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Prìlogoc

To prìblhma eÔreshc tou dendropl�touc (treewidth) kai thc sklhrìthtac
(toughness) enìc graf matoc, eÐnai gnwst� NP-pl rh probl mata. To den-
dropl�toc apoteleÐ, se genikèc grammèc, èna mètro sunektikìthtac tou graf -
matoc kaj¸c kai èna mètro apodotikoÔ upologismoÔ gia gnwst� NP-hard
probl mata. Sugkekrimèna, eÐnai gnwstì ìti poll� NP-hard probl mata
se graf mata, mporoÔn na epilujoÔn me Dunamikì Programmatismì se po-
luwnumikì qrìno, an to dendropl�toc touc eÐnai fragmèno apì stajer�.H
sklhrìthta enìc graf matoc apì thn �llh eÐnai èna mètro kuklikìthtac enìc
graf matoc, kai apoteleÐ mÐa par�metro èndeixhc kuklik¸n dom¸n se autì.
'Ena par�deigma apoteleÐ h Ôparxh qamiltonian¸n kÔklwn se èna gr�fhma,
h opoÐa sqetÐzetai sten� me thn ènnoia thc sklhrìthtac. Sthn paroÔsa di-
plwmatik  ergasÐa susqetÐzoume to dendropl�toc enìc graf matoc me thn
sklhrìthta, kai dÐnoume �nw fr�gmata gia thn sklhrìthta enìc graf matoc.
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EuqaristÐec

Euqarist¸ jerm� ton epiblèponta thc diplwmatik c ergasÐac mou k. Leutè-
rh KuroÔsh, gia thn diark  upost rixh kai kajod ghsh kaj�olh th di�rkeia
ekpìnhs c aut c thc ergasÐac. Wc epiblèpwn, me enj�rrune na ereun sw se
b�joc èna jèma pou èqei meg�lo endiafèron gia mèna kai na sundu�sw gn¸-
seic kai idèec apì mia eureÐa jematologÐa. Ja  jela epÐshc na euqarist sw to
metaptuqiakì prìgramma MPLA, gia ta erejÐsmata kai tic gn¸seic pou mou
èdwse, kaj¸c kai gia thn eukairÐa na embajÔnw peraitèrw se jèmata jewrh-
tik c plhroforik c.

Tèloc, euqarist¸ thn oikogènei� mou kai idiaÐtera ton aderfì mou Prì-
dromo Gerakiì, gia thn st rix  touc me k�je pijanì trìpo.
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1 Treewidth

1.1 Introduction

In this section we will describe the notion of treewidth, a graph parameter
that expresses a measure of connectivity in graphs. This graph parameter
has many interesting theoretical and practical applications. Many NP-Hard
problems on general graphs, can be solved in polynomial time if the input
graph has bounded treewidth. Intuitively, small treewidth means that the
graph can be decomposed recursively into small subgraphs with small over-
lap between them. Therefore we can view a graph having small treewidth,
as graph that has a tree-like structure. When the input graph has bounded
treewidth, we can take andvantage of the underlying tree-structure of the
graph and apply dynamic programming techniques to achieve polynomial
time complexity.

The notion of treewidth was introduced by Robertson and Seymour in
their work on graph minors [1], as a measure of the topological resemblance
of a graph to the structure of a tree. The actual term ’treewidth’ was de-
fined in terms of tree decompositions. There is another, equivalent definition
of treewidth in terms of partial k-trees. Finding the treewidth of an arbi-
trary graph is NP-Hard, as it is reduced to another NP-Hard problem, the
pathwidth.

1.2 Tree Decompositions

As stated earlier, treewidth is defined via tree decompositions. Tree de-
compositions are defined as follows :

Definition 1. Let G = (V,E) be a graph, T = (I, F ) be a tree and let
V = ({Xi, i ∈ I}) be a collection of subsets of V (called bags). The pair
(V, T ) is called a tree decomposition of G, if it satisfies the following three
conditions :

1. For all v ∈ V (G), there exists an i ∈ I such that v ∈ Xi

2. For all {v, w} ∈ E(G), there exists an i ∈ I such that v, w ∈ Xi.
3. For all v ∈ V (G), Tv = {i ∈ I | v ∈ Xi} forms a connected subtree of T.

The last condition of definition 1 can be replaced by the following equiv-
alent condition :

3′. If i, j, k ∈ I and k is on the path from i to j in T then Xi ∩Xj ⊆ Xk

We can verify the previous statement as follows. Let i, j, k ∈ I and k be
on the path from i to j in T . Let P = i, v1, ..., vt, j be that path. Assume
also that v ∈ Xi∩Xj . Then i, j ∈ Tv = {i ∈ I | v ∈ Xi}, and from condition



1.2 Tree Decompositions 10

3. Tv is connected. Thus, there exists a path P ′ = i, v′1, ..., v
′
s, j in Tv. If

k ∈ P ′ then k ∈ Tv and therefore v ∈ Xk from the definition of Tv. If k 6∈ P ′,
then P ∪ P ′ forms a cycle in T which is a contradiction. So we conclude
that v ∈ Xi ∩Xj ⇒ v ∈ Xk.

Conversely, assume that we have replaced condition 3 with 3’ in definition
1. Let Tv = {i ∈ I | v ∈ Xi} and let i, j ∈ Tv (thus v ∈ Xi ∩Xj), and let k
be any vertex on the path from i to j in T . Then we have that Xi∩Xj ⊆ Xk

and consequently v ∈ Xk. So k ∈ Tv, and that holds for every other vertex
on that path. Thus Tv is connected.

We give the following examples of tree decompositions :

Example 1. Let G be the graph shown in Figure 1 (a). The tree shown
in (b) is a tree decomposition of G.

Figure 1: A graph G and a tree decomposition of G

An interesting example of a tree decomposition of a graph is that of a
(k × k)-grid. The (k × k)-grid is the graph on {1, ..., k}2 with edge set

{(i, j), (i′, j′) : |i− i′|+ |j − j′| = 1}

Figure 2: A (4× 4)-grid
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Example 2. Let G be the (4×4)-grid in figure 1.2. A tree decomposition of
G is the following path : {2, 1, 5, 9, 13},{2, 6, 5, 9, 13}, {2, 6, 10, 9, 13},{2, 6, 10, 14,
13}, {3, 2, 6, 10, 14},{3, 7, 6, 10, 14},{3, 7, 11, 10, 14}, {3, 7, 11, 15, 14},{4, 3, 7, 11,
15},{4, 8, 7, 11, 15}, {4, 8, 12, 11, 15},{4, 8, 12, 16, 15}. It is easy to verify that
every vertex and edge of G is contained in some vertex set in the path, thus
satisfying the first two conditions of a tree decomposition. It is also easy to
verify that for every v ∈ [1, k], Tv = {i ∈ I | v ∈ Xi} forms a subpath of
the original path and hence it forms a connected subtree of the tree decom-
position. Thus, the path is a valid tree decomposition of G, with a size of
largest bag of 5. The same line of thought can be applied to a (k × k)-grid,
for an arbitrary k, giving a tree decomposition with size of largest bag of
k+1. We will later see that this tree decomposition is optimal, with respect
to the size of the largest bag.

In the next section, we describe some important properties of tree de-
compositions. However, we haven’t yet answered a critical question. Which
graphs have tree decompositions? The answer is that every graph has at
least one tree decomposition. The most trivial tree decomposition is just one
node with a corresponding bag the entire vertex set of the original graph.
It is easy to verify that it satisfies all three conditions of definition 1. Tree
decompositions for the same graph can differ in the number of nodes, the
size of the bags and of course in the context of the bags. We are mostly
interested in tree decompositions with the minimum possible largest bag
and with the least possible number of nodes. In the context of dynamic
programming, we are interested in tree decompositions that do not have too
many nodes. One way to achieve this, is by running the following procedure
:

Algorithm 1

1: procedure TransformToNonRedunant({Xi | i ∈ I}, T = (I, F ))
2: . The input is a tree decomposition
3: while there exists an edge (i, j) ∈ F with Xi ⊆ Xj do
4: Contract edge (i, j) and let the new node be node j and remove
5: Xi from the set of bags
6: end while
7: return the new tree decomposition
8: end procedure

The output of algorithm 1 is a non-redundant tree decomposition.

1.3 Properties of Tree Decompositions

Tree decompositions have many useful properties, especially the tree-like
separation properties that we will use in section 3. A useful lemma on tree
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decompositions is the following. While this lemma is well known, we include
a proof of it that is rather different from what we usually come accross in
the literature.

Lemma 1. Let ({Xi | i ∈ I}), T = (I, F )) be a tree decomposition of graph
G = (V,E). Let W be a clique in G. Then there exists an i ∈ I with
W ⊆ Xi.

Proof. We will prove it by induction on n = |W |.
For n = 1 and n = 2, it is immediate from the conditions 1,2 of the

definition of a tree decomposition (Definition 1), since ∀v ∈ V (G) ∃i ∈
I [v ∈ Xi] and ∀{v, u} ∈ E(G) ∃i ∈ I[{v, u} ⊆ Xi].

Suppose now that n > 2, v ∈ W and also let W ′ = W \ {v}. Then
|W ′| < n and we can apply the induction hypothesis on W ′. So it holds
that ∃k ∈ I [W ′ ⊆ Xk]. If v ∈ Xk there is nothing to prove. So assume
that v 6∈ Xk. From condition 2 of definition 1 and the fact that {v, u} ∈
E(G), ∀u ∈W ′, we have that :

∀u ∈W ′ ∃j ∈ I [{v, u} ⊆ Xj ] (∗)

Let Xj1 , .., Xjs be all the sets that satisfy the condition ∃u ∈W ′ {v, u} ⊆
Xjt (1 ≤ t ≤ s). If s = 1 then js is the desired i because of (*). So assume
further that s > 1. Let now Tu = {j ∈ I | u ∈ Xj}. Then the following hold
as well :

1. For all 1 ≤ t ≤ s ∃u ∈W ′ [jt ∈ Tu], by their definition
2. For all 1 ≤ t ≤ s [v ∈ Xjt ], by their definition
3. ∀u ∈W ′ [k ∈ Tu], since u ∈ Xk

Now let TW ′ = ∪u∈W ′Tu. Then TW ′ is connected because ∀u ∈W ′, Tu is
connected and ∀u ∈W ′ k ∈ Tu (from 2). We also have that j1, ..., js ∈ TW ′ .
In more detail, each Tu is connected and k is a common node.

Now, it cannot be the case that node k is on the path from jl to jl′

(1 ≤ l < l′ ≤ s) in TW ′ because from condition 3’ of tree decompositions we
would have that v ∈ Xjl ∩Xjl′ ⊆ Xk, which yields a contradiction because
of the assumption that v 6∈ Xk. Then TW ′ must have the following form
: set node k as the root of TW ′ . Then k is connected to only one node r
having the property r ∈ {j1, ..., js} or r has descendants in {j1, ..., js}.

Suppose first that there exists a node t ∈ {j1, ...js} such that nodes in
{j1, ..., js} are in the subtree of TW ′ below t. Then node t is on the path
between node k and node r′ ∈ {j1, ..., js} \ {r}. Hence, Xk ∩ Xr′ ⊆ Xt,
for any r′ ∈ {j1, ..., js} \ {t} and consequently W ′ ⊆ Xt (because of (*)).
Furthermore, v ∈ Xt, thus W ⊆ Xt.

Suppose now that there is no such node and let r be the more distant
from k ancestor of all nodes in {j1, ...js} in TW ′ . Then, there exist nodes
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r1, r2 ∈ {j1, ...js}, such that r1 and r2 are on different branches of r. Then
node r is on the path between node r1 and r2 in TW ′ , which implies that
v ∈ Xr1 ∩Xr2 ⊆ Xr. Now, r is also in the path between k and nodes j1, ...js,
which means that W ′ ⊆ Xr (again using (*)). Hence, W ⊆ Xr.

A tree has two useful properties. The first is that deleting an edge causes
the tree to split into two connected components. The second is that deleting
a node causes the tree to split into a number of components equal to the
degree of that node. In fact, condition 3’ in the definition of tree decom-
position (Definition 1) leads to similar tree-like separation properties of the
initial graph, which means that separations of the tree decomposition of the
graph translate to separation of the graph. So let G = (V,E) be a graph
and ({Xi | i ∈ I}), T = (I, F )) be a tree decomposition of G. For every
subtree Ts of T , let GTs = G(∪i∈TsXi) denote the subgraph of G induced
by the vertices in the bags indexed by nodes of Ts. Naturally, GT = G. The
following lemmata describe those tree-like separation properties of G (their
proofs can be found in [4]). The first one describes the analog of the vertex
separation property of a tree :

Lemma 2. Let i ∈ I and assume that T \ {i} has components T1, ..., Tk.
Then the subgraphs GT1 \ Vi, ..., GTk \ Vi have no vertices in common, and
there are no edges between them.

Assume that the precondition of Lemma 2 holds. From condition 1 of
Definition 1, we have that for every v ∈ V (G), there exists an i ∈ I such
that v ∈ Xi. That means that for every v ∈ V \ Vi there exits a j ∈ I \ {i}
such that v ∈ Xj . That node j must belong to some component Ts in
T \ {i}. Thus for every v ∈ V \ Vi there exists an s ∈ [1, k] such that v
belongs to subgraph GTs \ Vi. From Lemma 2, v does not belong to any
other subgraph GTl for l 6= s, and is not connected to a vertex belonging to
any other subgraph either. So the set Vi actually separates G, into connected
components GT1 \ Vi, ..., GTk \ Vi, where k is the degree of node i in T . The
following is a corollary of Lemma 2 :

Corollary 1. Let i ∈ I and assume that T \ {i} has components T1, ..., Tk.
Then G \ Vi has components GT1 \ Vi, ..., GTk \ Vi.

The following lemma describes the analog of the edge separation prop-
erty of a tree :

Lemma 3. Let i, j ∈ I be two adjacent nodes in T and let X,Y denote the
two components of T after the deletion of the edge (i, j). Then removing
Vi ∩ Vj from G, disconnects G into the two subgraphs, GX \ (Vi ∩ Vj) and
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Figure 3: A tree decomposition T of a graph G and t a node of T . G \ Vt
has components GT1 \ Vt, ..., GTk \ Vt.

GY \ (Vi∩Vj) that do not share any vertices and there is no edge connecting
them.

Figure 4: A tree decomposition T of a graph G. Vertex set VX ∩VY discon-
nects G \ (Vi ∩ Vj) into two components.

An interesting property of tree decompositions is that they are passed
on to subgraphs :

Lemma 4. For every H ⊆ G, the pair ({Xi ∩ V (H) | i ∈ I}, T = (I, F )) is
a tree decomposition of H.

In the previous section we described a procedure (algorithm 1), for delet-
ing nodes that are redundant in a tree decomposition, resulting in a tree
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decomposition of the same graph with fewer nodes that is nondedundant.
The following proposition states that at the end of this procudure the num-
ber of nodes of the tree decomposition produced is at most n :

Proposition 1. Let G be a graph on n vertices. Any nonredundant tree
decomposition of G has at most n nodes (bags).

1.4 Treewidth

The definition of treewidth is based on the definition of the width of tree
decompositions :

Definition 2. The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F ))
is maxi∈I |Xi| − 1.

So we have the following definition of treewidth in terms of tree decom-
positions :

Definition 3. The treewidth, tw(G), of a graph G is the minimum width
over all tree decompositions of G.

An optimal tree decomposition of a graph G is one with the smallest
maximum bag.

The following lemma asserts the correctness of algorithm 1 :

Lemma 5. [37] Let G = (V,E) be a graph with tw(G) ≤ k. Then there
exists a tree decomposition of G, ({Xi | i ∈ I}, T = (I, F )) of width at most
k, such that for all {i, j} ∈ F : Xi 6⊆ Xj and Xj 6⊆ Xi.

Let ω(G) be the size of the largest clique in graph G. Then we have the
following corollaries of lemma 1 :

Corollary 2. For every graph G, tw(G) ≥ ω(G)− 1.

Corollary 3. The complete graph on n vertices has treewidth tw(Kn) =
n− 1.

Let α(G) be the size of the maximum independent set in graph G. The
following lemma bounds treewidth using the size of the maximum indepen-
dent set.

Lemma 6. Let G be a graph on n vertices. Then tw(G) ≤ n− α(G).
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Proof. If α(G) = 0 then G is the complete graph on n vertices, thus tw(G) =
n−1 ≤ n = n−α(G). Suppose now that α(G) = k > 0, and let v1, ..., vk be k
vertices forming a maximum independent set. Now setXi = {vi}∪NG(vi) for
1 ≤ i ≤ k, Xk+1 = V (G)−{v1, ..., vk}, I = {1, .., k+1} and F = {{i, k+1} |
i ∈ I}. Then the pair ({Xi | i ∈ I}, T = (I, F )) is a valid tree decomposition
of G. Now let ni = |{vi}∪NG(vi)| for 1 ≤ i ≤ k and nk+1 = n−k be the sizes
of the bags X1, ..., Xk, Xk+1 respectively. Observe that ni−1 ≤ nk+1 = n−k
for 1 ≤ i ≤ k, since the neighborhood of each vi can not include vertices
in the independent set. Hence, maxi∈I |Xi| ≤ n − k + 1 = n − α(G) + 1.
Consequently, tw(G) ≤ maxi∈I |Xi| − 1 ≤ n− α(G) (the tree decomposition
is not necessarily optimal).

Let δ(G) denote the minimum degree of a graph G. The next lemma
presents a lower bound on treewidth, using the minimum degree as param-
eter.

Lemma 7. Let G be a graph. Then tw(G) ≥ δ(G).

Proof. Let ({Xi | i ∈ I}, T = (I, F )) be an optimal nonredundant tree
decomposition of G. If |I| = 1 then tw(G) = n− 1 and G must be complete
(see lemma 8), hence δ(G) = n − 1 = tw(G). Now suppose that |I| > 1
and let i ∈ I be any node of the tree decomposition with degT (i) = 1, and
let j be its neighboor. Since the tree decomposition is nonredundant, there
must exist a v ∈ Xi such that v 6∈ Xj . Now, from the condition 2 of the
definition of tree decomposition, the neighborhood of v must also belong in
Xi, that is NG(v) ⊂ Xi. Therefore, |Xi| ≥ |{v}∪NG(v)| ≥ δ(G)+1. Finally
tw(G) = maxi∈I |Xi| − 1 ≥ δ(G).

Lemma 4 asserts that if G is a graph and H ⊆ G, then given a tree
decomposition for G we can construct a tree decomposition T for H, simply
by constraining the bags of T to vertices in V (H). So we have the following
corollary of lemma 4 :

Corollary 4. Let G be a graph. For every H ⊆ G, tw(H) ≤ tw(G).

Combining corollaries 3 and 4, we easily get the following lemma.

Lemma 8. A graph G on n vertices has treewidth n− 1 if and only if it is
complete.

Proof. By corollary 3, if G = Kn then tw(G) = n − 1. Now suppose that
G is a noncomplete graph. Then it is easy to see that G is a subgraph of
H ≡ Kn − {(v, u)} for some v, u ∈ V (G). Now, set X1 = V (G) − v,X2 =
V (G) − u. It is easy to verify that the tree decomposition ({X1, X2}, T =
({1, 2}, {(1, 2)})) is a valid tree decomposition of H. Thus, we get tw(H) ≤
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n−2, since the maximum bag contains n−1 elements. Since G is a subgraph
of H, by corollary 4 we obtain tw(G) ≤ tw(H) ≤ n− 2.

A well known result is the following :

Lemma 9. Let G = (V,E) be a graph, and H = (W,F ) a minor of G.
Then tw(H) ≤ tw(G).

The next lemma, shows that we can restrict the family of graphs we
examine, to connected graphs only :

Lemma 10. [35] The treewidth of a graph equals the maximum treewidth
over its connected components

Treewidth can be defined via several equivalent notions :

Definition 4. A graph G = (V,E) is chordal, if and only if every cycle in G
of length greater than three has a chord (i.e, an edge between non-succesive
vertices in the cycle).

Definition 5. A perfect elimination ordering of a graph G = (V,E) is an
ordering of V (G), v1, ..., vn, such that for all vi ∈ V (G), its higher numbered
neighbours form a clique, i.e, for every j, k > i, if {vi, vj}, {vi, vk} ∈ E(G),
then {vj , vk} ∈ E(G).

Definition 6. A graph G = (V,E), is an intersection graph of a family of
subtrees of a tree, if and only if there is a tree decomposition ({Xi | i ∈
I}, T = (I, F )) of G, and for every vertex v ∈ V (G) a subtree Tv = {i ∈ I |
v ∈ Xi} of T , such that for all v, w ∈ V (G) with v 6= w, {v, w} ∈ E(G) if
and only if Tv ∩ Tw 6= ∅.

Definition 7. A clique tree for a graph G = (V,E), is a tree T = (VT , ET )
where VT is the set of maximal cliques of G.

Definition 8. A junction tree for a graph G = (V,E), is a clique tree
T = (VT , ET ) for G that satisfies the following property : For any cliques
C1, C2, C3 in the clique tree, if C3 is on the path connecting C1 and C2 in
T then C1 ∩ C2 ⊆ C3.

We can view a junction tree as a tree decomposition ({Xi | i ∈ I}, T =
(I, F )), where for every i ∈ I, Xi is a clique. The maximality criterion in
definition 7 is just a consequence of lemma 1 and our restriction on non-
redundant tree decompositions. It turns out that these definitions describe
the same family of graphs, as we can see in the following theorem :

Theorem 1. [82, 88] Let G = (V,E) be a graph. The following statements
are equivalent :
1. G is a chordal graph.
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2. G has a perfect elimination ordering.
3. G is the intersection graph of subtrees of a tree.
4. G has a junction tree.

Definition 9. A triangulation of a graph G = (V,E) is a chordal graph H =
(V, F ) with E ⊆ F . A triangulation H = (V, F ) of a graph G = (V,E) is a
minimal triangulation, if there does not exist a triangulation H ′ = (V, F ′)
of G with E ⊆ F ′ ⊂ F . We denote the set of all triangulations of a graph
G by :

T (G) = {H | H is a triangulation of G}

We are especially interested in the following measure :

Definition 10. For any graph G, let mmc(G) denote the maximum clique
size of the minimum triangulation of a graph G :

mmc(G) = min
H∈T (G)

ω(H)

Suppose that we are given a tree decomposition ({Xi | i ∈ I}, T = (I, F ))
of a graph G. Then we can produce a triangulation H = (V, F ) of G with
the fill-in procedure in algorithm 2 :

Algorithm 2

1: procedure TriangulateGivenTreeDecomposition(Graph G,Tree
Decomposition ({Xi | i ∈ I}, T = (I, F )))

2: H ← G
3: for all i ∈ I do
4: for all w, u ∈ Xi : w 6= u do
5: if (w, u) 6∈ E(H) then
6: E(H)← E(H) ∪ {(w, u)}
7: end if
8: end for
9: end for

10: return H
11: end procedure

Algorithm 2 correctly produces a triangulation for a graph G, given a
tree decomposition for G, because in each Xi it adds edges between every
non-adjacent pair of vertices, thus turning each bag of T into a clique. Conse-
quently, the tree decomposition T becomes a clique tree satisfying condition
3’ of the definition of tree decompositions, hence T becomes a junction tree
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for H, which means that H is a chordal graph that has G as a subgraph
(theorem 1). Therefore H is a triangulation of graph G. The width of the
tree decomposition is exactly one less than the maximum clique size of H.
So we have the following lemmata :

Lemma 11. Given a graph G = (V,E) and a tree decomposition T = ({Xi |
i ∈ I}, T = (I, F )) for G, let H be the graph obtained by adding edges to G
so that each Xi becomes a clique. Then H is chordal.

Lemma 12. For any graph G :

tw(G) = min
H∈T (G)

ω(H)− 1

Definition 11. Let G = (V,E) be a graph and v ∈ V (G) be a vertex. We
call elimination of v, the operation that adds an edge between every pair of
non-adjacent neighbours of v, and then removes v.

Given an ordering π = v1, ..., vn of the vertices of a graph G, we can
produce a triangulation Hπ(G) with the following fill-in procedure :

Algorithm 3

1: procedure FillIn(Graph G,Ordering π)
2: H ← G
3: for i = 1 to n do
4: v ← π−1(i) . The ith vertex in the ordering π
5: for all w, u ∈ NH(v) : w 6= u, π(w) > π(v) and π(u) > π(v) do
6: if (w, u) 6∈ E(H) then
7: E(H)← E(H) ∪ {(w, u)}
8: end if
9: end for

10: end for
11: return H
12: end procedure

Here we use the denotation NG(v) to stand for the neighborhood of
vertex v in graph G.

We can view Algorithm 3 as an ”elimination game” in which we elimi-
nate sequentialy the vertices appearing in the ordering. The graph H pro-
duced contains all edges of the initial graph plus the edges that were added
during the elimination process. For i, 1 ≤ i ≤ n, we connect every pair
(vk, vl) of yet not adjacent higher numbered neighbours of vi (i < k < l).
This procedure defines a sequence of graphs (Gi)i=0..n, such that G0 ≡ G,
and Gn ≡ Hπ(G), where Hπ(G) is a triangulation of G. The reason that,
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Hπ(G) = FillIn(G, π) is a triangulation of G is that, the ordering π is a
perfect elimination ordering for Hπ(G) and thus Hπ(G) is chordal (theorem
1).

Let Hπ(G) = FillIn(G, π). We see that π is a perfect elimination or-
dering of Hπ(G), so Hπ(H) = H. It is also clear that if G1, G2 are two
graphs with the same vertex set and such that E(G1) ⊆ E(G2), then if
π is an ordering of their vertices, FillIn(G1, π) ⊆ FillIn(G2, π). Sup-
pose now that we are given a graph G and a triangulation H of G. Since
H is a triangulation of a graph, it is chordal and thus from theorem 1
we conclude that it has a perfect elimination ordering π. Consequently,
Hπ(G) = FillIn(G, π) ⊆ FillIn(H,π) = Hπ(H) = H. So from corollary
4, we have that tw(Hπ(G)) ≤ tw(H). That means that if we want to find
a triangulation of a graph G that achieves the minimum treewidth, we can
constrain our search into the set of triangulations derived by process FillIn
and the set ΠV (G) of orderings of the vertices of the graph. We sum up these
observations with the following lemmata :

Lemma 13. Let G be a graph and H any triangulation of G. Then there
exists an ordering π of V (G) such that Hπ(G) ⊆ H.

Lemma 14. Let G be a graph and let Π be the set of all the orderings of
V (G). Then the following relation holds :

min
H∈T (G)

ω(H) = min
π∈Π

ω(Hπ(G))

Combining lemmata 12,14, we get the following lemma :

Lemma 15. Let G be a graph and let Π be the set of all the orderings of
V (G), then :

tw(G) = min
π∈Π

ω(Hπ(G))− 1

The next theorem is immediate from lemmata described in this section :

Theorem 2. [36] Let G = (V,E) be a graph, and let k ≤ |V (G)| be a non-
negative integer . The following are equivalent :
1. G has treewidth k.
2. There exists a triangulation H of G with ω(H) ≤ k + 1.
3. There exists an ordering π of V (G), such that ω(Hπ(G)) ≤ k + 1.
4. There exists an ordering π = v1, ..., vn of V (G), such that there does not
exist an i < n such that |NHπ(G)(vi) ∩ {vi+1, ..., vn}| > k in Hπ(G).
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Given an ordering of the vertices of a graph, we can build a tree decom-
position of it, using the following procedure :

Algorithm 4

1: procedure OrderingToTreeDecomposition(Graph G,Ordering
π = v1, ..., vn)

2: if n = 1 then
3: X1 = {v1}
4: return ({X1}, ({1}, ∅))
5: end if
6: Let G′ = (V ′, E′) be the graph, obtained from G by eliminating v1

7: Let ({Xi | i ∈ I}, T = (I, F )) be the result of
8: OrderingToTreeDecomposition(G′, (v2, ..., vn))
9: j ← min{i ∈ I | {v1, vi} ∈ E(G)}

10: Xv1 ← NG(v1)
11: I ′ ← I ∪ {v1}
12: F ′ ← F ∪ {{v1, vj}}
13: return ({Xi | i ∈ I} ∪ {v1}, T = (I ′, F ′))
14: end procedure

The correctness of algorithm 4 is shown by the following result :

Lemma 16. [36] Let G = (V,E) be a graph, and π = (v1, ..., vn) be an
elimination ordering of G. Let H = (V,E(H)) = Hπ(G) be the filled graph
of G with respect to G. The output of Algorithm 4, when given as input the
graph G and vertex ordering π, is a tree decomposition ({Xv | v ∈ V }, T =
(V, F )), such that :
1. For all vi ∈ V , Xvi = {vi} ∪ {vj | j > i ∧ {vi, vj} ∈ E(H)}.
2. The width of the tree decomposition is ω(H)− 1.

The following corollary is immediate from lemmata 15,16 and theorem 2
:

Corollary 5. Let G = (V,E) be a graph, and ΠV (G) the set of orderings of
V (G). Then

tw(G) = min
π=(v1,...,vn)∈ΠV (G)

max
1≤i≤n

|NHπ(G)(vi) ∩ {vi+1, ..., vn}|

We have already mentioned that treewidth can be defined alternatively
via partial k-trees. We need the following definitions :

Definition 12. Let G = (V,E) be a graph. We call a vertex v ∈ V (G)
simplicial if its adjacency set induces a clique (i.e NG(v) forms a clique in
G)
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Definition 13. The class of k-trees is defined recursively as follows :
1. The complete graph on k vertices is a k tree.
2. Given a k-tree G with |V (G)| = n ≥ k, we can construct a k-tree H with
|V (H)| = n + 1, by adding a vertex and connecting it to exactly k vertices
which form a clique in G.

We can test if a given graph G = (V,E) is a k-tree by recursively removing
simplicial vertices of degree k. If there are no more such vertices and what
remains is the complete graph on k vertices, then the graph is a k-tree.
The sequence of vertices removed defines a perfect elimination ordering for
G, in which each vertex has exactly k higher numbered adjacent vertices.
The existence of a perfect elimination scheme for G means that G is chordal
(theorem 1). Also by theorem 2, G has treewidth k. So we have the following
fact :

Corollary 6. Every k-tree is chordal.

The following theorem provides us with several alternative characteriza-
tions of k-trees :

Theorem 3. Let G = (V,E) be a graph. The following statements are
equivalent :
1. G is a k-tree.
2. G is connected, it contains a k-clique but no (k + 2)-clique, and every
minimal separator of G is a k-clique.
3. G is connected, with |E(G)| = k|V (G)| − k(k+1)

2 and every minimal sep-
arator of G is a k-clique.
4. G has a k-clique, but not a (k + 2)-clique, and every minimal separator
of G is a clique, and for all v, u ∈ V (G) with v 6= u and {v, u} 6∈ E(G),
there exist exactly k vertex disjoint paths from v to u.

Definition 14. A partial k-tree is spanning subgraph of a k-tree (i.e it con-
tains the same vertex set and a subset of the edge set).

The following theorem gives us the relationship between partial k-trees
and treewidth :

Theorem 4. [108] Let G = (V,E) be a graph. Then G is a partial k-tree if
and only if tw(G) ≤ k.

Combining theorems 3,4 we get the following :
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Corollary 7. Let G = (V,E) be a graph with tw(G) ≤ k. Then

|E(G)| ≤ k|V (G)| − k(k + 1)

2

Definition 15. Let G = (V,E) be a graph, and let us say that two sub-
sets of V (G) touch if they have a vertex in common or E(G) contains an
edge between them. A set B of mutually touching connected vertex sets is a
bramble. A subset of V (G) is said to cover B if it meets every element of B.
The least number of vertices covering a bramble is the order of that bramble.

An easy example of a bramble is the set of crosses in a grid (see definition
2). Suppose we have a (k× k)-grid. Then the crosses of this grid are the k2

sets :

Ci,j = {{i, l} | l = 1, ..., k} ∪ {{l, j} | l = 1, ..., k}

The set of these k2 crosses form a bramble of order k. The following re-
sult, shown by Seymour and Thomas, gives us a useful relationship to help
us classify graphs of specified treewidth :

Theorem 5. [129] Let k be a non-negative integer, and G = (V,E) be a
graph. Then tw(G) ≥ k if and only if G contains a bramble of order strictly
greater than k.

A k×k-grid is actually a bramble of order k, so by the backward direction
of theorem 5 it has treewidth at least k − 1. In fact, the (k × k)- grid has
treewidth k. In example 2, we saw a tree decomposition for a (4 × 4)-grid
with treewidth 4 (note that the largest bag in the tree decomposition has
5 elements). We also noted that the same construction can be applied to a
(k × k)-grid for arbitrary k. So large grids have large treewidth.

The next theorem was proved by Robertson and Seymour in 1986 :

Theorem 6. [126] For every integer r there exists an integer k such that
every graph of treewidth at least k has an (r × r)-grid minor.

We have already mentioned that given a tree decomposition ({Xi | i ∈
I}, T = (I, F )) of a graph G, and a node i ∈ I with degT (i) > 1, the removal
of vertex set Vi from G disconnects G into connected components (the num-
ber of which equals the degree of i in T ). The smaller the width of the tree
decomposition, the smaller bags that can disconnect G we have, and the
bigger the number of the bags becomes. Thus, having a tree decomposition
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of small width in general implies that the graph has many separators of
small size. So, if we have a graph of small treewidth we can find many sepa-
rators of small size, and that property enables many dynamic programming
algorithms on graphs of bounded treewidth.

We have already argued that as treewidth gets smaller, the graph having
this treewidth tends to bear resemblance to a tree. Actually the following
theorem establishes the fact that only trees have treewidth of 1 (see [106]) :

Lemma 17. A connected graph has treewidth 1, if and only if it is a tree.

Building a tree decomposition for a tree is easy. For each vertex v of the
tree we construct a bag Xv, for each edge {v, u} of the tree we construct a
bag Xvu. Then for every edge {v, u} we connect Xvu with Xu and Xv. This
construction is a valid tree decomposition, because we clearly have covered
every vertex and every edge is contained in some bag, and Tv = T [{i ∈ I |
v ∈ Xi}] is a connected subtree of T (all the edge bags containing v are
connected to node Xv and there are not any other nodes in Tv).

Several important graph classes have been proven to have bounded treewidth.
Trees have treewidth 1, series parallel networks and outerplanar graphs
(graphs with an embedding in the plane such that all vertices can be placed
on the outward face) have treewidth 2 and Halin graphs have treewidth
3. The class of planar graphs does not in general have graphs of small
treewidth, as we have already noted that the (k × k)-grid has treewidth k.
Therefore, nor does the class of bipartite graphs have bounded treewith in
general (grid graphs are bipartite). A trivial example of a graph with un-
bounded treewidth is the complete graph on n vertices, Kn, because from
lemma 1 this graph has a tree decomposition consisting of a single bag, con-
taining all vertices, thus achieving treewidth n − 1. In the case of planar
graphs we have the following theorem :

Theorem 7. [125] Let k > 0 be an integer. Every planar graph G with
tw(G) ≥ 6k − 5 has a (k × k)-grid minor.

That means that every planar graph of treewidth k has a Ω(k)×Ω(k)-grid
minor.

Finally we have the following complexity result, with respect to treewidth
:

Theorem 8. [3] Given a graph G = (V,E) and an integer k < |V |, it is
NP-Complete to decide if tw(G) ≤ k.
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2 Toughness

2.1 Introduction

In this section we will describe the notion of graph toughness. Graph tough-
ness is a graph parameter, introduced by Chvátal in 1973 ([57]), in an at-
tempt to capture relevant structural properties related to cycle structures
in graphs. We could view graph toughness as a measure of acyclicity or
alternatively as an indicator parameter of the existence of cyclic structures
in graphs. It is closely related to the connectivity of a graph, which refers
to the minimum number of vertices that must be removed in order to dis-
connect the graph, taking also into consideration the number of components
that arise from the removal of these vertices. Chvátal’s interpretation of
graph toughness was that it measures in a simple way how tightly various
pieces of a graph hold together.

Research on toughness generally involves relating toughness conditions
to the existence of cycle structures, the most important of which (mainly
from a computational complexity point of view) is hamiltonian cycles. Most
of the research has been based on a number of conjectures introduced in
[57], with the most intriguing of which being the following :

Conjecture 1. There exists a finite constant t0 such that every t0-tough
graph is hamiltonian.

This conjecture is still open, but it was falsified in 2000 for t0 = 2.
The importance of this conjecture for t0 = 2 was significant, because if it
held, it would imply a number of related results and conjectures. We now
know that the t0-tough conjecture holds for some graph classes, including
planar graphs, claw-free graphs and chordal graphs. Toughness has also
been researched in the context of computational complexity. It is now well
known that it is NP-hard to compute the toughness of a graph [15].

2.2 Preliminaries

Let G = (V,E) be a graph and let c(G) denote the number of connected
components of G.

Definition 16. Let G = (V,E) be a graph. A cutset of G is any set
S ⊆ V (G) such that c(G− S) > 1.

Definition 17. A graph G = (V,E) is t-tough if for every cutset S of G ,
we have |S| ≥ tc(G− S).

More intuitively, a graph G = (V,E) is called t-tough if, for every integer
k > 1, G cannot be split into k different connected components by the
removal of fewer than tk vertices. It is also clear that if a graph is (t + c)-
tough, where c > 0, then it is also t-tough.
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Definition 18. A graph G is called minimally t-tough if τ(G) = t and there
does not exists a proper spanning subgraph H of G with τ(H) = t.

Definition 19. The toughness of a graph G = (V,E), denoted τ(G), is :

τ(G) = max{t | G is t tough}

Naturally, the complete graph on n vertices Kn does not have a value
t for which it is t-tough, so we set τ(Kn) = ∞ for all n ≥ 1. If G is not
complete, then

τ(G) = min

{
|S|

c(G− S)

∣∣∣∣ S is a cutset of G

}
Definition 20. Let G = (V,E) be a graph. A cutset S ⊆ V (G) is called a

tough set if τ(G) = |S|
c(G−S) .

Definition 21. A tough component of a graph G is any component of G−S,
where S is a tough set.

The terminology presented below will be needed in the rest of the chap-
ter. Let α(G) denote the size of a maximum independent set of G and
circum(G) denote the circumference of G (i.e the length of the longest cycle
of G). The girth of a graph G, denoted girth(G), is the length of the shortest
cycle in G. The connectivity of a non-complete graph G, denoted κ(G), is
the size of the minimum cutset of G. We say that a graph G is k-connected
if κ(G) ≥ k. The genus of a graph G, denoted γ(G), is the minimal integer
n such that the graph can be drawn without crossing itself on a sphere with
n handles (i.e. an oriented surface of genus n). A Hamilton cycle in a graph
G, is a simple cycle containing every vertex of G. A graph is hamiltonian if
it contains a Hamilton cycle. A Hamilton path in a graph, is a simple path
containing all vertices of the graph. A graph is called traceable if it contains
a Hamilton path. A graph G = (V,E) is called pancyclic if it contains cycles
of every length between 3 and |V (G)|. A cycle C in a graph G is called a
dominating cycle of G, if every edge of G has at least one endpoint in C
(clearly G − V (C) is an independent set). A graph in which every vertex
has the same degree is called regular. A graph is k-regular if every vertex
has degree k. A k-factor of a graph G is a k-regular spanning subgraph of
G (i.e a subgraph of G defined on the same vertex set, in which all vertices
have degree k). A cycle itself is a 2-factor, and a hamiltonian cycle in a
graph G is a 2-factor of G. A graph G is called k-chordal if every chordless
cycle of G has length at most k. Let NG(v) = {u | {v, u} ∈ E(G)} be
the neighborhood of vertex v in graph G, degG(v) = |NG(v)| be the degree
of vertex v in G, δ(G) = minv∈V (G) degG(v) be the minimum degree in G,
and ∆(G) = maxv∈V (G) degG(v) be the maximum degree in G. Let ∆∗(G)
denote the minimum over all spanning trees of G of their maximum degree.
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The distance between two vertices v, u of a connected graph G, denoted
distG(v, u), is the length of a shortest path connecting them.

Let IkG denote the set of independent sets of k vertices of graph G. For
k ≤ α(G), let

σk(G) = min
S∈IkG

∑
v∈S

degG(v)

and let

NCk(G) = min
S∈IkG

|∪v∈SNG(v)|

For k > α(G), we set σk(G) = k(|V (G)|−α(G)) and NCk(G) = |V (G)|−
α(G). If graph G = (V,E) has a noncomplete component, let

NC2(G) = min
v,u∈V (G)

{|NG(v) ∪NG(u)| : distG(v, u) = 2}

otherwise set NC2(G) = |V (G)| − 1.
Before we proceed to the next subsections, it would be useful to view a

few examples on toughness.

Example 3. A path Pn on n ≥ 3 vertices has connectivity κ(Pn) = 1,
since removing any vertex of degree 2 yields a disconnected graph with 2
components. Thus, the toughness of Pn for n ≥ 3 is τ(Pn) = 1

2 .

Example 4. The circle Cn on n ≥ 4 vertices has connectivity κ(Cn) = 2,
since we have to remove two nonadjacent vertices to disconnect the circle
into two components. Removing those vertices, the ratio |S|

c(Cn−S) becomes
1. If we further remove a vertex of degree 2, it breaks a component in half
giving a ratio |S|

c(Cn−S) of 3
3 = 1. Removing a vertex of degree 1 does not

raise the number of components, so the minimum ratio |S|
c(G−S) is 1, that is

τ(Cn) = 1 (where each tough set S is constructed by repeatedly removing
vertices of degree 2). This means that every cycle is 1-tough,conluding that
hamiltonian graphs are 1-tough.

Example 5. Let T = (V,E) be a tree on n ≥ 3 vertices. A tree has
connectivity κ(T ) = 1 because like in the case of a path, we have to remove
only one vertex of degree > 1 to disconnect it. It is easy to verify that the
toughness of a tree is τ(T ) = maxv∈V (T )

1
degT (v) = 1

∆(T ) . The star graph

K1,n is a tree, so it is 1
n -tough.

As a last example consider the case of a complete bipartite graph :

Example 6. Let m ≤ n, n ≥ 2 and Km,n be a complete bipartite graph.
Then, removing the appropriate m vertices (that induce an independent
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set), yields a disconnected graph with n components. This removal gives us

the best possible ratio |S|
c(Km,n−S) of m

n . Consequently, τ(Km,n) = m
n .

2.3 Bounds on toughness

In this section we present some upper and lower bounds on toughness.

Theorem 9. [57] Let G be a graph. Then
1. τ(G) = 0 if and only if G is not connected.
2. τ(G) =∞ if and only if G is complete.

Theorem 10. [57, 87] For any graph G

κ(G)

∆(G)
≤ τ(G) ≤ κ(G)

2

It is easy to see from example 5, that a tree T has κ(T ) = 1, so τ(T ) ≥
1

∆(T ) by theorem 10. In example 5 we established that τ(T ) ≤ 1
∆(T ) , so

we verify that a tree T has toughness 1
∆(T ) . The equality with the upper

bound can be achieved in the case of noncomplete K1,3-free graphs (claw-free
graphs).

Proposition 2. [114] If G is a noncomplete K1,3-free graph, then τ(G) =
κ(G)

2

The next conjecture is relevant :

Conjecture 2. [86] Let G be an r-regular graph. Then G is r
2 -tough if and

only if G is r-connected and K1,3-free.

Clearly, the ’if’ direction of conjecture 2 is implied by proposition 2. The
following theorem uses the graph parameters α(G) and κ(G) to narrow down
the possible values for τ(G). Notice first that maxS⊂V (G) c(G− S) ≥ α(G),
because we can remove all vertices not in the maximum independent set,
and obtain as components the vertices of the maximum independent set.

Theorem 11. [57] For any graph G on n vertices,

κ(G)

α(G)
≤ τ(G) ≤ n− α(G)

α(G)

Let χ(G) denote the chromatic number of a graph G. Then the following
bounds also hold :

Lemma 18. [5] For any graph G on n vertices,

τ(G) + 1 ≤ n

α(G)
≤ χ(G)
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It is easy to verify that τ(G) + 1 ≤ n
α(G) if we consider that in any

graph if we remove all those vertices not in a maximum independent set
(n − α(G) of them), then we obtain a graph with α(G) components. Thus

τ(G) ≤ n−α(G)
α(G) = n

α(G) − 1.

Theorem 12. [81] For any graph G, ∆∗(G)− 3 ≤ 1
τ(G) ≤ ∆∗(G).

Proposition 3. [122] If G is any noncomplete graph, τ(G− v) ≥ τ(G)− 1
2 .

Proposition 4. [87] If G is a nonempty graph and m is the largest integer

such that K1,m is an induced subgraph of G, then τ(G) ≥ κ(G)
m .

Clearly the lower bound τ(G) ≥ κ(G)
∆(G) is implied by proposition 4. A

tree has connectivity 1, and any nontrivial tree contains K1,m for m ≥ 2 as
an induced subgraph. We have already seen in example 5 that a tree has
τ(G) ≤ 1

∆(G) . Also, a k-regular and k-conneted graph has a K1,k induced
subgraph as well. Thus, we have the following :

Corollary 8.
1. If G is a nontrivial tree then τ(G) = 1

∆(G) .

2. If G is k-connected and k-regular then τ(G) ≥ 1.

The next result establishes lower bounds on the toughness of a graph in
terms of its connectivity and genus.

Theorem 13. [85] If G is a connected graph of genus γ(G) = γ and con-
nectivity κ(G) = κ then

1. τ(G) > κ
2 − 1, if γ = 0, and

2. τ(G) ≥ κ(κ−2)
2(κ−2+2γ) , if γ ≥ 1.

The lower bound given in theorem 13.2 cannot be achieved if γ(G) =
1, κ(G) = 3 and girth(G) = 6 as is shown next :

Lemma 19. [85] If G is a graph with γ(G) = 1, κ(G) = 3 and girth(G) = 6,
then τ(G) ≥ 1.

2.4 Toughness of subgraphs and related graphs

In the case of spanning subgraphs, we have the next proposition :

Proposition 5. [57] Let G be a graph and H be a spanning subgraph of G,
then τ(H) ≤ τ(G).

The next result relates the toughness of a component of G−S, where S
is a tough set.
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Proposition 6. [124] Let G be a noncomplete graph and C be a tough

component of G. Then τ(C) ≥ dτ(G)e
2 .

Theorem 14. [48] Let G be a graph different from K1,K2, ...,Kb 4i+7
3
c, with

τ(G) > i for some positive integer i. Then there exists a spanning subgraph
H of G with 2i+1

3 ≤ τ(H) ≤ i.

Setting i = 1 in theorem 14, we get the following result as a special case
:

Corollary 9. [48] Let G be a graph, different from K1,K2,K3, with τ(G) >
1. Then there exists a spanning subgraph H of G with τ(H) = 1.

We will need the following definition :

Definition 22. Let G,H be two disjoint graphs. We denote the join of
G,H by :

G ∗H = (V (G) ∪ V (H), E(G) ∪ E(H) ∪ {{v, u} | v ∈ V (G) ∧ u ∈ V (H)})

G ∗H is the graph obtained from G∪H by joining every vertex of G to
every vertex of H.

The following two results relate the toughness of a graph G with the
toughness of the join of a complete graph and a component of G−S, where
S is a tough set of G.

Lemma 20. [48] Let k be a positive integer, and let G be a graph with
τ(G) ≥ k, S an arbitrary tough set of G and Hi an arbitrary component of
G− S. Then τ(Kk ∗Hi) ≥ k.

This result can be further improved if we consider maximum tough sets
instead of arbitrary.

Lemma 21. [48] Let k be a positive integer, and let G be a graph G with
τ(G) ≥ k, S a maximum tough set of G, and Hi an arbitrary component of
G− S. Then τ(Kk−1 ∗Hi) ≥ k.

For the rest of the subsection we need the following definitions.

Definition 23. The square graph G2 of a graph G is the graph obtained
from G by joining all vertices at distance 2 in G.

Definition 24. Let G and H be graphs, and s ≥ 0 an integer. We call G
an s-subdivision of H, if G can be obtained from H by replacing every edge
{u, v} of H by a path between u and v with at least s internal vertices. We
call G an s-subdivision, if it is an s-subdivision of some graph H.

Lemma 22. [48] Let H be a 3-subdivision of a 2-connected graph and let
G = H2. Then τ(G) = 2.
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The next theorem states that the square of 4-subdivision of a 2-connected
3-regular graph is minimally 2-tough.

Theorem 15. [48] Let H be a 4-subdivision of a 2-connected 3-regular graph
and let G = H2. Then G is minimally 2-tough.

The following theorem states that if two neighbors u and v with d(v) +
d(u) ≥ 6 exist in a 2-connected graph H, then H2 is minimally 2-tough.

Theorem 16. [48] Let H be a 2-connected graph with degH(v)+degH(u) ≥ 6
for some u, v ∈ V (H) with {v, u} ∈ E(H), and let G = H2. Then G is
minimally 2-tough.

2.5 Sufficient conditions for t-toughness

In this section we present some sufficient conditions for a graph to be t-tough.
Chvátal and Erdös in 1971 proved the following :

Theorem 17. [59] Let G be a graph with at least three vertices. If α(G) ≤
κ(G), then G is hamiltonian.

Since every hamiltonian graph is also 1-tough (every cycle is 1-tough)
we have the following :

Corollary 10. Let G be a graph with at least three vertices. If α(G) ≤ κ(G),
then G is 1-tough.

This result easily extends to t-tougness :

Lemma 23. [48] Let G be a graph. If tα(G) ≤ κ(G), then G is t-tough.

The condition of lemma 23 cannot be relaxed, as can be easily seen from
the graph Kp ∗ K̄q with p > q.

The reason that G ≡ Kp∗K̄q with p < tq is not t-tough, is that α(G) = q,

κ(G) = p and τ(G) = p
q = κ(G)

α(G) < t.
We can apply the same line of thought, to extend degree conditions for

hamiltonicity, and hence 1-toughness, to conditions for t-toughness. We
have the following result from Ore :

Theorem 18. [119] Let G = (V,E) be a graph with at least 3 vertices, such
that for every pair v, u of nonadjacent vertices of G, degG(v)+degG(u) ≥ n.
Then G is hamiltonian.

Consequently we have the following :

Corollary 11. Let G = (V,E) be a graph with at least 3 vertices, such that
for every pair v, u of nonadjacent vertices of G, degG(v) + degG(u) ≥ n.
Then G is 1-tough.
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The next theorem is the genaralization of theorem 18 :

Theorem 19. [48] Let G = (V,E) be a kt-connected graph, with k, t integers
and kt ≥ 1, on n vertices with σk+1 ≥ (k + 1) nt

t+1 . Then G is t-tough.

The following result makes use of the minimum degree of a graph to
show t-toughness :

Theorem 20. [18] Let G be a graph on n vertices with δ(G) ≥ nt
t+1 . Then

G is t-tough.

For t = 1, theorem 20 is a consequence of a well known theorem from
Dirac :

Theorem 21. [65] Let G be a graph on n vertices with δ(G) ≥ n
2 . Then G

is hamiltonian.

There is a generalization of thorem 18 for t-toughness :

Theorem 22. [48] Let G be a graph on n vertices, such that for every pair
v, u of nonadjacent vertices of G, degG(v) + degG(u) ≥ 2nt

t+1 , with 1 ≤ t ≤
n− 1. Then G is t-tough.

2.6 Toughness of special graph classes

Proposition 7. [122]

1. τ(Pn) =

{
∞ , if n = 1, 2
1
2 , if n ≥ 3

2. τ(Cn) =

{
∞ , if n = 3
1 , if n ≥ 4

Notice that for n = 1, 2, Pn, and for n = 3, Cn, are isomorphic to Kn .
In previous subsection we gave as an example of the toughness of a graph,
the complete bipartite graph Km,n with m ≤ n (example 6). The following
proposition, gives us the toughness of that graph :

Proposition 8. [57] If m ≤ n, then τ(Km,n) = m
n .

For the cartesian product of two complete graphs, we have the next result
from Chvátal.

Theorem 23. [57] For all m,n ≥ 2, τ(Km ×Kn) = m+n
2 − 1.

The following theorem, due to Chvátal, states that the square of a k-
connected graph is k-tough.
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Theorem 24. [57] For any k-connected graph G, τ(G2) ≥ κ(G).

The toughness of the complete multipartite graph is given in the follow-
ing result by Goddard and Swart.

Proposition 9. [86] Let m ≥ 2, for 1 ≤ i ≤ m let ai be integers with
max1≤i≤m ai ≥ 2 and n =

∑m
i=1 ai. Then

τ(Ka1,...,am) = min
1≤i≤m

{
n− ai
ai

}
The reason that we require that there exists an i ≤ m where ai is greater

or equal than 2, is that if all ai’s where equal to one and we viewed Kn as
K1,1,...,1 (with n ones), proposition 9 would then lead us to τ(Kn) = n− 1,
which contradicts the fact that τ(Kn) =∞.

For the rest of the subsection we provide some results on the toughness
of the cartesian product of specific graphs. Note that, if G,H are connected
non-trivial graphs, then the cartesian product of G and H, G×H, contains
K1,3 as an induced subgraph unless both G and H are complete.

Theorem 25. [86] The following graphs have toughness 1
1. Pm × Pn for mn even and m,n ≥ 2.
2. Pm × Cn for n even, and
3. Cm × Cn for m and n even.

Theorem 26. [86] For m and n odd and m,n ≥ 3,

τ(Pm × Pn) =
mn− 1

mn+ 1

An m× n-grid is the cartesian product of two paths, Pm and Pn. So we
have the following :

Corollary 12. Let G be the m×n-grid graph with m,n ≥ 2. Then τ(G) ≤ 1.

This is easy to verify, because removing the two neighbors of a vertex
with degree 2 in a grid, disconnects the graph into two components.

Theorem 27. [86] Let m,n ≥ 3. Then

1. τ(Pm ×Kn) = n+1
3 ,

2. τ(Cm ×Kn) =

{
n
2 , if m is even
n
2 + 1

m−1 , if m is odd

and finally for cartesian products we have the following bounds :
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Theorem 28. [86] Let n be odd, n ≥ 5. Then

1.τ(Pm × Cn) ≤


n
n−1 , if m is even,

mn−1
mn−m , if m is odd

2.τ(Cm × Cn) ≤ n
n−1 for m even.

We continue with a bound on the toughness of cubic graphs. Cubic
graphs are graphs in which all vertices have degree 3 (i.e cubic graphs are 3-
regular graphs). In section 2.10, we will see that it is NP-hard to determine
if a cubic graph is 1-tough. However, we can obtain upper bounds on the
toughness of cubic graphs in terms of its independence number.

Theorem 29. [84] Let G be a noncomplete cubic graph on n vertices. Then

τ(G) ≤ min

{
2n− 3α(G)

n− α(G)
,

2α(G)

4α(G)− n

}
A special class of cubic graphs is that of cycle permutation graphs. In

particular, a cycle permutation graph is a cubic graph on 2m vertices, ob-
tained by taking two vertex disjoint cycles on m vertices and adding a match-
ing between the vertices of the two cycles (see definition 40 in section 2.11).
In [121], it was conjectured that the toughness of such graphs is at most 4

3 .
Goddard then obtained a bound very close to 4

3 .

Theorem 30. [84] Let G be a cycle permutation graph on 2m vertices.
Then

τ(G)


≤ 4

3 , if m ≡ 0, 1 mod 4,

< 4
3 , if m ≡ 2 mod 4,

≤ 4
3 + 4

9m−3 , if m ≡ 3 mod 4,

One special graph class that has received much attention is that of triangle-
free graphs, as they have a number of interesting properties. A number of
results on triangle free graphs have been made in the direction of finding
the best possible minimum degree conditions for the extistence of 2-factors
and Hamilton cycles. We begin with a result, concerning the existence of a
2-factor.

Theorem 31. [27] Let G be a 1-tough triangle-free graph on n ≥ 3 vertices.
If δ(G) ≥ n+2

4 , then G has a 2-factor.

The bound on the minimum degree in theorem 31 is the best possible.
Let C(G) denote the set of cycle lengths of a graph G. Brandt in [42] has
showed the following :
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Theorem 32. [42] Let G 6= C5 be a triangle-free, nonbipartite graph on n
vertices. If δ(G) > n

3 , then C(G) = {4, 5, ..., r}, where r = min{n, 2(n −
α(G))}.

In the case of balanced bipartite graphs we have the following result by
Moon and Moser in [115]:

Theorem 33. [115] Let G be a balanced bipartite graph on n vertices. If
δ(G) > n

4 , then G is hamiltonian.

By lemma 18, we have that n
α(G) ≥ τ(G)+1. Therefore, if τ(G) ≥ 1, then

n
α(G) ≥ 2 or equivalently α(G) ≤ n

2 . In [5] Bauer et al. noticed that since

α(G) ≤ n
2 in any 1-tough graph, and 1-tough bipartite graphs are balanced,

combining theorems 32 and 33 we obtain the following result.

Theorem 34. [5] Let G be a 1-tough triangle-free graph on n ≥ 3 vertices.
If δ(G) > n

3 , then G is hamiltonian.

Every hamiltonian graph contains a 2-factor and since the bound on
the minimum degree in 31 is the best possible, to guarantee that a 1-tough
triangle free graph G is hamiltonian it must hold that δ(G) ≥ n+2

4 . So,
combining theorems 31, 34, the best possible minimum degree guaranteeing
that a 1-tough triangle free graph is hamiltonian lies somewhere between
n+2

4 and n
3 .

Chvátal made the following conjecture in [57] :

Conjecture 3. There exists a positive constant t1 such that every t1-tough
graph is pancyclic.

Later, Jackson and Katerinis in [96] conjectured that :

Conjecture 4. There exists a positive constant t2 such that every t2-tough
graph contains a triangle.

Notice that conjecture 4 is implied by conjecture 3, since a pancyclic
graph contains at least one cycle of length 3. One year later, Bauer et al.
in [26] falsified both conjectures :

Theorem 35. [26] There exist arbitrarily tough, triangle-free graphs.

The proof of theorem 35 involved the construction of a sequence of ”lay-
ered graphs”. This sequence is built, starting with a triangle-free graph.
As the sequence is constructed, the toughness of the graphs approaches in-
finity without losing the triangle-free property. Later, Alon established the
following result :

Theorem 36. [2] For every t and g there exists a t-tough graph with
girth(G) ≥ g.
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Brandt, Faundree and Goddard in [44] also showed that conjecture 3 is
false.

Definition 25. A graph is called weakly pancyclic if it contains cycles of
every length between girth(G) and circum(G).

Clearly, if a graph is not weakly pancyclic, then it is not pancyclic. They
showed that there is no sufficiently large value of toughness that will ensure
that a graph is weakly pancyclic.

In, [5], Bauer et al. note that if some vertex in a t-tough graph G on n
vertices has degree greater than n

t+1 , then G must contain a triangle. This
is easy to verify if we consider a vertex v in G with degG(v) > n

t+1 . Then

t > n−degG(v)
degG(v) , thus if we delete all vertices except from those in NG(v), the

neighborhood of v does not constitute an independent set, since τ(G) ≥
t > n−degG(v)

degG(v) . Hence, there must be an edge between neighbors of v and
therefore there exists a triangle in G. It is reasonable to ask if there exists
an n

t+1 regular t-tough triangle-free graph for arbitrary large t. In [26],
the sequence of layered graphs appeared to have this property, so it was
concjectured that such graphs exist. In [26] it was proven for 1 ≤ t ≤ 3. For
arbitrary t it was proven independently by Brandt in [43] and Brouwer in
[50]. Brandt’s result was the following :

Theorem 37. [43] For every ε > 0 there exists a real number t0 such that
for every t > t0 there is a triangle-free graph G on n vertices with toughness
τ(G) = n

δ(G) − 1 and t− ε ≤ τ(G) ≤ t+ ε.

In theorem 35 we stated that there exist arbitrarily tough triangle-free
graphs. It has also been shown [62, 105, 116, 138] that there exist triangle-
free graphs with arbitrary large chromatic number. Erdös in [73] showed that
there exists graphs with arbitrarily high girth and arbitrarily high chromatic
number, having also arbitrarily high n

α(G) ratio. We remind the reader, the

bound on τ(G) relative to α(G) and χ(G) in lemma 18 :

τ(G) + 1 ≤ n

α(G)
≤ χ(G)

Therefore, theorem 35 generalizes those results, since large toughness
implies high n

α(G) ratio and in turn that implies high chromatic number.

Brandt in [43], showed that there exists an appropriate sequence of layered
graphs, such that the inequalties in the relation above can also be satisfied
by equality.

Theorem 38. [43] For every positive integer k there exists a triangle-free
graph G with χ(G) = k = n

α(G) = τ(G) + 1.

Brandt made also the following conjecture :



2.6 Toughness of special graph classes 37

Conjecture 5. [43] Let G be a t-tough graph on n vertices, with δ(G) > n
t+1 .

Then G is pancyclic.

We have already mentioned that a t-tough graph with δ(G) > n
t+1 con-

tains a triangle. We will also see in section 2.7 that every t-tough graph on
at least three vertices with δ(G) > n

t+1 is hamiltonian (theorem 68). Thus
a t-tough graph of order n contains cycles of length 3 and n. The following
result shows that conjecture 5 is true for a t-tough graph if t < 3− 4000

n .

Theorem 39. [44] Let G be a graph on n vertices with δ(G) ≥ n
4 + 250 that

contains a triangle and a Hamilton cycle. Then G is pancyclic.

We now turn to some resutls concerning minimum toughness conditions
that ensure hamiltonicity in chordal graphs. In section 2.8 we will see that an
infinite class of (7

4−ε)-tough nontraceable chordal graphs can be constructed
(see theorem 104). That means that not even 1-tough chordal graphs need
to be hamiltonian. In particular it is proven in [39] that not even 1-tough
planar chordal graphs need to be hamiltonian. However, the following was
proven :

Theorem 40. Let G be a chordal, planar graph with τ(G) > 1. Then G is
hamiltonian.

Gerlach in [83] then showed that we can replace the chordality assump-
tion in theorem 40 with the assumption that separating cycles of length
greater than 3 have chords. The fact that the assumption τ(G) > 1 can’t
be lowered, was shown using the notion of shortness exponent.

Definition 26. Let Σ be a class of graphs. The shortness exponent of class
Σ is given by the following expression :

σ(Σ) = lim inf
Hn∈Σ

log circum(Hn)

log|V (Hn)|
where Hn is a sequnce of graphs from Σ with |V (Hn)| → ∞ as n→∞.

In [39], it was shown that when Σ is the class of 1-tough chordal planar
graphs we have σ(Σ) ≤ log 8

log 9 . Thus, there exists a sequence G1, G2, ... of

1-tough chordal planar graphs with circum(Gi)
|V (Gi)| → 0 as i→∞. From propo-

sition 2, we know that if a claw-free graph G is 2-connected then it is 1-tough
(τ(G) = κ(G)

2 ). Combining that with a result of Balakrishnan and Paulraja
in [4] stating that a 2-connected claw-free chordal graph is hamiltonian, we
obtain the following corollary :

Corollary 13. Every 1-tough K1,3-free chordal graph is hamiltonian.

Actually, in the case of claw-free graphs we can drop the chordality
assumption and obtain a 7

2 -toughness upper bound for hamiltonicity. First,
we have the following result from Ryjacek :



2.6 Toughness of special graph classes 38

Theorem 41. [127] Every 7-connected K1,3-free graph is hamiltonian.

Using the fact that claw-free graphs have toughness equal to half their
connectivity (proposition 2), we get the following corollary :

Corollary 14. Every 7
2 -tough K1,3-free graph is hamiltonian.

That means that the t0-conjecture is true for claw-free graphs.
We have already mentioned that 3

2 -tough graphs need not be hamilto-
nian (since from theorem theorem 104 there are (7

4 − ε)- tough nontraceable
chordal graphs). Consider however the case of spit graphs :

Definition 27. A graph G is called split graph if V (G) can be partitioned
into an independent set and a clique.

Clearly, split graphs is a subclass of chordal graphs (the neighborhood
of a vertex in the independent set must induce a clique, so if we place in an
ordering, first the vertices of the independent set and then the rest of the
vertices then we obtain a perfect elimination ordering. This means that the
graph is chordal by theorem 1). The following two theorems are resutls on
split graphs :

Theorem 42. [107] Every 3
2 -tough split graph is hamiltonian.

Theorem 43. [107] There is a sequence {Gn}∞n=1 of split graphs with no
2-factor and τ(Gn)→ 3

2 .

Altough 3
2 -tough chordal graphs are not necessarily hamiltonian, it was

proven in [17] that they necessarily contain a 2-factor.

Theorem 44. [17] Let G be a 3
2 -tough 5-chordal graph. Then G has a

2-factor.

Notice that if a 5-chordal graph G has a 2-factor, then every chordal
graph having G as a spanning subgraph will have a 2 factor, and that every
3
2 -tough chordal graph has a 5-chordal graph as a spanning subgraph. So,
we have the following corollary of theorem 44.

Corollary 15. Let G be a 3
2 -tough chordal graph. Then G has a 2-factor.

There are examples in [21] that show that there exists 6-chordal graphs
without a 2-factor. In section 2.8 we shall see a result from Cvátal (theorem
101) stating that for every ε > 0 there exists a (3

2 − ε)-tough graph without
a 2-factor. The examples used to prove this statement were all chordal.

Theorem 45. [57] For every ε > 0, there exist (3
2 − ε)-tough chordal graphs

without a 2-factor.
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Hence, corollary 15 is indeed best possible with respect to the toughness
of the graph. Also, theorem 44 is best possible with respect to the maximum
value k for which a 3

2 -tough k-chordal graph can have a 2-factor. It is
reasonable to ask if there exists a t1 > 0 such that every t1-tough chordal
graph is hamiltonian. Chen et al. in [54] answered this questing in the
affirmative.

Theorem 46. [54] Every 18-tough chordal graph is hamiltonian.

As we shall see in section 2.8 the 2-tough conjecture has been falsified. In
light of this result, it is natural to ask if the same holds for chordal graphs as
well. In particular, are all 2-tough chordal graphs hamiltonian? The same
question can be asked with regard to triangle-free graphs. The following
conjecture was made in [27] :

Conjecture 6. For all ε > 0, there exists a (2− ε)-tough triangle-free graph
that does not even contain a 2-factor.

Obviously, if the conjecture were true, then there would exist (2 − ε)-
tough triangle-free graphs without a Hamilton path. Ferland in [78] has
found an infinite class of nonhamiltonian triangle-free graphs whose tough-
ness is at least 5

4 .

Theorem 47. [78] There exist 5
4 -tough nonhamiltonian triangle-free graphs.

Altough the question of whether all 2-tough chordal graphs are hamilto-
nian is still open, it has been settled for a subclass of chordal graphs, namely
the 2-trees (notice that every k-tree has a perfect elimination ordering by
its definition, hence it is chordal).

Theorem 48. [46] Let G 6= K2 be a k-tree. Then G is hamiltonian if and
only if G contains a 1-tough spanning 2-tree.

This result is best possible if we take into consideration that 1-toughness
is a necessary condition for hamiltonicity. Theorem 48 can be generalized
to a result on k-trees, for k ≥ 2.

Theorem 49. [46] If G 6= K2 is a (k+1
3 )-tough k-tree, with k ≥ 2, then G

is hamiltonian.

In [46], Broersma et al. also present infinite classes of nonhamiltonian
1-tough k-trees for each k ≥ 3.

In [136], Win considered the relationship between the toughness of a
graph and the existence of spanning trees of connected graphs, with maxi-
mum degree at most k.

Theorem 50. Let G be a connected graph. Suppose k ≥ 2, and that for any
subset S ⊆ V (G), c(G − S) ≤ 2 + (k − 2)|S|. Then G has a spanning tree
with maximum degree at most k.
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Consider now the case when k = 2. Then, for every S ⊆ V (G), c(G −
S) ≤ 2. We remind the reader that maxS⊆V (G) c(G − S) ≥ α(G), since we
can pick the cutset S to be the vertices not in the maximum independent
set and obtain as components the vertices in the maximum independent
set. Hence, for k = 2, theorem 50 simply says that a connected graph G
with α(G) ≤ 2 has a Hamilton path (since a spanning tree with maximum
degree at most k is just a Hamilton path). For k ≥ 3, we have the following
corollary of theorem 50 :

Corollary 16. Let k ≥ 3. If τ(G) ≥ 1
k−2 , then G has a spanning tree of

maximum degree at most k.

2.7 Toughness and circumference

In this section we present some results relating toughness with circumfer-
ence. We have already seen in theorem 21 by Dirac, that if δ(G) ≥ n

2 , then
circum(G) = n (the graph is hamiltonian). The next result is also due to
Dirac.

Theorem 51. [65] Let G be a 2-connected graph on n vertices. Then
circum(G) ≥ min{n, 2δ(G)}.

In theorem 18 we saw a generalization of theorem 51 from Ore in 1960.
More specifically the theorem states that if for every pair of nonadjacent
vertices (i.e that belong in independent sets of size 2) their degree sum is at
least n, then the graph is hamiltonian. Puting it in terms of circumference
and minimum degree sum of independent sets, we can rephrase theorem 18
as :

Corollary 17. Let G be a graph on n ≥ 3 vertices with σ2(G) ≥ n. Then
circum(G) = n (i.e G is hamiltonian).

Theorem 18 was further improved independently by Bermond, Bondy
and Linial (clearly theorem 18 implies 2-connectivity) :

Theorem 52. [40, 30, 111] Let G be a 2-connected graph on n ≥ 3 vertices.
Then circum(G) ≥ min{n, σ2(G)}.

The next result shows that if we require that the graph in the precondi-
tion of corollary 17 be 1-tough, then the lower bound on σ2(G) ≥ n in Ore’s
theorem can be lowered by 4, as was shown by Jung in 1978.

Theorem 53. [98] Let G be a 1-tough graph on n ≥ 11 vertices with σ2(G) ≥
n− 4. Then circum(G) = n (i.e G is hamiltonian).

If δ(G) ≥ n−4
2 , then degG(v) + degG(u) ≥ n − 4 for every v, u ∈ V (G)

and consequently σ2(G) ≥ n−4. Thus, Jung’s theorem implies the following
weaker theorem with a minimum degree condition :
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Theorem 54. Let G be a graph on n ≥ 11 vertices with δ(G) ≥ n−4
2 . Then

circum(G) = n.

It is reasonable to ask, how much the lower bound cirucm(G) = n can
be improved. Ainouche and Christofides took the first step towards this
direction.

Theorem 55. [1] Let G be a 1-tough graph on n ≥ 3 vertices. Then
circum(G) ≥ min{n, σ2(G) + 1}.

Ainouche and Christofides also conjectured that the lower bound can be
further improved, replacing σ2(G) + 1 with σ2(G) + 2 in theorem 55. Their
conjecture was then proved correct by Bauer and Schmeichel.

Theorem 56. [19] Let G be 1-tough graph on n ≥ 3 vertices. Then
circum(G) ≥ min{n, σ2(G) + 2}.

The lower bound σ2(G) ≥ n − 4 in Jung’s theorem can be slightly im-
proved if τ(G) > 1, as is shown in the following result.

Theorem 57. [13] Let G be a graph on n ≥ 30 vertices with τ(G) > 1. If
σ2(G) ≥ n− 7, then circum(G) = n.

Theorem 57 gives us the best possible guarantee for hamiltonicity in
graphs, with respect to σ2(G). We shall see later that there exist 1-tough
graphs, with σ3 ≥ (3n− 24)/2 that are not hamiltonian.

Then next theorem, due to Nash-Williams, is a useful intermediate re-
sult, concering the existence of a longest dominating cycle.

Theorem 58. [117] Let G be a 2-connected graph on n vertices with δ(G) ≥
n+2

3 . Then every longest cycle in G is a dominating cycle.

In the same paper, Nash-Williams gave the following characterization
for a graph to be hamiltonian :

Theorem 59. [117] Let G be a 2-connected graph with δ(G) ≥ max{n+2
3 , α(G)}.

Then circum(G) = n.

A generalization of theorem 58 was made by Bondy in 1980 :

Theorem 60. [41] Let G be a 2-connected graph on n vertices with σ3(G) ≥
n+ 2. Then every longest cycle in G is a dominating cycle.

In the same paper, Bondy also gave a generalization of theorem 59.

Theorem 61. [41] Let G be a 2-connected graph on n vertices with σ3(G) ≥
max{n+ 2, 3α(G)}. Then circum(G) = n.

Theorem 61 can be generalized, as is shown in the result.
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Theorem 62. [28] Let G be a 2-connected graph on n vertices with σ3(G) ≥
n+ 2. Then circum(G) ≥ min{n, n+ σ3(G)

3 − α(G)}.

If we drop the 2-connectivity of the graph,and assume 1-toughness in-
stead ,then the bounds in theorems 58-60 can be improved. The following
two theorems are due to Bigalke and Jung.

Theorem 63. [34] Let G be a 1-tough graph on n vertices with δ(G) ≥ n
3 .

Then every longest cycle in G is a dominating cycle.

Theorem 64. [34] Let G be a 1-tough graph on n ≥ 3 vertices with δ(G) ≥
max{n3 , α(G)− 1}. Then circum(G) = n.

The next theorem is a generalization of theorem 63.

Theorem 65. [28] Let G be a 1-tough graph on n vertices with σ3(G) ≥ n.
Then every longest cycle in G is a dominating cycle.

With 1-toughness replacing 2-connectivity, we can improve a bit the
lower bound σ3(G) ≥ n+ 2 in theorem 62.

Theorem 66. [28] Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥
n. Then circum(G) ≥ min{n, n+ σ3(G)

3 − α(G)}.

From theorem 11 we have the following bound for a graphG on n vertices,
τ(G) ≤ n−α(G)

α(G) , or equivalently α(G) ≤ n
τ(G)+1 . If G is 1-tough, then τ(G) ≥

1 and the previous upper bound becomes α(G) ≤ n
2 . Similarly, if G is 2-

tough, then α(G) ≤ n
3 . Now, if G is 1-tough graph on n vertices with

δ(G) ≥ n
3 , then σ3(G) ≥ n, which according to theorem 66 means that

circum(G) ≥ 5n
6 . Note also that σ3(G) ≥ n implies that σ2(G) ≥ 2n

3
(we can always remove from an independent set of three vertices the one
contributing most to the sum of their degrees, getting a minimum degree
sum for independent sets of size two), which using theorem 57 implies that
circum(G) ≥ 2n

3 + 2. So, with a few elementary observations we used
theorem 66 to improve the lower bound in circum(G) in theorem 56 by
n
6 − 2. Using the fact that a 2-tough graph is also a 1-tough graph and
that α(G) ≤ n

3 for any 2-tough graph G, we get the following corollary of
theorem 66 :

Corollary 18. [28] Let G be a 2-tough graph on n ≥ 3 vertices. If σ3(G) ≥
n, then circum(G) = n.

An improvement of theorem 66 came from Hoa :

Theorem 67. [94] Let G be a 1-tough graph on n ≥ 3 vertices, with σ3(G) ≥
n. Then circum(G) ≥ min{n, n+ σ3(G)

3 − α(G) + 1}.

As we mentioned earlier, if G is 1-tough, then α(G) ≤ n
2 . Thus we have

the following corollary of theorem 67 :
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Corollary 19. Let G be a 1-tough graph on n ≥ 3 vertices, with σ3(G) ≥ n.
Then circum(G) ≥ 5n

6 + 1.

Li improved this result, as is shown in the next theorem :

Theorem 68. [109] If G is a 1-tough graph on n ≥ 3 vertices with δ(G) ≥ n
3 ,

then

circum(G) ≥ min

{
n,

2n+ 1 + 2δ(G)

3
,
3n+ 2δ(G)− 2

4

}
≥ min

{
8n+ 3

9
,
11n− 6

12

}
.

In [5] the following conjecture was made by Bauer, Broesma and Schme-
ichel.

Conjecture 7. Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥ n.

Then circum(G) ≥ min{n, 3n+1
4 + σ3(G)

6 }.

Using it’s hypothesis and if it were true, then we would conclude that
circum(G) ≥ 11n+3

12 , shrinking the gap between 8n+3
9 and 11n−6

12 of theorem
68 to 8n+3

9 and 11n+3
12 . The conjecture 1, if true, would also imply the

following generalization of Jung’s theorem (theorem 53), which was proved
by Faßbender :

Theorem 69. [75] Let G be a 1-tough graph on n ≥ 13 vertices with σ3(G) ≥
3n−14

2 . Then circum(G) = n.

The following theorem has had a number of applications, including the-
orem 69, and due to its importance, it is worthwhile mentioning it.

Theorem 70. [28] Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥
n. Then every longest cycle in G is a dominating cycle. Moreover, if G is
not hamiltonian, then G contains a longest cycle C such that max{degG(v) |
v ∈ V (G) \ V (C)} ≥ σ3

3 .

The next result of Li is related to theorem 70. First, we need to give
some definitions. Let G be a graph on n vertices and let X ⊆ V (G). Let
G[X] = (X, {{v, u} ∈ E(G) | v, u ∈ X}) be the subgraph of G induced
by X. Let α(X) = α(G[X]) and σk(X) = σk(G[X]), be the size of the
maximum independent set and the minimum degree sum over independent
sets of size k in G[X] respectively. A cycle C of G is called X-longest, if for
any other cycle C ′ of G, |C ′ ∩X| ≤ |C ∩X|, and C is called C-dominating
if for each vertex v ∈ X − V (C), NG(v) ⊆ V (C).

Theorem 71. [110] Let G be a 1-tough graph on n vertices and X ⊆ V (G).
If σ3(X) ≥ n, then G has an X-longest cycle C such that C is an X-

dominating cycle and |V (C) ∩X| ≥ min{|X|, |X|+ σ3(G)
3 − α(X)}.
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So far, we have seen results that assumed some lower bounds on either
minimum degree, or minimum degree sum of vertices that belong to an
independent set of a specified size (combined with a level of toughness or
connectivity). If we consider neighborhood unions, NCk, we can give more
tight bounds, since NCk(G) ≤ σk(G) for any k. More specifically, the next
theorem is an improvement of theorem 66. First we need the following
definition, let

ε(i) =


0, if i ≡ 0 mod 3
2, if i ≡ 1 mod 3
1, if i ≡ 2 mod 3

Theorem 72. [47] Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥
n+ r, where r ≥ 0. Then circum(G) ≥ min{n, n+NCr+5+ε(n+r) − α(G)}.

In [47] it is shown that the lower bound on circum(G) and the subscript
r+ 5 + ε of NC cannot be increased in general. NCk(G) is a nondecreasing
function of k because if we had NCk+1(G) < NCk(G) for some k, then we
could take those k + 1 vertices that form an independent set and achieve a
cardinality of their neighborhoods union of NCk+1(G), and remove any of
them, yielding for the rest of the vertices a cardinality of their neighborhoods
union at most NCk+1(G), which leads to a contradiction. It also holds that

NC3(G) ≥ σ3(G)
3 , since every vertex in the union of the neighborhoods of the

3 vertices in the independent set achieving the σ3(G) value, can be added at
most 3 times in the sum of the degrees in σ3(G), and therefore in the worst
case every such vertex was taken into account exactly 3 times, in which case
the neighborhoods of the three vertices coincide, giving a cardinality of the
union of their neighborhoods one third of the sum of their degrees. Thus,
theorem 68 implies theorem 66. It also holds that NCk ≤ n−α(G), because
from the α(G) independent vertices (the union of their neighborhoods can
have at most n−α(G) vertices), we could just pick k of them. Thus theorem
72 also implies the following corollary :

Corollary 20. Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥
n+ r, where r ≥ 0. Then circum(G) ≥ min{n, 2NCr+5+ε(n+r)}.

Corollary 20 also implies theorem 69. In [47] it is shown that the sub-
script of NC in the conclusion of corollary 20, can be replaced by bn+6r+17

8 c
which is an improvement if r ≤ n

2 − 19. The following theorem is rela-
tive to corollary 20, but the lower bound on circum(G) in the conclusion is
expressed in terms of NC2 instead of NCk.

Theorem 73. [14] Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥
n. Then circum(G) ≥ min{n, 2NC2(G)}.

In [14] it was also conjectured that the lower bound on circum(G) in the
conclusion of theorem 73 can be replaced by circum(G) ≥ min{n, 2NC2(G)+
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4}. Theorem 73 is the last result in this section involving neighborhood
unions. The next result is an other application of theorem 66, that uses the
fact that σ3(G) ≥ 3δ(G) and that α(G) ≤ n

τ(G)+1 .

Theorem 74. Let G be a t-tough graph on n ≥ 3 vertices, where 1 ≤ t ≤ 2.
If δ(G) ≥ n

t+1 , then circum(G) = n.

To apply theorem 66 it was essential that τ(G) ≤ 2 (because of the upper
bound on α(G)). However the bound on t in the precondition of theorem
74 is not necessary, as we can see in the following result.

Theorem 75. [8] Let G be a t-tough graph on n ≥ 3 vertices with δ(G) ≥
n
t+1 . Then circum(G) = n.

We conclude from theorem 75 that Chvátal’s conjecture, that there exists
a finite constant t0 such that every t0-tough graph is hamiltonian, is true
within the class of graphs G having δ(G) ≥ εn, for any fixed ε > 0.

A genaralization of theorem 51 and theorem 75, due to Jung and Wittmann
is the next result.

Theorem 76. [100] Let G be a 2-connected t-tough graph on n vertices.
Then circum(G) ≥ min{n, (t+ 1)δ(G) + 1}.

Another result related to theorem 75 is the following :

Theorem 77. [9] Let G be a t-tough graph on n vertices, with t ≥ 1 and
δ(G) > n

t+2 . Then G contains a dominating cycle.

The next theorem provides us with a sufficient condition for a 1-tough
graph to be hamiltonian, using the vertex connectivity κ(G) of G. If κ(G)
is small then this result greatly improves Dirac’s theorem in the case of 2-
connected graphs. The theorem appears in [5] but the background has it’s
origins in a theorem of Häggkvist and Nicoghossian in [90].

Theorem 78. Let G be a 2-connected graph on n vertices with δ(G) ≥
n+κ(G)

3 . Then circum(G) = n.

A generalization of theorem 78 is the following :

Theorem 79. [12] Let G be a 2-connected graph on n vertices with σ3(G) ≥
n+ κ(G). Then circum(G) = n.

Theorems 78 and 79 are best possible. In the case of 1-tough graphs,
Bauer and Schmeichel improved theorem 78, with the following result :

Theorem 80. [20] Let G be a 1-tough graph on n ≥ 3 vertices with δ(G) ≥
n+κ(G)−2

3 . Then circum(G) = n.
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There are examples where theorem 80 is the best possible when κ(G) = 2
or κ(G) = n−5

2 ≥ 11.
Later, Wei generalized theorem 80 :

Theorem 81. [135] Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥
n+ κ(G)− 2. Then circum(G) = n.

Hoa improved the lower bound on σ3(G) in theorem 81.

Theorem 82. [93] Let G be a 1-tough graph on n ≥ 3 vertices with σ3(G) ≥
n+ κ(G)− α(G). Then circum(G) = n.

The next result is due to Brandt and Veldman :

Theorem 83. [45] Let G be a 1-tough graph on n ≥ 2 vertices with min{degG(v)+
degG(u) | {v, u} ∈ E(G)} ≥ n. Then G is pancyclic or G w Kn/2,n/2.

The following result, due to Chvátal, uses the degree sequence of a graph
to establish its hamiltonicity.

Theorem 84. [56] Let G be a graph with degree sequence d1 ≤ d2 ≤ ... ≤ dn.
If for all integers i with 1 ≤ i < n

2 , di ≤ i implies dn−i ≥ n − i, then
circum(G) = n.

The following theorem of Hoáng is relevant :

Theorem 85. [95] Let t ∈ {1, 2, 3} and let G be a t-tough graph with degree
sequence d1 ≤ d2 ≤ ... ≤ dn. If for all integers i with t ≤ i < n

2 , di ≤ i
implies dn−i+t ≥ n− i, then circum(G) = n.

For the next two theorems we need the definition of path-tough graphs.

Definition 28. A graph G is path-tough if for every nonempty set S of
vertices, the graph G − S can be covered by at most |S| vertex disjoint
paths.

It turns out that being path-tough is a necessary condition for a graph to
be hamiltonian. A graph that is path-tough is also 1-tough. An interesting
discussion on the notion of path-tough graphs can be found in [23]. A
number of results on the subject can also be found in [61]. One of the
results, was that it is NP-complete to determine if a graph is path-tough.
In the same work, the authors proved the following :

Theorem 86. Let G be a path-tough graph on n ≥ 3 vertices. If δ(G) ≥
3n

6+
√

3
, then circum(G) = n.

Schiermeyer gave the minimum degree sum version of the theorem 86 :

Theorem 87. [128] Let G be a path-tough graph on n ≥ 3 vertices with

σ2(G) >
4(n− 6

5
)

5 . Then circum(G) = n.
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The next result involves a new type of sufficient degree condition for a
graph to be hamiltonian. It was introduced by Fan and has led to many
new and interesting results in hamiltonian graph theory.

Theorem 88. [74] Let G be a 2-connected graph on n vertices. If for all
vertices v, u ∈ V (G), distG(v, u) = 2 implies max{degG(v), degG(u)} ≥ n

2 ,
then circum(G) = n.

Replacing the 2-connectivity of the graph in the precondition of theorem
88 with the condition that the graph be 1-tough can improve the lower bound
on the degree condition.

Theorem 89. [10] Let G be a 1-tough graph on n ≥ 3 vertices such that
σ3(G) ≥ n. If for all vertices v, u ∈ V (G), distG(v, u) = 2 implies
max{degG(v), degG(u)} ≥ n−4

2 , then circum(G) = n.

If we further require that the graph is 3-connected, then the condition
on σ3(G) can be dropped.

Theorem 90. [10] Let G be a 3-connected 1-tough graph on n ≥ 35 vertices.
If for all vertices v, u ∈ V (G), distG(v, u) = 2 implies max{degG(v), degG(u)} ≥
n−4

2 , then circum(G) = n.

We now turn to results, concerning the circumference of t-tough graphs,
making no assumptions regarding vertex degrees or neighborhoods unions
as we did in the previous results of this section. It is well known that if
G is a k-connected graph on n ≥ 2k vertices, then circum(G) ≥ 2k. This
bound is tight, as is shown by graph Kn,n−k with n ≥ 2k ≥ 4, regardless of
the size of n. In proposition 8 we stated that τ(Kn,n−k) = min{ n

n−k ,
n−k
n }.

If k is a constant independent from n, then limn→∞ τ(Kn,n−k) = 0. So
asymptotically Kn,n−k is 0-tough. When t > 0, the situation is different for
t-tough graphs. Let

γk(t, n) = min{circum(G) | G is a k-connected 1-tough graph on n vertices}

Theorem 91. [49] Let t > 0 be fixed. Then γ2(t, n) log(γ2(t, n)) ≥ (2 −
o(1)) log n as n→∞.

In [49] the authors also give examples that show that for 0 < t ≤ 1,
γ2(t, n) = O(log n). Then next result is a corollary of theorem 91.

Corollary 21. Let t > 0 be fixed. Then limn→∞ γ2(t, n) =∞.

In the case of 3-connected graphs, we have the following stronger than
theorem 91 result :
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Theorem 92. [49] Let t > 0 be fixed. Then as n→∞

γ3(t, n) ≥
(

4

5 log((1/t) + 1)
− o(1)

)
log n

In the same work, it is shown that for t ≤ 1, theorem 92 is best possible.
The authors also made the following conjecture.

Conjecture 8. Let t > 0 be fixed. There exists a constant A > 0, depending
only on t such that γ2(t, n) ≥ A log n.

Some progress has been made in the case of planar graphs. The following
results present some bounds on the circumference of a planar graph given
some conditions.

Theorem 93. [134] Let G be a 4-connected planar graph on n vertices.
Then circum(G) = n.

Since every non-hamiltonian planar graph G must have κ(G) ≤ 3 and

τ(G) ≤ κ(G)
2 , G must be at most 3

2 -tough. Hence, we have the following
corollary :

Corollary 22. Let G be a (3
2 + ε)-tough planar graph, with ε > 0. Then G

is hamiltonian.

Theorem 94. [97] Let G be a 3-connected planar graph on n vertices. Then
there exist constants ρ, θ > 0 such that circum(G) ≥ ρnθ.

Theorem 95. [38] Let G be a planar graph on n vertices, with κ(G) =
2 such that c(G − S) ≤ ξ, for every S ⊆ V (G), with |S| = 2. Then

circum(G) ≥ ψ
(

1
ξ−1

)0.4

lnn, where ψ ≈ 0.10.

The following result is a corollary of theorem 95

Corollary 23. Let G be a planar graph on n vertices, with κ(G) = 2. Then

circum(G) ≥ ψ
(

τ(G)
2−τ(G)

)0.4

lnn, where ψ ≈ 0.10.

2.8 The disproof of the 2-tough conjecture

In [57] Chvátal conjectured that there exists a finite constant t0 ≥ 1 such
that every t0-tough graph is hamiltonian (we already know that being 1-
tough is a necessary condition for a graph to be hamiltonain). In the same
paper, Chvátal established the existence of 3

2 -tough nonhamiltonian graphs.
It was later shown in [31] that there exist t-tough nonhamiltonian graphs
with t > 3

2 . Later Enomoto et al. ([72]) showed that there exist (2−ε)-tough
graphs having no 2-factor for arbitrary ε > 0.
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The research on this area focused for many years mainly on determining
whether the conjecture was true for t0 = 2. If the 2-tough conjecture held
true, that would imply that a number of important conjectures would also
be true. For some time, it was believed that t0 = 2 might be the threshold
for a graph to be hamiltonian ([72]). The 2-tough conjecture, if true, would
also imply a well known result from Fleischner :

Theorem 96. [80] Let H be a 2-connected graph and let G = H2. Then G
is hamiltonian.

The following two conjectures are examples of implications of the 2-tough
conjecture. We first need the definition of a line graph.

Definition 29. Let G be a graph. The line graph of G, denoted L(G),
is the graph whose vertices are the edges of G, and if e1, e2 ∈ E(G) then
{e1, e2} ∈ E(L(G)) if e1 ∩ e2 6= ∅. A graph H is called a line graph if
H = L(G) for some graph G.

Conjecture 9. [131] Let G be a 4-connected line graph. Then G is hamil-
tonian.

Another important conjecture is the following :

Conjecture 10. [114] Let G be a 4-connected K1,3-free graph. Then G is
hamiltonian.

Since for every claw-free graph G, τ(G) = κ(G)
2 , conjecture 10, if true,

would imply that every 2-tough claw-free graph is hamiltonian. These con-
jectures were shown by Ryjáček to be equivalent in [127]. In spite of all these
efforts, it was proven in [11] that not all 2-tough graphs are hamiltonian.
More accurately, the initial result in [11] was that not all 2-tough graphs are
traceable. However, the proof of this can be slightly changed to a proof of
2-tough nonhamiltonian graphs. The statement was proven by counterex-
amples, using a family of graphs constructed using a specific graph L as a
building block. This graph has at least two vertices that are not connected
via a Hamilton path, and the graph constructed based on graph L, condi-
tioned on the values of some parameters, is nontraceable. The toughness of
this constructed graph, with the same restrictions on the values of it’s pa-
rameters, gives us a (9

4−ε)-tough graph. Combining these two observations,
we can construct a (9

4 − ε)-tough graph that is nontraceable. Most of the
ingredients used in these counterexamples were already present in [8]. The
counterexamples were also inspired by constructions in [21]. We now give
a brief outline of the construction of this family of graphs, in which we can
find our counterexamples for the 2-tough conjecture.

Let H be a graph on at least two vertices and x, y ∈ V (H). We define
the graph G(H,x, y, l,m) as follows. Take m disjoint copies H1, ...,Hm of
H, with xi, yi being the vertices in Hi corresponding to the vertices x and y
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in H (for all i = 1...m). Let Fm be the graph obtained from H1∪ ...∪Hm by
adding all possible edges between pairs of vertices in {x1, ..., xm, y1, ..., ym}.
Finally, set G(H,x, y, l,m) = Kl ∗ Fm. We have the following result, with
respect to graph G(H,x, y, l,m) :

Theorem 97. [11] Let H be a graph and x, y two vertices of H which are
not connected by a Hamilton path in H. If m ≥ 2l+ 3, then G(H,x, y, l,m)
is nontraceable.

In order to get advantage of theorem 97, we need a graph H having two
vertices u, v ∈ V (H), not connected by a Hamilton path, and for m ≥ 2l+ 3
we want τ(G(H,x, y, l,m)) ≥ 2. Consider the graph L of figure 5. It is clear
that there does not exist a Hamilton path between v and u in graph L.

Figure 5: The graph L. Vertices u, v are not connected via a Hamilton path

Thus we have the following corollary of theorem 97 :

Corollary 24. If m ≥ 2l + 3, then G(L, u, v, l,m) is nontraceable.

It remains to show that for m ≥ 2l + 3, τ(G(L, u, v, l,m)) ≥ 2. The
following theorem establishes the toughness of G(L, u, v, l,m).

Theorem 98. [11] For l ≥ 2 and m ≥ 1,

τ(G(L, u, v, l,m)) =
l + 4m

2m+ 1
.

Combining theorems 97 and 98 for sufficiently large m and l we get the
following result :

Theorem 99. [11] For every ε > 0, there exists a (9
4−ε)-tough nontraceable

graph.

The proof of theorem 99 in [11] can be turned into a proof of the following
theorem by replacing m ≥ 2l + 3 with m ≥ 2l + 1 and ”nontraceable” with
”nonhamiltonian.
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Theorem 100. For every ε > 0, there exists a (9
4−ε)-tough nonhamiltonian

graph.

Consider the graph G(L, u, v, 2, 5) of figure 6. From theorem 98, the
graph G(L, u, v, 2, 5) has toughness 2, and from theorem 100 it is nonhamil-
tonian. Graph L has 8 vertices, thus this counterexample for the 2-tough
conjecture has 42 vertices. The smallest graph 2-tough G(L, u, v, l,m) which
is nontraceable is for l = 2 and m = 7 and has order 58.

Figure 6: The graph G(L, u, v, 2, 5) is nonhamiltonian with toughness
τ(G(L, u, v, 2, 5)) = 2

Chvátal also stated a weaker version of the 2-tough conjecture, that is
based on the following definition.

Definition 30. A graph G is neighborhood connected if the neighborhood
of each vertex of G induces a connected subgraph of G.

Chvátals conjecture was the following.

Conjecture 11. [57] Let G be a 2-tough neighborhood connected graph.
Then G is hamiltonian.

The graph G(L, u, v, 2, 5) is neighborhood connected and we already
know that it is 2-tough. Therefore G(L, u, v, 2, 5) is also a counterexam-
ple for conjecture 11. The following result is also due to Chvátal :

Theorem 101. [57] For every ε > 0, there exists a (3
2 − ε)-tough graph

without a 2-factor.

The examples on which the theorem is based, are all chordal. It was
later shown that :

Theorem 102. [17] Let G be a 3
2 -tough chordal graph. Then G has a 2-

factor.
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Later, Kratsch asked whether every 3
2 -tough chordal graph is hamilto-

nian, but it was falsified in [11] using theorem 97. The graphs that were
used as counterexamples followed almost the same stages of construction,
but instead of using graph L as a ”building block”, they used graph M that
is shown in figure 7.

Figure 7: The graph M .

The graph M is chordal and there is no Hamilton path connecting ver-
tices p and q. It turns out that the graphs G(M,p, q, l,m) are also chordal,
and from theorem 97, they are nontraceable whenever m ≥ 2l+ 3. By argu-
ments similar to the ones used in the proof of theorem 98, we can compute
the toughness of G(M,p, q, l,m) :

Theorem 103. For l ≥ 2 and m ≥ 1,

τ(G(M,p, q, l,m)) =
l + 3m

2m+ 1
.

Therefore, the graphs G(M,p, q, l, 2l+3) for l ≥ 2, are chordal nontrace-
able graphs with toughness 7l+9

4l+7 . We have the following result :

Theorem 104. [11] For every ε > 0, there exists a (7
4 − ε)-tough chordal

nontraceable graph.

For the next two results we need some definitions first.

Definition 31. A closed walk is a walk whose endpoints coincide.

Definition 32. A spanning walk is a walk that covers all vertices of the
graph.

Definition 33. A k-walk in a graph G is a closed spanning walk of G that
visits every vertex of G at most k times.

Clearly, a Hamilton cycle is a 1-walk. The same concept of a construction
of a family of graphs was used by Ellingham and Zha to show that there
exist graphs of relatively high toughness without a k-walk. They established
the following results :
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Theorem 105. [68] Every 4-tough graph has a 2-walk.

Theorem 106. [68] For every ε > 0 and every k ≥ 1 there exists a
( 8k+1

4k(2k−1) − ε)-tough graph with no k-walk.

2.9 Toughness and factors

Chvátal in [57] conjectured that every k-tough graph on n ≥ k + 1 vertices
and kn even contains a k-factor. Enomoto et al. ([72]) then proved that
k-toughness is a threshold for this property, as we can see in the following
two theorems.

Theorem 107. [72] Let G be a k-tough graph on n vertices with n ≥ k+ 1
and kn even. Then G has a k-factor.

Theorem 108. [72] Let k ≥ 1. For every ε > 0 there exists a (k− ε)-tough
graph G on n vertices, with n ≥ k + 1 and kn even which has no k-factor.

The next two corollaries follow easily from theorems 107 and 108.

Corollary 25. Every 2-tough graph has a 2-factor.

Corollary 26. There exist infinitely many (2 − ε)-tough graphs with no
2-factor.

A stronger version of theorem 107 was given by Enomoto :

Theorem 109. [69] Let k be a positive integer and G be a graph on n
vertices with n ≥ k + 1 and kn even. Suppose |S| ≥ kc(G− S)− 7k

8 for all
cutsets S ⊆ V (G). Then G has a k-factor.

Later, Enomoto improved his result in the case of k = 1 and k = 2. We
need the following definition.

Definition 34. Let G be a graph and let

τ ′(G) = max{t | |S| ≥ tc(G− S)− t for all cutsets S ⊂ V (G)}

= min

{
|S|

c(G−S)−1 | c(G− S) > 1

}
if G is not complete, otherwise set τ ′(G) =∞.

Theorem 110. [70] Let G be a graph on n vertices, where n is even. If
τ ′(G) ≥ 1, then G has a 1-factor.

Theorem 111. [70] Let G be a graph on n ≥ 3 vertices. If τ ′(G) ≥ 2 then
G has 2-factor.
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A generalization of theorem 111 came later by Enomoto and Hagita. This
result is also a stronger version of theorem 107 for graphs with a sufficiently
large number of vertices.

Theorem 112. [71] Let k be a positive integer and G be a graph on k2 − 1
vertices with kn even. If τ ′(G) ≥ k, then G has a k-factor.

The next results involve some lower bounds on the minimum degree that
a t-graph can have, where 1 ≤ t ≤ 2, in order to contain a 2-factor.

Theorem 113. [21] Let G be a t-tough graph on n ≥ 3 vertices, where
1 ≤ t ≤ 2. If δ(G) > (2−t

1+t)n, then G has a 2-factor.

In the same paper, Bauer and Schmeichel showed that for any t ∈ [1, 3
2 ]

there are infinitely many t-tough graphs having no 2-factor and with δ(G) ≥
(2−t

1+t)n −
5
2 . An improvement of the bound on δ(G) was also given for

3
2 < t < 2.

Theorem 114. [21] Let G be a t-tough graph on n ≥ 3 vertices, where
3
2 < t < 2. If δ(G) ≥ (2−t

1+t)(
t2−1

7t−7−t2 )n, then G has a 2-factor.

The authors in [21] give examples that show that theorem 114 is asymp-
totically tight if t = 2r−1

r , for any integer r ≥ 2. In [28] can be found
similar results concering minimum degree conditions for a t-tough graph,
with 1 ≤ t < 3, regarding the existence of a 3-factor.

An improvement of theorem 107 came also from Chen, in [52], where
he showed that under similar conditions it is possible to find a k-factor
containing a specified edge and a k-factor not containing a specified edge.
Another improvement of theorem 107 was obtained by Katerinis in [102].

For the results that follow we need the next definition.

Definition 35. An [a, b]-factor of a graph G is a spanning subgraph H of
G, such that a ≤ degH(v) ≤ b, for all v ∈ V (G).

Theorem 115. [102] Let a ≤ b and G be a graph on n vertices such that
a < b or bn is even. If τ(G) ≥ a+ a

b − 1, then G has an [a, b]-factor.

Chen improved the latter result for a = 2 < b.

Theorem 116. [53] Let b > 2 and G be a graph on n ≥ 3 vertices. If
τ(G) ≥ 1 + 1

b , then G has a [2, b]-factor.

This result has been extended to connected factors by Ellingham et al.
in [67]. The next result, due to Katerinis, involves the existence of 2-factors
in 1-tough bipartite graphs.

Theorem 117. [101] Every 1-tough bipartite graph on n ≥ 3 vertices has a
2-factor.
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Next, we present a generalization of theorem 54, made by Faudree et al.
in [76].

Theorem 118. [76] There exists an integer n0 such that every 1-tough graph
on n ≥ n0 vertices with δ(G) ≥ n−4

2 , has a 2-factor with k cycles, for all k
such that 1 ≤ k ≤ n−10

4 .

We will present some results on factors that relate toughness to (r, k)-
factor-critical graphs.

Definition 36. A graph G is (r, k)-factor-critical if for all X ⊆ V (G) with
|X| = k, G−X contains an r-factor .

In the case of r ≥ 2, Liu and Yu in [112] established some results on (r, k)-
factor-critical graphs, although the term used was not that of definition 36
but (r, k)-extendable graphs.

Theorem 119. [112] Let G be a graph on n vertices with τ(G) ≥ 3. Then
G is (2, k)-factor-critical, for every integer k such that 3 ≤ k ≤ τ(G) and
k ≤ n− 3.

Liu and Yu also made the following conjecture :

Conjecture 12. Let G be a graph on n vertices with τ(G) ≥ q and n ≥ 2q+1
for some integer q ≥ 1. Then G is (2, 2q − 2)-factor-critical.

For q = 1 conjecture 12 states that every graph G on n ≥ 3 vertices with
τ(G) ≥ 1 has a 2-factor. From theorem 108 we have that for every ε > 0,
there exist (2 − ε)-graphs with no 2-factor, so the conjecture clearly does
not hold for q = 1. However, Cai et al. in [51] and independetly Enomoto
in [70] showed that the conjecture is true for all integers q ≥ 2.

Theorem 120. Let G be a graph on n vertices with τ(G) ≥ 2. Then G is
(2, k)-factor-critical, for every non-negative integer k ≤ min{2τ(G)− 2, n−
3}.

Cai et.al in [51], also showed that the bound 2τ(G) − 2 is sharp. The
next two theorems concern the relationship between toughness and (r, k)-
factor-critical graphs. The first is by Favaron in [77], where he examined
this relationship in the case of r = 1.

Theorem 121. [77] Let G be a graph on n vertices and k be an integer with
2 ≤ k < n and n+ k even. If τ(G) > k

2 , then G is (1, k)-factor-critical.

The bound on τ(G) was also shown to be tight. The case of r = 3 was
then examined by Shi et al. in [130].

Theorem 122. [130] Let G be a graph on n vertices with τ(G) ≥ 4. Then
G is (3, k)-factor-critical for every non-negative integer k such that n+ k is
even, k < 2τ(G)− 2 and k ≤ n− 7.
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The upper bounds in theorem 122 on k are the best possible. We need
some definitions for the rest of this section.

Let G be a graph, X ⊆ V (G) and Y ⊆ E(G−X). Let G(Y ) denote the
graph induced by the edges in Y , i.e V (G(Y )) =

⋃
e∈Y e and E(G(Y )) =

{{v, u} ∈ E(G) | v, u ∈ V (G(Y ))}. Notice that there may be edges in
E(G(Y )) that are not in Y . Let C1, C2, ..., Ck be the components of the
edge-induced subgraph G(Y ) induced by edge set Y . Let H be a graph and
B be a subgraph of H, then the boundary of B in H is defined as :

bdH(B) = {v ∈ V (B) | ∃u ∈ NH(v) [u 6∈ B]}

inH(B) = V (B)− bdH(B)

Thus the boundary of B is two sets, the first that contains all vertices
of B that have a neighbor outside B and the second that contains all ver-
tices whose neighborhood is a subset of B. Therefore, the boundary of a
component Ci, with 1 ≤ i ≤ k in G−X is

bdG−X(Ci) = {v ∈ V (Ci) | ∃u ∈ NG−X(v) [u 6∈ Ci]}

inG−X(Ci) = V (Ci)− bdG−X(Ci)

Finally, G−X−Y −
⋃k
i=1 inG−X(Ci) denotes the graph which is obtained

from G by deleting vertices X and inG−X(Ci) for every 1 ≤ i ≤ k and the
edges Y (without deleting the corresponding endpoints). Then we have the
following definition of t-edge-tough graphs :

Definition 37. Let G be a graph and let t > 0. Then G is t-edge-tough if
G is connected and if

c

(
G−X − Y −

k⋃
i=1

inG−X(Ci)

)
≤
|X|+

∑k
i=1b

|bdG−X(Qi)|
2 c

t
:=

s(X,Y ;G)

t

holds for every X ⊆ V (G) and Y ⊆ E(G−X) satisfying c(G−X −Y −
∪ki=1inG−X(Ci)) > 1.

Definition 38. The edge-toughness of a graph G, denoted by τe(G), is the
maximum value of te for which G is te-edge-tough. Set τe(Kn) =∞.

The notion of t-edge-toughness was introduced by Katona in [103]. Ka-
tona also established the following results :

Theorem 123. [103] If G is a hamiltonian graph, then G is 1-edge-tough.

Theorem 124. [103] If G is a t-edge-tough graph, then G is t-tough.
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Theorem 125. [103] If G is a 2t-tough graph, then G is t-edge-tough.

We already know from theorem 107 that every 2-tough graph has a 2-
factor. Setting t = 1 in theorem 125, we get that every 2-tough graph is
1-edge-tough. A natural question, answered affirmatively, is whether every
1-edge-tough graph has a 2-factor.

Theorem 126. [104] Let G be 1-edge-tough graph on n ≥ 3 vertices. Then
G has a 2-factor.

Katona also made the following conjecture :

Conjecture 13. Let t be a positive integer and G be a t-edge-tough graph
on n ≥ 2t+ 1 vertices. Then G has a 2t-factor.

2.10 Computational complexity of toughness

Chvátal first raised the problem of determining the computational complex-
ity of recognizing t-tough graphs in [55], and then it appeared also in [32]
and in [58]. Consider the following decision problem :

t-Tough
Instance: Graph G
Question: Is τ(G) ≥ t?

The following result was shown in [15] :

Theorem 127. For any positive rational number t, t-Tough is NP-hard.

The proof in [15] used a reduction from a well-known NP-hard variant of
Independent Set problem to 1-Tough. The 1-Tough problem is easily reduced
to the general t-Tough problem. Analogous arguments to those used in the
first reduction, can be used to give a reduction from Independent Set to
1-Tough, as is shown in [22].

An interesting question is whether there are subclasses of graphs in which
determining the toughness of the graphs they contain becomes tractable. In
proposition 2 we saw a result from Matthews and Sumner, stating that
the toughness of a claw-free graph is equal to half its connectivity. The
connectivity of a graph can be computed in polynomial time, since for any
graph G the maximum number of disjoint paths between two vertices can
be computed with a max-flow min-cut algorithm and by Menger’s theorem
the connectivity of a graph equals the minimum over all pairs of vertices
of the maximum number of vertex disjoint paths between them. Hence
the toughness of claw-free graphs can be determined in polynomial time.
Line graphs are clearly a subclass of claw-free graphs (every edge can be
intersected by at most two edges without them intesecting as well), thus
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their toughness can be computed in polynomial time as well. It is well
known that deciding whether a line graph is hamiltonian, is NP-complete
[33]. However it is polynomial time computable to determine if it is 1-tough.
This holds for split graphs as well, as it is NP-complete to decide whether
a split graph is hamiltonian [60], but it is polynomial to decide whether a
split graph is 1-tough.

Theorem 128. [107] The class of 1-tough split graphs can be recognized in
polynomial time.

This result was extended in the case of t-tough split graphs by Woeginger,
where t is a nonnegative rational number.

Theorem 129. [137] For any rational number t ≥ 0, the class of t-tough
split graphs can be recognized in polynomial time.

We have presented some subclasses of graphs for which 1-toughness is
polynomial time decidable and others for which the general t-Tough problem
is polynomial time decidable. However, there are other subclasses of graphs
for which it is NP-hard to determine their toughness. Such a case is the
class of graphs having minimum degree almost high enough to ensure that
the graph is t-tough.

Theorem 130. [18] Let t ≥ 1 be a rational number. If δ(G) ≥ ( t
t+1)n,

then G is t-tough. On the other hand, for any fixed ε > 0, it is NP-hard to
determine if G is t-tough for graphs with δ(G) ≥ ( t

t+1 − ε)n.

Notice that using Dirac’s theorem, if δ(G) ≥ n
2 then G is hamiltonian and

hence it is 1-tough. So for these graphs, it is polynomial time decidable to
test for 1-toughness. An interesting case is that of graphs with δ(G) ≥ n

2−2.
It turns out that testing for 1-toughness in this class is also polynomially
decidable. This is a consequence of a result of Häggvist in [89], which states
that if δ(G) ≥ n

2 − 2, there is a polynomial time algorithm that decides
whetherG is hamiltonian, and Jung’s theorem (theorem 54). Jung’s theorem
states that every 1-tough graph on n ≥ 11 vertices with δ(G) ≥ n

2 − 2 is
hamiltonian. Every hamiltonian graph is necessarily 1-tough, so a graph
G on n ≥ 11 vertices with δ(G) ≥ n

2 − 2 is hamiltonian if and only if is
1-tough. Combining Häggvist’s and Jung’s resuls, testing for 1-toughness
becomes tractable when the minimum degree condition is satisfied.

An interesting class of graphs is that of bipartite graphs. Notice that
from proposition 8, the complete bipartite graph Km,n with m ≤ n has
toughness τ(Km,n) = m

n ≤ 1. Also from proposition 5, any spanning sub-
graph H of Km,n will have toughness τ(H) ≤ τ(Km,n). So we have the
following corollary :

Corollary 27. Let G be a bipartite graph. Then τ(G) ≤ 1.
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In [107], Kratsch et al. reduced the 1-Tough problem for general graphs
to 1-Tough for bipartite graphs.

Theorem 131. [107] 1-Tough remains NP-hard for bipartite graphs.

Since bipartite graphs are also triangle-free, we have the following corol-
lary of theorem 131

Corollary 28. 1-Tough is NP-hard for the class of triangle-free graphs.

Another interesting class of graphs is that of r-regular graphs. First
notice that since the maximum number of vertex disjoint paths in an r-
regular graph is at most r, the connectivity of an r-regular graph G is
κ(G) ≤ r. Hence, if a graph G is r-regular, then τ(G) ≤ κ

2 ≤
r
2 . In [57],

Chvátal asked for which values of r and n > r+ 1 there exists an r-regular,
r
2 -tough graph on n vertices. He observed that when r is even, there is
always such a graph. He also made the following conjecture :

Conjecture 14. [57] If G is an r-regular r
2 -tough graph on n > r+1 vertices

with r odd, then n ≡ 0 mod r.

Chvátal also verified the conjecture for r = 3, but later Doty in [66] and
Jackson and Katerinis in [96], independently constructed an infinite family
of r-regular r

2 -tough graphs on n vertices with n 6≡ 0 mod r.
Jackson and Katerinis in [96], gave a characterization of cubic 3

2 -tough
graphs which gives us a way of recognizing them in polynomial time. This
characterization used Cvátal’s concept of inflation in [57]. In particular,

Definition 39. The inflation of a graph G is the graph obtained from G
by replacing all vertices v1, v2, ..., vn of G by disjoint complete graphs on
degG(vi) vertices vi,1, ..., vi,degG(vi), and all edges {vi, vj} by disjoint edges
{vi,p, vi,q}, with i, j ∈ {1, 2, ..., n}, p ∈ {1, ..., degG(vi)} and q ∈ {1, ..., degG(vj)}.
We use the term inflation for a graph that is isomorphic to the inflation of
some graph.

Theorem 132. [96] Let G be a cubic graph. Then G is 3
2 -tough if and only

if G = K4, G = K2×K3, or G is the inflation of a 3-connected cubic graph.

An analogous characterization of r-regular r
2 -tough graphs for r ≥ 1 was

conjectured by Goddard and Swart in [86]. This characterization, would also
allow such graphs to be recognized in polynomial time. Altough 3

2 -tough
cubic graphs are polynomial time recognizable, the situation is different in
the case of 1-tough cubic graphs, as was shown by Bauer et al. in [24].

Theorem 133. 1-Tough remains NP-hard for cubic graphs.

This result was generalized as follows :
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Theorem 134. [25] For any integer t ≥ 1 and any fixed r ≥ 3t, it is
NP-hard to recognize r-regular, t-tough graphs.

Bauer et al. also made the following conjecture in [25] :

Conjecture 15. For any rational t ≥ 1 and any fixed integer r ≥ 1, t-Tough
remains NP-hard for the class of r-regular graphs if and only if r > 2t.

Conjecture 15 appears quite difficult, particularly when r is slightly
larger than 2t.

A number of graph classes have unknown complexity with respect to
recognizing if they are t-tough. As Dillencourt pointed out in [63, 64], we
still do not know the complexity of recognizing 1-tough planar graphs or
1-tough maximal planar graphs.

In the case of 2-connected graphs, we can take advantage of a result
of Bauer et al. in [16], in order to give better lower bound for their cir-
cumference. The result states that 2-connected graphs with circum(G) ∈
{σ2(G), σ2(G) + 1}, constitute a family H of eight easily-recognized classes
of graphs. Note that by theorem 52, a 2-connected graph on n ≥ 3 vertices
satisfies circum(G) ≥ min{n, σ2(G)}. Hence, the next result follows easily.

Theorem 135. Let G be a 2-connected graph on n ≥ 3 vertices. Then
circum(G) ≥ min{n, σ2(G) + 2} unless G ∈ H.

Note also that, by theorem 56, if a graph G is 1-tough graph on n ≥ 3
vertices, then circum(G) ≥ min{n, σ2(G) + 2}. Hence, theorem 135 is an
improvement of theorem 56.

In several rusults in hamiltonian graph theory, an NP-hard property of
graphs implies an NP-hard cycle structure property. Two such theorems are
the well-known theorems of Chvátal and Erdös in [59], and of Jung in [99].
In [58], Chvátal gave a proof of the Chvátal-Erdös theorem in [59], which
given a graph G, it constructs in polynomial time either a Hamilton cycle
in G, or and independent set of more than k vertices in G. A similar type
of polynomial time constructive proof was given by Bauer et al. in [7] for
Jung’s theorem in [99] on graphs with at least 16 vertices.

Theorem 136. [7] Let G be a graph on n ≥ 16 vertices with σ2(G) ≥ n−4.
Then we can construct in polynomial time either a Hamilton cycle in G or
a set X ⊆ V (G) with c(G−X) > |X|.

2.11 Toughness and matchings

In this section we present some results involving matchings in graphs. We
need some definitions first :

Definition 40. Given a graph G = (V,E), a matching M in G is a set of
pairwise disjoint edges (i.e no two edges share a common vertex). A vertex is
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matched if it is an endpoint of one of the edges in the matching. Otherwise
the vertex is unmatched.

Definition 41. A maximal matching is a matching M of a graph G with the
property that if any edge not in M is added to M , it is no longer a matching,
(i.e M is maximal if it is not a proper subset of any other matching in graph
G). A maximum matching is a matching that contains the largest possible
number of edges. The matching number, denoted by ν(G), is the size of the
maximum matching in G.

Definition 42. A perfect matching is a matching which matches all vertices
of the graph (i.e every vertex of V (G) is incident to exactly one edge of the
matching).

Note that not all graphs have a perfect matching, as is shown by graphs
K3,K5. Also notice that the edges of a specific perfect matching form a
1-factor of that graph.

Definition 43. Let m and n be positive integers with m ≤ n
2 − 1 and let G

be a graph on n vertices with a perfect matching. A graph G is m-extendable
if every matching of size m extends to a perfect matching.

Plummer investigated in [123] the relationship between the toughness
of a graph and whether a given matching in a graph can be extended to a
perfect matching. In [57] Chvátal, showed the following :

Theorem 137. [57] Every 1-tough graph on an even number of vertices has
a perfect matching.

In [123] Plummer proved the following result :

Theorem 138. [123] Suppose G is a graph on n vertices, with n even. Let
m be a positive integer with m ≤ n

2−1. If τ(G) > m, then G is m-extendable.
Moreover, the lower bound on τ(G) is tight for all m.

An improvement of theorem 137 was shown by Lovász and Plummer,
using the notion of elementary graphs.

Definition 44. A graph G is called elementary if G has a perfect matching,
and if the edges of G which occur in a perfect matching of G induce a
connected subgraph of G.

They proved the following result.

Theorem 139. [113] Let G be a 1-tough graph on an even number of ver-
tices. Then G is elementary.

In the case of 1-tough graphs, Bauer et al. in [6] have established results
involving the notion of factor-critical graphs, a term introduced in [113].



2.12 Other toughness results 62

Definition 45. A graph G is called factor-critical if G − v has a perfect
matching, for all v ∈ V (G).

Theorem 140. [6] Let G be a 1-tough graph on an odd number of vertices.
Then G is factor-critical.

The size of a maximum matching can be found in polynomial time, using
a result involving maximum Tutte sets.

Definition 46. Let codd(G) denote the number of odd components of a
graph G. A set T ⊆ V (G) is called a Tutte set for G if

codd(G− T )− |T | = max
X⊆V (G)

{codd(G−X)− |X|}

A maximum Tutte set in a graph G is a Tutte set for G. The quantity
maxX⊆V (G){codd(G − X) − |X|} is called the deficiency of G, and it can
be shown that it equals the number of vertices unmatched by a maximum
matching in G.

An important result in matching theory is due to Tutte :

Theorem 141. [133] A graph G has a perfect matching if and only if
codd(G−X)− |T | ≤ |X| for all X ⊆ V (G).

In 1958, Berge extended Tutte’s Theorem to give the exact size of a
maximum matching in a graph G. This result reveals the importance of
Tutte sets with respect to maximum matchings.

Theorem 142. [29] Let G be a graph and T be a Tutte set for G. Then the
matching number of G is given by

ν(G) =
1

2
(|V (G)| − (codd(G− T )− |T |))

In [6], it was shown that finding maximum Tutte sets in general graphs
is NP-hard. However, the situation is different in the case of 1-tough graphs.

Theorem 143. [113] Maximum Tutte sets can be found in polynomial time
for the class of 1-tough graphs.

2.12 Other toughness results

In this section we cover some remaining results on graph toughness. We
begin with polyhedral graphs.

Definition 47. A graph is polyhedral if it is planar and 3-connected.

By a well-known theorem of Tutte (theorem 93), 4-connected planar
graphs are hamiltonian. Hence, any nonhamiltonian planar graph G has
κ(G) ≤ 3 and since τ(G) ≤ κ(G)

2 , G is at most 3
2 -tough. This bound is ac-

tually tight, since Harant in [92], constructed nonhamiltonian regular poly-
hedral graphs of degree 3,4 and 5 with maximum toughness 3

2 .
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Definition 48. A planar graph G is called maximal planar graph if the
addition of any edge to G results in a nonplanar graph.

An alternative way to define a maximal planar graphs is as the triangu-
lation of a planar graph. In [91], Harant and Owens constructed nonhamil-
tonian maximal planar graphs with toughness 5

4 . This result was improved
by Owens in [120], where he constructed nonhamiltonian maximal planar
graphs with toughness 3

2 − ε, for any ε > 0, without a 2-factor.

Theorem 144. [120] For any ε > 0, there exist (3
2 − ε)-tough nonhamilto-

nian planar graphs.

By corollary 22, every (3
2 + ε)-tough planar graph is hamiltonian. A

question that comes natural, is whether 3
2 -tough planar and maximal planar

graphs are hamiltonian or if they even contain a 2-factor.
Chvátal had raised the question whether there exist 1-tough nonhamil-

tonian maximal planar graphs. The answer came from Nishizeki in [118],
where he constructed a nonhamiltonian 1-tough maximal planar graph on
19 vertices. Later, Dillencourt in [63] found such a graph with 15 vertices.
The best such result was due to Tkáč in [132]. He found a nonhamiltonian
1-tough maximal planar graph on 13 vertices and showed that there is no
such graph with fewer vertices.

In [79], Ferland investigated the toughness of generalized Petersen graphs.

Definition 49. For each n ≥ 3 and 0 < k < n, the generalized Petersen
graph G(n, k) has vertex set V = {u1, u2, ..., un, v1, v2, ..., vn} and edge set
E = {{ui, ui+1} | 1 ≤ i ≤ n} ∪ {{ui, vi} | 1 ≤ 1 ≤ n} ∪ {{vi, vi+k} | 1 ≤ i ≤
n}, where all the indices are modulo n.

The Petersen graph then is G(5, 2). Ferland in [79, 78] was interested
in bounds on the toughness of G(n, k). In particular, he was interested
in asymptotic bounds for τ(G(n, k)). He defined a real number to be an
asymptotic upper bound for τ(G(n, k)) if limn→∞ τ(G(n, k)) ≤ b. Similarly,
we can define asymptotic lower bounds. In [121], the value of τ(G(n, 1))
was determined, and τ(G(n, 1)) has an asymptotic upper bound of 1. In
[78], it was found that 5

4 was both a lower and upper asymptotic bound for
τ(G(n, 2)). In [78], they were given upper and lower asymptotic bounds for
τ(G(n, k)) for n ≥ 3 and 0 < k < n.

2.13 Conclusions

The research on toughness has its origins in a work of Chvátal in 1973 ([57]).
A great part of this research concerns the relation between toughness and the
extistence of cycle structures. This research was motivated by conjectures in
[57], which if true, would have a number of implications, as other conjectures
would also be true. The most intriguing of Chvátal’s conjectures, which is
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still open, asks if there exists a finite t0 such that every t0-tough graph is
hamiltonian.

If the conjecture is true, then by theorem 100, t0 ≥ 9
4 . Although the

question is open for general graphs, we now know of graph classes for which
the conjecture holds. In this thesis, we have presented results showing that
the conjecture holds for claw-free graphs, planar graphs and chordal graphs.
In particular, we know that for chordal graphs t0 ≤ 18 (theorem 46) and
that t0 ≥ 7

4 (theorem 104), for claw-free graphs t0 ≤ 7
2 (corollary 14) and for

planar graphs t0 >
3
2 (corollary 22), which is the best we know. We remind

the reader that there exist nonhamiltonian (3
2 − ε)-tough maximal planar

graphs (theorem 144). It is still open whether all 7
4 -tough chordal graphs

are hamiltonian, and is open even for 2-tough chordal graphs. The t0-tough
conjecture is open in the case of triangle-free graphs. We know that if it
were true, then t0 >

5
4 (theorem 47). Finally, we now know that Chvátal’s

t0-tough conjecture is true within the class of graphs on n vertices satisfying
δ(G) ≥ εn, for any fixed ε > 0 (theorem 75).

Another direction in characterizing hamiltonian graphs is by imposing
minimum degree conditions, combined with a specified level of toughness.
By corollary 18, every 2-tough graph G on n vertices with δ(G) ≥ n

3 is hamil-
tonian. In the disproof of the 2-tough conjecture, they were used graphs
having minimum degree 4. So, what is the minimum degree condition in
5 ≤ δ(G) ≤ n

3 for which we can guarantee hamiltonicity for 2-tough graphs?
This is another, yet unresolved problem. Similarly, it is intriguing to find
the minimum degree condition to ensure that 1-tough triangle-free graphs
are hamiltonian. Theorems 31, 34 suggest that the best possible minimum
degree guaranteeing that a 1-tough triangle free graph is hamiltonian lies
somewhere between n+2

4 and n
3 .

An area that has drawn a lot of research is about finding toughness
conditions for the existence of certain factors in graphs. A problem of major
interest is to determine whether every 3

2 -tough maximal planar graph has a
2-factor, and if it holds, whether they are hamiltonian. This problem is still
open, and so is it for planar graphs.

On the computational complexity part of the research, we now know
that it recognizing t-tough graphs is NP-hard for general graphs. However,
the same problem on claw-free graphs and split graphs has polynomial time
complexity. The complexity of recognizing t-tough graphs is unknown for
planar graphs, maximal planar graphs and chordal graphs, just to mention
a few. In the case of r-regular graphs G with r ≥ 3τ(G), it has been shown
that recognizing t-tough graphs is NP-hard, but for r < 2t the problem has
polynomial time complexity. It is still open for 2t ≤ r < 3t, and has drawn
a lot of interest in the case where r = 2t+ 1.
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3 On the relation between Treewidth and Tough-
ness

3.1 Relating Treewidth to Toughness

In this section we present some of our own results concerning the relation-
ship between the treewidth of a graph G, tw(G), and its toughness, τ(G).
Researching on this topic was mostly motivated by a vague intuition that
big toughness obstructs small treewidth. As we shall see, this is indeed the
case, as treewidth bounds toughness from above. In particular, we will show
that τ(G) ≤ tw(G)

2 for any graph G. Moreover, we will present examples of
graphs for which this relation is also satisfied by equality. It is reasonable
to ask, how close are treewidth and tougness in general graphs. It turns out
that one can construct an infinite sequence of graphs, G1, G2, ...., such that
tw(Gn) → ∞ and τ(Gn) → 0 as n → ∞. Hence there exist graphs having
arbitrarily large treewidth and arbitrarily small toughness. We also present
some generalizations of the initial upper bound.

We begin with some lemmata bounding toughness from above, using the
separation properties of tree decompositions. The following lemma uses the
edge separation property of tree decompositions.

Lemma 24. Let G be a noncomplete graph and ({Xi | i ∈ I}, T = (I, F ))
be a nonredundant tree decomposition of G with at least two nodes. Then

τ(G) ≤ min
{i,j}∈F

|Xi ∩Xj |
2

Proof. Let i, j ∈ I be any two adjacent nodes of T . Then by lemma 3, the

vertex set Xi ∩Xj is a cutset of G. Thus, τ(G) ≤ |Xi∩Xj |2 .

The next lemma shows a bound on toughness using the vertex separation
property of tree decompositions,

Lemma 25. Let G be a noncomplete graph and ({Xi | i ∈ I}, T = (I, F ))
be a nonredundant tree decomposition of G with at least two nodes. Then

τ(G) ≤ min
i∈I

|Xi|
degT (i)

(1)

Proof. Let i ∈ I be a node of the tree decomposition. If degT (i) = 1, let

j be its adjacent node. Then by lemma 24, τ(G) ≤ |Xi∩Xj |
2 , and since

|Xi ∩Xj | ≤ |Xi|, τ(G) ≤ |Xi|2 ≤ |Xi|. Suppose now that degT (i) > 1. Then
by corollary 1, Xi is a cutset of G. In particular, G − Xi has components
G−VT1 , ..., G−VTdegT (i)

, where T1, ...TdegT (i) are the components of T −{i}.
Hence, c(G−Xi) = c(T − {i}) = degT (i) and consequently τ(G) ≤ |Xi|

degT (i) .
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The following theorem is one of our main results. It shows that the
toughness of a graph can be at most half its treewidth.

Theorem 145. Let G be a noncomplete graph. Then

τ(G) ≤ tw(G)

2
(2)

Proof. Let ({Xi | i ∈ I}, T = (I, F )) be an optimal tree decomposition of
G (i.e maxi∈I Xi − 1 = tw(G)). Also assume w.l.o.g that there do not exist
i, j ∈ I such that {i, j} ∈ F and Xi ⊆ Xj , that is the tree decomposition is
nonredundant. If there are such nodes, we can run algorithm 1 and obtain an
optimal nonredundant tree decomposition with the desired property. (note
that algorithm 1 does not increase the size of the bags).

First of all, notice that since G is noncomplete then by lemma 8, tw(G) ≤
n−2 and consequently the tree decomposition must have at least two nodes
(otherwise the maximum bag would have n elements). By lemma 24, τ(G) ≤
min{i,j}∈F

|Xi∩Xj |
2 . Furthermore it holds that |Xi ∩ Xj | ≤ maxi∈I |Xi| −

1 = tw(G) (since none of Xi, Xj is a subset of the other, they must have

an element not in their intersection). Hence, τ(G) ≤ min{i,j}∈F
|Xi∩Xj |

2 ≤
maxi∈I |Xi|−1

2 = tw(G)
2 .

A natural question is whether there exists a graph G for which relation
2 is satisfied by equality. It turns out that it does. Consider the graph
G shown in figure 8. It is easy to verify that any cutset of this graph has
exactly 4 vertices, whereas the 2 remaining vertices are the components that
arise after the removal of the corresponding cutset. Alternatively, we can
use the known bound κ(G)

α(G) ≤ τ(G) ≤ n−α(G)
α(G) (theorem 11) and observe that

in this case n = 6, κ(G) = 4 and α(G) = 2. We could also use the bound
κ(G)
α(G) ≤ τ(G) ≤ κ(G)

2 and compute the same value for τ(G). Thus τ(G) = 2.

Now, set X1 = {1, 2, 3, 5, 6} and X2 = {1, 3, 4, 5, 6}. It is also easy to verify
that the ({X1, X2}, T = ({1, 2}, {{1, 2}})) is a valid tree decomposition for
the same graph. Actually, this is an optimal tree decomposition, as there
can be no tree decomposition with smaller maximum bag (notice also that
we must have tw(G) ≥ 2τ(G) = 4). Therefore, tw(G) = 4 and this graph

becomes an exaple in which τ(G) = tw(G)
2 . So the upper bound in theorem

145 is tight.
Lemma 25 has an interesting corollary.

Corollary 29. Let G be a noncomplete graph and let ({Xi | i ∈ I}, T =
(I, F )) be a nonredundant optimal tree decomposition of G. Then

τ(G) ≤ tw(G) + 1

∆(T )
(3)
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Figure 8: Graph G.

Proof. Since G is noncomplete and the tree decomposition is optimal, it
must have at least two nodes. Then by lemma 25 (and using the nonredun-

dancy of the tree decomposition), τ(G) ≤ mini∈I
|Xi|

degT (i) . Let i∗ be any node

with degT (i∗) = ∆(T ). Then τ(G) ≤ mini∈I
|Xi|

degT (i) ≤
|Xi∗ |
∆(T ) ≤

maxi∈I |Xi|
∆(T ) .

Consequently, τ(G) ≤ tw(G)+1
∆(T ) .

It is easy to verify that when tw(G),∆(T ) ≥ 3, we can obtain much
better bounds by using corollary 29 instead of theorem 145. Moreover, we
can choose an optimal tree decomposition that has the greatest maximum
degree to obtain even tighter upper bounds.

We have presented upper bounds on graph toughness as a function of
treewidth. A reasonable question is whether there exist lower bounds on
toughness as a function of treewidth. The next result shows that there is no
such bound for general graphs.

Theorem 146. There exists a sequence of graphs G1, G2, ... such that τ(Gn)→
0 and tw(Gn)→∞ as n→∞.

Proof. Let k,m be integers with k,m > 1 and letGk,m be the following graph
: Take m disjoint copies of Kk, H1, ...,Hm, and let v1 ∈ H1, ..., vm ∈ Hm.

Finally let v be a new vertex and connect v with v1, ...vm. So Gk,m
consists of a vertex that is connected to disjoint cliques H1, ...,Hm of the
same size k, only through vertices v1 ∈ H1, ..., vm ∈ Hm. Now, each Hi has
treewidth k−1 and since Hi is a subgraph of Gk,m, we get tw(Gk,m) ≥ k−1.
Removing v from Gk,m results in a disconnected graph with m compo-
nents (namely the graphs H1, ...,Hm). Hence, τ(Gk,m) ≤ 1

m . Therefore
tw(Gk,m)→∞ as k →∞ and τ(Gk,m)→ 0 as m→∞.

The proof of theorem 146 shows that we can find graphs having arbi-
trarily large treewidth and arbitrarily small toughness.

Consider now the graph Gk,m of theorem 146. Graph Gk,m is chordal
with ω(Gk,m) = k. Hence tw(Gk,m) = k − 1. Since τ(Gk,m) ≤ 1

m ,we
conclude that for any fixed value of k we can find a graph with treewidth k
and arbitrarily small toughness (namely graph Gk+1,m).
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3.2 Conclusions

In this section we have presented upper bounds on graph toughness as a
function of treewidth. For general graphs, the bound τ(G) ≤ tw(G)

2 is tight,
as we have presented an example in which the bound is also satisfied by
equality. We have also shown that for the more restricted class of graphs
G that satisfy tw(G),∆(T ) ≥ 3, where T is the tree of an optimal tree

decomposition of G, the better bound τ(G) ≤ tw(G)+1
∆(T ) can be achieved. Both

bounds establish the fact that large toughness obstructs small treewidth.
Finally, we constructed a sequence of graphs Gn that satisfy tw(Gn) → ∞
and τ(Gn) → 0 as n → ∞, showing that we can find graphs that have
arbitrarily large treewidth and at the same time, arbitrarily small toughness.

However it could be the case that these examples are pathological, and
toughness could be closer to treewidth in most graphs. It would be inter-
esting to examine the relation between treewidth and toughness in special
graph classes. We know that the treewidth of the (n×n)-grid is n, whereas
its toughness is at most 1 (asymptotically is exactly 1). Thus, even in the
class of planar graphs we can find examples of graphs that have bounded
toughness and unbounded treewidth. The (n× n)-grid is also triangle-free,
hence the same holds for this class of graphs too. It would also be interest-
ing to examine what graphs achieve equality in the bound τ(G) ≤ tw(G)

2 (we
know that they must satisfy tw(G) < 3 or ∆(T ) < 3 for any optimal tree
decomposition with T as tree).
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sian. Graph Theory, Combinatorics, Algorithms, and Applications
(San Francisco, CA, 1989), pages 20–25, 1991.

[21] D. Bauer and E. Schmeichel. Toughness, minimum degree, and the
existence of 2-factors. Journal of Graph Theory, 18(3):241–256, 1994.

[22] D. Bauer, E. Schmeichel, and HJ Veldman. Some recent results on
long cycles in tough graphs. In Graph Theory, Combinatorics, and
Applications-Proceedings of the Sixth Quadrennial International Con-
ference on the Theory and Applications of Graphs, pages 113–121,
1991.

[23] D. Bauer, E. Schmeichel, and HJ Veldman. Cycles in tough graphs:
Updating the last four years. In: Alavi, Y., Schwenk, A. J. (eds.),
Graph Theory, Combinatorics, and Applications - Proceedings of the
Seventh Quadrennial International Conference on the Theory and Ap-
plications of Graphs., pages 19–34, 1995.

[24] D. Bauer, J. van den Heuvel, A. Morgana, and E. Schmeichel. The
complexity of recognizing tough cubic graphs. Discrete applied math-
ematics, 79(1):35–44, 1997.

[25] D. Bauer, J. Van den Heuvel, A. Morgana, and E. Schmeichel. The
complexity of toughness in regular graphs. Congressus numerantium,
pages 47–62, 1998.



71

[26] D. Bauer, J. Van den Heuvel, and E. Schmeichel. Toughness and
triangle-free graphs. Journal of Combinatorial Theory, Series B,
65(2):208–221, 1995.

[27] D. Bauer, J. Van den Heuvel, and E. Schmeichel. 2-factors in triangle-
free graphs. Journal of Graph Theory, 21(4):405–412, 1996.

[28] D. Bauer, HJ Veldman, A. Morgana, and EF Schmeichel. Long cycles
in graphs with large degree sums. Discrete Mathematics, 79(1):59–70,
1990.

[29] C. Berge. Two theorems in graph theory. Proceedings of the National
Academy of Sciences of the United States of America, 43(9):842, 1957.

[30] JC Bermond. On hamiltonian walks. Congr. Numer, 15:41–51, 1976.

[31] J.C. Bermond. Hamiltonian Graphs, chapter 6, pages 127–167. Se-
lected Topics in Graph Theory. Academic Press, 1979.

[32] JC Bermond and C. Thomassen. Cycles in digraphs–a survey. Journal
of Graph Theory, 5(1):1–43, 1981.

[33] A.A. Bertossi. The edge hamiltonian path problem is np-complete.
Information Processing Letters, (13):157–159, 1981.
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chordal graphs are hamiltonian. Networks, 31(1):29–38, 1998.
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