
EJNIKO KAPODISTRIAKO PANEPISTHMIO

TMHMA MAJHMATIKWN

METAPTUQIAKO PROGRAMMA LOGIKHS KAI

ALGORIJMWN

Diplwmatik ErgasÐa

EÔresh Klik¸n se TuqaÐouc Gr�fouc
tou

Andrèa Gal�nh

Epiblèpwn Kajhght c:

Eust�jioc Z�qoc

17 DekembrÐou 2010

Abstract

The problem of finding cliques in arbitrary graphs is a well known NP-
complete problem. From work culminating in the powerful theory of PCPs,
it is now known that solving the clique problem even within ratio n1−ε is
NP-hard. However, we can recover a maximum clique if the input graph is
drawn randomly from a distribution of graphs with n vertices which con-
tain a sufficiently large planted solution. Specifically, we restrict ourselves
to one of the most well studied distributions where the input graph is gen-
erated as follows: a random set of k vertices is first selected and forced into
a clique. Then, any other edge is included independently with probability
1/2. The goal is to recover the maximum clique. In this Master’s thesis,
we present the current state-of-the art for the planted clique problem.

EuqaristÐec

Aut h diplwmatik den ja mporoÔse na eÐqe pragmatopoihjeÐ qwrÐc th
sumbol tou k. Z�qou se poll� epÐpeda. Wc kajhght c sta proptuqiak�
maj mata thc sqol c, mou èdwse ta erejÐsmata na asqolhj¸ me thn epist -
mh twn upologist¸n. Wc epiblèpwn thc diplwmatik c aut c, me enj�rrune
kai mou èdwse th dunatìthta na asqolhj¸ me èna polÔ endiafèron kai po-
lÔpleuro jèma. Kai tèloc, all� Ðswc kai pio shmantik�, me èqei ephre�sei
ousiastik� kai me ton kalÔtero dunatì trìpo.

Ja jela epÐshc na euqarist sw ta �lla dÔo mèlh thc trimeloÔc exeta-
stik c epitrop c, k. Pagourtz kai k. Fwt�kh, pou ektìc apì did�skontèc
mou, me èqoun kajodhg sei kajìlh th di�rkeia thc prosp�jeiac mou.

Euqarist¸ epÐshc thn ergasthriak om�da tou Corelab gia to euq�risto
kai dhmiourgikì klÐma pou p�nta prosfèrei.

Tèloc, jèlw na euqarist sw touc goneÐc mou, pou se k�je f�sh thc
zw c mou me sthrÐzoun me ton kalÔtero dunatì trìpo kai eg¸ den touc
deÐqnw potè ti shmaÐnoun gia mèna.

Contents

1 The case of Random graphs 5
1.1 Introduction . 5
1.2 Cliques in Random Graphs 5
1.3 Finding Cliques in G(n, 1/2) 11

2 Planting a Clique 13
2.1 The distribution G(n, 1/2, k) 13
2.2 Planted Clique of size Ω(

√
n log n) 14

2.3 Planted Clique of size Ω(
√
n) 15

2.3.1 The Spectral Approach 15
2.4 Constant Improvements 20
2.5 Proof of Spectral Norm bound 21

3 Extensions 24
3.1 Other Algorithmic Ideas 24

3.1.1 A Semidefinite Programming Approach 24
3.1.2 A Probabilistic Algorithm 25
3.1.3 The Tensor Approach 25

3.2 Connections to Other Problems 27
3.2.1 Cryptography . 27
3.2.2 Complexity . 28

References 29

Appendices 33

4

Chapter 1

The case of Random graphs

1.1 Introduction

The clique problem in graphs asks for the maximum subset of vertices
which are mutually adjacent. It is one of the most well known NP-complete
problems ([Kar72]). By now, much more is known about the hardness
of clique. A series of results, starting with the seminal work of Hastad
in query efficient PCP verifiers([H̊as97]), has finally lead to a proof that
approximating the clique problem even within ratio n1−ε for any ε > 0 is
NP-hard ([Zuc06]).

On the other hand, in an attempt to capture real life instances that
emerge in practice (e.g. networks), Erdös and Rényi introduced the G(n, p)
distribution on graphs. While the G(n, p) model as a “real life instance”
has certain limitations, it is still cosidered a great basis to study graph
properties.

This Master’s thesis focuses on the restriction of the clique problem to
the distribution G(n, p) and displays algorithmic ideas which perform well
on average case instances.

We have tried to make the presentation as self-contained as possible.
Still, a basic background in linear algebra and probabilistic arguments is
assumed.

1.2 Cliques in Random Graphs

Consider the following process to generate a graph G on n vertices:
include each of the

(
n
2

)
edges independently with probability 1/2. Denote

the relulting distribution as G(n, 1/2). Given G ∼ G(n, 1/2), we are going
to address the size of the maximum clique in G. This is captured by the

5

CHAPTER 1. THE CASE OF RANDOM GRAPHS 6

following theorem.

Theorem 1.1. In almost every graph G ∼ G(n, 1/2) the largest clique has
size (2 + o(1)) log n.

While Theorem 1.1 is well known and can be proved using standard means,
we include a proof which addresses some of its details which are usually
omitted. In addition, the proof will yield that the maximum clique number
can take a finite number of values, which was first proved in a stronger sense
by [BE76].

Proof (of Theorem 1.1) Let Xk be the number of k-cliques in a graph
G drawn from G(n, 1/2). Write Xk as a sum of

(
n
k

)
indicator variables,

each corresponding to whether a particular subset of k vertices forms a
clique. for a specific subset of k vertices, this happens with probability

2−(k
2) (since each of the

(
k
2

)
edges is included with probability 1/2 in G).

Applying linearity of expectation we see that

E[Xk] =

(
n

k

)
2−(k

2).

Using Markov’s inequality (see Theorem .4 in Appendix A), we have

Pr[Xk > 0] = Pr[Xk ≥ 1] ≤ E[Xk] =

(
n

k

)
2−(k

2).

Thus, if k is such that
(
n
k

)
2−(k

2) → 0 as n → ∞, we clearly obtain that G
almost surely does not have a clique of size k.

We expect that the value k0 which achieves(
n

k0

)
2−(k0

2) = 1

is critical. We will prove that k0 = 2 log n − 2 log log n + O(1). We need
the following bound for

(
n
k0

)
which is proved in Appendix A.(

n

k0

)k0
≤
(
n

k0

)
≤ nk0 ≤

(
en

k0

)k0
Note that the above bounds are pretty good when k = o(n). Hence we
have that (

n

k0

)k0
2−(k0

2) ≤ 1 ≤
(
en

k0

)k0
2−(k0

2),

CHAPTER 1. THE CASE OF RANDOM GRAPHS 7

which after some manipulations yields

2 log n+ 1 ≤ k0 + 2 log k0 ≤ 2 log n+ 2 log e+ 1. (1.1)

Now the monotonicity of k0+2 log k0 easily implies that log n < k0 < 2 log n
and consequently log log n < log k0 < log log n+1. Plugging this into (1.1)
we have that

2 log n− 2 log log n− 1 < k0 < 2 log n− 2 log log n+ 2 log e+ 1

which proves that k0 = 2 log n− 2 log log n+O(1).
Now let c1, c2 be some small integer constants (independent of n), which

we will determine later. We will show the following

1. If k > k0 + c1 then E[Xk]→ 0.

2. If k < k0 − c2 then E[Xk]→∞.

For k > k0 + c1, we have that(
n

k

)
2−(k

2) ≤
(en
k

)k
2−(k

2)

≤ ek
(
n

k0

)k (
k0
k

)k
2−(k0

2)2−
(k−k0)(k+k0−1)

2

≤ ek
(
n

k0

)k0
2−(k0

2)
(
n

k0

)k−k0 (k0
k

)k
2−

(k−k0)(k+k0−1)
2

≤ ek
(
n

k0

)k−k0 (k0
k

)k−k0
2−

(k−k0)(k+k0−1)
2

≤

(
n · 2−

k+k0−1
2 e

k
k−k0

k

)k−k0

≤

(
n · 2−

k0
2

k
· 2−

k−1
2 e

k
c1

)k−k0

Since n·2−
k0
2

k
≤ 1 for large enough n, it suffices to pick c1 so that 2−

k−1
2 e

k
c1 →

0. Some simple calculations show that c1 = 2.9 is enough.
For k < k0 − c2, we have that(

n

k

)
2−(k

2) ≥
(n
k

)k
2−(k

2).

CHAPTER 1. THE CASE OF RANDOM GRAPHS 8

It is easy to see that when k ≤ log n this tends to infinity. Thus we assume
that log n < k < k0 − c2. Then(

n

k

)
2−(k

2) ≥
(
n

k0

)k (
k0
k

)k
2−(k0

2)2−
(k−k0)(k+k0−1)

2

=

(
n

k0

)k0
2−(k0

2)
(
n

k0

)k−k0 (k0
k

)k
2−

(k−k0)(k+k0−1)
2

= e−k0
(
en

k0

)k0
2−(k0

2)
(
n

k0

)k−k0 (k0
k

)k
2−

(k−k0)(k+k0−1)
2

≥ e−k0
(
n

k0

)k−k0 (k0
k

)k−k0
2−

(k−k0)(k+k0−1)
2

≥
(

k

n · 2−
k0
2

· 2
k−1
2 e
− k0

k0−k

)k0−k
≥
(

k

n · 2−
k0
2

· 2
logn−1

2 e
− 2 logn

c2

)k0−k
Since k

n·2−
k0
2

≥ 1, it suffices to pick c2 so that 2−
logn−1

2 e
2 logn

c2 → ∞. Some

simple calculations show that c2 = 5.9 is enough.
We have already proved that if E[Xk]→ 0 then Pr[Xk > 0]→ 0. Thus

G has no clique of size k > k0 + c1.
We will now prove that for k = k0− c2, Pr[Xk > 0]→ 1. To do this, we

will use the following inequality (whose proof can be found in Appendix
A):

Pr[Xk > 0] ≥ (E[Xk])
2

E[X2
k]

(1.2)

To apply this we first need to calculate E[X2
k]. Let us fix some labelling

{1, . . . , n} = [n] of the vertices of G. Now, for S ⊆ [n] so that |S| = k, let
XS denote the indicator variable which is 1 when the vertices S induce a
clique (of size k) and 0 otherwise. Clearly

Xk =
∑

S⊆[n],|S|=k

XS

and consequently

X2
k =

∑
S,T⊆[n]

XSXT =
∑
S⊆[n]

XS +
∑
S⊆[n]

∑
T,S 6=T

E[XSXT].

CHAPTER 1. THE CASE OF RANDOM GRAPHS 9

By linearity of expectation, we obtain that

E[X2
k] = E[Xk] +

∑
S⊆[n]

∑
T,T 6=S

E[XSXT].

Since E[Xk] → ∞ for k < k0 − c2, to get the desired result from (1.2), it
suffices to prove that∑

S⊆[n]
∑

T,T 6=S E[XSXT]

(E[Xk])2
→ 1 as n→∞.

Note that∑
S⊆[n]

∑
T,T 6=S

E[XSXT] =
∑
S⊆[n]

∑
T,T 6=S

E[XT = 1|XS = 1]Pr[XS = 1]

=
∑
S⊆[n]

Pr[XS = 1]
∑
T,T 6=S

E[XT = 1|XS = 1]

and by symmetry
∑

T,T 6=S E[XT = 1|XS = 1] is the same for any S, so that

∑
S⊆[n]

∑
T,T 6=S

E[XSXT] =

∑
S⊆[n]

Pr[XS = 1]

(∑
T,T 6=S

E[XT = 1|XS = 1]

)
= E[Xk]

∑
T,T 6=S

E[XT = 1|XS = 1].

Hence it suffices to prove that∑
T,T 6=S E[XT = 1|XS = 1]

E[Xk]
→ 1 as n→∞.

Now it is easy to see that if |S ∩ T | = j, we have that

E[XT = 1|XS = 1] =
1

2(k
2)−(j

2)
= 2−(k

2)+(j
2)

Now, if we fix S, the number of sets T such that |S ∩ T | = j are
(
k
j

)(
n−k
k−j

)
(this accounts for the number of ways to pick the j vertices in the inter-
section as well as the number of ways to pick the rest of the vertices in T).
Thus, we obtain∑

T,T 6=S E[XT = 1|XS = 1]

E[Xk]
=

∑
0≤j≤k−1

(
k
j

)(
n−k
k−j

)
2−(k

2)+(j
2)(

n
k

)
2−(k

2)

=

∑
0≤j≤k−1

(
k
j

)(
n−k
k−j

)
2(j

2)(
n
k

)

CHAPTER 1. THE CASE OF RANDOM GRAPHS 10

Let aj =
(
k
j

)(
n−k
k−j

)
2(j

2) and set f(j) = aj/aj+1. After some manipulations,
we have that

f(j) =
(j + 1)(n− 2k + j + 1)

(k − j)22j

Note that f(2) >> 1 and f(k − 1) << 1. We will prove that f ′(j) < 0 for
1 ≤ j ≤ k−3, so that aj ≤ max{a1, ak−2} for 1 ≤ j ≤ k−2. We have that

f ′(j) =
[2(j + 1) + n− 2k](k − j)22j

(k − j)422j
+

+
(j + 1)(n− 2k + j + 1)[2(k − j)2j − (k − j)22j ln 2]

(k − j)422j
.

Since k − j > 0, to prove that f ′(j) < 0, it suffices that

[2(j + 1) + n− 2k](k − j) + (j + 1)(n− 2k + j + 1)[2− (k − j) ln 2] < 0

or equivalently

2 +
n− 2k

j + 1
< (n− 2k + j + 1)

(
ln 2− 2

k − j

)
.

For n large enough, it suffices to show that

1

j + 1
+

2

k − j
< ln 2

Using that ln 2 ≈ 0.693, we can immediately check that this holds for n
large enough (so that k is large enough) when j ≥ 1 and j ≤ k − 3.

Hence, we have that∑
T,T 6=S E[XT = 1|XS = 1]

E[Xk]
=

∑
0≤j≤k−1

(
k
j

)(
n−k
k−j

)
2(j

2)(
n
k

)
=

(
n−k
k

)
+ k(n− k)2(k−1

2) +
∑

1≤j≤k−2
(
k
j

)(
n−k
k−j

)
2(j

2)(
n
k

)
Thus (

n−k
k

)(
n
k

) ≤ ∑T,T 6=S E[XT = 1|XS = 1]

E[Xk]
(1.3)

CHAPTER 1. THE CASE OF RANDOM GRAPHS 11

and∑
T,T 6=S

E[XT = 1|XS = 1]

E[Xk]
≤
(
n−k
k

)(
n
k

) +
k(n− k)2(k−1

2)(
n
k

) +

+
(k − 2) max{k

(
n−k
k−1

)
,
(
k
2

)(
n−k
2

)
2(k−2

2)}(
n
k

) . (1.4)

Using (1.3) and (1.4), and the fact that k is roughly 2 log n, it is easy to
obtain ∑

T,T 6=S E[XT = 1|XS = 1]

E[Xk]
→ 1.

Thus we have proved that:

1. G does not have a clique of size k0 + c1 almost surely.

2. G almost surely has a clique of size k0 − c2.

Since k0 = 2 log n− 2 log log n+O(1), this proves Theorem 1.1.

As an aside of the proof of Theorem 1.1, note that we have actually
proved that the maximum clique size in G ∈ G(n, 1/2) can take at most
10 different values! In fact, with a better analysis of the constants c1, c2
appearing in the proof, one can get the following tight and somewhat
surprising result.

Theorem 1.2 ([BE76]). The maximum clique in almost every graph G ∈
G(n, 1/2) has size either k(n) or k(n) + 1, for some integer k(n).

1.3 Finding Cliques in G(n, 1/2)

Given the guarantees of Theorem 1.2, one might expect that we could
find the maximum clique in G ∼ G(n, 1/2). Unfortunately, this appears to
be far away from reality. In fact, the following question has been open for
a very long time.

Open Question. For any ε > 0, construct a polynomial time algorithm
that given as input a graph G ∼ G(n, 1/2) output a clique of size (1 +
ε) log n or prove that no one exists (modulo some standard complexity
assumptions).

To get a feeling of the above question, it is worthy to mention that the
natural greedy algorithm yields a clique of size (1 + o(1)) log n and this

CHAPTER 1. THE CASE OF RANDOM GRAPHS 12

is the best we can do asymptotically. Thus, despite the fact that we can
almost determine the size of the maximum clique, we cannot do better
than a 2 approximation.

On the other hand, note that one can find the maximum clique in
G ∼ G(n, 1/2) by enumerating all possible subsets of size ≤ 2 log n. Hence,
the problem can be solved in quasi polynomial time. Proving that no poly-
nomial time algorithm exists would entail a reduction from worst case in-
stances to average case instances and thus would probably be a highly non
trivial construction. Of course this has been achieved for some problems,
such as the shortest vector problem (see [Ajt98]).

Chapter 2

Planting a Clique

2.1 The distribution G(n, 1/2, k)

Given the results of the previous chapter, it is interesting to examine
whether planting a clique can help us recover the planted clique. In the
model we are going to examine, a random n vertex graph is generated by
randomly choosing k vertices to form a clique, and choosing every other
pair of vertices independently with probability 1/2 to be an edge. Denote
the resulting distribution as G(n, 1/2, k). Our goal is to recover the set of
k vertices which form the planted clique. We will refer to this problem as
the planted clique problem.

Alternatively, we can generate G ∼ G(n, 1/2, k) by first sampling a
graph G′ ∼ G(n, 1/2). Then we choose a random subset of k vertices in G′

and force them into a clique to obtain the final graph G. The distribution
G(n, 1/2, k) was introduced independently by Jerrum ([Jer92]) and Kucera
([Kuc95]). Jerrum proved that the classical (by now) Metropolis process
to perform a random walk on the set consisting of all cliques actually fails
for k = o(

√
n), whereas Kucera displayed how to find such a clique when

k = Ω(n log n).
For the time being, we will not expand on the many research directions

that have unfolded regarding the planted clique problem. Let us remark
though that it has found extensions in cryptograhy and has interesting
(and sometimes even unexpected) connections to other problems. Also,
a good number of approaches have tried to find the minimum order of k
for which the planted clique problem is solvable. We will discuss these
approaches later, but less us spoil the discussion by saying that “all” we
know is how to find a planted clique when k = Ω(

√
n). This means, and

compare this with the completely random case, that there is no hardness

13

CHAPTER 2. PLANTING A CLIQUE 14

proof for any k = o(
√
n). However, the large variety of techniques which

have been applied in the quest of finding the minimum order of k is an
exciting fact by itself.

Let us remark a few simple facts. First of all, note that for k large
enough, say k ≥ 3 log n, the planted clique is the maximum clique in a
graph G ∼ G(n, 1/2, k). To see this, we have already proved that the
maximum clique in a completely random graph is roughly 2 log n.

This suggests the following quasi polynomial time algorithm to solve
the planted clique problem for k ≥ 3 log n: try out all subsets of 3 log n
vertices until you find one, say S, that forms a clique. Let CS denote the
common neighbours of vertices in S. Then, the planted clique is S ∪ CS
with high probability. To see this, note that by the observation above,
the set S is with high probability a subset of the vertices which form the
planted clique. Hence, the planted clique is included in the graph induced
by S∪CS. It suffices to show that no vertex outside of the planted clique is
included in S∪CS. But this is true, since for such a vertex the probability

that it is connected to all vertices in S is
(
1
2

)3 logn
= 1

n3 . By a union bound
over the n− k vertices not in the clique, we obtain that, with probability
≥ 1− 1

n2 , S ∪ CS is exactly the planted clique.
This is also an indicator that the problem should become easier as k

grows, which is also intuitive from a combinatorial viewpoint. In fact, the
largest the gap between the planted solution and the generic solution, the
easiest should be to recover the planted clique.

2.2 Planted Clique of size Ω(
√
n log n)

In this section, we will display Kucera’s algorithm ([Kuc95]) to find the
planted clique when k ≥ Ω(

√
n log n).

Let us first deal with the case k ≥ c
√
n log n for some large enough

constant c. The observation is that in this case the vertices of the clique
are in fact the k vertices of larger degree in G. Assuming this, we can sort
the vertices in decreasing degree order and just output the first k vertices.

To see why the aforementioned observation holds, let Xv denote the
random variable which is equal to the degree of a vertex v in G. As we
said in the previous section, we can sample the graph G ∼ G(n, 1/2, k)
as follows: first sample G′ ∼ G(n, 1/2) and afterwards plant a clique in a
randomly chosen subset of k vertices.

We will prove that with high probability every vertex in G′ has degree
n/2 ± c′

√
n log n. To see this, write Xv as a sum of n − 1 indicator vari-

ables (which indicate whether an edge is present or not) and note that by

CHAPTER 2. PLANTING A CLIQUE 15

Hoeffding’s inequality (see Appendix A) we have

Pr[|Xv − E[Xv]| ≥ c′
√
n log n] ≤ 2e−2c

′2 logn = 2

(
1

n

)2c′2

Set c′=1. By a union bound over all n vertices, we see that with probability
≥ 1 − 2

n
every vertex in G′ has degree n/2 ±

√
n log n. We claim that if

we plant a clique of size roughly 4
√
n log n, the vertices of the clique will

have the k highest degrees in G. Indeed, denote by P the planted clique
and let v ∈ P . Using again a Hoeefding bound, we see that v has roughly
2
√
n log n neighbors in G′ inside P , so that after planting the clique it

receives a degree boost of roughly 2
√
n log n. By a union bound over all

vertices in P , we can prove that every vertex in P receives a degree boost
of roughly 2

√
n log n. Since the lowest degree in G′ is n/2−

√
n log n and

the highest is n/2 +
√
n log n, the degree boost that vertices in P have

received, made them the k highest degree vertices in G.

Thus we have proved the desired claim when k ≥ 4
√
n log n. But what

if we just know that k ≥ Ω(
√
n log n)? Can we still find the clique? It is

not hard to see that we could tighten our analysis and improve a little bit
the constant c′ (note that 4 is actually 4c′ for c′ = 1). But in fact we can
use a slight trick (due to [AKS98]) and recover the clique in polynomial
time and with enhanced probability of successs when k ≥ Ω(

√
n log n). We

will display this later in the chapter.

2.3 Planted Clique of size Ω(
√
n)

Note that the approach when k ≥ Ω(
√
n log n) needed to look at the

graph G ∼ G(n, 1/2, k) only locally, i.e. it just needed the degree dis-
tribution of a verttex v ∈ G. To find planted cliques of asymptotically
smaller sizes, we need to employ techniques that take into account global
properties of the graph G.

There is a great variety of methods that achieve this. In this section,
we will examine thoroughly the one which appears to be the most general
and discuss briefly others in a later chapter.

2.3.1 The Spectral Approach

Alon, Krivelevich and Sudakov [AKS98] were the first to find an algo-
rithm to recover a planted clique of size k ≥ Ω(

√
n). Our exposition of

their result uses ideas culminating by a generalization of their approach
due to McSherry ([McS01]). This exposition is sketched in [KV09].

CHAPTER 2. PLANTING A CLIQUE 16

To motivate the approach in [AKS98], recall that the first eigenvalue
of a symmetric n× n matrix A is defined as

λ1(A) = max
x∈Rn,‖x‖=1

xTAx.

Denote by xi the i-th coordinate of the vector x ∈ Rn and by Aij the entry
of the matrix A in the i-th row and j-th column. Note that

xTAx =
∑
i,j

Aijxixj.

Now consider the +1/ − 1 version of the adjacency matrix of the graph
G = (V,E) ∼ G(n, 1/2, k). Namely let A be the (symmetric) matrix such
that

Aij =

1, if (i, j) ∈ E
0, if i = j
−1, if (i, j) /∈ E

.

Let also x be the (normalized) indicator vector of the planted clique P
(recall that |P | = k), namely

xi =

{ 1√
k
, if i ∈ P

0, otherwise
.

Then, we have that

xTAx =
∑
i,j

Aijxixj = 2

(
k

2

)
1

k
≥ k − 1.

Thus, the planted clique forces the largest eigenvalue of the matrix A to
be greater than k − 1. The crucial idea now is that if A was the +1/− 1
version of the adjacency matrix of a graph G′ ∼ G(n, 1/2), then it is
well known that its largest eigenvalue is less than O(

√
n). Thus for c

sufficiently large and k = c
√
n, we can at first place distinct whether

G ∼ G(n, 1/2) or G ∼ G(n, 1/2, k). Moreover, we can hope that the
eigenvector corresponding to the largest eigenvalue of A will point to the
planted clique. As we will see shortly, this is indeed the case.

Note that the above intuition relied on the fact that the largest eigen-
value of the +1/ − 1 version of the adjacency matrix of a graph G′ ∼
G(n, 1/2) is O(

√
n). This is part of an important theorem which was first

proved by Füredi and Komlós ([FK81]) and recently strengthened by Vu
([Vu05]). Vu also filled a minor gap in the original proof. We will not state
their result but rather use the following weaker version of their theorem.

CHAPTER 2. PLANTING A CLIQUE 17

Theorem 2.1. Suppose A is a symmetric n × n random matrix with in-
dependent above-diagonal entries uniformly distributed in ±1. Then, with
high probability, the largest eigenvalue of A is bounded by 4

√
n.

We will prove Theorem 2.1 at the end of the chapter. Our approach is
different from those in [FK81] and [Vu05]. Both of these papers consider
the value of Trace((A−EA)r) and use it to bound λ1 ≤ Trace((A−EA)r)1/r

for some large r. While their argument yields stricter results, we provide a
probabilistic proof which has very nice ideas. We do not know where this
proof first appeared, but it is a well known argument and it is sufficient
for our purposes.

We have almost all the tools we need to display the algorithm that
recovers a clique of size k = c

√
n for some c large enough. The following

simple lemma (which appeared in [McS01]) will be crucial for the proof.
Let ‖A‖2 denote the 2-norm of a matrix A, i.e. ‖A‖2 = max‖x‖=1 ‖Ax‖.
Note that for a symmetric matrix this is just the eigenvalue of largest
absolute value. Finally, let ‖A‖F denote the Frobenius norm of a matrix,
i.e. the square root of the sum of squares of the entries of A. It is well
known that if A has rank r, then ‖A‖F ≤

√
r ‖A‖2.

Lemma 2.2. Suppose A,B are m × n matrices with rank(B) = r. If Ar
is the best rank r approximation to A, then

‖Ar −B‖2F ≤ 8r ‖A−B‖22

Proof Note that since Ar −B has rank at most 2r, we have that

‖Ar −B‖2F ≤ 2r ‖Ar −B‖22 .

By triangle inequality, we have that ‖Ak −B‖2 ≤ ‖Ak − A‖2 + ‖A−B‖2.
Hence

‖Ar −B‖2F ≤ 2r(‖Ar − A‖2 + ‖A−B‖2)
2

Since Ar is the best rank r approximation of A and since B has rank r, we
have that ‖Ar − A‖2 ≤ ‖A−B‖2 (see Appendix), so that

‖Ar −B‖2F ≤ 8r ‖A−B‖22

Note that if v denotes the eigenvector corresponing to the eigenvalue λ1
with the largest magnitude, then the best rank 1 approximation is given
by A1 = λ1vv

T.
We are now ready to state and prove the main theorem of this section.

CHAPTER 2. PLANTING A CLIQUE 18

Theorem 2.3. Let k ≥ 46
√
n. Then, there is a polynomial time algorithm

which given a graph G ∼ G(n, 1/2, k), outputs the vertices of the planted
clique with high probability.

Proof The algorithm we are going to analyze is the following:

1. Let A be the +1/ − 1 version of the adjacency matrix of the graph
G.

2. Compute the eigenvector v corresponding to the largest eigenvalue
of A.

3. Let S be the subset of k vertices of largest magnitude in v.

4. Output all the vertices that have at least 3k/4 neighbors in S.

To prove its correctness, apply first Lemma 2.2 for B = E[A] and r = 1.
We obtain

‖A1 − E[A]‖2F ≤ 8 ‖A− E[A]‖22 .

By Theorem 2.1, this yieds

‖A1 − E[A]‖2F ≤ 128n.

Let A(i) denote the i-th column of the matrix A and note that

‖A1 − E[A]‖2F =
∑
i

(∥∥∥A(i)
1 − E[A(i)]

∥∥∥2
F

)
,

so that ∑
i

(∥∥∥A(i)
1 − E[A(i)]

∥∥∥2
F

)
≤ 128n. (2.1)

Let ε > 0 to be determined later. By (2.1), for all but
√
n/ε columns the

following holds: ∥∥∥A(i)
1 − E[A(i)]

∥∥∥2
F
≤ 128ε

√
n. (2.2)

Indeed, if this was not the case, then
∑

i

(∥∥∥A(i)
1 − E[A(i)]

∥∥∥2
F

)
> 128n

which contradicts (2.1).

Now let’s pause for a second and think what a good handle (2.2) is.

It says that the columns A
(i)
1 are close to the expectation columns E[A(i)].

Note that these columns are actually the same for each of the two “clus-
ters”, i.e. the planted clique and the rest of the graph. Namely, E[A(i)]

CHAPTER 2. PLANTING A CLIQUE 19

is the zero vector when i does not belong to the planted clique, and the
indicator vector of the clique when i belongs to the clique. This suggests
the following approach to partition the vertices of G: pick an arbitrary
vertex i and find all vertices j whose corresponding column A

(j)
1 is close to

A
(i)
1 . Clearly if the indicator vector of the clique is sufficiently far from the

zero vector, this approach will correctly classify the vertices in the clique
and those not, at least for those vertices that (2.2) holds.

Of course, since (2.2) does not hold for all vertices, a refinement must
be applied afterwards to fix wrongly classified vertices, but we will not
dwelve deeper into the details. However, it is worth to mention that the
above approach can be applied more generally, when the graph has more
than two clusters, e.g. two planted cliques or a planted bipartition, etc.
This is roughly the argument by McSherry in [McS01], which solves more
generally the planted partition problem.

Now let’s return to the analysis of the algorithm. The fact that we
can just use the eigenvector corresponding to the largest eigenvalue to
recover the planted clique (and avoid the above cluster method) is just a
consequence of simple (but tricky) algebra.

Namely, recall that A1 = λ1vv
T where λ1 is the largest eigenvalue of

A and v its corresponding eigenvector. Thus we have that A
(i)
1 = λ1viv.

Denote also by p the indicator vector of the clique (no normalization).
Note that ‖p‖2 = k. Moreover,

E[A
(i)
1] =

{
p, if i belongs to the clique
0, otherwise

For the rest of the proof, it would be better to try to reverse engineer the
value of k for which the algorithm works correctly. For this to happen, the
entries in v which correspond to vertices in the clique should be sufficiently
dense in the k largest entries of v. We will use (2.2) to find the value of k
for which this is indeed the case.

Let us first consider a vertex i which is not in the planted clique and

for which (2.2) holds. Then
∥∥∥A(i)

1

∥∥∥ = λ21v
2
i and E]A

(i)
1] = 0, so that (2.2)

yields
λ21v

2
i ≤ 128ε

√
n. (2.3)

Now consider a vertex i which is not in the planted clique and for which
(2.2) holds. Then, use the inequality ‖a− b‖2 ≥ 1

2
‖b‖2 − ‖a‖2 (see Ap-

pendix for a proof), so that (2.2) yields

1

2
k − 128ε

√
n ≤ λ21v

2
i . (2.4)

CHAPTER 2. PLANTING A CLIQUE 20

Using (2.3), (2.4) we see that if 1
2
k − 128ε

√
n ≥ 128ε

√
n, the entries of v

within the clique will be greater than every other entry outside the clique
(for those entries which (2.2) holds). The condition 1

2
k−128ε

√
n ≥ 128ε

√
n

implies that k should satify

k ≥ 512ε
√
n. (2.5)

Now to make the whole argument work, we also need to make sure that
the number of vertices such that (2.2) does not hold, say t, is sufficiently
small compared to k, so that at least k − t coordinates from the largest
k coordinates of v point to the clique). Since the algorithm demands
at least 3k/4 coordinates to point to the clique, k should be such that

k −
√
n
ε
≥ 3k/4, which yields

k ≥ 4

√
n

ε
. (2.6)

To satisfy (2.5) and (2.6) simultaneously, some simple algebra shows that
the optimal choice for ε is 1/

√
128, yielding k ≥ 46

√
n.

To recapitulate, we have ensured that the set S recovered by the algo-
rithm contains at least 3k/4 vertices of the clique. By a Hoeffding bound
and a union bound it is immediate to see that any vertex outside of the
clique has at most (2/3)k neighbors in S. Since vertices in the clique have
at least 3k/4 neighbors in S, the algorithm recovers exactly the planted
clique with high probability.

By a slight tighter analysis, the condition k ≥ 46
√
n can be improved

to k ≥ 20
√
n. We omit the details.

2.4 Constant Improvements

In this section, we will show how to improve Theorem 2.3 to recover
planted cliques of size k = c

√
n, for any constant c. We assume that we

have an algorithm which finds planted cliques of size k = c′
√
n. The nice

and elegant idea given by [AKS98] is the following:

1. Try to guess a constant number s of the vertices in the planted clique.
Denote this set by S and by NS the set of their common neighbors.
Note that guessing means to pick a random subset of s vertices.

2. Run your algorithm on the graph induced by NS.

CHAPTER 2. PLANTING A CLIQUE 21

3. Output NS ∪ S iff |NS ∪ S| = k.

What is the expected running time of the above algorithm? Since a
“guess” is correct with probability at least (1/(c′

√
n)s), we have that after

an expected number of roughly O(ns/2) trials, we will find the desired
subset S.

Suppose that at some point the algorithm indeed finds s vertices of the
planted clique. Then the graph induced by NS is a random graph on NS

vertices with a planted clique of size n−s. Note that here we used that the
set S we guessed is a random subset of the initial planted clique. Note also
that |NS| = n

2s
(1+o(1)). To see this note that a vertex outside of the clique

remains in the new graph with probality 1/2s. Thus, if s is chosen so that
c
√
n − s ≥ c′

√
n/2s, our algorithm will correctly find the planted clique

in the new graph (intuitively we have obtained a new instance of planted
cique with improved parameters). This amounts to picking s roughly equal
to 2 log(c′/c).

While the above technique is very general and works with almost all
approaches, it has a major a drawback: the running time increases by
a factor of n2 log(c′/c). In [DGGP10], the problem of improving the slow
running time is posed.

2.5 Proof of Spectral Norm bound

In this section we prove Theorem 2.1. The proof uses the same steps
as one given by Spielman.

Proof Let x be an arbitrary unit vector in Rn and consider the random
variable S = xTAx. We have that

S = 2
∑
i<j

Aijxixj. (2.7)

Since E[Aij] = 0, we have that E[S] = 0. We are going to use Hoeffding’s
inequality (see Appendix) to bound the probability that S deviates more
than t from its expectation. To do this, let us calculate the difference
between the maximum and the minimum value of a term in (2.7). Since
|Aij| ≤ 1, we have

−2xixj ≤ 2Aijxixj ≤ 2xixj,

CHAPTER 2. PLANTING A CLIQUE 22

so that the difference between the maximum and minimum value is 4xixj.
Summing the squares of these differences, we have that∑

i<j

16x2ix
2
j = 8

∑
i,j

x2ix
2
j = 8(

∑
i

x2i)
2 = 8.

We can now apply Hoeffding’s inequality to obtain that for an arbitrary
vector x ∈ Rn

Pr[|xTAx| ≥ t] ≤ 2e−
t2

4 . (2.8)

While (2.8) is on the right path, it is not enough to obtain the desired
result since x can be any vector in the unit ball. To overcome this obstacle
we show that it is enough to look at a certain portion of the surface of the
ball.

To see this, first observe that A, as it is a symmetric matrix, has n eigen-
vectors which form a basis of Rn. Let v(1), . . . , v(n) denote the eigenvalues
of the matrix A ordered by the order of magnitude of their corresponding
eigenvalues, so that the eigenvector corresponding to λ1 is v(1). Take any
x and decompose it as a linear combination of the v(i), i.e.

x =
∑
i

αiv
(i) where

∑
i

α2
i = 1.

Note that

xTAx =
∑
i

α2
iλi

≥ α2
1λ1 − λ1

(∑
i≥2

α2
i

)
≥ λ1(2α

2
1 − 1)

Hence, if α1 ≥
√

3/2, we obtain that xTAx ≥ (1/2)λ1. Since α1 =
〈
x, v(1)

〉
,

we obtain that

if xTv(1) ≥
√

3

2
, then xTAx ≥ λ1

2
. (2.9)

Now pick a random x in the unit ball. Then, by what we have just proved

Prx,A

[
λ1 ≥ t

⋂
xTv(1) ≥

√
3

2

]
≤ Prx,A

[
xTAx ≥ t

2

]
≤ PrA

[
xTAx ≥ t

2

]
.

(2.10)

CHAPTER 2. PLANTING A CLIQUE 23

Let v be an arbitrary unit vector. Then

Prx,A

[
λ1 ≥ t

⋂
xTv(1) ≥

√
3

2

]
= Prx,A

[
λ1 ≥ t

⋂
xTv ≥

√
3

2

]
(2.11)

= Prx

[
xTv ≥

√
3

2

]
PrA [λ1 ≥ t] (2.12)

Note that (2.11) holds by the spherical symmetry of the distribution of a
random unit vector. Combine (2.10), (2.12) to obtain

PrA

[
xTAx ≥ t

2

]
≥ Prx

[
xTv ≥

√
3

2

]
PrA [λ1 ≥ t] . (2.13)

Thus it suffices to find Prx

[
xTv ≥

√
3
2

]
where v is an arbitrary unit vector.

While we could compute this explicitly, we resort to a simple approximation
argument. Let H be the hyperplane xTv =

√
3
2

. This cuts a surface S ′ from
the unit ball. It is clear that the required probability is the ratio of the
area of S ′ over the area of the unit ball. Note that the area of S ′ is greater
than the area of the n− 1 dimensional ball defined by the restriction of H

within the unit ball. The latter is a ball of radius
√

1− (
√

3/2)2 = 1/2.

Using that the area of the n dimensional unit ball is

π
n
2

Γ(n
2

+ 1)
,

we obtain that

Prx

[
xTv ≥

√
3

2

]
≥ 1√

πn2n−1

Plugging this back into (2.13), we have

PrA [λ1 ≥ t] ≤
√
πn2n−1 · PrA

[
xTAx ≥ t

2

]
≤
√
πn2n · e−

t2

16

Hence for t > 4
√

ln 2
√
n ≈ 3.33

√
n, the above probability becomes expo-

nentially small which yields the desired result.

There are many (and stricter) derivations of Theorem 2.1. [FK81] and
[Vu05] prove it by combinatorial means. In [KV09] and [BV09], a lattice
is used to discretize the space. Finally, [AKV02] makes use of Talagrand’s
inequality ([Tal96]).

Chapter 3

Extensions

While in the previous chapter we saw the best known achievable bounds
for recovering planted cliques, there are other remarkable approaches that
are worthy to mention.

3.1 Other Algorithmic Ideas

3.1.1 A Semidefinite Programming Approach

Feige and Krauthgamer [FK00] introduced a powerful method to find
planted cliques based on the Lovász theta function. Their approach has
two advantages:

1. Their algorithm works in the semirandom model as well. In the
semirandom model, a graph G is first sampled from the distribution
G(n, 1/2, k). Then, an adversary can remove edges which are not in
the planted clique. Thus their algorithm has a nice robustness prop-
erty that certain algorithms do not enjoy, e.g. Kucera’s algorithm.

2. Their algorithm provides a certificate that the solution it outputs is
optimal. This certificate is an upper bound for the clique number,
which matches almost surely the output of their algorithm.

As mentioned before, their algorithm makes use of the Lovász theta func-
tion, usually denoted by θ(G) for a graph G. It is a relaxation of the inde-
pendent set problem and can be computed using semidefinite programming
to arbitrary precision ε in time poly(log 1

ε
).

Denote by Ḡ, the complementary graph of G. The algorithm in [FK00]
relies on the following lemma.

24

CHAPTER 3. EXTENSIONS 25

Lemma 3.1. Let G ∈ G(n, 1/2, k), where k > c
√
n for a sufficiently large

constant c. Then θ(Ḡ) = k with probability exponentially close to 1.

The proof of Lemma 3.1 can be found in [FK00]. Using Lemma 3.1, an
algorithm which recovers the clique and provides a certificate of optimality
can be designed. Namely:

1. Let P be the set of vertices in G such that θ(Ḡ\v) ≤ θ(Ḡ)− 1/2.

2. Output θ(Ḡ) and P .

The algorithm can be modified so that it makes just one computation of
the θ function.

To extend their algorithm to work for semirandom instances as well,
Feige and Krauthgamer use the monotonicity of the θ function.

3.1.2 A Probabilistic Algorithm

The approaches we have seen up to now for the case k = Ω(
√
n) are

kind of non intuitive, at least at first sight. The following algorithm due
to Feige and Ron ([FR10]) “fixes” this.

The algorithm consists of two phases. The first phase iteratively re-
moves vertices of lowest degree until it ends up with a clique. The second
phase expands the clique iteratively by checking which of the vertices which
were removed in the first phase can be used to expand the clique.

The algorithm in [FR10], apart from being simple, has also the advan-
tage that it runs in linear time. However, it has the disadvantage that
it succeeds with constant probability (or at least this is what the authors
prove). This was fixed by [DGGP10], where an algorithm is designed sim-
ilar to the one we described above, but which refines the two phases.

3.1.3 The Tensor Approach

A very powerful approach for the planted clique algorithm was sug-
gested by Frieze and Kannan ([FK08]). Their algorithm is based on 3-
dimensional tensors, i.e. 3-dimensonal arrays.

Frieze and Kannan introduced the 3-dimensional parity tensor of a
graph G = (V,E), where the tensor”s entries denote the parity of the
number of edges in subgraphs induced by 3 distinct vertices. More specif-
ically, let Eij equal to 1 if edge (i, j) is present in the graph G and -1
otherwise. Then, define the 3-dimensional tensor A with entries

Aijk =

{
EijEikEjk if i 6= j, i 6= k, j 6= k
0 otherwise

CHAPTER 3. EXTENSIONS 26

We will denote by ‖A‖2 the 2-norm of the tensor A, i.e.

‖A‖2 = max
‖x‖=1

A(x, x, x) = max
‖x‖=1

∑
i,j,k

Aijkxixjxk

The idea they exploit is the same as in the case of matrices. Specifically,
if we denote by k the size of the planted clique, then the (normalized)
indicator vector of the clique forces the norm to be at least

(
k
3

)
k−3/2 =

Ω(k3/2), whereas the 2-norm of the parity tensor corresponding to a random
graph is roughly bounded by O(

√
n) (modulo some logarithmic factors).

Their results can be summarized in the following two theorems.

Theorem 3.2. There is a constant C such that with probability at least
1 − n−1 the norm of the 3-dimensional parity tensor A : [n]3 → −1, 1 for
the random graph G(n, 1/2) is bounded by

‖A‖2 ≤ C
√
n log4 n

Theorem 3.3. Let x be a vector such that A(x, x, x) ≥ αr ‖A‖2. Then,
for p such that

n ≥ p > Cα−2n1/3 log3 n

the planted clique can be recovered with high probability in polynomial time.

The proof of Theorem 3.2 by [FK08] is combinatorial. Their approach
was simplified and generalized to r-dimensional tensors by Brubaker and
Vempala ([BV09]). They prove that a clique of size roughly equal to n1/r

can be recovered if one can maximize (or even approximate within some
factors) the tensor norm. Their proof yields an analogous theorem to
Theorem 3.2.

Do their approaches achieve breaking the o(
√
n) barrier? As it was

proved later, no. It turned out that maximizing 3-dimensional tensor
norms is generally NP-hard ([HL09]). Still, it is not known whether this
extends to the the special structure (and randomness) that A has.

CHAPTER 3. EXTENSIONS 27

3.2 Connections to Other Problems

As we have seen, it seems that it is difficult to cross the barrier of
finding a planted clique of size o(

√
n). This naturally lead to the conjecture

(which is still open) that finding a planted clique of sufficiently small size is
a computationally hard problem. The exact formulation of the conjecture
is the following.

Conjecture. Finding a planted clique of size k = O(log n) is hard.

We briefly present some results which demonstrate the rich depth of
the planted clique problem.

3.2.1 Cryptography

Juels and Peinado, assuming the conjecture, use the planted clique to
construct several cryptographic protocols ([JP00]).

One of them is used to create hierarchical keys. In this setting, there
are t parties P1, . . . , Pt. Assume for simplicity that t = O(1). We want to
assign a key to each party so that Pi knows all the keys of the parties Pj
with j > i (but not vice versa). The protocol which is proposed in [JP00]
is the following:

1. P1 samples a graph G from the distribution G(n, 1/2).

2. P1 plants a clique of size O(log n) and then passes the new graph to
P2.

3. P2 plants a clique of size O(log n) and then passes the new graph to
P3, and so on.

4. Pt plants a clique of size O(log n) and then publishes the final graph.

The key corresponding to each player is the clique he planted. Clearly, the
cliques which the parties planted are with high probability disjoint. Note
also that each player Pi knows what the graph was before any player Pj
with j > i planted his own clique and consequently Pi can recover the keys
of the players Pj with j > i.

On the other hand, if finding a planted clique is computationally hard,
then no party Pj can recover the key of a party Pi with i < j.

CHAPTER 3. EXTENSIONS 28

3.2.2 Complexity

Hazan and Krauthgamer ([HK09]) proved that if there is a polynomial
time algorithm which are ε-close to the best Nash equilibrium of a 2 player
game which maximizes social welfare (the sum of players’ payoffs), then a
planted clique of size O(log n).

Note that as in the case of planted clique, there is an nO(logn) algorithm
to find approximate Nash equilibria due to Lipton, Markakis and Mehta
([LMM03]).

Finally, Alon et al. ([AAK+07]) proved that if there is a polynomial
time algorithm which can test ε-closeness to O(log n)-pairwise indepen-
dence given polynomial number of samples, then one can recover a planted
clique of size O(log n).

References

[AAK+07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef,
Ronitt Rubinfeld, and Ning Xie. Testing k-wise and almost
k-wise independence. In STOC, pages 496–505, 2007.

[Ajt98] Miklós Ajtai. The shortest vector problem in 2 is p-hard for
randomized reductions (extended abstract). In STOC, pages
10–19, 1998.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding
a large hidden clique in a random graph. In SODA, pages 594–
598, 1998.

[AKV02] Noga Alon, Michael Krivelevich, and Van H. Vu. On the con-
centration of eigenvalues of random symmetric matrices. Israel
Journal of Mathematics, (131):259b•“267, 2002.

[BE76] Béla Bollobás and Paul Erdös. Cliques in random graphs. Math-
ematical Proceedings of the Cambridge Philosophical Society,
80, 1976.

[BV09] S. Charles Brubaker and Santosh Vempala. Random tensors
and planted cliques. CoRR, abs/0905.2381, 2009.

[DGGP10] Yael Dekel, Ori Gurel-Gurevich, and Yuval Peres. Finding
hidden cliques in linear time with high probability. CoRR,
abs/1010.2997, 2010.

[FK81] Zoltán Füredi and János Komlós. The eigenvalues of random
symmetric matrices. Combinatorica, 1(3):233–241, 1981.

[FK00] Uriel Feige and Robert Krauthgamer. Finding and certifying
a large hidden clique in a semirandom graph. Random Struct.
Algorithms, 16(2):195–208, 2000.

29

REFERENCES 30

[FK08] Alan M. Frieze and Ravi Kannan. A new approach to the
planted clique problem. In FSTTCS, pages 187–198, 2008.

[FR10] Uriel Feige and Dana Ron. Finding hidden cliques in linear
time. In AOFA, 2010.

[H̊as97] Johan H̊astad. Some optimal inapproximability results. Elec-
tronic Colloquium on Computational Complexity (ECCC),
4(37), 1997.

[HK09] Elad Hazan and Robert Krauthgamer. How hard is it to ap-
proximate the best nash equilibrium? In SODA, pages 720–727,
2009.

[HL09] Christopher Hillar and Lek-Heng Lim. Most tensor problems
are np hard. CoRR, abs/0911.1393, 2009.

[Jer92] Mark Jerrum. Large cliques elude the metropolis process. Ran-
dom Struct. Algorithms, 3(4):347–360, 1992.

[JP00] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic
security. Des. Codes Cryptography, 20(3):269–280, 2000.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

[Kuc95] Ludek Kucera. Expected complexity of graph partitioning
problems. Discrete Applied Mathematics, 57(2-3):193–212,
1995.

[KV09] Ravi Kannan and Santosh Vempala. Spectral algorithms.
Foundations and Trends in Theoretical Computer Science, 4(3-
4):157–288, 2009.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta.
Playing large games using simple strategies. In ACM Confer-
ence on Electronic Commerce, pages 36–41, 2003.

[McS01] Frank McSherry. Spectral partitioning of random graphs. In
FOCS, pages 529–537, 2001.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995.

REFERENCES 31

[Tal96] Michel Talgrand. Concentration of measure and isoperimetric
inequalities in product spaces. Publications I.H.E.S, (81):73–
205, 1996.

[Vu05] Van H. Vu. Spectral norm of random matrices. In STOC, pages
423–430, 2005.

[Zuc06] David Zuckerman. Linear degree extractors and the inapprox-
imability of max clique and chromatic number. In STOC, pages
681–690, 2006.

Appendices

32

33

Useful Inequalities

Theorem .4 (Markov’s Inequality). Let X be a random variable which
takes only positive values and has bounded expectation. Then for any real
number t > 0,

Pr[X ≥ t] ≤ E[X]

t

Proof Straightforward. Since X takes only positive values, by the defini-
tion of expectation, we have

E[X] ≥ tPr[X ≥ t].

Theorem .5 (Chebyshev’s Inequality). Let X be a random variable
with expected value µ and variance σ2. Then for any real number k > 0,

Pr[|X − µ| ≥ kσ) ≤ 1

k2

Proof Define

g(x) =

{
1, if |X − µ| ≥ kσ
0, otherwise

Note that 0 ≤ g(x) ≤ (X − µ)2

kσ
. Then

Pr[|X − µ| ≥ kσ) = E[g(x)] ≤ E[
(X − µ)2

kσ
] =

1

k2σ2
E[(X − µ)2]

The desired inequality follows since

E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2]− µ2 = σ2

Theorem .6 (The Second Moment method). Let X be a random vari-
able which takes only nonnegative values. Then

Pr[X > 0] ≥ (E[X])2

E[X2]

Proof Define

g(x) =

{
1, if X > 0
0, otherwise

34

Then using Cauchy-Schwarz inequality we have that

E[X] = E[X · g(X)] ≤
√

E[X2] ·
√
E[g(X)2]

The inequality follows since E[g(X)2] = Pr[X > 0].

Theorem .7 (Hoeffding’s Inequality). Let X = X1 + . . . + Xn where
the Xi”s are independent random variables. If ai ≤ Xi − E[Xi] ≤ bi for
every 1 ≤ i ≤ n, then for every t > 0, we have that

Pr[|X − E[X]| ≥ t] ≤ 2e
− 2t2∑

i(bi−ai)
2

Proof Fix t > 0, apply Markov’s inequality on the random variable etX

and then optimize t. The details of the proof can be found in many sources.
One of them is [MR95].

Proposition .8 (Bound for Binomial Coefficients). For every 0 < k <
n, the following inequality holds:(n

k

)k
≤
(
n

k

)
≤
(en
k

)k
Proof For the left part, use that

(
n
k

)
= n

k

(
n−1
k−1

)
and apply induction.

For the right part, note that(
n

k

)
=
n(n− 1) · · · (n− k)

k!
≤ nk

k!

Thus it suffices to prove that

kk

k!
≤ ek,

which follows easily from the series expansion of ex.

Theorem .9. For any matrix B with rank r and any matrix A, it holds
that ‖A− Ar‖2 ≤ ‖A−B‖2

Proof Let u(1), . . . , u(r), u(r+1) denote the top r+ 1 left singular vectors of
A (if rank of A is smaller than r + 1 the inequality holds trivially since
Ar = A). Since B is a rank r matrix and the vectors u(i) are orthonormal
to each other, we have that for some 1 ≤ i ≤ r + 1, u(i)B = 0. For this i,
we obtain that

∥∥u(i)(A−B)
∥∥ =

∥∥u(i)A∥∥ ≥ ‖A− Ar‖2 since u(i) is one of
the top r + 1 left singular vectors of A.

35

Proposition .10. For any two vectors a, b ∈ Rn the following inequality
holds:

1

2
‖b‖2 − ‖a‖2 ≤ ‖a− b‖2 .

Proof By expanding the norms, it suffices to prove the inequality for
arbitrary real numbers a, b. This amounts to proving

1

2
b2 − a2 ≤ (a− b)2,

which is equivalent to
0 ≤ (2a− b)2.

	The case of Random graphs
	Introduction
	Cliques in Random Graphs
	Finding Cliques in G(n,1/2)

	Planting a Clique
	The distribution G(n,1/2,k)
	Planted Clique of size (nlogn)
	Planted Clique of size (n)
	The Spectral Approach

	Constant Improvements
	Proof of Spectral Norm bound

	Extensions
	Other Algorithmic Ideas
	A Semidefinite Programming Approach
	A Probabilistic Algorithm
	The Tensor Approach

	Connections to Other Problems
	Cryptography
	Complexity

	References
	Appendices

