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Abstract

Finding underlying structure in data has been a fundamental task for mathematicians,

computer- and now data-scientists and the importance of clustering and partitioning

data has increased dramatically in the past decade. We present the journey of one

of the most essential problems in the area: Graph Partitioning. We begin with the

importance and the wide range of applications it finds, the computational difficulties

involved in solving it efficiently and the inapproximability results tied to it. We

demonstrate the first average case analysis approaches using random models, the

most prominent of which is the planted partition model or stochastic block model

where the graph has k equally sized blocks and vertices connect independently with

probability p within blocks and q across blocks. Recently, a large amount of research

in computer science and statistics has been invested in providing lower-bounds on

the scaling of |p− q| to ensure recovery of the planted blocks (partitions). We focus

on the seminal results using spectral techniques and provide a high level overview

of this rapidly evolving area, including the recent information-theoretic perspective

threshold on the |p− q| range for recovery.

Finally, give our own spectral approach for solving Graph Partitioning for arbi-

trary k in the planted partition model and albeit not improving the state-of-the-art

we believe our approach constitutes a new, easier proof for a very recent result.
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Chapter 1

Introduction

” Quickly, bring me a beaker of wine, so that I may wet my mind and

say something clever.

”
Aristophanes, 450 - 385 B.C.

The procedure of categorizing data based on some metric has been an important

part of science, since its inception. This problem of dividing or separating items

to optimize a predetermined quantity is a classical one regardless of the way it is

expressed, and it is one of the most basic algorithmic operations. Mathematicians

throughout history encountered this problem in the form of separating numbers, sets

and finally, since the 18th century, vertices in graphs - with the first results on Graph

Theory.

Partitioning the vertices of a graph in order to minimize or maximize some prop-

erty became a standard question in mathematics, and in the core of it was the most

natural one: can we partition the vertices of a graph in such a way to minimize (max-

imize) the total number of edges going from one partition to another? Soon graphs

became a standard abstraction tool for computer scientists and were widely embraced,
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and the question of graph partitioning appeared both as a standalone problem and

as a subproblem for more complicated applications.

1.0.1 Goal

This work aims at giving a thorough overview of the most popular graph partitioning

setting, motivating and explaining the important applications it serves, highlighting

the computational caveats involved in answering questions about it, and showcasing

old and new spectral approaches for solving it.

1.1 Preliminaries

Let G = (V,E) be an undirected graph where |V | = n and |E| = m with non-negative

edge weights w : E → R>0 and let k ∈ N>1 be a number. We call P a partition of

G if it is a decomposition of its vertices V into disjoint nonempty blocks (subsets)

P = {V1, V2, . . . , Vk} such that:

V =
⋃

1∈[k]

Vi (1.1)

and

Vi ∩ Vj = ∅, ∀i 6= j. (1.2)

The cost C(P) of a partition P is defined as the weighted sum of the edges connecting

vertices belonging to distinct blocks. We will call the partition balanced when all the

blocks have equal weights. In particular, we will quantify the notion of balance as

follows: if (∀i ∈ [k]) [|Vi| ≤ (1 + ε)dn/ke] =: Lmax for some imbalance parameter

ε ∈ R≥0. If ε = 0 we call the partition perfectly balanced. Sometimes we also use

weighted vertices with vertex weights c : V → R>0. Weight functions on vertices and

edges are extended to sets of such objects by summing their weights. A block Vi is

overloaded if |Vi| > Lmax. A clustering is also a partition of the vertices, however k
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will usually not be given and we will not require that it is balanced 1. Note that a

partition is also a clustering of a graph. In both cases, the goal is to minimize or

maximize a particular objective function. An edge that runs between blocks is also

called cut edge. The set Eij = {{u, v} ∈ E | u ∈ Vi ∧ v ∈ Vj} is the set of cut edges

between two blocks Vi and Vj. An abstract visualization of a partitioned graph is

the quotient meta-graph where vertices represent blocks and edges are induced by

connectivity between blocks. There is an edge in the quotient graph between blocks

Vi and Vj if and only if there is an edge between a vertex in Vi and a vertex in Vj in

the original, partitioned graph. A vertex v is a neighbor of vertex u if there is an edge

{u, v} ∈ E. We will call v ∈ Vi a boundary vertex if it has a neighbor w ∈ Vj where

i 6= j. The degree d(v) of a vertex v is the number of its neighbors. A cycle in a

directed graph with negative weight is also called negative cycle. A matching M ⊆ E

is a set of edges that do not share any common vertices, i.e., the graph (V,M) has

maximum degree one.

An adjacency matrix of a graph G is a n× n matrix A = AG:

AG =

 w(u, v) if (u, v) ∈ E

0 if (u, v) /∈ E
(1.3)

If the graph has n vertices, AG has n real eigenvalues λ1(AG) ≥ . . . ≥ λn(AG) which

we call the spectrum of AG. The eigenvectors that correspond to these eigenvalues

form an orthonormal basis of Rn. Note that if the graph is d-regular then the largest

eigenvalue is equal to d and the corresponding eigenvector is the all-one’s vector,

which we denote 1. We can use the Courant-Fisher Theorem to characterize the

spectrum of A. The largest eigenvalue satisfies

λ1(AG) = max
x∈Rn

xTAx

xTx
(1.4)

1More on clustering will be covered later.
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If we denote the first eigenvector by x1 then

λ2(AG) = max
x∈Rn,x⊥x1

xTAx

xTx
(1.5)

Similar definitions hold for the eigenvalues λi, i ≥ 3. We will also need to define the

Laplacian matrix of a graph G is defined as L = D − A, where D is the diagonal

matrix with diagonal entry D(u, u) = du equal to the degree of vertex u, and A

is the adjacency matrix. If the graph has n vertices, LG has n real eigenvalues

0 = λ1(LG) ≤ . . . ≤ λn(LG) which we call the spectrum of LG. We can always

choose n eigenvectors γ1, . . . , γn such that γi has eigenvalue λi which also form an

orthonormal basis of Rn. We note that 0 is always an eigenvalue with corresponding

unit length eigenvector the (normalized) all-one’s vector 1. Moreover, if and only if

the graph has k connected components, then LG has k eigenvalues equal to zero. We

also define the Normalized Laplacian matrix to be the matrix:

LG = D−1/2LGD
−1/2. (1.6)

An Erdős-Rényi (ER) random graph, denoted Gn,p, is a graph composed of n vertices

and for each pair of vertices, out of all the possible
(
n
2

)
pairs, there exists an edge with

probability p independently. Another (ER) random graph variant, denoted Gn,m, is

a graph chosen uniformly at random from the collection of all graphs which have n

vertices and m edges. Equivalently, all graphs of n vertices and m edges have equal

probability of pm(1− p)(
n
2)−m.

Conventions

Let [n] = {1, 2, . . . , n}. All logarithms unless otherwise stated are base 2.
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1.1.1 Objectives

As discussed in practice, one often seeks to find a partition that would minimize (or

maximize) an objective. Depending on the different partition problems this can vary

a lot. The most prominent objective function is to minimize the cost of the total cut

of the partition P

C(P) =
∑
i<j

w(Eij). (1.7)

Which is considered to be the standard formulation of the Graph Partitioning (GP)

problem. But this is not the only popular variant, for instance when graph parti-

tioning is used in parallel settings to map vertices to different sites (machines), the

communication volume is more important than the cut itself [23]. Let D(v) denote

the number of distinct blocks vertex v has neighbors in excluding his own block, then

the communication volume is defined as comm(Vi) :=
∑

v∈Vi
c(v)D(v). Naturally, the

maximum communication volume is defined as max comm(Vi) and the total commu-

nication volume as
∑

i comm(Vi). The setting of maximum communication volume

was used in a sub-challenge of the 10th DIMACS Challenge on Graph Partitioning

and Graph Clustering [6].

Despite settings such as this one, traditionally minimizing the cut size has been

the established standard for GP, both for practical reasons and because of how most

of the time the cut correlates to other formulations. In this work we will only be

concerned with graph partitioning where the function is minimizing the cut.

1.2 Tools

In this section we state a few results we will use later on. Depending on the familiarity

of the reader some of these may be skipped.
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We consider m × n matrices over the real numbers. We are mostly looking at

square matrices where m = n. Vectors x, y are orthogonal (denoted x⊥y) if their

inner product is zero, i.e., xTy = 0. If A is a square n × n matrix with eigenvalues

λ1, . . . , λn then tr(A) =
∑n

i=1 λi.

An n× n symmetric matrix A is said to be positive semidefinite if xTAx ≥ 0 for

all x ∈ Rn.

Theorem 1.2.1 (positive semidefinite matrices). Let A be a real symmetric matrix.

The following are equivalent:

• The matrix A is positive semidefinite.

• All eigenvalues of A are nonnegative.

We will be using a few variations of Chernoff Bounds.

Theorem 1.2.2 (Chernoff Bound 1). Let X ∼ Binomial(n, 1/2). Then for any

0 ≤ t ≤
√
n,

Pr

[
X ≥ n

2
+ t

√
n

2

]
≤ e−t

2/2, (1.8)

and also Pr

[
X ≤ n

2
− t
√
n

2

]
≤ e−t

2/2 (1.9)

Theorem 1.2.3 (Chernoff Bound 2). Let X1, . . . , Xn be independent random vari-

ables (the need not necessarily have the same distribution). Assume that 0 ≤ Xi ≤ 1,

for every i ∈ [n]. Let X = X1 + · · ·+Xn. We write µ = E[X] = E[X1] + · · ·+ E[Xn].

Then for any ε ≥ 0

Pr [X ≥ (1 + ε)µ] ≤ exp

(
− ε2

2 + ε
µ

)
, (1.10)

and Pr [X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
(1.11)

Another result that will be used is the Matrix Bernstein inequality.

6



Theorem 1.2.4 (Matrix Bernstein). Consider a finite sequence Xi of independent,

random, Hermitian matrices with dimension d. Assume that

E[Xi] = 0 and λmax(Xi) ≤ R. (1.12)

Introduce the random Matrix

X =
n∑

i=1

Xi. (1.13)

Compute the variance parameter

σ2 = σ2(X) = ‖E[X2]‖. (1.14)

Then

E [λmax(X)] ≤
√

2σ2 log d+
1

3
R log d. (1.15)

Furthermore, for any t ≥ 0:

Pr [λmax(X) ≥ t] ≤ d exp

(
−t2/2

σ2 +Rt/3

)
. (1.16)

1.3 Applications

The question of partitioning graphs was one that appeared often in practice and as the

problems we modeled increased in size so did their abstractions, with applications in

software and hardware design, networks, road design, image processing, biology and

more. In this section we go through some of the applications of graph partitioning.

1.3.1 Parallel Processing

Perhaps the canonical application of graph partitioning is the distribution of work

to processors of a parallel machine. Scientific computing applications such as sparse
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direct and iterative solvers extensively use graph partitioning to ensure load balance

and minimize communication. When the problem domain does not change as the

computation proceeds, graph partitioning can be applied once in the beginning of the

computation. This is known as static partitioning.

1.3.2 VLSI Design

Physical design of digital circuits for very large-scale integration (VLSI) systems has

a long history of being one of the most important customers of graph and hypergraph

partitioning, often reinforced by several additional domain relevant constraints. The

partitioning should be accomplished in a reasonable computation time, even for cir-

cuits with millions of modules, since it is one of the bottlenecks of the design process.

The goal of the partitioning is to reduce the VLSI design complexity by partitioning

it into smaller components (that can range from a small set of field-programmable

gate arrays to fully functional integrated circuits) as well as to keep the total length

of all the wires short. The typical optimization objective is to minimize the total

weight of connections between subcircuits (blocks), where vertices are the cells, i.e.,

small logical or functional units of the circuit (such as gates), and edges are the

wires. Because the gates are connected with wires with more than two endpoints,

hypergraphs model the circuit more accurately. Examples of additional constraints

for the VLSI partitioning include information on the I/O of the circuit, sets of cells

that must belong to the same blocks, and maximum cut size between two blocks. For

more information about partitioning of VLSI circuits see [27].

1.3.3 Networks

In addition to the previously mentioned task of network data distribution across

a cluster of machines for fast parallel computations, complex networks introduced

numerous further applications of graph partitioning. A common task in these ap-
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plications is to identify groups of similar entities whose similarity and connectivity

is modeled by the respective networks. The quality of the localizations is quantified

with different domain-relevant objectives. Many of them are based on the principle

of finding groups of entities that are weakly connected to the rest of the network.

In many cases such connectivity also represents similarity. In the context of opti-

mization problems on graphs, by complex networks we mean weighted graphs with

non-trivial structural properties that were created by real-life or modeling processes.

Often, models and real-life network generation processes are not well understood, so

designing optimization algorithms for such graphs exhibit a major bottleneck in many

applications.

1.3.4 Image Processing

Image segmentation is a fundamental task in computer vision for which graph par-

titioning and clustering methods have become among the most attractive solution

techniques. The goal of image segmentation is to partition the pixels of an image into

groups that correspond to objects. Since the computations preceding segmentation

are often relatively cheap and since the computations after segmentation work on a

drastically compressed representation of the image (objects rather than pixels), seg-

mentation is often the computationally most demanding part in an image processing

pipeline. The image segmentation problem is not well-posed and can usually imply

more than one solution. During the last two decades, graph-based representations of

an image became very popular and gave rise to many cut-based approaches for several

problems including image segmentation. In this representation each image pixel (or

in some cases groups of pixels) corresponds to a vertex in a graph. Two vertices are

connected by a weighted edge if some similarity exists between them. Usually, the

criteria of similarity is a small geodesic distance which can result in mesh-like graphs

with four or more neighbors for each vertex. The edge weights represent another mea-
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sure of (dis)similarity between vertices such as the difference in the intensity between

the connected pixels (vertices).

Naturally this is not a complete exhaustive list of applications, but a description

of the most typical ones. The problem has dozens of applications and it would be

impossible to include them all here. As mentioned before, the importance of Graph

Partitioning does not lie only on the problems that it directly models (applications)

but also and possibly more substantially in the fact that it is a primitive algorithmic

procedure (tool) used as a subroutine in numerous more complicated problems and

techniques, such as divide-and-conquer algorithms.
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Chapter 2

Graph Partioning(G, c(·), w(·), k)

” In mathematics the art of proposing a question must be held of

higher value than solving it.

”
Georg Cantor, 1845 - 1918

At this point we state formally the most general setting of the Graph Partion-

ing problem:

Graph Partioning(G, c(·), w(·), k)

Given an undirected graph G = (V,E), non-negative weight functions on the vertices

c : V → R>0 and edges w : E → R>0 and an integer k ≥ 2, find a perfectly balanced

partition P of V into k blocks {Vi}ki=1 of at most d
∑

v∈Vi
c(v)/ke vertex weight that

minimizes the total weight of the edges that connect distinct blocks.

For k = 2 the problem reduces to finding a partition into two blocks of equal

weight that minimizes the weight of the edges across them, which is also known as

the Min Bisection problem. In the case of arbitrary k the problem is also known as
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Min Multisection. The problems remain hard in the unweighted case (or simply

∀e ∈ E : w(e) = 1) as well.

This is a good point to make a small parenthesis and notice the differences be-

tween the Graph Partitioning and other vertex partitioning problems1. The

k−Coloring problem asks to partition the vertices into k blocks (colors) not neces-

sarily balanced, such that no edge within a block exists - instead of minimizing cut

edges. The Clustering problem on the other hand does not even fix the number of

blocks before hand, nor does it require that they are balanced, you just try to find any

partition that minimizes the edges cut. A dual problem to Graph Partitioning in

a way is the Max Cut problem, where we want to partition the vertices in to two

sets in order to maximize the number of edges in the cut.

This general version of the problem: Graph Partioning(G, c(·), w(·), k) can be

simplified by assuming that ∀v ∈ V : c(e) = 1 and ∀e ∈ E : w(e) = 1 without

reducing its difficulty and from this point on, we will be using the more general

weighted setting only when necessary.

2.1 Hardness

In October of ’73 Hyafil and Rivest showed in [24] that (the decision version of)

Graph Partitioning is hard:

Theorem 2.1.1 (Hyafil and Rivest ’73 [24]). The problem of answering if an undi-

rected, edge-weighted graph G can be partitioned into blocks of at most r vertices with

a total weight of cut edges less than or equal to W is NP-complete.

Proof. The NP membership of GP should be clear: given a succinct candidate solu-

tion, which is simply a mapping of the vertices into the different blocks, one has to

1The sister problem known as Partitioning - where we partition numbers - interestingly enough
is called “The Easiest Hard Problem”.
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verify that each block is bounded in size by r and that the total weight of the edges

in any block does not surpass W .

To show NP completeness we will reduce from Exactly-3-Sat. Construct a

graph G from the 3CNF formula Φ with set of clauses C = {ci}ri=1 in two steps as

follows.

First we consider the graph G′ that has 3r vertices, one for every literal of every

clause and two vertices are connected with an edge when the literals they represent

are in distinct clauses and aren’t complementary. Notice that G′ has a clique of size

r if and only if Φ is satisfiable.

We now modify G′ by adding to every triplet of vertices corresponding to a single

clause, a clique of size (r − 2) and connect it completely with the three existing

vertices, call the resulting graph G. Observe that this construction of G can easily

be completed in polynomial time.

Now, G contains a clique of size r if and only if G′ does, that is if and only if Φ

is satisfiable. Set W := |E| − (r + 1) ·
(
r
2

)
+ r then the claim is that GP(G, r,W ) has

a solution if and only if Φ is satisfiable.

Claim 2.1.2. In every optimal partition the clique of size r will be contained as a

distinct block, if one exists.

Proof. We discern two cases based on the existence of this clique.

• Assuming that the clique of size r exists, let P∗ be the partition which has it as

a distinct block and also has r other blocks, each containing one smaller clique

of size (r − 2) attached to two of the three vertices connected to that clique.

Recall that the clique of size r contains exactly one point from every triplet of

vertices corresponding to a clause. Then the total weight of this partition is

13



exactly:

|E| −
(
r

2

)
− r

[(
r

2

)
− 1

]
= |E| − (r + 1)

(
r

2

)
+ r = W. (2.1)

• If no clique of size r exists in G, then the average number of edges per vertex

within a block can be at most
[(

r
2

)
− 1
]
/r. This is true because this is the

average number of edges per vertex in a clique of size r when it is lacking one

edge. In which case, the total weight of the partition is greater than:

|E| − (r + 1)

[(
r

2

)
− 1

]
> W. (2.2)

Thus the optimal partition contains a clique of size r of G as a separate block, if it

exists. Any other partition P ′ such that C((P ′)) ≤ C((P ∗)) would also have to contain

a clique of size r as a block, since the number of internal edges will be sufficiently

high.

Thus we have shown that GP ∈ NP and GP ≤P Exactly-3-Sat, hence GP is

NP-complete.

An immediate corollary of the above hardness result is the hardness characteriza-

tion for the more general weighted case.

Corollary 2.1.3. The general (decision) version of the Graph Partitioning(G,

c(·), w(·), k,W ) is NP-complete.

2.2 Inapproximability

Encountering problems that are very useful in practice but present computational

difficulties is not a rare occasion in Computer Science, the class of NP-complete

problems is filled with such cases. So, do we just give up? No, never! The fact

14



that we can not, unless Hell freezes over2, solve these problems exact in polynomial

time, does not mean that the problem is unsolvable in polynomial time. In many

cases of hard problems, we have managed to find polynomial time algorithms that

approximate the solution to almost arbitrary precision.

Well, sadly this will not be the case for Graph Partitioning as Andreev and

Räcke in 2004 shot down any hopes for an efficient polynomial time approximation

algorithm for the popular partitioning problem in [3].

Theorem 2.2.1 (Andreev and Räcke ’04 [3]). The (k, 1)-balanced partitioning prob-

lem - GP(G,w(·), k, 0) has no polynomial time approximation algorithm with finite

approximation factor unless P = NP.

Proof. We use a reduction from the 3-Partition problem defined as follows. Given

n = 3k integers {ai}ni=1 and a threshold number A such that A
4
< ai <

A
2

and

n∑
i=1

ai = k · A. (2.3)

The task is to decide if the numbers can be partitioned into triples such that each

triple adds up to A. This problem is strongly NP-complete [18]. Hence it is NP-

complete even in the case that all numbers ({ai}ni=1, A) are polynomially bounded.

Suppose that we have a polynomial time approximation algorithm for (k, 1)-

balanced partition with finite approximation factor. We can use this algorithm to

solve an instance of 3-Partition with polynomially bounded numbers, in the fol-

lowing manner.

We construct a graph G such that for each number ai it contains a clique size ai.

This construction can be concluded in polynomial time only because 3-Partition

is strongly NP-complete and so all its numbers are polynomially bounded in the

2Yes, it is a strong opinion of the author that P 6= NP!

15



length of the input (Otherwise the above graph would not be polynomially time

constructible).

If the 3-Partition instance can be solved, the (k, 1)-balanced partition problem

in G can be solved without cutting any edge. On the contrary, if the 3-Partition

instance cannot be solved, the optimum (k, 1)-balanced partitioning in G will cut at

least one edge. But an approximation algorithm with finite approximation factor has

to differentiate between these two cases - which is not the case here. Hence, it can

solve the 3-Partition problem which is a contradiction under the assumption that

P 6= NP.

Currently the best known (real) approximation bound is due to Feige and

Krauthgamer from their seminal paper [16], where they showed a bound of O(log2 n).

For special graph classes there have been a number of better results, including some

described in [16], and even a PTAS by Arora et al. [4] for graphs of minimum degree

Ω(n). Moreover, there are a number of polynomial (and not) bicriteria approximation

algorithms for different values of the imbalance parameter ε, for more information

on these results we refer the reader to [32], [14] and [3].

2.3 A Different Approach

So, where do we stand? Do we give up on all hope for an “accurate” solution to the

balanced Graph Partitioning problem? Sure, the general version of the problem

is hard, apparently too hard even, but does that mean that we have no hope for

anything better?

Luckily for me, no. There is (as always) another approach; namely to look at the

Average Case analysis for Graph Partitioning. Sure, the problem in the worst

case looks very hard, but in practice how often do we encounter these bad instances?
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How probable is it that the data scientists encounter these “worst case” instances with

real-world data? Is the worst case performance indeed the norm or the exception?

Average Case analysis is equivalent to considering the probability of success of an

algorithm on a random graph. However choosing graphs too uniformly from the set

of all possible graphs, is not very helpful. Only a small percentage of all n vertex

graphs have meaningful partitions, for this reason this new direction restricts the

search space from all possible graphs on n vertices to graphs that, in expectation,

will have meaningful partitions.

2.3.1 The Planted Partition Model

In ’87 Boppana made the first step towards such an approach by introducing a random

graph model to work on the problem of Bisection his work in [7]. His model was

defined as follows.

He assumed some initial bisection of the vertices into V1 and V2 and then for any

two vertices inside a partition he sampled an edge independently at random with

probability p and for any two vertices in distinct partitions he sampled an edge inde-

pendently at random with probability q smaller than that of p. This way depending

on the range of the p− q parameters, at least in expectation, there would be at least

one meaningful cut in this graph, the planted one. Later on, this model would be

named the planed partition model by computer scientists and stochastic block model

by mathematicians.

Since ’87, a variety of different random and semirandom models have been intro-

duced [28], [15], [30], [20] for Graph Partitioning and other partitioning problems

but the planed partition model has remained the most prominent one. In the following

section we present the key results using this model for both the case of two and k

blocks.
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Chapter 3

A Spectral Lens

” One person’s craziness is another person’s reality.

”
Tim Burton, 1958 -

The word “spectrum” means different things in different areas of mathematics.

For those of us that work in graph theory, the word denotes the eigenvalues of one of

the several matrices associated with a graph.

Spectral graph theory studies precisely these connections between combinatorial

properties of graphs and the eigenvalues of matrices associated to the graph, such

as the adjacency matrix and the Laplacian matrix. These eigenvalues carry much

information about a graph’s structure and properties.

Spectral graph theory has applications to the design and analysis of approxima-

tion algorithms for graph partitioning problems, to the study of random walks in

graph, to the construction of expander graphs, and more. It also reveals connections

between the above topics, and provides, for example, a way to use random walks to

approximately solve graph partitioning problems.
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One of the first contributions of spectral graph theory in algorithms happened in

’94 when Goemans and Williamson in [19] gave a breakthrough 0.878-approximation

algorithm for Max Cut, improving significantly upon the previously (agnostic) ap-

proximation algorithm that had a performance guarantee of only 0.25. Their approach

can be interpreted both as a semidefinite programming one and as an eigenvalue min-

imization one.

In the past two decades spectral techniques have become a standard tool in com-

binatorial optimization results [19], [15], [30], the study of explicit constructions of

expander graphs [2], the unique games conjecture [5] and more [9]. In this chap-

ter we will go through the biggest advances using spectral techniques for Graph

Partitioning.

In the rest of this chapter, we will look at three pivotal spectral results [7], [15],

[30] for graph partitioning and then discuss the current state-of-the-art and the latest

advances.

3.1 Eigenvalues and Graph Bisection: An Average-

case Analysis

We begin with the first result by R.B. Boppana in ’87 [7]. In this work it is the first

time that one of the graph partition problems, Graph Bisection, is analyzed under

an average-case analysis and the result is a very influential one, signaling the start of

a series of works on similar techniques for many more graph partitioning problems.

In his paper he presents an algorithm that will, for almost all graphs in a certain

class (model), output the minimum-size bisection. Furthermore the algorithm will

yield, for almost all such graphs, a proof that the bisection is optimal. The algorithm

is based on computing eigenvalues and eigenvectors of matrices associated with the

graph.
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An average-case analysis must specify an appropriate probability distribution on

the set of inputs. There is a standard probability distribution on the set of graphs,

denoted Gn,m, that is defined as follows. The vertex set V = {1, 2, . . . , n}. The

probability distribution Gn,m is uniform on the set of all graphs on V with m edges.

Unfortunately, all the bisections of a random graph from Gn,m will, with high prob-

ability, have size asymptotic to m/2 as the ration m/n increases. To overcome this

problem, we modify the probability distribution in one feature. The vertex set still

remains V = {1, 2, . . . , n} for some integer n. The probability distribution used by

Boppana, denoted Gn,m,b, is uniform on the set of graphs on V vertices, m edges and

bisection width of b. The bisection width b is chosen to be smaller than m/2. This

additional condition ensures that at least one bisection is sufficiently smaller than an

average bisection of the graph.

3.1.1 Description of the Algorithm

First some small definitions. As per usual we assume an undirected graph G = (V,E)

with an even number of vertices n and without loss of generality assume that V =

{1, 2, . . . , n}. Given a bisection (V1, V2) of G its associated vector has ith coordinate

equal to 1 if i ∈ V1, and equal to -1 if i ∈ V2. Given two vectors d and x both in Rn,

define the function f equal to

f(G, d, x) :=
∑
{i,j}∈E

1− xixj
2

+
∑
i∈V

di(x
2
i − 1). (3.1)

We connect this function f with the bisections as follows:

Lemma 3.1.1 ([7]). Suppose (V1, V2) is bisection of a graph G = (V,E), with as-

sociated vector x. Then for every vector d, the size of the bisection (V1, V2) equals

f(G, d, x).
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Proof. Notice that (1−xixj)/2 is 1 if {i, j} ∈ E and 0 otherwise. Thus, the first sum

in the expression for f above equals the size of the bisection (V1, V2) and the second

sum is zero, since the coordinates of the vector x are ±1.

We call S the subspace {x ∈ Rn|
∑n

i=1 xi = 0}. Let the norm of x be equal to

‖x‖ = (
∑n

i=1 x
2
i )

1/2
. Define g equal to

g(G, d) := min
x∈S
‖x‖=

√
n

f(G, d, x). (3.2)

We will compute the value of g(G, d) using eigenvalues as described below.

As per usual A will be the adjacency matrix of G, given a vector d, let D = diag(d)

be the diagonal matrix whose diagonal entries are the corresponding components of

d. Let B = A + D. Put sum(B) equal to the sum of all n2 entries of B. Let BS

be the linear operator from S to S that maps x to the projection of Bx onto S (the

closest point on S from Bx). Finally, put λ(BS) equal to the largest eigenvalue of BS.

Then g can be expressed as

g(G, d) =
sum(B)− nλ(BS)

4
, (3.3)

so g can be computed to arbitrary precision in polynomial time using standard eigen-

value procedures.

Given a graph G, set h equal to

h(G) := max
d∈Rn

g(G, d). (3.4)

Notice that g(G, d) is a concave function of d, so h(G) is the maximum of a concave

function and under very general conditions the maximum of a concave function can be

computed to arbitrary precision in polynomial time using the ellipsoid method [21].
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Thus h(G) is computable to arbitrary precision in polynomial time. The theorem

below shows that h(G) provides a lower bound on the bisection width of a graph G.

Theorem 3.1.2 ([7]). Every graph G has a bisection width of at least h(G).

Proof. Choose an arbitrary vector d. Suppose that (V1, V2) is the minimum-size bi-

section of G, with associated vector x. By Lemma 3.1.1 it follows that the bisection

width of G equals f(G, d, x). Notice that the vector x is in S and has norm
√
n, so

by definition of g, the bisection width of G is at least g(G, d). Since the vector d was

chosen arbitrarily, the bisection width of G is at least h(G).

So far, only the lower bound h(G) has been described. The upper bound algorithm

is as follows:

Given a graph G with adjacency matrix A, find the vector d that maximizes

g(G, d), using the methods of [21]. Let y be the eigenvector corresponding to the

largest eigenvalue of (A + D)S. Output the bisection that has the n/2 largest com-

ponents of y on one side, and the n/2 smallest components on the other.

The next section is devoted on the correctness of the algorithm.

3.1.2 Probabilistic Analysis

Here, we provide the average-case analysis performance of the algorithm described in

the previous section. Recall the model of random graphs Gn,m,b defined earlier. The

following theorem, the main result of this paper, shows that h(G) equals, with high

probability, the bisection width of G. If the bisection width of G equals h(G), then

the upper bound algorithm of the previous section will actually find the minimum-size

bisection. Thus, the following analysis will focus only on the lower bound h(G).

Theorem 3.1.3 ([7]). Suppose that G is a random graph from Gn,m,b, and that

b ≤ 1

2
m− 5

2

√
mn log n. (3.5)
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Then with probability 1−O(1/n), the bisection width of G equals h(G).

Proof. Call (V1, V2) the minimum-size bisection of G. For i in V1, let di be defined

as: (# of vertices in V2 adjacent to i) - (# of vertices in V1 adjacent to i). For i

in V2 let di be the negation of this expression. By the definition of h, the equality

g(G, d) = b implies that h(G) = b. Thus, it suffices to show that g(G, d) = b with

high probability.

In the previous section, the function g was characterized in terms of eigenvalues:

g(G, d) = b which is equivalent to λ(BS) = 0. Let y be the associated vector (V1, V2).

Notice that BS has an eigenvalue 0 with corresponding eigenvector y. It thus suffices

to show that all other eigenvalues of BS are nonpositive with high probability.

Consider the expected value E[B] of the random matrix B = A+D. Let

p =
(m− b)
n
2

(
n
2
− 1
) and q =

b(
n
2

)2 . (3.6)

Let M be the matrix such that

M(i, j) =

 p if {i, j} ∈ Vk, k = 1, 2

q otherwise
(3.7)

Then E[B] = M− 1
2
(p−q)nI, where I is the identity matrix. Notice that the operators

BS and (B−M)S are equivalent on vectors that are orthogonal to y. Thus it suffices

to show that all the eigenvectors of (B −M)S are nonpositive with high probability.

In turn, it suffices to show that all the eigenvalues of B − E[B] are bounded above

by 1
2
(p− q)n with high probability.

So far, the proof has dealt with a random graph G from the model Gn,m,b. It is

now convenient to replace this model with a closely related model. The new model

will form a random graph as follows. First the vertices of the graph are randomly

partitioned into two equal-size pieces. Each edge within either of the two blocks is
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sampled independently with probability p, and each edge between the two blocks is

sampled independently with a smaller probability q. Such a random graph is likely

to have about m edges and bisection width about b. Thus it looks similar to a graph

from Gn,mb.

To estimate the eigenvalues of the matrix B − E[B], decompose the matrix into

the two matrices A− E[A] and D − E[D]. We use the inequality

λ(B − E[B]) ≤ λ(A− E[A]) + λ(D − E[D]). (3.8)

The eigenvalues of the matrix D − E[D] are precisely its diagonal entries, and they

can be shown to be small with high probability using Chernoff’s bound on the tail of

a binomial distribution. We obtain λ(D−E(D)) ≤ 5
√
pn log n with high probability.

To estimate the eigenvalues of A− E[A], the following theorem is used.

Theorem 3.1.4 ([17]). Let Z be a random n×n symmetric matrix whose entries are

independent up to symmetry, have mean zero, have standard deviation at most σ, and

are concentrated on [−a, a]. Suppose that σ
√
n ≥ 10a

√
log n. Then with probability

at least 1−O(1/n), all the eigenvalues of Z have absolute value less than 3σ
√
n.

Applying this theorem to Z = A−E[A], it follows that λ(A−E[A]) ≤ 3
√
pn with

high probability. Together with the above bound on λ(D − E[D]), we obtain λ(B −

E[B] ≤ 6
√
pn log n. But the hypothesis on the size of b implies that 6

√
pn log n <

1
2
(p − q)n. Thus the eigenvalues of B − E[B] are less than 1

2
(p − q)n with high

probability, which by the above remarks suffices to establish the theorem.

In later revisions of this work, more emphasis is given on the model, as it attracted

more and more attention.

24



3.2 Heuristics for Semirandom Graph Problems

In this work [15] Feige and Kilian consider a semirandom graph model for computing

the problem of Bisection. Unlike Boppana’s approach, Feige and Kilian blend

random models with adversarial decisions. In particular, they use the random model

introduced by [7]: they begin by choosing a random bisection (S, S̄) of the vertices

and then each edge {u, v} ∈ S × S̄ is independently sampled with probability q and

each edge {u, v} /∈ S × S̄ is independently chosen with probability p > q forming

the graph Grand. On top of that, the adversary may then arbitrarily remove edges in

S × S̄ and add edges not in S × S̄, forming the final graph G.

As before we assume thatG = (V,E) is a graph with even vertices n. The bisection

width of G will be denoted as b(G) and will be equal to

b(G) := min
S

[|E(S, S̄)|]. (3.9)

Let h(G) be an arbitrary function on graphs. The aim is to have h provide a heuristic

for graph bisection in the sense that for many graphs h(G) = b(G). Given the

following semi-definite relaxation of bisection: for a graph G = (V,E) find an order

n matrix X = {xij} such that

1. ∀i, xii = 1,

2.
∑

ij xij = 0,

3. The matrix X is symmetric and positive semidefinite,

Let h be given by the solution of this SDP

h(G) := min
X

hX(G) = min
X

∑
x∈S
‖x‖=

√
n

1− xij
2

(3.10)
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At this point Feige and Kilian prove that h is robust in the sense that a monotone

adversary is powerless against the function: whenever Grand is such that h computes

the exact value of b(Grand), the monotone adversary cannot prevent h from giving

the value of b(G). This way the analysis can completely ignore the existence of the

adversary from this point on, significantly simplifying things.

So, to compute the bisection, we want the robust function h to be polynomially

computable and with high probability:

h(Grand) = b(Grand). (3.11)

This last property 3.11 of h we will call “probably good”. By choosing h to be

the solution of an SDP we can then use the ellipsoid method to compute it within

arbitrary precision limits in polynomial time, we know it is robust, so it remains to

be shown that it is good estimate of bisection w.h.p., i.e., that it is “probably good.”

Taking advantage of the standard duality theory that exists in SDPs, similarly to

linear programming, they take the dual:

max
m

2
+

1

4

n∑
i=1

yi (3.12)

subject to the constraint that the matrix M = −A− y0J −Y is positive semidefinite.

Where m is the total number of edges in the graph, A is its adjacency matrix, J is

the all 1 matrix of order n, y0 is an auxiliary variable that only affects feasibility, but

does not appear in the objective function, and finally Y is a diagonal matrix with the

yi’s along its diagonal.

Theorem 3.2.1 ([15]). For a sufficiently large constant c, the function h defined

above is “probably good” when

p− q ≥ c

√
p

log n

n
. (3.13)
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That is, with high probability, h(Grand) = b(Grand), where the probability is taken over

the choice of Grand.

Proof. We will show that if p − q is sufficiently large, then with high probability

over the choice of Grand, the dual semidefinite maximization problem has a feasible

solution with value b(Grand).

We now guess a feasible solution for the semidefinite maximization problems. For

every i ∈ [n], let yi be the contribution of vertex i to the bisection (S, S̄), namely, yi

is the difference between the number of edges vertex i has in the cut and the number

of edges it has inside its own block.

The value of the objective function of the maximization semidefinite program is

then

m

2
+

∑n
i=1 yi
4

=
m

2
+

2|(S, S̄)| − 2(m− |(S, S̄)|)
4

= |(S, S̄)| (3.14)

which is b(Grand), as desired.

It remains to be seen that w.h.p., it is possible to choose y0 such that the matrix

M = −A− y0J − Y is positive semidefinite. We shall choose y0 = −1 and show that

the matrix M has no negative eigenvalues, implying that it is positive semidefinite.

From this point on the proof is technical and long and boils down to bounding the

eigenvalues of the random matrices involved in M . For a complete analytical proof

we point the reader to Section A.3 in the Appendix of [15].

What should also be noted at this point is that the technique described is a

constructive one. The planted partitions can be recovered with little effort.

3.3 Spectral Partitioning of Random Graphs

During the same year in parallel with the work of Feige and Kilian [15], McSherry in

[30] also worked on partitioning problems on random graphs. On his seminal work he
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presented a single framework that models three vertex partitioning problems Graph

Partitioning, k−Coloring and Clique and gave parameter range guarantees for

each one of them, as well as an algorithm that achieved them.

We present the main result on Graph Partitioning from their paper without

stating the proof.

Theorem 3.3.1 ([30]). There is a constant c such that for sufficiently large n if

p− q > c

√
p

log(n/δ)

n
(3.15)

then we can recover the planted partition with probability 1− δ.

The range of parameters is equivalent to the range in [7], up to constant factors.

Note though that this is the first actual work on Multisection, both of the previous

works were on Bisection.

The techniques applied by McSherry involve a lot of algebraic graph theory and

are very elegant, based on matrix perturbations and projections, though we choose

not to present them in this thesis in the interest of time. We urge the inquiring reader

to refer to the paper [30] for all the techniques and detailed results.

3.4 The Current State-of-the-Art

Ever since 2001 a lot has transpired in the area of partitioning and clustering. With

the rise of data science and big data, the need to have ever more efficient algorithms

to solve such primitive tasks has increased exponentially. Research in the field has

expanded from mathematicians and theoreticians to scientists in statistics, machine

learning, information retrieval and more. For surveys on recent advances look at [9]

and the references there in.
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With so much diversity in the backgrounds of the researchers involved, many new

models arose during the past 10-15 years, serving the needs of different data-sets or

different scenarios. But the most popular remained to be the standard - more natural

one - planted partition model. So, a large body of literature [8], [33], [25], [10], [30],

[31] and [12] focused on trying to improve the range of parameters p− q for which we

could retrieve the partition.

The best bound still for the general balanced graph partitioning case for k ≥

2 seems to be, to our knowledge, from [30] ensuring recovery for (p − q)/
√
p ≥

Ω
(√

log n/n
)

, and has not been improved for more than a decade.

3.4.1 Sharp Thresholds for Recovery in the Planted Partition

Model

More recently, a new phenomenon has been identified for the planted partition model

in a regime where p = a/n and q = b/n [13]. In this regime, exact recovery is not

possible, since the graph is, with high probability, not connected. However, partial

recovery is possible, and the focus has been shifted on determining for which regime of

a and b it is possible to obtain a reconstruction of the blocks which is asymptotically

better than a random guess. We will refer to this reconstruction requirement as

detection.

In [13], it was conjectured that detection is possible if and only if (a−b)2 > 2(a+b).

This is a particularly fascinating and strong conjecture, as it provides a necessary and

sufficient condition for detection with a sharp closed-form expression and it was very

recently proven by [29] with information theoretic techniques.

One of the latest results of 2014 is that of Abbe et al [1] where they answer the

question of whether it is possible to establish a similar sharp phase transition bound

for recovery in the stochastic block model for k = 2 positively. In particular they
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show sharp regimes in which recovery is feasible and impossible. In particular they

proved the following result.

Theorem 3.4.1 ([1]). Let

a = p
n

log n
and b = q

n

log n
(3.16)

and without loss of generality assume that a > b ≥ 0. If

a+ b

2
−
√
ab < 1 (3.17)

then recovery is impossible and if

a+ b

2
−
√
ab > 1 (3.18)

then recovery of the planted partition is possible with high probability.

Also they propose an efficient algorithm based on a semidefinite programming

relaxation of maximum likelihood (ML), which is proved to succeed in recovering the

blocks close to the threshold, matching the state-of-the-art asymptotic bound held

by McSherry [30] for the case of k = 2 blocks and improve upon the constants, while

numerical experiments suggest it may achieve the threshold.

Chen and Xu in [11] working on the general case of k ≥ 2 observe the follow-

ing phenomenon: The parameter space can be partitioned into four disjoint regions,

such that each region corresponds to statistically easier instances of the problem

than the previous region, and recovery can be achieved by simpler algorithms with

lower running time. Significantly, there are large gaps between the statistical perfor-

mance of computationally expensive algorithms and that of computationally efficient

algorithms. Their main theorems identify the following four regimes of the problem

defined by the values of the quantity (p−q)2

q(1−q)
.
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• The Impossible Regime:

(p− q)2

q(1− q)
/
k

n
1 (3.19)

In this regime, there is no algorithm regardless of its computational complexity,

that can recover the clusters with reasonable probability.

• The Hard Regime:

k

n
/

(p− q)2

q(1− q)
/
k2

n
(3.20)

There exists an algorithm - specifically the exponential time Maximum Likeli-

hood Estimator (MLE) - that recovers the blocks with high probability in this

regime as well as in the next two easier regimes; we omit such implications in

the sequel). There is no known polynomial-time algorithm for this regime.

• The Easy Regime:

k2

n
/

(p− q)2

q(1− q)
/

k√
n

(3.21)

There exists a polynomial time algorithm - specifically a convex relaxation of

MLE - that recovers the blocks with high probability in this regime. Moreover,

this algorithm provably fails in the hard regime above.

• The Simple Regime:

(p− q)2

q(1− q)
'

k√
n

(3.22)

A simple algorithm based on counting vertex degrees and common neighbors

recovers the blocks with high probability in this regime, and provably fails

outside this regime.

Chen and Xu conjecture that no polynomial time algorithm can succeed in the hard

regime. In support of their belief they also note that the hard regime contains the

1 The notation / and ' ignores constant and log n factors, while the notation . and & ignores
just constant factors.
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standard Planted Clique problem with clique size K = o(
√
n), which has no

polynomial-time algorithm so far despite decades of effort and is widely believed to

be computationally intractable [22], [26].

They also consider a polynomial-time algorithm based on a convex relaxation

of the MLE, and obtain nearly matching sufficient and necessary conditions for the

success of the algorithm. It shows that the algorithm does not achieve the mini-

max lower bounds. Their performance guarantee improves upon all existing ones for

polynomial-time algorithms, especially when the number of clusters is large.
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Chapter 4

A Different Spectral Approach

” From childhood’s hour I have not been

As others were - I have not seen

As others saw - I could not bring

My passions from a common spring

”
Edgar Allan Poe, Alone

Our contribution regards the unweighted version of the Graph Partitioning

problem for k ≥ 2. Being inspired by the works of [7] and [15] we wanted to extend

these techniques to the Multisection case in hope for a better or equal bound to

that of [30] with a different and easier proof, hopefully falling under the harder regime

of [11].

It is worth to be noted that this work was concurrent to that of [11]and in just days

before we concluded the result, we got news of their paper. In the end this technique

cannot improve the state-of-the-art, but we still believe it holds some interest on its

own right and that it is more elegant than other techniques. Initially, we believed
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that we could potentially push our parameters to be in the “hard” regime of [11], but

that does not seem possible with this spectral technique.

Notice that we can extend our model into a semi-random one by adding a mono-

tone adversary as in [15]. Similarly to [15] our function can be shown to be robust for

the case of a (monotone) adversary. This makes the model more robust since on top

of the randomness, there is an (almost) arbitrary removal and addition of edges.

We begin with the SDP first introduced in [19] and take the standard Dual problem

which for SDPs has only a single positive semidefinite constraint. We make a choice of

the dual variables that will make the objective function yield the required quantity and

then show that for that choice the matrix constraint can be satisfied. Furthermore,

since the SDP values are integral, an algorithm construction is almost straightforward.

As [7], [15] and many others, we embrace the planted partition model as discussed

in Chapter 3. For completeness we restate it here.

4.0.2 The Planted Partition Model

Let G = (V,E) be a graph on n vertices where E = ∅. Then

• Fix a partition of the vertices of G into V1, . . . , Vk equal sized blocks,

• For every pair of vertices inside a block add an edge with independent proba-

bility p,

• For every pair of vertices across distinct block add an edge with independent

probability q < p.
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4.1 The SDP

The SDP we are considering is:

min A •X

s.t. J •X = n2/k

Xii = 1

Xij ≥ 0

X < 0

(4.1)

We rewrite Xij ≥ 0 by introducing the slack variables sij as Xij − sij = 0 and get:

min A •X

s.t. J •X = n2/k

Xii = 1

Xij − sij = 0

X < 0

(4.2)

4.2 The Dual

As per standard duality theory we write the Dual of the above SDP:

max
n∑

i=1

yi + (n2/k)y0

s.t. Y − A+ y0J − Z < 0

(4.3)

Where Y is the diagonal yi variable matrix, A is the adjacency matrix of the

graph, J is the identity matrix and Z is an auxiliary variable matrix that only affects

feasibility, but does not appear in the objective function.

Recall that as in linear programming, similarly in semi-definite programming a

solution to the dual problem provides a bound on the value of the solution to the
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primal problem; when the problem is convex and satisfies the constraint qualifications,

then the value of an optimal solution of the primal problem is given by the dual

problem. Which in our case is true, thus it suffices to calculate the value of the dual

problem.

4.3 The Approach

At this point it will be useful to give a couple of definitions:

Definition 4.3.1. Consider a k-partite graph Gk =
(
{Vi}ki=1, E

)
and let diout(j) be

the number of edges that go from vertex i to block j. We call the k-partite graph Gk

r-canonical if

∀(i, j) diout(j) = r. (4.4)

We will denote a random k-partite r-canonical graph as Gr
k.

We proceed to partitition the space Rn in the following perpendicular subspaces:

1 : the all-ones vector, (4.5)

Rk−1 : the subspace perpendicular to 1 with equal values in each block, (4.6)

Rn|k−1 : the subspace where the sum on each block is equal to 0. (4.7)

Following are some simple facts:

Observation 4.3.1. The space Rk−1 is an eigenspace for any r-canonical graph with

eigenvalue −r.

Observation 4.3.2. The space Rn|k−1 is an eigenspace for the complete k-partite

graph with eigenvalue 0.

Now looking at the dual problem, by decomposing A to Ap and Aq, where Ap is

the adjacency matrix of the subgraph with only edges within blocks and Aq the one
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with just edges between distinct blocks, and substituting Ap with Dp − Lp, we can

rewrite the above constraint as follows:

M = Y −Dp + y0J − Z + Lp − Aq < 0. (4.8)

So the problem now reduces to finding proper choices for the yi’s and y0 such that

we measure the total cut in the objective function and at the same time meet the

dual constraint.

It will be useful to define the following variables to help uncongest the notation:

Eq :=
qn

k
, Ep :=

pn

k
. (4.9)

and

∆q :=

√
qn

k
log n , ∆p :=

√
pn

k
log n. (4.10)

We have the following simple lemma which follows via Chernoff bounds.

Lemma 4.3.3. ∀(i, j)

diout(j) ≤ Eq +O(∆q) (4.11)

with high probability.

Proof. Let X = diout(j). Since X ∼ Binomial(n/k, q) by standard Chernoff bounds

it holds:

Pr

[
X ≥ qn

k
+
√

log n ·
√
qn

k

]
≤ exp

(
−
(√

log n
)2

2

)
(4.12)

Pr

[
X ≥ qn

k
+

√
qn

k
log n

]
≤ 1

n2
. (4.13)
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Notice that Z does not appear in the objective function and so we are free to

make the best choice that satisfies our constraint.

We now describe the way we choose Z.

The sampled Aq may not be canonical. Consider the set of all graphs Ẑ such

that Aq ∪ Z, where Z ∈ Ẑ is (Eq + c∆q)-canonical (where c is some constant). We

make this choice of Z uniformly at random from Ẑ. Intuitively, Z will be the graph

composed of the remaining edges that would make Aq (Eq + c∆q)-canonical.

Claim 4.3.4. For a suitable c with high probability the corresponding set Ẑ from Aq

will be non-empty.

We now describe the choice of dual parameters:

yi = diin − (Eq + c∆q) (4.14)

and

y0 = (Eq + c∆q)(k/n). (4.15)

Notice firstly that for the above choice of dual parameters the dual objective

function gives exactly the maximum sum of the degrees inside the blocks, which

means it maximizes the number of edges inside the blocks, which in turn means that

we are minimizing the number of edges across blocks, which is exactly what we wanted

to do.

Secondly, under the selected parameters described above we see that Z + Aq is

now a (Eq + c∆q)-canonical graph as we wanted.

Using the properties of canonical graphs we get the following easily derivable

lemmata.

Lemma 4.3.5. 1 is an eigenvector of M with eigenvalue = 0.
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Proof. We show that xTMx = 0, for x = 1.

xTMx = xT (Y −Dp + y0J + Lp − Z − Aq)x (4.16)

= xTY x− xTDpx+ xT (y0J)x+ xTLpx− xTZx− xTAqx (4.17)

= xT (Y −Dp)x+ n2y0 − xT (Z + Aq)x (4.18)

= (Eq + c∆q)(k − 1)− (k − 1)(Eq + c∆q) (4.19)

= 0 (4.20)

Lemma 4.3.6. Rk−1 is an eigenspace of M with eigenvalue = 0.

Proof. We show that yTMy = 0, for y ∈ Rk−1.

yTMy = yT (Y −Dp + y0J + Lp − Z − Aq)y (4.21)

= yTY y − yTDpy + yT (y0J)y + yTLpy − yTZy − yTAqy (4.22)

= yT (Y −Dp)y − yT (Z + Aq)y (Observation 4.3.1) (4.23)

= (Eq + c∆q)− (Eq + c∆q) (4.24)

= 0 (4.25)

The above lemmata imply that it suffices show that xTMx ≥ 0, for all x ∈ Rn|k−1.

To this end we first need to understand the behavior of Z +Aq on this space. We

first make the following observation:

Observation 4.3.7. Let Âq be the distribution conditioned on the event that the

corresponding set Ẑ is non-empty. Then Z+ Âq is the same distribution as a random

(Eq + c∆q)-canonical graph GEq+c∆q .
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Claim 4.3.8. Restricted to the space Rn|k−1 we have that

λ(Gr) ≤
√
rk log n (4.26)

Observation 4.3.9. It is also true that

λ(Lp) ≥ Ep −∆p (4.27)

Using the above lemmata and everything that we have stated thus far we get the

following corollary.

Corollary 4.3.10. The SDP recovers the original solution with high probability when

p− q ≥ O

(√
kp log n

n
+ k

√
q log n

n

)
(4.28)

Proof. Recall that for our choice of the yi’s, y0 and the matrix Z the objective function

of the dual formulation 4.3 calculates exactly the quantity we want. Hence, the only

thing left to show is that the constraint is met.

Suffice to show that xTMx ≥ 0, for all x ∈ Rn. In particular by the subspace

decomposition of Rn that we showed arleady it is enough to show that:

xTMx = 0, x = 1 (4.29)

yTMy = 0, y ∈ Rk−1 (4.30)

zTMz ≥ 0, z ∈ Rn|k−1 (4.31)
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By Lemma 4.3.5, we satisfy (4.29) and by Lemma 4.3.6, we satisfy (4.30) also. Suffices

to show (4.31).

zTMz ≥ 0 ⇐⇒ zT (Y −Dp + y0J + Lp − Z − Aq)z ≥ 0 (4.32)

⇐⇒ zTY z − zTDpz + zT (y0J)z + zTLpz − zTZz − zTAqz ≥ 0. (4.33)

By definition zT (Y −Dp)z = {yi−diin}ni=1, which by (4.14) becomes just −(Eq +c∆q).

− (Eq + c∆q) + zT (y0J)z + zTLpz − zTZz − zTAqz ≥ 0. (4.34)

The identity matrix zT (y0J)z goes to 0 for this choice of z.

− Eq − c∆q + zTLpz − zTZz − zTAqz ≥ 0. (4.35)

By Observation 4.3.9 we get:

− Eq − c∆q + Ep −∆p − zTZz − zTAqz ≥ 0. (4.36)

Finally, by Lemma 4.3.8 we get:

− Eq − c∆q + Ep −∆p −
√

(Eq + c∆q)k log n ≥ 0. (4.37)

Substituting back the Eq, Ep,∆q,∆p we get:

p− q ≥ O

(√
kp log n

n
+ k

√
q log n

n

)
. (4.38)

As promised.

It just caught our attention that the proof of Claim 4.3.8 has an error and sadly

we will have to leave it unproved at this time.
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Chapter 5

Open Problems and Future Work

” The best thing about the future is that it comes one day at a time.

”
Abraham Lincoln, 1809 - 1865

It is an interesting question to what extent the multitude of results sketched

above have reached a state of maturity where future improvements become less and

less likely. On the other hand, as soon as you widen your view in some direction,

there are plenty of important open problems.

As we said in the end of Chapter 3, for the case of bipartitioning [1] not only pro-

vided a sharp information theoretic threshold characterizing the feasibility of recov-

ery in the planted partition - stochastic block model but also gave an algorithm that

asymptotically matches the previous state-of-the-art given in [30], which in absolute-

constant terms even improves it, answering most of standard open questions on the

case of two blocks.

One open problem left by [1] is finding a tight analysis, as their algorithm is not in

theory achieving exactly the threshold, though in numerical simulations it does, for

their algorithm or some other spectral aglorithm. Additionally it would be interesting
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to see if some other, new algorithm could be suggested that achieves the same bound

with completely different techniques.

In the area of thresholds for exact recovery in the case of arbitrary number of

blocks; the general balanced Graph Partitioning problem, several future directions

are of interest. It would be useful in practice to allow for a finer spectrum, ideally

close to a continuum, of computational-statistical tradeoffs.

Moreover, what is still an important open problem in the case of arbitrary blocks

k > 2 is whether there exists an algorithm in the p − q parameter range regime

characterized as “hard” in [1]. If such an algorithm existed it could have interesting

implications on the notorious Planted Clique problem.

Finally, it would also be interesting to study extensions to the setting with overlap-

ping clusters, and to the case where the values of the model parameters are unknown.

Establishing conditional computational hardness of the support estimation version of

the planted clustering problem is also an interesting problem.
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[29] Laurent Massoulié. Community detection thresholds and the weak ramanujan
property. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 694–703, 2014.

[30] F. McSherry. Spectral partitioning of random graphs. In Proceedings of the 42Nd
IEEE Symposium on Foundations of Computer Science, FOCS ’01, pages 529–,
Washington, DC, USA, 2001. IEEE Computer Society.

[31] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model thresh-
old conjecture. CoRR, abs/1311.4115, 2013.

[32] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? SIAM
J. Sci. Comput., 18(5):1436–1445, September 1997.

[33] Tom A.B. Snijders and Krzysztof Nowicki. Estimation and prediction for stochas-
tic blockmodels for graphs with latent block structure. Journal of Classification,
14(1):75–100, 1997.

46


	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.0.1 Goal
	1.1 Preliminaries
	1.1.1 Objectives

	1.2 Tools
	1.3 Applications
	1.3.1 Parallel Processing
	1.3.2 VLSI Design
	1.3.3 Networks
	1.3.4 Image Processing


	2 Graph Partioning(G, c(), w(), k)
	2.1 Hardness
	2.2 Inapproximability
	2.3 A Different Approach
	2.3.1 The Planted Partition Model


	3 A Spectral Lens
	3.1 Eigenvalues and Graph Bisection: An Average-case Analysis
	3.1.1 Description of the Algorithm
	3.1.2 Probabilistic Analysis

	3.2 Heuristics for Semirandom Graph Problems
	3.3 Spectral Partitioning of Random Graphs
	3.4 The Current State-of-the-Art
	3.4.1 Sharp Thresholds for Recovery in the Planted Partition Model


	4 A Different Spectral Approach
	4.0.2 The Planted Partition Model
	4.1 The SDP
	4.2 The Dual
	4.3 The Approach

	5 Open Problems and Future Work
	Bibliography

