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Synopsis

At the current M.Sc thesis we study Generalized Second-Price Auctions un-
der advertisement settings. In chapter 1 we make an introduction to the
basic concepts of the auctions, presenting several auction models and an-
alyzing their properties. We proceed in chapter 2 studying the equilibria
properties of the GSP auction under the advertisement position setting with
a presentation based on [1]. We provide several notices and additional proofs
regarding the comparison between the pure Nash equilibria and Envy-Free
equilibria. In chapter 3 we study the notion of budget and observe the Bud-
geted Second-Price advertisement auction with a presentation based on [2].
In section 3.6 we display notices and some results from our side, concerning
several problems that occur in the original work. Additionally we examine
the critical bid notion under the same setting when the items are not di-
visible. Finally we conclude with chapter 4, introducing two GSP auction
models for the advertisement position setting, customized under budget con-
straints. Our presentation is based on a work currently in progress [3]. We
analyze the structure of the two models and provide proofs regarding their

equilibria properties.
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ITepirndm

Yty mopodoa dimhwpoatixy| egyoacto yehetdue Second-Price dnuompacieg ye-
VIXELPEVTS LOoR@TiC, %dTw and To mplopo Tou TEPBAANOVTOEC TwV Slagpnuicewy.
2YT0 TPWTO XEGIANMO AAVOUUE WA ELCAYWYT OTIC BAUCIXES EVVOLES TV ONpo-
TQUOIWY, TAUPOUGLACOVTUS Hial ToLAld LOVTEAWY xat avaAGOUPE TIC OTNTES
TOUC. 2T0 DEUTEQO XEPIANO UEAETIUE TIC WOLOTNTES LoOPEOTHAC (equilibrium)
yevixeupevwy Second-Price dnuponpaciov o TEpBIALOY BLagnuicEwY PE ULo
napouciaor tou Baciletar 6To [1]. Topéyoupe npdodeteg OTNUELDOELS xOWS
CLUUTANEWUATIXE ATOTEAESUATA TTOU 0popoUY 0Tr 6OYXElon avdueod otny Na-
sh xou v Envy-Free woogponia. Y10 tplto xepdhouo pehetdue tnv €vvola
Tou budget xat To povtéro dnponpaciag Sugpnuicewyv Budgeted Second-Price
ue wo mopoustaoy mou Booileton oto [2]. Ty nopdypago 3.6 exdétouue
AAmotaL OLxd UAS ATOTEAEGUOTO OYETIXG YE OPLOUEVO TROBANUATO TOU UTARYOUY
oty avdevtiny| epyacta xar emnpdc¥eTa UeAETAUE TNV €vvola Tou critical bid
o710 B0 TEPBAANOY, Ywele woTO00 TNV UTOVEST] TV DIPETWOY AVTIXEUEVWY.
Khetvovtog 0hoxAnetVoUUe UE TO TETOPTO XEQAANLO GTO OTOI0 GUGTAVOUUE BUO
xouvolpyLa ovTERX Yevixeupévwy Second-Price dnuompaciov 6to tep3dAlov
Ty Sgnuicewy utd budget meploplopols, e pa mapoustaon mou Bactletan
oe wa gpyaoia mou Peloxeton auth ) otiyph o eZéMEn [3]. Avobouue Ty

OOt TV BUO HOVTEAWY XU TUPEYOUUE ATOOEIZES OYETIXG UE TIC WOTNTES -



coppotiag Toug. Téhog xdvouue ura GOVTOUN avaopd GE TEOTACELS oL 0TolEg

elvon TNV Topoloo GTIYUY| TEOS Am6OEET.

AéZeig KAewdid: Second-Price onuonpaociec, Ioopponia, Owovouxt|, du-

vototna, HepBdhhov dwphuong, Torodétnon
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Chapter 1

Auctions and Models

1.1 A general view and some basic concepts

1.1.1 Auctions History

The word auction comes from the Latin augeo which means "I increase” or
"T augment”. Auctions are a mechanism for selling or exchanging goods and
commodities and it seems that have touched almost every century, industry
and nationality. Auctions date back so far in history that their origin is
uncertain and no one knows exactly who started them or how they started.
The earliest record that we have, comes from ancient Greek scribes and
Herodotus, containing information that auctions occurring as far back as
500 B.C.. At that time the ”items” of the auctions were women for marriage
and in fact it was considered illegal for a daughter to be sold outside the
auction method. The model of these auctions was a descending method
where the auctioneer was setting a starting high price and gradually was
decreasing it until the first bid of a potential buyer. It was a single-item
kind of model and the auctioneer initially was selling the women that he
considered most beautiful and progressed to the least. The buyer could get
a refund if he and his wife did not get along. Later on and during the time
of Roman Empire after a military success, Roman soldiers would drive a
spear into the ground, around the spoils of war were left, to start an auction.
Auctions were also popular for selling family estates, for example the roman
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emperor and philosopher Marcus Aurelius sold family furniture at auctions
for months in order to pay off debts. In the year 193 A.C. one of the most
historical auctions of all time occurred, when the whole Roman Empire was
put on an auction by the Praetorian Guard (a force of bodyguards used by
the roman emperors). The Praetorian Guard killed the emperor Pertinax
and then put the entire empire into an auction. The highest bidder was
Didius Julianus with a bid of 6.250 drachmas per guard. That initiated a
civil war and two months later Didius Julianus was beheaded when Septimus
Severus conquered Rome. After the end of the Roman Empire, auctions
popularity started to fade in Europe. Around 1600 auctions came to America
(pilgrims arrival on Americas Eastern shores) and their popularity continued
to increase during colonization with the sale of many types of goods, such
as crops, tools, tobacco and entire farms. At the American civil war era,
spoils of war and surplus were regularly auctioned at public sale by Colonels
of the division (thus today some of the auctioneers of the US also referred
as Colonels). Back to Europe and at 1674 the oldest auction house in the
world, Stockholm Auction House was established in Sweden. During the end
of the 18th century, soon after the French Revolution, auctions were held
into taverns and coffee houses to sell works of art and auction catalogs that
contained the available goods were printed. Today the world’s largest auction
is Christie’s and it was established around 1766. Recently the development
of the Internet gave a significant increase in the use of the auctions due to
the rise of the electronic markets (stores where you can buy everything you
like without the need of your physical presence). Many of these markets use
several models of auction mechanisms as the main way for selling goods.

1.1.2 Auctions as Formal Models

The origins of the auctions with more specific structures, is said to be the
year 1961 with the seminal article of William Vickrey. Although it took many
years before his work was followed up by other researchers (including Wilson,
Clarke, Groves, Milgrom Weber Myerson, Marskin and Riley), it eventually
formed a solid sector of research. Around the 80’s there was a widespread
sense that the specific research area was almost complete with little remaining
to be discovered. This perception however changed at the early 90’s due
to the occurrence of two major events: the Salomon Brothers scandal in
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the US Government securities market in 1991 (trader Paul Mozer had been
submitting false bids in an attempt to purchase more treasury bonds than
permitted by one buyer during the period between December 1990 and May
1991) and the advent of the Federal Communications Commission (FCC)
spectrum auctions in 1994. These two events brought up to the surface the
serious limitations of the existing theory since the majority of the theorems,
models, structures etc that had been developed until then, were based on
single-item auctions (auctions where the auctioneer sells only one item to a
set of buyers) while the study of multi-item auctions was at an infantile level.
So the second wave of research was triggered at the middle of 90’s and the
main focus was on the study of multi-item auctions with multiple variations
(a research that continues until today).

1.1.3 Types of single-item Auctions

As we mentioned earlier on, the term single-item auction is used when a
seller-auctioneer wants to sell only one item or a single non divisible amount
of good to a set of potential buyers. The buyers are also called bidders since
they bid, propose or submit a value which technically corresponds to the
amount of money they desire to give in order to get the item or the good.
They also can be seen as players with different strategies, in a game with
certain rules where the winner is the one who manages to get the item. Here
we will make a reference to the basic models of single-item auctions.

e Ascending-bid auctions: These auctions are also known as English
auctions and are carried out in real time. The bidders participate
either physically or electronically. The basic idea behind this model is
that the auctioneer gradually raises the price of the item that is to be
sold and the bidders drop out until only one of them remains. He is
the winner bidder and he gets the item at this final price. Examples of
this model are oral auctions in which bidders shout out prices (physical
participation), or submit them electronically (electronic participation).

e Descending-bid auctions: These auctions are also known as Dutch
auctions and are carried out in real time as well. The auctioneer, in
contrast with the previous model, gradually lowers the price of the item
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(which has some high initial value) until one of the bidders accepts the
item for the first time and pays it at the current price. The ”Dutch”
characterization comes from the fact that this model was used as way
to sell flowers in Netherlands.

o [First-price sealed-bid auctions: In this kind of auction, bidders submit
simultaneous sealed bids to the auctioneer without knowledge of any
of their opponents bids. The auctioneer unseals the bids all together
and the winner is the one with the highest bid. The price he pays is
the value of his bid (hence the name first-price).

o Second-price sealed-bid auctions: This model follows the same pattern
as the first-price auctions where the bidders submit simultaneously,
sealed bids to the auctioneer without knowledge of any of their oppo-
nents bids and the auctioneer unseals the bids all together. The winner
is once again the bidder with the highest bid, the price he pays how-
ever is the second-highest bid (hence the name second-price). These
auctions are also known as Vickrey auctions in honor of William Vick-
rey, who wrote the first game-theoretic analysis of auctions (including
the second-price auction) and who won the Nobel Memorial Prize in
Economics in 1996 for this body of work.

1.1.4 Private-Values Model

It is common fact that in our daily life as consumers, we value the products
that we are interested in. When someone goes to a store for example in
order to buy a specific model of TV, he checks the specs, the technology,
the characteristics in general and comes up with a valuation on how much
money this model should cost, based on his own criteria. He asks the seller
the price of the TV and then he decides either to wait for a price drop or to
buy it depending on his valuation (if the price exceeds his valuation or not
respectively). We always value the products we are interested in and this is
one of the main ways of how we decide to buy them or not.

The same goes for potential buyers that participate in an auction. An inter-
esting question that we can come up with however is, should these buyers-
bidders expose their values to the auctioneer or not?
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Generally, each bidder ¢ who participates in an auction have a valuation-
value v;, for the item which is sold by the auctioneer. We claim that this
type of information must be private, otherwise there is no meaning in forming
an auction at all. In order to see this, imagine a case where the auctioneer
as well as the bidders, know each other’s values. Specifically, consider that
an auctioneer is trying to sell an item that he values x and suppose that the
highest value among the bidders is some y = max{v;} > z. Bellow there is
an example of what could happen in a situation like this.

Example: If the auctioneer knows the true values of the bidders then he can
set the price of the item at a value just below y. In that case the bidder with
the highest value will buy the item and the auctioneer will have the highest
possible profit. In other words there is no need for the auctioneer to form
an auction since for the right price he can maximize his utility. From the
bidders side of view, exposing the values predetermines the outcome (who
gets the item) and leads the winner to get it at the highest possible price.
In either case there is no need for the players to bid, so there no meaning in
forming an auction at all.

So we can now take a formal look on the private-values model in the auction
setting in order to have a basic idea on how such a structure works: An auc-
tioneer wishes to allocate an item or a non divisible amount of good among
N bidders (¢ = 1,..., N). Each bidder’s valuation v; for the item, is private
information and depends only on him and not on the adversary bidders. The
bidders bid simultaneously and independently. Each one of them wants to
get the item, but obviously at a price lower than their own valuation. They
also want this price to be the lowest possible. So in order to summarize, each
player’s goal is:

e Get the item only at a price smaller than your own private valuation
e Get it at the lowest possible price
In a more formal way we can say that all bidders want to maximize their

expected wutility which is defined as:

(v; —x) if i gets the item at price x
U; =

0 if i gets nothing
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Notice here that all the models that we will display from now on, follow the
basics of the private-values model structure.

1.2 Basic Models of single-item Auction

We will now describe two of the main single-item auction models, second-
price auction and first-price auction. In this work we are mainly interested
in the second-price model due to its interesting properties, however we will
make a brief description of the first-price model in order to have a wider view
on the topic. As we said earlier, an auction can be seen as a game where the
goal of each player is to maximize his utility. The strategy of each player is
the choice of his bid. From now on we will refer to bidders as players.

1.2.1 Second-Price Auction

We have N (i = 1, ..., N) players that have private values v; for the item that
is to be sold by the auctioneer. Each player’s strategy is to bid an amount

b; which is a function of his true value v;. The utility of player ¢ with value
v; and bid b; is defined as follows:

If player i is the winner (i.e. he is the one who gets the item and has the
highest bid) then his utility is defined as v; —b;, where b; is the second highest
bid . Else if player i is a loser (i.e. he does not get the item) then his utility
18 defined as zero.

(v; — b;) if ¢ has the highest bid (b, is the second highest bid)
U; =
0 otherwise

So in order to give a more complete description, we can say that the players
announce their bids, the auctioneer ranks them in decreasing order and he
sells the item to the first in rank player at a price which is equal to the bid of
the second in rank player. There are some additional details that we have to
mention here: How the auctioneer handles a situation where two of the peo-
ple that participate to the auction submit the same bid? A solution that we
can come up with, is to order the people with the same bids via their names
(with lexicographic order) i.e., if two or more people submit the highest bid,
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the auctioneer will sell the item to the player with the lower original index
(we make this is a hypothesis for all the auction models that are presented
in this work). Notice here that at situations like this the winner player gets
the item but pays the full value of his own bid.

As we said earlier, second-price auctions have some very interesting prop-
erties. Before we proceed it is important to present some definitions:

Definition 1.2.1.1 Let S = (s1, s, ..., s,) be a set of strategies of all players
where s; is the strategy of player i. As s_; we define the strategies of all
players except ’'s and as u;(s;, s—;) the utility of ¢ when he chooses to play
s; and the others s_;.

Definition 1.2.1.2 We call dominant strategy a strategy that is optimal
for a player 7 (i.e. it maximizes his utility) regardless of what the other play-
ers choose to play. In other words, if s; is a dominant strategy then i does
not gain something from choosing a different strategy s as well as it is best
for him to stick with that strategy no matter what the other players do (i.e.
if they go from s_; to s’ ;). More formally:

ui(sh S*i) > UZ‘<8;, S*Z’) and u’i(s’i7 SLz) > Ui(Sg, 8Lz)

Lets now see why the second-price auction model is so important.

Proposition 1.2.1.1 In a second-price auction it is a dominant strategy
for every player to bid his true value, i.e. b; = v;.

Proof. We will prove this by contradiction assuming that some player i de-
cides to bid something different from his value. We shall show that with such
a deviation, player ¢ will have either the same or lower utility (in other words
we will compare his utilities before and after the deviation assuming that the
rest players do not change their strategies). Notice here that the bid choice
affects only the winning or losing outcome i.e. if a winner alters his strategy
he can go to a winner or loser state. However, in his new winner state he
will continue to pay the same price as before since the payment amount is
determined by the player bellow him (who is the same as before). There are
two possible cases that we will examine separately,
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Case 1: b; = v; vs b, > v;

e If player ¢« was the winner with strategy s; where b; = v; then he remains
the winner with strategy s, where 0, > v; (he is ranked again first since
he has the highest bid) and as we said his final utility is the same
as before since he pays once again the second highest bid. Therefore
wi(Siy S—i) = ui(sh, s_;).

e If player ¢« was a loser with strategy s; where b; = v; then with strategy
s, where 0, > v; is either a loser or the winner. If he becomes a loser
then his utility is zero (the same as before). If he becomes the winner
then he gets the item at a price b;. It is obvious however that b > b; >
b; = v; (remember that with b; = v; he was a loser) so his new utility
is v; — b; < 0. Therefore u;(s;,s—;) =0 > u;(s}, s_;).

Case 2: b; =v; vs b, < v;

e If player 7 is the winner with strategy s; where b; = v; then with strategy
s; where b < v; is either the winner or a loser. If he becomes the winner
then his utility is the same as before since he gets the item at the same
price. If he becomes a loser then his utility is zero which is equal or
less than before. Therefore w;(s;, s_;) > u; (s}, s-;).

e If player 7 is a loser with strategy s; there b; = v; then he remains a
loser with strategy s; where b, < v; so his utility is once again zero.
Therefore u;(s;, s—;) = u;(s;, s—;) = 0.

]

So as we see, in both cases each player ¢ has nothing to gain if he bids
something different from his value, thus bidding his true value is a dominant
strategy. Concluding, we can make some final comments that summarize the
previous analysis:

e In the second-price auction, your bid determines if you are a winner or
a loser but not the price of the item that you will get in case you are a
winner (since that depends to the bids of the rest players).

e In the second-price auction bidding your true value is the best strategy
you can come up with, regardless of what the other players do (whether
they also submit their true values, bid higher or lower).
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1.2.2 First-Price Auction

We have N (i = 1, ..., N) players that have private values v; for the item that
is to be sold by the auctioneer. Each player’s strategy is to bid an amount
b; which is a function of his true value v;. The utility of player ¢ with value
v; and bid b; is defined as follows:

If player i is the winner (i.e. he is the one who gets the item and has the
highest bid) then his utility is defined as v; — b;. Else if player i is a loser
(i.e. he does not get the item) then his utility is defined as zero.

(v; — b;) if ¢ has the highest bid

U; =
0 otherwise

As we can see the bid b; of each player ¢, determines not only the outcome of
the auction (if 7 is a winner or a loser) but also the payment in the winner
case scenario (since player ¢ pays his own bid). So this is the first gap between
the first and the second-price auctions and is also something that will create
many difficulties in the goal of tracing the optimal bid or an optimal strategy.
It is obvious that bidding your true value is not the dominant strategy this
time around since your utility is zero in both winning or losing state (even
if you win, the price you will pay is your full value, so your utility is zero by
definition). It is obvious as well, that there is no meaning in bidding higher
than your true value because if you are a loser then your utility is zero and if
you are a winner your utility is negative by definition (since p; = b; > v;). So
the only reasonable direction that you can take is bidding lower than your
true value. But what is the optimal bid in such a case? If you bid too close
to your value then in a winning case scenario you get a very small amount of
utility. On the other hand if you bid far bellow your value you increase your
utility in a winning case scenario but you also reduce the possibilities for this
scenario to happen. As we can see, finding the optimal bid in the first-price
auction is a lot more complex than it was in the second-price auction. There
are solutions to this problem, however as we mentioned at the beginning of
the section we will not present any specific results here.
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1.3 Basic Models of multi-item Auction

It is obvious that if there are multiple items to be sold, the models that we
described are incomplete. Multiple questions also emerge i.e. are these items
identical or not? Bellow we present two of the basic models for auctioning
multiple items and observe their properties. Multi-item auction models are
more general (they can be used for single-items as well) and in a way more
realistic since they have many applications in real life (electronic markets
and stores use them as mechanisms for selling items).

1.3.1 Vickrey-Clarke-Groves Mechanisms

Suppose that we have N players (i = 1,..., N) and K items (i = 1,..., K).
Each player ¢ has a vector of private values V; = [v;(1),...,v;(K)] if the
items are non-identical (a value for each item) or a single private value v; if
the items are identical. Additionally each one of them submits a vector of
bids (or a single bid) in order to be tagged with the item of his preference
(non-identical items) or with an item in general (identical items) respectively.

Suppose also that there is a set S that contains all the possible outcomes
(all the possible assignments between the players and the items). Imagine
now that there exists a central authority (an auctioneer in our case) who
wants to provide an assignment that maximizes ) . b;(s) where s is a pos-
sible assignment and {b;(s)}ic(1,..,n} the bids of the players that are tagged
with an item in that specific assignment. In other words the center wants
to find the best outcome s so that . 0b;(s) has the highest possible value.
From now on we denote this best outcome as 5. Finally, the center announces
that it will pay each player ¢ that participates in the auction with Z#i b;(8)
(the sum of the bids of the players that are tagged to an item at the best
outcome except his own) and each player ¢ will pay to the center the amount
mazs Y i, bj(s) (the sum of the bids of the players that are tagged to an item
at the best outcome, when he does not exists-participates in the auction at
all). The amount that the center demands from each player to pay, can be
seen as the harm that his presence causes on the rest of the players. Notice
here that since the center wants to find the best outcome,
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Z bi(8) < maxs Z bi(s)

JFi JFi

~

In order to understand why notice that >, b;(8) is the best outcome (the
maximum sum) of a N players game minus the bid of player ¢ (so a common
outcome of a N —1 players game) while maz; ;_; b;(s) is the best outcome
of a N — 1 players game. The only case where this inequality is not strict, is
when player i does not get any item at the best outcome (so his bid is not
computed into the sums). So we can conclude that,

mazx Z bi(s) — Z bj(5) >0

J#i J#i

which can be seen as the final payment of the player to the center-auctioneer
(zero if we have an equality and thus a player who gets no item),

pi = maxs Z bi(s) — Z b; ()

JFi JFi

Finally we can define each player’s utility as,

vi(8) —pi i 325 05(8) < maxs ;L bi(s)
0 if Zj;éi b;(8) = max, Zj;éi b;(s)

U; =

where v;(§) can be denoted as the value of player i for the item he gets at
the best outcome.

Proposition 1.3.1.1 Bidding your true value is a dominant strategy in the
Vickrey-Clarke-Groves Mechanism (VCG).
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Proof. When player ¢ decides to be truthful, he submits the vector of his
values V; = [v;(1),...,v;(K)]. The auctioneer takes this vector as well as
the bid vectors of the rest players and tries to form an allocation where
i bi(s) is maximum. So he computes all the possible v;(s) +3_,_; b;(s) for
all possible outcomes s and finally he chooses § which is the outcome where
0i(8) + 3252 b;(8) = mazs{vi(s) + 3, b;(s)}. Player’s i utility is,

u;i(8) = v;(8) + Z b;(8) — maxs Z bi(s)
J#i J#
When player ¢ decides to deviate, bidding a vector different from his valuation
vector, his new bids lead him to get either the same or a different item. In any
case the auctioneer once again decides the best allocation (which will may
be different or the same as before depending on #’s bid vector) and player’s
¢ utility becomes,

ui(s") = vi(s') + Z b;(s") — max, Z bi(s)

J#i J#i

where s is the best outcome under the new data and v;(s") is player’s i value
of the item he is tagged to, at outcome s'.

Notice that the amount maz, ), bj(s) does not change no matter what
strategy player i chooses to play. As we said earlier it represents the sum of
the bids at the best outcome when player ¢« does not exists at all.

So assume that player ¢ gets a higher utility when he does not bid his true
values. Lets see if this is possible:

ui(s') > u(s) =
vi(s') + Z bi(s") — maxs Z bi(s) > vi(8) + Z b;(8) — max; Z bi(s)
J# J#i J# j#i

= vi(s)) + Y _bi(s) > vi(8) + D b;(3)

J# J#
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However we know that v;(s) + >, b;(5) = maz{vi(s) + >, bi(s)} so
we have a contradiction. Notice also that if player ¢ gets no item at the §
outcome his utility is defined as zero. In such a case and under the same
logic, if he deviates from bidding his true values his utility is either zero or
some negative amount.

So we can conclude that bidding your true values is a dominant strategy
in VCG. [

Proposition 1.3.1.2 In single-item auctions the second-price and the VCG
models are exactly the same.

Proof. As we said earlier, there are two possible outcomes at the second-price
auction:

e To be the winner (getting the item) with utility w; = v; — b; where b;
is the second highest bid.

e To be a loser with utility u; = 0.
Lets see what happens if we run the same auction via the VCG model,

e Winner case: u; = v; + >, b;(8) — maz;s Y, b;(s). Notice here
that > i 0j(8) is zero since player i got the only item that exists and
there is no other player tagged to an item (remember that we take
into consideration only the bids of the players that get an item). Lets
take a look to max; . ,;b;(s) , if player i does not exist then since
the auctioneer wants to maximize the sum, he will give the item to
the player with the second highest bid, say j (who is first in this new
allocation). So we have that maxs 3, b;(s) = b; and we can clearly
conclude that 4's utility is u; = v; — b; which is the same with the
second-price run.

e Loser case: Since player i is a loser, he does not get any item. We
only need to verify that ., b;(3) = max, ), bj(s). It is easy to see
that the two sums are equal since both represent the highest bid (which
does not alter either player i is present or not). We can conclude that
u; = 0 which is the same as in the second-price run.
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O

Proposition 1.3.1.3 In an auction with N players and K < N identical
items, under the VCG run all the winners pay the K + 1 highest bid.

Proof. Suppose that player ¢ is a winner and his utility comes as always
by the relation w; = v; + >_,,;0;(8) — max,Y_;,; bi(s). Notice that since
the items are identical, each player has the one value for every item. Now
lets turn again to the amount, maz; ), b;(s). This amount represents the
maximum sum when player ¢ does not exist. It is obvious that in order for the
sum to be maximum as well as for the assignment to be complete (no item
untagged), player i's place will be covered by the player with the highest bid
who previously was not tagged to any item (this player has the K + 1 highest
bid, say ') while the other bids will remain intact. So returning back to the
relation of the utility and more specifically to the difference of the sums we
can see that, >, b;(8) —maxs 2, bi(s) = 32;.,05(8) — 32, 05(8) =V =
—b" which is the final payment of every player i that is a winner. This is in
fact very interesting since we can say that the winners form a class which
contains people with the same properties no matter their differences. We
can actually see them as one person, the winner player of the second-price
auction setting. O

1.3.2 VCG Example: Non-identical items

In order to have a better understanding on how the VCG mechanism works as
well as why bidding your true values is a dominant strategy, lets take a look
at the following example (notice here that the items are non-identical, so the
players have different values on each of them depending on their preferences),

Suppose that we have two players and two items with the following prop-
erties:

Players | Values for item 1 | Values for item 2
A 8 4
B 4 2
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We assume that both players submit their true values since as we saw, this
is a dominant strategy. Both players prefer to be tagged with item 1, how-
ever the auctioneer must decide an assignment which maximizes the amount
> bi(s) = >, vi(s). This is achieved by giving player A item 1 and player
B item 2 which gives as a total sum of vy + vgs = 8 + 2 = 10 since the
alternative possible assignment gives a total sum of vay + vg; =4 +4 = 8.
In order to see how the VCG mechanism works, lets take a look on how the
utilities of both players are computed,

Player’s A utility: uy = vy + Z#A b;(5) — maxs Zj;éA bi(s) = 842 —
mazs Y ;4 bj(s) =10 —mazxs Y, , bj(s), notice here that if player A didn’t
exist, the auctioneer would give item 1 to player B while item 2 would remain
untagged. So finally we have that uq = 10 — 4 = 6.

Player’s B utility: up = vpz + Y ,,p5bi(8) —maxsd_ i pbi(s) = 2+ 8 —
mazs Y i, bi(s) = 10—maxs Y, 5bj(s), notice here that if player B didn’t
exist, the auctioneer would, once again, give item 1 to player A while item 2
would remain untagged. So finally we have that ug =10 — 8 = 2.

As we said earlier, both players prefer item 1. So suppose now that player B
decides to deviate and does not submit his true value for the first item but
instead, he lies and bids bg; = 9 in order to get it. In such a case we have
the following,

Players | Values for item 1 | Values for item 2 | Bids for item 1 | Bids for item 2

A 8 4 8 4

B 4 2 9 2

The auctioneer once again wants to maximize the amount ). b;(s) so he
tags player A with item 2 and player B with item 1, an assignment that
gives a total sum of v +vp; =4+ 9 = 13 (notice that the alternative gives
va1 + vpa = 8+ 2 = 10). Lets take a look at player’s B new utility,

Player’s B utility: up = vp1 + Y ,,pbi(8) — maxsd . ,pbi(s) = 4 +4 —
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mazs Y ;4 bj(s) =8 —maxs ), 5 bi(s), notice here that if player B didn’t
exist, the auctioneer would give item 1 to player A while item 2 would remain
untagged. So finally we have that up = 8 — 8 = 0. It is clear that although
player B prefers to be tagged with the first item, it is best for him to say the
truth about his values and get item 2 since he has a better payoft.

1.3.3 Generalized Second-Price Auction and the Ad-

vertisement Position Setting

Generalized second-price model (GSP) is used mostly at the market of on-
line advertisements. It is very popular and its usage was rapidly increased
through recent years. Some examples are the Google’s total revenue in 2005
(about $6.14 billion) where over 98 percent of it came from the GSP auctions
as well as Yahoo's total revenue in 2005 (about$5.26 billion) where over the
half of it derived from sales via GSP auctions. Lets take a first look on how
these auctions actually work. Imagine that you are on-line in the Internet
and you want to gather information for something via a search engine. You
enter the term that you are interested in and you get in turn relevant links
and pages as well as sponsored links like paid advertisements. When you
click on a sponsored link (we have to mention here that sponsored links are
clearly distinguishable from the original search results) , you are sent to the
advertiser’'s web page. Since you found this particular page via the search
engine, the advertiser has to pay an amount of money to the engine for send-
ing you to his page. This -pay per click price- type of payment is known also
as "pay-per-click” pricing. But how the auctions and more specifically the
GSP comes into play? The advertisements that we mentioned before have
different positions in the search engine’s web page, and obviously the ads
that are placed higher in the page have more possibilities to be clicked than
the ones that take place at the bottom or lower in general. Additionally the
number of ads that can appear in each search made by a user is limited.
So we need a mechanism that somehow can allocate the advertisers in the
appropriate positions. GSP comes as a solution to this.

The GSP model sets a keyword to an auction and the advertisers submit
their bids. Then they are rearranged at a decreasing bid order i.e. the one
with the highest bid is placed first, the one with the second highest bid is
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placed second etc. When a user enters this keyword in the search engine he
gets the relevant web links plus the sponsored links in the (position) order
that we described. Now if a user clicks the ad of the advertiser ¢ and visit
his web page then ¢ pays to the search engine the bid of the advertiser i + 1.
As we can see the logic behind this mechanism is similar to the on of the
second-price auction but in a more general way (every player that gets some-
thing i.e. an allocation to the page, pays the bid of the player bellow him)
thus the characterization ”generalized” second-price.

Notice here that the GSP and the VCG have similarities on how the payments
are formed i.e. in both models, each player’s payment does not depend on his
own bid but on the bids and the allocations of the rest. However these two
mechanisms have differences as well i.e. while bidding your true value is a
dominant strategy at the VCG mechanism it is not at the GSP (we will come
into these more extensively later on). Finally when we speak about only one
single-allocation, second-price, GSP and VCG models are equivalent.

1.4 GSP and VCG under the Ad Position

Setting

At this final section of chapter 1 we will see the GSP and VCG models
under the advertisement position setting. As we said, despite the fact that
these two models have similarities, they also have many differences (we will
observe them later on at subsection 1.4.3). We need to mention that although
the VCG model has better properties than the GSP (truthfulness, smaller
payments to the auctioneer), the GSP is used a lot more due to its simpler
structure (which gives additionally much more freedom to the players in
conducting strategies).

1.4.1 GSP under the Ad Position Setting

Let us now formalize the GSP model under the advertisement position set-
ting. Consider that we have N players-advertisers (i = 1,..., N) and that
we want to allocate them into K < N positions on a page that comes up
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when a user enters a specific keyword on the search engine. We can see these
positions as slots that are to be bought by the players. Each slot j has an
expected clickthrough rate (CTR) 6;, where j = 1,..., K. We number the
slots so that 6; > 6, >, ..., > 0k and we assume that all players agree with
the ordering. As a parallelism you can imagine that the slot with the highest
CTR is the top position sponsored link on the page, which is expected to get
the highest number of clicks. Finally we set 0; = 0 if j > K.

Each player ¢ has a value v; > 0 so we can interpret v;0; as i's expected
profit from appearing in slot j. Additionally, ¢ will pay a price per click for
getting slot j so we can say that his payment to the search engine will be
pifj. Therefore we can set player’s 7 utility to u; = 6;(v; — p;).

In order to apply the GSP model, we have that these slots are sold via
an auction. Each player ¢ submits a bid b;, the auctioneer ranks the players
in decreasing order of bids and renumbers them if necessary so that player 1
has the highest bid, player 2 has the second highest bid etc. The allocation
now is made as follows: The player with the highest bid gets the slot with
the highest CTR, the player with the second highest bid gets the slot with
the second highest CTR and so on. Since the players are renumbered it is
clear that player j gets slot j. Finally the payments are defined by the GSP
model and each player ¢ who gets an item, pays the bid of player i + 1, so
p; = biy1 while if he does not get an item he pays zero. The utility function
is defined as follows:

0;(v; — biy1) if i is tagged to a slot
U; =

0 otherwise

Example: Suppose that there are 4 players and 3 slots 6, > 6, > 03, the
ordering and the prices are defined as follows,
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Position | Values | Bids | Prices | CTRs
1 vy by by th

2 Uy by b3 02

3 U3 b3 by 03

4 Uy by 0 0

1.4.2 VCG under the Ad Position Setting

We will now describe how the VCG mechanism reacts under this setting.
There are some rules that are the same in both models such us the position-
ing: the player with the ¢-th highest bid, gets the slot with the i-th highest
CTR (or nothing if such a slot does not exist) and is placed at the i-th posi-
tion. The payments however are different. The utility relation (for someone
who is tagged with a slot) is reformed as follows (since this setting supports
pay-per-click payments),

wp = v — (maws 32 by ()85 = 3252, 05(5)65)

where
maxs Y ;4 by ()05 — 32,4, 05(5)0;

is the payment of player i.
Lets take a look at each sum amount separately:

® E];él b](§)93 = b1(91 + ...+ bifleifl + bi+16i+1 + ...+ bKQK represents the
optimal outcome taking into consideration every player that gets a slot
except 1.

® TMalg Zj#i bj/(S)Qj = blgl_’_u-+bi—10i—1+bi+10i+---+bK+19K represents
the optimal outcome when player ¢ does not exist (thus player i + 1
takes ¢'s position and is tagged with ¢’s slot).
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So,

maxs Z];ﬁl b],(s)e] Z];ﬁz b (é)e

(b101 +...+ bi_lﬁi_l + bi+10i +...+ bK—i—leK) — (b101 + ...+ bi_lﬁi_l + bi—i—lei—i—l +
o+ bbk) = (bip16; — big10i1) + ...+ (bkOk—1 — brbk) + bx 10k =

Z bJ+1 ]+1)

So we can conclude that p; = Zf{:l bit1(6; —0,41)

1.4.3 GSP versus VCG

Although it seems that the two mechanisms have many similarities (actu-
ally they are similar when we speak about single-item auctions) they are
are not equivalent when we apply them in auctions with multiple items-
slots-positions. We will analyze some of their differences in the following
propositions.

Proposition 1.4.3.1 The payments of the advertisers in the GSP model
are at least as large as the ones in the VCG model.

Proof. Consider that we run the same data on both models and choose a
random player . If this player is not tagged to a slot then he pays zero on
both mechanisms. If however he is tagged to a slot then he pays b;,16; in
the GSP run and Z bjy1(0; —0j41) in the VCG run. We have to compare
these two amounts,

VCGpayment - GSPpayment = ZK b]+1(0 9j+1) - bi—l—lgi

= Z ]+1( i+2 — b]+1)

<0
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since as we said b; < b;_1. So we can conclude that VCGpayment < GSPpayment
O

Proposition 1.4.3.2 Bidding your true value is not a dominant strategy
under the GSP mechanism.

Proof. We can show this with an example. Suppose that we have 3 players
and 2 slots with the following properties.

Players | Values
Slots | CTRs

A 6
S1 5

B 5
S92 4

C 2

We will examine player’s A utility when he bids his true value and when
he deviates, bidding something different.

Case 1: Players bid their true values

If players bid their true values then the allocation is formed as follows:

Players | Values | Bids | Prices | CTRs
A 6 6 5 5
B 5 5 2 4
C 2 2 0 0

Lets take a look at A’s utility:

UAzdgl(UA—bB) :5(6—5) =35
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Case 2: Players B and C bid their true values while player A chooses to
deviate and bids something else

Suppose that player A wants to deviate in order to get a better utility. So
he bids b4 = 4. The allocation is formed as follows:

Players | Values | Bids | Prices | C'TRs

B ) ) 4 3
A 6 4 2 4
C 2 2 0 0

Lets take a look at A’s utility after the deviation:
Upg = QQ(UA — bc) = 4(6 — 2) =16

As we can see player A gets a better utility when he is not bidding his true
value. So we can conclude that bidding your true value is not a dominant
strategy in the GSP model. [

As we mentioned earlier on, although the VCG model seems to have better
properties, the GSP model gives more freedom (players are not bind to bid
their true values since truthfulness is not a dominant strategy) and addi-
tionally has a much simpler structure (due to the simple definition of each
player’s payment). From now on and through the following chapters we will
stick to the GSP model ! and its variations.

'In the following chapters we observe various GSP models under different setting. Some
of these models hold the name second-price despite the fact that they actually use the GSP
structure (the term second-price is often used, in general, to describe both singe-item and

multi-item auctions).



Chapter 2

Equilibrium at the GSP Ad

Position Setting

In this chapter we will give definitions of the pure nash equilibrium and envy-
free equilibrium at the ad position setting when we use the GSP model and we
will examine their properties and their differences. The whole presentation
is based on [1]. There is a summary of the basic results and additional notes
from our side regarding the comparison between the properties of a pure nash
equilibrium set of bids and an envy-free equilibrium set of bids (section 2.3).
We also provide more extended proofs at various points (section 2.2: Fact 3
analysis, section 2.7: Fact 6, proof part 2) .

2.1 Pure Nash Equilibrium Definiton

In an ad position auction we assume that the goal of each player is to bid
such a value so that he can maximize his expected utility. We say that we are
in a pure nash equilibrium state if each player prefers his current slot to any
alternative slot i.e. his utility at his current position-slot is at least as big as
at any other position-slot. Before we well-define the pure nash equilibrium
state lets take a look on how some player ¢ can change his position.

Example: Suppose that there are 4 players and 3 slots. We know that
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0; > 0,11 by assumption and that b; > b; ;1 by the rules of the auction (re-
member that we renumbered the players) , the ordering and the prices are
defined as follows,

Position | Values | Bids | Prices | CTRs
1 vy by by 1

2 Uy by b3 Co

3 U3 bs by C3

4 Vg by 0 0

Now consider that player 2 wants to change his position. He can move either
up in order to get a slot with bigger CTR (but more expensive) or down in
order to get a less expensive slot (but with lower CTR). Suppose that player
2 wants to move up by one position in order to be placed first. He has to beat
player’s 1 bid so his new bid must be at least as high as b;. Suppose now that
he wants to move down by one position in order to be placed third. In such
a case he has to bid lower than player 3 and also at least as high as by = p3
(player’s 4 bid). So notice the difference behind the logic of moving up and
down: If you want to move up you have to beat the bid of the player who
currently occupies the slot you want to get, although if you want to move
down you have to beat the price paid by the player who currently occupies
the slot you want to get. Lets now formalize the equilibrium state:

Definition 2.1.1 A pure nash equilibrium (PNE) is a set of prices such
that

O0i(vi — pi) > 0;(v; — p;) for j >

0;(v; — pi) > 0;(v; — pj_1) for j <

where p; = bj1;. In other words, in a PNE every player is "better oft” in his
current position than in any other position.
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2.2 Envy-Free Equilibrium Definition and Prop-

erties

We will now define a subset of PNE which will simplify the analysis of the
ad position auctions. We say that player ¢ envies player j if player ¢ has a
bigger utility when he gets j's slot and pays j's price. Notice here that the
term "envy” is different from the "better oft” term and examines if you have
a bigger utility when you are placed in another player’s shoes and not when
you are forcing your way through his position via changing your bid. As a
brief example we can say player 3 of the previous matrix envies player 2 if,

03(v3 — p3) < 02(v3 — p2) = O3(vs — by) < Oy(v3 — bs3)

while he is better off at player’s 1 position if,

Os(vs — p3) < Oa(vs — p1) = O5(vs — by) < O2(v3 — b2)

Definition 2.2.2 An envy-free equilibrium (EFE) is a set of prices such that

0;(v; — p;) > 0;(v; — p;) for all j and 4

Notice that EFE state unifies the to inequalities of the PNE state (into the
first one) so it makes the whole analysis more simple since we do not have
to examine the utilities at different positions in cases.

The set of the EFE bids have many good properties. Specifically there are
5 main facts (and an additional 6-th that we will see later on) that hold for
the EFE set. These facts show that the EFE form a well-behaved subset of
the PNE. Lets take a look at these facts:

Fact 1 (Non negative surplus) In an EFE v; > p;.

We can see this as a type of rationality where no player pays his slot more
than he values it.
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Fact 2 (Monotone values) In an EFE v;,_; > v; for all 1.

This is pretty interesting since it implies that in an EFE state, in addi-
tion with b; and 6; , values also decrease when their indexes increase.

Fact 3 (Monotone prices) In an EFE p; 16,_1 > p#;—; and p,_1 > p;
for all 4.

A property that comes from the first two facts. A question that may come
up is, can we have an EFE state if p; = p;11 for some ¢ 7 The answer is no if
for every i we have v; > v;;; and the bidding from the agents is conservative
i.e. v; > b;. In order to understand why, take a look at the following matrix
which describes a part of an allocation,

Position | Values | Bids | Prices | C'TRs
i v; b; b 0,

1+ 1 Vit1 b b 011
i+ 2 Viyo b Dit2 012

It is clear that in order to have players ¢ and 7 + 1 paying the same price,
players i+1 and 742 have to submit the same bid. Notice that by assumption
we know that 6; > 6,1 > 6;,5. In such a situation it is impossible to achieve
an EFE state since player i + 1 envies player i, 0;11(vi 1 — b) < 0;(viz1 — b)
because at i's position he gets a slot with bigger CTR while he pays it at his
previous price. Notice also that v; ;1 — b # 0 since b we is at most equal with
Vizo < Vi1 by assumption.

Fact 4 (EFE C PNE) If a set of prices is an EFE then it is an PNE as well.

A quick way to see why, is to take a look at the inequalities of the two
definitions

0i(vi — pi) > 0;(v; — p;) > 0;(v; — pj_1) since p; < pj

Fact 5 (One step solution) If a set of bids satisfy the EFE inequalities for
t+ 1 and ¢ — 1 then it satisfies these inequalities for all 7.
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In a more formal way, if for all i, 0;(v; —p;) > 0;41(v; —piv1) and 0;(v; —p;) >
0;—1(v; — pi—1) then 0;(v; —p;) > 0;(v; —p;) for all ¢ and j. This means that if
all players have utilities that satisfy the EFE inequalities for their neighbors
then their utilities satisfy the EFE inequalities in general.

2.3 PNE versus EFE

As Fact 4 mentions, EFE is a subset of PNE so we can expect that some
of the facts do not hold for the PNE set of bids. Lets take a look to the
following propositions.

Proposition 2.3.1 Fact 2 does not hold for PNE.

Proof. Suppose that we have 4 players and 3 slots, bellow we give the prop-
erties as well as the allocation

Position | Values | Bids | Prices | CTRs
1 7 5 4 4

2 10 4 3

3 6 3 2 2

4 3 2 0 0

We claim that under these properties we are in a PNE state so Fact 2 does
not hold since vy > v;. Lets examine the utilities of each player,

Utility of player 1:
e At his current position: (7 —4)4 = 12
e At position 2: (7 —3)3 =12
e At position 3: (7 —2)2 =10

e At position 4: (7—0)0 =0
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Utility of player 2:
e At his current position: (10 — 3)3 =21
e At position 1: (10 —5)4 = 20
e At position 3: (10 —2)2 =16
e At position 4: (10—-0)0=0
Utility of player 3:
e At his current position: (6 —2)2 =8
e At position 1: (6 —5)4 =4
e At position 2: (6 —4)3 =6
e At position 4: (6 —0)0=0
Utility of player 4:
e At his current position: (3 —0)0 =0

e At position 1: (3 —5)4 = -8

e At position 2: (3 —4)3 =-3
e At position 3: (3—3)2=10

So none of the players is better off in someone else’s position therefore we
are in a PNE state and Fact 2 does not hold. O

Proposition 2.3.2 Fact 3 does not hold for PNE.

Proof. Suppose that we have 4 players and 3 slots, bellow we give the prop-
erties as well as the allocation

Position | Values | Bids | Prices | CT'Rs

1 7 ) 3 4
2 10 3 3 3
3 6 3 1 2
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As we can see here p; = ps (we do not have monotone prices). We claim that
this set of bids form a PNE.

Utility of player 1:

e At his current position: (7 — 3)4 = 16

At position 2: (7 —3)3 =12

At position 3: (7 —1)2 =12
e At position 4: (7—0)0=0
Utility of player 2:
e At his current position: (10 —3)3 =21
e At position 1: (10 —5)4 =20
e At position 3: (10 —1)2 =18
e At position 4: (10 —0)0 =0
Utility of player 3:
e At his current position: (6 —1)2 = 10
e At position 1: (6 —5)4 =4
e At position 2: (6 —3)3 =9
e At position 4: (6 —0)0 =0
Utility of player 4:

e At his current position: (3 —0)0 =0

At position 1: (3 —5)4 = —8

At position 2: (3—-3)3=0

At position 3: (3—3)2=0
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So we have that although this is a PNE state there is no need for the prices
to follow a monotone pattern. O]

Proposition 2.3.3 Fact 5 does not hold for PNE.

Proof. Suppose that we have 4 players and 3 slots, bellow we give the prop-
erties as well as the allocation

Position | Values | Bids | Prices | CTRs
1 7 5 4 4
2 10 4 3 3
3 6 3 9/10 2
4 3 9/10 | 0 0

We claim that under these properties, for every i, the set of bids satisfy
the PNE inequalities for 7+ + 1 and ¢ — 1, although it does not satisfy them
for every j in general.

Utility of player 1:
e At his current position: (7 —4)4 = 12
e At position 2: (7—3)3 =12
Utility of player 2:
e At his current position: (10 —3)3 =21
e At position 1: (10 —5)4 = 20
o At position 3: (10 — 9/10)2 = 18.2
Utility of player 3:
e At his current position: (6 —9/10)2 = 10.2
e At position 2: (6 —4)3 =6

e At position 4: (6 —0)0 =0
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Utility of player 4:
e At his current position: (3 —0)0 =0
e At position 3: (3—-3)2=0

So we have that for every i the set of bids satisfy the PNE inequalities for
1+ 1 and ¢ — 1. However, if we examine the utility of player 1 at position 3
we can see that (7—9/10)2 = 12.2 > 12 so he is better off at position 3 than
his current one and the inequalities do not hold. O

2.4 Bounds of the Bids-Prices at an Equilib-

rium State

We can now use these facts in order to get more information about the bids
and the prices at an equilibrium state. According to the previous definitions,
when we are in a EFE state and thus in a PNE state, we have that each
player ¢+ does not want to move down by one position so,

0;(vi — pi) > 0ip1(vi — Piv1) =
0ip;i < vi(0; — ;1) + Oitapisa

Additionally we have that each player i + 1 does not want to move up by one
position so,

Oiy1(Vie1 — Piv1) = 0i(vigr — pi) =
O0ipi > Vig1(0; — O0i1) + Oip1pia
Combining these two inequalities we have that,

0i(0; — bi41) + Oiv1piv1 > 0ipi > Vi1 (0; — 0i1) + bii1pir

which can be seen us the upper and lower bound of what player i totally pays
in an EFE state. We can also alter the above inequality into an equivalent
form in order to achieve bounds for the bids. Remember here that p; = b; 1
S0,
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0;(0; — Oix1) + Oip1bive > 0ibiy > i1 (0; — Oi1) + Giv1bigo
and finally if we set i =7 — 1 we get the limits of player’s ¢ bid,
'U2'71<9i71 - 9i) + eibiJrl > 0;_1b; > Uz‘(ez‘—l - 9@') + eibi+1

Notice that the lower bound for player’s ¢ bid contains his value as well as
the bid of the player bellow him while the upper bound contains the value
of the player above him as well as the bid of the player bellow him as convex
combinations. The interesting part is that now we can use these inequalities
recursively in order to find a sequence of PNE or EFE bids. Let us now take
a more careful look at each bound:

Upper Bound: (91-,162(-] = ’Ui,l(Qi,l — (91) + eibi+1 (1)
Lower Bound.: Qi_lbf = Ui(gi—l - 82) + Qibi—l-l (ll)

Both equations are recursive so finding the solution of the recursions can
give us a quick way of computing the bounds. Remember here that in the
start of our analysis of the model we described that in a game with N players
and K < N slots, §; = 0if j > K. Now if we consider player K + 1 (the first
player who gets no slot) we have that,

Vg (0 — Ok41) + Ok 1bria > Oxbrin > V1 (O — Oxi1) + Ok 11bk g2 =
UK(QK - 0) +0 2 gKbK—&-l Z UK—H(QK - 0) + 0=
VOg > Oxbri1 > V0 =

Vg > bgi1 > Uk

This describes the base of our recursion for both bounds as well as the poten-
tial strategy of the first excluded player (the interesting part comes from the
lower bound which says that bidding lower than your value has no meaning
if you are the first player who gets no slot). So it is easy to conclude that
the solutions to these recursions are,

Upper Bound: 0; 10 =37, v 1(0;-1 — 0;)
Lower Bound: 0;_1bF = > isi villi-1 —6;)

These equations represent the upper and the lower bound of each player’s
bids as well as the maximum and the minimum total payment each player
has to pay at an EFE state. In other words,
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> isi Vim1(0i—1 — 0;) = 0imapia = 0i—1bi > 3255, 0(0-1 — 05)

2.5 The meaning behind the Bounds

Suppose that player ¢ is thinking offensively and wants to move up by one
position (exceeding the bid of player i — 1) but in addition, he wants his
utility at his new position to be at least as big as in his current position. In
other words,

worst utility in moving up = utility in current position =
Oi—1(vi = 0°) = 0i(v; — biy1) =
;16" = v;(0;-1 — 6;) + 0;b;11
So the price he must pay in order for that to happen is exactly the lower

bound recursion (ii).

Suppose now that player ¢ is thinking defensively and does not want to bid
too high since he is afraid that he will decrease the utility of player ¢ — 1 so
much that he might prefer to move down to his position. Thus he wants to
bid an amount so that the least utility player : — 1 has, is equal to the utility
he would make if he was at his position. In other words,

i — 1’s utility now = utility if he moves into i's position =
0i—1(vie1 — %) = 0i(vi1 — biy1) =
010" = v;_1(0;—1 — 0;) + 0;bitq

So the amount he has to bid is exactly the upper bound of the recursion (i).

2.6 The VCG Payment Resemblance

You may have notice by now that the equations of the bounds we just de-
scribed have a resemblance with the total payments of the players when we
run the VCG model under the same setting. Let us recall the VCG total
payment considering player ¢ — 1,
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Pic1 = Y 1 b1 (65— 0j41)

and lets reform it a little with the proper adjustments into the indexes,

Pic1 = Y5 b0 —05)

Finally this can be seen us,

Pi-1 = ngi bj(0j-1 — gj)

since the CTR’s beyond K are defined as zero. Consider now that bidding
your true value is a dominant strategy for the VCG mechanism which gives
a PNE state, we can conclude that the equilibrium payment for the VCG is,

Pie1 =255 V(01— 05)

which is exactly the same as the lower bound of the EFE total payment for
player ¢ — 1 in the GSP model under the same setting.

2.7 Revenues of PNE and EFE

Now that we have all these informations it is our chance to look the things
from the auctioneers perspective. The term revenue refers to the total
amount of money auctioneer gets. In a more formal way, we can define
the revenue in our current setting as,

R = ZZJ\L1 pif;

The first think we can say is that since we have bounds for the payments p;0;
at an EFE state we can safely assume that there are bounds for the total
revenue when we are in an EFE. A question that comes to mind is what is
the relation between the bounds of the revenue at PNE and EFE. From Fact
4 we know that FF'E C PNFE so we can speculate that the PNE maximum
and minimum revenue is bigger and smaller than the EFE maximum and
minimum revenue respectively (both are sets of prices and PNE contains
EFE). As we will see, there is a final Fact which claims that this is half right,
more specifically:



Revenues of PNE and EFE 47

Fact 6 The maximum revenue PNE yields is the same as the EFE maxi-
mum revenue while the minimum revenue PNE yields is generally less than
the EFE minimum revenue.

Proof. We will split the proof into two parts (maximum and minimum rev-
enues respectively).

Part 1: Maximum revenues are the same

Suppose that {pfv }iz1, i is the set of prices which is associated with the
maximum PNE revenue, mazR™ and that {p¥'},_1 - the set of prices as-
sociated with the maximum EFE revenue mazRF¥. From Fact 4 we know
that EFE C PNE which implies that mazRY > maxRFF (1). We will try
to show that mazRY < maxRFF:

From the definition of the upper bound of the recursion we have that,
pFEO; = pEROi1 + v;(0; — 0;41)
Setting ¢+ = K we have,
POk = pRi Ok 1 + vk (0 — Ok y1) =
PO =0+ v (0 — 0) =
PR 0k = vkl =
pr" = vk (2)
Additionally, according to the PNE definition we have,
0;(vi — pY) > Oii1(vi — py) =
9ipf-v < 9i+1pﬁ1 + Ui(ei — 9i+1)
Setting ¢ = K we have,
Okpr < Ox1pis +vk(0k — Ok 1) =
Orp¥ <0+ vg (g —0) =
Oxpi < vkOx =

PR < vk (3)
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So using the relations (2) and (3) we can conclude,

N EF
Pk S DK

With this as a base of the recursion it is easy to see that pI¥ < pE¥ for every

i. So we have that mazr RN < maxRFF and using (1) we can conclude that.

max RN = maxREY

Part 2: Minimum PNE revenue is smaller than minimum EFE revenue

We will show this using the example of Proposition 2.3.1 and computing the
minR¥F and the R of a random PNE set of bids. Lets remind the proper-
ties of the example:

Position | Values | CTRs
1 10 4

2 7 3

3 6 2

4 3

In order to compute the min R®" we need to take into consideration the lower
bound of each price pf, given by the relation 0;p/ = 3 -, v;(6;-1—0;). So
we have that,

minRFF = 31 pke;
= pibh + pybs + pibs + 0
= va(01 — 63) + 205(6y — O3) + 3v405
=7+12+4+18

=37

Now for the random PNE revenue we will use the bids and the allocation of

the same example as we already know that they form a PNE. So we have the

following matrix,
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Position | Values | Bids | Prices | CTRs
1 7 5 4 4
2 10 4 3 3
3 6 3 2 2
4 3 2 0 0

And the revenue in that case is,
RN = pl) + p50y + p§s +0 =16+ 9 + 4 =29

So combining the two results and since this is a random PNE revenue we can
conclude that,

minREF > RN > minRN
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Chapter 3

Budgeted Second-Price Ad

Auction

In this chapter we present a generalized second-price ad auction model which
contains the notion of budgets. The whole presentation is based on [2]. We
give a basic description of the model and analyze its properties, with sev-
eral notices and additional proofs from our side (section 3.3: alternative
proof of proposition 3.3.1, section 3.4: introduction of proposition 3.4.1 and
proof, section 3.5.1: extended proof of proposition 3.5.1.2). In section 3.6
we describe several problems (regarding the pure nash equilibrium-existence
setting of proofs) that occur in the original work and introduce additional re-
sults considering the critical bid notion under the assumption of non-divisible
items.

3.1 Introduction to the new concepts

As we saw in the earlier chapters, players that participate in an auction have
a private valuation which represents how they value the item sold by the
auctioneer. However in real auctions a potential buyer always has a budget
which depends on his economic prosperity. This budget represents how much
money a buyer can spent in the auction.
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The setting that we will present introduces the notion of budget. The auc-
tioneer sells multiple identical items (such as impressions in an ad auction)
and each player is interested in getting more than one items. The true budget
B; of a player 4, limits the number of the items he can get and in addition
with his bid, it is a part of his strategy i.e. s;(b;, B;) (he declares to the auc-
tioneer both a bid and a budget). Lets proceed to a more formal description
of the model.

3.2 The Model

We have a set of N players and K identical divisible items. Each player i
has two private values: his budget B; and his valuation for a single item wv;.
His utility u; depends on the number of the items he received as well as the
price p; he pays each item. We can interpret z;v; as his profit for getting z;
number of items and x;p; as his total payment to the auctioneer. So we can
now formally define his utility as:

zi(v; — pi) if ip; < B
U; = R

Notice that z;p; < B, practically means that player ¢ does not exceed his
budget (he does not get more items than he can afford at this price), while
he exceeds his budget when x;p; > B;.

The auction is formed as follows: The auctioneer sets a minimum price p,,in
which is known to the players. Each player : € N submits two values, his
bid b; and his budget B; (as we already mentioned, this time each strategy
s; contains not only the bid of player ¢ but also an additional amount, his
budget). The auctioneer ranks the players in decreasing order of bids (he sets
the one with highest bid first, the one with the second highest bid second etc)
and renames them if necessary so that by > by > ... > by. As the allocation
begins, player 1 receives items at price p; = maz{bs, pmin} until he runs out
of budget or items, i.e. 1 = min{K, By/p;}. Then if there are still items for
sale, we get down to player 2 who receives items at price py = max{bs, Pmin }
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until his budget or the items run out, so x5 = min{K —x1, Ba/ps}. Therefore
we can say in general that for every player 1,

Case 1: If there are still items left

The items he receives: x; = min{K — Z;;ll xj, Bi/pi}
The price per item he pays: p; = max{b; i1, Pmin}

Case 2: If there are not items left

The items he receives: x; = 0
The price per item he pays: p; =0

The auction stops either when all the items are sold or when all the players
exhaust their budget. So we can conclude that the model is a variation of the
GSP auction where the input is a vector of bids b= (b1, ...,by) and a vector
of budgets B= (Bi, ..., By) while the output is an allocation Z = (z1, ..., zx)
such that >, v 2; < K and a vector of prices ' = (pi, ..., py) such that for
every i = 1,..., N, p; € [Dmin, bil.

Finally we have to mention the basic assumptions of the model:
1. Ttems are divisible goods and prices are continuous.

2. If there are identical bids the auctioneer ranks the players by lexico-
graphic order i.e. he will first sell items to the player with the lowest
original index (this is a very important assumption as we will see later
on).

3. Players always bid above the minimum price, p,;, (set by the auction-
eer) i.e. b; > pin-

4. For the most part there is the assumption that the bidding is conser-
vative (no player bids above his value) i.e. b; < v;.

Lets now proceed to some definitions regarding the categories-classes, each
player can be included considering that we have the outcome of the auction:

Definition 3.2.1 A player is called Border if he is the lowest ranked player
who gets a positive allocation i.e. if h is a border player then h = maz{i :
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Definition 3.2.2 A player ¢ is called Winner if i < h i.e. he is ranked
above the border. For winner players we have that z; = B;/p; which means
that they exhaust their budgets.

Definition 3.2.3 A player i is called Loser if i > h i.e. he is ranked bellow
the border. For loser players we have that x; = 0.

Notice here that according to Definition 3.2.1 a border player is the only
player with positive allocation, x; > 0, who may not exhaust his budget (he
gets what is left).

3.3 Properties of the Model

As we saw in chapter 1, telling the truth (bidding your true value) is not a
dominant strategy at the GSP auction under the ad position setting. Now
that we have introduced the budget notion it is time to check whether this
holds in our current model in this new setting. However as we mentioned
before a strategy, s;(b;, B;) in an auction with budgets contains two amounts:
the bid and the budget that you declare. So in order to see if telling the truth
(in general) is a dominant strategy in the budgeted second-price ad auction,
we have to check what happens in two cases: telling the truth about your
value i.e. b; = v; and telling the truth about your budget i.e. B; = B;.

Proposition 3.3.1 Bidding your true value is not a dominant strategy at
the budgeted second-price ad auction.

Proof. We can show this with an example. Consider that we have K = 7
items and N = 3 players with the following properties:

Players | Values | Budgets
A 5 10

B 4 8

C 2 3
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where pi, = 0. We suppose that players B and C' bid their true values
and budgets and we will examine player’s A utility when he bids his true
value and budget and when he chooses to deviate, bidding his true budget
but not his true value.

Case 1: Player A bids his true value

When all players say the truth, the allocation is formed as follows:

Players | Values | Budgets | Bids | Budgets bid | Prices | Allocation

A 5 10 ) 10 4 2
B 4 8 4 8 2 4
C 2 3 2 3 0 1

We mention here that players A and B are winners, player C is a border
while there are no losers. Player’s A utility is,

ug =x4(va —pa) =2(5—4) =2

Case 2: Player A bids something different from his value

Suppose that player A chooses to deviate and bids something lower than his
value, say by = 3. The allocation is formed as follows:

Players | Values | Budgets | Bids | Budgets bid | Prices | Allocation

B 4 8 4 8 3 2
A 5 10 3 10 2 )
C 2 3 2 3 0 0

We mention here that this time player B is a winner, A is a border and
player C' is a loser. Player’s A utility is,

ug =x4(va —pa)=5(b—-2)=15



56

It is clear that player A has a bigger utility when he is not telling the truth
about his value so we can conclude that bidding your true value is not a
dominant strategy. O

Proposition 3.3.2 Bidding your true budget is a dominant strategy at the
budgeted second-price ad auction.

Proof. The key point here to notice is that the budget you submit can affect
the number of items you receive but does not change your ranking order
(the ranking is based on the bids). Since your ranking does not change no
matter what budget you declare, we have that the price you pay for each
item also does not change. So we can say that when you are a loser you
remain a loser independently of the budget you submit (since your rank does
not change) and when you are a winner or a border, in your utility relation
u; = x;(v;—p;), different choices of budgets give different allocations z;, while
the rest amounts (the price p; you pay for instance) remain intact. Thus in
order to check the utility of a player in different choices of budget bid, we only
need to check the allocations x; in each case (specifically in the winner and
border situation since as a loser your utility is zero no matter what budget
you submit).

Case 1: B; < Bl

Suppose that player ¢ submits a budget B; which is smaller than his true one
B : . . . i—1

B;. His allocatlons and utilities are x; = min{K — ZFl z;, Bi/pi}, u; and
z; = min{ K — 23;11 Zj, Bi/pi}, 4; respectively. The allocations of the higher
rank players are not effected by the budget reported by player i, so z; = 2;
for all j <4, thus K — Z;;ll r;=K— Z;;ll Z;. Since B;/p; < B;/p; we can
conclude that x; < z; which implies that u; < ;.

Case 2: B; > 3,

Suppose now that player ¢ submits a budget B; which is bigger than his true
one El Notice that if 7 is a loser or a border then z; = Z; since he either
gets no items or he gets the items left (so he can not exhaust his real budget
regardless of the budget he reports). If he is a winner on the other hand
we have either that x; = #; (if B; does not give him any more items) or
x; > &; (if B; gives him more items than his true budget). In the first case
the utilities are equal, u; = 4;, while in the second case,
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z; = B;/p; < x; < B;/pi =
x; > x; and x;p; > éz

Although z; > #; which means that player ¢ has a bigger allocation, we have
from the definition of the utility that in that case u; = —oo since x;p; > B;.
We can conclude that u; < ;.

So in any case we can say that bidding your true budget is a dominant
strategy at the budgeted second-price ad auction. ]

3.4 The Market Equilibrium Price

Definition 3.4.1 The demand of a player i at price p is a point or an interval
D;(p) which is defined as follows,

B;/p ifv; >p
Di(p) =1 0 ifv; <p

[0,B;/p| ifvi=p

The demand shows how much items of a product, a player wants to buy
provided that the product’s price is p. For example, if he values the prod-
uct more than the price it is sold he will try to get as much items he can,
exhausting his budget, if he values it less he will not buy anything and if
his value equals the price, he does not really care since he is not making any
profit (so he can go from buying nothing to exhausting his budget).

Definition 3.4.2 The aggregated demand D(p), is a point or an interval
that represents the sum of the demands of all N players at price p. More
formally,

D(p) = ZieN Dy(p)

Notice that the ”interval or point” depends on whether players that their
values are equal with the price, exist or not respectively.

Definition 3.4.3 We call a price pe,, the Market Equilibrium Price, if at



58

this price the aggregated demand of the players equals or contains the total
number of the items that exist. More formally, if there are K items then,

K = D(peg) or K € D(peq)

Notice that p, is unique since the correspondence D(p) is strictly decreas-
ing in p. Finally we can say that for S = {i : v; > p.,} which is the
set of players with demand D;(pe,) = Bi/peq and for Z = {i 1 v; = pey}
which is the set of players with demand D;(pe,) = [0, B;/Ppeqy), We have that

Deq € [Zies Bi/K, ZiESUZ Bi/K]

Proposition 3.4.1 For some random prices p;, po we have that if p; < ps
then min(D(p1)) > max(D(p2)).

Proof. As we said earlier the correspondence D(p) represents an interval or
a point (in the case of the point representation the min, max amounts are
equal with the value of the point) and obviously it is not a function. We
define the sets,

o S,={i:v;>p}
o Z,={i:v; =p}
o L,={i:v; <p}

Lets take a look on how we can compute the min and the max amounts:

From definition 3.4.2 we know that,
D(p) = > ien Dilp) = Xics, Di(p) + 2icz, Dilp) + 2 _5c,, Dilp)
We also know from definition 3.4.1 that,
¢ Ziesp D;(p) = Eiesp Bi/p
® > icz, Di(p) = > ez, i, where z; € [0, Biez, /p]
° ZiELP Di(p) =0

So it is easy to see that in order to compute the min, max points of D(p) we
only need to consider the amount »_,, D;(p). It is obvious that,
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maz(3 e, Di(p)) = Dy, Bi/p (setting every x; = B;/p)

and
min(3_;c, Di(p)) = 0 (setting every z; = 0)

So according to that analysis and back to our proof we have that,

min(D(p1)) = > ,en Di(p1)
= Ziespl Di(p1) +0+0
= Ziespl Bi/p

Now it is easy to notice that since p, > p;, we are sure that L, U Z, C L,,
by definition. So we have that,

Lpl U Zpl g Lpz =
(Lpy)" € (Lp, U Z, )" =
sz U sz g Spl

We can now proceed in computing max(D(ps)),

mazx(D(p2)) = Y ey Di(p2)

= 2ies,, Dilp1) + 2iez,, Dilp2) +0
< Ziespl Bi/p2
< Ziespl Bi/pl
= min(D(p1))
So we can conclude that max(D(p2)) < min(D(p;1)). Notice that this proof

(in a more simplified way), also holds when D(p)s are points instead of
intervals. o

The market equilibrium price is a very important notion as we will see later
on since it can be seen as the bound of the price the winner players pay at a
PNE state.
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3.5 Pure Nash Equilibrium

Now that we have described the model as well as its properties we can pro-
ceed in analyzing properties and introducing some very important notions
regarding the pure nash equilibrium set of bids and budgets. As we saw ear-
lier (proposition 3.3.2), submitting your true budget is a dominant strategy
at the budgeted second-price ad auction setting so from now on we assume
that all players declare their true budget. Thus, once more the search of a
PNE leads to a search of appropriate bids. Typically we say that we are in
a PNE if for every player i, the utility he has when he bids b; is at least as
much as the utility he would have with a different bid b, considering that the
rest players do not change their strategies.

3.5.1 Pure Nash Equilibrium Properties

The following two propositions analyze the properties of the PNE and give
a clear view on how the bids and the prices are formed at such a state.

Proposition 3.5.1.1 In any PNE, all winner players pay the same price
p, the border player pays a price p’ < p and any loser player j (if exists) has
a value v; < p.

Proof. Initially, notice that in order to have the same price p for all the
winner players, the winner players as well as the border player have to bid
the same value (except from the top rank winner player who can bid higher).
The proposition holds trivially if we have only one winner player. Suppose
now that there is a PNE with at least two winner players paying different
prices. The first rank player pays p; and let player j be the highest ranked
winner player who pays p; < p; (notice that p; can not be bigger than p;
since player j is ranked lower than player 1). Since players 1 to j are all
winners, then by definition any player ¢ < j has an allocation x; = B;/p; and
we can also say that,

25:1 r; < K =
7 <K — Zgzz z; (1)

If player 1 chooses to move down to j's position by bidding b; — €, he is
allocated ) = min{K — > 1_, x;, B /p;}. However we know by assumption
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that p; > p; so By/p; > Bi/p1 and additionally we know that 2y < K —
Y1 ,x; from (1) thus we can conclude that =} > x;. So we have for his
utility w} at j's position that,
uy = 2y (01 —pj) =2 1o —pj) > 21(vr —pj) = w =
uy > Uy

thus this is not a PNE. Now lets take a look on the rest players. The border
player is ranked after all winners so he pays a price p’ < p for each item. The
loser players receive no items so they have zero utility. If there was a loser
player ¢ with v; > p then he could bid p + ¢ < v; becoming a winner player
with positive utility, something that contradicts to the PNE definition. Thus

at a PNE all loser players must have value at most p.

]

Proposition 3.5.1.2 The price p which all the winner players pay at a PNE
is at most the market equilibrium price i.e. p < pey.

Proof. Suppose that there is a PNE where all the winner players pay an
amount p > p.,. Since this is a PNE we have that the utility u; of a winner
player ¢ paying price p > p., is at least as much as his utility «; if he was a
border player and paid price p’ < p. Thus we have,

u; > up =

(Bi/p)(vi = p) 2 (K = X jes gy (Bj/p)(v; =) (2)

where S = {j : v; > p}. Since (v; —p) < (v; — '), in order for inequality (2)
to hold we have,

Bifp =2 K =) cs (5(Bj/p) =
ZjeS(Bj/p) > K (3)

and from the definition of aggregated demand we also have . «(B;/p) €
D(p) (4). From relations (3) and (4) we have that,

K < maz(D(p))

However by assumption we know that p > p., and according to definition
3.4.3 and proposition 3.4.1 we have that,

K < max(D(p)) < min(D(p.,)) < K
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so finally we have,
K <K

which is a contradiction. So we can conclude that the price p that all winner
players pay at a PNE is at most the market equilibrium price. O

3.5.2 Critical Bid

The critical bid of a player is a notion which tries to capture the point where
the player is indifferent between being ranked first and being ranked last.
Basically we can say that if all players bid the same value, this value is a
critical bid if a player has the same utility both at top and the bottom rank.
Each player has potentially a different critical bid. As we will see in the
process, the critical bid is a very important notion mainly because it makes
clear in which position each player prefers to be, something that simplifies
the quest of searching the PNE state. But let us give a more formal definition.

Definition 3.5.2.1 The critical bid, ¢;, of a player j is defined as follows:
Suppose that all players submit the same bid x € [pin, v;]. We will examine
the utilities of player j as functions of x when he is ranked first and when he
is ranked last.

Player j is first in rank

Since all players submit the same bid, if player j is ranked first he pays x
and his utility is defined as!

£ (@) K —x) if ppin <2 < % (Player j as a border)
i(r) =
%(vj —x) if % <z <uw; (Player j as a winner)

I'Notice that if items were not divisible, % must be a positive integer since it represents
the number of the items that a winner player j gets when the price is . Thus if for some

budget and price the quantity % is a decimal number, we have to round to the nearest

lowest positive integer. For example, if B; = 3 and « = 2 then % = % =1.
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Player j is last in rank

Since all players submit the same bid, if player j is ranked last he pays either
Pmin OF zero and his utility is defined as?,

0 if Pin < x < # (Player j as a loser)
gi(x) =4 (K — %)(W — Pmin) if LéTJB <zr< % (Player j as a border)
pijn (Vj — Prmin) if % <z <w; (Player j as a winner)

It is easy to verify the following properties:
e Both functions are continuous in the range [ppin, v;].
e f; is strictly decreasing in x while g; is weakly increasing in x
o [i(Pmin) = gj(Pmin)
° g;(v;) = fi(v;) =0

So we can conclude that functions f; and g; must intersect in a unique point
in the given range. This point is defined as the critical bid, ¢;, of player j.

Now that the definition is complete we can notify various things as well
as several results that come directly from the definition. For instance:

1. For every player i we have the ¢; = [ppin, v:]. So the critical bid of every
player is a quantity between the minimum price set by the auctioneer
and his private value.

2. It is impossible for the auctioneer to compute the critical bid of any
player ¢ since its computation demands the knowledge of the private
value v;.

3. Critical bid of a player ¢ can be seen as a function of the minimum
price set by the auctioneer, p,,;, and the number of the players, N i.e.

Ci(N7 pmm)-

2In practice, the amount B represents the number of the items that a winner player

Pmin

B _B_K

j gets when the price is pyin. Thus for a p,,;, = 0 we have that - Tj
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4. If b = (z,...,x) then for z < ¢;(N, pmin) player i prefers to be ranked
first and for x > ¢;(N, pmin) player i prefers to be ranked last. This
comes directly from the definition of the two functions and their mono-
tonicity since for x < ¢;(N, pmin) we have gj(x) < f;(x) and for >
¢i(N, pmin) we have g;(z) > f;(x).

3.5.3 Incentives

Proposition 3.5.3.1 For a bid vector b= (b1, ..., by) the first in rank player
or any winner player 7 € N, can not improve his utility by bidding higher
ie. b; > bj.

Proof. If player j is the first in rank player, he can not improve his utility
by bidding higher since the price he pays and his allocation do not change.
If player ¢ is a winner player in general then his utility is by definition u; =
%(vj —p;). By increasing his bid he will get either the same utility (if he does
not overbid any player above him, the price he pays and the allocation he gets
remain the same) or a smaller utility (if he overbids any player above him,
the price p} he pays is bigger and thus his allocation x; = % is smaller). So

in any case his utility does not improve when he bids higher than before. [

Proposition 3.5.3.2 For a bid vector b= (b1, ..., by) the last in rank player
or any loser player 5 € N, can not improve his utility by bidding lower i.e.
b, < b;.
7 J

Proof. If player j is the last in rank player he can be either a border player
or a loser player. If he is a border, by decreasing his bid he decreases the
price the player above him pays. This will may increase the allocation of
that player, thus decrease j's allocation (player j is a border and gets the
remaining items). Notice that in that case player j's price remains p,,;, (since
he is the last in rank) and with a smaller allocation he gets a smaller utility.
If he is a loser (as the last in rank or a loser in general) he has a zero utility.
Trivially by bidding less he does not gain something since he remains a loser
with zero utility. O]
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Proposition 3.5.3.3 If every player i € N bids ¢; (the critical bid of player
j), then j can not improve his utility by changing his bid.

Proof. By the definition of critical bid, since all players bid ¢; player j is
indifferent (has the same utility) between being ranked first and being ranked
last. From proposition 3.5.3.1, if j is ranked first or is a winner player in
general he does not gain something from bidding higher and from proposition
3.5.3.2, if j is ranked last or is a loser player in general he does not gain
something from bidding lower. ]

3.6 Our Results

3.6.1 PNE Existence

The main goal of this section is to show that the proof of one of the main
results in [2], the existence of a PNE, is not quite correct. We will present the
Theorem, describe the basic idea behind its proof and introduce our notices
and results on the whole topic. For a more complete view on the original
proof of the Theorem you can look at [2]. Before we proceed we will remind
you some assumptions and notices that introduced earlier on:

1. If there are identical bids the auctioneer ranks the players by lexico-
graphic order i.e. he will first sell items to the player with the lower
original index.

2. It is impossible for the auctioneer to compute the critical bid of any
player ¢ since its computation demands the knowledge of the private
value v;.

Original Theorem: There exists a PNE for any number of players, where

~

players submit their true budget (B; = B;) and bid at most their value
(bl S Ui)- 3

The proof is made by induction on the number of players. More specifically:

3Theorem 4.13 in the original work.
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e Induction Basis: There exists a PNE when there are only two players
that submit their true budget and bid at most their value.

e Induction Hypothesis: We assume that there exists a PNE when there
are N players that submit their true budget and bid at most their value.

e We prove that there exists a PNE when there are N + 1 players that
submit their true budget and bid at most their value.

We claim that the induction basis (the PNE existence when there are only
two players) does not, in general, hold. In order to prove that, we will present
the original proposition of [2] which claims the existence of a PNE at a two
players game and show that there are cases where the proposition is not, in
general, correct. Specifically:

Original Proposition: Assume that we have two players with co < ¢5.
Then any bids by = by € [c2, min{vs, c;}] are a PNE and those are the only
PNEs where players submit their true budget. *

The key point here to notice is that since the bids are equal, we can use the
critical bid notion in order to understand in what order each player prefers
to be (in which position he gets more utility). Back to the definition of the
critical bid we mentioned that if b = (x,...,x) then for x < ¢;(N, ppmin) player
i prefers to be ranked first (has a bigger utility at the first position) and for
x > ¢;(N, pmin) player i prefers to be ranked last (has a bigger utility at the
last position). Thus in our case we have that player 1 weakly prefers to be
first in rank since ¢; > by = bs, so if he is placed first he can not improve his
utility by bidding less and player 2 weakly prefers to be last in rank since
co < by = by, so if he is placed last he can not improve his utility by bidding
more. We also know from proposition 3.5.3.1 that if player 1 is placed first
then he can not improve his utility by bidding more and from proposition
3.5.3.2 that if player 2 is placed last he can not improve his utility by bidding
less. Therefore if player 1 is placed first an player 2 is placed second then any
bids by = by € [ca, min{vy, c1}] lead to PNE. However this specific ranking is
not always possible.

4Claim 4.7 in the original work.
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Proposition 3.6.1.1 There are cases where we have two players with dif-
ferent critical bids and [co, min{vs, ¢1}] is an interval and not a point.

Proof. We will prove this with an example. Suppose that we have K = 10
items, pi, = 0 and two players with the following properties:

Players | Values | Budgets

1 3 9

2 1 )

Lets proceed in finding the critical bids of each player®.

Critical bid of player 1

1083—x) if0<z < (Player 1 as a border)

23 —x2) if 1% <z <3 (Player 1 as a winner)

T

0 if 0 <z <> (Player 1 as a loser)

3(10—-2) if 5 <z <oo (Player 1 as a border)

In order to find the intersection point of the two functions, we have to solve
the system of the equations and find an amount x which is within the re-
striction bounds. It is easy to verify that in our example this happens only
when,

23—x)=3(10-2) =

8

2B3—r)=10-2=
2-3=10-5=

4=13=>

5Notice that is impossible for any player to be a winner when he is ranked last if

Pmin = 0, since he can not exhaust his budget.



68

14

=13

5

. 14 14
Notice that = < I < 3 as well as 5 < 13 <00

Critical bid of player 2

101—=z) f0<xz <  (Player 2 as a border)
fa(x) =

51—2) ifZ<a<1 (Player 2 as a winner)

0 if0<z < (Player 2 as a loser)
ga() =
1(10—2) if &5 <a < oo (Player 2 as a border)

Under the same logic we have,
51—2)=1(10-2) =
5-5=10-2=>

“=15=

14

=15

Notice that % < % < 1 as well as 1% < }—‘51 < 00. So we can conclude that
c = % and ¢y = % thus,

[ca, min{ve, c1}] =

[18, min{1, 13] =

(35 1]

which is an interval. O

Theorem 3.6.1.1 There are cases where we have two players with ¢, < ¢y
and any bids by = by € [ca, min{vs, c1}] are not a PNE.

Proof. Suppose that we have two players, A and B with ¢4 < cp so that
[ca, min{va,cp}] is an interval and not a point. They bid by = bp €
[ca, min{va, cp}]. Since their bids are equal the auctioneer has to rank them
lexicographically, so we have that player A is placed first and player B is
placed second.
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o If by = bg = c4 then we know that player B has a bigger utility at the
first position since by = bp < cp.

o If by = bgp = min{va,cp} then we know that player A has a bigger
utility at the second position since by = bp = min{va,cg} > ca.

e ¢y <by=0bg <min{va,cg} then we know that player A has a bigger
utility at the second position since ¢4 < by = b and player B has a
bigger utility at the first position since by = bg < cp

So in any case this is not a PNE. The problem is obviously the lexicographic
positioning when the bids are equal. If we could rank the players according
to their critical bids (i.e. the one with the highest critical bid is placed first,
the one with second highest critical bid is placed second etc) then the original
proposition is actually correct. However it is impossible for the auctioneer
to rank them in that manner since he can not compute the critical bids (he
does not know the private values of each player). O

3.6.2 Some Additional Notes

There are several other propositions throughout [2] that have similar prob-
lems, for example,

If the lowest critical bid is lower than the value of any agent, i.e. c¢; < vy
(where j the player with the lowest critical bid and h the player with the low-
est private value), then b = (c;, ...,¢;) is a PNE, where agent j is the border

player and other players are winners.5

First of all, player j in such a case will not be the border player if he does
not have a proper name (a name that ranks him at the last position). If he is
not ranked last then some other player ¢ will be the border player. However
since player j has the lowest critical bid then ¢; > ¢; so player ¢ prefers to be
first in rank (he has a higher utility there) and thus this is not a PNE. Notice
that we can not let player j to bid ¢; — € for a very small amount € in order
for him to become a border (independently of his name) since according to
proposition 3.5.1.1 in a PNE all the winners and the border must bid the

6Claim 4.10 in the original work.
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same value. A more simple way to see this is that if player j bids ¢; — € then
the winner player above him will pay p;_; = ¢; —e which is, by a tiny amount,
smaller than the price of every other winner player pays. In such a case, any
of the rest winner players will want to get to 7 — 1’s position in order to pay
the smaller price an thus improve their utility by a small amount (this is an
alternative way to understand why the winner players must pay the same
price in a PNE).

So we are led to a contradiction: The critical bid is a notion which helps
to understand in which place each player prefers to be, but only when all
players bid the same value. So we can use it to understand and approach
the properties a of PNE state. However when players bid the same value the
ordering is made lexicographically so each player’s rank depends only on his
name and not on his strategy, thus the critical bid becomes useless.

We conclude that in order for the PNE existence results of [2] to hold, the
critical bids must follow the ordering of the names of the players (i.e. the
player with the lowest original index must have the highest critical bid, the
player with the second lowest original index must have the second highest
critical bid etc).

3.6.3 Critical Bid under Non-Divisible Items

Earlier on, we defined the critical bid of a player j as the intersection point
of functions f;, g;,

Kwj—z) if ppp <z < % (Player j as a border)

filz) =
%(vj —x) if % <z < (Player j as a winner)
0 if Prin < < % (Player j as a loser)
gi(z) =< (K — %)(W — Pmin)  if Z#TJB <z< % (Player j as a border)
pijn (Vj = Dimin) if % <z <, (Player j as a winner)
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Bellow we provide a graphical representation example:

A

However (as we already mentioned in some of our earlier footnotes), % rep-
resents the number of items player j gets, at price x, when he is ranked first
and is a winner player and %Bl represents the number of items the rest
players get, at price x, when player j is ranked last and is a border. So if the
items are not divisible and when a player tries to compute how much items
he will get at a certain price, even if these two amounts give decimal num-
bers for some prices, we have to round these numbers to the nearest lowest
positive integer (i.e. if % = 2.8, we say that player j gets 2 items at price
x since if he gets 3 items he exceeds his budget). So it easy to understand
that in such cases, for mulztziple x's we have the same number of items (which
iz B

implies the same % and =2 for a set of 2’s) thus,

fila) =B, —2), it B <o <

is a set of line functions instead of a hyperbola function and

2izj Bi

gj(x) = (K - %)(Uj _pmin)a if ;;(J sz < K—Bj/pmin
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is a set of constant functions instead of a hyperbola function. Bellow we
provide a graphical representation example of how f;, g; look like when the
items are not divisible.

As we can see the functions f;, g; are not continuous when the items are not
divisible. This implies that there are cases where the critical bid of a player
does not exist.

Theorem 3.6.3.1 In the budgeted second-price ad auction with non-divisible
items, there are cases where the critical bid of a player does not exist.

Proof. We will prove this using an example. Suppose that we have two play-
ers, K = 4 items, By =3, By = 2, v; = 2, v9 = 1 and pyi, = 0. We will
compute the utility functions of player 1, showing that they do not intersect
at some point. We start with function fi,

fi(z) =
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Since the items are not divisible, the real form of the function is,

42-z) f0<z<3
32—2) if2<a<1
filz) = S )
22-2) ifl<a<?
2—x if%<:1:§2
\
We proceed with function gy,
0 fo<z<i
g1(x) =
( —%)2 1f%§x§2

Under the same logic, the real form of the function is,

(=] =~ N} )
SN I )
A
8
N
—_

ifl<ax<2

As you can notice, function f; consists of strictly decreasing line functions.
We proceed in computing the minimum and the maximum of each line seg-
ment:

if z €0, 3] then fi(z) € [5,8]
if z € (2,1] then fi(z) € [3,3.75)

if z € (1,2] then fi(z) € [1,2)
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if z € (2,2] then fi(z) € [0,0.5)

So it is easy to see and verify that functions fi, g1 do not intersect at some

point, thus player’s 1 critical bid does not exist (there is no bid that gives him

the same utility at the first-last rank when all players bid the same value).
[



Chapter 4

GSP Ad Position Auctions

under Budget Constraints

In this chapter we return to the ad position setting, describing models that
introduce budgets. Our presentation is based on a work currently in progress
[3]. Our goal is to observe how the GSP ad position setting behaves under
the introduction of budget constraints. We present two such auction models
and additionally we display and prove several of their equilibria properties.

4.1 Budget-Conscious Second-Price Auction

The budget-conscious second-price auction (BC-SPA) is basically a model
which describes the GSP ad position auction that we saw earlier in chapter
1 but customized under the introduction of budgets.

4.1.1 The Model

We have N players and K slots (N > K). The slots have expected click-
through rates (CTR) 6; > 60y > ... > 0 > 0, that depend upon their
positioning. The players ¢ = 1,...,N demand at most one slot and have
private values vy, vs,...,uny > 0 per click. They also have publicly known
budgets By, Bs, ..., By capping the total payment they are willing to accept.
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We assume that there is a minimum price which is always zero, pp, = 0.
The auctioneer announces prices p; per click and selects K players to be given
a unique slot, as follows:

1. The auctioneer orders the players according to their bids and renames
them if necessary so that by > by > ... > by. For players with identical
bids, lexicographic ordering is followed i.e. the player with the lower
original index is ranked first, the player with the second lower index is
ranked second etc.

2. Each player 7, in his turn as determined by decreasing bid, is assigned
the slot with the highest CTR that is currently available (has not being
taken so far) and is within his budget i.e. 65,p; < B; if there is such
one, otherwise he gets nothing. In other words, player ¢ gets the highest
CTR slot j = s; which has not be taken by a player i’ < i and for which
pit; < B;. A player ¢ who is assigned a slot is called a winner while the
remaining players are called losers.

3. The price per click a player 7 is required to pay in case he is a winner
player is defined as follows:

bis1 if i £ N
pi =

In other words, if a winner player i is not the player with the lowest
bid (he is not the last in rank) he pays the bid of the player bellow
him, otherwise if he is a winner player and has the lowest bid (the last
in rank) he pays pp, (notice that although K < N, it is possible for
player N to get a slot if for example this slot was not within the budget
of the previous players). In case player i is a loser, his price is defined
as zero.

4. The amount v;0,, can be seen as the profit of a winner player « who
is assigned to a slot s; while the amount p;0,, can be seen as his total
payment. If 7 is a loser player on the other hand he has no profit and
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his payment is zero. So we can define the utility of a player ¢ as,

0s,(v; — bir1) if i is a winner and i # N
u;p =g 050 if 7 is a winner and i = N

0 if 7 is a loser

4.1.2 Properties

As we said earlier our main goal is to examine the existence of PNE and EFE
assignments and examine their properties. Before we proceed we will give
some necessary definitions.

Definition 4.1.2.1 We say that a player ¢ can afford a slot j if this slot
is within his budget i.e. 0;p; < B;.

Definition 4.1.2.2 We say that a player j envies a winner player 7, assigned
to a slot s; if the conjunction of the following occurs:

e p; <

o 0, (v; —pj) < Os(vy —p;) or 0 <0, (v; — p;) (depending on whether
player j is a winner or not respectively).

In other words a player envies someone else if can rationally afford his slot
and in addition his utility in the other’s player position is strictly bigger than
his current one. Notice that a player does not envy someone else if one of the
conditions does not hold i.e. if 05,p; > B; then player j does not envy player i.

Definition 4.1.2.3 We say that the assignment is envy-free, if it is rational
and no player who is assigned to a slot, is envied by any other player.

Notice here the envy notion is a little different from what we described in
the section 2.2 due to the introduction of the budget constraints. But how
significant are these differences? As a matter of fact, we saw at section 2.2
that bids that produce an envy-free assignment are also producing a PNE
assignment under the GSP ad position setting. Does something similar hold
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for the excluding-budget second-price auction setting?

Proposition 4.1.2.1 In the BC-SPA setting, bids that produce an envy-
free assignment do not, in general, produce a PNE.

Proof. We will prove this using an example. Suppose that we have 3 players
and 2 slots with the following properties:

Let by = 6,bgp = 5,bc = 4. We claim that under these bids, the produced

Players | Values | Budgets
Slots | CTR

A 10 16
S1 3

B 8 10
So 2

C 6 7

assignment is envy-free but not a PNE.

Envy-Freedom

Players | Values | Budgets | Bids | Prices | Slots
A 10 16 6 5 51
B 8 10 5 4 S9
C 6 7 4 0 none

The price assignment is obviously rational. Notice that player A gets slot
1 because it’s the first in rank slot and is also within his budget since
pabs, = 5-3 =15 < 16 = B,4. Under the same logic, player B gets slot
2 which is the slot with the highest CTR available and is within his budget
since ppl;, = 4-2 = 8 < 10 = Bp. Let us now proceed to each player
separately:

Player A: His utility is ua = ¢s, (va — pa) = 3(10 — 5) = 15.
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e In B’s position: Slot 2 is within A’s budget since pgbs, =4-2 =8 <
16 = By and his utility is ua = 6,,(va —pp) = 2(10 —4) = 12 < 15.
So A does not envy B.

e In (s position: No slot exists in C’s position, something that implies
ug =0 < 15. So A does not envy C.

Player B: His utility is up = 05,(vg — pp) = 2(8 —4) = 8.

e In A’s position: His utility is up = 05, (vg —pa) = 3(8 —5) =9 > 8
but slot 1 is not within his budget since psfs, =5-3 =15> 10 = Bp
. So B does not envy A.

e In (s position: No slot exists in C’s position, something that implies
up = 0 < 15. So B does not envy C.

Player C: His utility is u¢c = 0 since he gets no item.

e In A’s position: His utility is uc = 05, (ve —pa) =3(6 —5) =3 >0
but slot 1 is not within his budget since ps0s, =5-3=15>7= B¢ .
So C does not envy A.

e In B’s position: His utility is uc = 0s,(ve —pp) =2(6 —4) =4 > 0
but slot 2 is not within his budget since ppf;, =4-2 =8> 7= B¢ .
So C does not envy B.

We can conclude that this is an envy-free assignment.

PNE

We claim that under these bids, player A is better off in player’s B position
so this is not a PNE. Suppose that player A underbids player B by a small
amount €. The previous matrix goes as follows:

Players | Values | Budgets | Bids | Prices | Slots
B 8 10 5 b—€ |89
A 10 16 b—e€ |4 S1
C 6 7 4 0 none




80

Notice now that player B can not afford slot 1 (the first available slot with
the highest CTR) since ppls, = (5—¢€)3 = 15—3¢ > 10 = Bp. So he gets slot
2 which is within his budget since pgls, = (5 —€)2 =10 — 2 < 10 = Bg. It
follows that player A will get slot 1 (the slot with the highest CTR available)
as he can afford it, paf;, =4-3 =12 < 16 = By.

His new utility is ug = 65, (va — pa) = 3(10 —4) = 18 > 15 (his previ-
ous utility). This concludes our proof. O

So as we can see, the introduction of budgets makes the whole model a lot
more complex and lessen its properties. With that in mind lets take a look
on the next theorem.

Theorem 4.1.2.1 It is not, in general, possible to find bids that produce a
PNE under the BC-SPA setting.

Proof. We will prove this using an example. Suppose that we have 3 players
and 2 slots with the following properties:

Players | Values | Budgets
Slots | CTR

A 10 50
S1 5

B 4 5
So 2

C 2 2

We claim that under this data, there are not bids that produce a PNE. In
order to prove that we have to examine every possible ordering of b4, bg, bo
as well as every possible slot assignment that might occur. Specifically there
are 3! = 6 ways that we can order the bids and 3!/(3 — 2)! = 6 ways to ar-
range the slots. We shall split our proof into cases and we will examine each
case separately in a sketchy and informative way. Before we begin, notice
the following inequalities that describe under what restrictions each player
can afford each slot:
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Player A:

o Slot 1: 0, ps < Ba = 5pa <50 = ps < 10

o Slot 2: Os,pa < By = 2ps <50 = ps <25

Player B:

e Slot 1: 951PB§3B2>5PB <5=pp <1

e Slot 2: s,pp < Bp = 2pp < 5= pp <5/2

Player C:

e Slot 1: 05,pc < Be = bpc <2 = pc <2/5

e Slot 2: 982]90 <Be=2pc<2=pc<1

We have to mention here that we are only considering cases where both slots
are assigned to players. It is easy to see that it is not possible to have an
assignment with none of the players tagged to some slot, due to the fact that
Pmin = 0. Additionally if only one player is tagged to some slot, he will be
the third in rank for the same reason (all the players can buy at p,;, = 0).
These cases can be summed up as follows: The first in rank player, underbids
the third in rank (the one who is tagged to a slot) and he is better off at this
position since he surely gets an item and his utility becomes positive.

Case I: by > bg > bc



82

Slot 1 | Slot 2 Change of strategy

A B It depends on bg. If 1 < bg then Player A bids bp — €
and gets slot 1 at a smaller price. If by < 1 then Player C
bg + € bids and gets a slot.

B A If player A bids bg — € > 10 then he gets slot 1.

A C If player B bids b — € > 5/2 then he gets slot 2.

C A If player B bids b — € > 1 then he gets slot 1.

B C If player A bids bg — € > 25 then he gets slot 1.

C B If player A bids bg — € > 10 then he gets slot 1.

Case II: bo > bg > by

Slot 1 | Slot 2 Change of strategy

C B If player A bids bg + € then he gets a slot.

B C If player A bids bg + € then he gets slot 1.

B A It depends on bg. If by < 5/2 then Player A bids bg + €
and gets slot 1. If bg > 5/2 then Player C bids bg — € > 5/2
and gets a slot.

A B If player B bids by — ¢ > 1 then he gets slot 1.

C A This outcome is impossible due to the bids ordering.

A C This outcome is impossible due to the bids ordering.

Case III: b4 > bc > bp
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Slot 1 | Slot 2 Change of strategy

A C It depends on b¢. If be > 2/5 then Player A bids
bc — e > 2/5 and gets slot 1. If bc < 2/5 then Player B
bids bc + € and gets a slot.

C A If player A bids bc — € > 10 then he gets slot 1.

C B If player A bids be — € > 25 then he gets slot 1.

B C If player A bids be — € > 25 then he gets slot 1.

A B If player A bids bc — € > 1 then he gets slot 1 at
a lower price.

B A If player A bids bc — € > 10 then he gets a slot at
a lower price.

Case IV: bo > by > bp

Slot 1 | Slot 2 Change of strategy

C A If player B bids 2/5 < b4 + € < 1 then he gets slot 1.

A C If player C bids by — € then he gets slot 2 at a lower price
If by = bp then player B bids by + € and gets a slot.

A B It depends on bg. If bg > 1 then Player A bids bp —e > 1
and gets slot 1 at a lower price. If by < 1 then Player C
bids b4 — € < 10 and gets slot 2.

B A If player A bids bg — € > 10 then he gets slot 1.

C B This outcome is impossible due to the bids ordering.

B C This outcome is impossible due to the bids ordering.

Case V:bg > by > bo
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Slot 1 | Slot 2 Change of strategy
B A It depends on bg. If by < 5/2 then Player A bids bp + €
and gets slot 1. If bg > 5/2 then Player C bids
ba + € > 5/2 and gets slot 2.
A B If player B bids by — € > 1 then he gets slot 2 at
a lower price.
B C This outcome is impossible due to the bids ordering.
C B This outcome is impossible due to the bids ordering.
A C It depends on be. If be < 5/2 then Player B bids
ba — € < 10 and gets slot 2. If bo > 5/2 then Player A
bids be — € > 5/2 and gets slot 1 at a lower price.
C A If player A bids bc — € > 10 then he gets slot 1 at
a lower price.
Case VI: bg > bo > by
Slot 1 | Slot 2 Change of strategy
B C If player A bids bc + € then he gets a slot.
C B If player A bids bc + € > 1 then he gets slot 1.
B A This outcome is impossible due to the bids ordering.
A B If player B bids b — € > 1 then he gets a slot at
a lower price.
C A If player B bids bg — € > 5/2 then he gets slot 1 .
A C If player B bids bc — € > 5/2 then he gets slot 1.
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As we can see there is no PNE in this example. An interesting point to
mention here is that this example has an EFE. As a matter of fact:

Players | Values | Budgets | Bids | Prices | Slot
A 10 50 9 3 51

B 4 5 3 2 S9

C 2 2 2 0 none

Player A: His utility is 05, (va — pa) = 5(10 — 3) = 35. He envies neither
player B since 0,(va — pp) = 2(10 — 2) = 16 nor player C since his utility
there is zero.

Player B: His utility is 0s,(vg — pg) = 2(4 — 2) = 4. He envies neither
player A since he can not afford his slot (6, - pa =5-3 =15 >5 = Bg) nor
player C since his utility there is zero.

Player C: His utility is zero. He envies neither player A nor player B since
he can not afford none of the slots they are tagged to (6, - pa =5-3 =15 >
2=Bcand f, -pp=2-2=4>2= Bg).

Our proof is now complete. [

Proposition 4.1.2.2 In the BC-SPA setting it is not, in general, possible to
have an EFE if players have identical budgets. !

Proof. This is in a way trivial, for instance suppose that we have two players
with identical budgets and one slot with 8 to be the CTR. We set their values
to be bigger from B/, so if they can afford the slot, they certainly get a
positive utility from it. It is easy to see that no matter the assignment, the
player who gets no slot will always envy the other one since at his place he
has a positive utility and can afford the slot by assumption. [

Tt is highly believed however that when players have different budgets, then there

exists bids that produce an envy-free assignment. See section 4.3 for more.
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4.2 Budget-Oblivious Second-Price Auction

The budget-oblivious second-price auction (BO-SPA) is an alternative ap-
proach to the same setting. The basic difference is that each player in his
turn, determined by decreasing bid, is assigned to the highest CTR available
slot, independently of whether he can afford it or not. But lets take a more
formal look.

4.2.1 The Model

We have N players and K slots (N > K). The slots have expected click-
through rates (CTR) 6; > 6y > ... > 0 > 0, that depend upon their
positioning. The players ¢« = 1,..., N demand at most one slot and have
private values vy, vs,...,vny > 0 per click. They also have publicly known
budgets By, Bs, ..., By capping the total payment they are willing to accept.
The auctioneer announces prices p; per click and selects K players to be given
a unique slot, as follows:

1. The auctioneer orders the players according to their bids and renames
them if necessary so that by > by > ... > by. For players with identical
bids, lexicographic ordering is followed i.e. the player with the lower
original index is ranked first, the player with the second lower index is
ranked second etc.

2. Each player 7, in his turn as determined by decreasing bid, is assigned
the slot with the highest CTR that is currently available (has not being
taken so far) if there is such one, independently of whether he can afford
it or not, otherwise he gets nothing. A player who is assigned to a slot
that he can not afford is called an off-budget player (this slot is assumed
to be occupied from then on or to remain available). Notice here that
since the number of players N is bigger from the number of slots K
there is no need for the auctioneer to set a minimum price (players get
the slots in decreasing order of bids, either they can afford them or not,
so it is impossible for the last in rank player to be assigned to a slot).

3. The price per click a player ¢ is required to pay in case he is assigned
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to a slot is defined as follows:

bi+1 if he can afford the slot
pi =
0 if he is an off-budget player

If player i is not assigned to any slot then his payment is defined as
zZero.

4. The utility of each player 7 is defined as follows:

0s,(v; — bir1) if @ can afford s;
ui=14 0 or—oo ifiisan off-budget player (he can not afford slot s;)

0 if 7 is assigned to no slot

Notice that the utility of an off-budget player is usually assumed to be
either zero or —oo.

4.2.2 Properties

Lets now take a look on how this model behaves under the search of PNE
and EFE assignments. Notice that definitions 4.1.2.1, 4.1.2.2 and 4.1.2.3 can
be applied to this model as well.

Proposition 4.2.2.1 In the BO-SPA there can be no PNE or envy-free
assignment with off-budget players, if we assume that their utility is defined
as —oo.

Proof. Suppose that there is an assignment with off-budget players. By the
definition of the model we know that the last in rank player does not get any
slot since the number of the players is bigger than the number of the slots.
So none of the off-budget players can be last in rank. With that in mind
it is easy to say that any off-budget player could underbid the last in rank
player an thus get a zero utility which is bigger than his current one (—oo
by assumption). Under the same logic we can say that any off-budget player
envies the last in rank player for the same reason. So we can conclude that
it is impossible to have a PNE or an envy-free assignment with off-budget
players. ]
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Theorem 4.2.2.1 It is not, in general, possible to find bids such that the
BO-SPA produces an envy-free assignment with no off-budget players.

Proof. We will prove this with an example. Suppose that we have 3 players
and 2 slots with the following properties:

Players | Values | Budgets
Slots | CTR

A 10 12
S1 1000

B 8 10
So 5

C 6 8

We claim that there are not by, bg, b that produce an envy-free assignment
under the setting of non-excluding-budget second-price auction with no off-
budget players. We will examine extensively two cases of bids ordering.

Case 1: by > bg > bc

Suppose that by > bg > b, so player A gets slot 1, player B gets slot 2 and
player C' gets nothing. We have the following:

Players | Values | Budgets | Bids | Prices | Slots
A 10 12 ba bp 51
B 8 10 bp bc 52
C 6 8 bo 0 none

Since we want no off-budget players, from the definition of the setting we
have that bids must restrict to some limits (if the bids go beyond these
limits, we have off-budget players and we do not follow the restrictions of
Theorem 4.2.2.1). More precisely:

pAgsl S BA =
63081 < By =

bp < 12/1000 =
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bp < 3/250

as well as,

ppls, < Bp =

bcts, < Bp =

be < 10/5 =
be < 2

So, with A and B to be both no off-budget players, we will show that player
C envies player B and therefore this is not an envy-free assignment (notice
that due to the bid-limits, our assignment is rational). C’s utility is currently
zero since he gets no slots. Following definition 4.1.2.2 we proceed to the fol-
lowing (using the previously described no off-budget restriction bp < 3/250) :

Rationality: pgp = bc < bp < 3/250 < 6 = ve
Afford-ability: ppfs, = 5bc < 5bp < 15/250 = 3/50 < 8= B¢

Utility: uc = 0,, (vc—pp) = 5(6—bc) = 30—5be > 30—5bg > 30—15,/250 =
30 — 3/50 > 0

So according to definition 4.1.2.3, this is not an envy-free assignment.

Case 2: bg > bg > by

Suppose that bc > bg > ba, so player C' gets slot 1, player B gets slot 2 and
player A gets nothing. We have the following;:

Players | Values | Budgets | Bids | Prices | Slots
C 6 8 be bp $1
B 8 10 bp ba 52
A 10 12 ba 0 none
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As with case 1, in order to have no off-budget players, the bids restrictions

are:
pcbts, < Bo =
bpbs, < Be =
bp < 8/1000 =
bp < 1/125
as well as,

ppls, < Bp =

babs, < Bp =

ba < 10/5 =
by <2

So, with B and C this time to be both no off-budget players, we will show
that player A envies player B and therefore this is not an envy-free assign-
ment (again, the bid-limits set a rational assignment). A’s utility is currently
zero since he gets no slots. Following definition 4.1.2.2 once more, we pro-
ceed to the following (using the previously described no off-budget restriction
b < 1/125) :

Rationality: pp =bs < bp < 1/125 <10 =v4
Afford-ability: pp,, = 5b4 < 5bp < 5/125 = 1/25 < 12 = B,

Utility: ua = 0,,(va—pp) = 5(10—by) = 50—5bs > 50—5by > 50—5/125 =
50— 1/25 > 0

So, according to definition 4.1.2.3, this is not an envy-free assignment.

Rest Cases

It is easy to see that the same goes for every other possible ordering of bids.
Notice that since we want no off-budget players, the following must hold in
general, for every ordering by > by > b3 of players A,B and C:
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pibs, < By =

bols, < B =
by < By /1000 =
bs < By/1000 =

s < B1/1000

This inequality always sets a pretty low upper bound for ps, which assures
us (taking into consideration the private values, CTRs and budgets in our
example) that in any case, the third in rank player (the one who gets no slot)
will always envy the second in rank (the one who gets slot 2). O

4.3 Future work

As a conclusion we present some properties of the two models that are cur-
rently under consideration or about to be proved:

e There exists bids such that the BC-SPA produces an envy-free assign-
ment (if the budgets of the players are not identical).

e There exists bids such that the BO-SPA with off-budget players, pro-
duces an equilibrium (PNE or EFE) if we assume that the utility of
the off-budget players is defined as zero.
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