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Abstract

Communication complexity is now an established research area of Theoretical
Computer Science. It has many applications and it has proved to be a versatile
tool in proving lower bounds for many different models of computation. In this
dissertation we focus on information-theoretic methods for proving lower bounds
in the randomized communication complexity of functions. In particular, we show
how these methods can be used to prove lower bounds on the randomized two-
party communication complexity of functions that arise from read-once boolean
formulae.

A read-once boolean formula is a formula in propositional logic with the prop-
erty that every variable appears exactly once. Such a formula can be represented
by a tree, where the leaves correspond to variables, and the internal nodes are
labeled by binary connectives. Under certain assumptions, this representation is
unique. Thus, one can define the depth of a formula as the depth of the tree that
represents it.

The complexity of the evaluation of general read-once formulae has attracted
interest mainly in the decision tree model. In the communication complexity
model many interesting results deal with specific read-once formulae, such as
DISJOINTNESS and TRIBES. In this paper we use information theory methods
to prove lower bounds that hold for any read-once formula. Our lower bounds
are of the form n(f)/cd(f), where n(f) is the number of variables and d(f) is the
depth of the formula, and they are optimal up to the constant in the base of the
denominator.
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Chapter 1

Introduction

A landmark result in the theory of two-party communication complexity is the lin-
ear lower bound on the randomized communication complexity of set-disjointness
proved by [12]. [16] gave a simplified proof, and [3] gave an elegant information
theory proof, building on the informational complexity framework of [5]. The
first application of information-theoretic methods in communication complexity
lower bounds can be traced to [1].

Let us define a two-party boolean function to be a boolean function f together
with a partition of its variables into two parts. We usually refer to the variables
in the two classes as x and y and write f(x, y) for the function. A two-party
function is associated with the following communication problem: Given that
Alice gets x and Bob gets y, compute f(x, y).

If f is any n-variate boolean function and g is a 2-variate boolean function,
we define fg to be the two-party function taking two n bit strings x and y and de-
fined to be fg(x, y) = f(g(x1, y1), . . . , g(xn, yn)). The disjointness communication
problem can be reformulated as a boolean function computation problem: Alice
gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n and they want to compute (ORn)∧(x, y),
where ORn is the n-wise OR function.

[11], extended the techniques for disjointness in order to prove a linear
lower bound for the randomized complexity on the function (TRIBESs,t)∧ where
TRIBESs,t is the function taking input (zi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ t) and equal to
TRIBESs,t(z) =

∧s
i=1

∨t
j=1 zi,j .

The functions ORn and TRIBESs,t are both examples of read-once boolean
functions. These are functions that can be represented by boolean formulae
involving ∨ and ∧, in which each variable appears (possibly negated) at most
once. Such a formula can be represented by a rooted ordered tree, with nodes
labeled by ∨ and ∧, and the leaves labeled by variables. It is well known (see
e.g. [9]) that for any read-once function f , f has a unique representation (which
we call the canonical representation of f) as a tree in which the labels of nodes
on each root-to-leaf path alternate between ∧ and ∨. The depth of f , d(f), is
defined to be the maximum depth of a leaf in the canonical representation, and
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n(f) is the number of variables.
We want to consider communication problems derived from arbitrary read-

once formulae. Based on the examples of ORn and TRIBESs,t mentioned above
it seems natural to consider the function f∧, but in the case that f is the n-wise
AND, f∧ trivializes (and can be computed with a two-bit protocol), and the more
interesting function to consider is f∨.

Denote by Rδ(f) the δ-error randomized communication complexity of f (see
the paragraph on “communication complexity” in 1.1 for more details). We prove
that for any read-once function f , at least one of the functions f∨ and f∧ has
high δ-error communication complexity.

Theorem 1. For any read-once function f with d(f) ≥ 1,

max{Rδ(f∧), Rδ(f∨)} ≥ (1− 2
√
δ) · n(f)

8d(f)
.

This result is, in some sense, best possible (up to the constant 8 in the base
of d(f)). That is, there is a constant c > 1, such that if f is given by a t-
uniform tree of depth d (in which each non-leaf node has t children and all leaves
are at the same depth, and so n = td), then f∧ and f∨ both have randomized
communication protocols using O(n(f)/cd(f)) bits. This follows from the fact (see
[18]) that f has a randomized decision tree algorithm using an expected number
O(n(f)/cd(f)) of queries, and any decision tree algorithm for f is easily converted
to a communication protocol for f∨ or f∧ having comparable complexity. In fact,
for t-uniform trees, we can improve the lower bound.

Theorem 2. For any read-once function f that can be represented by a t-uniform
AND/OR tree of depth d ≥ 1,

max{Rδ(f∧), Rδ(f∨)} ≥ (1− 2
√
δ) · t(t− 1)d−1

4d
.

Independently, [10], also using the informational complexity approach, ob-
tained the weaker bound (1− 2

√
δ) · n(f)/

(
d(f)!16d(f)

)
.

As a simple corollary of 1 we obtain a similar lower bound for the more general
class of read-once threshold functions. Recall that a t-out-of-k threshold gate is
the boolean function with k inputs that is one if the sum of the inputs is at least
t. A threshold tree is a rooted tree whose internal nodes are labeled by threshold
gates and whose leaves are labeled by distinct variables (or their negations). A
read-once threshold function is a function representable by a threshold tree. We
prove the following bound.

Theorem 3. For any read-once threshold function f with d(f) ≥ 1,

max{Rδ(f∧), Rδ(f∨)} ≥ (1− 2
√
δ) · n(f)

16d(f)
.
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This result should be compared with the result of [9] that every read-once
threshold function f has randomized decision tree complexity at least n(f)/2d(f).
A lower bound on communication complexity of f∨ or f∧ gives the same lower
bound on decision tree complexity for f , however, the implication goes only
one way, since communication protocols for f∨ and f∧ do not have to come
from a decision tree algorithm for f , and can be much faster. (For example,
(ANDn)n is equal to AND2n that has randomized decision tree complexity Θ(n)
but communication complexity 2.) Thus, up to the constant in the base of the
denominator, our result can be viewed as a strengthening of the decision tree
lower bound.

Our results are interesting only for formulae of small depth. For example, for
f that is represented by a binary uniform tree n(f)/8d(f) < 1, while there is a
simple

√
n(f) lower bound that follows by embedding either a

√
n(f)-wise OR or

a
√
n(f)-wise AND. Binary uniform trees require Ω(

√
n(f)) communication even

for quantum protocols. This is because
√
n(f)-wise PARITY can be embedded

in such a tree (see [8]), and then the bound follows from the lower bound for
the generalized inner product function (see [6] and [13]). This can also be shown
by methods of [15], which seem more promising towards a lower bound on the
quantum communication complexity of arbitrary AND/OR trees.

Finally, we consider the more general setting, where f(x, y) is a two-party
read-once formula with its variables partitioned arbitrarily between Alice and
Bob. This situation includes the case where the function is of the form f∨ or
f∧ and the variable partition is the natural one indicated earlier. As the case
f = ANDn shows, we don’t have a lower bound on Rδ(f) of the form n(f)/cd(f).
However we can get an interesting general lower bound.

Consider the deterministic simultaneous message model, which is perhaps
the weakest non-trivial communication complexity model. In this model Alice
and Bob are trying to communicate f(x, y) to a third party, the referee. Alice
announces some function value mA(x) and simultaneously Bob announces a func-
tion value mB(y), and together mA(x) and mB(y) are enough for the referee to
determine f(x, y). The deterministic simultaneous message complexity, denoted
D||(f), is the minimum number of bits (in worst case) that must be sent by Alice
and Bob so that the referee can evaluate f . As a consequence of 8 we prove the
following.

Theorem 4. For any two-party read-once function f with d(f) ≥ 1,

Rδ(f) ≥ (1− 2
√
δ) · D||(f)

d(f) · 8d(f)−1
.

1.1 Notation, terminology, and preliminaries

In this section we establish notation and terms that we will use to describe the
basic objects that we will be dealing with. We list standard definitions and
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state some basic inequalities in information theory. We discuss communication
complexity and set up its connection with information theory.

Definitions pertaining to rooted trees. All trees in this paper are rooted.
For a tree T we write VT for the set of vertices, LT for the set of leaves, NT = |LT |
for the number of leaves, and dT for the depth of T . For a vertex u, path(u) is
the set of vertices on a path from u to the root (including both the root and u).

We write T = T1 ◦ · · · ◦ Tk when, for each j ∈ {1, . . . , k}, Tj is the subtree
rooted at the j-th child of the root of T .

A tree is called t-uniform if all its leaves are at the same depth d, and every
non-leaf node has exactly t children.

A tree is in standard form if there are no nodes with exactly one child. For
example, a standard binary tree is one where every internal node has exactly two
children.

A full binary subtree of a tree T is a binary tree in standard form that is
contained in T , contains the root of T , and whose leaf-set is a subset of the
leaf-set of T . Denote by FBST the set of full binary subtrees of T .

Definitions pertaining to boolean functions. We denote by [n] the set
{1, . . . , n} of integers. Let f : S1× · · · × Sn → R be a function and suppose that,
for i ∈ [n], hi : Zi → Si. For H = 〈h1, . . . , hn〉, let fH : Z1×· · ·×Zn → R denote
the function defined by fH(z1, . . . , zn) = f(h1(z1), . . . , hn(zn)). When hj = h for
all j ∈ [n], we write fh = fH.

A tree circuit is a rooted tree in which every leaf corresponds to an input
variable (or its negation), and each gate comes from the set {AND,OR,NAND,
NOR}. We write fC for the function represented by a tree circuit C. An
AND/OR tree is a tree circuit with gates AND and OR. The tree circuit is
read-once if the variables occurring at leaves are distinct; all tree circuits in this
paper are assumed to be read-once. A Boolean function f is read-once if it can
be represented by a read-once tree circuit. The depth of a read-once function f ,
denoted d(f), is the minimum depth of a read-once tree circuit that computes it.
As mentioned in the introduction, it is well-known that every read-once function
f has a unique representation, called the canonical representation of f , whose
tree is in standard form and such that the gates along any root to leaf path
alternate between ∧ and ∨. It is easy to show that the depth of the canonical
representation is d(f), that is, the canonical representation has minimum depth
over all read-once tree circuits that represent f .

If T is any rooted tree, we write fT for the boolean function obtained by
associating a distinct variable xj to each leaf j and labeling each gate by a NAND
gate. We use symbol ‘Z’ for NAND.



Chapter 2

Information theory

2.1 Random variables and distributions.

We consider discrete probability spaces (Ω, ζ), where Ω is a finite set and ζ is a
nonnegative valued function on Ω summing to 1. If (Ω1, ζ1), . . . , (Ωn, ζn) are such
spaces, their product is the space (Λ, ν), where Λ = Ω1×· · ·×Ωn is the Cartesian
product of sets, and for ω = (ω1, . . . , ωn) ∈ Λ, ν(ω) =

∏n
j=1 ζj(ωj). In the case

that all of the (Ωi, ζi) are equal to a common space (Ω, ζ) we write Λ = Ωn and
ν = ζn.

We use uppercase for random variables, as in X,Y,D, and write in bold those
that represent vectors of random variables. For a variable X with range X that
is distributed according to a probability distribution µ, i.e. Pr[X = x] = µ(x),
we write X ∼ µ. If X is uniformly distributed in X , we write X ∈R X .

Unless otherwise stated, all random variables take on values from finite sets.

2.2 Entropy and Mutual Information.

Let X,Y, Z be random variables on a common probability space, taking on values,
respectively, from finite sets X ,Y,Z. Let A be any event. The entropy of X, the
conditional entropy of X given A, and the conditional entropy of X given Y are
respectively (we use log for log2)

H(X) = −
∑
x∈X

Pr[X = x] · log Pr[X = x],

H(X |A) = −
∑
x∈X

Pr[X = x |A] · log Pr[X = x |A],

H(X |Y ) =
∑
y∈X

Pr[Y = y] ·H(X |Y = y).

The mutual information between X and Y is

I(X ; Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X)
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and the conditional mutual information of X and Y given Z is

I(X ; Y |Z) = H(X |Z)−H(X |Y, Z)
= H(Y |Z)−H(Y |X,Z)

=
∑
z∈Z

Pr[Z = z] · I(X ; Y |Z = z).

We will need the following facts about the entropy. (See [7, Chapter 2], for
proofs and more details.)

Proposition 5. Let X,Y, Z be random variables.

1. H(X) ≥ H(X |Y ) ≥ 0.

2. If X is the range of X, then H(X) ≤ log |X |.

3. H(X,Y ) ≤ H(X) + H(Y ) with equality if and only if X and Y are in-
dependent. This holds for conditional entropy as well. H(X,Y |Z) ≤
H(X |Z) + H(Y |Z) with equality if and only if X and Y are independent
given Z.

The following proposition makes mutual information useful in proving direct-
sum theorems.

Proposition 6 ([3]). Let Z = 〈Z1, . . . ,Zn〉,Π,D be random variables. If the Zj’s
are independent given D, then I(Z ; Π |D) ≥

∑n
j=1 I(Zj ; Π |D).

Proof. By definition I(Z ; Π |D) = H(Z |D) − H(Z |Π,D). By 3, H(Z |D) =∑
j H(Zj |D) and H(Z |Π,D) ≤

∑
j H(Zj |Π,D). The result follows.



Chapter 3

Communication complexity

In this work we will be dealing with the two-party private-coin randomized com-
munication model, introduced by [19]. Alice is given x ∈ X and Bob y ∈ Y.
They wish to compute a function f : X × Y → {0, 1} by exchanging messages
according to a protocol Π. Let the random variable Π(x, y) denote the transcript
of the communication on input 〈x, y〉 (where the probability is over the random
coins of Alice and Bob) and Πout(x, y) the outcome of the protocol. We call Π
a δ-error protocol for f if, for all 〈x, y〉, Pr[Πout(x, y) = f(x, y)] ≥ 1 − δ. The
communication cost of Π is max |Π(x, y)|, where the maximum is over all input
pairs 〈x, y〉 and over all coin tosses of Alice and Bob. The δ-error randomized
communication complexity of f , denoted Rδ(f), is the cost of the best δ-error
protocol for f . (See [14] for more details.)

3.1 Communication problems associated with
boolean functions.

If f is an arbitrary n-variate boolean function, and g is a 2-variate boolean
function, we denote by fg the two-party boolean function given by fg(x, y) =
f(g(x1, y1), . . . , g(xn, yn)). Our goal is to prove Theorems 1 and 2, which say
that for any read-once boolean function f , either f∨ or f∧ has high randomized
communication cost. To do this it will be more convenient to consider fZ for
functions f that come from trees using only NAND gates. We first prove the
following lemma.

For f1, f2 : {0, 1}n → {0, 1}, we write f1 ≡ f2 when (∃σ ∈ {0, 1}n)(∀x ∈
{0, 1}n)(f1(x) = f2(σ ⊕ x)), where σ ⊕ x is the bitwise XOR of σ and x.

Lemma 7. Let C be an AND/OR tree in canonical form and let T be the un-
derlying tree. Then, fC ≡ fT when the root of C is labeled by an OR gate, and
fC ≡ ¬fT when the root of C is labeled by an AND gate.

Proof. We proceed by induction on dT . When dT = 1, the case with an AND at
the root is trivial. For OR we observe that fC(x) =

∨
j xj = ¬

∧n
j ¬xj = fT (¬x).
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Now suppose dT > 1. Let C = C1 ∧ · · · ∧ Ck and recall that C is in canonical
form; thus, each Cj has an OR at the root. It follows by induction that fC(x) ≡∧
j fTj = ¬fT (x). If C = C1 ∨ · · · ∨Ck, then we have fC =

∨
j fCj = ¬

∧
j ¬fCj ≡

¬
∧
j fTj = fT .

Our lower bounds follow from the following main theorem.

Theorem 8. 1. Let T be a tree in standard form with dT ≥ 1.

Rδ(f
Z
T ) ≥ (2− 4

√
δ) · NT

8dT
.

2. If T is, in addition, a t-uniform tree of depth dT ≥ 1, then

Rδ(f
Z
T ) ≥ (1− 2

√
δ) · t(t− 1)dT−1

4dT
.

To deduce Theorems 1 and 2 we use the following proposition.

Proposition 9. Let f be a read-once formula. Then there is a tree T in standard
form such that (1) Rδ(f

Z
T ) ≤ max{Rδ(f∧), Rδ(f∨)}, (2) NT ≥ n(f)/2, (3) dT ≤

d(f). Moreover, if the canonical representation of f is a uniform tree, NT = n(f).

Proof. Let C be the representation of f in canonical form. Define tree circuits
C1 and C2 as follows. To obtain C1 delete all leaves that feed into ∧ gates,
and introduce a new variable for any node that becomes a leaf. Let C1 be the
canonical form of the resulting tree. Let C2 be obtained similarly by deleting
all leaves that feed into ∨ gates. Let f1 and f2, respectively, be the functions
computed by C1 and C2. Let T1 and T2 be the trees underlying C1 and C2

respectively. We take T to be whichever of T1 and T2 has more leaves. Clearly
conditions (2) and (3) above will hold. If the underlying tree of C is uniform, then
one of C1, C2 will have n(f) leaves; so in the uniform case we have NT = n(f).
Condition (1) follows immediately from the following claim.

Claim 10. (1) Rδ(f∧) ≥ Rδ(f∧1 ). (2) Rδ(f∧1 ) = Rδ(f
Z
T1

). (3) Rδ(f∨) ≥ Rδ(f∨2 ).
(4) Rδ(f∨2 ) = Rδ(f

Z
T2

).

To prove the first part of the claim, it suffices to observe that any communi-
cation protocol for f∧ can be used as a protocol for f∧1 . In particular, given an
input (x, y) to f∧1 Alice and Bob can—without any communication—construct
input (x′, y′) to f∧ such that f∧(x′, y′) = f∧1 (x, y). This is done as follows. If
j is a leaf of C that is also a leaf of C1, then Alice sets x′j = xj and Bob sets
y′j = yj . Suppose j is a leaf of C that is not a leaf of C1. If the parent p(j) of j
is a leaf of C1, then Alice sets x′j = xp(j) and Bob sets y′j = yp(j). If p(j) is not a
leaf of C1, then Alice sets x′j = 1 and Bob sets y′j = 1. It is easy to verify that
f∧(x′, y′) = f∧1 (x, y). The second part of the claim follows from 7. The proofs of
parts 3 and 4 follow similarly.
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3.2 Communication complexity lower bounds via in-
formation theory.

The informational complexity paradigm, introduced by [5], and used in [17, 2,
4, 3, 11], provides a way to prove lower bounds on communication complexity
via information theory. We are given a two-party function f and we want to
show that any δ-error randomized communication protocol Π for f requires high
communication. We introduce a probability distribution over the inputs to Alice
and Bob. We then analyze the behavior of Π when run on inputs chosen ran-
domly according to the distribution. The informational complexity is the mutual
information of the string of communicated bits (the transcript of Π) with Alice
and Bob’s inputs, and provides a lower bound on the amount of communication.

More precisely, let Ω = (Ω, ζ) be a probability space over which are defined
random variables X = 〈X1, . . . , Xn〉 and Y = 〈Y1, . . . , Yn〉 representing Alice
and Bob’s inputs. The information cost of a protocol Π with respect to ζ is
defined to be I(X,Y ; Π(X,Y)), where Π(X,Y) is a random variable following
the distribution of the communication transcripts when the protocol Π runs on
input 〈X,Y〉 ∼ ζ. The δ-error informational complexity of f with respect to
ζ, denoted ICζ,δ(f), is minΠ I(X,Y ; Π(X,Y)), where the minimum is over all
δ-error randomized protocols for f .

Mutual information may be easier to handle if one conditions on the appro-
priate random variables. To that end, [3] introduced the notion of conditional
information cost of a protocol Π with respect to an auxiliary random variable. Let
(Ω, ζ) be as above, and let D be an additional random variable defined on Ω. The
conditional information cost of Π conditioned on D with respect to ζ is defined to
be I(X,Y ; Π(X,Y) |D), where Π(X,Y) is as above and (〈X,Y〉,D) ∼ ζ. The
δ-error conditional informational complexity of f conditioned on D with respect
to ζ, denoted ICζ,δ(f |D), is minΠ I(X,Y ; Π(X,Y) |D), where the minimum is
over all δ-error randomized protocols for f .

Conditional informational complexity provides a lower bound on random-
ized communication complexity, as shown by the following calculation. By
definition of mutual information I(X,Y ; Π(X,Y) |D) = H(Π(X,Y) |D) −
H(Π(X,Y) |X,Y,D). Applying in turn parts (i) and (ii) of 5 gives that, for
any δ-error protocol Π, I(X,Y ; Π(X,Y) |D) ≤ H(Π(X,Y)) ≤ Rδ(f).

3.3 The methods of Jayram et al. [3]

[3] introduced new techniques for proving lower bounds on information cost. In
this section we summarize their method and list the results and definitions from
[3] that we will use.

Their methodology has two main parts. In the first part they make use
of 6 to obtain a direct-sum theorem for the informational complexity of the
function. This works particularly well with functions of the form fh(x,y) =
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f(h(x1, y1), . . . , h(xn, yn)). Before stating the direct-sum theorem, we need some
definitions.

Definition 11 (Sensitive input). Consider f : S1 × · · · × Sn → R, a family of
functions H = 〈hj : Zj → Sj〉j∈[n], and z = 〈z1, . . . , zn〉 ∈ Z1 × · · · × Zn. For
j ∈ [n], u ∈ Zj, let z[j, u] = 〈z1, . . . , zj−1, u, zj+1, . . . , zn〉. We say that z is
sensitive for fH if (∀j ∈ [n])(∀u ∈ Zj)(fH(z[j, u]) = hj(u)).

For an example, consider the function DISJn(x,y) =
∨n
j=1(xj ∧ yj). Any

input 〈x,y〉 such that, for all j ∈ [n], xj ∧ yj = 0, is sensitive.

Definition 12 (Collapsing distribution, [3]). Let f,H be as in 11. Call a distri-
bution µ over Z1 × · · · × Zn collapsing for fH, if every z in the support of µ is
sensitive.

Theorem 13 ([3]). Let f : Sn → {0, 1}, and h : X × Y → S. Consider random
variables X = 〈X1, . . . , Xn〉 ∈ X n,Y = 〈Y1, . . . , Yn〉 ∈ Yn,D = 〈D1, . . . , Dn〉,
and Z = 〈Z1, . . . , Zn〉, where Zj = 〈Xj , Yj , Dj〉 for j ∈ [n].

Assume that {Zj}j∈[n] is a set of mutually independent variables, and Zj ∼ ζ
for all j ∈ [n] (thus, Z ∼ ζn). If, for all j ∈ [n], Xj and Yj are independent given
Dj, and the marginal distribution of (X,Y) is a collapsing distribution for fh,
then ICζn,δ(fh |D) ≥ n · ICζ,δ(h |D).

Defining a distribution ζ satisfying the two requirements asked in 13, moves
the attention from ICζn,δ(fh |D) to ICζ,δ(h |D). For example, in [3] it is shown
how to define ζ when fh is DISJn(x,y) =

∨n
j=1(xj ∧ yj). Then one only has to

deal with ICζ,δ(h |D), where h(x, y) = x ∧ y.
The second part of the method is a framework for proving lower bounds on

information cost. The first step consists of a passage from mutual information to
Hellinger distance.

Definition 14. (Hellinger distance.) The Hellinger distance between probability
distributions P and Q on a domain Ω is defined by

h(P,Q) =
√

1
2

∑
ω∈Ω

(√
Pω −

√
Qω
)2
.

We write h2(P,Q) for (h(P,Q))2.

Lemma 15 ([3]). Let Φ(z1), Φ(z2), and Z ∈R {z1, z2} be random vari-
ables. If Φ(z) is independent of Z for each z ∈ {z1, z2}, then I(Z ; Φ(Z)) ≥
h2(Φ(z1),Φ(z2)).

The following proposition states useful properties of Hellinger distance. They
reveal why Hellinger distance is better to work with than mutual information.

Proposition 16 (Properties of Hellinger distance, [3]).
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1. (Triangle inequality.) Let P,Q, and R be probability distributions over do-
main Ω; then h(P,Q) + h(Q,R) ≥ h(P,R). It follows that the square of the
Hellinger distance satisfies a weak triangle inequality:

h2(P,Q) + h2(Q,R) ≥ 1
2 h2(P,R).

2. (Cut-and-paste property.) For any randomized protocol Π and for any
x, x′ ∈ X and y, y′ ∈ Y,

h(Π(x, y),Π(x′, y′)) = h(Π(x, y′),Π(x′, y)).

3. (Pythagorean property.) For any randomized protocol Π and for any x, x′ ∈
X and y, y′ ∈ Y,

h2(Π(x, y),Π(x′, y)) + h2(Π(x, y′),Π(x′, y′)) ≤ 2 h2(Π(x, y),Π(x′, y′)).

4. For any δ-error randomized protocol Π for a function f , and for any two
input pairs (x, y) and (x′, y′) for which f(x, y) 6= f(x′, y′),

h2(Π(x, y),Π(x′, y′)) ≥ 1− 2
√
δ.

After an application of 15 we are left with a sum of Hellinger distance terms,
which we need to lower bound. Applying properties (i)–(iii) several times we can
arrive at a sum of terms different than the ones we started with. To obtain a
lower bound we would like the final terms to include terms to which Property 4
can be applied.
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Chapter 4

Read-once boolean formulae

Let T = T1 ◦ · · · ◦Tn be a tree in standard form computing a function fT . A first
step towards simplifying the informational complexity of fZ

T would be to apply
the following straightforward generalization of 13.

Theorem 17. Consider a function f : S1×· · ·×Sn → {0, 1}, a family of functions
H = 〈hj : Xj × Yj → Sj〉j∈[n], random variables X = 〈X1, . . . , Xn〉 ∈ X1 × · · · ×
Xn,Y = 〈Y1, . . . , Yn〉 ∈ Y1 × · · · × Yn,D = 〈D1, . . . , Dn〉, and Z = 〈Z1, . . . , Zn〉,
where Zj = 〈Xj , Yj , Dj〉 for j ∈ [n].

Assume that {Zj}j∈[n] is a set of mutually independent variables, and Zj ∼ ζj
for all j ∈ [n] (thus, Z ∼ ζ1 · · · ζn). If, for all j ∈ [n], Xj and Yj are independent
given Dj, and the marginal distribution of (X,Y) is a collapsing distribution for
fH, then ICζ1···ζn,δ(f

H |D) ≥
∑n

j=1 ICζj ,δ(hj |Dj).

One can apply 17 to the function fZ
T , with f the n-bit NAND and hj = fTj ,

for j ∈ [n]. However, this won’t take us very far. The problem is that if
µ—the marginal distribution of 〈X,Y〉—is collapsing for fT , then the sup-
port of µ is a subset of (fH)−1(0). Therefore, we will inherit for each sub-
tree a distribution µj with a support inside h−1

j (1). But the support of a
collapsing distribution should lie inside h−1

j (0). This means that we cannot
apply 17 repeatedly. This problem arose in [11] when studying the function
TRIBESm,n(x,y) =

∧m
k=1 DISJn(xk,yk) =

∧m
k=1

∨n
j=1(xkj ∧ ykj). [11] managed

to overcome this problem by proving a more complicated direct-sum theorem for
a non-collapsing distribution for DISJ. Inspired by their idea, we show how to
do the same for arbitrary read-once boolean functions.

The information cost of a protocol Π that we will employ for our proof will
have the form I(X,Y ; Π(X,Y) |Γ,D), where random variables Γ and D are
auxiliary variables that will be used to define the distribution over the inputs.
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4.1 Further definitions on trees

We proceed with definitions of objects that will be needed to finally define a
distribution ζ for (〈X,Y〉, 〈Γ,D〉), which will give meaning to ICζ,δ(f

Z
T |Γ,D) =

minΠ I(X,Y ; Π(X,Y) |Γ,D).

Definition 18. (Valid coloring.) For our purposes, a coloring of a tree T is a
partition of VT into two sets γ = 〈Wγ ,Rγ〉. The vertices of Wγ are said to be
white and the vertices of Rγ are said to be red. A coloring is valid if it satisfies
the following conditions.

1. The root is white.

2. A white node is either a leaf or exactly one of its children is red.

3. A red node is either a leaf or exactly two of its children are red.

Example. For a standard binary tree, a valid coloring paints all nodes on some
root-to-leaf path white and all the rest red. Thus, the number of valid colorings
equals the number of leaves.

Consider now a t-uniform tree T , colored properly by γ. Each white node has
exactly one red child that is the root of a red binary subtree. For t > 2 there
will be two kinds of white leaves: those that have no red nodes on the path that
connects them to the root, and those that have at least one red node on that
path. Notice that the union of a white leaf of the first kind, the corresponding
root-to-leaf path, and the red binary subtrees that are “hanging” from the white
nodes on the path, form a full binary subtree S of T . Furthermore, the restriction
of γ on S, denoted γS , is a valid coloring for S.

Definitions related to colorings. We note some properties of valid colorings
and give further definitions of related objects. Consider a tree T and a valid
coloring γ = 〈Wγ ,Rγ〉.

(1) The red nodes induce a forest of binary trees in standard form called the
red forest.

(2) We can define a one-to-one correspondence between the trees in the red
forest and internal white nodes of T as follows. For each white node w, its unique
red child is the root of one of the full binary trees. We let RT(w) = RTγ,T (w)
denote the set of vertices in the red binary tree rooted at the red child of w. (For
convenience, if w is a leaf, RT(w) is empty.)

(3) The principal component of γ is the set of white nodes whose path to the
root consists only of white nodes. A principal leaf of γ is a leaf belonging to the
principal component. Let PLT (γ) denote the set of principal leaves of γ.

(4) A full binary subtree S of T (i.e. S ∈ FBST ) is said to be compatible with
γ, written S ∝ γ, if S has exactly one white leaf. (Notice that, since γ is valid,
this leaf would have to be a principal leaf. Thus, S ∝ γ is equivalent to saying
that the restriction of γ on VS is a valid coloring for S.)
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(5) Define FBST (γ) = {S ∈ FBST |S ∝ γ}. This set is in one-to-one corre-
spondence with the set PLT (γ) of principal leaves. If u is a principal leaf, then
the set path(u)∪

⋃
w∈path(u) RT(w) induces a tree Fγ(u) that belongs to FBST (γ),

and conversely if S is in FBST (γ), then its unique white leaf u is principal and
S = Fγ(u).

(6) Define the positive integers mγ,T = |FBST (γ)| = |PLT (γ)|, mT =∑
γmγ,T , and ρT = minγmγ,T , where the min is over all valid colorings γ. (Notice

that, if T = T1 ◦ · · · ◦ Tn, then ρT =
∑

j ρTj −maxj ρTj .)

On notation. Consider a tree T , u ∈ VT , and a coloring γ of T . We write Tu for
the subtree of T rooted at u. Consider a vector z ∈ ΣNT , where each coordinate
corresponds to a leaf. We write zu for the part of z that corresponds to the leaves
of Tu. For S ∈ FBST we write zS for the part of z that corresponds to the leaves
of S. We treat colorings similarly. For example, γS stands for 〈Wγ ∩VS ,Rγ ∩VS〉.

4.2 The input distribution

Our proof will have two main components, analogous to the ones in [11]. The
distribution over the inputs that we shall define is carefully chosen so that each
component of the proof can be carried out.

In the first part (4.3) we prove a direct-sum theorem for arbitrary trees.
Given an arbitrary tree T in standard form, we show how the information cost
of a protocol for fZ

T can be decomposed into a sum of information costs that
correspond to full binary subtrees of T . In the second part of the proof (4.4)
we provide a lower bound on the informational complexity of fZ

S , where S is an
arbitrary binary tree in standard form.

For a uniform binary tree with NS leaves, there is a natural distribution for
which one can prove an Ω(

√
NS) lower bound on information cost. However, this

distribution is not useful for us because it does not seem to be compatible with
the first part of the proof. It turns out that for our purposes it is sufficient to
prove a much weaker lower bound on the information cost for binary trees, of the
form Ω(1/cd) for some fixed c > 0, which will be enough to give a lower bound of
Ω(n/cd) on the communication complexity for general trees. The distribution for
binary trees that we choose gives such a bound and is also compatible with the
first part of the proof. This allows us to show that the information cost of a tree
of depth d is at least n

2d
B(d), where B(d) is a lower bound on the information

cost of (a communication protocol on) a depth-d binary tree.
Given an arbitrary tree T in standard form, we now define a distribution over

inputs to Alice and Bob for fZ
T .

First, we associate to each standard binary tree S a special input 〈αS , βS〉.
We will be interested in the value fZ

S (αS , βS). These inputs, which now seem
arbitrary, introduce structure in the final distribution. This structure is crucial
for the effectiveness of the second part of our proof.
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Definition 19. We define input 〈αS , βS〉 to fZ
S for a standard binary tree S. The

definition is recursive on the depth dS of the tree.

〈αS , βS〉 =
{
〈1, 1〉 if dS = 0,
〈αS1αS2 , βS1

βS2〉 if S = S1 ◦ S2.

We will need the following property of 〈αS , βS〉.

Proposition 20. For a standard binary tree S with dS > 0, fZ
S (αS , βS) =

fZ
S (αS , βS) = 0 and fZ

S (αS , βS) = fZ
S (αS , βS) = 1.

Proof. The proof is by induction on dS .
For dS = 1 the (unique) tree results in the function fZ

S (x1x2, y1y2) = (x1 Z
y1) Z (x2 Z y2). Clearly,

fZ
S (αS , βS) = fZ

S (10, 01) = 0, fZ
S (αS , βS) = fZ

S (01, 10) = 0 ;

fZ
S (αS , βS) = fZ

S (10, 10) = 1, fZ
S (αS , βS) = fZ

S (01, 01) = 1.

Suppose dS > 1 and let S = S1 ◦ S2. We have fS(αS , βS) = fZ
S1

(αS1 , βS1
) Z

fZ
S2

(αS2 , βS2) = 1 Z 1 = 0 (where we applied the inductive hypothesis on S1 and
S2). The other cases can be verified in a similar manner.

An input will be determined by three independent random variables Γ,D,R,
which are defined as follows.

(i) Γ ranges over valid colorings γ for T , according to a distribution that weights
each γ by the number of principal leaves it has. More precisely

Pr[Γ = γ] = mγ,T /mT .

(ii) D = 〈D1, . . . , DN 〉 ∈R {Alice,Bob}N . So, for any d ∈ {Alice,Bob}N ,
Pr[D = d] = 2−N .

(iii) R = 〈R1, . . . , RN 〉 ∈R {0, 1}N . So, for any r ∈ {0, 1}N , Pr[R = r] = 2−N .

The inputs X = 〈X1, . . . , XN 〉 and Y = 〈Y1, . . . , YN 〉 are determined by values
γ, d = 〈d1, . . . , dN 〉, and r = 〈r1, . . . , rN 〉 for Γ, D, and R as follows.

(i) Let F1, . . . , Fk be the trees in the red forest determined by γ. The input to
Fj , for j ∈ [k], is 〈αFj , βFj 〉.

(ii) For a white leaf j, the corresponding input 〈Xj , Yj〉 is determined as follows.
If dj = Alice, set 〈Xj , Yj〉 = 〈0, rj〉. If dj = Bob, set 〈Xj , Yj〉 = 〈rj , 0〉.

The reader may think of the random variables D and R as labeling the leaves
of the tree T . For a leaf j ∈ [N ], the corresponding variable Dj chooses the player
whose j-th bit will be fixed to 0. The j-th bit of the other player is then set to
be equal to the random bit Rj .
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Example. At this point it might be useful for the reader to see how the input
for a binary tree S is distributed. As remarked earlier, a coloring γ for S paints
a root-to-leaf path white and all the other nodes red. For any such γ we have
Pr[Γ = γ] = 1/NS . All the other input bits, besides the ones that correspond
to the single white leaf, are fixed according to 19 and the red forest determined
by γ. Thus, the only entropy in the input (given a coloring γ) comes from the
single white leaf. The mutual information of the transcript and this leaf is what
we lower bound in 4.4.

Let ζT be the resulting distribution on (〈X,Y〉, 〈Γ,D〉). Let µT (resp. νT ) be the
marginal distribution of 〈X,Y〉 (resp. 〈Γ,D〉). We often drop subscript T and
write ζ, µ, and ν.

Proposition 21. Consider a tree T and let 〈x,y, γ,d〉 be in the support of ζ. If
u is a red node with a white parent, then fZ

Tu
(xu,yu) = 0. If u is a white node,

then fZ
Tu

(xu,yu) = 1.

Proof. The proof is by induction on dTu .
When dTu = 0, u is a leaf. If u is red and its parent is white, then Tu

is a (one-vertex) tree in the red forest determined by γ. 19 then implies that
〈xu,yu〉 = 〈1, 1〉 and so fZ

Tu
(xu,yu) = 0. If u is white, notice that either xu = 0

or yu = 0 (see item (ii) above).
When dTu > 0 and u is white, then u has a red child v. By induction

fZ
Tv

(xv,yv) = 0, and it follows that fZ
Tu

(xu,yu) = 1. If u is red and its parent
is white, then there is a tree F rooted at u in the red forest. We claim that
fZ
Tu

(xu,yu) = fZ
F (xF ,yF ). The statement then follows by 20, because, according

to the definition of ζT , 〈xF ,yF 〉 = 〈αF , βF 〉. The claim holds because every
v ∈ VF has only white children outside F , and—by the induction hypothesis—
their values do not affect the value of v (since the inputs to a Z-gate that are
equal to ‘1’ are, in some sense, irrelevant to the output).

4.3 A direct-sum theorem for read-once boolean for-
mulae

Let T be an arbitrary tree in standard form and S ∈ FBST . Suppose we have a
communication protocol Π for fZ

T and we want a protocol for fZ
S . One natural

way to do this is to have Alice extend her input xS for S to an input x for T
and Bob extend his input yS for S to an input y for T , in such a way that
fZ
T (x,y) = fZ

S (xS ,yS). Then by running Π on 〈x,y〉 they obtain the desired
output.

Let Π be any protocol for fZ
T . For any S ∈ FBST we will construct a

family of protocols for fZ
S . Each protocol in the family will be specified by

a pair 〈γ,d〉 where γ is a valid coloring of T that is compatible with S, and
d ∈ {Alice,Bob}NT
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Alice and Bob plug their inputs in T , exactly where S is embedded. To
generate the rest of the input bits for T , they first use γ to paint the nodes of T
not in S. For a red leaf j, the values of Xj and Yj are determined by the coloring
γ, so Alice and Bob can each determine xj and yj without communication. For
a white leaf j outside S, they have to look at the value of dj . If dj = Alice,
Alice sets xj = 0, and Bob uses a random bit of his own to (independently) set
his input bit yj . If dj = Bob, Bob sets yj = 0, and Alice uses a random bit to set
xj . After this preprocessing, they simulate Π. Denote this protocol by ΠS [γ,d].

To argue the correctness of ΠS [γ,d] for any S, γ, and d, notice that any node
in S has only white children outside S (this follows from the conditions that a
coloring satisfies). From 21 we know that a white node does not affect the value
of its parent.

We now define a distribution over the triples 〈S, γ,d〉 so that the average of the
information cost of ΠS [γ,d] will be related to the information cost of Π. Recall
that NT is the number of leaves, and that mT and ρT are integers related to the
tree T defined in part (6) of the paragraph on “definitions related to colorings”
in 4.1. The distribution ξT for triples 〈S, γ,d〉 is as follows,

ξT (S, γ,d) =

{
1

mT 2NT
if S ∝ γ,

0 otherwise.

This is indeed a distribution since∑
S,γ,d

ξT (S, γ,d) =
∑
S∝γ

∑
d

1
mT 2NT

=
∑
S∝γ

1
mT

= 1.

Lemma 22. Consider any protocol Π for a tree T . Let (〈X,Y〉, 〈Γ,D〉) ∼ ζT
and (〈X′,Y′〉, 〈Γ′,D′〉) ∼ ζS; then

I(X,Y ; Π |Γ,D) ≥ ρT ·E〈S,γ,d〉∼ξT [I(X′,Y′ ; ΠS [γ,d] |Γ′,D′)].

Proof. We start by evaluating the right-hand side. (Recall that for γ and d we
write γS and dS for their restrictions in S ∈ FBST .)

E〈S,γ,d〉∼ξT [I(X′,Y′ ; ΠS [γ,d] |Γ′,D′)]

=
∑
S,γ,d

ξT (S, γ,d)
∑
γ′,d′

νS(γ′,d′) · I(X′,Y′ ; ΠS [γ,d] |Γ′ = γ′,D′ = d′)]

=
∑
S,γ′,d′

∑
γ:S∝γ

∑
d

1
mT 2NT

· 1
NS2NS

· I(X′,Y′ ; ΠS [γ,d] |Γ′ = γ′,D′ = d′)](4.1)

=
∑
S,γ:
S∝γ

∑
d

1
mγ,T

· mγ,T
mT 2NT

· I(X′,Y′ ; ΠS [γ,d] |Γ′ = γS ,D′ = dS).(4.2)

The transition from 4.1 to 4.2 needs to be justified. Look first at equation 4.2. Fix
values Ŝ, γ̂, and d̂ for the summation indices S, γ, and d respectively. Consider
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the corresponding term A = I(X′,Y′ ; ΠbS [γ̂, d̂] |Γ′ = γ̂S ,D′ = d̂S) in the sum.
Now look at 4.1. Fix indices S, γ′, and d′ to Ŝ, γ̂S , and d̂S respectively. We claim
that there are NS2NS values 〈γ,d〉, such that I(X′,Y′ ; ΠbS [γ,d] |Γ′ = γ̂S ,D′ =
d̂S) = A. Indeed, any 〈γ,d〉 such that γ agrees with γ̂ outside S, and d agrees
with d̂ outside S, contributes A to the sum in equation 4.1. There are NS such
γ and 2NS such d.

Let us define j(γ, S) to be the white leaf of S which is colored white by γ.
Recalling the definition of ρT (4.1), the last equation gives

(4.3)

E〈S,γ,d〉∼ξT [I(X′,Y′ ; ΠS [γ,d] |Γ′,D′)]

≤ 1
ρT

∑
S,γ:
S∝γ

∑
d

mγ,T
mT 2NT

· I(X ′j(γ,S), Y
′
j(γ,S) ; ΠS [γ,d] |Γ′ = γS ,D′ = dS).

For the left-hand side we have

I(X,Y ; Π |Γ,D)

=
∑
γ,d

νT (γ,d) · I(X,Y ; Π |Γ = γ,D = d)

≥
∑
γ,d

mγ,T
mT 2NT

∑
j∈PLT (γ)

I(Xj , Yj ; Π |Γ = γ,D = d)

=
∑
S,γ:
S∝γ

∑
d

mγ,T
mT 2NT

· I(Xj(γ,S), Yj(γ,S) ; Π |Γ = γ,D = d).(4.4)

The inequality follows from 6, ignoring terms that correspond to nonprincipal
leaves. The last equality follows from the bijection between FBST (γ) and PLT (γ)
as discussed in 4.1.

In view of 4.3 and 4.4, to finish the proof one only needs to verify
that the two distributions (X ′j(γ,S), Y

′
j(γ,S),ΠS [γ,d] |Γ′ = γS ,D′ = dS) and

(Xj(γ,S), Yj(γ,S),Π |Γ = γ,D = d) are identical. To see this, notice first that
Pr[X ′j(γ,S) = bx |Γ′ = γS ,D′ = dS ] = Pr[Xj(γ,S) = bx |Γ = γ,D = d], because S
is colored the same in both cases and j(γ, S) is the white leaf of S. Similarly for
Y ′j(γ,S) and Yj(γ,S). Finally, it follows immediately from the definition of ΠS [γ,d],
that Pr[ΠS [γ,d](X′,Y′) = τ |X ′j(γ,S) = bx, Y

′
j(γ,S) = by,Γ′ = γS ,D′ = dS ] =

Pr[Π(X,Y) = τ |Xj(γ,S) = bx, Yj(γ,S) = by,Γ = γ,D = d].

To obtain a lower bound from this lemma, we want to lower bound ρT and
the informational complexity of standard binary trees. The later is done in the
next section. The following lemma shows that we can assume ρT ≥ NT /2dT .

Lemma 23. For any tree T with N leaves and depth d, there is a tree T̂ with
the following properties. (1) T̂ is in standard form, (2) Rδ(f

Z
T ) ≥ Rδ(f

ZbT ), (3)
ρbT ≥ N/2d.
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Proof. First, we describe the procedure which applied on T produces T̂ . If T is
a single node we set T̂ = T . Otherwise, assume T = T1 ◦ · · · ◦ Tn and denote Nj

the number of leaves in each Tj . We consider two cases.

A. If there is a j such that Nj ≥ N/2, then we apply the procedure to Tj to
obtain T̂j , set T̂ = T̂j , and remove the remaining subtrees.

B. Otherwise, for each j ∈ [n] apply the procedure on Tj to get T̂j , and set
T̂ = T̂1 ◦ · · · ◦ T̂n.

Now we prove by induction on d that T̂ has properties (1) and (3). When
d = 0 and T is a single node, ρT = 1 and all properties are easily seen to be
true. Otherwise, if T̂ is created as in case A, then clearly property (1) holds.
For property (3) assume T̂ = T̂j . By induction, ρbTj ≥ Nj/2d−1. It follows that

ρbT = ρbTj ≥ N/2d (since Nj ≥ N/2). Now suppose case B applies and T̂ is created

from T̂1, . . . , T̂n. The restructuring described in case B preserves property (1).
For property (3) assume—without loss of generality—that ρbT1

≤ · · · ≤ ρbTn . By
the definition of ρT (4.1, part (6) in “definitions related to colorings”),

ρbT =
n−1∑
j=1

ρbTj ≥
n−1∑
j=1

Nj/2d−1 = (N −Nn)/2d−1 > (N −N/2)/2d−1 = N/2d.

Finally, property (2) is true because Alice and Bob can simulate the protocol for
fT after they set their bits below a truncated tree to ‘1’.

4.4 Bounding the informational complexity of binary
trees

In this section we concentrate on standard binary trees. Our goal is to prove
a lower bound of the form I(X,Y ; Π |Γ,D) ≥ 2−Θ(dT ). We prove such an in-
equality using induction on dT . The following statement provides the needed
strengthening for the inductive hypothesis.

Proposition 24. Let T be a standard binary tree, and let Tu be a subtree rooted at
an internal node u of T . Assume that (〈Xu,Yu〉, 〈Γu,Du〉) ∼ ζTu and 〈X,Y〉 =
〈aXub, cYud〉, where a, b, c, d are fixed bit-strings. Then, for any protocol Π, we
have

I(Xu,Yu ; Π(X,Y) |Γu,Du) ≥
h2(Π(aαTub, cβTud),Π(aαTub, cβTud))

2NTu2dTu+1
.

Proof. The proof is by induction on the depth dTu of Tu.
When dTu = 0 we have fTu(x, y) = xZy. This case was shown in [3, Section 6],

but we redo it here for completeness. First, notice that Γu is constant and thus
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the left-hand side simplifies to I(Xu, Yu ; Π(X,Y ) |Du). Expanding on values of
Du this is equal to

1
2

(
I(Yu ; Π(a0b, cYud) |Du = Alice) + I(Xu ; Π(aXub, c0d) |Du = Bob)

)
,

because given Du = Alice we have Xu = 0 and given Du = Bob we have Yu = 0.
Also, given Du = Alice we have Yu ∈R {0, 1} and thus the first term in the
expression above can be written as I(Z ; Π(a0b, cZd)), where Z ∈R {0, 1}. Now
we apply 15 to bound this from below by h2(Π(a0b, c0d),Π(a0b, c1d)). Bounding
the other term similarly and putting it all together we get

I(Xu, Yu ; Π(X,Y ) |Du)

≥ 1
2

(
h2(Π(a0b, c0d),Π(a0b, c1d)) + h2(Π(a0b, c0d),Π(a1b, c0d))

)
≥ 1

4 · h
2(Π(a0b, c1d),Π(a1b, c0d)).

For the last inequality we used the triangle inequality of Hellinger distance (16).
Since 〈αTu , βTu〉 = 〈1, 1〉 this is the desired result.

Now suppose dTu > 0 and let Tu = Tu1 ◦ Tu2 . Either u1 ∈ WΓu (i.e. u1 is
white), or u2 ∈ WΓu . Thus, expanding on Γu, the left-hand side can be written
as follows.

NTu1
NTu

· I(Xu,Yu ; Π(aXub, cYud) |Γu, u1 ∈WΓu ,Du)

+
NTu2
NTu

· I(Xu,Yu ; Π(aXub, cYud) |Γu, u2 ∈WΓu ,Du).

When u1 is white, 〈Xu2 ,Yu2〉 = 〈αTu2
, βTu2

〉, and (〈Xu1 ,Yu1〉, 〈Γu1 ,Du1〉) is
distributed according to ζTu1

. Similarly, given that u2 is white, 〈Xu1 ,Yu1〉 =
〈αTu1

, βTu1
〉, and (〈Xu2 ,Yu2〉, 〈Γu2 ,Du2〉) is distributed according to ζTu2

. Thus,
the above sum simplifies to

NTu1
NTu

· I(Xu1 ,Yu1 ; Π(aXu1αTu2
b, cYu1βTu2

d)|Γu1 ,Du1)

+
NTu2
NTu

· I(Xu2 ,Yu2 ; Π(aαTu1
Xu2b, cβTu1

Yu2d)|Γu2 ,Du2).

By induction, this is bounded from below by

NTu1

NTu ·2NTu1
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d))

+
NTu2

NTu ·2NTu2
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d)).

Applying the cut-and-paste property (16) of Hellinger distance this becomes

NTu1

NTu ·2NTu1
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d))

+
NTu2

NTu ·2NTu2
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d)).
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Now, since the square of Hellinger distance satisfies the (weak) triangle inequality
(see 16), we have

≥ 1

2NTu2dTu+1 · h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d)).

Recalling the 19 of 〈αT , βT 〉 we get

= 1

2NTu2dTu+1 · h2(Π(aαT b, cβTd),Π(aαT b, cβTd)).

This completes the inductive proof.

Corollary 25. For any binary tree T in standard form

ICζT ,δ(f
Z
T |Γ,D) ≥ (1− 2

√
δ) · 1

4dT+1
.

Proof. First apply 24 with the root of T as u and empty a, b, c, d.

ICζT ,δ(f
Z
T |Γ,D) ≥ 1

4dT+1 · h2(Π(αT , βT ),Π(αT , βT ))

≥ 1
4dT+1 ·

(
1
2 h2(Π(αT , βT ),Π(αT , βT )) + 1

2 h2(Π(αT , βT ),Π(αT , βT ))
)

≥ 1
4dT+1 · (1− 2

√
δ).

The second inequality is an application of the Pythagorean property of Hellinger
distance—3. The last inequality follows from 20 and 4.

4.5 Lower bounds for read-once boolean functions

In this section we use the main lemmas we have proved to obtain bounds for
read-once boolean functions.

Corollary 26. 1. For any tree T in standard form,

ICζT ,δ(f
Z
T |Γ,D) ≥ (1− 2

√
δ) · ρT

4dT+1
.

2. If, in addition, T is t-uniform,

ICζT ,δ(f
Z
T |Γ,D) ≥ (1− 2

√
δ) · (t− 1)dT

4dT+1
.

Proof. Let Π be a δ-error protocol for fZ
T . 22 holds for any Π, therefore

ICζT ,δ(f
Z
T |Γ,D) ≥ ρT · min

S∈FBST
ICζS ,δ(f

Z
S |Γ,D).

We now use the bound from 25 to obtain (i). For (ii), we can compute ρT exactly
to be (t− 1)dT .
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Corollary 27. 1. For any tree T in standard form,

Rδ(f
Z
T ) ≥ (2− 4

√
δ) · NT

8dT+1
.

2. If, in addition, T is t-uniform,

Rδ(f
Z
T ) ≥ (1− 2

√
δ) · (t− 1)dT

4dT+1
.

Proof. Recalling that informational complexity is a lower bound for randomized
complexity, (ii) is immediate from 2. For (i), we apply 1 to fbT , where T̂ is as in
23.

The constants do not match the ones in 8. Let T = T1 ◦ · · · ◦ Tt. The slight
improvements can be obtained by applying 17 with f being the t-variate NAND,
and, for each j ∈ [t], hj and ζj being fTj and ζTj , respectively. Applying 1 to
each of the trees Tj gives 1; similarly for 2.

4.6 Lower bound for read-once threshold functions

In this section we prove 3, stated in the introduction.
A threshold gate, denoted Tnk for n > 1 and 1 ≤ k ≤ n, receives n boolean

inputs and outputs ‘1’ if and only if at least k of them are ‘1’. A threshold tree
is a rooted tree in which every leaf corresponds to a distinct input variable and
every gate is a threshold gate. A read-once threshold function fE is a function
that can be represented by a threshold tree E. As before, we define f∧E and f∨E
and we want to lower bound max{Rδ(f∧E), Rδ(f∨E)}. The following proposition
shows that Alice and Bob can reduce a problem defined by an AND/OR tree to
one defined by a threshold tree. 3 will then follow as a corollary of 1.

Proposition 28. For any threshold tree E, there is an AND/OR tree T such
that, for g ∈ {∧,∨}, (1) Rδ(f

g
T ) ≤ Rδ(fgE), (2) NT ≥ NE/2dE , and (3) dT = dE.

Proof. We define T by recursion on dE . When dE = 0 we set T = E. Otherwise,
let E = E1 ◦ · · · ◦ En, and assume NE1 ≥ · · · ≥ NEn . Suppose the gate on the
root is Tnk . We consider cases on k. (1) If 1 < k ≤ n/2, build T1, . . . , Tn−k+1

recursively, set T = T1 ◦ · · · ◦ Tn−k+1, and put an ∨-gate on the root. (2) If
n/2 < k < n, build T1, . . . , Tk recursively, set T = T1 ◦ · · · ◦ Tk, and put an
∧-gate on the root. (3) Otherwise, if k = 1 or k = n, the threshold gate is
equivalent to an ∨ or ∧-gate respectively. We build T1, . . . , Tn recursively and we
set T = T1 ◦ · · · ◦ Tn. The gate on the root remains as is.

Properties (2) and (3) are easily seen to hold. For (1), it is not hard to show
that a protocol for fgE can be used to compute fgT . Alice and Bob need only to fix
appropriately their inputs in the subtrees that where cut of from E. If an input
bit belongs to a subtree Tj that was cut of in case (1), then Alice and Bob set
their inputs in Tj to ‘0’. If Tj was cut of in case (2), then Alice and Bob set their
inputs in Tj to ‘1’. Afterwards, they simulate the protocol for fgE .
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The tree T in the above proposition may not be a canonical representation
of some function. However, transforming to the canonical representation will
only decrease its depth, and thus strengthen our lower bound. Thus, by this
Proposition and 1 we obtain 3 as a corollary.

4.7 General form of main theorem

The lower bounds we obtained apply to functions of the (restricted) form f∧

and f∨. In this section we consider arbitrary two-party read-once functions, and
prove 4, stated in the introduction. Theorems 1 and 2 are deduced from our main
result 8. We also use 8 to deduce communication complexity lower bounds for
two-party read-once functions.

Consider an AND/OR tree-circuit C in canonical form, and suppose that
its leaf-set is partitioned into two sets XC = {x1, . . . , xs} and YC = {y1, . . . , yt}
(thus, fC is a two-party read-once function). We show that C can be transformed
to a tree T in standard form, such that Alice and Bob can decide the value of
fT using any protocol for fC . (The reader may have expected fZ

T in the place
of fT . To avoid confusion we note that fT will already be a two-party read-once
function. In particular, for some tree T ′ with dT ′ = dT − 1 and NT ′ = NT /2,
fT = fZ

T ′ .)

Lemma 29. For any two-party read-once function f , there is a tree T in standard
form, such that (1) Rδ(fT ) ≤ Rδ(f), (2) NT ≥ D||(f)/d(f), and (3) dT ≤ d(f).

Proof. We use notation from the paragraph before the statement of the lemma.
The transformation of C proceeds in three stages.

In the first stage we collapse subtrees to single variables. For a node w let
Aw = {u ∈ VC | u is a child of w and LCu ⊆ XC}. Define Bw with Y in the place
of X . Let WX = {w ∈ VC | LCw * XC and Aw 6= ∅}. Define WY similarly. For
each w ∈WX , collapse {Cu | u ∈ Aw} to a single variable xw. That is, we remove
all Cu with u ∈ Aw from the tree, and add a new leaf xw as a child of w. Similarly
with Y in the place of X and Bw in the place of Aw. Name the resulting tree C1.
We claim that Rδ(fC) = Rδ(fC1) and D||(fC) = D||(fC1). It is easy to see that
Rδ(fC) ≥ Rδ(fC1) and D||(fC) ≥ D||(fC1). Alice, for each w ∈WX , can set each
x ∈ XAw equal to xw. Bob, for each w ∈ WY , can set each y ∈ YBw equal to yw.
After this preprocessing that requires no communication, they run a protocol for
fC . For the other direction, suppose w ∈ WX is labeled by an AND gate. Alice
sets xw equal to

∧
u∈Aw fCu(xu) (for an OR gate, replace

∧
with

∨
). Bob acts

similarly and afterwords they run a protocol for fC1 . Clearly, NC ≥ NC1 and
dC ≥ dC1 . Notice also that in C1 each node has at most one leaf in XC1 and at
most one in YC1 (where the partition for LC1 is the obvious one).

In the second stage, we remove every leaf of C1 that has a non-leaf sibling. If
after these two stages some nodes are left with only one child, we collapse them
with their unique child and label the new node with the gate of the child. Name
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the resulting tree C2. We have Rδ(fC1) ≥ Rδ(fC2) and D||(fC1) ≥ D||(fC2), since
Alice and Bob can generate values (‘1’/‘0’) for the truncated leaves according
to the gate of the parent (AND/OR). Clearly, dC1 ≥ dC2 . Observe also that
NC2 ≥ NC1/dC1 . This is because for every pair of leaves in C1 that remain in
C2, there can be at most 2(dC1 − 1) leaves that will be removed—one pair for
each of the dC1−1 nodes along the path to the root (see last sentence of previous
paragraph).

For the final stage, let T be the tree-circuit that is otherwise identical to C2,
but every gate of C2 has been replaced by a NAND gate. It follows from 7 that
fT ≡ fC2 or fT ≡ ¬fC2 . Thus, for the models of interest, the complexity of fC2

is equal to that of fT . Also, NT = NC2 and dT = dC2 .
For part (2), observe that D||(fC1) ≤ NC1 . Tracing the inequalities from each

stage,

NT = NC2 ≥ NC1/dC1 ≥ D||(fC1)/dC1 = D||(f)/dC1 ≥ D||(f)/d(f).

Parts (1) and (3) are immediate.

The tree-circuit T is in standard form, and 8 can be applied, yielding Rδ(fT ) ≥
4(2− 4

√
δ) ·NT /8dT . (For the constants involved, recall the parenthetic remark

before the statement of the lemma.) Then, 4,

Rδ(f) ≥ (8− 16
√
δ) · D||(f)

d(f) · 8d(f)
,

follows from the lemma.
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