤ ûi.

Case 2: Bi > B̂i

Suppose now that player i submits a budget Bi which is bigger than his true

one B̂i. Notice that if i is a loser or a border then xi = x̂i since he either

gets no items or he gets the items left (so he can not exhaust his real budget

regardless of the budget he reports). If he is a winner on the other hand

we have either that xi = x̂i (if Bi does not give him any more items) or

xi > x̂i (if Bi gives him more items than his true budget). In the first case

the utilities are equal, ui = ûi, while in the second case,
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x̂i = B̂i/pi < xi ≤ Bi/pi ⇒

xi > x̂i and xipi > B̂i

Although xi > x̂i which means that player i has a bigger allocation, we have

from the definition of the utility that in that case ui = −∞ since xipi > B̂i.

We can conclude that ui ≤ ûi.

So in any case we can say that bidding your true budget is a dominant

strategy at the budgeted second-price ad auction.

3.4 The Market Equilibrium Price

Definition 3.4.1 The demand of a player i at price p is a point or an interval

Di(p) which is defined as follows,

Di(p) =


Bi/p if vi > p

0 if vi < p

[0, Bi/p] if vi = p

The demand shows how much items of a product, a player wants to buy

provided that the product’s price is p. For example, if he values the prod-

uct more than the price it is sold he will try to get as much items he can,

exhausting his budget, if he values it less he will not buy anything and if

his value equals the price, he does not really care since he is not making any

profit (so he can go from buying nothing to exhausting his budget).

Definition 3.4.2 The aggregated demand D(p), is a point or an interval

that represents the sum of the demands of all N players at price p. More

formally,

D(p) =
∑

i∈N Di(p)

Notice that the ”interval or point” depends on whether players that their

values are equal with the price, exist or not respectively.

Definition 3.4.3 We call a price peq, the Market Equilibrium Price, if at
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this price the aggregated demand of the players equals or contains the total

number of the items that exist. More formally, if there are K items then,

K = D(peq) or K ∈ D(peq)

Notice that peq is unique since the correspondence D(p) is strictly decreas-

ing in p. Finally we can say that for S = {i : vi > peq} which is the

set of players with demand Di(peq) = Bi/peq and for Z = {i : vi = peq}
which is the set of players with demand Di(peq) = [0, Bi/peq], we have that

peq ∈ [
∑

i∈S Bi/K,
∑

i∈S∪Z Bi/K]

Proposition 3.4.1 For some random prices p1, p2 we have that if p1 < p2
then min(D(p1)) > max(D(p2)).

Proof. As we said earlier the correspondence D(p) represents an interval or

a point (in the case of the point representation the min, max amounts are

equal with the value of the point) and obviously it is not a function. We

define the sets,

• Sp = {i : vi > p}

• Zp = {i : vi = p}

• Lp = {i : vi < p}

Lets take a look on how we can compute the min and the max amounts:

From definition 3.4.2 we know that,

D(p) =
∑

i∈N Di(p) =
∑

i∈Sp
Di(p) +

∑
i∈Zp

Di(p) +
∑

i∈Lp
Di(p)

We also know from definition 3.4.1 that,

•
∑

i∈Sp
Di(p) =

∑
i∈Sp

Bi/p

•
∑

i∈Zp
Di(p) =

∑
i∈Zp

xi, where xi ∈ [0, Bi∈Zp/p]

•
∑

i∈Lp
Di(p) = 0

So it is easy to see that in order to compute the min, max points of D(p) we

only need to consider the amount
∑

i∈Zp
Di(p). It is obvious that,
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max(
∑

i∈Zp
Di(p)) =

∑
i∈Zp

Bi/p (setting every xi = Bi/p)

and

min(
∑

i∈Zp
Di(p)) = 0 (setting every xi = 0)

So according to that analysis and back to our proof we have that,

min(D(p1)) =
∑

i∈N Di(p1)

=
∑

i∈Sp1
Di(p1) + 0 + 0

=
∑

i∈Sp1
Bi/p1

Now it is easy to notice that since p2 > p1, we are sure that Lp1 ∪ Zp1 ⊆ Lp2
by definition. So we have that,

Lp1 ∪ Zp1 ⊆ Lp2 ⇒

(Lp2)
c ⊆ (Lp1 ∪ Zp1)c ⇒

Sp2 ∪ Zp2 ⊆ Sp1

We can now proceed in computing max(D(p2)),

max(D(p2)) =
∑

i∈N Di(p2)

=
∑

i∈Sp2
Di(p1) +

∑
i∈Zp2

Di(p2) + 0

≤
∑

i∈Sp1
Bi/p2

<
∑

i∈Sp1
Bi/p1

= min(D(p1))

So we can conclude that max(D(p2)) < min(D(p1)). Notice that this proof

(in a more simplified way), also holds when D(p)s are points instead of

intervals.

The market equilibrium price is a very important notion as we will see later

on since it can be seen as the bound of the price the winner players pay at a

PNE state.
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3.5 Pure Nash Equilibrium

Now that we have described the model as well as its properties we can pro-

ceed in analyzing properties and introducing some very important notions

regarding the pure nash equilibrium set of bids and budgets. As we saw ear-

lier (proposition 3.3.2), submitting your true budget is a dominant strategy

at the budgeted second-price ad auction setting so from now on we assume

that all players declare their true budget. Thus, once more the search of a

PNE leads to a search of appropriate bids. Typically we say that we are in

a PNE if for every player i, the utility he has when he bids bi is at least as

much as the utility he would have with a different bid b′i considering that the

rest players do not change their strategies.

3.5.1 Pure Nash Equilibrium Properties

The following two propositions analyze the properties of the PNE and give

a clear view on how the bids and the prices are formed at such a state.

Proposition 3.5.1.1 In any PNE, all winner players pay the same price

p, the border player pays a price p′ ≤ p and any loser player j (if exists) has

a value vj ≤ p.

Proof. Initially, notice that in order to have the same price p for all the

winner players, the winner players as well as the border player have to bid

the same value (except from the top rank winner player who can bid higher).

The proposition holds trivially if we have only one winner player. Suppose

now that there is a PNE with at least two winner players paying different

prices. The first rank player pays p1 and let player j be the highest ranked

winner player who pays pj < p1 (notice that pj can not be bigger than p1
since player j is ranked lower than player 1). Since players 1 to j are all

winners, then by definition any player i ≤ j has an allocation xi = Bi/pi and

we can also say that, ∑j
i=1 xi ≤ K ⇒

x1 ≤ K −
∑j

i=2 xi (1)

If player 1 chooses to move down to j′s position by bidding bj − ε, he is

allocated x′1 = min{K −
∑j

i=2 xi, B1/pj}. However we know by assumption
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that p1 > pj so B1/pj > B1/p1 and additionally we know that x1 ≤ K −∑j
i=2 xi from (1) thus we can conclude that x′1 ≥ x1. So we have for his

utility u′1 at j′s position that,

u′1 = x′1(v1 − pj) ≥ x1(v1 − pj) > x1(v1 − pj) = u1 ⇒

u′1 > u1

thus this is not a PNE. Now lets take a look on the rest players. The border

player is ranked after all winners so he pays a price p′ ≤ p for each item. The

loser players receive no items so they have zero utility. If there was a loser

player i with vi > p then he could bid p + ε ≤ vi becoming a winner player

with positive utility, something that contradicts to the PNE definition. Thus

at a PNE all loser players must have value at most p.

Proposition 3.5.1.2 The price p which all the winner players pay at a PNE

is at most the market equilibrium price i.e. p ≤ peq.

Proof. Suppose that there is a PNE where all the winner players pay an

amount p > peq. Since this is a PNE we have that the utility ui of a winner

player i paying price p > peq is at least as much as his utility u′i if he was a

border player and paid price p′ ≤ p. Thus we have,

ui ≥ u′i ⇒

(Bi/p)(vi − p) ≥ (K −
∑

j∈S−{i}(Bj/p)(vj − p′) (2)

where S = {j : vj ≥ p}. Since (vi − p) ≤ (vi − p′), in order for inequality (2)

to hold we have,

Bi/p ≥ K −
∑

j∈S−{i}(Bj/p)⇒∑
j∈S(Bj/p) ≥ K (3)

and from the definition of aggregated demand we also have
∑

j∈S(Bj/p) ∈
D(p) (4). From relations (3) and (4) we have that,

K ≤ max(D(p))

However by assumption we know that p > peq and according to definition

3.4.3 and proposition 3.4.1 we have that,

K ≤ max(D(p)) < min(D(peq)) ≤ K
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so finally we have,

K < K

which is a contradiction. So we can conclude that the price p that all winner

players pay at a PNE is at most the market equilibrium price.

3.5.2 Critical Bid

The critical bid of a player is a notion which tries to capture the point where

the player is indifferent between being ranked first and being ranked last.

Basically we can say that if all players bid the same value, this value is a

critical bid if a player has the same utility both at top and the bottom rank.

Each player has potentially a different critical bid. As we will see in the

process, the critical bid is a very important notion mainly because it makes

clear in which position each player prefers to be, something that simplifies

the quest of searching the PNE state. But let us give a more formal definition.

Definition 3.5.2.1 The critical bid, cj, of a player j is defined as follows:

Suppose that all players submit the same bid x ∈ [pmin, vj]. We will examine

the utilities of player j as functions of x when he is ranked first and when he

is ranked last.

Player j is first in rank

Since all players submit the same bid, if player j is ranked first he pays x

and his utility is defined as1

fj(x) =

 K(vj − x) if pmin ≤ x <
Bj

K
(Player j as a border)

Bj

x
(vj − x) if

Bj

K
≤ x ≤ vj (Player j as a winner)

1Notice that if items were not divisible,
Bj

x must be a positive integer since it represents

the number of the items that a winner player j gets when the price is x. Thus if for some

budget and price the quantity
Bj

x is a decimal number, we have to round to the nearest

lowest positive integer. For example, if Bj = 3 and x = 2 then
Bj

x = 3
2 = 1.
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Player j is last in rank

Since all players submit the same bid, if player j is ranked last he pays either

pmin or zero and his utility is defined as2,

gj(x) =


0 if pmin ≤ x <

∑
i 6=j Bi

K
(Player j as a loser)

(K −
∑

i 6=j Bi

x
)(vj − pmin) if

∑
i 6=j Bi

K
≤ x <

∑
i 6=j Bi

K−Bj/pmin
(Player j as a border)

Bj

pmin
(vj − pmin) if

∑
i6=j Bi

K−Bj/pmin
≤ x ≤ vj (Player j as a winner)

It is easy to verify the following properties:

• Both functions are continuous in the range [pmin, vj].

• fj is strictly decreasing in x while gj is weakly increasing in x

• fj(pmin) ≥ gj(pmin)

• gj(vj) ≥ fj(vj) = 0

So we can conclude that functions fj and gj must intersect in a unique point

in the given range. This point is defined as the critical bid, cj, of player j.

Now that the definition is complete we can notify various things as well

as several results that come directly from the definition. For instance:

1. For every player i we have the ci = [pmin, vi]. So the critical bid of every

player is a quantity between the minimum price set by the auctioneer

and his private value.

2. It is impossible for the auctioneer to compute the critical bid of any

player i since its computation demands the knowledge of the private

value vi.

3. Critical bid of a player i can be seen as a function of the minimum

price set by the auctioneer, pmin and the number of the players, N i.e.

ci(N, pmin).

2In practice, the amount
Bj

pmin
represents the number of the items that a winner player

j gets when the price is pmin. Thus for a pmin = 0 we have that
Bj

pmin
=

Bj

0 = K.
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4. If ~b = (x, ..., x) then for x < ci(N, pmin) player i prefers to be ranked

first and for x > ci(N, pmin) player i prefers to be ranked last. This

comes directly from the definition of the two functions and their mono-

tonicity since for x < ci(N, pmin) we have gj(x) < fj(x) and for x >

ci(N, pmin) we have gj(x) > fj(x).

3.5.3 Incentives

Proposition 3.5.3.1 For a bid vector ~b = (b1, ..., bN) the first in rank player

or any winner player j ∈ N , can not improve his utility by bidding higher

i.e. b′j > bj.

Proof. If player j is the first in rank player, he can not improve his utility

by bidding higher since the price he pays and his allocation do not change.

If player i is a winner player in general then his utility is by definition uj =
Bj

pj
(vj−pj). By increasing his bid he will get either the same utility (if he does

not overbid any player above him, the price he pays and the allocation he gets

remain the same) or a smaller utility (if he overbids any player above him,

the price p′j he pays is bigger and thus his allocation xj =
Bj

p′j
is smaller). So

in any case his utility does not improve when he bids higher than before.

Proposition 3.5.3.2 For a bid vector ~b = (b1, ..., bN) the last in rank player

or any loser player j ∈ N , can not improve his utility by bidding lower i.e.

b′j < bj.

Proof. If player j is the last in rank player he can be either a border player

or a loser player. If he is a border, by decreasing his bid he decreases the

price the player above him pays. This will may increase the allocation of

that player, thus decrease j′s allocation (player j is a border and gets the

remaining items). Notice that in that case player j′s price remains pmin (since

he is the last in rank) and with a smaller allocation he gets a smaller utility.

If he is a loser (as the last in rank or a loser in general) he has a zero utility.

Trivially by bidding less he does not gain something since he remains a loser

with zero utility.
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Proposition 3.5.3.3 If every player i ∈ N bids cj (the critical bid of player

j), then j can not improve his utility by changing his bid.

Proof. By the definition of critical bid, since all players bid cj player j is

indifferent (has the same utility) between being ranked first and being ranked

last. From proposition 3.5.3.1, if j is ranked first or is a winner player in

general he does not gain something from bidding higher and from proposition

3.5.3.2, if j is ranked last or is a loser player in general he does not gain

something from bidding lower.

3.6 Our Results

3.6.1 PNE Existence

The main goal of this section is to show that the proof of one of the main

results in [2], the existence of a PNE, is not quite correct. We will present the

Theorem, describe the basic idea behind its proof and introduce our notices

and results on the whole topic. For a more complete view on the original

proof of the Theorem you can look at [2]. Before we proceed we will remind

you some assumptions and notices that introduced earlier on:

1. If there are identical bids the auctioneer ranks the players by lexico-

graphic order i.e. he will first sell items to the player with the lower

original index.

2. It is impossible for the auctioneer to compute the critical bid of any

player i since its computation demands the knowledge of the private

value vi.

Original Theorem: There exists a PNE for any number of players, where

players submit their true budget (B̂i = Bi) and bid at most their value

(bi ≤ vi).
3

The proof is made by induction on the number of players. More specifically:

3Theorem 4.13 in the original work.
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• Induction Basis: There exists a PNE when there are only two players

that submit their true budget and bid at most their value.

• Induction Hypothesis: We assume that there exists a PNE when there

are N players that submit their true budget and bid at most their value.

• We prove that there exists a PNE when there are N + 1 players that

submit their true budget and bid at most their value.

We claim that the induction basis (the PNE existence when there are only

two players) does not, in general, hold. In order to prove that, we will present

the original proposition of [2] which claims the existence of a PNE at a two

players game and show that there are cases where the proposition is not, in

general, correct. Specifically:

Original Proposition: Assume that we have two players with c2 ≤ c1.

Then any bids b1 = b2 ∈ [c2,min{v2, c1}] are a PNE and those are the only

PNEs where players submit their true budget. 4

The key point here to notice is that since the bids are equal, we can use the

critical bid notion in order to understand in what order each player prefers

to be (in which position he gets more utility). Back to the definition of the

critical bid we mentioned that if ~b = (x, ..., x) then for x < ci(N, pmin) player

i prefers to be ranked first (has a bigger utility at the first position) and for

x > ci(N, pmin) player i prefers to be ranked last (has a bigger utility at the

last position). Thus in our case we have that player 1 weakly prefers to be

first in rank since c1 ≥ b1 = b2, so if he is placed first he can not improve his

utility by bidding less and player 2 weakly prefers to be last in rank since

c2 ≤ b1 = b2, so if he is placed last he can not improve his utility by bidding

more. We also know from proposition 3.5.3.1 that if player 1 is placed first

then he can not improve his utility by bidding more and from proposition

3.5.3.2 that if player 2 is placed last he can not improve his utility by bidding

less. Therefore if player 1 is placed first an player 2 is placed second then any

bids b1 = b2 ∈ [c2,min{v2, c1}] lead to PNE. However this specific ranking is

not always possible.

4Claim 4.7 in the original work.
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Proposition 3.6.1.1 There are cases where we have two players with dif-

ferent critical bids and [c2,min{v2, c1}] is an interval and not a point.

Proof. We will prove this with an example. Suppose that we have K = 10

items, pmin = 0 and two players with the following properties:

Players V alues Budgets

1 3 9

2 1 5

Lets proceed in finding the critical bids of each player5.

Critical bid of player 1

f1(x) =

 10(3− x) if 0 ≤ x < 9
10

(Player 1 as a border)

9
x
(3− x) if 9

10
≤ x ≤ 3 (Player 1 as a winner)

g1(x) =

 0 if 0 ≤ x < 5
10

(Player 1 as a loser)

3(10− 5
x
) if 5

10
≤ x <∞ (Player 1 as a border)

In order to find the intersection point of the two functions, we have to solve

the system of the equations and find an amount x which is within the re-

striction bounds. It is easy to verify that in our example this happens only

when,

9
x
(3− x) = 3(10− 5

x
)⇒

3
x
(3− x) = 10− 5

x
⇒

9
x
− 3 = 10− 5

x
⇒

14
x

= 13⇒
5Notice that is impossible for any player to be a winner when he is ranked last if

pmin = 0, since he can not exhaust his budget.
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x = 14
13

Notice that 9
10
< 14

13
< 3 as well as 5

10
< 14

13
<∞.

Critical bid of player 2

f2(x) =

 10(1− x) if 0 ≤ x < 5
10

(Player 2 as a border)

5
x
(1− x) if 5

10
≤ x ≤ 1 (Player 2 as a winner)

g2(x) =

 0 if 0 ≤ x < 9
10

(Player 2 as a loser)

1(10− 9
x
) if 9

10
≤ x <∞ (Player 2 as a border)

Under the same logic we have,

5
x
(1− x) = 1(10− 9

x
)⇒

5
x
− 5 = 10− 9

x
⇒

14
x

= 15⇒

x = 14
15

Notice that 5
10
< 14

15
< 1 as well as 9

10
< 14

15
< ∞. So we can conclude that

c1 = 14
13

and c2 = 14
15

thus,

[c2,min{v2, c1}] =

[14
15
,min{1, 14

13
] =

[14
15
, 1]

which is an interval.

Theorem 3.6.1.1 There are cases where we have two players with c2 ≤ c1
and any bids b1 = b2 ∈ [c2,min{v2, c1}] are not a PNE.

Proof. Suppose that we have two players, A and B with cA < cB so that

[cA,min{vA, cB}] is an interval and not a point. They bid bA = bB ∈
[cA,min{vA, cB}]. Since their bids are equal the auctioneer has to rank them

lexicographically, so we have that player A is placed first and player B is

placed second.
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• If bA = bB = cA then we know that player B has a bigger utility at the

first position since bA = bB < cB.

• If bA = bB = min{vA, cB} then we know that player A has a bigger

utility at the second position since bA = bB = min{vA, cB} > cA.

• cA < bA = bB < min{vA, cB} then we know that player A has a bigger

utility at the second position since cA < bA = bB and player B has a

bigger utility at the first position since bA = bB < cB

So in any case this is not a PNE. The problem is obviously the lexicographic

positioning when the bids are equal. If we could rank the players according

to their critical bids (i.e. the one with the highest critical bid is placed first,

the one with second highest critical bid is placed second etc) then the original

proposition is actually correct. However it is impossible for the auctioneer

to rank them in that manner since he can not compute the critical bids (he

does not know the private values of each player).

3.6.2 Some Additional Notes

There are several other propositions throughout [2] that have similar prob-

lems, for example,

If the lowest critical bid is lower than the value of any agent, i.e. cj < vh
(where j the player with the lowest critical bid and h the player with the low-

est private value), then ~b = (cj, ..., cj) is a PNE, where agent j is the border

player and other players are winners.6

First of all, player j in such a case will not be the border player if he does

not have a proper name (a name that ranks him at the last position). If he is

not ranked last then some other player i will be the border player. However

since player j has the lowest critical bid then ci > cj so player i prefers to be

first in rank (he has a higher utility there) and thus this is not a PNE. Notice

that we can not let player j to bid cj − ε for a very small amount ε in order

for him to become a border (independently of his name) since according to

proposition 3.5.1.1 in a PNE all the winners and the border must bid the

6Claim 4.10 in the original work.
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same value. A more simple way to see this is that if player j bids cj − ε then

the winner player above him will pay pj−1 = cj−ε which is, by a tiny amount,

smaller than the price of every other winner player pays. In such a case, any

of the rest winner players will want to get to j − 1′s position in order to pay

the smaller price an thus improve their utility by a small amount (this is an

alternative way to understand why the winner players must pay the same

price in a PNE).

So we are led to a contradiction: The critical bid is a notion which helps

to understand in which place each player prefers to be, but only when all

players bid the same value. So we can use it to understand and approach

the properties a of PNE state. However when players bid the same value the

ordering is made lexicographically so each player’s rank depends only on his

name and not on his strategy, thus the critical bid becomes useless.

We conclude that in order for the PNE existence results of [2] to hold, the

critical bids must follow the ordering of the names of the players (i.e. the

player with the lowest original index must have the highest critical bid, the

player with the second lowest original index must have the second highest

critical bid etc).

3.6.3 Critical Bid under Non-Divisible Items

Earlier on, we defined the critical bid of a player j as the intersection point

of functions fj, gj,

fj(x) =

 K(vj − x) if pmin ≤ x <
Bj

K
(Player j as a border)

Bj

x
(vj − x) if

Bj

K
≤ x ≤ vj (Player j as a winner)

gj(x) =


0 if pmin ≤ x <

∑
i6=j Bi

K
(Player j as a loser)

(K −
∑

i6=j Bi

x
)(vj − pmin) if

∑
i 6=j Bi

K
≤ x <

∑
i6=j Bi

K−Bj/pmin
(Player j as a border)

Bj

pmin
(vj − pmin) if

∑
i 6=j Bi

K−Bj/pmin
≤ x ≤ vj (Player j as a winner)
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Bellow we provide a graphical representation example:

-

x

y 6

Q
Q
Q

fj, gj

However (as we already mentioned in some of our earlier footnotes),
Bj

x
rep-

resents the number of items player j gets, at price x, when he is ranked first

and is a winner player and
∑

i6=j Bi

x
represents the number of items the rest

players get, at price x, when player j is ranked last and is a border. So if the

items are not divisible and when a player tries to compute how much items

he will get at a certain price, even if these two amounts give decimal num-

bers for some prices, we have to round these numbers to the nearest lowest

positive integer (i.e. if
Bj

x
= 2.8, we say that player j gets 2 items at price

x since if he gets 3 items he exceeds his budget). So it easy to understand

that in such cases, for multiple x′s we have the same number of items (which

implies the same
Bj

x
and

∑
i6=j Bi

x
for a set of x′s) thus,

fj(x) =
Bj

x
(vj − x), if

Bj

K
≤ x ≤ vj

is a set of line functions instead of a hyperbola function and

gj(x) = (K −
∑

i6=j Bi

x
)(vj − pmin), if

∑
i 6=j Bi

K
≤ x <

∑
i6=j Bi

K−Bj/pmin
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is a set of constant functions instead of a hyperbola function. Bellow we

provide a graphical representation example of how fj, gj look like when the

items are not divisible.

-

x

y 6

r rb rb rb rb rb rb rb br r
r

r
Q
Q
Q
Q
QQ

rb
l
l

rb
c
c

rb
l
l rb
b
b rb
aa

rb
aaaa rb̀

````̀

fj, gj

As we can see the functions fj, gj are not continuous when the items are not

divisible. This implies that there are cases where the critical bid of a player

does not exist.

Theorem 3.6.3.1 In the budgeted second-price ad auction with non-divisible

items, there are cases where the critical bid of a player does not exist.

Proof. We will prove this using an example. Suppose that we have two play-

ers, K = 4 items, B1 = 3, B2 = 2, v1 = 2, v2 = 1 and pmin = 0. We will

compute the utility functions of player 1, showing that they do not intersect

at some point. We start with function f1,

f1(x) =

 4(2− x) if 0 ≤ x < 3
4

3
x
(2− x) if 3

4
≤ x ≤ 2
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Since the items are not divisible, the real form of the function is,

f1(x) =



4(2− x) if 0 ≤ x ≤ 3
4

3(2− x) if 3
4
< x ≤ 1

2(2− x) if 1 < x ≤ 3
2

2− x if 3
2
< x ≤ 2

We proceed with function g1,

g1(x) =

 0 if 0 ≤ x < 1
2

(4− 2
x
)2 if 1

2
≤ x ≤ 2

Under the same logic, the real form of the function is,

g1(x) =



0 if 0 ≤ x ≤ 1
2

2 if 1
2
< x ≤ 2

3

4 if 2
3
< x ≤ 1

6 if 1 < x ≤ 2

As you can notice, function f1 consists of strictly decreasing line functions.

We proceed in computing the minimum and the maximum of each line seg-

ment:

if x ∈ [0, 3
4
] then f1(x) ∈ [5, 8]

if x ∈ (3
4
, 1] then f1(x) ∈ [3, 3.75)

if x ∈ (1, 3
2
] then f1(x) ∈ [1, 2)



74

if x ∈ (3
2
, 2] then f1(x) ∈ [0, 0.5)

So it is easy to see and verify that functions f1, g1 do not intersect at some

point, thus player’s 1 critical bid does not exist (there is no bid that gives him

the same utility at the first-last rank when all players bid the same value).



Chapter 4

GSP Ad Position Auctions

under Budget Constraints

In this chapter we return to the ad position setting, describing models that

introduce budgets. Our presentation is based on a work currently in progress

[3]. Our goal is to observe how the GSP ad position setting behaves under

the introduction of budget constraints. We present two such auction models

and additionally we display and prove several of their equilibria properties.

4.1 Budget-Conscious Second-Price Auction

The budget-conscious second-price auction (BC-SPA) is basically a model

which describes the GSP ad position auction that we saw earlier in chapter

1 but customized under the introduction of budgets.

4.1.1 The Model

We have N players and K slots (N > K). The slots have expected click-

through rates (CTR) θ1 > θ2 > ... > θK > 0, that depend upon their

positioning. The players i = 1, ..., N demand at most one slot and have

private values v1, v2, ..., vN > 0 per click. They also have publicly known

budgets B1, B2, ..., BN capping the total payment they are willing to accept.
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We assume that there is a minimum price which is always zero, pmin = 0.

The auctioneer announces prices pi per click and selects K players to be given

a unique slot, as follows:

1. The auctioneer orders the players according to their bids and renames

them if necessary so that b1 ≥ b2 ≥ ... ≥ bN . For players with identical

bids, lexicographic ordering is followed i.e. the player with the lower

original index is ranked first, the player with the second lower index is

ranked second etc.

2. Each player i, in his turn as determined by decreasing bid, is assigned

the slot with the highest CTR that is currently available (has not being

taken so far) and is within his budget i.e. θsipi ≤ Bi if there is such

one, otherwise he gets nothing. In other words, player i gets the highest

CTR slot j = si which has not be taken by a player i′ < i and for which

piθj ≤ Bi. A player i who is assigned a slot is called a winner while the

remaining players are called losers.

3. The price per click a player i is required to pay in case he is a winner

player is defined as follows:

pi =

 bi+1 if i 6= N

pmin = 0 if i = N

In other words, if a winner player i is not the player with the lowest

bid (he is not the last in rank) he pays the bid of the player bellow

him, otherwise if he is a winner player and has the lowest bid (the last

in rank) he pays pmin (notice that although K < N , it is possible for

player N to get a slot if for example this slot was not within the budget

of the previous players). In case player i is a loser, his price is defined

as zero.

4. The amount viθsi can be seen as the profit of a winner player i who

is assigned to a slot si while the amount piθsi can be seen as his total

payment. If i is a loser player on the other hand he has no profit and
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his payment is zero. So we can define the utility of a player i as,

ui =


θsi(vi − bi+1) if i is a winner and i 6= N

θsivi if i is a winner and i = N

0 if i is a loser

4.1.2 Properties

As we said earlier our main goal is to examine the existence of PNE and EFE

assignments and examine their properties. Before we proceed we will give

some necessary definitions.

Definition 4.1.2.1 We say that a player i can afford a slot j if this slot

is within his budget i.e. θjpi ≤ Bi.

Definition 4.1.2.2 We say that a player j envies a winner player i, assigned

to a slot si if the conjunction of the following occurs:

• pi ≤ vj

• θsipi ≤ Bj

• θsj(vj − pj) < θsi(vj − pi) or 0 < θsi(vj − pi) (depending on whether

player j is a winner or not respectively).

In other words a player envies someone else if can rationally afford his slot

and in addition his utility in the other’s player position is strictly bigger than

his current one. Notice that a player does not envy someone else if one of the

conditions does not hold i.e. if θsipi > Bj then player j does not envy player i.

Definition 4.1.2.3 We say that the assignment is envy-free, if it is rational

and no player who is assigned to a slot, is envied by any other player.

Notice here the envy notion is a little different from what we described in

the section 2.2 due to the introduction of the budget constraints. But how

significant are these differences? As a matter of fact, we saw at section 2.2

that bids that produce an envy-free assignment are also producing a PNE

assignment under the GSP ad position setting. Does something similar hold
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for the excluding-budget second-price auction setting?

Proposition 4.1.2.1 In the BC-SPA setting, bids that produce an envy-

free assignment do not, in general, produce a PNE.

Proof. We will prove this using an example. Suppose that we have 3 players

and 2 slots with the following properties:

Slots CTR

s1 3

s2 2

Players V alues Budgets

A 10 16

B 8 10

C 6 7

Let bA = 6, bB = 5, bC = 4. We claim that under these bids, the produced

assignment is envy-free but not a PNE.

Envy-Freedom

Players V alues Budgets Bids Prices Slots

A 10 16 6 5 s1

B 8 10 5 4 s2

C 6 7 4 0 none

The price assignment is obviously rational. Notice that player A gets slot

1 because it’s the first in rank slot and is also within his budget since

pAθs1 = 5 · 3 = 15 < 16 = BA. Under the same logic, player B gets slot

2 which is the slot with the highest CTR available and is within his budget

since pBθs2 = 4 · 2 = 8 < 10 = BB. Let us now proceed to each player

separately:

Player A: His utility is uA = cs1(vA − pA) = 3(10− 5) = 15.
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• In B’s position: Slot 2 is within A’s budget since pBθs2 = 4 · 2 = 8 <

16 = BA and his utility is uA = θs2(vA − pB) = 2(10 − 4) = 12 < 15.

So A does not envy B.

• In C’s position: No slot exists in C’s position, something that implies

uA = 0 < 15. So A does not envy C.

Player B: His utility is uB = θs2(vB − pB) = 2(8− 4) = 8.

• In A’s position: His utility is uB = θs1(vB − pA) = 3(8 − 5) = 9 > 8

but slot 1 is not within his budget since pAθs1 = 5 · 3 = 15 > 10 = BB

. So B does not envy A.

• In C’s position: No slot exists in C’s position, something that implies

uB = 0 < 15. So B does not envy C.

Player C: His utility is uC = 0 since he gets no item.

• In A’s position: His utility is uC = θs1(vC − pA) = 3(6 − 5) = 3 > 0

but slot 1 is not within his budget since pAθs1 = 5 · 3 = 15 > 7 = BC .

So C does not envy A.

• In B’s position: His utility is uC = θs2(vC − pB) = 2(6 − 4) = 4 > 0

but slot 2 is not within his budget since pBθs2 = 4 · 2 = 8 > 7 = BC .

So C does not envy B.

We can conclude that this is an envy-free assignment.

PNE

We claim that under these bids, player A is better off in player’s B position

so this is not a PNE. Suppose that player A underbids player B by a small

amount ε. The previous matrix goes as follows:

Players V alues Budgets Bids Prices Slots

B 8 10 5 5− ε s2

A 10 16 5− ε 4 s1

C 6 7 4 0 none
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Notice now that player B can not afford slot 1 (the first available slot with

the highest CTR) since pBθs1 = (5−ε)3 = 15−3ε > 10 = BB. So he gets slot

2 which is within his budget since pBθs2 = (5− ε)2 = 10− 2ε < 10 = BB. It

follows that player A will get slot 1 (the slot with the highest CTR available)

as he can afford it, pAθs1 = 4 · 3 = 12 < 16 = BA.

His new utility is uA = θs1(vA − pA) = 3(10 − 4) = 18 > 15 (his previ-

ous utility). This concludes our proof.

So as we can see, the introduction of budgets makes the whole model a lot

more complex and lessen its properties. With that in mind lets take a look

on the next theorem.

Theorem 4.1.2.1 It is not, in general, possible to find bids that produce a

PNE under the BC-SPA setting.

Proof. We will prove this using an example. Suppose that we have 3 players

and 2 slots with the following properties:

Slots CTR

s1 5

s2 2

Players V alues Budgets

A 10 50

B 4 5

C 2 2

We claim that under this data, there are not bids that produce a PNE. In

order to prove that we have to examine every possible ordering of bA, bB, bC
as well as every possible slot assignment that might occur. Specifically there

are 3! = 6 ways that we can order the bids and 3!/(3 − 2)! = 6 ways to ar-

range the slots. We shall split our proof into cases and we will examine each

case separately in a sketchy and informative way. Before we begin, notice

the following inequalities that describe under what restrictions each player

can afford each slot:
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Player A:

• Slot 1: θs1pA ≤ BA ⇒ 5pA ≤ 50⇒ pA ≤ 10

• Slot 2: θs2pA ≤ BA ⇒ 2pA ≤ 50⇒ pA ≤ 25

Player B:

• Slot 1: θs1pB ≤ BB ⇒ 5pB ≤ 5⇒ pB ≤ 1

• Slot 2: θs2pB ≤ BB ⇒ 2pB ≤ 5⇒ pB ≤ 5/2

Player C:

• Slot 1: θs1pC ≤ BC ⇒ 5pC ≤ 2⇒ pC ≤ 2/5

• Slot 2: θs2pC ≤ BC ⇒ 2pC ≤ 2⇒ pC ≤ 1

We have to mention here that we are only considering cases where both slots

are assigned to players. It is easy to see that it is not possible to have an

assignment with none of the players tagged to some slot, due to the fact that

pmin = 0. Additionally if only one player is tagged to some slot, he will be

the third in rank for the same reason (all the players can buy at pmin = 0).

These cases can be summed up as follows: The first in rank player, underbids

the third in rank (the one who is tagged to a slot) and he is better off at this

position since he surely gets an item and his utility becomes positive.

Case I: bA ≥ bB ≥ bC
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Slot 1 Slot 2 Change of strategy

A B It depends on bB. If 1 < bB then Player A bids bB − ε

and gets slot 1 at a smaller price. If bB ≤ 1 then Player C

bB + ε bids and gets a slot.

B A If player A bids bB − ε > 10 then he gets slot 1.

A C If player B bids bC − ε > 5/2 then he gets slot 2.

C A If player B bids bC − ε > 1 then he gets slot 1.

B C If player A bids bB − ε > 25 then he gets slot 1.

C B If player A bids bB − ε > 10 then he gets slot 1.

Case II: bC > bB > bA

Slot 1 Slot 2 Change of strategy

C B If player A bids bB + ε then he gets a slot.

B C If player A bids bB + ε then he gets slot 1.

B A It depends on bB. If bB ≤ 5/2 then Player A bids bB + ε

and gets slot 1. If bB > 5/2 then Player C bids bB − ε > 5/2

and gets a slot.

A B If player B bids bA − ε > 1 then he gets slot 1.

C A This outcome is impossible due to the bids ordering.

A C This outcome is impossible due to the bids ordering.

Case III: bA ≥ bC > bB
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Slot 1 Slot 2 Change of strategy

A C It depends on bC . If bC > 2/5 then Player A bids

bC − ε > 2/5 and gets slot 1. If bC ≤ 2/5 then Player B

bids bC + ε and gets a slot.

C A If player A bids bC − ε > 10 then he gets slot 1.

C B If player A bids bC − ε > 25 then he gets slot 1.

B C If player A bids bC − ε > 25 then he gets slot 1.

A B If player A bids bC − ε > 1 then he gets slot 1 at

a lower price.

B A If player A bids bC − ε > 10 then he gets a slot at

a lower price.

Case IV: bC > bA ≥ bB

Slot 1 Slot 2 Change of strategy

C A If player B bids 2/5 < bA + ε < 1 then he gets slot 1.

A C If player C bids bA − ε then he gets slot 2 at a lower price

If bA = bB then player B bids bA + ε and gets a slot.

A B It depends on bB. If bB > 1 then Player A bids bB − ε > 1

and gets slot 1 at a lower price. If bB ≤ 1 then Player C

bids bA − ε < 10 and gets slot 2.

B A If player A bids bB − ε > 10 then he gets slot 1.

C B This outcome is impossible due to the bids ordering.

B C This outcome is impossible due to the bids ordering.

Case V: bB > bA ≥ bC
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Slot 1 Slot 2 Change of strategy

B A It depends on bB. If bB ≤ 5/2 then Player A bids bB + ε

and gets slot 1. If bB > 5/2 then Player C bids

bA + ε > 5/2 and gets slot 2.

A B If player B bids bA − ε > 1 then he gets slot 2 at

a lower price.

B C This outcome is impossible due to the bids ordering.

C B This outcome is impossible due to the bids ordering.

A C It depends on bC . If bC ≤ 5/2 then Player B bids

bA − ε < 10 and gets slot 2. If bC > 5/2 then Player A

bids bC − ε > 5/2 and gets slot 1 at a lower price.

C A If player A bids bC − ε > 10 then he gets slot 1 at

a lower price.

Case VI: bB ≥ bC > bA

Slot 1 Slot 2 Change of strategy

B C If player A bids bC + ε then he gets a slot.

C B If player A bids bC + ε > 1 then he gets slot 1.

B A This outcome is impossible due to the bids ordering.

A B If player B bids bC − ε > 1 then he gets a slot at

a lower price.

C A If player B bids bC − ε > 5/2 then he gets slot 1 .

A C If player B bids bC − ε > 5/2 then he gets slot 1.
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As we can see there is no PNE in this example. An interesting point to

mention here is that this example has an EFE. As a matter of fact:

Players V alues Budgets Bids Prices Slot

A 10 50 9 3 s1

B 4 5 3 2 s2

C 2 2 2 0 none

Player A: His utility is θs1(vA − pA) = 5(10 − 3) = 35. He envies neither

player B since θs2(vA − pB) = 2(10 − 2) = 16 nor player C since his utility

there is zero.

Player B : His utility is θs2(vB − pB) = 2(4 − 2) = 4. He envies neither

player A since he can not afford his slot (θs1 · pA = 5 · 3 = 15 > 5 = BB) nor

player C since his utility there is zero.

Player C : His utility is zero. He envies neither player A nor player B since

he can not afford none of the slots they are tagged to (θs1 · pA = 5 · 3 = 15 >

2 = BC and θs2 · pB = 2 · 2 = 4 > 2 = BC).

Our proof is now complete.

Proposition 4.1.2.2 In the BC-SPA setting it is not, in general, possible to

have an EFE if players have identical budgets. 1

Proof. This is in a way trivial, for instance suppose that we have two players

with identical budgets and one slot with θ to be the CTR. We set their values

to be bigger from B/θ, so if they can afford the slot, they certainly get a

positive utility from it. It is easy to see that no matter the assignment, the

player who gets no slot will always envy the other one since at his place he

has a positive utility and can afford the slot by assumption.

1It is highly believed however that when players have different budgets, then there

exists bids that produce an envy-free assignment. See section 4.3 for more.
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4.2 Budget-Oblivious Second-Price Auction

The budget-oblivious second-price auction (BO-SPA) is an alternative ap-

proach to the same setting. The basic difference is that each player in his

turn, determined by decreasing bid, is assigned to the highest CTR available

slot, independently of whether he can afford it or not. But lets take a more

formal look.

4.2.1 The Model

We have N players and K slots (N > K). The slots have expected click-

through rates (CTR) θ1 > θ2 > ... > θK > 0, that depend upon their

positioning. The players i = 1, ..., N demand at most one slot and have

private values v1, v2, ..., vN > 0 per click. They also have publicly known

budgets B1, B2, ..., BN capping the total payment they are willing to accept.

The auctioneer announces prices pi per click and selects K players to be given

a unique slot, as follows:

1. The auctioneer orders the players according to their bids and renames

them if necessary so that b1 ≥ b2 ≥ ... ≥ bN . For players with identical

bids, lexicographic ordering is followed i.e. the player with the lower

original index is ranked first, the player with the second lower index is

ranked second etc.

2. Each player i, in his turn as determined by decreasing bid, is assigned

the slot with the highest CTR that is currently available (has not being

taken so far) if there is such one, independently of whether he can afford

it or not, otherwise he gets nothing. A player who is assigned to a slot

that he can not afford is called an off-budget player (this slot is assumed

to be occupied from then on or to remain available). Notice here that

since the number of players N is bigger from the number of slots K

there is no need for the auctioneer to set a minimum price (players get

the slots in decreasing order of bids, either they can afford them or not,

so it is impossible for the last in rank player to be assigned to a slot).

3. The price per click a player i is required to pay in case he is assigned
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to a slot is defined as follows:

pi =

 bi+1 if he can afford the slot

0 if he is an off-budget player

If player i is not assigned to any slot then his payment is defined as

zero.

4. The utility of each player i is defined as follows:

ui =


θsi(vi − bi+1) if i can afford si

0 or −∞ if i is an off-budget player (he can not afford slot si)

0 if i is assigned to no slot

Notice that the utility of an off-budget player is usually assumed to be

either zero or −∞.

4.2.2 Properties

Lets now take a look on how this model behaves under the search of PNE

and EFE assignments. Notice that definitions 4.1.2.1, 4.1.2.2 and 4.1.2.3 can

be applied to this model as well.

Proposition 4.2.2.1 In the BO-SPA there can be no PNE or envy-free

assignment with off-budget players, if we assume that their utility is defined

as −∞.

Proof. Suppose that there is an assignment with off-budget players. By the

definition of the model we know that the last in rank player does not get any

slot since the number of the players is bigger than the number of the slots.

So none of the off-budget players can be last in rank. With that in mind

it is easy to say that any off-budget player could underbid the last in rank

player an thus get a zero utility which is bigger than his current one (−∞
by assumption). Under the same logic we can say that any off-budget player

envies the last in rank player for the same reason. So we can conclude that

it is impossible to have a PNE or an envy-free assignment with off-budget

players.
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Theorem 4.2.2.1 It is not, in general, possible to find bids such that the

BO-SPA produces an envy-free assignment with no off-budget players.

Proof. We will prove this with an example. Suppose that we have 3 players

and 2 slots with the following properties:

Slots CTR

s1 1000

s2 5

Players V alues Budgets

A 10 12

B 8 10

C 6 8

We claim that there are not bA, bB, bC that produce an envy-free assignment

under the setting of non-excluding-budget second-price auction with no off-

budget players. We will examine extensively two cases of bids ordering.

Case 1: bA ≥ bB ≥ bC

Suppose that bA ≥ bB ≥ bC , so player A gets slot 1, player B gets slot 2 and

player C gets nothing. We have the following:

Players V alues Budgets Bids Prices Slots

A 10 12 bA bB s1

B 8 10 bB bC s2

C 6 8 bC 0 none

Since we want no off-budget players, from the definition of the setting we

have that bids must restrict to some limits (if the bids go beyond these

limits, we have off-budget players and we do not follow the restrictions of

Theorem 4.2.2.1). More precisely:

pAθs1 ≤ BA ⇒

bBθs1 ≤ BA ⇒

bB ≤ 12/1000⇒
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bB ≤ 3/250

as well as,

pBθs2 ≤ BB ⇒

bCθs2 ≤ BB ⇒

bC ≤ 10/5⇒

bC ≤ 2

So, with A and B to be both no off-budget players, we will show that player

C envies player B and therefore this is not an envy-free assignment (notice

that due to the bid-limits, our assignment is rational). C’s utility is currently

zero since he gets no slots. Following definition 4.1.2.2 we proceed to the fol-

lowing (using the previously described no off-budget restriction bB ≤ 3/250) :

Rationality: pB = bC ≤ bB ≤ 3/250 < 6 = vC

Afford-ability: pBθs2 = 5bC ≤ 5bB ≤ 15/250 = 3/50 < 8 = BC

Utility: uC = θs2(vC−pB) = 5(6−bC) = 30−5bC ≥ 30−5bB ≥ 30−15/250 =

30− 3/50 > 0

So according to definition 4.1.2.3, this is not an envy-free assignment.

Case 2: bC > bB > bA

Suppose that bC > bB > bA, so player C gets slot 1, player B gets slot 2 and

player A gets nothing. We have the following:

Players V alues Budgets Bids Prices Slots

C 6 8 bC bB s1

B 8 10 bB bA s2

A 10 12 bA 0 none
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As with case 1, in order to have no off-budget players, the bids restrictions

are:

pCθs1 ≤ BC ⇒

bBθs1 ≤ BC ⇒

bB ≤ 8/1000⇒

bB ≤ 1/125

as well as,

pBθs2 ≤ BB ⇒

bAθs2 ≤ BB ⇒

bA ≤ 10/5⇒

bA ≤ 2

So, with B and C this time to be both no off-budget players, we will show

that player A envies player B and therefore this is not an envy-free assign-

ment (again, the bid-limits set a rational assignment). A’s utility is currently

zero since he gets no slots. Following definition 4.1.2.2 once more, we pro-

ceed to the following (using the previously described no off-budget restriction

bB ≤ 1/125) :

Rationality: pB = bA < bB ≤ 1/125 < 10 = vA

Afford-ability: pBθs2 = 5bA < 5bB ≤ 5/125 = 1/25 < 12 = BA

Utility: uA = θs2(vA−pB) = 5(10−bA) = 50−5bA > 50−5bB ≥ 50−5/125 =

50− 1/25 > 0

So, according to definition 4.1.2.3, this is not an envy-free assignment.

Rest Cases

It is easy to see that the same goes for every other possible ordering of bids.

Notice that since we want no off-budget players, the following must hold in

general, for every ordering b1 > b2 > b3 of players A,B and C:
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p1θs1 ≤ B1 ⇒

b2θs1 ≤ B1 ⇒

b2 ≤ B1/1000⇒

b3 < B1/1000⇒

p2 < B1/1000

This inequality always sets a pretty low upper bound for p2, which assures

us (taking into consideration the private values, CTRs and budgets in our

example) that in any case, the third in rank player (the one who gets no slot)

will always envy the second in rank (the one who gets slot 2).

4.3 Future work

As a conclusion we present some properties of the two models that are cur-

rently under consideration or about to be proved:

• There exists bids such that the BC-SPA produces an envy-free assign-

ment (if the budgets of the players are not identical).

• There exists bids such that the BO-SPA with off-budget players, pro-

duces an equilibrium (PNE or EFE) if we assume that the utility of

the off-budget players is defined as zero.
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multi-item auction, 22
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payment, 30
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price, 17
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