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Introduction

This thesis is a short survey of the theory of large cardinals. The notion of
elementary embeddings is crucial in this study, since it is used to provide a
quite general way of defining large cardinals. The survey concludes with a
reference to Kunen’s theorem, which sets some limitations to the existence of
specific elementary embeddings, and an attempt of P. Corazza to surmount
those limitations. Most of the material used through the survey is defined in
chapter 1, thus the text is accessible to all readers having knowledge of basic
set theory and logic.

Chapter 1 serves as an extensive introduction to some notions needed for
the rest of the text. Mostowski’s collapsing theorem provides us with a way
of transforming a lot of models of set theory, into standard transitive ones.
Some results concerning Lévi’s hierarchy illuminate the notion of absoluteness,
i.e. the case in which a formula or a term behaves the same way in V as in
a standard transitive model. The important cumulative hierarchies Vα and Lα

are introduced, along with some of their basic properties. Finally, there is a
quick reference to some model theoretical constructions we will use later on.

On chapter 2, the first large cardinals appear, though they are not strong
enough to yield a connection with elementary embeddings. The first section
of this chapter is somehow a continuation of the first chapter, as it provides
some fundamental knowledge on cardinal arithmetic. Afterwards, we define in-
accessible cardinals, then go on to Mahlo cardinals and finally introduce weakly
compact and Erdős cardinals. There is an additional reference to Ramsey car-
dinals, which have a combinatorial nature similar to that of Erdős cardinals,
even though they are essentially stronger than the other large cardinals we have
mentioned here.

On chapter 3 things seem to get more interesting, as we introduce measur-
able cardinals. They emerge in a very natural way from measure theory and
their study moves from analysis to set theory. They are connected with the
elementary embeddings of the form j : V ≺ M , and out of this connection we
get the result, due to Scott, that if there is a measurable cardinal, then V 6= L.
Concluding, we define normal measures, which become invaluable in the study
of elementary embeddings.

Chapter 4 goes a little bit backwards, since we study a weaker large cardinal
hypothesis, the existence of 0♯. Some effort is needed in order to define 0♯ but
it pays back, as 0♯ is very close to the critical question of whether L is a good
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approach of V . Silver’s theorem and Jensen’s covering theorem give a more
than satisfactory answer to this question which had been roughly approached
by measuble and Ramsey cardinals. We finally see, through a theorem of Kunen,
that 0♯ is connected with the elementary embeddings of the form j : L ≺ L.

Chapter 5 goes on from the point where chapter 3 ended, as it presents the
use of elementary embeddings of the form j : V ≺M , in order to obtain stronger
large cardinals. This way, strong, Woodin, strongly compact, supercompact and
extendible cardinals appear. We come up with even stronger hypotheses, such as
Vopĕnka’s principle, the existence of huge cardinals and I0-I3. The latter, seem
to lie near the existence of an embedding j : V ≺ V , which cannot exist due
to Kunen’s result, thus there is a probability that they could be disproved from
ZFC. Finally, we examine the case of an elementary embedding j : V ≺ V .
Kunen’s theorem states that there is not such an embedding. In the process,
we examine the consequences of the wholeness axiom, proposed by Corazza,
which asserts the existence of an embedding j : V ≺ V that is not weakly
definable. The wholeness axiom may weaken the hypotheses of Kunen’s result,
but it implies the existence of a super-n-huge cardinal, thus it is very near
inconsistency and it should be further investigated.



Chapter 1

Preliminaries

In this chapter, we present some basic notions of set theory and model theory
which will be necessary for our study. On the same time, we try to give some
motives for the introduction of large cardinals. Our first step is to present
the well known axiomatic system ZFC. Most of the axioms are presented as
the closure of V under certain operations, in order to provide a more vivid
image of the structure of V . Afterwards, the most powerful of those operations,
the powerset operation, is used in order to introduce the notion of cumulative
hierarchies. Cumulative hierarchies are roughly sequences of levels Uα, which
expand, by the addition of more complex sets, as α gets bigger. Two very
common hierarchies are then introduced; von Newmann’s hierarchy Vα, and
the hierarchy of the constructible sets Lα. Moving towards a model theoretical
study of set theory, Mostowski’s collapsing theorem becomes very useful, as it
gives us the opportunity to work, in almost all cases studied here, with standard
transitive models. Since standard models share the same relation with V , we
are interested in the cases where some formulas have the same truth value in
a stander transitive model as in V . The notion that expresses those cases is
absoluteness, and an easy way to study it is the introduction of Lévi’s hierarchy
of formulas. Next, we meet again the hierarchies Vα, Lα and this time prove
some of their basic properties. Finally, we state some model theoretic concepts,
such as Skolem functions, ultraproducts and reflection principles.

For a more extensive treatment of the material covered in this chapter, the
reader is referred to [7], [11] and [21]. For an elementary introduction to set
theory, he is referred to [15] and [12]. A classical book on model theory is [2]
and much more information on ultraproducts can be found in [1].

1.1 Cumulative hierarchies

The axioms of ZFC

The first two axioms describe the nature of sets:

1



2 CHAPTER 1. PRELIMINARIES

• A1. Extensionality axiom

∀z (z ∈ x↔ z ∈ y)→ x = y

• A2. Foundation axiom

∃y y ∈ x→ ∃y ∈ x ∀z ∈ x z /∈ y

The next 7 axioms express that the universe V is closed under certain oper-
ations, and are written in the form

x ∈ V → Q(x) ∈ V

where Q denotes an operation. These are the following:

• A3φ. Separation axiom

x ∈ V → {y ∈ x : φ(y)} ∈ V

• A4. Empty set axiom

→ ∅ ∈ V

• A5. Pairing axiom

x, y ∈ V → {x, y} ∈ V

• A6. Power set axiom

x ∈ V → P (x) ∈ V

• A7. Union axiom

x ∈ V → ∪x ∈ V

• A8. Infinity axiom (inf)

∅ ∈ V → ω ∈ V

• A9φ. Replacement axiom (F)

x ∈ V → F ′′
φ (x) ∈ V

Where F ′′
φ (x) = y ↔ ∀z (z ∈ y ↔ ∃w ∈ x φ(w, z))

for φ which define functions, i.e. ∀x ∃!y φ(x, y).

Finally, the tenth axiom, the axiom of choice, demands the existence of a
well-ordering for every set.

• A10. Choice axiom (AC)

∀x ∃y y wellorders x
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An immediate consequence of the axiom of foundation is the fact that there
can not exist infinite ∋ sequences. If we combine this with the axiom of ex-
tensionality, which states that every set is defined exactly by its elements, we
can imagine a construction of V , beginning with the empty set and recursively
moving to new sets using axioms A4-A10. We could also add new sets which do
not appear in this construction, but may be contained in sets we have already
been constructed.

We should note here that by ZFC − Ai we mean the axiom system ZFC
without the axiom Ai, where 1 ≤ i ≤ 10. We also denote, ZF = ZFC − AC
and Z = ZF − F .

Cumulative hierarchies

The above approach is quite vivid and reveals the structure that V should have,
in order to satisfy ZFC. Unfortunately, it is quite complicated, especially when
dealing with sets of infinite cardinality. What could be done to simplify it, is
to begin with the empty set and produce an ⊂ sequence 〈Uα : α ∈ On〉 of sets
with increasing complexity, relative to ∈. Using this method, we approach V by
constructing bigger and bigger sets of its elements instead of adding them one
by one. This idea is captured by the notion of cumulative hierarchies.

Definition 1.1. A transfinite sequence 〈Uα : α ∈ On〉 is called a cumulative
hierarchy if the following are true:

(i) U0 = ∅;

(ii) Uα ⊂ Uα+1 ⊂ P (Uα);

(iii) Uα =
⋃

β<α Uβ, limit(α).

The sets Uα of the hierarchy are all transitive.
Reaching the end of this section, we are going to introduce two important

cumulative hierarchies and some of their trivial properties. More information
about them will be unveiled in section 1.4 where we are going to treat them
as models of ZFC. The fact that they are indeed cumulative hierarchies can be
easily checked in all cases using transfinite induction.

Von Neumann’s hierarchy

Definition 1.2. We call von Neumann’s hierarchy the transfinite sequence
〈Vα : α ∈ On〉 with the following properties:

(i) V0 = ∅;

(ii) Vα+1 = P (Vα);

(iii) Vα =
⋃

β<α Vβ , limit(α).

Von Neumann’s universe is the class R =
⋃

{Vα : α ∈ On}.
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• R = V . The power set operation turns out to be so powerful that in ZF
every set x belongs to Vα+1 for some α ∈ On. The least α satisfying this
property is called the rank of x and is written as rank(x) (We will use the
symbolization rankU (x) for the same notion concerning another hierarchy
U).

• For every ordinal α, rank(α) = α.

• |Vω+α| = iα and for every n ∈ ω, Vn is finite1.

The hierarchy of constructible sets

In order to introduce constructible sets, we first need the notion of definability.

Definition 1.3.

(i) Suppose M is a model and X, I ⊂M . X is definable in M from I, if there
is a formula φ(v, ū) and a n-tuple ā of I, such that:

∀x ∈M (x ∈ X ↔M � φ[x, ā]).

In the case I = M we say that X is definable over M . If x ∈ M , then x
is definable over M (or in M from I) if {x} is respectively definable over
M (or in M from I).

(ii) defM (I) = {X ⊂M : X definable in M from I}
def(M) = {X ⊂M : X definable over M}.

Definition 1.4. The hierarchy 〈Lα : α ∈ On〉 of the constructible sets is the
one which satisfies the following:

(i) L0 = ∅;

(ii) Lα+1 = def(Lα);

(iii) Lα =
⋃

β<α Lβ, limit(α).

The universe of constructible sets is L =
⋃

{Lα : α ∈ On}.

•
⋃

α∈On Lα does not necessarily contain all sets. Moreover it cannot be
proved within ZFC weather V = L or not. An interesting result to come
is that this question is tightly connected with the existence of 0♯, which is
a large cardinal property.

1The sequence iα is recursively defined as follows:

i0 = ℵ0

iα+1 = 2iα

iα =
⋃

β<α

iβ , limit(α)
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• For every ordinal α, rankL(α) = α.

• |Lα| = |α|.

• Lω = Vω and Ln = Vn for every n ∈ ω.

1.2 The Mostowski collapse

In the previous section we introduced cumulative hierarchies in order to get a
grasp of how a model of ZFC should look like. In general, a model of set theory
is a couple (M,E) where M is a class and E is a binary relation interpreting ∈.
The models of ZFC may be quite complicated but we can reduce many of them
to simpler ones using Mostowski’s theorem. This theorem states that, under
certain assumptions, an E structure is isomorphic to a transitive ∈ class.

We give a definition concerning relations and afterwards the proof of Mostowski’s
theorem. The reason for this is to illustrate the use of transfinite recursion and
provide a clearer image of the connection of some E relations to ∈.

Definition 1.5. Suppose (N,E) is a structure of the language {∈}.

(i) The E-extension of x ∈ N is the class extE(x) = {y ∈ N : yEx}.

(ii) E is well-founded on N if every non empty subset of N has an E-minimal
element.

(iii) E is set-like if for all x ∈ N , extE(x) is a set.

(iv) E is extensional relation on N if

∀x, y ∈ N (extE(x) = extE(y)→ x = y)

Theorem 1.6. (Mostowski’s collapsing theorem)

(i) If E is well-founded set-like and extensional on N , then there exists a
transitive class M and an isomorphism F between (N,E) and (M,∈).

(ii) M and F are unique.

Proof. (i) We define F by well-founded recursion so that

F (x) = F ′′(extE(x)) = {F (y) : yEx}.

This is possible because E is set-like so extE(x) is a set, which means by
the axiom of replacement that {F (y) : yEx} is also a set, and additionally
E is well-founded. Let M = F ′′(N).

– M is transitive:

y′ ∈ x′ ∈M → ∃x ∈ N x′ = F (x)

and

F (x) = {F (z) : zEx} → ∃yEx y′ = F (y)→ y′ ∈M.
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– F is 1-1: If it wasn’t, there would exist an x′, of least rank, with the
property x′ = F (x) = F (y) for some y 6= x.

y 6= x→ extE(x) 6= extE(y)→ ∃zEx ¬zEy

but since F (x) = F (y)

∃uEy F (z) = F (u)→ z = u→ zEy

which is a contradiction.

– yEx ↔ F (y) ∈ F (x): If yEx, then F (y) ∈ F ′′(extE(x)) = F (x).
Additionally, if F (y) ∈ F (x), then ∃z ∈ extE(x) F (z) = F (y) and
since F is 1-1 we have z = y which means that yEx.

(ii) Let F be the above isomorphism and G another one having K as its range.
If x ∈ N is an element of least rank for which F (x) 6= G(x), then since G
is an isomorphism

G(x) = {G(y) : yEx} = {F (y) : yEx} = F (x)

which can not be true. As a consequence of this

F = G→ K = G′′N = F ′′N =M

so K =M .

In the cases we are interested in, (M,E) will be a model of the axiom of
extensionality. Using the following lemma we will show that if this is true, then
it is enough to check that extE(x) is a set for every x ∈ M and that E is
well-founded, in order to apply Mostowski’s theorem.

Lemma 1.7. E is extensional on M iff (M,E) � “extensionality axiom”.

Proof. M � “extensionality axiom” is equivalent to

M � ∀x, y (∀z ∈ x z ∈ y ∧ ∀z ∈ y z ∈ x→ x = y)↔

↔∀x, y ∈M (∀z ∈ x z ∈ y ∧ ∀z ∈ y z ∈ x→ x = y)M

↔∀x, y ∈M (∀zEx zEy ∧ ∀zEy zEx→ x = y)

which is equivalent to the extensionality of M .

1.3 Absoluteness

As we have mentioned, we will only work with transitive models (M,∈), where
M can either be a set or a class2. Since the interpretation of ∈ coincides with ∈,

2Here one should be careful using the relation �, which is definable in ZFC for models
that are sets, but not for models that are classes.
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it would be interesting to study the cases where (φ)M is equivalent to φ for all
valuations of φ. Those formulas are called absolute for M . If moreover, one of
them is absolute for every transitive model M , it is simply called absolute. Our
aim in this section is to present methods of proving that a formula is absolute,
and using them provide a list of absolute formulas.

Absoluteness

Definition 1.8. Let M and N be two structures such that M ⊂ N :

(i) A formula φ(x̄) is preserved under the extension (restriction) from M to
N (from N to M) if

∀ā ∈Mn(M � φ[ā]→ N � φ[ā])

[∀ā ∈Mn(N � φ[ā]→M � φ[ā])].

(ii) A fomula φ(x̄) is absolute for M, N if it is preserved both under the
extension from M to N and the restriction from N to M .

(iii) A term t(x̄) is absolute for M, N if y = t(x̄) is absolute for M , N .

(iv) M is an elementary substructure ofN ,M ≺ N , if every formula is absolute
for M , N .

(v) We will call a formula φ absolute for a theory T if, for every model M of
T , φ is absolute for M , V .

Lévy’s hierarchy

One way we can show that a formula is absolute is, by checking its position
in Lévy’s hierarchy. We will give a brief definition of it and a theorem which
explains the link between absoluteness and the first levels of this hierarchy.

Definition 1.9. Let T be a theory. Lévy’s hierarchy and Lévy’s hierarchy
relative to T are defined as follows:

(i) – ∆0 = Σ0 = Π0 is the set of all formulas with bounded quantifiers

(of the form ∃x ∈ y or ∀x ∈ y).

– Σn+1 = {∃x φ(x) : φ ∈ Πn}.

– Πn+1 = {∀x φ(x) : φ ∈ Σn}.

(ii) – φ ∈ ΣT
n iff ∃ψ ∈ Σn T ⊢ φ↔ ψ.

– φ ∈ ΠT
n iff ∃ψ ∈ Πn T ⊢ φ↔ ψ.

– ∆T
n = ΣT

n ∩ΠT
n .

Theorem 1.10. Let M ⊂ N be transitive models of T , then:

(i) If T ⊢ φ↔ ψ then ψ is absolute for M , N iff φ is absolute for M , N .
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(ii) Every ∆T
0 sentence is absolute for M , N .

(iii) Every ΣT
1 sentence is preserved under the extension from M to N .

(iv) Every ΠT
1 sentence is preserved under the restriction from N to M .

(v) Every ∆T
1 sentence is absolute for M , N .

In order to use the above theorem effectively, the lemma below is very useful.
It helps us classify formulas in Lévy’s hierarchy.

Lemma 1.11.

(i) Logical connectives (for T ⊢ Z − inf)

– If φ and ψ are both ΣT
n or ΠT

n , then so are φ ∧ ψ and φ ∨ ψ.

– If φ ∈ ΣT
n and ψ ∈ ΠT

n then φ, ψ ∈ ∆T
n+1, φ→ ψ ∈ ΠT

n

and ψ → φ ∈ ΣT
n .

– φ ∈ ΣT
n → ¬φ ∈ ΠT

n and φ ∈ ΠT
n → ¬φ ∈ ΣT

n .

(ii) Quantifiers (for T ⊢ Z − inf)

– φ ∈ ΣT
n → ∀x φ ∈ ΠT

n

– φ ∈ ΠT
n → ∃x φ ∈ ΣT

n

– If n > 0 then φ ∈ ΣT
n → ∃x φ ∈ ΣT

n

and φ ∈ ΠT
n → ∀x φ ∈ ΠT

n .

(iii) Bounded quantifiers (for T ⊢ ZF )

If φ is ΣT
n or ΠT

n then so are ∃x ∈ y φ and ∀x ∈ y φ.

(iv) Terms (if n > 0 and T ⊢ ZF )

– If φ(x) ∈ ∆T
n then {x : φ(x)} ∈ ΠT

n and {x ∈ z : φ(x)} ∈ ∆T
n .

– If t ∈ ΣT
n and T ⊢ ∃x x = t then t ∈ ∆T

n .

– Suppose T ⊢ ∃x x = t. Then if φ(y), s(y) and t are ∆T
n then so are

φ(t), s(t), ∃x ∈ t φ, ∀x ∈ t φ and {x ∈ t : φ}.

Now that we are equipped with theorem 1.10 and lemma 1.11 we are ready to
give a list of terms and formulas in set theory which are ∆ZF

1 and thus absolute.
The notions described by those terms and formulas, such as the ordinals, tend
to be easier in their manipulation. In contrast, notions which are not ∆ZF

1 , such
as cardinals or the power set operation, are more vague and a variety of hard
(many times unsolvable in ZFC) problems arise.

Lemma 1.12.
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(i) The following terms and formulas are ∆ZF
0 thus absolute:

(1) x ∈ y (9) x \ y (17) dom(R) (25) succord(x)
(2) x = y (10) s(x) (18) rang(R) (26) finord(x)
(3) x ⊂ y (11) trans(x) (19) funct(f) (27) ω
(4) {x, y} (12) ∪ x (20) f(x) (28) n, n ∈ ω
(5) 〈x, y〉 (13) ∩ x (21) f ↾ x (29) An

(6) ∅ (14) ordpair(z) (22) f is 1− 1 (30) A<ω

(7) x ∪ y (15) A×B (23) ordinal(x)
(8) x ∩ y (16) rel(R) (24) limord(x)

(ii) If G(x, z, ȳ) is a ΣZF
n term, and F (x, ȳ) is the term obtained by transfinite

∈ or < induction then, F (x, ȳ) is ∆ZF
n .

(iii) The following terms and formulas are ∆ZF
1 thus absolute:

(1) α− 1 (4) αβ (7) Vω
(2) α+ β (5) rank(x)
(3) α · β (6) TC(x)

(iv) The following terms and formulas are ΣZF
1 thus absolute for extensions:

(1) x =c y
(2) x ≤c y
(3) cf(α)

(v) The following terms and formulas are ΠZF
1 thus absolute for restrictions:

(1) card(α) (4) inaccessible(α) (7) Vα
(2) regular(α) (5) < wellorders x
(3) limcard(α) (6) P (x)

Applications

This section is quite technical but the reader should reach a level of familiarity
with it. Absoluteness is a powerful tool when dealing with models of ZF .
Imagine a set M which is a model of set theory. If we are interested in whether
M � φ, where φ is absolute, we only have to check if it is true in V instead of
checking if (φ)M is true in V , which could be difficult. Absoluteness also comes
in handy when somebody wants to show that a set M is a model of ZFC, since
many of its axioms are ∆0 thus absolute. We will close this section with two
applications. In the first one, we find some axioms of ZFC which are absolute
for all transitive models and in the second one, we prove that there exists a ∆ZF

1

formula which expresses the notion M � ZF .

Application 1.13. The following formulas and terms related to the correspond-
ing axioms of ZF are absolute for every transitive model M :

A1. Extensionality A5. {x, y}
A2. Foundation A7. ∪ x
A4. ∅ A8. ω
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The following formulas and terms related to the corresponding axioms of ZF
are preserved by restriction to M , for every transitive structure M :

A6. P (x)
A10. < wellorders x

Additionally, for every transitive model M, PM (x) = P (x) ∩M .

The above application is useful when we have to show that a given transitive
structure satisfies A4, A5, A7 and A8. It is transitive thus it satisfies A1,A2
and in order to show that it satisfies A4, A5, A7, A8, we only have to check
that it contains ∅ and it is closed under the respective operations. A6 and A10
may need some more work, but at least this theorem covers the one direction of
the proof.

For the next application we need some definitions first. In order to express
the notion of � within the language of set theory we must initially do this for
its formulas. This is the idea of Gödel numbering and it can be implemented in
many ways.

Definition 1.14. Each formula is represented by an element of Vω using the
function pq which is defined by the following recursion:

(i) For atomic formulas:

– pxi = xjq = 〈0, i, j〉

– pxi ∈ xjq = 〈1, i, j〉

(ii) For non-atomic:

– pφ ∨ ψq = 〈2, pφq, pψq〉

– p¬φq = 〈3, pφq〉

– p∃xi φq = 〈4, i, pφq〉

The subset of Vω, which consists exactly of its elements that express a for-
mula, will be denoted Form.

Definition 1.15. We give the following definitions:

(1) fm(u, f, n): “u = pφq where φ is the sentence whose structure is described
by the function f in n steps”.

(2) fmla(u): “u is the Gödel set of a formula”.

(3) s(m, g, r, f,M): “when f, g are functions, f describes the construction
of a sentence of rank r and f(k) = pφmq then, g(m) contains all the r-
tuples, a, ofM r for which φm[a] takes its truth value according to Tarski’s
definition of truth for M”.

(4) sat(u,M, b̄): “u is the Gödel set of a formula φ for which M � φ[b̄]”.
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(5) axZFC(u): “u is a formula and it is one of the axioms of ZFC”.

(6) M � ZF : “M is a model of ZF”.

Application 1.16. The above notions are all ∆ZF
1 thus absolute for all models

of ZF . In particular M � ZF is absolute for models of ZF .

Proof.

(1) Writing down the definition of fm we get the following formula:

fm(u, f, n) ≡ funct(f) ∧ finord(n) ∧ dom(f) = n+ 1 ∧ f(n) = u∧

∧ ∀m < n+ 1 [∃i, j < ω(f(m) = 〈0, i, j〉 ∨ f(m) = 〈1, i, j〉)∨

∨ ∃k, l < m (f(m) = 〈2, f(k), f(l)〉) ∨ f(m) = 〈3, f(k)〉)∨

∨ ∃k < m ∃i < ω f(m) = 〈4, i, f(k)〉]

which by lemma 2 can be easily proved to be ∆ZF
1 .

(2) fmla(u) is equivalent to the formula

∃n < ω ∃f ∈ Vω fm(u, f, n)

which is ∆ZF
1 by lemma 2 and (1).

(3) s(m, g, r, f,M) is equivalent to the following formula (this is a coding of
Tarski’s truth definition)

∃i, j < ω [(f(m) = 〈0, i, j〉 ∧ g(m) = {a ∈M r : a(i) = a(j)})∨

∨(f(m) = 〈1, i, j〉 ∧ g(m) = {a ∈M r : a(i) ∈ a(j)})]∨

∨∃k, l < m [(f(m) = 〈2, f(k), f(l)〉 ∧ g(m) = g(k) ∪ g(l))∨

∨(f(m) = 〈3, f(k)〉 ∧ g(m) =M r \ g(k))]∨

∨∃i < ω ∃k < m (f(m) = 〈4, i, f(k)〉 ∧ g(m) = {a ∈M r : ∃x ∈M a(i|x) ∈ g(k)})

which is ∆ZF
1 by lemma 2 and the fact that α(i|x) is an abbreviation for

(a \ {〈i, a(i)〉}) ∪ {〈i, x〉}.

(4) sat(u,M, b) is equivalent to the formula

∃f, n, r ∈ Vω [fm(u, f, n) ∧ r = rank(u)∧

∧ ∃g (funct(g) ∧ dom(g) = n+ 1 ∧ ∀m < n+ 1 s(m, g, r, f,M)→ b ∈ t(n))].

Since whenever a function g having above properties exists, it is unique,
the formula

∃g (funct(g) ∧ dom(g) = n+ 1 ∧ ∀m < n+ 1 s(m, g, r, f,M)→ b ∈ t(n))

is equivalent to

∀g (funct(g) ∧ dom(g) = n+ 1 ∧ ∀m < n+ 1 s(m, g, r, f,M)→ b ∈ t(n))

so it is ∆ZF
1 . Thus sat(u,M, b) is also ∆ZF

1 .
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(5) axZF (u) is equivalent to the formula

fmla(u) ∧ [u = pA1q ∨ . . . ∨ pA8q ∨ ∃v ∈ Vω (fmla(v) ∧ u = pvq)]

which is ∆ZF
1 . What needs explanation here is pA9q(v) which is the set

representing A9φ, where φ is the formula represented by v. To prove that
pAiq can be written as a ∆ZF

1 sentence is immediate, as the sentence just
describes the procedure by which we construct the set representing axiom
i. For example for A4 ≡ ∃x0 ¬∃x1 (x1 ∈ x0)

pA4q = 〈4, 0, 〈3, 〈4, 1, 〈1, 1, 0〉〉〉〉

In the case of the axiom of replacement we must additionally replace φ
with v wherever occuring in the axiom.

(6) M � ZF is equivalent to the formula

∀u ∈ Vω [axZF (u)→ ∀b ∈M rank(u) sat(u,M, b)]

which is ∆ZF
1 .

It is easy to see that the above procedure can be done for every set of
axioms of set theory which is defined by a ∆ZF

1 formula. The reader who has
some knowledge of computability theory will realize that every set of axioms S
is of this kind, if and only if there exists an algorithm which decides whether a
given element of Form belongs to S. A special case is when we have a finite
extension of ZF .

1.4 Vα and Lα

In this section we study models of set theory created by considering the sets
Vα, Lα for different kinds of α, and their unions which are classes. Some of those
are models of ZF or ZFC and some others satisfy part of it but disagree in
one of its axioms. This way we will get some results on the independence of the
axioms of ZF and ZFC. For more on this subject see [21]. Our intention in
this chapter is to give some more information on the structure of a universe of
sets satisfying ZFC or part of it. We also want to raise some questions referring
to models of ZFC and which will be correlated with the existence of specific
large cardinals in later chapters.

Vα

We have already introduced Vα, α ∈ On as the sets forming von Neumann’s
hierarchy. In the case α is a successor cardinal, they don’t present much interest
as models because they fail to be closed under most of the operations appearing
in ZF . On the other hand, if α is a limit ordinal Vα is nearly a model of ZFC.
The following lemma provides some information on this case.
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Lemma 1.17.

(i) Vω � ZF (C)− inf + ¬inf .

(ii) If α > ω and limord(α) then Vα � ZC.

(iii) Vω+ω � ZC + ¬F .

Finally, we have to notice that R = ∪α∈OnVα is a model of ZFC, something
we already knew since R = V .

Lα

The sets Lα have been defined in section 1.2. They are similar to the sets Vα but
the notion of definability provides us with a much clearer view of the universe
L. This is also the reason why many more axioms can be proved to be valid in
L, such as AC and GCH , by accepting only ZF .

Theorem 1.18.

(i) Lω � ZFC − inf + ¬inf .

(ii) Lα � ZC, if α is a limit ordinal.

(iii) L � ZF

(iv) L � V = L

Proof.

(i)-(iii) The proofs are like the ones for Vα because all the notions appearing in
the axioms of ZFC are definable.

(iv) The formula y = def(M) is equivalent to

∀x ∈M ∀u ∈ Vω (x ∈ y ↔ fmla(u) ∧M � u[x])

which is ∆ZF
1 so def(M) is a ∆ZF

1 term.

The sets La are defined by transitive < induction using the term

G(f, z) =







∅ z = 0
def(f(z − 1)) succord(z)
∪α<zf(α) limord(z)

which is ∆ZF
1 so Lα is also ∆ZF

1 .

As a result of that

L � V = L↔ ∀x ∈ L ∃α ∈ L (x ∈ Lα)
L ↔ ∀x ∈ L ∃α ∈ L x ∈ Lα

which is true.
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V = L is a very crucial property of L. Along with the fact that Lα is absolute
for transitive models of ZF , it will assist us in the proof of the next theorems.

Definition 1.19. An inner model of ZF is a transitive class (M,∈), such that
M � ZF and On ⊂M .

Theorem 1.20. L is the smallest inner model of ZF .

Proof.

• We have proved that L � ZF and that ∀α ∈ On α ∈ Lα so L is an inner
model of ZF .

• Since M is a model of ZF , M � ∀α ∃x x = Lα, but Lα is absolute and
α ∈M for every ordinal, so ∀α Lα ∈M → L ⊂M .

Lemma 1.21. (Gödel’s condensation lemma) IfM ≺ Lα, limord(α), then
the Mostowski collapse of M is Lβ for some β ≤ α.

Proof. The main idea is to prove first, that there exists a sentence φL such that
for every transitive model N satisfying enough of the axioms of ZF

N � φL ↔ ∃α (limord(α) ∧N = Lα).

After a step by step examination of the proof of the absoluteness of Lα we can
see Lα is not only ∆ZF

1 but ∆T
1 where T is an appropreate, finite part of ZF .

Thus if N is a transitive model satisfying T then

N � ∀x ∃α x ∈ Lα ↔ ∀x ∈ N ∃α ∈ N x ∈ Lα ↔ ∃α (limord(α) ∧N = Lα).

If M ≺ Lω then M = Lω. Else, if α > ω we must notice that the axiom
of replacement was only needed in order to define some sets by ω-transitive
recursion and thus show that Lα is absolute. For those cases needed it is also
true in Lα. Thus since Lα � Z we have that Lα � T so Lα � φL. If M ≺ Lα

then its transitive collapse, N , N � φL → ∃β N = Lβ . Since M ⊂ Lα the
ordinals of M , and thus of N , belong to Lα, hence β ≤ α.

Theorem 1.22. L � AC

Proof. In order to prove that L � AC we only have to show, in ZF , that every
set of L can be well-ordered, because then from theorem 1.18, (iv)

L � (ZF + V = L)→ L � ∀x ∃R (R well − orders x)→ L � AC.

The proof is done using transitive < induction.

• L0 = ∅ is well-ordered by the empty relation.
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• Let <α be a well-ordering of Lα, <
n
α the lexicographical order, derived

from <α, of ordered n-tuples, <form a well-ordering of the set of formulas
(encoded inside Vω) and φx the <form-least formula defining x ∈ Lα+1 so
that x = {y ∈ Lα+1 : Lα � φx[y, āx]}. Then, we can define the following
well-ordering, <α+1, of Lα+1:

x <α+1 y ↔ φx <form φy ∨ (φx = φy ∧ āx <
n
α āy).

• If α is a limit ordinal and rankL(x) is the rank of x in the Lα hierarchy
then we can define the following well-ordering of Lα:

x <α y ↔ rankL(x) < rankL(y)∨(rankL(x) = rankL(y)∧x <rankL(x) y).

A well-ordering <L of L emerges from the above proof. We will call this
ordering the canonical well-ordering of L.

Theorem 1.23. L � GCH

Proof. 3 We will show that if x ∈ P (ℵα), then there is a β < ℵα+1 such that
x ∈ Lβ . So P (ℵα) ⊂ Lℵα+1

thus, since |Lℵα+1
| = ℵα+1,

|P (ℵα)| ≤ ℵα+1 → |P (ℵα)| = ℵα+1.

Provided that the above holds for every ordinal α, GCH will be true.

Let x ∈ P (ℵα) and x ∈ Lγ . By the Lövenheim-Skolem theorem, there is a
model M ≺ Lγ which satisfies ℵα ∪ {x} ⊂ M and |M | = ℵα. By lemma 1.21,
there exists a limit ordinal β ≤ γ such that the Mostowski collapse N of M is
Lβ.

We also have that

|β| = |Lβ | = |N | = |M | = ℵα < ℵα+1.

Finally, ℵα ⊂M , so if F is Mostowski’s collapsing function of M , F ↾ ℵα is
the identity function. But x ⊂ ℵα thus x = F (x) ∈ N = Lβ.

The conception of the universe L of the constructible sets and the above
theorems are due to Gödel. They imply that ZF +AC and ZF +AC +GCH
are consistent provided that ZF is. Exploring L, one can prove the relative
consistency of many other principles, such as ♦ and ♦+.

3We note that in this proof we are working inside L. Thus P (x) is (P (x))L, ℵα is (ℵα)L

etc.
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Constructibility relative to a set A

Finally, we briefly state some facts about constructibility relative to a set A.
This kind of consructibility can lead to two inner models, L[A] and L(A).

The model L[A] is constructed as L, with the only difference that we allow
the set A to participate in the procedure of defining new sets. Thus, we alter
the notion of definable sets in the following way:

Definition 1.24.

defA(M) = {X ⊂M : X is definable over (M,∈, A ∩M)}.

Definition 1.25. The class L[A] of the sets constructible from A is equal to
⋃

α∈On Lα[A], where

(i) L0[A] = ∅;

(ii) Lα+1[A] = defA(Lα[A]);

(iii) Lα[A] =
⋃

β<αLβ[A] if limord(α).

The following theorem contains some results relative to those we have proved
for L.

Theorem 1.26. For every set A,

(i) L[A] � ZFC;

(ii) L[A] � ∃X V = L[X ];

(iii) If M is an inner model and A ∩M ∈M , then L[A] ⊂M ;

(iv) If limord(α) and M ≺ (Lα[A],∈, A∩Lα[A]), then the Mostowski collapse
of M is Lβ for some β ≤ α;

(v) ∃α ∀β ≥ α L[A] � 2ℵβ = ℵβ+1;

(vi) If A ⊂ ℵ1, then L[A] � GCH.

The model L(A) is different from L[A], as it contains A. Actually, it is the
smallest inner model which contains A.

Definition 1.27.

(i) L0(A) = TC(A);

(ii) Lα+1(A) = def(Lα(A));

(iii) Lα(A) =
⋃

β<α Lβ(A) if limord(α).

L(A) =
⋃

α∈On Lα(A).
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1.5 Model theory

In this section we sketch some model theoretical concepts which will become
useful later on. The reader can refer to [2] and [21] for more details and some
of the proofs which have been omitted.

Skolem functions

We have already met the notion of elementary substructures while introducing
absoluteness. It is quite clear that all the logical and nonlogical symbols, except
from the quantifiers, are interpreted the same way in both structures M ⊂ N .
Hence, in order to check thatM ≺ N , we must examine whether the quantifiers
are interpreted the same way between M,N . Since ∀ is equivalent to ¬∃¬, we
only have to work with ∃. Thus the following holds:

Lemma 1.28. M ≺ N iff for every φ ∈ Form and every n-tuple b̄ ∈M :

∃a ∈ N N � φ[a, b̄]→ ∃a ∈M N � φ[a, b̄].

The lemma above can be used in constructing elementary substructures of a
given structure M . Specifically, we can define for every formula φ(v, u1, . . . , un)
a function hφ :Mn →M such that for all a1, . . . , an ∈M

M � φ[hφ(a1, . . . , an), a1, . . . , an] if ∃a ∈M M � φ[a, a1, . . . , an];

hφ(a1, . . . , an) = a0 ∈M else.

The functions satisfying those properties are called Skolem functions . The clo-
sure H(X) of a set X ⊂ M under those functions is called the Skolem hull
of X and by lemma 1.28, H(X) ≺ M . Many times Skolem functions can be
defined inside a structure but, even if not, we can always prove the existence of
external Skolem functions for every structure M , using AC. This fact leads to
the following theorem:

Theorem 1.29. (Löwenhein-Skolem) Suppose L is a language and M a struc-
ture for L. Then,

(i) (downward) for every cardinal |L| ≤ κ ≤ |M |, there is a stucture N ≺M ,
such that |N | = κ;

(ii) (upward) for every cardinal κ ≥ |M |, there is a structure N ≻ M , such
that |N | = κ.

We define now the notion of elementary embeddings, which will play a crucial
role in our study.

Definition 1.30. An elementary embedding of M into N , is a function f :
M → N such that:

(i) f is an isomorphism between M and f ′′M ;
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(ii) M ≺ N .

We will use the notation f :M ≺ N to express the fact that f is an elementary
embedding of M into N .

Elementary chains

Definition 1.31. Every sequence of structures {Mβ}β<α, such that for all
β1 < β2 < α, Mβ1

≺Mβ2
, is called an elementary chain.

For every elementary chain we may define its union M =
⋃

β<αMβ:

(i) M =
⋃

β<αMβ;

(ii) PM =
⋃

β<α P
Mβ ;

(iii) FM =
⋃

β<α F
Mβ ;

(iv) cM = cMβ for all β < α.

It is straightforward to check that M is well defined and that it is a structure.
What is also true is the following:

Theorem 1.32. (Elementary chain theorem) For every chain {Mβ}β<α and
every γ < α, Mγ ≺

⋃

β<αMβ.

Ultraproducts

A very useful method in constructing structures is the one using ultraproducts.
In order to understand it we must first define filters and ultrafilters. A filter on
a set S is a subset of P (S), which contains those subsets of S that are in some
sense “large” and can be considered to be nearly the same as S. The aspect of
what is large, depends on the nature of each specific filter.

Definition 1.33. Let S be a set and F ⊂ P (S). F is a filter on S if:

(i) ∅ /∈ F and S ∈ F ;

(ii) X,Y ∈ S → X ∩ Y ∈ S;

(iii) X ∈ S ∧X ⊂ Y ⊂ S → Y ∈ S.

Some examples of filters are the Fréchet filter on N, which contains the
subsets of N that have finite complements, and the filter on R, which contains
all the subsets of the reals having Lebesque measure 1. It is up to the reader
to establish why those two are filters and understand the meaning of “large” in
both cases.

Definition 1.34. A filter U on S is called an ultrafilter , if for every X ⊂ S
X ∈ U or S \X ∈ U .
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Our intention is to use the notion of ultrafilter to define some sort of product
of structures, the same way we construct products of groups or topological
spaces. Suppose {Mx : x ∈ S} is a family of structures and U an ultrafilter.
We define the equivalence relation =U on

∏

x∈SMx so that, f =U g ↔ {x ∈ S :
f(x) = g(x)} ∈ U . The ultraproduct of the structures Mx is then defined the
following way:

Definition 1.35. For every family of structures {Mx : x ∈ S} and every ultra-
filter U on S, M =

∏

U Mx is the structure with the following properties:

(i) M =
∏

x∈SMx/ =U ;

(ii) PM ([f1], . . . , [fn])↔ {x ∈ S : PMx(f1(x), . . . , fn(x)} ∈ U for every predi-
cate symbol P ;

(iii) FM ([f1], . . . , [fn]) = [f ] ↔ {x ∈ S : FMx(f1(x), . . . , fn(x)) = f(x)} ∈ U ,
for every function symbol F ;

(iv) cM = [f ], ∀x ∈ S f(x) = cMx , for all constant symbols c.

It is not difficult to check that the relation =U is an equivalence relation and
that M is indeed a structure, as those concepts depend solely on the properties
of ultrafilters. Again by applying those properties, we can get the following
theorem, which gives us a way of calculating �M from �Mx

, x ∈ S.

Theorem 1.36. (Loś) Let M =
∏

U Mx be as above. Then, for every formula
φ and [f1], . . . , [fn] ∈M ,

M � φ[[f1], . . . , [fn]]↔ {x ∈ S :Mx � φ[f1(x), . . . , fn(x)]} ∈ U.

If for every x ∈ S Mx = N , where N is a specific structure, we call the
ultraproduct

∏

U Mx an ultrapower and denote it by Ult(N,U). It is straight-
forward by the theorem above that N ≡ Ult(N,U), i.e. they satisfy the same
sentences. Moreover we can define the canonical embedding j : N → Ult(N,U),
j(x) = [cx], where cx is a constant function such that ∀y cx(y) = x. This -again
by theorem 1.36- is an elementary embedding.

Reflection principles

A reflection principle, in general, asserts that a certain property of the universe
V is absolute for V , M , where M is a model of ZFC. The property can be
expressed by a first order formula, a higher order formula, a type, or anything
else we could imagine. Most of the times the validity of reflection principles, for
some specific kind of properties, cannot be proved from ZFC, hence they could
be proposed as new axioms. This is the case of Πn

m-indiscernibles, which we will
study in the next chapter. For the time being, we state the following theorem,
that contains three similar reflection principles, provable from ZF or ZFC.

Theorem 1.37. For every formula φ and every set X:
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(i) There is an ordinal α, such that X ⊂ Vα and φ is absolute for V , Vα.

(ii) There is a structureM , such that X ⊂M , |M | ≤ |X |·ℵ0 and φ is absolute
for V , M .

(iii) There is a transitive structure M such that |M | ≤ ℵ0 and φ is absolute
for V , M .

Proof.

(i) We define a function for φ using Scott’s trick, which looks like a Skolem
function, and by repeatingly applying it to sets of von Newmann’s hierar-
chy we get Vα.

(ii) It’s the same as before, though we use Skolem’s functions this time, which
exist by AC.

(iii) We apply Mostowski’s collapsing lemma to (ii) and get the needed struc-
ture.

For more details, see [11] and [8].



Chapter 2

Some smaller large

cardinals

As we have seen, V can be approached by von Newmann’s cumulative hierarchy,
thus we could say that it is fully described by the class On and the powerset op-
eration1. This way, we can imagine that the size of On determines the “length”
of V and the size of P (for several x) determines its “width”. In this chapter
we are going to see some examples of large cardinals. Although there is not a
certain definition for this concept, we could say that large cardinals are cardi-
nals whose existence cannot be proved from ZFC and they extend the universe
V in length. Throughout the text, we will notice that the categories of large
cardinals we are going to introduce, appear in a sequence of increasing strength
(a large cardinal property a is stronger than b if ZFC + ∃κ a(κ) ⊢ ∃κ b(κ), e.g.
ZFC + ∃κ Mahlo(κ) ⊢ ∃κ inaccessible(κ)).

We begin by citing some aspects of cardinal arithmetic, necessary for the
definitions we are going to give and for some of the proofs. We define then inac-
cessible cardinals, which cannot be defined using the operations described in the
first chapter, thus in some way they cannot be approached by the means of ZFC.
We will see that their existence is connected to the existence of models of ZFC
inside V . By requiring the existence of more and more inaccessible cardinals, we
will come up with Mahlo cardinals which demand the existence of a stationary
set of inaccessible cardinals. From this point on, we will need new methods
for finding even stronger categories of large cardinals. The Πn

m-inaccessibility
will provide us with the weakly compact cardinals (Π1

1-inaccessible), along with
some useful characterizations or properties of other categories of large cardi-
nals. Weakly compact cardinals, owe their name to their connection with the

1Those two notions are not fully determined by ZFC, therefore V could vary in length and
width. Using forcing, we can show that the cardinality of P (X) may take various different
values greater or equal to |X|. Hence, we can not even count the increase in size the powerset
operation imposes. As for On, the more large cardinals we require to exist, the larger On

gets. The only difference here from the case of forcing, is that we can not prove in ZFC that
the existence of large cardinals is consistent with ZFC.

21
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property of weak compactness of an infinitary logic Lκ,ω, where κ is an infinite
cardinal. Finally we introduce Erdős and Ramsey cardinals, which are defined
using combinatorial partition properties.

We call the cardinals defined in this section (except from Ramsey cardinals)
“small”, since their existence is relatively consistent with the assumption V = L.
Hence, they are not strong enough to cause drastic changes to the structure of
V . In the contrary, the existence of Ramsey cardinals or of the large cardinals
introduced in the next chapters, will have V 6= L as a consequence. Even more,
if one of them exists, V will be much more complicated than L. For more on
this check chapter 4.

2.1 Cardinal arithmetic

This section contains some basic knowledge on cardinal arithmetic. All the
material covered here can be found in any introductive book on set theory.

+, ·,
∑

and
∏

+, ·,
∑

and
∏

are some of the functions defined on cardinals that will be used
many times in our study. Below we give their definitions, ways of calculating
them and some of their properties.

Definition 2.1.

(i) The sum of two cardinals κ and λ, κ+ λ, is defined by:

κ+ λ = |κ× {0} ∪ λ× {1}|.

(ii) The product of two cardinals κ and λ, κ · λ, is defined by:

κ · λ = |κ× λ|.

Theorem 2.2. The class On×On can be well-ordered by the following relation:

〈α1, α2〉 ⊳ 〈β1, β2〉 ↔max{α1, α2} < max{β1, β2}∨

∨[max{α1, α2} = max{β1, β2}∧

∧(α1 < α2 ∨ (α1 = α2 ∧ β1 < β2))].

Moreover, for every cardinal κ, 〈κ× κ, ⊳〉 =o κ.

Proof. ⊳ is a well-ordering of On×On. If A is a subclass of it, then the set

{α ∈ On : ∃ 〈α1, α2〉 ∈ On×On min{α1, α2} = α}

has a minimum element β. The minimum of the set

{〈α1, α2〉 ∈ On×On : min{α1, α2} = β}
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ordered by the lexicographical ordering, is a minimum for A.
The reduction of ⊳ to κ× κ is a well-ordering for κ× κ and κ ≤o 〈κ× κ, ⊳〉.

Thus we have to show that 〈κ× κ, ⊳〉 ≤o κ. If this is not true and κ is the least
cardinal with the property κ <o 〈κ× κ, ⊳〉 then

∃α, β ∈ κ κ =o seg⊳(α, β)

and if γ = max{α, β}

seg⊳(α, β) ≤o 〈γ × γ, ⊳〉 =o 〈γ,<〉 <o κ.

This means that κ < κ which is a contradiction.

Corollary 2.3. For all cardinals κ, λ and κ+ λ = κ · λ = max{κ, λ}.

Proof.
max{κ, λ} ≤ κ+ λ ≤ κ · λ

so we only need to prove that κ · λ ≤ max{κ, λ}, but this is true since
κ · λ ≤ max{κ, λ} ·max{κ, λ} ≤o max{κ, λ}.

The above corollary reveals that the computation of κ+λ and κ×λ is trivial.

Definition 2.4.

(i) The sum of the cardinals belonging to the set {κi : i ∈ I} is defined as:

∑

i∈I

κi = | ∪i∈I (κi × {i})|.

(ii) The product of the cardinals belonging to the set {κi : i ∈ I} is defined
as:

∏

i∈I

κi = |
∏

i∈I

κi|

(the second product is the set product and it is different from the first
one)

We have to note here that the definition of
∏

requires in most cases the
axiom of choice in order to be used. This is because every sequence {αi}i∈I ,
ai ∈ κi is a choice function on the collection of the cardinals κi. From now on
we will take AC as for granted and we will just keep in mind that it is essential
in most of the results that follow.

Some basic properties of
∑

and
∏

are stated below:

Lemma 2.5.

(i)
∑

α<λ κ = λ · κ;

(ii)
∏

α<λ κ = κλ;

(iii)
∑

i∈I κi =
∑

j∈J (
∑

i∈Aj
κi), where I is the disjoint union ∪j∈JAj.
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(iv)
∏

α<µ κ
λ
α = (

∏

α<µ κα)
λ);

(v)
∏

α<µ κ
λα = κ

∑
α<µ λα ;

(vi)
∏

i∈I κi =
∏

j∈J (
∏

i∈Aj
κi), where I is the disjoint union ∪j∈JAj .

The computation of
∑

i∈I κi is also quite trivial due to the following theorem:

Theorem 2.6. If ω < λ and ∀α < λ 0 < κα then

∑

α<λ

κα = λ · sup
α<λ

κα.

The computation of
∏

is not at all trivial, because it is related to the expo-
nentiation function. The next theorem reveals this connection.

Theorem 2.7. If λ is an infinite cardinal and 〈κα : α < λ〉 is nondecreasing
sequence of nonzero cardinals, then

∏

α<λ

κα = (sup
α<λ

κα)
λ

Since
∏

is related to exponentiation and
∑

to multiplication, which is much
weaker, it is natural to search for a result generalizing Cantor’s theorem ℵα <
2ℵα . König’s theorem is such a result.

Theorem 2.8. (König) Suppose that ∀α < µ κα < λα. Then

∑

α<µ

κα <
∏

α<µ

λα.

Cofinality

A useful notion in the study of cardinals is cofinality. The cofinality of a cardinal
is the smallest cardinal which can be used to approach it. Below we formally
define it and state some of its properties.

Definition 2.9. Suppose κ is a cardinal and α ≤ κ is an ordinal.

(i) A function f : α→ κ is cofinal , if sup(f ′′α) = κ.

(ii) The cofinality of κ, is the least ordinal α, such that there is a cofinal
function f : α→ κ. We denote it by cf(κ).

Another characterization of cofinality is the following:

Lemma 2.10. The cofinality of a cardinal κ is the least ordinal α, such that
there is a family of cardinals {κβ : β < α}, ∀β < α κβ < κ, having the property
∑

β<α κβ = κ.
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It is easy to check that the cofinality of a cardinal is a cardinal and that
cf(cf(κ)) = cf(κ).

The following lemma is useful in calculating the cofinality of a cardinal.

Lemma 2.11. Suppose that κ, λ are cardinals. If there is a nondecreasing
cofinal function f : κ→ λ, then cf(κ) = cf(λ).

As an example of the above, we see that cf(ℵ0) = ℵ0 since it must be infinite.
Thus, taking under consideration that f : ℵ0 → ℵω0

, f(n) = ℵn is increasing
and cofinal, cf(ℵω0

) = cf(ℵ0) = ℵ0.
We end our discussion on cofinality, by stating the following result which is

a corollary of König’s theorem.

Corollary 2.12. For all cardinals κ, λ:

(i) cf(κλ) > λ;

(ii) κcf(λ) > κ.

[A]λ, [A]<λ and SCH

We finally define the two following two notions and state the singular cardinal
hypothesis (SCH).

Definition 2.13.

(i) [A]κ = {X ⊂ A : |X | = κ}.

(ii) [A]<κ = {X ⊂ A : |X | < κ}.

Many times we denote [A]<κ by Pκ(A).

Lemma 2.14.

|A| ≥ λ→ |[A]κ| = |A|κ.

Definition 2.15. SGH : For every singular cardinal κ

2cf(κ) < κ→ κcf(κ) = κ+.

The SCH is a weaker version of GCH and by the following theorem it is
clear that it simplifies the calculation of the exponential function.

Theorem 2.16. Let SCH hold.

(i) If κ is singular, then

– 2κ = 2<κ, if 2<κ = 2λ, λ < κ;

– 2κ = (2<κ)+, else.

(ii) If κ, λ ≥ ω, then

– κλ = 2λ, if κ ≤ 2λ;
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– κλ = κ, if 2λ < κ and λ < cf(κ);

– κλ = κ+, if 2λ < κ and cf(κ) ≤ λ.

On the other hand, GCH provides us with a specific form of the exponential
function, hence we can compute it in this case.

Theorem 2.17. Let GCH hold. Then,

(i) κλ = λ+, if κ ≤ λ;

(ii) κλ = κ+, if cf(κ) ≤ λ < κ;

(iii) κλ = κ, if λ < cf(κ).

2.2 Inaccessible cardinals

Definition 2.18.

(i) A cardinal κ is called regular , if cf(κ) = κ.

(ii) A cardinal κ is strong limit , if for every λ < κ, 2λ < κ.

Definition 2.19. The cardinal κ is called inaccessible if it is strong limit and
regular.

By its definition, if there exists an inaccessible cardinal κ, then it ought to
be quite a big cardinal. One easy way to see this, is by noticing that iκ = κ
and that the smallest cardinal having this property is the union of the following
sequence:

α0 =i0

αn+1 =iαn

Inaccessible cardinals and models of ZFC

The main property that inaccessible cardinals satisfy, is that they define models
of ZFC in the cumulative hierarchy Vα.

Theorem 2.20. If κ is an inaccessible cardinal, then Vκ � ZFC.

Proof. Since κ is a cardinal, it is also a limit ordinal. We know from chapter 1
that in this case Vκ � ZC, thus we only need to show that Vκ � F .

Let us assume that x is an arbitrary set and that φ is a formula which defines
a function. Every element of FVκ′′

φ x belongs to Vα for some α < κ so

FVκ′′
φ x ⊂ Vβ

where β = sup{α : ∃y ∈ FVκ′′
φ x y ∈ Vα}.

κ is a strong limit cardinal thus we can show using transfinite induction that
|x| < κ for every x ∈ Vκ. As a result of that |FVκ′′

φ x| < κ and provided that κ

is regular, β < κ which means that FVκ′′
φ x ∈ Vκ.
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The inverse of this theorem is not true. This can be justified by consid-
ering the case where there exists at least one inaccessible cardinal. If κ is the
least inaccessible cardinal, then we can construct the following elementary chain
{An}n<ω of models:

A0 =Vω

An+1 =Vβ , β = inf{α < κ : H(An) ⊂ Vα}

where H(x) is the Skolem hull of x in the model Vκ. By induction, An ⊂ Vαn
,

αn < κ, so the sequence is well defined and additionally ∪n<ωAn = Vα, α < κ.
By the elementary chain theorem, Vα ≺ Vκ. This means that Vα � ZFC and α
is not inaccessible.

Despite of that, if we formulate the axioms of ZFC in second order logic, so
that the axiom of replacement becomes

∀F ∀x ∃y y = F ′′x

then the inverse of 2.20 is also true.

Theorem 2.21. The cardinal κ is inaccessible iff Vκ � ZFC2.

Proof.

→ This can be done as in the proof of theorem 1.4, since we only used there
the fact that FVκ

φ is a function.

← Suppose Vκ � ZFC2. κ is regular because if it was not, then there would
exist a cardinal λ < κ and an increasing function f : λ 7→ κ such that
∪f ′′λ = κ. But then, by second-order replacement

∪f ′′λ ∈ Vκ → κ ∈ Vκ

which is a contradiction.

κ is also strong limit because if not, then there would be a cardinal λ < κ
such that κ ≤ 2λ. This means that there is function f : P (λ) → κ onto
κ. We already know that P (λ) ∈ Vκ so, by second-order replacement,
κ = f ′′P (λ) ∈ Vκ which is again a contradiction.

This connection of inaccessible cardinals with the existence of models of
ZFC2 in the cumulative hierarchy, provides us with a way of understanding
those cardinals. Suppose that we have a universe V , where none of the sets
Vα are models of ZFC2. This is the smallest, in length, closure of the empty
set, under the operations described in 1.1 for ZFC2. If we rename V so that
V = Vκ (κ /∈ V ) and consider it to be a set, we can produce the smallest in
length closure V ′ of V ∪{V } under the operations described above. V ′ will be a
new universe where there will exist exactly one inaccessible cardinal. Thus the
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existence of inaccessible cardinals is a way to express the number of times we
have iterated this closure to the empty set.

An analogue of this situation is in the study of the models of Peano arith-
metic, where the standard model is the smallest one in length, but we can add
more elements, using Skolem functions, and produce nonstandard models which
are the one extension of the other. Of course, the difference here is that the
existence of those models is granted by ZFC but in the universe V the existence
of the closures is based just on intuition.

As it is expected, the existence of inaccessible cardinals is not provable in
ZFC. Even more, the relative consistency of their existence with ZFC can
not be proved in ZFC. We will denote by IC the statement that claims the
existence of an inaccessible cardinal.

Theorem 2.22.

(i) ZFC 6⊢ IC.

(ii) ZFC 6⊢ [cons(ZFC)→ cons(ZFC + IC)].

Proof.

(i) If the opposite was true, then

ZFC ⊢ IC →ZFC ⊢ ∃κ (Vκ � ZFC)→

→ZFC ⊢ cons(ZFC)

which is impossible according to Gödel’s second incompleteness theorem.

(ii) If ZFC is consistent, and we could prove that

cons(ZFC)→ cons(ZFC + IC)

then ZFC + IC would also be consistent. We would have

ZFC + IC ⊢ [cons(ZFC)→ cons(ZFC + IC)]

and since ZFC+IC ⊢ cons(ZFC) we would be able to prove that ZFC+
IC ⊢ cons(ZFC+IC) which is again a contradiction due to Gödel’s second
incompleteness theorem.

Inaccessible cardinals as Σ1
1-indescribables

Finally, another characterization of inaccessible cardinals is the following:

Theorem 2.23. κ is inaccessible iff it is Σ1
1-indescribable.

Before proving this theorem, we state a characterization of inaccessible car-
dinals by elementary embeddings.
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Lemma 2.24. κ is inaccessible iff for any R ⊂ Vκ there is an α such that

(Vα,∈, R ∩ Vα) ≺ (Vκ,∈, R).

Proof.

→ We define Skolem functions on the model (Vκ,∈, R) and form the following
elementary chain:

A0 =(Vω ,∈, R ∩ Vω)

An+1 =(Vβ ,∈, R ∩ Vβ), β = inf{α < κ : H(An) ⊂ Vα}.

Every An is a subset of Vκ, because κ is inaccessible and moreover the
union of the chain is Vα for some α < κ. By the elementary chain theorem
(Vα,∈, R ∩ Vα) ≺ (Vκ,∈, R).

← – κ is regular because in the opposite case there would exist an ordinal
β and an increasing function f : β 7→ κ onto κ. If R = {β} ∪ f ,
then Vα � ∃x ∈ R ordinal(x) which means that β ∈ Vα and this is a
contradiction because (f ∩ Vα)(β) = κ ∈ Vα.

– κ is also strong limit. On the contrary, there would exist a λ < κ
such that κ ≤ 2λ thus also a function f : P (λ) 7→ κ onto κ. If
R = {λ + 1} ∪ f , then again λ + 1 ∈ Vα → λ < α thus P (λ) ∈ Vα
which is a contradiction.

Proof. (theorem 2.23)
By lemma 2.24, if κ is inaccessible then it is Π1

0-indescribable. The inverse
is also true. In order to show this, one must go through the second part of the
proof of lemma 2.24 and notice that instead of the elementary submodel, we
could just use a submodel of (Vκ,∈, R) which satisfies a specific formula.

Thus we only need to show that Π1
0-indescribability is equivalent to Σ1

1-
indescribability:

• If a formula φ is Σ1
1 then it is also Π1

0 so the one direction is obvious.

• Suppose that κ is Π1
0-indescribable and let (Vκ,∈, R) � ∃X φ(X). Then

for some S ⊂ Vκ:

(Vκ,∈, R) � φ(S)→(Vκ,∈, 〈R,S〉) � φ(S)→

→∃α < κ (Vα,∈, 〈R ∩ Vα, S ∩ Vα〉) � φ(S)→

→∃α < κ (Vα,∈, R ∩ Vα) � ∃X φ(X)

thus κ is Σ1
1-indescribable.
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2.3 Mahlo cardinals

In the previous section we introduced inaccessible cardinals and described the
way they extend the universe of sets. Since we can extend the universe by
adding one inaccessible cardinal to it, we could do the same by adding another
one and repeat this procedure many times.

Up to this point, the universe has been extended only by the use of inac-
cessible cardinals. Thus, in order to get one step further, we have to introduce
a new kind of cardinals, such that the set of inaccessible cardinals below them
is unbounded. This means that if κ is one of those cardinals, it must be an in-
accessible which is a strong limit of inaccessible cardinals. Again, by repeating
the new procedure we can create new cardinals which are strong limits of the
ones of the previous kind. This way we get the following sequence of classes:

P0 ={κ : inaccessible(κ)}

Pα+1 ={κ : κ strong limit of Pα}

Pα = ∩β<α Pβ if limord(α)

The cardinals belonging to Pα are called α-inaccessible and πα is the least
element of Pα. Someone may notice that we have not defined a set where
the ordinal α belongs. This was done on purpose because while extending the
universe with new cardinals, new ordinals are being created thus we can further
extend this sequence. As before we may introduce a new kind of cardinals κ,
such that κ ∈ Pκ, and build inaccessible cardinals over them and go on this way.

In an attempt of finding an upper bound to this way of extending the uni-
verse, Mahlo cardinals were introduced. We will define those large cardinals
below, but before we do that we will give some information on the closed un-
bounded (club) filter and on stationary sets.

Definition 2.25. Let κ be a regular uncountable cardinal and X ⊂ κ.

(i) X is unbounded in κ, if sup(X) = κ.

(ii) X is closed, if for every increasing sequence {xβ}β<α of elements of X ,
⋃

β<α xβ ∈ X .

It is not hard to prove that for any given regular uncountable cardinal, the
closed and unbounded subsets of κ form a κ-complete2 filter on κ which is closed
under diagonal intersections3. This filter is called the closed undounded (club)
filter on κ. Let F be the club filter on κ. Since it is not an ultrafilter, F divides
P (κ) into three categories; the subsets of κ that belong to F (big sets), their

2Closed under α-intersections, α < κ.
3The diagonal intersection of a family of sets of ordinals {Xβ}β<α is defined as follows:

△β<αXβ = {γ < α : γ ∈
⋂

β<γ

Xβ}
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complements which belong to I (small sets), and the rest of P (κ) (sets which are
not small or big). The latter, together with the sets of F , are called stationary.
We formally define them in the following way:

Definition 2.26. Let κ be as in 2.25. A set S is a stationary subset of κ, if for
every X belonging to the club filter of κ, S ∩X 6= ∅.

There are two important theorems on stationary sets which should be stated,
in order to present the richness of their structure.

Definition 2.27. A function f : X →
⋃

X , where X is a set of ordinals, is
regressive if for every α ∈ X f(α) < α.

Theorem 2.28. (Fodor) Suppose f is a regressive function on a stationary
subset S of κ. Then, there is a stationary set T ⊂ S, such that f is constant on
T .

Theorem 2.29. (Solovay) Every stationary subset of κ, is equal to the union
of κ disjoint stationary subsets of κ.

Definition 2.30. κ is a Mahlo cardinal if the set {λ < κ : inaccessible(λ)} is
stationary in κ.

This is a quite reasonable definition for this notion. One could require that
the set of inaccessible cardinals in κ is club, in order to ensure that they are
unbounded in κ and on the same time, that if we consider one of the sequences
mentioned before, its limit is inside κ. Unfortunately, this way we would have
inaccessible cardinals with cofinality ℵ0, which is a contradiction, so instead we
require that the set of inaccessible cardinals in κ intersects all the club sets of
κ. This way the notion of stationary sets is introduced and it is sufficient to
ensure the preceding facts. As an example we prove the following:

Theorem 2.31. If κ is a Mahlo cardinal, then κ is κ-inaccessible.

Proof. Let S be the set κ∩P0 and Cα the sets defined by transfinite recursion:

C0 =κ

Cα+1 =limitpoints(Cα ∩ S) \ {κ}

Cα = ∩β<α Cα

κ is a club set. If Cα is club then Cα+1 ∩ S is stationary so the set of its limit
points is club. If α < κ then, since the club filter is κ-complete, ∩β<αCα is also
club. By transfinite induction,

• C0 ∩ S = κ ∩ P0

• Cα+1 ∩ S = limitpoints(κ ∩ Pα \ {κ}) ∩ S = κ ∩ Pα+1

• Cα ∩ S = ∩β<αPβ ∩ S = ∩β<αPβ ∩ κ = κ ∩ Pα
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Just as with inaccessible cardinals, we can express the existence of a Mahlo
cardinal using elementary embeddings.

Theorem 2.32. κ is Mahlo iff for every R ⊂ Vκ there is an inaccessible λ < κ
such that (Vλ,∈, R ∩ Vλ) ≺ (Vκ,∈, R).

Proof. If not, there would be a C belonging to the club filter of κ, containing
no inaccessible cardinals. By setting R = C, we get that (C ∩ λ) ∩ R = C ∩ λ
is unbounded thus λ ∈ C which is not true.

Another important fact is that the existence of a Mahlo cardinal is not
implied by the existence of an inaccessible cardinal.

Theorem 2.33.

(i) ZFC + IC 6⊢ ∃κ Mahlo(κ)

(ii) If there exist Mahlo cardinals, then the least of them is greater than the
least inaccessible cardinal.

(iii) Every Mahlo cardinal is inaccessible.

Proof. (i) Let κ be the least Mahlo cardinal. Vκ is a model of ZFC + IC
where no Mahlo cardinals exist.

(ii)-(iii) They are straightforward from the definition of Mahlo cardinals.

We could even further iterate the methods used before and create bigger
cardinals but unfortunately we can not create all the known large cardinals this
way. We will give a last example of this method by introducing the sequence of
κ-Mahlo cardinals:

R0 ={κ : inaccessible(κ)}

Rα+1 ={κ : {λ < κ : λ is Mahlo} is stationary in R}

Rα ={κ : ∀β < α κ ∈ Rβ if limord(α)}

We denote the least element of Rα by ρα.
Finally, we note that by dropping the request that the inaccessible or Mahlo

cardinals are strong limits, we get their weak forms, i.e.

Definition 2.34.

(i) A cardinal is called weakly inaccessible if it is limit and regular.

(ii) A cardinal is called weakly Mahlo if the set of weakly inaccessible cardinals
below it is stationary.
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2.4 Weakly compact, Erdős and Ramsey cardi-

nals

In this section we are going to give a brief introduction to weakly compact,
Erdős cardinals and Ramsey cardinals. Their common feature, is that they can
be defined using the same kind of partition properties. We define below this
kind of properties and provide some results describing some cases where they
are true or they are not true.

Definition 2.35.

(i) A partition of a set X into λ pieces is a function f : X → λ.4 If f is a
partition of [κ]n into m pieces, then a set Y ⊂ κ is called homogeneous if
f is constant on Y .

(ii) κ→ (α)nλ is true, if every partition of [κ]n into λ pieces has a homogeneous
set of order type α.

(iii) κ→ (α)<ω
λ is true if every partition of [κ]<ω into λ pieces has a homoge-

neous set of order type α.

In every notation above, we drop the subscript λ whenever it is equal to 2.

Theorem 2.36. (Ramsey) For all integers m,n, ℵ0 → (ℵ0)nm.

Lemma 2.37. For all cardinals κ:

(i) 2κ 6→ (ℵ0)
2
κ;

(ii) 2κ 6→ (κ+)2.

Theorem 2.38. (Erdős-Rado)

i
+
n → (ℵ1)

n+1
ω .

Weakly compact cardinals

Definition 2.39. A cardinal, κ, is called weakly compact if it satisfies the
weak compactness theorem in the language Lκ,κ5. Specifically, for every set of
sentences Σ such that |Σ| ≤ κ, if every S ⊂ Σ, |S| < κ has a model, then Σ has
a model.

We are going to give three equivalent definitions of weakly compact cardinals.
The proof of their equivalence can be found in [8] and [10].

Theorem 2.40. The following are equivalent:

(i) κ is weakly compact.

4This is equivalent with the usual definition of a partition, since f divides X to the λ parts
f−1(0), f−1(1), . . ..

5For a definition and more information on infinitary languages see [8] or [1].
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(ii) ω < κ and κ→ (κ)2.

(iii) κ is Π1
1-indescribable.

(iv) For every R ⊂ Vκ there is an transitive set X 6= Vκ and an S ⊂ X such
that
(Vκ,∈, R) ≺ (X,∈, S).

Weakly compact cardinals are stronger than Mahlo cardinals in the following
sense:

Theorem 2.41. The set of Mahlo cardinals below a weakly compact cardinal κ
is stationary thus:

(i) ZFC + ∃κ Mahlo(κ) 6⊢ ∃λ w.compact(λ)

(ii) If there exist weakly compact cardinals, the least of them is greater than
the least Mahlo cardinal.

(iii) Every weakly compact cardinal is Mahlo.

Proof. κ is Π1
1 thus Π1

0, which means that it is inaccessible. If C is in the club
filter of κ, then (Vκ,∈, C) satisfies the sentence

ZFC2 ∧ unbounded(C).

By the hypothesis, there is an α < κ satisfying the same sentence for C ∩ Vα.
Since Vα � ZFC, α is inaccessible and additionally C is unbounded in α, so
C ∩ α 6= ∅. Thus, κ is Mahlo. Using the same argument and the sentence

∀X(closed(X) ∧ unbounded(X)→ ∃λ ∈ X inaccessible(λ))

we can prove that the set of Mahlo cardinals below κ is stationary.
(i),(ii) and (iii), are immediate consequences of the above result (also see

theorem 2.33).

Erdős cardinals

Definition 2.42.

(i) Hα = {κ : κ→ (α)<ω};

(ii) The Erdős cardinal ηα, α ∈ On, is the least cardinal in Hα.

There is an interesting connection between Erdős cardinals and the axiom
of constructability. In particular, the existence of ηω is consistent with V = L
though ηω1

is not. We shall see in the next chapter that this is related with the
elementary embeddings of L.

Below we state, without proof, some properties of Erdős cardinals. For the
proof see [8] or [10].



2.4. WEAKLY COMPACT, ERDŐS AND RAMSEY CARDINALS 35

Theorem 2.43.

(i) ηα → (α)<ω
β for every β < ηα

(ii) ηα < ηβ for all α < β in On

The next theorem settles the relation between weakly compact and Erdős
cardinals.

Theorem 2.44.

(i) If ηω exists, then there is a weakly compact cardinal below ηω.

(ii) ZFC + ∃κ w.compact(κ) 6⊢ ∃λ Erdős(λ)

(iii) Every Erdős cardinal is weakly compact.

We left for the end the following result which implies that ηω is consistent
with V = L.

Theorem 2.45. κ ∈ Hω → L � κ ∈ Hω for all cardinals κ. In particular,

∃κ κ = ηω → L � ∃κ κ = ηω.

On the other hand Hω1
6= ∅ → V 6= L, thus the point where the universe no

longer has chance of being constructible, is between ηω and ηω1
.

Ramsey cardinals

Ramsey cardinals can be viewed as a result of diagonalizing the sequence of
Erdős cardinals. Specifically,

Definition 2.46. A cardinal κ is called a Ramsey cardinal if κ→ (κ)<ω .

The existence of a Ramsey cardinal κ, implies the existence of κ Erdős
cardinals below κ. Hence, Ramsey cardinals are stronger than Erdős. Ramsey
cardinals are the strongest ones we have encountered up to now. In order to
get further up we need a new notion capable of producing even stronger large
cardinals. The notion we are going to use is that of elementary embeddings
of the form V → M . In the next chapter we will use it to define measurable
cardinals, and in the last two chapters we will extend it as far as possible and
try to reach its limitations.
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Chapter 3

Measurable cardinals and

elementary embeddings of

V

3.1 Aspects of measurability

This section serves as a brief reference to the foundations of the theory of mea-
surability, introduced by Lebesque. Lebesque’s attempt to define a translation-
invariant measure on R was unsuccessful and later work, by Vitali, showed that
such a measure can not exist (provided that AC holds). A generalization of
the notion of measure, by Banach, raised new possibilities for the existence of
such a measure, which is not restricted by translation-invariance. Finally, Ulam
realized that there are essentially two types of measures: the ones taking val-
ues on a dense subset of [0, 1], called atomless, and the ones whose valuation is
restricted on {0, 1}, called two-valued. The existence of measurable cardinals is
equivalent to the existence of two-valued measures.

The measure problem

A measure, on a set S, as it was defined by Banach, is a function m : P (S) →
[0, 1] having the following properties:

(i) m(S) = 1;

(ii) m({x}) = 0, forall x ∈ S (nontriviality);

(iii) m(
⋃

nXn) =
∑

nm(Xn), ∀n ∈ ω Xn ⊂ S and ∀i, j ∈ ω Xi ∩Xj = ∅.

Such a measure is called σ-additive, because of property (iii). If the same
property holds for all subsets of P (S) with cardinality less than κ, then the
corresponding measure is called κ-additive.

37
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We are now going to give some definitions. They are going to assist us in
separating the σ-additive measures into two categories.

Definition 3.1.

(i) A measure m is called two valued if m′′S = {0, 1}.

(ii) A set A ⊂ S is called an atom if m(A) > 0 and ∀B ⊂ A (m(B) =
0 ∨m(B) = m(A)).

(iii) A measure is called atomless if it has no atoms.

A simple but useful lemma in measure theory is the following:

Lemma 3.2. Let S be a set and m a σ-additive measure on it. Every set of
pairwise disjoint sets {Xα : α < γ} ⊂ P (S), such that m(Xα) > 0 for every
α < γ, is countable.

Proof. If not, there would be an n such that the set A = {Xα : α < γ ∧ 1
n
<

m(Xα)} is uncountable. By σ-additivity, the union of more than n elements of
A has measure more than 1 which is a contradiction.

Lemma 3.3. If there exists a measure m on S, then S can be partitioned into,
at most, a set B and ω sets An, n < ω with the following properties:

(i) the measure mB : P (B)→ [0, 1], mB(X) = m(X)
m(B) is atomless;

(ii) the measures mAn
: P (An)→ [0, 1],mAn

(X) = m(X)
m(An)

are two-valued.

Proof. We define, by transfinite induction and DC, the sequence Cα ⊂ S, α <
ω1,

Cα = an atom on the set Bα = S \
⋃

α<ω1

Cα with measure mBα
;

or ∅ if there exists none .

By lemma 3.2, only countable sets of the sequence Cαn
= An, n < ω are

nonempty thus B = S \
⋃

n<ω An contains no atoms of S as subsets. It is
straightforward that the preceding sets have the required properties.

The above lemma suggests that we only have to deal with atomless and two-
valued measures. We will restrict ourselves on measures defined on a cardinal
κ and investigate both cases. In order to do this though, our measure must be
κ-additive on κ. This is guaranteed by the following lemma which states that if
there exists a σ-additive measure on a cardinal κ, then there exists a cardinal
λ having a λ-additive measure.

Lemma 3.4. The least cardinal ω < κ having a σ-additive measure, is such
that every measure on κ is κ-additive.
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Proof. Suppose m is a measure on κ which is not κ additive and {Xα : α < γ <
κ} is a set of pairwise disjoint subsets of S with the property m(

⋃

α<γ Xα) 6=
∑

α<γ m(Xα). Since m is σ-additive, we can remove the -at most countable by
3.2- sets with positive measure and get a set {Yα : α < γ} where m(Yα) = 0
and 0 < m(

⋃

α<γ Yα) = s. The measure

m∗ : P (γ)→ [0, 1], m∗(X) =
m(

⋃

α∈X Yα)

s

is σ-additive on γ < κ which implies that κ cannot be the smallest carrying
having a measure.

Thus being interested, for our purpose, only in the existence of a measure
and not in the size of the set which has this measure, we will restrict our study
to the following type of measures:

Definition 3.5. A cardinal ω < κ will be called real-valued measurable if there
exists a κ-additive measure on κ.

We are going to show that real valued cardinals are weakly inaccessible. This
will be carried out by the use Ulam’s matrices.

Definition 3.6. An Ulam (λ, µ) matrix is a collection {Aα,ξ : α < λ, ξ < µ}
of subsets of λ, with the properties:

(i) α 6= β → ∀ξ < µ Aα,ξ ∩ Aβ,ξ = ∅;

(ii) ∀α < λ |λ \
⋃

ξ<µAα,ξ| ≤ µ.

Theorem 3.7. (Ulam) An Ulam (λ+, λ) matrix exists.

Proof. Since λ+ is the successor cardinal of λ, there is a family of functions
fα : λ → λ+, α < λ+ such that α ⊂ rang(fα). We let Aα,ξ = {γ : fγ(ξ) = α},
hence

• Aα,ξ ∩ Aβ,ξ = {γ : α = fγ(ξ) = β} = ∅ if α 6= β;

• |λ+ \
⋃

ξ<µAα,ξ| = |{β : α /∈ rng(fβ)}| < λ+.

Thus, the set containing Aα,ξ, α < λ, ξ < µ is a (λ+, λ) Ulam matrix.

Corollary 3.8. Every real-valued measurable cardinal κ is weakly inaccessible.

Proof. Suppose m is a κ-additive measure on κ. First of all, we should notice
that if X ⊂ κ ∧ |X | < κ, then

m(X) = m(
⋃

{{x} : x ∈ X}) =
∑

x∈X

m({x}) = 0.

If κ is not regular then κ =
∑

α<µ λα, µ, λα < κ thus |κ| =
∑

α<µ |λα| = 0
which is a contradiction.
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Suppose that κ = λ+. Let us consider an Ulam (λ+, λ) matrix, just as the
one in the above theorem. By (ii) of theorem 3.7, for every α < λ there is
some ξα such that m(Aα,ξα) > 0. Since λ < λ+ there is a ξ for which there are
λ+ pairwise disjoint sets Aα,ξ of the matrix, such that |Aα,ξ| > 0, which is a
contradiction by lemma 3.2. Hence, κ must be a limit cardinal.

Atomic measures

In order to deal with the case where an atomless measure exists, we quote a
lemma concerning partition properties of atomless measures and afterwards a
theorem, which clarifies this case.

Lemma 3.9. Let m be an atomless κ-additive measure over κ. Then:

(i) For any ǫ ∈ [0, 1] and X ⊂ κ, 0 < m(X) there is a Y ⊂ X such that
0 < m(Y ) < ǫ.

(ii) Every set X ⊂ κ can be partitioned into two sets A,B satisfying m(A) =
m(B) = 1

2m(X).

Proof.

(i) Since m is atomless, X can be divided into two sets A,B satisfying 0 <
m(A) < m(X), 0 < m(B) < m(X). A and B are disjoint, thus one of them
has measure at most 1

2m(X). By repeating this procedure recursively, for
sets such that 0 < m(Xi+1) ≤

1
2m(Xi), more than log2

1
ǫ
times, we get a

set having the required properties.

(ii) We define a sequence Xα, α < ω1 as follows:

– X0 = X ;

– 1
2m(X) < m(Xα+1) ≤ m(Xα), Xα+1 ⊂ Xα;

– Xα =
⋂

β<αXβ if limord(α).

It is easy to see by induction that every Xα has measure greater or equal
to 1

2m(X). If those measures were all greater than 1
2m(X), then the set

{Xα \ Xα+1 : α < ω1} would be an uncountable collection of sets of
nonzero measure, which contradicts lemma 3.2.

Theorem 3.10. (Ulam) If there exists an atomless κ-additive measure m over
κ, then:

(i) κ ≤ 2ℵ0 ;

(ii) there is a measure µ over R extending Lebesque’s measure
(for a definition and more information on measure theory see [16]).

Proof.
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(i) The idea behind this proof is that the partition property of lemma 3.9 (ii)
leads to the construction of a partition of κ into 2ℵ0 sets of measure 0,
which means that m is not (2ℵ0)+-additive, thus κ ≤ 2ℵ0 .

The sets Xs ⊂ κ, s ∈ ω<ω are the ones who generate this partition. We
define

– X∅ = κ;

– Xs =
⋃

n<ωXs⌢〈n〉, m(Xs⌢〈n〉) =
1

2i+1m(Xs);
(partition property (ii) applied ω times)

where the sets Xs⌢〈n〉, n < ω are pairwise disjoint. Finally, we define
Xf =

⋂

n<ωXf↾n, f ∈ ωω and it is straightforward that m(Xf ) = 0,
because for every n < ω m(Xf ) <

1
2n .

(ii) We first define the measure m∗ on A = {Xf : f ∈ ωω} with the prop-
erty m∗(Y ) = m(

⋃

Y ) for every Y ⊂ A. The transformation F : A →
[k, k + 1], k ∈ Z, where F (Xf ) = k +

∑

n<ωm(Xf↾n), is one to one,
onto [k, k + 1] and thus [k, k + 1] inherits, in a natural way, a measure
µ[k,k+1]. Those measures, for different k ∈ Z, generate the measure µ,
µ(X) =

∑

k∈Z m(X ∩ [k, k+1]), X ⊂ R. µ can be easily checked to be an
extension of Lebesque’s measure.

If we consider that κ, in the above theorem is weakly inaccessible, we come
to the conclusion that the existence of an atomless measure results to the failure
of the CH . Even more, the following holds:

Theorem 3.11. (Banach-Kuratowski) CH → there is no measure on 2ℵ0 .

Proof. See [8].

Two valued measures

We now turn to the case of two-valued measures.

Lemma 3.12. A two-valued κ-additive measure m on a set S defines a κ-
complete nonprincipal ultrafilter U such that:

U = {X ⊂ S : m(X) = 1}.

Conversely, a κ-complete nonprincipal ultrafilter U on S defines a two-valued
κ-additive measure m on S such that:

m(X) =

{

0 X /∈ U
1 X ∈ U

Proof. It is straightforward from the corresponding definitions.
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If the measure is also real valued on κ, it defines a κ-complete nonprincipal
ultrafilter on κ. This way the notion of measurable cardinals, which plays an
important role on the theory of large cardinals, turns up.

Definition 3.13. A cardinal ω < κ, is called measurable if there exists a κ-
complete nonprincipal ultrafilter on κ.

Lemma 3.14. Every measurable cardinal κ is inaccessible.

Proof. κ is also real-valued measurable thus it is regular. Let λ < κ and κ ≤ 2λ.
Let f : κ → 2λ be a 1-1 function and U a nonprincipal κ-complete ultrafilter
on κ. Then, there is a sequence of sets Xα and dα ∈ {0, 1}, α < λ such that
Xα = {ξ < κ : f(ξ)(α) = dα} ∈ U . The cut of those sets belongs to U since
it is κ-complete but it has one member which opposes to the nonprincipality of
the ultrafilter. Hence, κ is strong limit.

Combining the results we have mentioned up to now in this section we get
the following theorem:

Theorem 3.15. Suppose there is a σ-additive measure on S. Then, the follow-
ing are true:

(i) If there exists a set, such that A mA is two-valued, in the partition de-
scribed in lemma 3.3, then there exists a measurable cardinal.

(ii) If there exists a set B, such that mB is atomless, in the partition mentioned
above, then there is a real-valued atomless measure on a weakly inaccessible
cardinal κ ≤ 2ℵ0 .

Remark 3.16. We have to notice here that the existence of a real-valued atom-
less measure is not only inconsistent with the CH but it also implies that the
gap between ℵ1 and 2ℵ0 is wide. On the other hand, the existence of a mea-
surable cardinal does not seem to effect CH , as it is inaccessible thus greater
than 2ℵ0 . In fact, using mild forcing extensions, one can prove that assuming
the existence of a measurable cardinal the GCH can either be true or false (see
[9] or [8]).

3.2 Elementary embeddings of V

The elementary embeddings of V are tightly related to measurable cardinals. In
particular, the existence of a nontrivial elementary embedding1 is equivalent to
the existence of a measurable cardinal. In this section we are going to prove this
result, perform a quick investigation on elementary embeddings and see some
of the consequences of their existence. One of those will be the fact that V 6= L
if a measurable cardinal exists. This is an important result due to Scott.

1Different from the identity function.
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Elementary embeddings and ultrapowers of inner models

We have defined elementary embeddings and ultrapowers for models which are
sets, but here we have to deal with inner models which are classes. The easiest
way to redefine those notions, would be by working on a higher order set theory
such as Morse-Kelley, but it can still be done in ZFC and thus maintain the
simplicity of first order logic. From now on we will work on the extended
language L = {∈, j}, where j is a function symbol. We will also add new
axioms which state that j is an elementary embedding and that the axiom of
replacement holds in the extended language.

Lemma 3.17. Let M,N be inner models such that M ≺ N , then:

(i) ordinal(α)→ ordinal(j(α)) ∧ α ≤ j(α);

(ii) if j is nontrivial and N ⊂M , then ∃δ ∈ On δ < j(δ).

Proof.

(i) The term ordinal(x) is preserved by j, thus ordinal(j(α)). By induction,

– j(0) = 0;

– α ≤ j(α)→ j(α+ 1) = j(α) + 1 ≥ α+ 1;

– if ∀β < α β ≤ j(β) then ∀β < α j(α) ≥ j(β) ≥ β → j(α) ≥ α;

hence for all ordinals α, α ≤ j(α).

(ii) Suppose x is a set of least rank such that j(x) 6= x and rank(x) = α.
Suppose j(α) = α ,then

rank(x) = α = j(α) = j(rank(x)) = rank(j(x)).

We also have that y ∈ x → y = j(y) ∈ j(x), thus x ⊂ j(x) but
rank(j(x)) = rank(x) and N ⊂ M , so y ∈ j(x) → y = j(y) → y ∈ x
which means that x = j(x), contradiction. Hence α < j(α).

Definition 3.18. The least ordinal α such that α < j(α) will be called the
critical point of j.

We will now focus our interest in generalizing the technique of ultrapowers
to classes, and specifically to V . The difficulty here is in defining the classes of
functions so that they are sets.

Definition 3.19. Let U be an ultrafilter on S, M an inner model and f, g, h :
S →M , then:

(i) f =U g ↔ {x ∈ S : f(x) = g(x)} ∈ U ;

(ii) f ∈U g → {x ∈ S : f(x) ∈ g(x)} ∈ U ;

(iii) [f ] = {g : f =U g ∧ ∀h (h =U f → rank(g) ≤ rank(h))};

(iv) Ult(M,U) = ({[f ] : f : S →M},∈U ).2

2We use the same symbol for inclusion in classes, i.e. [f ] ∈U [g] ↔ f ∈U g.
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The following theorems also hold for classes and they are proved the same
way as for sets.

Theorem 3.20.

(i) For any fomula φ and functions f1, . . . , fn : S →M ,

Ult(M,U) � φ[[f1], . . . , [fn]]↔ {x ∈ S : φ[f1(x), . . . , fn(x)]} ∈ U

(Thus Ult(M,U) � ZFC).

(ii) j : M → Ult(M,U), j(x) = [cx], where cx : S → M is the identity
function, is elementary. We call this embedding the canonical embedding.

Elementary embeddings of V

Now that we have generalized the notion of elementary embeddings and ultra-
powers, we shall introduce our first example of a nontrivial elementary embed-
ding j : V ≺ Ult(V, U) and study its properties. Before we do this though, we
must make sure that Ult(V, U) is an inner model, or at least that it is isomorphic
to one. This will be carried out through the following lemma.

Lemma 3.21.

(i) The model Ult(V, U) is extensional.

(ii) For every [f ] ∈ Ult(V, U), ext∈U
([f ]) is a set.

(iii) If U is σ-complete, then Ult(V, U) is also well-founded.

Proof.

(i) Ult(V, U) � ZFC thus Ult(V, U) �“extensionality axiom”.

(ii) Let [g] ∈U [f ]. By setting

h(x) =

{

g(x) g(x) ∈ f(x)
∅ else

we get a function h such that h =U g, and rank(h) ≤ rank(f). Hence
ext∈U

([f ]) ∈ Vrank(f)+1, which means that it is a set.

(iii) Suppose U is σ-complete and Ult(V, U) is not well-founded. In this case
there is an ω-sequence {[fn]}n<ω such that ∀n < ω [fn+1] ∈U [fn]. Hence
the sets Xn = {x ∈ S : fn+1(x) ∈ fn(x)} are all members of U , and by
σ-completeness

⋂

n<ωXn ∈ U →
⋂

n<ωXn 6= ∅. If x ∈
⋂

n<ωXn, then
there exists an infinite decreasing sequence f0(x) ∋ f1(x) ∋ . . ., which is
a contradiction, thus Ult(V, U) is well-founded.
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The above lemma combined with Mostowski’s collapsing lemma produces an
inner model MU , isomorphic to Ult(V, U). For our convenience, we will denote
the elements of MU by their isomorphic images in Ult(V, U).

Theorem 3.22. Suppose there is a measurable cardinal κ and U is a nonpriciple
κ-complete ultrafilter on κ. Then the canonical embedding j : V ≺ MU is a
nontrivial elementary embedding.

Proof. By theorem 3.20 we know j is elementary so we only need to show that
it is nontrivial. We will first show that ∀α < κ j(α) = α and then, using this,
we will prove that κ < j(κ).

• j(0) = 0 and ∀α ∈ On j(α + 1) = j(α) + 1 by the absoluteness of the
corresponding terms. Suppose that α < κ ∧ limord(α) and for every
ordinal β less than α, j(β) = β. If [f ] < j(α) = [cα] then for almost all
x ∈ κ f(x) < α and since α < κ, by the κ-completeness of U , there is a
β < α such that f =U cβ . Hence j(α) ≤ α so by lemma 3.17 j(α) = α.

• Let id : κ → V, id(α) = α. Since U is κ-complete |S \ x| < κ → x ∈ U ,
thus α = j(α) = [cα] < [id], α < κ which means that κ ≤ [id]. On the
other hand, [id] < [cκ] = j(κ), hence κ < j(κ).

We will now prove the inverse:

Theorem 3.23. (Keisler) If there is a nontrivial elementary embedding j : V ≺
M , then its critical point is a measurable cardinal.

Proof. Suppose κ is the critical point of j. κ is greater than ω so we only
have to check that there is a κ-complete nontrivial ultrafilter U on κ. Let
U = {X ⊂ κ : κ ∈ j(X)}, then:

• j(∅) = 0 6∋ κ, κ ∈ j(κ), j(X ∩ Y ) = j(X) ∩ j(Y ), X ⊂ Y → j(X) ⊂ j(Y )
and j(κ \X) = j(κ) \X by elementarity of j, therefore it is clear that U
is an ultrafilter.

• If α < κ, then j({α}) = {j(α)} = {α}, hence κ /∈ j(α) which means that
U is nonprincipal.

• Let α < κ and S = {Xβ}β<α be a sequence of subsets of κ such that for
every β, κ ∈ j(Xβ). j(S) will also be a sequence, of length j(α) = α,
having the property j(S)(β) = j(Xβ), β < α. Hence

j(
⋂

S′′α) =
⋂

j(S)′′α =
⋂

β<α

j(Xβ)

which means that κ ∈ j(
⋂

S′′α), so U is κ-complete.
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Corollary 3.24. The existence of a nontrivial elementary embedding j : V ≺M
is equivalent to the existence of a measurable cardinal.

Proof. It has been carried out by the two preceding theorems. The only differ-
ence here is that, since we want to talk about the existence of an embedding j,
we must work in the extended language L∗ = {∈, j} or think of this result as a
metatheorem.

Corollary 3.25. (Scott) If there exists a measurable cardinal then V 6= L.

Proof. Suppose κ is the least measurable cardinal, U a κ-complete nonprincipal
ultrafilter over κ and j : V ≺ MU the elementary embedding described above.
If V = L then, since L is contained in every inner model, MU = L = V . j
is elementary so V = MU �“j(κ) is the least measurable cardinal” which is a
contradiction because κ < j(κ).

The last result, due to Scott, yields that the existence of large cardinals can
drastically change the structure of V . It was also the first result which intro-
duced a connection between elementary embeddings of V and large cardinals.
We will now give some more information on the elementary embeddings of the
form j : V ≺MU .

Lemma 3.26. If U is a nonprincipal κ-complete ultrafilter on κ and j : V ≺MU

is the canonical elementary embedding, then:

(i) – ∀x ∈ Vκ j(x) = x so VMU
κ = Vκ;

– ∀X ⊂ Vκ j(X) ∩ Vκ = X, thus VMU

κ+1 = Vκ+1 and (κ+)MU = κ+.

(ii) 2κ ≤ (2κ)MU < j(κ) < (2κ)+.

(iii) For every limit ordinal α:

– cf(α) = κ→ limβ→α j(β) < j(α);

– cf(α) 6= κ→ limβ→α j(β) = j(α).

(iv) If λ is a strong limit cardinal then cfλ 6= κ→ j(λ) = λ.

(v) – Mκ
U ⊂MU (MU is closed for κ-sequences);

– Mκ+1
U 6⊂MU (MU is not closed for κ+ 1-sequences).

(vi) U /∈MU .

Proof.

(i) – Suppose x ∈ Vκ then, since κ is limit, rank(x) < κ. If j(x) 6= x then
we would have j(rank(x)) 6= rank(x), just as in lemma 3.17, which
is a contradiction.

Vα is ΠZF
1 thus (Vκ)

MU = Vκ ∩ MU , so from what we mentioned
before (Vκ)

MU = Vκ.
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– If X ⊂ Vκ then x ∈ X → x = j(x) ∈ j(X) thus X ⊂ j(X) ∩ Vκ. On
the other hand, j(x) = x ∈ j(X)∩Vκ → x ∈ X , hence j(X)∩Vκ = X .

Again (Vκ+1)
MU = Vκ+1 ∩ MU and for all X ⊂ Vκ X = j(X) ∩

(Vκ)
MU → X ∈MU thus (Vκ+1)

MU = Vκ+1.

The term w.o.(x) = {<:< well-orders x} is ΠZF
1 so (w.o.(κ))MU =

w.o.(κ) ∩MU , but w.o.(κ) ⊂ Vκ+1 ∈ MU → (w.o.(κ))MU = w.o.(κ).
This means that κ+ is ΣMU

1 , hence κ+ ≤ (κ+)MU . In order to show
that κ+ = (κ+)MU we must find an, absolute for MU , function f ,
in MU , which shows that w.o.(κ) and κ+ have the same cardinality.
We define by transfinite recursion F (α, x,<) =“the α-th element of
〈x,<〉 or else ∅”, and then G(<) = min{α < κ+ : F (α, κ,<) = ∅}.
f = G′′(w.o.(κ)).

(ii) 2κ = |P (κ)| and, since P (κ)MU = P (κ) (it follows from the fact that
(Vκ+1)

MU = Vκ+1) and |x| is ΠZF
1 , 2κ = (2κ)MU .

κ < j(κ) and j(κ) is measurable, therefore inaccessible in MU , so

(∀α 2α < j(κ))MU → (2κ)MU < j(κ).

|j(κ)| = |[cκ]| = κ · [κ]κ = 2κ < (2κ)+.

(iii) – β < α→ j(β) < j(α) hence limβ→α j(β) ≤ j(α).

If cf(α) = κ, then there is a cofinal function f : κ → α. [f ]
acts similarly to [id], i.e. ∀β < α j(β) < [f ] but [f ] < j(α) so
limβ→α j(β) < j(α).

– If cf(α) > κ, then [f ] < j(α) implies that for almost every x f(x) < α
therefore ∃β < α [f ] < j(β). For this reason limβ→α j(β) = j(α).

If cf(α) < κ, then for every [f ] < j(α) there is again, by κ-completeness,
a β < α such that [f ] < j(β).

(iv) If α < λ, then |[α]| ≤ |ακ| < λ thus j(λ) = limα→λ j(α) ≤ λ. Since
λ ≤ j(λ), j(λ) = λ.

(v) – Let s = 〈[fα] : α < κ〉 be a κ-sequence, [g] = κ and [h], h(α) =
〈[fβ ] : β < g(α)〉. g is a function which approximates the sequence
s and is such that h(α) is an α-sequence hence [h] is an [h] = κ-
sequence, and [h]([cα]) = [fα], therefore s = [h] ∈M .

– Suppose s = {j(α) : α < κ} is in MU . s is cofinal in j(κ+) because
if [f ] < j(κ+), then, since κ+ is regular, there is an α < κ+ such
that [f ] < [cα] = j(α). We also have that |s| = κ+ ≤ 2κ < j(κ+),
so j(κ+) is not regular, thus, by the fact that 6= regular(µ) is ΣZF

1 ,
MU �“j(κ+) is not regular” which is a contradiction.

(vi) κκ is ΠZF
1 hence, by (v), (κκ) = κκMU which belongs to MU . If U also

belongs in MU then there is an absolute term F (f) = [f ], so F ′′ κκ ∈MU

which is a function onto j(κ). This means that MU � |j(κ)| ≤ 2κ which
is a contradiction since MU �“strong limit j(κ)” and MU � κ < j(κ).



48CHAPTER 3. MEASURABLE CARDINALS AND ELEMENTARYEMBEDDINGS OF V

From (vi) we see thatMU 6= V , thus we cannot define a nontrivial embedding
j : V ≺ V using the ultrafilter construction we have described. In the last
chapter we will show that under reasonable assumptions no such embedding
can exist.

Finally, we state the following application of this lemma, which shows that
the existence of measurable cardinals has effects on cardinal arithmetic.

Corollary 3.27. (Scott) Suppose κ is measurable. Then,

∀α < κ 2α = α+ → 2κ = κ+.

Proof. Let j : V ≺MU be the corresponding canonical embedding. By elemen-
tarity,

V � ∀α < κ 2α = α+ →MU � ∀α < j(κ) 2α = α+ → (2κ)MU = (κ+)MU .

We already know that 2κ ≤ (2κ)MU and that κ+ = (κ+)MU so 2κ = κ+

3.3 Normal measures, indescribability

We are now going to study normal measures and the connection of measurable
cardinals with indescribability and Ramsey cardinals.

Definition 3.28. Let κ be a measurable cardinal. A normal filter D on κ is
called a normal measure on κ.

As we have already mentioned, every normal filter D contains the club filter
on κ, thus all of its sets are stationary. We have also seen that a filter is normal
if and only if every regressive function on a set X ∈ D is constant on a Y ∈ D,
such that Y ⊂ X . We will show that there is a normal measure D for every
measurable cardinal and then use this to prove that every measurable cardinal
is Ramsey.

Theorem 3.29. For every measurable cardinal κ there is a normal measure D
on κ.

Proof. Let U be a nonprincipal κ-complete ultrafilter on κ and A = {[g] ∈MU :
∀α < κ [cα] < [g]}. A is a nonempty subset of MU , since [id] ∈ A, thus it has
a minimal element [h]. Suppose f ∈ [h] ∧ rng(f) ⊂ κ (this is possible because
[h] ≤ [id] ∧ rng(id) = κ) and let D = {X ⊂ κ : f−1′′X ∈ U}.

It is straightforward to see that D is a κ-complete ultrafilter. For every
α < κ, f−1′′{α} /∈ U because [α] < [f ], thus D is nonprincipal.

Suppose g : X → κ, X ∈ U is a regressive function. Then h = g ◦ f has the
property ∀α ∈ f−1′′X h(α) < f(α), therefore by the minimality of f there is an
α such that {β : h(β) < α} ∈ U . Provided that U is κ-complete, h is constant
on a Y ∈ U , hence g is constant on f(Y ) ∈ U . For this reason, D is normal.
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Theorem 3.30. Every measurable cardinal is a Ramsey cardinal.

Proof. Let κ be measurable and D a normal measure on κ. We will show that
every partition f : [κ]<ω → α for every α < κ has a homogeneous set X ∈ D. In
order to do this we will inductively define the sets Xn, 0 < n < ω, so that Xn is
homogeneous for f ↾ [κ]n, hence X =

⋂

n<ωXn will have the desired properties.
By κ-completeness, at least one of the sets of any partition f : [κ]1 → α, α <

κ belongs to D, thus we take one of them as X1. Suppose that every partition
f : [κ]n → α, α < κ has a homogenous set of size κ. If f : [κ]n+1 → α, α < κ
then we define the functions fβ : [κ \ {β}]n → α, fβ(x) = f({α} ∪ x) for every
β < κ. For each fβ there is a set Xβ ∈ D homogeneous for fβ, i.e. there is
an ordinal γβ such that f ′′

β [Xβ ]
n = {γβ}. If X = △β<κXβ then, since D is a

normal measure, X ∈ D. It is straightforward that α0 < α1 < . . . < αn ∈ X →
{α1, . . . , αn} ∈ [Xα0

]n, hence f(α0, . . . , αn) = fα0
(α1, . . . , αn) = γα0

. Since
α < κ, there is a subset of X , H ∈ D so that ∀δ ∈ H γδ = γ, therefore [H ]n+1

is homogeneous in f .

Remark 3.31. We have to notice here that in order to establish the above
theorem we have used the axiom of choice. Under other circumstances mea-
surable cardinals could be quite small, for example ZF+AD3⊢“ω1 is the least
measurable cardinal”.

Another theorem concerning normal measures is the following, which gives
equivalent characterizations of normal measures, through the ultraproduct mod-
els generated by measurable cardinals and elementary embeddings.

Theorem 3.32. If D is a nonprincipal κ-complete ultrafilter over κ, then the
following are equivalent:

(i) D is normal;

(ii) κ = [id] (in MU);

(iii) for every X ⊂ κ, X ∈ D ↔ κ ∈ j(X).

Proof.

(i)→(ii) We already know that κ ≤ [id]. If [f ] ≤ [id] then f is regressive for almost
all α < κ thus, by normality, it is constant for almost all α < κ, therefore
[f ] = [cα], α < κ. Hence, κ < [id] cannot be the case, which means that
κ = [id].

(ii)→(iii) X ∈ D ↔ {α : id(α) ∈ X} ∈ D which is equivalent to [id] ∈ [X ] = j(X).
Thus, if κ = [id], X ∈ D ↔ κ ∈ j(X).

(iii)→(i) Suppose f is a regressive function on a X ∈ D. Then, by elementarity of
j, α = j(f)(κ) < κ. This means that κ ∈ j({β < κ : f(β) = α}) so f is
equal to α for almost all β < κ.

3The axiom of determinacy, see [10] or [14].
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Finally, we show that every measurable cardinal is Π2
1-indescribable and we

use this to prove that the least measurable cardinal is greater than the least
Ramsey cardinal. We also see some more connections of measurable cardinals
with indescribability.

Theorem 3.33. Every measurable cardinal is Π2
1-indescribable.

Proof. Let φ = ∀X ψ(X), where ψ(X) is a second order formula, R ⊂ Vκ and
(Vκ,∈, R) � φ. By the truth definition, we have that ∀X ⊂ Vκ+1 (Vκ+1,∈
, X, Vκ, R) � ψVκ . Since (Vκ+1)

MD = Vκ+1 and (Vκ)
MD = Vκ, ((Vκ,∈, U) �

φ)MD and furthermore ((Vκ,∈, j(R) ∩ Vκ) � φ)MD because R = j(R) ∩ Vκ. If
A = {α < κ : (Vα,∈, R ∩ Vα) � φ} then, by elementarity of j, κ ∈ j(A), hence
by normality of D, A ∈ D → A 6= ∅.

The above result is in some way the best possible since:

Theorem 3.34. The least measurable cardinal is not Σ2
1-indescribable.

Proof. There is a sentence φ ∈ Σ2
1 such that (Vκ,∈) � φ↔ measurable(κ):

∃U ∈ PP (Vκ) (∀X ∈ P (Vκ) (X ∈ U → X ⊂ On ∧ ∅ ∈ U ∧On ∈ U∧

∧ ∀X,Y ∈ P (Vκ) X ∩ Y ∈ U∧

∀X,Y ∈ P (Vκ) (X ∈ U ∧X ⊂ Y → Y ∈ U)∧

∧ ∀X ∈ P (Vκ) (X ∈ U ∨On \X ∈ U)∧

∧ ∀F : Vκ → Vκ∀α ∈ On
⋂

F ′′α ∈ U).

Hence the least measurable cardinal κ is such that (Vκ,∈) � φ but for all α < κ,
(Vα,∈) 6� φ. Thus, it is not Σ2

1-indescribable.

Though the indescribability of measurable cardinals is up to Π2
1, there are

many totally indescribable cardinals below every measurable cardinal. In par-
ticular:

Theorem 3.35. If κ is measurable and D is a normal measure on κ, then
{λ < κ : λ is totally indescribable} ∈ D.

Proof. As we have seen in the previous proofs, we just have to show that
(κ is totally indescribable)MD for a normal measure D. Suppose (R ⊂ Vκ ∧
(Vκ,∈, R) � φ)MD , φ ∈

⋃

n,m<ω Πm
n . Then,

(∃α < j(κ) (Vα,∈, j(R) ∩ Vα) � φ)
MD →

∃α < κ (Vα,∈, R ∩ Vα) � φ→

(∃α < κ (Vα,∈, R ∩ Vα) � φ)
MD .
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Remark 3.36. The latter reveals the fact that indescribability is not enough
to support the existence of measurable or greater large cardinals (provided that
AC holds). Thus the elementary embeddings of V take its place as a stronger
reflection principle, used to produce large cardinals. In the fifth chapter we
will encounter more examples of such embeddings and large cardinals related to
them.

Using Π2
1-indescribability we prove the next corollary:

Corollary 3.37. If D is a normal measure over the cardinal κ, then {λ < κ :
Ramsey(λ)} ∈ D.

Proof. As in 3.34, we can find a Π2
1 sentence φ such that Ramsey(λ)↔ (Vλ,∈

) � φ. Hence the assertion follows from the proof of 3.30.

We close this section having a quick view at the models of the form L[D],
where D is a normal measure.

Theorem 3.38. (Silver) If D is a normal measure on a cardinal κ, then L[D] �
GCH.

Theorem 3.39. (Kunen) If D is a normal measure on a cardinal κ and V =
L[D], then κ is the only measurable cardinal and D the only measure on κ.
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Chapter 4

0
♯ and elementary

embeddings of L

4.1 Indiscernibles

Before we proceed further in this chapter, we first need to introduce one more
model theoretical notion, indiscernibility. A set I is called a set of indiscernibles,
if we cannot distinguish its elements using first order formulas. Thus, if one
formula is satisfied by a n-tuple of In, then it is satisfied by all the other n-
tuples of In. Since the sets of indiscernibles we will consider shall contain
ordinals, which come along with a natural well-ordering, we will require that
the n-tuples are entered in an increasing order in every formula we will consider.
Finally, after introducing indiscernibility, we will see how new models can be
created by extending sets of indiscernibles, using Skolem functions, and state
some of their properties.

Definition 4.1.

(i) Let M be a structure and (I,<) a linearly ordered set. I is a set of
indiscernibles for M , if for every formula φ(v1, . . . , vn) and all x1 < . . . <
xn, y1 < . . . < yn ∈ I,

M � φ[x1, . . . , xn]↔M � φ[y1, . . . , yn].

(ii) If M is a structure and I a set of indiscernibles for M , then we denote by
Σ(M, I) the set of formulas true in M for increasing sequences of I.

A very useful theorem, concerning models which contain sets of indiscernibles,
is the following:

Theorem 4.2. (Ehrenfeucht-Mostowski) If T is a theory with infinite models,
and (I,<) is a linearly ordered set, then there exists a model M of T such that
(I,<) is a set of indiscernibles in M .

53
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Proof. It can be found in [2], [10] or [7] and it is an interesting application, of
Ramsey’s theorem, which gives us a connection of infinitary combinatorics with
model theory.

The following theorem provides us with the basic properties of models con-
structed from indiscernibles, and its proof can be found in [2].

Theorem 4.3. Let M be a model, of a theory T with built in functions, and
(I,<) a set of indiscernibles of M . Then,

(i) If J ⊂ I, then J with the inherited order is a set of indiscernibles in H(J)
and H(J) ≺ H(I).

(ii) If I, J are infinite linearly ordered sets, then there is a model N of T ,
such that J is a set of indiscernibles for N and Σ(M, I) = Σ(N, J).

(iii) Let N be a model of T and J a set of indiscernibles for N such that
Σ(M, I) = Σ(N, J). Every increasing function j : I → J can be uniquely
extended to an elementary embedding j̄ : H(I)→ H(J). Moreover,
j̄′′H(I) = H(j′′I).

The theorems above are the starting point of an attempt of producing mod-
els with many automorphisms, initiated by Ehrenfeucht and Mostowski. By
theorem 4.3 (iii), if j : I → I is an increasing onto I function then it can be
extended to an automorphism of H(I). Thus, if a model is produced by a set of
indiscernibles, with quite a flexible order1, then it has a lot of automorphisms.
The way we are going to use those theorems is much alike, i.e. we wish to verify
the existence of a non-trivial elementary embedding j : L → L. Of course,
this comes with a cost; we must make stronger combinatorial assumptions, not
provable in ZFC, which will guarantee the existence of appropriate sets of in-
discernibles. This was first done using the existence of Ramsey cardinals and
through this procedure it became clear that a weaker assumption, the existence
of 0♯, is enough. 0♯ is a Σ(M, I) set of formulas, having some specific properties.

4.2 0♯

Near the sixties, it had already been noticed, by set theorists, that the existence
of several large cardinals has a great impact on the structure of L relative to V .
We have already seen in the previous chapter that the existence of a measurable
cardinal implies that V 6= L. This impact could be described as a compression
of L and it is connected to results such as |L ∩ R| = ℵ0, L � inaccessible(ℵα)
for every α > 0 and the existence of elementary embeddings of L. 0♯ emerged
exactly from the study of those phenomena.

1One which has many <-automorphisms.
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E-M sets

0♯’s definition is not straightforward. In order to understand its nature, one must
go through the procedure of its creation. This is why we first introduce the E-
M sets, which are related to the theory of indiscernibles. Roughly speaking, in
order to shrink L we must make sure that its structure is simple, which can
be done by assuming that many of its elements have the same properties or, in
other words, that it contains an appropriately large set of indiscernibles. From
now on, the sets of indiscernibles for the modelsM we will consider, will contain
only ordinals of M (elements of OnM ), ordered by ∈M .

Definition 4.4. Let <L be the canonical well-ordering of L. We define, for
every formula φ, the canonical Skolem function hφ as follows:

hφ(x̄) =

{

the <L −least y such that φ(y, x̄)
∅ otherwise

Lemma 4.5. Let α, β be limit ordinals, j : Lα → Lβ an elementary embedding
and φ a formula. If x1, . . . , xn ∈ Lα, then

h
Lβ

φ (j(x1), . . . , j(xn)) = j(hLα

φ (x1, . . . , xn)).

Proof. We may notice that the formula x <L y is absolute for all Lγ , where γ
is a limit ordinal. Hence

h
Lβ

φ (j(x1), . . . , j(xn)) =

{

the <L −least y such that φLβ (y, j(x1), . . . , j(xn))
∅

=j

({

the <L −least y such that φLα(y, x1, . . . , xn)
∅

)

=j(hLα

φ (x1, . . . , xn))

In order to define 0♯ we introduce the following sets:

Definition 4.6. We will call a set of formulas Σ an E-M set (Ehrenfeucht-
Mostowski), if there is a model M , an infinite set I of indiscernibles for M and
a limit ordinal α such that:

(i) M ≡ Lα

(ii) Σ = Σ(M, I).

The following theorem is a special case of theorem 4.2:

Theorem 4.7. If Σ is an E-M set and α an infinite ordinal, then there is a
unique up to isomorphism pair (M, I), where M is a model of Σ and I a set of
indiscernibles for M having the following properties:

(i) Σ = Σ(M, I);
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(ii) the order type of I is α;

(iii) M = H(I).

Proof.

(∃) Since Σ is an E-M set, there is a model N and an infinite set of indis-
cernibles J for N such that Σ = Σ(N, J). Let {jn : n < ω} be a countable
subset of J . By theorem 4.3 (ii), there exists a model M ′ and a set of in-
discernibles I for it with order type α, such that Σ = Σ(N, J) = Σ(M ′, I).
The submodel M = H(I) of M ′, is exactly what we need, since it is an
elementary submodel of M ′ thus I is a set of indiscernibles for it, and
Σ(M, I) = Σ(M ′, I) = Σ.

(∃!) The uniqueness of the pair (M, I) is immediate by theorem 4.3 (iii). If
(N, J) is another pair, then there is an <-isomorphism, j : I → J which
can be extended to an isomorphism between M and N .

Definition 4.8. We will call the unique pair (M, I), of theorem 4.7, the (Σ, α)-
model.

It is immediate from theorem 4.3 (iii), that

α ≤ β → (Σ, α) ≺ (Σ, β).

We are now going to analyze three properties related to (Σ, α) models.
Specifically we are going to consider the cases where a (Σ, α) model is well-
founded, unbounded, or remarkable.

These properties are used in order to identify some of the (Σ, κ) models,
cardinal(κ), κ > ω, with the models Lκ. This way the models Lκ and L will be
built up from sets of indiscernibles, thus we will have the opportunity of getting
the results we have already described.

Definition 4.9. Let (M, I) be a (Σ, α)-model and I = {iβ : β ∈ α}, α < β ↔
iα < iβ. Then,

(i) (Σ, α) is unbounded if whenever M � x ∈ On, there exists an i ∈ I such
that M � x < i.

(ii) (Σ, α) is remarkable if it is unbounded and M � (x ∈ On∧x < iω) implies
that x ∈ HM ({in : n < ω}).

Definition 4.10. An E-M set Σ is called well-founded, unbounded or remark-
able if every (Σ, α)-model is respectively well-founded, unbounded or remark-
able.

The following lemma provides us with expressions equivalent to the proper-
ties described above:
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Lemma 4.11. Let Σ be an E-M set. Then,

(a) The following are equivalent:

(i) For every ordinal α, (Σ, α) is well-founded.

(ii) For some ordinal α ≥ ω1, (Σ, α) is well-founded.

(iii) For every ordinal α < ω1, (Σ, α) is well-founded.

(b) The following are equivalent:

(i) For every ordinal α, (Σ, α) is unbounded.

(ii) For some ordinal α, (Σ, α) is unbounded.

(iii) For every Skolem term t(v̄),

[t(v̄) ∈ On→ t(v̄) < u] ∈ Σ.

(c) The following are equivalent if Σ is unbounded:

(i) For every ordinal α > ω, (Σ, α) is remarkable.

(ii) For some α > ω, (Σ, α) is remarkable.

(iii) For every Skolem term t(v̄, ū),

[t(v̄, ū) < u1 → t(v̄, ū) = t(v̄, w̄)] ∈ Σ.

(d) If (M, I) is a remarkable (Σ, α) set, then for every limit ordinal β < α,

M � (x ∈ On ∧ x < iβ) implies that x ∈ HM ({iγ : γ < β}).

(e) If (M, I) is remarkable, then club(I) in OnM .

Proof. It is straightforward and can be found in [8], [10] or [5].

Definitions of 0♯

We are nearly ready to define 0♯. It will be the unique well-founded, remarkable
E-M set, but we have not yet verified this uniqueness. In order to do this, we
will first prove that the existence of E-M sets of this kind have two important
consequences stated in 4.12. Later on, those properties will lead us to a second
definition of 0♯.

Theorem 4.12. (Silver) The existence of a well-founded, remarkable E-M set
has the following consequences:

(i) For all cardinals ω < κ < λ, (Lκ,∈) ≺ (Lλ,∈).

(ii) There is a unique club class I in On, containing all cardinals and such
that for every ω < κ:

– |I ∩ κ| = κ



58 CHAPTER 4. 0♯ AND ELEMENTARY EMBEDDINGS OF L

– I ∩ κ is a set of indiscernibles for Lκ

– ∀α ∈ Lκ, α is definable in Lκ from I ∩ κ.

Proof. We will carry out the proof using the following lemmas. In every case
we will assume that Σ is a well-founded, remarkable E-M set.

Lemma 4.13. If κ > ω is a cardinal, then the (Σ, κ) model is isomorphic to
Lκ.

Proof. By checking the proof of Gödel’s condensation lemma, we can notice that
since Σ is an E-M set, it satisfies φL thus the (Σ, κ)-model, being well-founded,
is isomorphic to (Lα, I) for some ordinal α. |I| = κ so κ ≤ α. Suppose κ < α,
then since (Σ, κ) is unbounded there is a β < κ such that Lα � κ < iβ and since
(Σ, κ) is remarkable, for every γ ≤ iβ ,

γ ∈ HLα({iδ : δ < β})→ κ ⊂ HLα({iδ : δ < β}).

The last inclusion is false, because |HLα({iδ : δ < β})| = β < κ, and as a result
of that β = κ.

Relying on the above lemma, if Σ is well-founded and remarkable we can
identify the (Σ, κ)-model with (Lκ, Iκ). Thus if ω < κ < λ, we have that
(Σ, κ) ≺ (Σ, λ), which means that Lκ ≺ Lλ and this settles (i) of theorem 4.12.

Lemma 4.14. If ω < κ < λ, then

(i) Iλ ∩ κ = Iκ

(ii) HLλ(Iκ) = Lκ.

Proof.

(i) Let J = {iα : α < κ} ⊂ Iλ. Then, (HLλ(J), J) is a (Σ, κ)-model hence ,by
the above lemma it, is isomorphic to (Lκ, Iκ). By lemma 4.11 (d) and (e),
we can see that the ordinals of HLλ(J) are exactly iκ. This means that
iκ = κ and J = Iκ, thus

Iλ ∩ κ = J = Iκ.

(ii) We already know that (HLλ(Iκ), Iκ) ∼= (Lκ, Iκ). Thus the isomorpism
of HLλ(Iκ) and Lκ is the identity function on Iκ. Provided that every
Skolem function is uniquely defined, by <L, HLλ(Iκ) = Lκ.

This lemma proves the second part of theorem 4.12, except from the unique-
ness of I. In particular, if we set I =

⋃

ω<κ Iκ, then:

• |I ∩ κ| = |Iκ| = κ

• I ∩ κ = Iκ which is a set of indiscernibles for Lκ
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• Lκ = H(Iκ) so every element of Lκ is definable in Lκ from Iκ = I ∩ κ.

• I ∩ κ is unbounded for any cardinal κ so, since it is closed, κ ∈ I.

The next two lemmas are used to prove the uniqueness of I.

Lemma 4.15. There is at most one well-founded remarkable E-M set.

Proof. We already know that {ℵn : n ∈ ω} ⊂ I. If Σ is well-founded and
remarkable, then Lℵω

is the (Σ,ℵω)-model hence for every formula φ

φ(v1, . . . , vn) ∈ Σ↔ Lℵω
� φ[ℵ1, . . . ,ℵn].

Thus Σ is unique.

Lemma 4.16. For every regular κ > ω there is at most one club set of indis-
cernibles Iκ for Lκ having the property Lκ = H(Iκ).

Proof. Let J be another set of indiscernibles having the above properties. Since
both J and Iκ are club their cut is also club thus infinite. Provided that they
are both sets of indiscernibles, this means that

Σ(Lκ, J) = Σ(Lκ, J ∩ Iκ) = Σ(Lκ, Iκ)

hence (Lκ, J) is the (Σ, κ)-model so J = Iκ.

It follows from the lemma above, that I is unique because each of the Iκ is
unique. Thus we have completed the proof of theorem 4.12.

By lemma 4.15 we can define 0♯:

Definition 4.17. 0♯ is the unique well-ordered remarkable E-M set.

The equivalent definition below is immediate from the proof of 4.15:

Corollary 4.18. If 0♯ exists then,

0♯ = {φ ∈ Form : Lℵω
� φ[ℵ1, . . . ,ℵn]}.

Another definition is the following:

Corollary 4.19. If 0♯ exists then,

0♯ = {φ ∈ Form : L � φ[ℵ1, . . . ,ℵn]}.

Proof. It follows from the reflection principle that for every formula φ there is
a cardinal κ > ℵω such that for all x1, . . . , xn ∈ Lκ

L � φ[x1, . . . , xn]↔ Lκ � φ[x1, . . . , xn].

By letting x1, . . . , xn be ℵ1, . . . ,ℵn and considering that Lℵω
≺ Lκ, we have

that
Lκ � φ[ℵ1, . . . ,ℵn]↔ Lℵω

� φ[ℵ1, . . . ,ℵn]

thus if we replace Lω by L in corollary 4.18, we get the same set, i.e. 0♯.
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If we replace the formulas by their Gödel numbers, we can view 0♯ as a set
of integers. It can also be considered as a real number and there are many more
equivalent definitions. The one in the corollary above though, is probably the
most common one.

Finally, we have to state that 0♯ may not be a large cardinal, but its existence
implies the existence of ηα, for every α < ω1, and if ηω+1 exists, then 0♯ also
exists. Hence, its existence can be regarded to be a large cardinal axiom.

4.3 The connection of 0♯ with L

As we have already mentioned, the existence of 0♯ is related to the difference
between the structure of V and L. Here we will analyze this relation in two
ways. First we will see that the existence of 0♯ implies that V 6= L. It also has
some more consequences which show that V is much larger than L assuming
this existence. Afterwards, we shall examine what happens in the case 0♯ does
not exist. This time we do not have a result of the form V = L2, but Jensen’s
covering theorem will guarantee that L is really close to V . Most of the proofs
here are omitted and can be found in [8], [10] and [5].

Assuming that 0♯ exists,

The next theorems are all corollaries of Silver’s theorem.

Corollary 4.20.

(i) There exists a subset of Form containing exactly Th(L).

(ii) Lκ ≺ L.

(iii) I is a set of indiscernibles for L.

(iv) defL(I) = L.

Proof.

(i) By corollary 4.19 this set is {φ ∈ 0♯ : sentence(φ)}.

(ii) By the reflection principle, for every formula φ there is an uncountable λ
such that φ is absolute for Lλ, L. We know from Silver’s theorem that
either Lκ ≺ Lλ or Lλ ≺ Lκ, depending on which of κ, λ is bigger. Thus, φ
is also absolute for Lκ, Lλ which means that it is absolute for Lκ, L too.
Since this is true for every φ, Lκ ≺ L.

(iii) This is immediate from the fact that I ∩κ is a set of indiscernibles for Lκ,
for every cardinal κ, and from (ii).

2It would be impossible for a large cardinal axiom to be equivalent with V 6= L, because
then its consistency relative to ZFC would be provable in ZFC
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(iv) If x ∈ L then there is an cardinal κ such that x ∈ Lκ, so x is definable in
Lκ by I ∩ κ. Hence, by (ii), x is also definable in L by I ∩ κ, thus also
from I.

Corollary 4.21.

∀x ∈ L (x ∈ defL(∅)→ |x| ≤ ω).

Proof. Suppose x is defined in L by a formula φ(v). In this case, the formula
ψ(u) = ∀v (v ∈ u↔ φ(v)) is such that only x satisfies it in L. Since Lℵ1

≺ L,

L � ∃!u ψ(u)→ Lℵ1
� ∃!u ψ(u)

therefore there must be a y ∈ Lℵ1
satisfying ψ which ought to be equal to x.

Thus, x ∈ Lℵ1
which means that x is countable.

By the lemma above we have that no uncountable cardinals can be defined
in L. As we will see below, those cardinals apart from being undefinable are
also inaccessible in L.

Corollary 4.22. Every uncountable cardinal is inaccessible in L.

Proof. We will use the indiscernibility of uncountable cardinals here, in order
to transfer properties from specific cardinals to all uncountable cardinals. L �

regular(ℵ1) and also L � limcard(ℵω), thus every uncountable cardinal has
those properties in L, i.e. every uncountable cardinal is inaccessible in L.

Remark 4.23. Since the existence of 0♯ implies the existence of ηω, we know
from the second chapter that ηω ∈ L. Therefore, using the technique of the
lemma above, we can see that every uncountable cardinal in L is Hω and thus
it is also Mahlo and weakly compact.

Corollary 4.24. |R ∩ L| ≤ ω1. Furthermore, |Vα ∩ L| ≤ |α|.

Proof. Vα ∩ L ∈ defL({α}) so, by indiscernibility, Vα ∩ L ∈ defLκ
({α}) for

κ = |α|+. As we did before, we can find a formula ψ(v, α) such that Vα ∩ L is
the only set satisfying ψ and so Vα∩L ∈ Lκ. Hence, |Vα∩L| < |Lκ| = |α|

+.

The above corollary was first proved by Rowbottom for the case where a
Ramsey cardinal exists. This is a stronger result which shows that 0♯ is closer
to the collapse of L caused by the existence of specific large cardinals.

Finally, using any of the corollaries 4.21 to 4.24, one can prove that V 6= L.

Theorem 4.25. If 0♯ exists then V 6= L.
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Assuming that 0♯ does not exist,

The most important result towards this direction is Jensen’s covering lemma.
Everything else we mention afterwards follows from it.

Theorem 4.26. (Jensen’s covering theorem) 0♯ does not exist iff for every
uncountable set X of ordinals there is a set Y ∈ L such that X ⊂ Y and
|X | = |Y |.

Proof. See [8].

An example of a set we cannot cover if 0♯ exists is X = {ℵn : n ∈ ω}. This
is because ℵω is uncountable, thus regular in L and sup(X) = ℵω so X cannot
be covered by a set Y ∈ L of cardinality less than ℵω. This way, if we also take
under consideration that the existence of 0♯ implies that ℵω is regular in L, we
see that the existence of 0♯ is equivalent to the proposition L � regular(ℵω).

The following three corollaries demonstrate some of the consequences of the
non-existence of 0♯.

Corollary 4.27. Suppose 0♯ does not exist. Then, for every ordinal α ≥ ℵ2,
such that L � regular(α), cf(α) = |α|.

Proof. Let X be a cofinal subset of λ and Y a constructible set covering X
(or an uncountable set X ′, X ⊂ X ′ ⊂ λ, if X is countable). Since both Y
and λ belong to L, Z = Y ∩ λ ∈ L and it also covers X , i.e. X ⊂ Z ⊂ λ
and |Z| = |X | + ℵ1 = cf(λ) + ℵ1. Z is unbounded in λ and, provided that
L � regular(λ), |Z| = |λ|. Hence |λ| = cf(λ) + ℵ1 = cf(λ) because λ ≥ ℵ2.

Corollary 4.28. If 0♯ does not exist, then singular(κ)→ L � singular(κ).

Proof. If κ is singular and L � regular(κ) then κ ≥ ℵ2 so by corollary 4.27
cf(κ) = κ, which is a contradiction.

Corollary 4.29. If 0♯ does not exist then singular(κ)→ (κ+)L = κ+.

Proof. Suppose α = (κ+)L. κ ≤ α ≤ κ+ thus if α 6= κ+, then |α| = κ. This
means that cf(α) < |α| since κ is singular but this is a contradiction since
L � regular((κ+)L) and by corollary 4.27 cf(α) = |α|.

4.4 Elementary embeddings of L

The main purpose of this section is to present Kunen’s theorem, which states
that the existence of 0♯ is equivalent to the existence of a nontrivial elementary
embedding j : L ≺ L. This looks like the case of the nontrivial elementary
embeddings of V , which exist exactly when a measurable cardinal exists. In fact
the last one is a stronger kind of elementary embedding, because if j : V ≺ M
is nontrivial then j ↾ L : L ≺ L is also nontrivial. Since L is contained in every
inner model M,N , if there is a nontrivial embedding j : M ≺ N then there is
also a nontrivial embedding j′ : L ≺ L. Therefore, the weakest assumption one
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can make on the existence of nontrivial elementary embeddings of inner models,
is the existence of a nontrivial elementary embedding of L.

Theorem 4.30. (Kunen) 0♯ exists iff there is a nontrivial elementary embed-
ding j : L ≺ L.

Proof.

(→) We have proved the existence of a set I of indiscernibles in L, such that
L = H(I). By theorem 4.3, every order-preserving function j : I → I can
be extended to an elementary embedding j̄ : L ≺ L which is nontrivial if j
is nontrivial. There are many such functions j, therefore there also many
nontrivial elementary embeddings of L (for example take j(iα) = j(iα+1)).

(←) This direction needs more work which will be carried out into three steps.
In the first step, we will introduce a variant of the ultraproduct construc-
tion for nontrivial embeddings of L. This way using a nontrivial embed-
ding L ≺ L we will define an inner model MD

∼= L and a new nontrivial
elementary embedding jD : L ≺ L. In the second step, we study the
properties of jD and of some of its reductions. Using those reductions we
come up with a set of indiscernibles {γα : α < ω1} for Lκ, where κ is an
appropriate cardinal. In the third step, we see that the existence of an
uncountable set of indiscernibles for a model Lκ implies the existence of
0♯, which completes the proof.

Step 1

We define below the notions of ultrafilters and ultrapowers, relativized to a
model M .

Definition 4.31. Suppose M is a transitive model and κ ∈M . AM -ultrafilter
on κ is a subset D of PM (κ) having the following properties:

(i) ∅ /∈ D ∧ κ ∈ D;

(ii) X,Y ∈ D → X ∩ Y ∈ D;

(iii) X ∈ D ∧ Y ∈M ∧X ⊂ Y → Y ∈ D;

(iv) ∀X ∈ PM (κ) (X ∈ D ∨ κ \X ∈ D).

D is called nonprincipal if:

(v) ∀α ∈ κ {α} /∈ D.

D is called κ-complete if:

(vi) If α < κ, {Xβ : β < α} ∈M and ∀β < α Xβ ∈ D, then
⋃

β<αXβ ∈ D.

D is called normal if:
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(vii) Every regressive function f ∈M on a X ∈ D is constant on a Y ∈ D.

The ultrapower MD of M by D is remains the same as the one defined for
ultrafilters and we should only have in mind that D is a M -ultrafilter. We
also note by jD the canonical embedding of M in MD. The following theorems
we have provided for ultrapowers and elementary embeddings, still hold for
M -ultrapowers and they are proved the same way:

Theorem 4.32. Suppose D is an M -ultrafilter on κ. Then for every formula
φ:

MU � φ([f1], . . . , [fn])↔ {α < κ :M � φ(f1(α), . . . , fn(α))} ∈ D.

Theorem 4.33. Let j : M → N be an elementary embedding having κ as its
critical point. Then, M � (regular(κ)∧κ > (ω)M ) and D = {X ∈ PM (κ) : κ ∈
j(X)} is a normal nonprincipal κ-complete M -ultrafilter on κ.

Suppose j : M ≺ N is an elementary embedding, κ is a critical point of
j and D is is the M -ultrafilter described above. It is not hard to check that
the function k : MD → N , k([f ]) = j(f)(κ), is an elementary embedding such
that k ◦ jD = j. This way, we can see that MD is well-founded, since an infinite
decreasing sequence {[fn]}n<ω ofMD would be mapped to an infinite decreasing
sequence {k([fn])} of N . In this case, as in chapter 3, we will identify MD with
its transitive collapse which is an inner model.

Now we will focus our interest on elementary embeddings j : L ≺ L. LD = L
because using theorem 4.32 we can show that LD � V = L. From this point
on, we will only work with jD : L ≺ L and symbolize its critical point by γ
for convenience (κ will be used as an appropriate cardinal for which Lκ has an
uncountable set of indiscernibles) .

Step 2

Lemma 4.34. If κ is a limit cardinal such that cf(κ) > γ, then jD(κ) = κ.

Proof. As in the previous chapter, we can check that jD(κ) = limα→κ jD(α).
Additionally, for every α < κ, |jD(α)| = |[cα]| ≤ |(αγ)L| and |(αγ)L| < κ
(because κ is limit so there is a cardinal α < λ < κ for which αγ ≤ λγ = λ < κ).
Thus, jD(κ) ≤ κ→ jD(κ) = κ.

We define by transfinite induction the following decreasing sequence of sets:

U0 ={κ : cardinal(κ) ∧ cf(κ) > γ}

Uα+1 ={κ ∈ Uα : |Uα ∩ κ| = κ}

Uα =
⋂

β<α

Uβ if limord(α)

It is easy to prove by induction that every class Uα is unbounded and closed
for sequences of length β such that cf(β) > κ, thus Uω1

is nonempty. We are
going to use an element κ of Uω1

in order to establish our results.
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We reduce the mapping jD : L ≺ L we have described before, to i = j ↾ Lκ,
which is an elementary embedding of Lκ. We define the sets Xα = Uα ∩ κ,
α < ω1, which have cardinality κ, and afterwards the following elementary
submodels of Lκ:

Mα = H(γ ∪Xα).

Suppose Fα is the transitive collapse of Mα. Then, provided that |γ ∪Xα| = κ,
F ′′
αMα = Lκ by Gödel’s condensation lemma. Let i : Lκ ≺ Lκ, iα = F−1

α ,
and γα = iα(γ). Our goal is to prove that the ordinals γα, α < ω1, form a set
of indiscernibles for Lκ. In order to do this, we are going to create a family of
elementary embeddings iα,β of Lκ, which map γα to γβ . In the next two lemmas
we give some properties of the ordinals γα and define the embeddings iα,β.

Lemma 4.35.

(i) γα is the least ordinal of Mα greater than γ.

(ii) If α < β then iα ↾Mβ is the identity function, thus iα(γβ) = γβ.

(iii) α < β → γα < γβ.

Proof.

(i) Since γ ⊂ M , γα = iα(γ) is the smallest ordinal of M containing all
the elements of γ, thus supMα

(γ). We will show that γ /∈ Mα, therefore
iα 6= γ. The elements of Mα are of the form t[δ1, . . . , δn] (t is a Skolem
term), where the ordinals δ1, . . . , δn belong either to γ or Xα, hence they
are not changed by the embedding i. This means that

i(t[δ1, . . . , δn]) = t[i(δ1), . . . , i(δn)] = t[δ1, . . . , δn]

so γ /∈Mα because i(γ) 6= γ.

(ii) Since the elements ofMβ are of the form t[δ1, . . . , δn], we have to show that
the elements of γ and Xβ are preserved by iα. For γ, it is straightforward
because γ ⊂ Mα. As for Xβ, we can see by transfinite induction that
iα(λ) = λ, since

α < β → |Xα ∩ λ| = λ→ Fα(λ) = sup
Mα

{Fα(µ) : µ < λ}.

(iii) It is immediate that γα ≤ γβ , so we only need to chck that γα 6= γβ . This
is also true though, since

γ < γα → γα = iα(γ) < iα(γα) ≤ iα(γβ) = γβ .

Lemma 4.36. For all α < β < ω1 there are elementary embeddings iα,βLκ ≺
Lκ, which preserve all ordinals of ω1 that are not in the interval [α, β] and map
γα to γβ.
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Proof. The embeddings iα,β are defined in a similar way to iα. Specifically, we
let Mα,β = H(γα, Xβ) and iα,β = F−1

α,β , where Fα,β is the transitive collapse of
Mα,β.

γα ⊂Mα,β , therefore iα,β(γξ) = γξ for all ξ < α. By repeating the procedure
in lemma 4.35 for Xβ we get that iα,β(γξ) = γξ for all ξ > β.

What is left now is to prove that iα,β(γα) = γβ . Similarly to lemma 4.35,
γα ≤ iα,β(γα) ≤ γβ . Suppose there is an ordinal ζ ∈ Mα,β, such that γα ≤ ζ <
γβ and ζ = t[δ1, . . . , δn, ǫ1, . . . , ǫm], where δ1 < . . . < δn < γα, γβ < ǫ1, . . . , ǫm.
This means that

Lκ � ∃δ1, . . . , δn < γα γα ≤ t[δ1, . . . , δn, ǫ1, . . . , ǫm] < γβ .

Using the information we have for Fα = i−1
α from lemma 4.35, we get that

Lκ � ∃δ1, . . . , δn < γ γ ≤ t[δ1, . . . , δn, ǫ1, . . . , ǫm] < γβ

which is a contradiction since t[δ1, . . . , δn, ǫ1, . . . , ǫm] ∈ Mβ, thus there should
be an ordinal ζ ∈Mβ such that γ ≤ ζ < γβ .

Lemma 4.37. Γ = {γα : α < ω1} is a set of indiscernibles for Lκ.

Proof. Suppose that α1 < . . . < αn, β1 < . . . < βn and max{αn, βn} < δ1 <
. . . < δn are increasing sequences of elements of Γ. Using the above lemma 2n
times, we get that for every formula φ:

Lκ � φ[α1, . . . , αn]↔ Lκ � φ[δ1, . . . , δn]

and
Lκ � φ[β1, . . . , βn]↔ Lκ � φ[δ1, . . . , δn].

This means that Γ is a set of indiscernibles for Lκ.

Step 3

The proof is completed using the following lemma:

Lemma 4.38. If there is a model Lλ which has a set of indiscernibles of order
κ > ω, then there is a limit ordinal γ and a set I ⊂ γ, of order type κ, such
that (Lγ , I) is an E-M remarkable set.

Proof. See [8].
By the preceding lemma we see that there is a well-founded remarkable E-M

set, hence 0♯ exists.

In the previous chapter we saw that the existence of an nontrivial elemen-
tary embedding of V is equivalent to the existence of a measurable cardinal.
Theorem 4.30 is important because it implies that the existence of elemen-
tary embeddings of inner models of V can yield the truth of weaker large car-
dinal axioms. Using the methods described in this section one could prove
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relative results for elementary embeddings of the models L(X), X ⊂ ω and
X♯ = {φ : (Lℵω

(X),∈, X) � φ[ℵ1, . . . ,ℵn]}. Those methods can be extended
further more using the technique of ultrapowers and lead to a finer analysis of
the structure of large cardinals. What we wish to study though, is how strong
large cardinals we can get by extending the embeddings of V , thus we will not
proceed further more to this subject. As we will see in the next chapter, assum-
ing the existence of a nontrivial elementary embedding j : V ≺ M , the closer
M is to V the stronger large cardinals we get.
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Chapter 5

Stronger embeddings of V

The strongest large cardinals we have met up to now are the measurable car-
dinals. In terms of elementary embeddings, the existence of such cardinals is
equivalent to the existence of an elementary embedding j : V ≺ M , where M
is an inner model. In the case M = MD -D is a normal κ-complete ultrafilter
on κ- we have seen that M 6= V , because D /∈ M , and even more M is not
closed under sequences of length κ+. This means that the inner model M can
be quite thin in comparison with V . In this chapter we are going to require that
M is closer to V and introduce this way stronger and stronger large cardinals.
Finally, we will investigate the case where M = V .

5.1 Strong, Woodin and superstrong cardinals

Our first step in strengthening the the elementary embeddings j : V ≺ M , is
done by introducing strong cardinals, Woodin cardinals and superstrong car-
dinals. We will define even stronger large cardinals in the next sections, but
those described here have the advantage that they yield important results with
relatively weaker hypotheses. They can also be described, by the notion of
extenders, which are roughly sets of measures which approximates the corre-
sponding embedding j : V ≺M .

Strong cardinals

Definition 5.1.

(i) A cardinal κ is called α-strong, if there is an elementary embedding j :
V ≺M , with critical point κ, such that α < j(κ) and Vκ+α ⊂M .

(ii) A cardinal κ is called strong, if it is α-strong for every α ∈ On.

The following theorem contains some of the interesting consequences of the
existence of α-strong or strong cardinals:

69
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Theorem 5.2.

(i) If there is a strong cardinal, then for every set A V 6= L(A).

(ii) For every α-strong cardinal κ, if GCH holds for every β < κ, then it also
holds for every β < κ+ α.

(iii) If κ is strong, then Vκ ≺2 V .

Theorem 5.3. Suppose κ is 2-strong. Then, there is a normal ultrafilter D
over κ such that {λ < κ : measurable(λ)} ∈ D.

Therefore strong cardinals are stronger than measurable cardinals. Actually,
the measurability of a cardinal is equivalent to its 1-strongness.

Another interesting result, is the fact that the existence of a strong cardinal
does not imply the existence of greater large cardinals.

Theorem 5.4.

cons(ZFC+∃κ strong(κ))→ cons(ZFC+∃κ strong(κ)+ 6 ∃λ > κ inaccessible(λ)).

Woodin cardinals

Definition 5.5. A cardinal κ is called a Woodin cardinal , if for every f ∈κ κ,
there is an α < κ and a j : V ≺M , such that:

(i) f ′′α ⊂ α;

(ii) the critical point of j is α;

(iii) Vj(f)(α) ⊂M .

The great importance of Woodin’s cardinals springs from their consequences
in descriptive set theory. We mention the axiom of determinacy (AD), without
giving a definition because we did so, we should also state several results which
reveal its importance in descriptive set theory.

Theorem 5.6. The following theories are equiconsistent:

(i) ZFC + “there are infinitely many Woodin cardinals”.

(ii) ZF +AD.

Theorem 5.7. The existence of infinitely many Woodin cardinals and of a
measurable cardinal above them, yields ADL(R).

The following theorem, provides us with a characterization of Wooding car-
dinals. On the same time, it proves that

cons(ZFC + ∃κ Woodin(κ)→ cons(ZFC + ∃κ strong(κ)

and that the existence of a Woodin cardinal, implies the existence of all α-strong
cardinals, α < κ. Thus Woodin cardinals have greater consistency strength than
strong cardinals.
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Theorem 5.8. Let κ be a Woodin cardinal. Then, the set {α < κ : ∀β <
κ β − strong(κ)} is stationary in κ.

One additional information we get from theorem 5.8, is that every Woodin
cardinal κ is κ-Mahlo. On the contrary, it can not be weakly compact, as we
will see that the property of being a Woodin cardinal is Π1

1.

Superstrong cardinals

Definition 5.9. A cardinal κ is called superstrong, if there is a j : V ≺M with
critical point κ, and such that Vj(κ) ⊂M .

If a cardinal is superstrong, then it is Woodin and there are many Woodin
cardinals below it. In particular:

Theorem 5.10. Let κ be superstrong. Then κ is Woodin and there is a normal
ultrafilter D on κ such that

{λ < κ :Woodin(λ)} ∈ D.

Extenders

An extender is a set of measures, defined in a similar way we defined a measure
from a nontrivial embedding j : V ≺M .

Definition 5.11. Suppose that the critical point of j : V ≺ M is κ and κ ≤
γ ≤ j(κ).

(i) For every α ∈ [γ]<ω, Eα is a measure on [κ]<ω such that

X ∈ Eα ↔ α ∈ j(X).

(ii) The (κ, γ)-extender derived from j is the set E = {Eα : α ∈ [β]<ω}.

Every element E[α] of an extender (κ, γ), defines an ultrapower MEα
of V .

It is not hard to find embeddings iα,β : MEα
≺ MEβ

, for all α, β ∈ [γ]<ω, such
thatα ⊂ β. The collection {MEα

: α ∈ [γ]<ω} along with the embeddings iα,β,
forms a directed system of models. Thus there is a model ME , such that every
model Eα is elementary embedded in ME and ME is the union of the images
of Eα through those elementary embeddings. This idea is similar to that of
iterated ultrapowers. By studying the properties of extenders we can conclude
to the fact that they can be defined in ZFC without the assumption of the
existence of the embedding j.

The following characterizations of strong, Woodin and superstrong cardinals,
using extenders, imply that the correlated large cardinals can be defined in
ZFC.

Theorem 5.12.
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(i) κ is α-strong iff there is a (κ, |Vκ+α|+)-extender E such that Vκ+α ⊂ME

and α < jE(κ). Therefore, κ is strong iff there are such extenders for
every α.

(ii) κ is Woodin iff for all f ∈κ κ there is an α < κ and an extender E ∈ Vκ
such that:

– f ′′α ⊂ α;

– the critical point of jE is α;

– jE(f)(α) = f(α);

– VjE(f)(α) ⊂ME.

(iii) κ is superstrong iff there is a (κ, β)-extender E, β > κ, such that VjE(κ) ⊂
ME.

5.2 Strongly compact cardinals

Strongly compact cardinals have greater consistency strength than Woodin car-
dinals, but there is not a known connection between them and superstrong
cardinals. We define them below using elementary embeddings.

Definition 5.13. Suppose κ ≤ λ.

(i) κ is λ-compact, if there is an elementary embedding j : V → M with
critical point κ and such that:

X ⊂M ∧ |X | ≤ λ→ ∃Y ∈M (X ⊂ Y ∧M � |Y | < j(κ)).

(ii) κ is strongly compact if it is λ-compact for every λ ≥ κ.

Definition 5.14. For every x ∈ Pκ(X), x̂ = {y ∈ Pκ(X) : x ⊂ y}. A κ-
complete ultrafilter U on Pκ(X) is called a fine measure on Pκ(X), if ∀x ∈
Pκ(X) x̂ ∈ U .

Using complete filters, fine filters and infinitary languages, we can give the
following characterizations of strongly compact cardinals:

Lemma 5.15. For every regular cardinal κ the following are equivalent:

(i) κ is strongly compact.

(ii) For every set S, every κ-complete filter on S can be extended to a κ-
complete ultrafilter on S.

(iii) For every X, |X | ≥ κ, there is a fine measure on Pκ(X).

(iv) L satisfies the compactness theorem.
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Each of those definitions yields that strong cardinals can be defined in ZFC.
As we have already mentioned, the consistency strength of strong cardinals is

greater than that of Woodin cardinals, therefore greater than that of measurable
cardinals. We will state a stronger theorem towards this direction. In order to
do this we are going to define Mitchell’s order. Mitchell’s order assists us in
constructing measurable cardinals with greater consistency strength and such
that many measurable cardinals lie below them. For example, if D is a normal
measure on κ of order greater than 0, then {λ < κ : measurable(λ)} ∈ D.

Definition 5.16.

(i) Suppose κ is a measurable cardinal andD is the collection of all the normal
measures on κ. Mitchell’s order , is an order on D defined the following
way:

D1 < D2 ↔ D1 ∈MD2
.

(ii) It is easy to check that the above order is well-founded, thus we may define
o(D) = rank<(D), for every D ∈ D. By o(κ), we denote the supremum
of {o(D) : D ∈ D}.

Theorem 5.17. (Mitchell) If there is a strongly compact cardinal, there exists
an inner model with a measurable cardinal κ, such that o(κ) = κ++.

The following yields that if there is a strongly compact cardinal, then the
universe is not even relatively constructible.

Theorem 5.18. (Vopĕnka-Hrbác̆ek) If there is a strongly compact cardinal,
then for every set A, V 6= L[A].

We finally give the following result, which relates strongly compact cardinals
with the computation of the continuum function.

Theorem 5.19. (Solovay) If κ is strongly compact then the singular hypothesis
holds above κ.

5.3 Supercompact cardinals

Supercompact cardinals form a very important class of large cardinals since they
have strong consequences on the structure of V above them. It is hard though,
to approach the structure of the universe below them, because no procedure,
such as approximation with extenders, is known to work for them neither has
a canonical inner model been found for them yet. The consistency strength
of a supercompact cardinal is greater or equal to that of a strongly compact
cardinal, but it is not known if it is strictly above.

Definition 5.20.

(i) Suppose κ ≤ λ. κ is λ-supercompact if there is an embedding j : V ≺ M
such that:
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– the critical point of j is κ;

– j(κ) > λ;

– λM ⊂M .

(ii) κ is supercompact if it is λ-supercompact for all λ ≥ κ.

The following characterization of λ-supercompactness implies that it can
be defined in ZFC. The same of course holds for supercompactness. The
characterization uses normal filters on Pκ(λ) and it works in a similar way as
ultrafilters are used in the characterization of measurable cardinals.

Definition 5.21. A fine filter on Pκ(λ) is normal, if it is closed under diagonal
intersections of the form

△α<λXα = {x ∈ Pκ(λ) : x ∈
⋂

α∈x

Xα}.

The same way as we did for normal measures, we can prove the following
equivalence:

Lemma 5.22. A filter D over Pκ(λ) is normal iff every choice function1 on a
D-stationary set2 X is constant on a D-stationary set.

Theorem 5.23. If κ ≤ λ, then κ is λ-supercompact iff there is a normal ultra-
filter over Pκ(λ).

We give one more characterization of supercompactness, which introduces it
as a reflection principle.

Theorem 5.24. (Magidor) κ is supercompact iff for every α > κ there is a
β < κ and an embedding i : Vβ ≺ Vα with critical point δ, i(δ) = κ.

We present some results which -as we have already seen- are also true for
strong cardinals.

Theorem 5.25.

(i) If κ is 2κ-supercompact, then there is a normal ultrafilter D over κ such
that

{λ < κ : measurable(λ)} ∈ D.

(ii) If κ is γ-supercompact, then ∀α < κ 2α = α+ implies that ∀β ≤ γ 2β =
β+.

(iii) If κ is supercompact, then Vκ ≺2 V .

Finally, we see that supercompact cardinals have many measures and their
Mitchell order is high.

1∀x ∈ X \ ∅ f(x) ∈ x.
2If F is a filter on S then X ⊂ S is F -stationary if ∀Y ∈ F X ∩ Y 6= ∅.
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Theorem 5.26. Let κ be supercompact, then

(i) there are 22
κ

normal measures on κ;

(ii) for every λ ≥ κ there are 22
<λ

normal measures on Pκ(λ);

(iii) the Mitchell order of κ is (2κ)+.

5.4 Extendible cardinals and Vopĕnka’s princi-

ple

Here we see some large cardinal of even greater consistency strength.

Extendible cardinals

Definition 5.27. (α 6= 0)

(i) A cardinal κ is α-extendible if there is a β and an embedding i : Vκ+α → Vβ
with critical point κ and such that α < i(κ).

(ii) κ is extendible if it is α-extendible for every α.

The following theorem shows that the existence even of a 1-extendible car-
dinal implies the existence of many measurable cardinals.

Theorem 5.28. Suppose κ is 1-extendible. Then,

(i) κ is measurable;

(ii) there is a normal measure D on κ such that {α < κ : measurable(α)} ∈ D.

There is a deep connection between extendible and supercompact cardinals.
Although extendible cardinals are stronger, supercompact cardinal are above
every α-extendible.

Theorem 5.29. Suppose κ is extendible. Then,

(i) κ is supercompact;

(ii) there is a normal measure D on κ such that {α < κ : supercompact(α)} ∈
D.

Theorem 5.30.

(ii) Suppose κ is |Vκ+α|-supercompact. Then, there is a normal measure D on
κ such that {β < κ : α− extendible(β)} ∈ D.

(ii) If κ is α-extendible and β + 2 < α, then κ is |Vκ|-supercompact.

Finally, we give one important reflection property of extendible cardinals,
out of which, many consequences of the existence of extendible cardinals can be
derived.

Theorem 5.31. If κ is extendible, then Vκ ≺3 V .
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Vopĕnka’s principle

In contrast with the large cardinal axioms we have considered up to now,
Vopĕnka’s principle does not imply the existence of a specific large cardinal.
This is because it requests the existence of several elementary embeddings.

Definition 5.32. Vopĕnka’s principle (VP): Let C be a class of structures of
the language L. There are A,B ∈ C such that there is an embedding i : A ≺ B.

Vopĕnka’s principle is stronger than extendible cardinals:

Theorem 5.33. VP implies that the class of extendible cardinals κ, carrying a
normal measure D such that {λ < κ : extendible(λ)} ∈ D, is stationary on On.

We can restate VP, in terms of A-supercompact and A-extendible cardi-
nals, which are relativized versions of supercompact and extendible cardinals
respectively.

Definition 5.34. Let A be a class and κ a cardinal.

(i) κ is A-supercompact if for all α > κ there is a β < κ and an embedding

i : (Vβ ,∈, Vβ ∩ A) ≺ (Vα,∈, Vα ∩ A)

with critical point γ such that i(γ) = κ.

(ii) κ is A-extendible if for all α > κ there is an ordinal β and an embedding

i : (Vα,∈, Vα ∩A) ≺ (Vβ ,∈, Vβ ∩ A)

with critical point κ and such that α < i(κ) < β.

Theorem 5.35. The following are equivalent:

(i) VP;

(ii) for every class A there is an A-extendible cardinal;

(iii) for every class A there is an A-supercompact cardinal.

Finally, we present the strongest large cardinal axioms known.

5.5 Huge cardinals and I0-I3

Huge cardinals

Definition 5.36.

(i) κ is n-huge if there is an embedding j : V ≺ M with critical point κ and
such that jn(κ)M ⊂M .

(ii) κ is huge if it is 1-huge.
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The following equivalent form of n-hugeness, yields that it can be defined in
ZFC.

Theorem 5.37. A cardinal κ is n-huge iff there are cardinals κ = λ0 < λ1 <
. . . < λn = λ and a κ-complete normal ultrafilter D over P (λ) such that for
every i < n, {x : ordtype(x ∩ λi+1) = λi} ∈ D.

Although huge cardinals have greater consistency strength, the existence of
a huge cardinal does not imply the existence of a supecompact cardinal. Even
more:

Theorem 5.38. If there are both a huge and a supercompact cardinal, then the
least huge cardinal is below the least supercompact cardinal.

Theorem 5.39. cons(ZF + ∃κ huge(κ))→ cons(ZF + V P ). In particular, if
κ is huge, then Vκ � V P .

It is known that n-huge cardinals form an increasing in strength hierarchy.

Theorem 5.40. If κ is n + 1-huge, then there is a normal measure D on κ
such that {λ < κ : n− huge(λ)}.

I0-I3

The principles I0-I3 are very close to inconsistency since they require the exis-
tence of embeddings close to j : V ≺ V . We define them below and place them
in the hierarchy of large cardinals.

Definition 5.41.

I0: There is an α and an i : L(Vα+1) ≺ Vα+1 with critical point strictly less
than α.

I1: There is an α and an embedding i : Vα+1 ≺ Vα+1.

I2: There is an α and an embedding j : V ≺M such that Vα ⊂M , the critical
point of j is strictly less than α and j(α) = α.

I3: There is an α and an embedding i : Vα ≺ Vα.

Theorem 5.42.

I0→ I1→ I2→ I3.

Theorem 5.43. If I3 holds and the critical point of the corresponding embed-
ding j is κ, then there is a normal measure D on κ such that {λ < κ : ∀n <
ω n− huge(κ)} ∈ D.
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5.6 Kunen’s theorem

Up to now we have used elementary embeddings in order to define new large
cardinal axioms. We may notice that as we try to increase the consistency
strength of those axioms, we defined each time an elementary embedding closer
to j : V ≺ V . In the following two we investigate whether such an embedding
exists and in the case it exist we state its consequences. By a theorem due to
Kunen, we see that if we extend the language of set with a function symbol j such
that j is an elementary embedding and it satisfies all instances of replacement for
the formulas of the extended language. On the contrary, if we do not require that
j satisfies the replacement axiom we cannot get to a contradiction as in Kunen’s
theorem. This situation is described by the wholeness axiom, introduced by
Corazza, which is a large cardinal axiom with consistency strength between
n-huge3 cardinals and I3.

We will show that there is no extension (V,∈, j) of V such that j is a non-
trivial embedding j : V ≺ V which satisfies all replacement for every formula
φ of the language (∈, j). In order to achieve this, we will first define ω-Jónsson
functions that will help us conclude to a contradiction.

Definition 5.44. A function f :ω x → x is called ω-Jónsson on x if y ⊂
x ∧ |y| = |x| → f ′′ωy = x.

Theorem 5.45. (Erdös-Hajnal) For every λ ≥ ω, there is an ω-Jónsson func-
tion over λ.

Theorem 5.46. If j : V ≺M , then M 6= V .

Proof. Suppose M = V , the critical point of j is κ and λ = sup{jn(κ) : n < ω}.
We have that j(λ) = sup{jn+1(κ) : n < ω} = λ.

On the other hand, there is an ω-Jónsson function f over λ. j(f) is also ω-
Jónsson. Let X = j′′λ. |X | = λ, thus there is a x ∈ω X such that j(f)(x) = κ.
If x(n) = j(αn) for every n < ω, then x = j(y), where ∀n < ω y(n) = αn. The
latter means that κ = j(f)(j(y)) = j(f(y)) which is a contradiction, as κ is the
critical point of j.

The following theorem is similar to the above, and it emerges from some
other proofs of 5.46.

Theorem 5.47.

(i) For any α there is no j : Vα+2 ≺ Vα+2.

(ii) If α is the least ordinal above the critical point of j, such that j(α) = α,
then j′′α /∈M .

3In fact super-n-huge which are stronger than n-huge.
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5.7 The wholeness axiom

As we have already seen, the axiom of replacement was used in order to construct
the sequence {jn(κ)}n<ω. Hence, in the case we do not require that j satisfies
the replacement axiom the proof is no longer valid. This situation is captured
by the notion of weak definability.

Definition 5.48. Let M be a model of ZF and X ⊂M . X is weakly definable
in M if (M,∈, X) satisfies the axiom of replacement for the extended language.

Definition 5.49. Wholeness Axiom (WA): There is a nontrivial embedding
j;V ≺ V which is not weakly definable in V and such that for every set A, j ↾ A
is a set.

We call j a WA-embedding.

The request for j ↾ A to be a set is necessary in order not to lose all the
strength obtained by the replacement axiom. This specific part of WA places it
high in the hierarchy of large cardinals. In particular:

Theorem 5.50. Let j : V ≺ V be WA-embedding with critical point κ. Then,
κ is n-huge for every n < ω.

Theorem 5.51. If α is the least limit ordinal for which Vα ≺ Vα, then Vα �

WA+ I3. Therefore, cons(ZFC+ I3)→ cons(ZFC+WA) while cons(ZFC+
WA) 6→ cons(ZFC + I3).

Following the proof of Kunen’s theorem we can disprove the existence of
some sets if WA holds. For example:

Theorem 5.52. If j : V ≺ V is an elementary embedding with critical point
κ, then the sequence κ, j(κ), jn(κ), . . . is not weakly definable in V and it is
unbounded in On.

We finish this section with an important reflection principle emerging from
WA.

Theorem 5.53. If j : V → V is a WA-embedding, then ∀n < ωVjn(κ) ≺ V .
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Vopĕnka’s principle, 76

WA-embedding, 79
weakly compact cardinal, 33
weakly definable, 79
weakly inaccessible cardinal, 32
weakly Mahlo cardinal, 32
well-founded relation, 5
Wholeness Axiom, 79
Woodin cardinal, 70


