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preface

In this thesis we are interesting on fully homomorphic encryption. The
problem of constructing a fully homomorphic public key had been open
for more than three decades and was first solved by Craig Gentry. Here we
follow Craig Gentry’s construction that came out in 2009 in his breakthrough
paper [1]. We focus on presenting the scheme and give the mathematical
background that the whole construction uses. Furthermore, we make some
instantiations on the scheme’s subroutines, algorithms and parameters in
the interest of how could it be implemented for real use.

First we present the problem and some possible and useful applications
of it. After we present three classic partial homomorphic schemes. The
half part of the final construction is the crucial property of bootstrappa-
bility which is examined next. Bootstrappability, is a special property of
encryption schemes that as we prove if we find a leveled homomorphic boot-
strappable scheme then we can build a fully homomorphic one. Bootstrap-
pability also gives a hint on where and how to search for a homomorphic
scheme. The direction that bootstrapping points to is encryption schemes
with swallow decryption circuits, so integer lattices come into play, since
previous schemes that are based on lattices have this property. Integer lat-
tices, though, usually produce huge public keys something that is fixed with
a special category of lattices, the ideal lattices. After the basic background
and the tools that we need we give an abstract scheme that has only limited
homomorphic capabilities. Then, our main goal is to modify this scheme
and create a fully homomorphic one by bootstrapping it.
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Chapter I

Preliminaries

T he first task that has to be treated in texts that involve mathematics
is the language, its symbols and some useful theory for what that

follows. In this chapter we come out with some basic knowledge of algebra
and group theory. Through all this book we use the conventional symbols
∀, ∃ for universality and existence respectively. We also use the operators
+,−, ·, / to define the usual operations unless otherwise stated. We also
follow the common notation for some standard sets, N for natural numbers,
Z for integers, Q for rationals and R for real numbers. For sets we use ∩,∪
as the intersection and the union respectively. Often when when a, b ∈ Z
and a < b we use the symbolism [a, b] to denote the set of integers containing
a, b and every intermediary integer. We follow the same symbolism and for
closed sets [x, y] = {u : x ≤ u ≤ y}.

Next we don’t give proofs of the theorems and lemmas that we present
since this is not the purpose of this thesis. We suggest that the reader refer
to texts [19], [20] and [21] for further analysis on these subjects.

I.I Algebra

I.I.I Number Theory

Number theory has become maybe the most common used field of math-
ematics in cryptography so far. Its advantage over the other fields is the
simplicity in representing every single integer number. Furthermore, there
are mathematical structures that have been developed through all these
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4 CHAPTER I. PRELIMINARIES

years using as footing the natural numbers and their properties. We start
by giving some key properties of integers.

Definition 1. Let d, n ∈ Z we say that d divides n and write d | n if there
exist an integer c so that n = c · d if no such a number exist we say that d
does not divide n and write d - n.

The following properties come after the previous definition:

1. ∀n ∈ Z n | n, 1 | n and n | 0.

2. ∀n,m, d ∈ Z if d | n and n | m then d | m.

3. ∀n,m, d, a, b ∈ Z if d | n and d | m then d | (a ·m+ b · n).

4. ∀n, d ∈ Z with n 6= 0 if d | n, then |d| ≤ |n|.

5. ∀n, d ∈ Z if d | n and n | d, then d = n.

Theorem 1 (Integer Division). Let a, b ∈ Z, b 6= 0 then there are, two
unique, integers q, r such that

a = b · q + r, with 0 ≤ r < r

Theorem 2 (Greatest Common Divisor). Let a, b ∈ Z, we call the natural
number d greatest common divisor of a, b and write d = gcd(a, b) if:

1. d | a and d | b.

2. ∀d′ ∈ N such that d′ | a and d′ | b it also holds that d′ | d.

Definition 2. Let p ∈ N, 1 < p we call p prime number if it has exactly
two distinct natural number divisors: 1 and p.

Two numbers a, b ∈ N called relational primes if gcd(a, b) = 1.

Theorem 3 (Fundamental Theorem of Arithmetic). Every natural number
a ∈ N, a > 1 can be written as a unique product of prime numbers.

The property of a number being prime is called primality. Finding prime
numbers is a prickly task, until today there are no known fast algorithms to
implement this. However, prime numbers are needed by numerous crypto-
graphic schemes, consequently there are a bunch of algorithms that trying
to produce random prime numbers. For most of them assurance sacrificed
at the altar of efficiency, thereafter the practical algorithms are probabilistic
(i.e. produce prime numbers with a high probability).
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Definition 3. Denote by ϕ(n) the number of positive integers less than or
equal to n. ϕ(n) is named after Swiss mathematician Leonhard Euler Euler’s
Totient Function.

Now we present two fundamental theorems of number theory. They
are both parts of many cryptosystems in the sense of providing low time
computation of big exponents in particular algebraic structures.

Theorem 4 (Fermat’s Little Theorem). Every natural number p ∈ N, if p
is a prime number, then for any integer a, ap − a id divided by p.

Theorem 5 (Eulers’s Theorem). For every natural number n ∈ N, then for
any integer a, aϕ(n) − 1 is divided by n.

I.I.II Groups, Rings, Ideals, Quotient Rings, Fields

One of the most fundamental mathematic tools in cryptography is the sense
of the group

Definition 4. Let G be a set and � an operation that maps a pair of elements
of G to a single element of G the we cal the set {G, �} a group if the following
conditions are satisfied:

Closure ∀a, b ∈ G, the result of the operation, a � b, is also in G

Associativity ∀a, b, c ∈ G, it holds that (a � b) � c = a � (b � c)

Identity element ∃0G ∈ G, : ∀a ∈ G, the equation 0G � a = a � 0G = a
holds.

Inverse element ∀a ∈ G, ∃b ∈ G such that a � b = b � a = 0G.

In a group {G, �} does not hold that ∀a, b ∈ G a � b = b � a. Take
as example G to be the set of all inversed matrices of Rn×n and � to be
the matrix multiplication operation, then {G, �} is a group but generally it
holds that A ·B 6= B ·A.

Now, if {G, �} is a group with the additional property ∀a, b ∈ G a � b =
b � a then we say that {G, �} is an Abelian or Commutative Group.

Definition 5. Let {G, �} be a group and H ⊆ G, then if {H, �} forms a
group we say that {H, �} is a subgroup of {G, �} and we write {H, �} ≤
{G, �}.
Definition 6 (Group Order). For a group {G, �} we denote by |G| the
number of elements of {G, �}. |G| also called the order of the group.
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We also denote by ai the operation a�a� · · · �a where a appears i times.
One of the most fundamental theorems in group theory is Lagrange’s

theorem which combines the number of elements of a group and of its sub-
groups.

Theorem 6 (Lagrange’s Theorem). For any finite group G, and every sub-
group H of G it holds that |H| | |G|.

Of special importance are groups that are generated only by a single
element of the group. Their importance lies at the fact that the one needs
only one element and the operation and has the whole group.

Definition 7. We say that {G, �} is a cyclic group if ∃a ∈ G such that
∀b ∈ G ∃i ∈ N : b = ai.

Example 1. Consider the set Z with the operation +, then {Z,+} is an
abelian group of infinite order.

Example 2. For an example of a set and an operation that are not form a
group take the set N with the operation +. Then, as one can see, there is
no inverse element for the elements of N.

Example 3. The set 2Z, that is the of the multiples of 2, and the operation
+. The set {2Zn,+} is an abelian group of infinite order. Also, the set
{4Zn,+} is an abelian group of infinite order and it holds that {4Zn,+} ≤
{2Zn,+}

Next we give the notion of the ring, they play a key role in cryptography
and also the majority of schemes base their mathematical support on them.

Definition 8. Let R is a set and �, ◦ be two operators that map pairs of
elements of R to a single element of R, we say that the triple {R, �, ◦} is a
ring if the following properties hold.

Closure ∀a, b ∈ R, the result of the operations, a � b and a ◦ b is also in R.

Associativity ∀a, b, c ∈ G, it holds that (a � b) � c = a � (b � c) and also
(a ◦ b) ◦ c = a ◦ (b ◦ c).

Identity element of � ∃0R ∈ R, : ∀a ∈ R, the equation 0R�a = a�0R = a
holds. (The same property does not hold for operator ◦ in general but
when holds we denote the identity element of ◦ with 1R)

Inverse element for � ∀a ∈ R, ∃b ∈ R such that a � b = b � a = 0R.
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Commutativity of � ∀a, b ∈ R, it holds that a � b = b � a.

Distributive Law ∀a, b, c ∈ R, it holds that (a � b) ◦ c = a ◦ c � b ◦ c.

Distributive Law ∀a, b, c ∈ R, it holds that (a ◦ b) � c = a � c ◦ b � c.

If in ring {R, �, ◦} holds that ∀a, b ∈ R a ◦ b = b ◦ a we call this ring a
commutative ring.

Remark 1. It is easy and also useful to see that if {R, �, ◦} is a ring then
{R, �} is a group.

Among all these algebraic structures there is also a stronger one which
is fundamental for the further work that we present here. This structure
called ideal and its definition is:

Definition 9. Consider the ring {R, �, ◦} and I ⊆ R, I 6= ∅. I named ideal
of R and we denote this relation I CR if the following two conditions hold:

� ∀a, b ∈ I holds that: a � b ∈ I.

� ∀a ∈ I, ∀r ∈ R r ◦ a ∈ I and also a ◦ r ∈ I.

One can see that the set {0R, �, ◦} is an ideal of {R, �, ◦} this called the
trivial ideal, also the whole ring is an ideal of it self. An ideal of {0R, �, ◦}
different than previous two called a genuine ideal.

Let {R, �, ◦} be a ring and S ⊆ R. The intersection of all the ideals of
R that contain the subset S is the smaller ideal of {R, �, ◦} which contains
the set S. We refer to this as the ideal produced by the set S and we write
〈S〉. That is, 〈S〉 =

⋂{I : I CR,S ⊆ I}.
We say that an ideal I of ring {R, �, ◦} is principal if it is generated by

a single element s ∈ R. Such an ideal is denoted I = 〈s〉.
For two ideals I1, I2 of ring {R, �, ◦} denote the set {a+ b : a ∈ I1, binI2}

by I1 + I2.

Definition 10. Let {R, �, ◦} be a ring and I, J two ideals are relatively
prime if I + J = R.

Definition 11. Consider the ring {R, �, ◦}, we say that {R, �, ◦} is a ring
of principle ideals if ∀I CR, I is a principle ideal.

Definition 12. Let {R, �, ◦} be a ring. If ∃a 6= e, b ∈ R : a ◦ b = 0R then
we call a a divisor of zero of the ring {R, �, ◦}.
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Definition 13. We define a relation in ring {R, �, ◦} which depends on an
ideal I C R as follows: we say that two elements a, b of ring {R, �, ◦} are
equivalent and write a ≡ b mod I iff a− b ∈ I.

The relation that defined just above is an equivalence relation. Also the
the equivalence class of an element a ∈ R denoted by a+I = {a+y : y ∈ I}.

Definition 14. A mapping is a rule which maps each element x of one set
X to a, unique, element y in another set Y . This procedure expressed as
the function, say f, and denoted by f(x) = y. There can only be said to
be a mapping from X to Y if ∀x ∈ X ∃y ∈ Y : f(x) = y and ∀x ∈ X if
(f(x) = y ∧ f(x) = y′|y, y′ ∈ Y )⇒ y = y′.

A mapping f is said to be surjective or onto if its image is equal to
codomain. An injective function is a mapping f such that ∀x, x′ ∈ R f(x) 6=
f(x′)⇒ x 6= x′. The set X then called the domain of the mapping and the
set Y is the codomain of the mapping or the image of the function.

Here we insist on emphasizing the fundamental notion of injective func-
tions since their special property induces an important cryptographic re-
quirement. In every cryptographic scheme we need to be able to inverse the
encrypted data in order to decrypt them, since cryptography established on
using functions the use of injective functions is straightforward.

Throughout this book the most fundamental and scrutinized studied con-
cept is the notion of homomorphism. In this initial phase we can provide
the notion of homomorphism since we have defined all that we need for this
purpose.

Definition 15. Let {R, �, ◦}, {S, �′, ◦′} be rings. A mapping f : R → S
called ring homomorphism iff ∀a, b holds that f(a�b) = f(a)�′ f(b) and also
f(a ◦ b) = f(a) ◦′ f(b)

If the function f is 1−1 (i.e. f is injective function) then we say that f is
monomorphism. And when f is an surjective function we call f epimorphism

Definition 16. We say that {G1, �} is a bilinear group if there exists a
group {G2, �′} and a bilinear map as below.

� {G1, �} and {G2, �′} are two cyclic groups of finite order n.

� g is a generator of {G1, �}.
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� e is a bilinear map e : G1 × G1G2 . In other words, ∀u, v ∈ G1 and
∀a, bZ, we have e(ua, vb) = e(u, v)a·b . We also require that e(g, g) is
a generator of {G2, �′}.

Definition 17. Let {R, �, ◦} be a ring. If ∃a 6= e, b ∈ R : a ◦ b = 0R then
we call a a divisor of zero of the ring {R, �, ◦}.

Definition 18. Consider the commutative ring {R, �, ◦} with 1R ∈ R. We
call {R, �, ◦} integrity domain when it has no nontrivial divisors of zero.

Definition 19. Let {R, �, ◦} be a commutative ring with 1R, 0R ∈ R, 1 6= 0R
and ∀a ∈ R ∃b ∈ R : a ◦ b = 1R then we say that {R, �, ◦} is a field.

Theorem 7. Every finite integral domain is a field.

Example 4. Consider the set Z with the operations +, ·, then {Z,+, ·} is a
commutative ring. Also one can prove that {Z,+, ·} is an integrity domain.

Furthermore if we consider the set {2Z} we can prove that is an ideal of
{Z,+, ·}, that is {2Z,+, ·}C {Z,+, ·}. Also the ideal {2Z} is principle since
it produced by the element 2, that is {2Z} = 〈2〉.

Example 5. Take the set R with the operations +, ·, then {Z,+, ·} is a field.

The set {R,+, ·} is maybe the most classic example for a field. For our
purposes though, this is a bad example of field. Since cryptography imple-
mented through computers and not all elements of R can be represented
by finite precision. Last fact is a huge disappointment because fields are
a powerful mathematical tool to be used by cryptography since they offer
multiply and addition inverses which is a fundamental part in cryptography
by the cause of the necessity to reverse operations that produced encrypted
data.

Due to this scragginess of space R we present an example of a finite field.

Example 6. Consider the set Zp, where p ∈ N is a prime number, with the
operations +, ·, then {Zp,+, ·} is a field.

The field Zp is a perfect example of a base to build cryptosystems on
it. It offers accuracy in the representation of every of its elements, also it
offers addition and multiplication inverses and predominantly this field has
an astonishing property of being fully described only by the element p.
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I.I.III Polynomials

Definition 20. Let R be a ring with 1, then there is a ring R with the same
unity witch contains R as a subring and also has the following properties:

� There is an element x ∈ R such that ∀r ∈ R r · x = x · r.

� Every element of R has a representation of the form r0 + r1x+ · · ·+
rnx

n, where n ∈ N and ri ∈ R, ∀i ∈ [0, n].

� If r0 + r1x + · · · + rnx
n = s0 + s1x + · · · + smx

m, where n,m ∈ N,
n ≤ m and ri ∈ R, ∀i ∈ [0, n], and si ∈ R ∀i ∈ [0,m], then ri = si,
∀i ∈ [0, n] and si = 0R, ∀i ∈ [n+ 1,m]

We denote this ring with R[x] and we call its elements (univariable) poly-
nomials. The elements of R[x] denoted by f(x), g(x), h(x), ....

We call mononym every element of a ring R[x] which is of the form rxi.
We define the degree of a polynomial f(x) to be the biggest exponent of
the x′is. If r is the coefficient of the term xdeg(f(x)) then we say that r is
the leading coefficient of f(x). A polynomial which leading coefficient is 1R
called monic. And a polynomial is constant if its degree is zero and also the
coefficient of term x0 is not the 0R.

Theorem 8 (Polynomial Division). Consider the ring R[x], let f(x), g(x) ∈
R[x], g(x) 6= 0R then there are, unique, polynomials π(x), υ(x) ∈ R[x] such
that f(x) = π(x) · g(x) + υ(x), with υ(x) = 0 or deg(υ(x)) < deg(g(x)).

Definition 21. A polynomial f(x) ∈ R[x] is irreducible over the ring R
when

∀g(x), h(h) : f(x) = g(x) · h(x)⇒ (g(x) = 1R ∨ h(x) = 1r)

Theorem 9. The ring R[x] is a ring of principle ideals.

Definition 22 (Greatest Common Divisor). For polynomials f(x), g(x) ∈
R[x] with at least one different than 0R we call a polynomial d(x) ∈ R[x]
greatest common divisor of f(x), g(x), symbolized by gcd(f(x), g(x)), if it
satisfies the following conditions:

1. d(x)|f(x) and d(x)|g(x), that is, d(x) is a common divisor for f(x), g(x).

2. d(x) is monic.

3. If d′(x) ∈ R[x] and d′(x)|f(x) and d′(x)|g(x) then d′(x)|d(x).
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When for the polynomials f(x), g(x) ∈ R[x] holds that gcd(f(x), g(x)) =
1R we asy that they are relatively prime.

Theorem 10. Let f(x), g(x) ∈ R[x] be polynomials with at least one of them
different than 0R. Then there is always a polynomial d(x) ∈ R[x] which is
the greatest common divisor of f(x), g(x). Also, there are a(x), b(x) ∈ R[x] :
gcd(f(x), g(x)) = a(x) · f(x) + b(x) · g(x).

I.I.IV Linear Algebra

Definition 23. Let F be a field and V a, non-empty, set with two binary
operations �, ◦, {V, �, ◦} is a vector or linear space over the field F if the
following conditions are satisfied:

1. � : F× F→ F, ◦ : F× F→ F.

2. ∀a, b ∈ V ⇒ a � b ∈ V , ∀a ∈ V, l ∈ F⇒ l ◦ a ∈ V .

3. ∀a, b, c ∈ V ⇒ (a � b) � c = a � (b � c).

4. ∃0V ∈ V ⇒ ∀a ∈ V : a � 0 = 0 � a = a.

5. ∀a ∈ V ∃b ∈ V ⇒ a � b = b � a = 0V , we denote such a b by −a.

6. ∀a, b ∈ V ⇒ a � b = b � a.

7. ∀a, b ∈ V, l ∈ F⇒ l ◦ (a � b) = l ◦ a � l ◦ b.

8. ∃1F ∈ F : ∀a ∈ V ⇒ a ◦ 1F = 1F ◦ a = a.

9. ∀k, l ∈ F, a ∈ V ⇒ (k � l) ◦ a = k ◦ a � l ◦ a.

10. ∀k, l ∈ F, a ∈ V ⇒ (k ◦ l) ◦ a = k ◦ (l ◦ a).

We call the elements of V vectors and those of F scalars. The operation
◦ is also called scalar operation.

Definition 24. A nonempty subset W of a vector space V that is closed
under the operations � and ◦ is called a subspace of V .

Subspaces of V are vector spaces. The intersection of all subspaces
containing a given set S of vectors is called its span, and is the smallest
subspace of V containing the set S. Expressed in terms of elements, the
span is the subspace consisting of all the linear combinations of elements of
S, we call it the space spanned by S.
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Definition 25. Let a vector space V with the operations � and ◦ over the
field F. Consider the finite subset of V , S = {a1, a2, ..., an}. This family
of vectors is linearly independent if there exist l1, l2, ..., ln ∈ F with at least
one of them different than 0V , such that l1 ◦ a1 � l2 ◦ a2 · · · ln ◦ an = 0V . If
∀l1, l2, ..., ln ∈ F such that l1 ◦ a1 � l2 ◦ a2 · · · ln ◦ an = 0V implies l1 = l2 =
... = ln = 0V then we say that S is linearly dependent.

In expressions of the form l1 ◦ a1 � l2 ◦ a2 · · · ln ◦ an = a, where a ∈ V we
say that a is a linear combination of {a1, a2, ..., an}.

Definition 26. In a vector space V defined as above consider a set of el-
ements of V , S = {a1, a2, ..., an}, we say that S is a basis of V if every
element of V can be written as a linear combination of the elements of S.

One can see that a basis is a linearly independent spanning set.

Definition 27. A subset S = {a1, a2, ..., an} of a vector space V called
maximum linearly independent subset of V when ∀a ∈ V ⇒ the set S ∪ {a}
is linearly independent.

Theorem 11. Let V be a vector space with the operations � and ◦ over the
field F. And let S = {a1, a2, ..., an} ⊆ V . S is a basis of V iff is a maximum
linearly independent subset of V .

Theorem 12. Every possible basis of a vector space V have the same number
of elements.

The number of elements of the bases of a vector space is called the
dimension of the space. When a space has n elements in its bases we say
that this space is of n-dimensions.

Here we can define a common used function for the elements of a vector
space V over field F fitted with the operations � and ◦.

Definition 28. A norm is a mapping ‖ · ‖ : V → R with the following
properties:

Separates Points ∀a ∈ V, a 6= 0V ⇒ ‖a‖ > 0 and if a = 0V then ‖a‖ = 0.

Positive Homogeneity ∀a ∈ V, l ∈ F⇒ ‖l ◦ a‖ = |l| · ‖a‖.

Triangle Inequality ∀a, b ∈ V ⇒ ‖a � b‖ ≤ ‖a‖ � ‖b‖.
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I.I.V Bases Orthogonalization

In this subsection we need to define the sense of orthogonality for the el-
ements of a vector space. In this direction we first define a structure of a
vector space called inner product.

Definition 29. For a real vector space V with the operations � and ◦, a
scalar operation, over the field F, an inner product is a mapping 〈〉 : V ×V →
R that satisfies the following four properties:

Let a, b, c ∈ V and l ∈ F then:

� 〈a � b, c〉 = 〈a � c〉 � 〈b � c〉.

� 〈l ◦ a, b〉 = l ◦ 〈a, b〉.

� 〈a, b〉 = 〈b, a〉.

� 〈a, a〉 ≥ 0, equality holds only when a = 0V .

Definition 30. Let a, b elements of a vector space V , we say that a, b are
orthogonal iff 〈a, b〉 = 0.

Definition 31. An orthonormal basis of a vector space V is a subset S of
V such that ∀a, b ∈ S, a 6= b⇒ 〈a, b〉 = 0 and also the space spanned by S is
the whole space V .

I.II Topology

I.II.I Metric Spaces, Sequences

Definition 32. Let X be an arbitrary set. A mapping ρ : X×X → R called
metric in R if the following conditions are satisfied:

Non-negativity ∀x, y ∈ X ⇒ ρ(x, y) ≥ 0.

Identity of Indiscernibles ∀x, y ρ(x, y) = 0⇔ x = y.

Symmetry ∀x, y ρ(x, y) = ρ(y, x).

Triangle Inequality ∀x, y, z ∈ X ⇒ ρ(x, y) ≤ ρ(x, z) + ρ(y, z).

The pair (X, ρ) is called a metric space.

Definition 33. For an be an arbitrary set X we define a sequence in X to
be a mapping from N to X. We denote by ai the value of the sequence when
taking as parameter a natural number i.
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Theorem 13 (Cauchy-Schwarz inequality). Let x1, x2, ..., xn and y1, y2, ..., yn
are all real numbers then the following inequality holds:(

n∑
i=1

xi · yi
)2

≤
(

n∑
i=1

x2
i

)
·
(

n∑
i=1

y2
i

)
Definition 34. A subset Y of a metric space (X, ρ) is called open if,

∀y ∈ Y ∃ε > 0 ∀x ∈ X : ρ(x, y) < ε⇒ x ∈ Y

Equivalently, Y is open if every point in Y has a neighborhood contained in
Y .

A set Y is called closed if its complement (i.e. the elements of X that
are not in Y ) is open.

Definition 35. Let (X, ρ) be a metric space and x ∈ X, ε > 0. The set

S(x, ε) = {y ∈ X : ρ(x, y) < ε}

called a ball of center x and radius ε.

Definition 36. Let (X, ρ) be a metric space, a sequence (xn) of elements of
X converges to x ∈ X if ∀ε > 0 ∃n0 ∀n > n0 ∈ N : ρ(xn, ε) < ε. We denote
the convergence of a sequence (xn) to x ∈ X by xn → x or lim

n→∞
xn = x.

Definition 37. A subsequence of a sequence (xn) ∈ X is every sequence
(xnk), where (nk) is a genuinely ascending sequence of natural numbers (i.e.
m < l⇒ nm > nl). That is a subsequence is a sequence that can be derived
from another sequence by deleting some elements without changing the order
of the remaining elements and denoted by (yn) ⊆ (xn).

Theorem 14. Let (X, ρ) be a metric space and A ⊂ X. A is closed iff every
convergent sequence of A converges in an element of A.

Theorem 15. Let (X, ρ) be a metric space, a sequence (xn) of X converges
to x ∈ X iff every subsequence of (xn) converges to x.

Definition 38 (Cauchy sequence). Let (X, ρ) be a metric space and (xn) a
sequence of elements of X we say that (xn) is a Cauchy sequence if

∀ε > 0 ∃n0 ∀m,n ≥ n0 ∈ N : ρ(xn, xm) < ε,

Definition 39 (Complete Metric Space). A metric space (X, ρ) is said to
be complete (or Cauchy) if every Cauchy sequence (xn) ∈ X has a limit that
is also in X. Alternatively if every Cauchy sequence in X converges in X.
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Definition 40 (Compact Metric Space). A metric space (X, ρ) called com-
pact if if each of its open covers (i.e. a collection of open sets such that X is
a subset of their union.) has a finite subcover. Formally, if {Ai}, i ∈ U ⊆ N
a collection of open subsets of X such that X ⊆

⋃
i∈U

Ai, there is a finite set

W ⊆ U such that X ⊆
⋃
i∈W

Ai.

Definition 41 (Compact Metric Space). A metric space (X, ρ) called se-
quentially compact if every sequence (xn) ∈ X has a convergent subsequence.

Theorem 16. Every compact metric space is sequentially compact. That
is, if (X, ρ) is a metric space and (xn) a sequence in X, then there is (yn)
converges.

I.III Statistics and Probability theory

I.III.I Discrete Probability

Probability is a way of expressing knowledge or belief that an event will
occur or has occurred. Its importance in the world of cryptography lies on
the necessity for one to prove that in average case a cryptographic scheme
resists at attacks from eavesdropers. That is because no one can talk about
absolute security since an attacker at least can guess the meaning of an
encrypted message.

Sample space Ω of a random process is the set of all possible outcomes of
the process. We call an element ω ∈ Ω sample.

Let Ω be a sample space, every subset of Ω is called an event.
A useful notation for the continuation is the symbol ℘(S) (often replaced

by 2S), which represents the set of all subsets of an arbitrary set S. ℘(S)
called the power set of S.

Definition 42. Let A be an event in the sample space Ω, then the prob-
ability of A is given by the formula P (A) = N(A)/N , where N(A) is the
number of elements of A and N the number of elements of the sample space
Ω.

For a sample space Ω the probability has the following properties:

1. P (A) ≥ 0 for every sample A of ℘(Ω)).

2. P (Ω) = 1.
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3. P (A∪B) = P (A)+P (B) for every disjoint sets A,B (i.e. A∩B = ∅)
of ℘(Ω)).

In the sample space Ω we define the conditional probability of an event
A ∈ ℘(Ω) assuming that event B ∈ ℘(Ω) has occurred, denoted P (A|B),
equals

P (A|B) =
P (A ∩B)

P (B)

Definition 43 (probability space). We call probability space a triple (Ω,A, P )
consisting of the following three parts:

1. A sample space Ω, which is the set of all possible outcomes.

2. A set of events A, where each event is a set containing zero or more
outcomes.

3. The assignment of probabilities to the events, that is, a function P
from events to probability levels.

Random variable is a way of assigning a value to each possible outcome
of a random event and is denoted by the function X : Ω → R. In this way,
X is a function that assigns a real value x to every single element ω ∈ Ω,
namely X(ω) = x.

Definition 44. Let (Ω,A, P ) be a probability space and X : Ω → R a
random variable. Consider the function F defined by the relation:

F (x) = P (X ≤ x) = P [{ω ∈ Ω : X(ω) ≤ x}]

we call the function F a distribution function of the random variable X.

Definition 45. Let (Ω,A, P ) be a probability space and X : Ω→ R, : Ω→
R two random variables. We define the statistical distance ∆ by:

∆[X,Y ] =
1

2

∑
ω∈Ω

|PX(ω)− PY (ω)|

I.IV Cryptography

We give now some basic notions of cryptography. The present section exists
in order to establish a common language and symbolization of cryptography
notions.
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We start by building a story with a couple of protagonists. Suppose that
a boy called Bob and a girl, Alice desire to exchange some secret information
over an insecure channel. Briefly, we say that a communication occurs over
an insecure channel if it is feasible for someone that does not participating
on it to steal data from the conversation. This unknown, but existing,
person since is not someone known with his name is symbolized by A and
called adversary. The whole story turns around the effort of Alice and Bod
to transpose their data without revealing anything to any adversary. We
assume that our protagonists exchange some data consisting of bits. We
call these data, messages.

Since Alice and Bob are informed that there is someone who tries to
steal some of their data, they decide to encrypt them. That is, they try
to map every bit or set of bits of their data to another bit or set of bits
respectively so that the real meaning of their data be vanished. But don’t
forget that their main goal is to exchange their true data, so the previous
process deflects them from it. The only way to bring about some good
results is to find a way so that the mapping that each of them apply to be
reversible in a standard an efficient way acknowledged only by them. If this
happens then they can start transmitting their encrypted data over every
insecure channel without being afraid of any eavesdropper since only they
know how to decrypt a message (i.e. to reverse the mapping).

Beware of the importance of the mapping, in fact is the main tool that
protects them from any adversary. In consequence, this mapping have to be
treated in order to become as much easy reversible as it could be under the
condition that the same does not hold when an adversary tries to reverse it.

There is one big issue related to the mapping. Since the way of reversing
any of their mappings must be known to each of them, one more problem
arises. They have to fabricate a contrivance to help them exchange their
secret informations about the mapping, which from on will be referred as
their keys.

One technique to overcome the presence of the adversaries when they
change their keys is to do it only once but do it in person. In case they
follow this strategy we say that they have construct a private key scheme.
Maybe the above seems as the only way to deflect A from knowing about
their secret keys. Nevertheless, there is one more trick to keep their keys
secretly from A.

The second contrivance comes with an unforeseen approach for key ex-
changing, by which Alice and Bob won’t exchange keys. They just create
their own keys consisting of two parts, labeled the public and the private
keys the one of which is the reversed operation for the other. Then they
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publish their public keys for one another. As a consequence they encrypt
their messages with the public known keys, afterward, once they have taken
the encrypted messages, they can start decryption with their private keys.

To formally describe all the above we next give some definitions for some
basic essences of cryptography.

Private and Public Key Cryptography

Suppose that Alice and Bob want to exchange their data over an insecure
channel. We denote by P the set of all possible messages (plaintexts), and
by C the set of all possible encrypted messages (ciphertexts). By K we refer
to the space of all keys that can be used in such a process.

A private (or symmetric) cryptosystem consists of the following parts:

1. A function EncryptE : P ×K → C called encryption function.

2. A function DecryptE : C × K → P with the additional property

∀m ∈ P, k ∈ K DecryptE(EncryptE(m, k), k) = m.

called decryption function.

Our requirements from functions EncryptE and DecryptE are: they both
must be easy computable, in addition, for DecryptE must hold that

∀m ∈ P, k, k′ ∈ K, k 6= k′ DecryptE(EncryptE(m, k), k′) 6= m.

A public (or asymmetric) cryptosystem consists of the following parts:

1. A pair of keys sk, pk ∈ K, we say that sk is the secret key and pk is
the public key.

2. A function EncryptE : P ×K → C called encryption function.

3. A function DecryptE : C × K → P with the additional property

∀m ∈ P, k ∈ K DecryptE(EncryptE(m, k), k) = m.

called decryption function.

We require as before EncryptE and DecryptE to be easy computable, and
also DecryptE must has the property to be infeasible for one who knows
everything but the sk to find pk′ such that

∀m ∈ P, sk, pk′ ∈ K DecryptE(EncryptE(m, sk), pk′) = m.
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In both symmetric and asymmetric ciphers the functions of encryption
and decryption are parameterized by the length of the key which we call
security parameter and denote by λ. We also assume that an adversary
A may access every part of a cryptosystem except its private key. It may
appears like we are giving to much power to A, but all these features that
we provide him are those that being exposed in public during every single
execution of the scheme. That’s the reason that we assume that A knows
everything except the secret keys.

Recall now that out purpose is to protect every transmission from be-
ing captured by A. Once we have instantiated the encryption-decryption
functions we say that we have a cryptographic scheme and we denote it by
E . Afterwards, we have to convince Alice and Bob that scheme E is secure
enough to be used by them. But what is a secure cryptographic scheme?
One can give many definitions in such a question, but through all these years
there is one that predominates over every other definition.

For a public key cryptographic scheme E we define the following game:

1. A probabilistic polynomial time-bounded adversary A is given a public
key, which it may use to generate any number of ciphertexts (within
polynomial bounds).

2. A generates two equal-length messages m0 and m1, and transmits
them to an independent, honest coin-flipping machine CF along with
the public key.

3. CF randomly a bit b ∈ {0} ∪ {1}, encrypts the message mb under the
public key, and returns the resulting ciphertext c to A.

4. Ask from A to find the value of b. Denote by S the event that A
guesses the right b.

Definition 46. The sceme is said to be indistinguishable under chosen
plaintext attacks (IND-CPA) if for every possible A holds that:

P (S) ≤ 1

2
+ negl(λ)

negl(λ) is a sufficient small real number depended on the security pa-
rameter λ.

Occasionally, we call every IND-CPA secure public scheme a semantic
secure scheme.
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Part II

Homomorphic Cryptography
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Chapter II

Motivation for the
Problem

I
magine that you are facing the following situation: you have a huge

amount of digital data and you also have a personal computer with
a much smaller capacity than your data size. Suppose also, there is a server
that you, among others, can connect with. This server is able to store your
personal data and give you back at any time every part of them that you
need. You decide to send it your data but you don’t trust the server and
you choose to encrypt your data in order to be infeasible for an adversary
to read anything from them. Thereupon, as the server holds your encrypted
data its time for you to ask it give you a part of them back. And here
comes the first dilemma, how this can be done? A first option is; the server
sends you back the data in packages, you encrypt them one by one and hold
whatever you need. Another option is to trust the server and give it your
private key to encrypt your data in order to avoid the previous time and
memory expensive task.

Both solutions are unconvincing since we neither want to spend so much
time in downloading, bit by bit, what we need nor want to let an unknown
server operate over our data by giving it the secret key. Here comes the main
idea that is behind homomorphic encryption. What if one can make queries
over the encrypted data that the server has and take back only the part of
the encrypted data that he needs? This question was first transpired just
after the publication of the RSA cryptosystem [9] which is a multiplicative

23
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homomorphic scheme. For the above story this is what we all need in order
to have our data stored secretly and at any time we want we can derive
every part of them back efficiently. For cryptography though, it had been
one of the most knotty problems ever. Since the problem of constructing,
or even proving the existence, of such a scheme had been pending open over
30 years. But in year 2009 was Graig Gentry in his breakthrough paper
[1] the first to construct a fully homomorphic scheme. Just after the first
construction, which uses lattices as the mathematical structure, came the
[2] which simplifies the first scheme using only integers.

In this thesis we present some, classical, partial homomorphic schemes,
but the main part of this turns around the fully homomorphic schemes that
we know so far. For completeness we present the fundamentals of the theory
of integer lattices and in particular of ideal lattices that are the core for the
one construction.

II.I Defining our goal

We have already define what a cryptographic scheme is and the parts from
which it is formed. We now take a second look at each procedure and also
we present one additional algorithm that is needed only by homomorphic
schemes. The last is the algorithm that operates over the encrypted data
after being parameterized by the circuit that one want to operate.

From now on we consider a public key cryptosystem E which consists of
four algorithms: KeyGenE , EncryptE , DecryptE and EvaluateE .

� The KeyGenE algorithm takes as a parameter a variable, which we
call the security parameter of the system and we will denote by λ.This
algorithm outputs a pair (sk, pk) which are the system’s secret and
the public key respectively. Based on pk we define the space of the
plaintexts P and the space of the chiphertexts C for the system E .

� The second algorithm EncryptE first of all is parameterized by the
public key of E , its input is a plaintext π ∈ P and output the corre-
sponding chiphertext ψ ∈ C.

� The algorithm DecryptE is also parameterized by the private key of E ,
it receives a chiphertext ψ and outputs its corresponding plaintext π.

� Finally every homomorphic cryptographic system has to be supplied
with one more algorithm witch is going to be parameterized by the
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system’s public key and its inputs will be a circuit C ∈ CE , with CE we
denote the set of circuits for witch the E is homomorphic, and a tuple
of chiphertexts Ψ = 〈ψ1, ψ2, ...ψt〉 every element of Ψ is an input in
the corresponding wire of the circuit. What we ask from EvaluateE is:
if, EncryptE(pk, πi) = ψi, for 1 ≤ i ≤ t and C(π1, π2, ..., πt) = w, then,
if EvaluateE(pk,C,Ψ) = c, the following holds: DecryptE(sk, c) = w.

Now one can observe that a homomorphic scheme is exactly as a clas-
sic public scheme plus the evaluation algorithm. Our requirements from
EvaluateE is to be computed without secret key, all we need is somehow
return back the encrypted data that we ask for.

Now that we have made every part of the scheme clear its time to de-
fine some properties that is necessary for a homomorphic scheme to have.
Naturally, some of them, are exactly the same conditions that we require
from a public key scheme. In our case tough, there is a need to restrict the
scheme’s behavior accordingly to its homomorphic aspects.

Definition 47 (Correctness of a homomorphic encryption scheme). We say
than E is correct for circuits in C ∈ CE if:

EncryptE(pk, πi) = ψi, for 1 ≤ i ≤ t and C(π1, π2, ..., πt) = w

implies,

if EvaluateE(pk,C,Ψ) = c⇒ DecryptE(sk, c) = w.

Definition 48 (Compacteness for a homomorphic encryption scheme). We
call the cryptosystem E compact if there is a polynomial f so that the size
of the decryption circuit DE remains less than f(λ) for every value of the
security parameter λ.

We say that a homomorphic encryption scheme compactly evaluates cir-
cuits in CE if it is compact and also correct for the circuits of CE .

The two definitions above provide us a sense of the problem to be solved.
The first requirement (correctness) is fully anticipated as it asks the apparent
property of computing correctly over encrypting data in order the decrypter
to proceed with the desirable result. The second requirement maybe is not
clear at first, but remember what we don’t need. A system that evaluates
by sending all the data back to the decrypter in order to decrypt and then
apply his circuit on them, is for sure correct, but is useless. Essentially, this
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is what we want to avoid, so, we forbid it by requiring compactness. So we
exclude the trivial solution EvaluateE(pk,C,Ψ) = (C,Ψ).

In the next chapters we encounter cryptosystems which have the property
of correct evaluating circuits only upto a specific depth. For simplification
we denote them by E i. That is, if E is a cryptosystem that correctly evaluates
circuits of depth at most i, i ∈ Z, then we denote this cryptosystem with
E i.

In response to the above, there must take place a couple of, modified,
definitions in order to conventionally continue by the right terminology.

Definition 49 (Leveled fully homomorphic encryption). Let {E(d) : d ∈ N}
be a family of homomorphic encryption schemes, we say that E(d) is leveled
fully homomorphic if for every d ∈ N all possible decryptions are computed
by the same decryption circuit and also E(d) compactly evaluates every circuit
of depth at most d, moreover, the complexity of every algorithm that contains
E(d) is polynomial according to λ, d and to the size of the circuit C.

Definition 50 (Fully homomorphic encryption scheme). We call a scheme
E fully homomorphic if it compactly evaluates every possible circuit.

All we did is that we named our main target. That is, we are working
towards constructing a fully homomorphic scheme.

II.II Applications of Homomorphic Cryptography

The first example than demonstrates the usefulness of fully homomorphic
encryption has already been presented. Even though the web runs faster and
faster and points to the direction of using any computer for data storing it
is not enough because who wants to store his private data in an untrusted
server? The development of a fully homomorphic scheme is the first result
that strengthens the idea of secure data storing on different data banks.
This means that one is able to access his data from anywhere since he can
store everything in an unknown server.

One more useful application that homomorphisms have to offer is that
they open the way for building e-voting systems. In a case that a fully
homomorphic scheme is available then every one could deposit his vote after
encrypting it. Then the system is capable of counting all the votes and
get the result without knowing the individual choices. An extension of e-
voting is the statistical analysis that could take place in a system which
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gives questionnaires in a special form so that it collects only anonymous and
encrypted data that can be processed only by the system.

Internet queries also could be more ”secure” after the existence of such a
scheme. Since its possible to encrypt the search query and the appropriate
server could be send the results of the query without knowing what has
really been asked.
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Chapter III

Partially Homomorphic
Schemes

I
t took over 30 years for the researchers to come to a conclusion for
the existence of a homomorphic scheme. In the meanwhile, an in-

creasingly number of partial homomorphic schemes was developed. By the
term partial homomorphic schemes we refer to cryptosystems which don’t
have the homomorphic property for every circuit but the have it for at least
one circuit operation. Next, we briefly present some previous cryptographic
schemes for which the homomorphic property holds at least for one of the
operations of addition or for multiplication. We first describe RSA, which
is multiplicative homomorphic but this version of the algorithm does not
confer semantic security. Next we have ElGamal scheme which is semantic
secure and is multiplicative homomorphic. The last scheme we present is
the Goldwasser-Micali cryptosystem, a scheme that uses quadratic residues
and evaluates homomorphically the exclusive-or operation.

III.I RSA

In 1978 Rivest, Shamir, Adleman designed the well-known public key cryp-
tosystem RSA ([9]) named after its inventors, which is the scheme that
rendered the motivation for the search of a fully homomorphic scheme.

First we describe the functionsKeyGenRSA, EncryptRSA andDecryptRSA,
that characterize the scheme:

29
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Scheme 1 (RSA).

KeyGenRSA

1. Choose two distinct prime numbers p, q .

2. Compute n = p · q.
3. Compute Euler’s totient function φ(p · q) = (p− 1) · (q − 1).

4. Choose an integer e such that 1 < e < φ(p · q), and

gcd(e, φ(n)) = 1.

5. Determine d = e−1 mod (p− 1) · (q − 1).

6. Return public key {n, e}, private key {d}.

EncryptRSA

1. Take as input a message m ∈ P.

2. Return c = me mod n.

DecryptRSA

1. Take as input a ciphertext c.

2. Return m = cd mod n.

Observe now that if pk = {n, e}, sk = {d} are the public and the private
keys respectively. Then for messagesm1,m2 ∈ P let c1 = EncryptRSA(pk,m1) =
me

1 mod n and c2 = EncryptRSA(pk,m2) = me
2 mod n, then c1·c2 mod n =

me
1 ·me

2 mod n = (m1 ·m2)e mod n. That is, we proved that:

EncryptRSA(pk,m1) · EncryptRSA(pk,m2) = EncryptRSA(pk,m1 ·m2).

Thus, we have shown that RSA is a multiplicative homomorphic scheme.
RSA was the first partially homomorphic scheme ever and one can say that
the initiation of homomorphic encryption is due to this classic scheme.

III.II Goldwasser-Micali Cryptosystem

The first scheme ever with a proof of semantic security was purposed by Shafi
Goldwasser and Silvio Micali in 1982. They were the first to introduce the
notion of semantic security, and their scheme was the first to use probabilistic
method for the encryption.

Next we denote by

(
x

p

)
the Jacobi symbol.
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Scheme 2 (Goldwasser-Micali).

KeyGenG−M

1. Generate two prime numbers p, q.

2. Set N = p · q.

3. Compute in integer x such that

(
x

p

)
=

(
x

q

)
= −1.

4. Return public key = {N, x}, private key = {p, q}.

EncryptionG−M

1. Choose a random y ∈ {0, 1, ..., N − 1}.
2. Calculate ci = y2 · xmi mod N .

3. Return {c1, ..., cn}.

DecryptionG−M

1. For every ci check if ci is a quadratic residue.

2. If ci is quadratic residue then mi = 0 else mi = 1.

The Goldwasser-Micali scheme offers homomorphic evaluation over the
operation ⊕ (i.e. exclusive-or). This can be proved if we consider two
random bits b1, b2 encrypted over the cryptosystem as c1, c2 respectively.
Then EncryptG−M(b1) · EncryptG−M(b2) = y2

1 · xb1 · y2
2 · xb2 mod N = (y1 ·

y2)2 · xb1+b2 mod N.

III.III ElGammal

Seven years after the publication of the RSA cryptographic scheme, a new
partially homomorphic scheme has occurred. Taher ElGammal built a scheme
inspired by the classic key exchange protocol Diffie-Hellman. ElGamal is a
non-deterministic encryption scheme, one plaintext has multiple ciphertext
representations and that is why this is a semantically secure cryptosystem.
Details about the algorithms that the scheme uses provided below.

Scheme 3 (ElGammal).

KeyGenElG

1. Generate a multiplicative cyclic group G of order q with generator
g.
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2. Choose a random w ∈ {0, 1, ..., q − 1}.
3. Compute h = gw.

4. Return public key = {G, q, g, h}, private key = {w}.

EncryptionElG

1. Choose a random y ∈ {0, 1, ..., q − 1} and calculate c1 = gy.

2. Calculate c1 = gy, s = hy, c2 = m · s.
3. Return {c1, c2}.

DecryptionElG

1. Calculate s = cw1 .

2. Return m = c2 · s−1.

Consider now plaintexts m1,m2 then their corresponding ciphertexts:
{gy1 ,m1 · hy1} and {gy2 ,m2 · hy2} respectively. Let’s multiply now the com-
ponents of the ciphertexts, we get {gy1+y2 ,m1 · m2 · hy1+y2}. For the de-
cryption now we have s = (gy1+y2)w = hy1 · hy2 which gives that m =
m1 ·m2 · hy1+y2 · (hy1 · hy2)−1 = m1 ·m2. Which implies:

EncryptElG(pk1,m1)·EncryptElG(pk2,m2) = EncryptElG(pk1+pk2,m1 ·m2).

As in the case of RSA we have show that ELGammal is multiplicative ho-
momorphic, but in this case the final ciphertext is encrypted neither first
nor second public key, but it’s encrypted under the sum of the public keys.



Chapter IV

Bootstrappable
encryption

W
ithin this chapter we focus on a special property of a cryptosystem
E which we call bootstrappability. This is a universal property

and becomes interesting when the scheme is a leveled homomorphic scheme.
Then botstrappability permits one to achieve fully homomorphic encryption
only by modifying the existing leveled homomorphic scheme. Though, in
order to efficient construct such a fully homomorphic scheme we have to
chose carefully the scheme that we will build on. A crucial property the
initial scheme must have is a shallow decryption circuit.

IV.I Intuition for Bootstrappability

Thus far, there have been presented only public schemes which are homo-
morphic in a limited sense. In this chapter we describe a way of constructing
a fully homomorphic scheme starting by one that is partially homomorphic.
This is possible if the initial scheme has one additional property, to be able
to homomorphic evaluate its own decryption circuit. This self referential
characteristic may seems unusual on the ground to be used since the most
common use of techniques that use self reference is to prove that the algo-
rithm being examined has poor running times or even that a problem that
can’t be solved. In this case though, we prove that this property suffices to
permit constructing a secure public homomorphic scheme.
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Before the formal description of our requirements and of the way that
we can build such a scheme we give an example to improve our intuition
with regard to the notion of bootstrappability.

First assume that we have a public key cryptosystem E which has the
property of being able to homomorphically evaluate its decryption circuit
DecryptE . Imagine now that Alice holds a message m, and encrypts it as
cA under her public key skA, we can build a strategy for converting the
ciphertext cA to another ciphertext cB which encrypts the message m but
under Bob’s public key skB.

First, Alice publishes her secret key but encrypted under Bob’s public
key pkB, let skA the result of this procedure. After this Bob has skB, pkB,
skA, and cA. Now he can take advantage of the homomorphic evaluation
that the scheme offers for DecryptE as follows: He encrypts cA under his
public key let cA this, double, encrypted message. Then he asks for an
evaluation on the circuit EvaluateE(pkB,DecryptE , skA, cA). Last circuit’s
result is cB, that is, m encrypted under Bob’s public key, this happens only
because of the special property that E by assumption has.

Now suppose that the homomorphic evaluation stands not only for the
decryption circuit but also for the NAND gate. Moreover, lets assume that
if we connect two copies of the DecryptE circuit via a NAND gate then the
resulting circuit can also be homomorphically evaluated by the scheme, we
denote this circuit by NANDDEC

DEC . Then Alice and Bob can operate as above
and begin with two messages m1,m2 encrypted under Alice’s public key as
c1A, c2A and finish with the message m1NANDm2 encrypted under Bob’s
public key.

The main idea behind what follows is the above game as we will see that
is the core for a technique that finally permits the homomorphic encryption
under arbitrary circuits. The big issue is to find a complete set S of gates
whose each member must be able to do what the NAND gate did above.
We need for every gate g ∈ S the resulting circuit after putting on its input
wires copies of DecryptE to be evaluated homomorphically by the scheme.
Then, the concept for making a scheme that can evaluate arbitrary circuits
is that because of the completeness of S we can express every circuit as a
combination of its elements. Thus, for a circuit C the first step is to express
it as a combination of elements of S and then run the above game for each
of the circuits that form C to conclude with a homomorphic evaluation on C
which is formed by circuits that by assumption computed homomorphically
by the scheme.
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IV.II A generic construction

Continuing the above approach to the problem we formalize the steps and
the requirements that permit bootstrappability. First, we give a definition
of what an augmented decryption circuit is. This is, just for simplification
for everything that follows.

Definition 51. Let DE be the decryption circuit of E and Γ a set of gates
which includes the identity gate (is the one that outputs the input as it is).
Also,let g ∈ Γ we call a circuit consisting of g modified so that every input
wire has a copy of DE g-augmented decryption circuit. The set of all the
g-augmented decryption circuits, g ∈ Γ, is denoted by DE(Γ).

We will see that if CE contains the augmented decryption circuit of E
then we can construct from E a fully homomorphic scheme which evaluates
every circuit. In fact the circuit NANDDEC

DEC that we presented in previous
section is an augmented decryption circuit. So the way of getting a fully
homomorphic scheme starts to appear, it will be a generalized method that
implements the strategy we described above.

Definition 52. Let E be a leveled homomorphic scheme and Γ a set of gates.
We say that E is bootstrappable with respect to Γ if DE(Γ) ⊆ CE

Towards working on finding a fully homomorphic scheme this property
plays a lead role as we will see in next chapters. In breath, this gives us
the opportunity to construct an algorithm which inputs will be a public
key pk1, a secret key encrypted under pk1, sk2, and a ciphertext encrypted
under the corresponding public key pk2. Then the algorithm’s output will
be the ciphertext encrypted under pk2. We will take advantage of it as
we will construct a scheme than during the evaluation of a circuit the use
of the above algorithm will refresh the ciphertext every time it comes to
a new gate. An obvious usefulness of it is when we deal with encryptions
that introduce errors in the plaintexts, in such occasions we need to keep
the error small enough to be able to decrypt without errors which is a non
trivial task since during the evaluation the error maybe grows in every gate
the ciphertext is an input.

Next we describe the algorithm Recrypt that materializes all the above.
But before we have to make the following clarifications: We consider two
pairs of keys (pk1, sk1) and (pk2, sk2), both are outputs of KeyGenE(λ) al-
gorithm, we also have EncryptE(pk1, ψ1) = π and by sk(1,j) we denote the
j-th bit of the key sk1 encrypted under pk2 and by ψ(1,j) the j-th bit of ψ1.
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Algorithm 1.

1. ψ(1,j)
R←− EncryptE(pk2, ψ(1,j)), for all j ∈ [1, `(ψ1)]

2. ψ2 ← EvaluateE(pk2, DE , 〈〈sk(1,j)〉, 〈ψ(1,j)〉〉)

3. return ψ2

In order the algorithm to be more efficient we replace the second step

with this: ψ(1,j)
R←− WeakEncryptE(pk2, ψ(1,j)), for all j ∈ [1, `(ψ1)], where

WeakEncryptE algorithm is a weaker encryption algorithm than EncryptE
but its decryption circuit has less complexity. Although WeakEncryptE is
weaker than EncryptE it does not hurt security because when we apply
WeakEncryptE we have already an encrypted message.

Now, we show how the above algorithms and observations will help us
construct a leveled homomorphic encryption scheme. Starting from a boot-
strappable scheme E with respect to the gates of the set Γ we construct the
scheme

E(d) = (KeyGenE(d) ,EncryptE(d) ,EvaluateE(δ) ,DecryptE(d))

which can evaluate homomorphically circuits of depth at most d. We denote
by DE(Γ, δ) the circuits consisting of gates from the set Γ and their depth
is δ augmented by DE . In details the algorithms of E(d) are:

KeyGenE(d)(λ, d): sets:

ski
R←− KeyGenE(λ), i ∈ [0, d]

sk(i,j)
R←− EncryptE(pki−1, sk(i,j)), i ∈ [1, d], j ∈ [1, `(λ)]

where sk(i,1), sk(i,2), ..., sk(i,`) are the representations of ski as elements
of the space P. This algorithm outputs the secret key of the scheme
sk(d) ← sk0 and also the public key pk(d) ← (〈pki〉, 〈sk(i,j)〉) with
i ∈ [0, δ] and for δ ≤ d.

EncryptE(d)(pk, π): Its input is a π ∈ P and it output a ψ such that:

ψ
R←− EncryptE(pkd, π)

DecryptE(d)(sk, ψ): With input a ciphertext ψ it computes and returns the
Decryptsk0E (ψ).
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AugmentE(δ)(pk
(δ), Cδ,Ψδ): The input here is a circuit Cδ with depth at

most δ with gates from the set Γ and an encrypted input of it Ψδ.
After, it augments the circuit Cδ by DE , we denote the yielding circuit
by C†δ−1. The next move is to construct an input for the new circuit.

So, every ψ ∈ Ψδ is being replaced by the tuple 〈〈sk(δ,j)〉, 〈ψj〉〉, where

ψj ← WeakEncryptE(δ−1)(pk(δ−1), ψj) but every ψj comes from the
representation of ψ as an element of P. Finally, the output is the pair
(C†δ−1,Ψ

†
δ−1)

ReduceE(δ)(pk
(δ), Cδ,Ψδ): The input is C†δ ∈ DE(Γ, δ+1) and a proper input

for C†δ , let Ψ†δ. It constructs a new circuit, Cδ, which is a subcircuit

of C†δ consisting only from its δ first levels. It also produces an input

for the new circuit. It comes from the Ψ†δ and we denote it by Ψδ.
The element of Ψδ which corresponds to the wire w of the new circuit

will be the EvaluateE(pkδ, C
(w)
δ ,Ψ

(w)
δ ), with C

(w)
δ to be the subcircuit

of C†δ whose output is the wire w and Ψ
(w)
δ is the input of C

(w)
δ ).

Algorithm outputs the pair (Cδ,Ψδ).

EvaluateE(δ)(pk
(δ), Cδ,Ψδ): The input is a circuit Cδ of depth at most δ

consisting of gates taken by Γ and a tuple of ciphertexts (under pkδ)
for its input, Ψδ. We note here that because this algorithm runs
recursively, we assume without loss of generality that all the wires of
Cδ are connecting gates of consecutive levels of the circuit. If the above
does not hold we add identity gates to where needed. The algorithm
then operates as follows:

1. If the depth of Cδ equals to zero, then it returns Ψ0

2. (C†δ−1,Ψ
†
δ−1)← AugmentE(δ)(pk

(δ), Cδ,Ψδ)

3. (Cδ−1,Ψδ−1)← ReduceE(δ−1)(pk(δ−1), C†δ−1,Ψ
†
δ−1)

4. Simulates EvaluateE(δ−1)(pk(δ−1), Cδ−1,Ψδ−1)

The above construction points to a new direction for searching a fully ho-
momorphic scheme, maybe we can start building one step by step than only
trying to find an ad-hoc algorithm that operates homomorphically for every
circuit. All we need is a bootstrappable scheme with a swallow decryption
circuit in order to fit it into the scheme’s homomorphic operations circuits
and, operating as above, finally end with a fully homomorphic scheme.
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IV.II.I Correctness, complexity and security of the scheme

Theorem 17. Correctness
Let E be a bootstrapable scheme with respect to the set of gates Γ. Then,
E(d) compactly evaluates every circuit of depth at most d with gates from Γ.

Proof. We denote by D(d,w,C,Ψ) the value of the wire w after the decryp-
tions of Ψ as inputs of C. Since initially we have the circuit Cd with input the
ciphertext Ψd it suffices to show that D(d,wout, Cd,Ψd) = D(0, wout, C0,Ψ0)
for every wire wout of the output, namely, of the circuit C0. The correctness
of the above comes from the following two conditions:

� (C†δ−1,Ψ
†
δ−1)← AugmentE(δ)(pk

(δ), Cδ,Ψδ), so we have:

D(δ, w,Cδ,Ψδ) = D(δ − 1, w, C†δ−1,Ψ
†
δ−1)

� (Cδ,Ψδ)← ReduceE(δ)(pk
(δ), C†δ ,Ψ

†
δ), which gives:

D(δ, w,C†δ ,Ψ
†
δ) = D(δ, w,Cδ,Ψδ)

Note here that if Γ is an universal set of gates, then the family E(d) is
leveled fully homomorphic.

Theorem 18. Complexity For a circuit C of depth at most d and of size s
(the total number of the wires) we need at most s ·` ·d calls of WeakEncryptE
and s · d calls of EvaluateE at the circuits of DE(Γ), during the operation of
EvaluateE(d) for C.

Proof. First of all, observe that our acceptance that EvaluateE(d) handles
only circuits whose wires connect gates in consecutive levels maybe alters
C in order to be a valid circuit. The worst case for this modifications gives
us a circuit which has at most s · d wires. But for each of them because of
the algorithm EvaluateE(d) and because of the augmentation we have calls of
WeakEncryptE . If `(ψ) = m, then for the expression of ψ as a concatenation
of length ` we need ` elements (they are the new ψj) which means that for
every wire we have ` additional calls of WeakEncryptE . All the above gives
us that WeakEncryptE may be called at most s · d · ` times.
For the second part of the theorem it suffices to observe that EvaluateE(d) is

being called only from the Reducepk
(δ)

E(δ) (Cδ,Ψδ) and it happens only once for
each wire.

Theorem 19. Security (chosen plaintexts attacks)
Let A be an algorithm that in time t with advantage ε brakes the semantic



IV.II. A GENERIC CONSTRUCTION 39

security of E(d), then there is an algorithm B which in time t · ` and with
advantage at least ε/(`(d+ 1)) breaks the semantic security of E.

Proof. From so on, for k ∈ [0, d], we denote by Game k the game for the
definition of the semantic security of E(d). With the variation that the chal-

lenger defines (sk′i, pk
′
i)

R←− KeyGenE(λ) and sk(i,j)
R←− Encrypt

pki−1

E (sk′(i,j)).
We also define the Game d+1 being exactly the same with Game d with the
only difference that the challenger ignores the challenges π0, π1 and encrypts
a new, random, message π. We define with εk the advantage of the adver-
sary at Game k. First we can observe that in the Game 0 the adversary
has by assumption advantage ε0 = ε, and also εd+1 = 0 because we have
fool the adversary giving him a forged message. So, in the sequence of the
games starting at Game 0 until Game d + 1 there must be to consecutive
games k, k + 1, with k ∈ [0, d] for which holds that |εk − εk+1| ≥ ε/(d + 1).
From now on we fix this k.

Next we construct an algorithm B which uses A in order to break E(`)

which is by definition to be equal to the E but with plaintext space the set
P≤`. We denote by CB the challenger in the game that B aims to break
E(`). Obviously in the game where the adversary is A the challenger is B.
We now give the operation of B: when he receives the public key pk from
CB he produces keys for the Game k with the algorithms that we have just
define but after this he replaces the value of pkk with pk. He also produces

one more pair (sk′k+1, pk
′
k+1)

R←− KeyGenE(λ) and sends CB the π0 = skk+1

and π1 = sk′k+1. After this CB chooses b1
R←− {0, 1} and sends B the tuple of

ciphertexts 〈ψj〉 which are the encryptions for the bits of 〈πb1,j〉. B’s next
move is to replace 〈sk(k+1,j)〉 with 〈ψj〉. After this we have that the values
that B gives to A correspond to the Game k+ b1. A produces two messages
π0, π1 and sends them to B. For this move of B there are two possibilities.

1. If k < d, then chooses b2
R←− {0, 1} and sends A the tuple consisting of

the values ψj ← EncryptpkdE (π(b2,j)).

2. If k = d, then constructs a random π and sends CB the πb2 and π after
letting CB to choose randomly one of them he encrypts it and after
he sends B the corresponding ciphertext. Then B gives it to A whose
answer is a b3 ∈ {0, 1}. Finally, A answers b3 ⊕ b2 to CB

In both occasions we have construct either the Game k or the Game k + 1
which by hypothesis A’s advantage is ε/(d+1) to distinguish between them,
so this distribution passes to B and he is able to distinguish the respecting
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ciphertext. So we have proved that B breaks the semantic security of P≤`
with advantage ε/(d+ 1). On the other hand to attack E we need ` calls of
E` so with probability at least 1/` there is one call where A distinguishes
his starting messages. Namely, B runs an amount of t · ` steps and has
advantage at least ε/(`(d+ 1)).

IV.III Fully homomorphic scheme

We have describe the way to construct a leveled homomorphic scheme, since
the key of E(d) depends on the depth, d, of the circuit that we want to
evaluate. So, what we need to modify the above construction in a fully
homomorphic scheme is to fix the length of the key. We now give a useful
security definition:

We say that a cryptosystem is secure for key dependent attacks (KDM
secure) if, for known public keys pk1, pk2, ..., pkn every encryption of the
function f(sk1, sk2, ..., skn), f is chosen by the adversary, does not reveal
anything about any of the private keys ski.

Now, we show that if E is secure under key dependent attacks then we
can modify this scheme in the following way without breaking its seman-
tic security that its already proved: Instead of constructing a chain of d
keys, where d is the depth of the circuit, we can construct only one pair

(sk∗, pk∗)
R←− KeyGenE(λ) and every time algorithm Recrypt operates we

refresh the encryption with the same key, we denote the new scheme by E∗.
Then, because the scheme is secure under key dependent attacks we can
prove that E∗ is semantically secure. The proof is exactly the same with the
case that after every refresh of the keys we did not have same keys.



Chapter V

Introduction to Lattices

I
n this chapter we present the notion of a lattice. They have a key role
in the construction of the homomorphic scheme and that’s because

they provide encryption schemes with low decryption complexity circuits. To
see why this is important in our construction recall the introductory scheme
and especially the augmentations that it produces. This is an operation that
lead us to a scheme which executes a huge number of decryptions, so the
need of a low complexity circuit for the decryption is necessary.

V.I Lattices

Here we give the definition of a lattice. We denote the Euclidean length of
vector x = (x1, x2, ..., xn) by ‖x‖ that is, ‖x‖ =

√
x2

1 + x2
2 + ...+ x2

n. Also
for a square matrix B we denote by ‖B‖ the maximum length of its column
vectors.

Definition 53. Let B be an integer matrix of dimensions m×n, we take the
set L = {y : y = B ·x ∀x ∈ Z1×n}, that is the set of all linear combinations
of B. We call every L with the above properties a lattice.

Lattices are being studied since early 80’s and so far there are some
problems associated with them that seem to be hard to solve. For some
of them there are no known algorithms even for quantum computers. The
above give us the opportunity to think of them as a power tool to be used
in cryptography. We start to study in detail some properties of lattices and
after we present some of the most famous lattice problems.

41
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Figure V.I: A lattice and two possible bases.

First of all one must notice that a lattice is fully characterized by the
matrix that generates it. In fact, matrix B contains n linear independent
vectors which are the basis of the lattice. Despite, a lattice L does not
produced only by one, unique, basis, we will show that there are to many
different bases that produce the same lattice. Towards this goal we first
define the notion of unimodular matrix.

Definition 54. Let U ∈ Zn×n, with the property that | det(U)| = 1,then we
say that B is unimodular.

Lemma 1. Let U is a unimodular matrix then it has inverse, the matrix
denoted U−1, and also this matrix is unimodular.

Proof. We have that det(U−1) = 1
det(U) = ±1. We need to show that U−1 is

an integer matrix. The last is true since along the Cramer’s rule the (i, j)

position of matrix U−1 has the element
(−1)i+j ·det(U(i,j))

det(U) , where U(i,j) denotes
the matrix U with its i-th line and j-th column deleted.

Theorem 20. The set of unimodular matrices of dimensions n × n is a
group under matrix multiplication.

Proof. The proof is an imidiate fact of the previous theorem and the multi-
plicative property of the determinant (det(A) · det(B) = det(A ·B)).
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Before next theorem we start by giving a tip that helps us in next proof
and also gives a better view of what a unimodular matrix is.

Proposition 1. Suppose B is a square matrix. Then all the following op-
erations can be performed on B only by a right-multiplication with an ap-
propriate unimodular matrix.

1. Multiplication of a column by -1.

2. Exchange of two columns.

3. Addition of an integer multiple of one column to another.

Proof. 1. Take the matrix

U1 =



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · −1 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · 1


U1 is the identity matrix except the (i, i) position where there is an
-1, if we apply it with right-multiplication to a square matrix A then
the resulting matrix will be the same as A but with its i-th column
multiplied by -1.

2. If we have to exchange two columns then we take the following matrix.

U2 =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 1 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 1 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 1


U2 is almost the same as the identity matrix but in its i-th line has
the 1 in the j-th position and also in the j-th li ne has its 1 in the i-th
position. As in first case if we apply it with right-multiplication to a
square matrix A then the resulting matrix will be the same as A but
with its i-th and j-th columns exchanged.
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3. In case we need to add an integer multiple of a column to another we
consider the matrix U3.

U3 =


1 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · k · · · 1 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 1


U3 is almost the identity matrix but it has an additional k in the
position (i, j), then with right-multiplication to a square matrix A the
result will be a matrix with every column is identical to corresponding
A’s column except the i-th column which will be the sum of the i-th
and k times j-th column of A.

Now we prove a property that gives us a way to construct a new basis
for a lattice when we already have one.

Lemma 2. Suppose B1 is a basis for a lattice L, then B2 is a matrix for
the same lattice if and and only if there exists a unimodular matrix U such
that B2 = B1 · U

Proof. (⇒)

Suppose that B1 and B2 define the same lattice. Then every column
of B2 is a linear combination of the columns of B1. So, the first column
of matrix B2 is a linear combination of those of B1, according to previous
lemma there is a unimodular matrix U1 so that the product B1 · U1 is the
same as B1 but with its first column being identified to the first column
of B2. Thus the same must hold for the second column of B2, there is a
unimodular matrix U2 so that the product B1 · U1 · U2 has all the first two
columns as they are in the matrix B2 and the rest of them are as they are
in B1. Continuing in the same manner we build a matrix B1 · U1 · U2 · · ·Un
that has all the columns of B2, namely B1 ·U1 ·U2 · · ·Un = B2, and because
the unimodular matrices of the same dimension are a group inner matrix
multiplication we take that U1·U2 · · ·Un = U with U unimodular as required.

(⇐)

Denote by L′ the lattice produced by B2, we will show that L = L′.
Since B2 = B1 · U and U is unimodular (integer) matrix then we take that
every column of B2 is contained in lattice L, so L′ ⊆ L. It also holds that
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B1 = B2 · U−1, with U−1 be unimodular, so L ⊆ L′. Combining the above
relations we take that L′ = L.

V.II Special Properties Of Lattices

In this section we present some properties of lattices that make them a useful
tool to be used in cryptography. We start by giving the definition of the
fundamental parallelepiped that is the base for everything that follows.

Definition 55 (Fundamental Parallelepiped). Let L be a lattice, and let a
basis for L is B = [b1, ..., bn], bi are the column vectors of B, then we define

the set P(B) = {y : y =

n∑
i=0

xi · bi, xi ∈ [−1

2
,
1

2
)}. We call P(B) the

fundamental parallelepiped of L with respect to the basis B.

To visualize the sense of the fundamental parallelepiped the reader could
consider the figure V.I. The overshadowed areas correspond to the funda-
mental parallelepipeds of the bases that lie on them.

Through all these years a useful, mathematic, tool in cryptography has
been the modular arithmetic. That’s because a ring modulo a, prime, num-
ber offers a variety of conveniences. First of all, such a ring consists only
from distinct elements, this is a necessity when we apply a cryptosystem
on a computer. This ring also has a much more helpful property of being
a field when the modulo is a prime number. Last condition is momentous
since we deal with a algebraic construction which offers some of the strongest
mathematical properties that we are familiar with, such as the multiplicative
inverse.

But what is the role of the modular arithmetic in our construction?
This just gives the inspiration for what follows. In this scheme the basic
mathematical tool will be the lattices but we will utilize them in a manner
that the further work with them will be in the sense of modular arithmetic.
The key point towards this direction will be the fundamental parallelepiped.
We will use the fundamental parallelepiped as we use the prime number in
a modulus ring. Here we have to come up with a definition.

Definition 56. For a basis B of a lattice L and a random chosen vector
u ∈ L define PB,u = {P(B)+u} then we have that the sets PB,u when u ∈ L
form a partition of the whole space Rn. Also,we denote by PB,u(v) the set
{P(B) ∩ v + u}.

Remark 2. It is easy to see that PB,u(v) =

{
v + u if v ∈ P(B)
∅ if v /∈ P(B)
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Thereon, for a random vector t we will silently use the notation t =
PB,u(v) instead of using the notation t ∈ PB,u(v) taking advantage of the
last remark.

Proposition 2. Let L ⊆ Zn and b1, ..., bn be linear independent vectors of
space Zn, then b1, ...bn form a basis of L iff P(B)∩L = {0}, where B is the
n-dimensional square matrix formed by b1, ..., bn as columns.

Proof. (⇒)
Suppose that b1, ..., bn form a basis of L, then

P(B) = {y : y =

n∑
i=0

xi · bi, xi ∈ [−1

2
,
1

2
)}.

That is, the only linear combination that holds inside P(B) is when bi =
0,∀i ∈ [1, n], the point produced then is the 0 thus the only lattice point
that lies inside P(B) is the vector 0.

(⇐)
Imagine now that b1, ..., bn are linearly independent then follows that

they all form a basis of Rn. Take now the lattice point v ∈ L ⊆ Rn, since

b1, ..., bn are a basis of Rn there must be y1, ..., yn ∈ R so that v =
n∑
i=0

yi · bi.

We will show that each one of yi is an integer, that is y1, ..., yn ∈ Z.

First, consider the vector u =

n∑
i=0

dyic · bi which is a member of L since

dyic ∈ Z. Since v, u ∈ L it follows that for the vector t = v− u it holds that

t ∈ L, but t =
n∑
i=0

(yi − dyic) · bi. Note that yi − dyic ∈ [−1
2 ,

1
2). However,

because P(B) ∩ L = {0} and t =

n∑
i=0

(yi − dyic) · bi by assumption we take

that t ∈ P(B)⇒ t = 0 which gives that yi = dyic = 0⇒ yi ∈ Z.

Now, we briefly describe the connection between the modulus ring and a
lattice. In operations of the form a mod b the result depends on the relative
position of a to its nearest multiply of b that is no bigger than a. In fact the
space has been partitioned by the sets Pk = l(b) + kb, k ∈ Z, l(b) denotes
the half-open set [O, b) and we have to find where a is placed in the set Pk
that it belongs without finding which exactly is the set (i.e. the k). The
analogous operation on lattices will be: given a point v ∈ Rn find where v
is placed in the PB,u that it belongs, formally:
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Definition 57. Suppose that L is a lattice defined by the n-dimensional
square matrix B, and v, v′ ∈ Rn then we write v ≡ v′ mod B if v − v′ =
PB,u(0) for a vector u ∈ L. We say that vector v is the distinguished
representative for vector v′ according to basis B if v is the unique point
v ∈ P(B) for which holds that v′ = PB,u(v) for a vector u ∈ L.

Proposition 3. The relation ≡ that we defined above is an equivalence
relation.

Proof. Suppose that B is a n-dimensional square matrix that generates lat-
tice L and a, b, c are vectors of Rn.

� It holds that a ≡ a mod B because a− a = 0 = PB,0(0)

� If a ≡ b mod B ⇒ a − b = PB,u(0) for a vector u ∈ L. We also
have that −(a − b) = PB,u′(0) for the vector u′ = −1 · u ∈ L thus,
b− a = PB,u′(0)⇐⇒ b ≡ a mod B.

� Suppose that a ≡ b mod B and b ≡ c mod B then its true that
a− b = PB,u1(0) for a vector u1 ∈ L and b− c = PB,u2(0) for a vector
u2 ∈ L. We now consider the quantity a − c = a − b + (b − c) =
u1 + u2 ⇒ a − c ∈ PB,u1+u2(0), and u1 + u2 ∈ L since they are both
members of the lattice. From the last relation we conclude that a ≡ c
mod B

Proposition 4. For a lattice L generated by the n-dimensional square ma-
trix B a distinguished representative of the vector t mod B is efficiently
computable as t−B · dB−1 · tc.

Proof. Suppose that s ≡ t mod B, with s ∈ P(B) we will show that

s = t−B · dB−1 · tc (V.1)

We have already seen that the sets PB,u = {P(B) + u} form a partition of
space Rn. Now, let t ∈ Rn then t must be contained at a unique PB,u for
some u ∈ L. Also, because s ∈ P(B) and PB,u(s) = t then the following
equation holds:

t = s+ u (V.2)
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with s =
n∑
i=0

xi ·bi, xi ∈ [−1

2
,
1

2
). After the above observations we can now

use a part of the reduction formula for t = s+ u. We take:

dB−1 · tc = dB−1 · (s+ u)c = dB−1 · s+B−1 · uc

but because u ∈ L holds that dB−1 · uc = B−1 · u therefore

dB−1 · tc = dB−1 · sc+B−1 · u (V.3)

Now we focus on eliminating the d·cto the term with s. In this direction
we have to use the relation of s with the generator matrix B. That is,

s =
n∑
i=0

xi · bi, xi ∈ [−1

2
,
1

2
) where bi denotes the i−th column of matrix

B. Denote now by b′i the i−th row of matrix B−1, here must be clear that
b′i · bi = 1 for every i ∈ [1, n] and also that b′i · bj = 0 for every i, j ∈ [1, n]
when i 6= j. Now we can compute the i−th coordinate of vector B−1 · s,

which equals to b′i ·
n∑
i=0

xi ·bi = xi ∈ [−1

2
,
1

2
) after this we have dB−1 ·sc = 0.

Combining now the last result with equation V.3 we take

dB−1 · tc = B−1 · u

so we can now compute the product

B · dB−1 · tc = u

witch combined to the equation V.2 gives that

t−B · dB−1 · tc = t− u = s

so the equation V.1 holds.



Chapter VI

Lattices for
Cryptography

VI.I Lattice Associated Problems

S
ince lattices are going to be used as the main mathematical tool
in this construction we have to review some of the most famous

lattice based algorithmic problems that, up to this date, lack of efficient
algorithms. The most famous problems are the Shortest Vector Problem,
the Closest Vector Problem and the Shortest Independent Vectors Problem.
These three problems are the most common to which one can reduce a
problem to prove security for a lattice-based cryptographic scheme. Next
we give a brief description for each of them.

Shortest Vector Problem (SVP): Given a lattice basisB, find the short-
est nonzero vector in L(B).

Input a lattice basis B.

Output v ∈ L : ‖v‖ ≤ ‖x‖ ∀x ∈ L.

Closest Vector Problem (CVP): Given a lattice basis B ∈ Zn and a
vector t ∈ Zn find the lattice point that is closest to t.

Input a lattice basis B, a vector t ∈ Zn

Output v ∈ L : ‖v − t‖ ≤ ‖x− t‖ ∀x ∈ L

49
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Shortest Independent Vectors Problem (SIVP): Given a lattice basis
B and k linearly independent lattice vectors S = [v1, v2, ..., vk], with
k < n find the shortest possible lattice vector that is independent to
the vectors of S.

Input a lattice basis B, k linearly independent lattice vectors S =
[v1, v2, ..., vk]

Output v ∈ L : a1 · v1 + a2 · v2 + · · · ak · vk + ak+1 · v = 0 ⇐⇒ ai =
0, i ∈ [1, k + 1], ai ∈ Z, i ∈ [1, k + 1] with ‖v‖ ≤ ‖v′‖, ∀v′ :
a1 · v1 +a2 · v2 + · · · ak · vk +ak+1 · v′ = 0⇐⇒ ai = 0, i ∈ [1, k+ 1],
ai ∈ Z, i ∈ [1, k + 1]

The majority of lattice-based cryptography schemes base their security
on reductions to approximation variants of these three problems. The above
problems though are not always hard to be solved, but in case we have been
provided a ”good” basis of a lattice then it is feasible to solve such problems
with low complexity circuits. For each of these problems the arduousness or
the easiness depend on the basis of the lattice.

According to the three problems presented above becomes clear that its
shortest vectors are the main factor for solving hard problems. Relying on
this we have to develop a symbolism for each class (according to their length)
of lattice vectors.

Definition 58 (Shortest Vector). Let ‖ · ‖ be an arbitrary norm and L a
lattice. We define the shortest vector of L with respect to the norm ‖ · ‖ to
be the vector λ1 ∈ L such that:

∀u ∈ L \ {0} ⇒ ‖λ1‖ ≤ ‖u‖
From now on we denote the shortest vector of a lattice with λ1. Also,

we affiliate a notation for every level of a vector’s length.

Definition 59 (Successive Minima). Let ‖ · ‖ be an arbitrary norm and
L ⊆ Zn a lattice. The successive minima λ1, λ2, ..., λn of L with respect to
the norm ‖ · ‖ defined recursively as:

1. λ1:= the shortest vector of L.

2. λi := inf{u ∈ L : {λ1, ..., λi−1, u} are linearly independent.}
Since, as before stated, the key role held by the shortest vector of a

lattice, we have to prove that this vector exists and that it is not only the
convergence point of a lattice points’ sequence (xn) without belonging to
(xn).For this purpose we prove the following lemma.



VI.I. LATTICE ASSOCIATED PROBLEMS 51

Lemma 3. Let L ⊆ Zn, and also let ei, i ∈ [1, n] denote the vector of Zn
which consists of zeros but its i-th coordinate is 1. Then ∃k ∈ [1, n] : ‖ek‖ ≤
‖λ1‖.

Proof. The vectors ei, i ∈ [1, n] form a basis of the space Zn, note also that
for an arbitrary vector u ∈ Zn holds that: u = a1 · e1 + a2 · e2 + · · ·+ an · en
with ai ∈ Z, for every i ∈ [0, n]. The last holds also for every point of the
lattice L since it is a subset of Zn.

Consider now a u ∈ L \ {0}, there must exist a1, a2..., an ∈ Z with at
least one of them different than zero so that: u = a1 ·e1 +a2 ·e2 + · · ·+an ·en,
then we take:

‖u‖ = ‖a1 · e1 + a2 · e2 + · · ·+ an · en‖
Suppose that ak 6= 0, k ∈ [1, n], for ek also holds that:

‖ak · ek‖ ≤ ‖a1 · e1 + a2 · e2 + · · ·+ an · en‖

which gives that:

|ak| · ‖ek‖ ≤ ‖a1 · e1 + a2 · e2 + · · ·+ an · en‖

But, the property of ak to be a non-zero integer indicates that 1 ≤ |ak|, after
this it follows that:

‖ek‖ ≤ ‖a1 · e1 + a2 · e2 + · · ·+ an · en‖ = ‖u‖

We have shown that ‖ek‖ is a lower bound of the set

S = {x ∈ L : 0 < ‖x‖}

Actually, the vector λ1 is defined as λ1 = inf{S}, the last two remarks
imply that ‖ek‖ ≤ ‖λ1‖.

Lemma 4. For every lattice L ⊆ Zn there exist a fixed φ ∈ R with φ > 0
such that for every two vectors u, u′ ∈ L holds that ‖u− u′‖ < φ⇔ u = u′

Proof. From the previous lemma we have that ∃k ∈ [1, n] : ‖ek‖ ≤ ‖λ1‖, the
proof follows if we set φ = ‖ek‖.

Last two lemmas point out a strong conclusion, that the shortest vector
of a lattice is a member of it. The last is not trivial since λ1 is defined as an
infimum of a particular set of lattice points. It would not be surprise if λ1

was not member of this set since, generally, is not true that the convergence
point of a sequence belongs to it.



52 CHAPTER VI. LATTICES FOR CRYPTOGRAPHY

Lemma 5. Let L be a lattice subset of Zn, then the shortest vector of L is
a member of it. That is, λ1 ∈ L.

Proof. By its definition the shortest vector is λ1 = inf{x ∈ L : 0 < ‖x‖},
so there exist sequence (xn) ∈ L consisting of lattice points, such that
lim
n→∞

xn = λ1. Consider now the closed sphere B(λ1, φ/3) = {x ∈ Rn :

‖x − λ1‖ ≤ φ/3}. Since xn → λ1 there are infinite terms of (xn) in the
sphere B(λ1, φ/3).

Define now, recursively, the strictly ascending sequence sn as follows:

� s1 = k ∈ N : (xk ∈ B(λ1, φ/3)) ∧ (∀m : xm ∈ B(λ1, φ/3)⇒ k ≤ m)

� si+1 = k ∈ N : (k > si) ∧ (xk ∈ B(λ1, φ/3)) ∧ (∀m > si : xm ∈
B(λ1, φ/3)⇒ k ≤ m)

Observe that (sn) is consisting of all the indexes for which the sequence
(xn) falls within the sphere B(λ1, φ/3).

Next, we construct a subsequence of (xn) by the following formula:

yn = xsn

Every term of the sequence (yn) is a member of the ball B(λ1, φ/3). We
have already assumed that xn → λ1, also (yn) ⊆ (xn), thus yn → λ1.

The compactness of B(λ1, φ/3) implies that for every converged sequence
its convergence point lies inside the sphere B(λ1, φ/3), this is the point
λ1. Take now two terms of (yn) we have that ‖yi − yj‖ ≤ ‖yi‖ + ‖yj‖ ≤
φ/2 + φ/3 < φ. According to the lemma 4, the last inequality yields that
every to points of the sequence (yn) are identical. The last implies that
every the convergence point of (yn), which is λ1, is also identical to every
term of (yn). By hypothesis, the sequence (xn) is a lattice points sequence,
the same holds for (yn) as it is a subsequence of (xn), this gives that λ1 is
also a lattice point as desired.

In order to understand how a basis induces a hard or a easy instance of
these problems in next subsection we focus on describing ”good” and ”bad”
lattice bases.

VI.II ‘Good‘ and ‘Bad‘ Lattice Bases

We have already described the mod operation for a lattice L ⊆ Zn, that
involves a, random, point t ∈ Rn and a basis B that produces L. The
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P(B1)P(B2)

t

tmodB1 tmodB2

Figure VI.I: The mod operation.

reason that produces hard lattice problems is the use of this operation and
its property to output equivalent but not identical points when applied for
more than one bases of L.

Proposition 5. Let L ⊆ Zn be an integer lattice and B1, B2 two bases of L.
Consider a point t ∈ Rn, then if s1 ≡ t mod B1 and s2 ≡ t mod B2, with
s1, s2 being the distinguished representatives, it holds that s1 mod B2 ≡ s2

and s2 mod B1 ≡ s1, also the equality s1 = s2 does not always hold.

Proof. First of all, it suffices to show that s2 ≡ s1 mod B2. Since s1 ≡ t
mod B1 then t = PB1,u1(s1), thus t = u1 + s1, for some u1 ∈ L, similarly
to this we take that t = u2 + s2, for some u2 ∈ L. Combining the above
two relations we have s1 = u + s2, with u = u2 − u1 ∈ L, namely s1 =
PB2,u(s2)⇐⇒ s1 ≡ s2 mod B2 ⇐⇒ s2 ≡ s1 mod B2.

Last result stands here just to emphasize the importance of the existence
of ”good” and ”bad” bases. In previous section we brought up the three most
well-known computational problems on lattices. Observe now that every
single problem of them deals with the notion of the distance, specifically
with the notion of a norm. They all ask the smallest norm of a lattice vector,
the smallest norm of a random vector according to a lattice vector or the
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smallest norm of a lattice vector under some restrictions. Essentially, they
don’t require the norm as a measure of Zn but as a measure being produced
from lattice points for lattice points. One has to understand last proposition
in order to apprehend the difficulties that come out with the absence of a
basis that visualizes the structure of the lattice that it describes.

Hereafter, by the term ”good” basis we indicate a basis that its vectors
are nearly orthogonal. We also will use the term ”bad” basis for those that
are consisting of vectors that are closer to being parallel than being orthog-
onal to each other. As a rule of thumb a basis with fatter fundamental
parallelepiped is the best among different bases. Figure VI.II illustrates this
relation between ”good” and ”bad” lattice bases. Note that the fattest fun-
damental parallelepiped takes up the space closer to the lattice point that it
circumscribes, in contrast the thiner basis takes up space that has some parts
closer to different points from the one that it circumscribes. The advantage
of having a ”good” basis is that after a reduction the reduced point’s closest
lattice vector is probably the center of the fundamental parallelepiped.

In order to substantiate the importance of better bases imagine the fol-
lowing game between two players A and B:

A is aware of a “good“ basis B1 for the lattice L and B has nothing but
a “bad“ basis B2 for the same lattice. Then we publish a point t ∈ Zn and
ask them to find the closest lattice vector to t. A’s strategy could be:

1. compute v ← t mod B1

2. return t− v

Then A most likely has return the correct point, since he is aware of a
“good“ basis which implies that after the reduction mod B1 the resulting
point has 0 as closest lattice point. After this he knows that v is the vector
that shows the difference between t and its closest lattice point since after
the modulo operation the orientation of v remains unchanged compared with
the points around it. Thus, A could return t− v as the closest lattice point
to the target t.

The same strategy does not work for player B because there is no guar-
antee that after the reduction the resulting point’s closest point would be
0 or at least a fixed lattice point. The reason that produces this deformity
is the bad shape of the basis B2 which means that it is possible for some
points that lie in P(B2) to have closest lattice points other than the basis
”center” which is the point 0.
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VI.III LLL Reduction

After the above game it must be clear that one of the most important issues
for one that has to solve lattice problems is the awareness of a ”good” lattice
basis. We show that A had one kind of advantage because the basis B1 gives
him a more visualized illustration of the lattice than B could have. Let’s try
now to help B in order to balance the advantage between the two players.
B’s main problem is the basis that he has, if we want to help him, then
we have to give him a way of creating a new, better basis that the one he
already has.

First, we describe the Gram−Schmidt orthogonalization process, named
after its inventors, this is an efficient algorithm that produces orthogonal ba-
sis starting of arbitrary ones. This process for producing orthogonal bases
from arbitrary bases is one of the most famous algorithms in finding orthog-
onal bases.

We first define the projection operation for an element a onto the space

spanned by vectors S = {a1, a2, ..., ak} by projS(a) =

k∑
i=1

〈a, ai〉
〈ai, ai〉

· ai. Now

we are ready to describe the algorithm.

Algorithm 2. (Gram-Schmidt Orthogonalization)
Input: An arbitrary basis B = {b1, b2, ..., bn} of a subspace of Rn.
Output: An orthogonal basis of the same subspace.

1. Compute v1 = b1, and u1 =
v1

‖v1‖

2. Compute vi = bi −
i−1∑
j=1

projbj (vi), and ui =
vi
‖vi‖

3. Return {u1, u2, ..., un}

So, is this the hint that we are looking for? Unfortunately, the above
algorithm works efficiently only in two dimensions. The Gram-Schmidt or-
thogonalization is effective and being used for n < 3, in dimensions bigger
than 2 in generally orthogonalization is not an easy task and up to this day
all known algorithms are lagging in time complexity.

Next we present the fastest known algorithm that can produce nearly
orthogonal bases in higher dimensions. This is an algorithm that produces
reduced bases which essentially are closer to a ”good” basis of a lattice than
an arbitrary one. We first give the formal definition of the reduced basis.
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For simplicity we denote by µi,j the terms
〈vi, bj〉
〈bj , bj〉

that arise in the Gram-

Schmidt orthogonalization algorithm.

Definition 60 (LLL Reduced Basis). Let L be a lattice and B a basis of it.
We denote by bi the i-th column of the matrix B. B is said to be LLL reduced
with parameter δ, 1/4 ≤ δ ≤ 1 if the following conditions are satisfied:

� |µi,j | ≤ 1/2, ∀i > j.

� For any pair of consecutive vectors bi, bi+1, i < n we have that

δ‖projaj (bi)‖2 ≤ ‖projaj (bi+1))‖2.

Now that we have defined our goal we can proceed to the description
of the LLL algorithm that was first introduced by A. Lenstra, H. Lenstra
and L. Lovász in 1982 and still remains the best known algorithm for basis
reduction.

Algorithm 3. (LLL Reduction Algorithm)
Input: A lattice basis B = {b1, b2, ..., bn} ∈ Zn.
Output: A δ-LLL-Reduced basis for the same lattice.

1. Compute the basis b∗1, b
∗
2, ..., b

∗
n that the Gram-Schmidt algorithm pro-

duces.

2. Set bi ← bi − d
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

c, i ∈ [2, n] and j ∈ [1, i− 1].

3. If there is i such that ‖b∗i+1 + µi+1,i · b∗i ‖2 < δ‖b∗i ‖2 then

(a) Swap bi with bi+1.

(b) Run LLL Reduction Algorithm with input {b1, b2, ..., bn}.

4. Return {b1, b2, ..., bn}

Suppose now that we have an arbitrary basis B of a lattice L, then we
can take advantage of the above algorithm and produce a reduced basis B′

which describes L also but it gives us better visualization for the lattice that
the initial basis. As we already have seen for a basis that is closer to an
orthogonal one the corresponding fundamental parallelepiped is fatter than
others and it helps to recover closest lattice points to when given a random
point of the space. Though, it does not buy us anything, because there is
always the possibility the reduced point to fall within an area that it is not
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closer to the center of the fundamental parallelepiped. This becomes an
important issue if we consider that we have no guarantee that we can find
an orthogonal basis, actually the LLL algorithm just approximates the best
possible basis within a factor.

Algorithm 4. (Babai’s Nearest Plane Algorithm)
Input: A lattice basis B =∈ Zm×n and a point t ∈ Zm.
Output: A vector x ∈ L(B) such that ‖x− t‖ ≤ 2

n
2 · dist(t,L(B)).

1. Run δ-LLL on B with δ = 3/4.

2. Set b← t.

3. b← b− d 〈b,b
∗
j 〉

〈b∗j ,b∗j 〉
c for i = n downto 1.

4. Output t− b

It can be seen that this algorithm runs in polynomial time in the input
size, indeed, the LLL procedure runs in polynomial time and allows the last
algorithm to have this property. Notice also that unlike our description of
the LLL algorithm, here we consider the algorithm for arbitrary lattices that
are not necessarily full-rank.

Proposition 6. Suppose that B is the basis for the lattice L. Then for any

t ∈ L, the output x of the algorithm is such that ‖x− t‖2 ≤ 1

4

n∑
i=1

‖bi‖.

Proof. Since B is LLL reduced we have that: ∀i ∈ [1, n], ‖bi‖ ≤ 2
n−i
2 · bn.

Which implies the following:

‖x− t‖2 ≤ 1

4

n∑
i=1

‖bi‖2 ≤
1

4

n∑
i=1

2n−i · ‖bn‖2 ≤
1

4
2n · ‖bn‖2

as claimed.

Proposition 7. For any t ∈ Zm, let y ∈ L(B) be the closest lattice point
to t. Then the algorithm described above finds a point x ∈ L(B) such that
‖x− t‖ ≤ 2

n
2 · ‖y − t‖.

Proof. We prove by induction on the rank n that our algorithm finds a point
x ∈ L(B) such that ‖x− s|‖ ≤ 2

n
2 ‖y − s‖. This yields the claim, since

‖x− t‖2 = ‖s− t‖2 + ‖s− x‖2
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because s− t and s− x are orthogonal, which gives that

‖x− t‖2 ≤ ‖s− t‖2 + 2n · ‖y− s‖2 ≤ 2n · (‖s− t‖2 + ‖y− s‖2) = 2n · ‖y− t‖2

where the last equality follows because s− t and s− x are orthogonal.
Now distinguish two cases. If ‖s−y‖ < ‖bn‖

2 , then y ∈ c·bn+span(b1, ...., bn−1),

because all other hyperplanes are of distance at least ‖bn‖2 . Therefore,
y ∈ c · bn + L(b1, ..., bn−1). Intuitively this means that we identified the
correct translate in Step 2. So we obtain that y′ = y− c · bn ∈ L(b1, ..., bn−1)
is the closest point to s′. Hence, by our inductive assumption.

‖x− s‖ = ‖x′ − s′‖ ≤ 2
n−1
2 · ‖y′ − s′‖ = 2

n−1
2 · ‖y − s‖ ≤ 2

n
2 · ‖y − s‖.

Otherwise, we must have that ‖s− y‖ ≥ ‖bn‖2 In this case, it is possible that
we identify the . wrong translate in Step 2. However, by proposition 7, we

have that ‖s− x‖ ≤ 1

2
· 2n2 · ‖bn‖ ≤ 2

n
2 · ‖s− y‖

VI.IV Hermite Normal Form

In last two subsections we established the importance of different kind of
bases for the same lattice. It should be clear at this point that in order
to proceed with a lattice based cryptographic protocol we need a stepping
stone for constructing ”bad” bases for a lattice starting from ”good” ones.
Here we present the notion of the HNF for a matrix which is the key for
constructing ”bad” bases.

Definition 61 (Hermite Normal Form). Consider a matrix B ∈ Zn×m the
Hermite normal form (HNF) of B is the unique matrix H = (hi,j) such that
there is a unimodular n × n matrix U with U · B = H, and such that H
satisfies the following two conditions:

� H is upper triangular.

� There exist a sequence of integers j1 < · · · < jn such that for all
0 ≤ i ≤ n we have hi,j = 0 for all j < ji.

� for 0 ≤ k < i ≤ n we have 0 ≤ hk,ji < hi,ji .

In some sense, the worst basis of a lattice L is its unique upper-triangular
Hermite normal form. Given any basis B of L, one can compute HNF(L)
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efficiently. Geometrically, the HNF of a lattice basis is a basis for the same
lattice but much more thinner than the starting one. Thus, HNF(L) does
not ”reveal” more about L’s structure than any other basis, making HNF(L)
a good choice for the public lattice basis to be included in a public key.

VI.V Ideal Lattices

For our purpose we use lattices that are defined by polynomials in polyno-
mial rings. But, we have seen that a lattice consists of a set of vectors, so
we have to map polynomials to vectors in order to achieve our goal. The
mapping is the obvious one, this that takes every coefficient of a polyno-
mial and maps it to the corresponding coordinate of a vector. Namely, let
f = anx

n+an−1x
n−1 + ...+a1x+a0 be a polynomial, then we map f to the

vector vf = (an, an−1, ..., a1, a0). One more obstacle is the dimension of the
vectors that we produce. It is clear that a lattice consists only of vectors of
same dimension, but if we consider the above mapping between polynomials
and vectors then the vector dimensions will differ to each other. So, how do
we fix the dimension of the produced vectors? If we need, say, n dimensions
for our lattice then we consider every polynomial modulo a fixed polyno-
mial of degree n. After the first observations one now can see that a lattice
does not only what a, basis, matrix produces, but it may represent other
algebraic constructions. The questions that now come in mind are a) can
one define mathematical operations similar to addition and multiplication
for the points of a lattice? b) if the first answer is yes, then, do the points
of a lattice form groups or fields under these operations? The answer is yes
for the first question, the two operations will be exactly as they are defined
in the ring modulo a polynomial. For the second question the answer is yes
for a group and under the restriction that the polynomial used as module is
irreducible then lattice points form a field.

The previous discussion has no practical aspects to our construction, but
it has been made to clarify that we move forward to a strong algebraic con-
struction and at any time we need everything in this direction lattices offer
compliance and provide us with at least the basics of a useful mathematical
construction. So we can use their structure when its needed in our proofs.

The study of lattices so far demonstrates that they supply a main feature
for public key cryptography which is the easiness of making hard instances
of problems and also calculating trapdoors for them. Nevertheless, they
all have a common nature which, unfortunately, provides them with a defi-
cient property that has not been mentioned so far. That is, cryptography
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schemes need fast algorithms and keys with small bit length. The second
requirement, though has not been satisfied since if we use lattices as public
and private keys for a scheme one needs huge amount of memory to store
them. Imagine only that with classic cryptography, witch uses operations in
Zp, the length of p starts to become prohibitive as keys expanding to resist
cryptanalytic attacks, if we use lattices then only for the basis of a ”small”
lattice of dimensions, say 10 × 10, we need to store 100 numbers that each
of them may be oversized. The problem of finding a family of lattices which
require only a reasonable amount of memory to be stored has an answer,
the solution is ideal lattices.

Ideal lattices offer one more desired property, they have additive and
multiplicative structure. We can take advantage of it by developing a ho-
momorphic scheme homomorphic for both operations. If we succeed in it
then we have finish since the set {+,×} is a complete set of circuits (i.e. we
can express every circuit in terms of + and ×).

Now we have two strong reasons to study ideal lattices. Just before
we define this new structure we present a way of mapping polynomials to
vectors in order to start thinking of them as members of Zn.

We match every single element g(x) of the ring Z[x]/f(x) to a, unique,
vector vg so that, if deg(g(x)) = n, then vP ∈ Zn+1. And the i−th (1 ≤ i ≤
n+ 1) coordinate of vP is the coefficient of x(n+1)−i.

Definition 62. Consider the ring R[x] = Z[x]/〈f(x)〉, and an ideal I ⊆
R[x]. We call ideal lattice the set L ⊆ Zn such that vg ∈ L ⇔ g(x) ∈ I.

From the definition given above it is obvious that if deg(f(x)) = n, then
every single element of the ring R[x] is a polynomial with degree at most
n− 1, therefore all members of L are vectors of n dimensions.

We also notice that an ideal lattice can be described only by f(x), I as
they defined above. Especially in the case where I = 〈g(x)〉, i.e. when I is
a principal ideal, then the corresponding ideal lattice L is fully defined only
by f(x), g(x). Hereinafter when we write [f(x), g(x)] we refer to the ideal
lattice L witch corresponds to the ideal 〈g(x)〉 in the ring Z[x]/〈f(x)〉.
Lemma 6. If f(x) is irreducible then L = Zn, when deg(f(x)) = n.

Proof. Indeed, if f(x) is irreducible then gcd(f(x), g(x)) = 1 thus there
exist a(x), b(x) ∈ Z[x]/〈f(x)〉 so that a(x) · f(x) + b(x) · g(x) = 1 thus,
b(x) · g(x) ≡ 1 as elements of Z[x]/f(x). For random q(x) ∈ Z[x]/f(x) we
have that (q(x) · b(x)) · g(x) ≡ q(x) in Z[x]/f(x) therefore q(x) ∈< g(x) >,
so, we have shown that: 〈g(x)〉 = Z[x]/f(x) thus the corresponding vectors
of the elements of 〈g(x)〉 cover all Zn.
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Next we prove that a basis of an n-dimension ideal lattice can be de-
scribed only by a vector of n elements than a n× n matrix.

Lemma 7. The ideal lattice produced by [f(x), g(x)] is generated by the
column vectors {g(x) · xi mod f(x) : i ∈ [0, n− 1]}. Also we call this basis
the rotation basis of the ideal lattice [f(x), g(x)].

Proof. It suffices to show that {g(x) · xi mod f(x) : i ∈ [0, n − 1]} is a
basis of the ideal 〈g(x)〉 as an element of Z[x]/〈f(x)〉. Take now the random
polynomial h(x) ∈ 〈g(x)〉 from the last relation we have that

h(x) = p(x) · g(x), p(x) ∈ Z[x]/〈f(x)〉.

Since p(x) = an−1x
n−1 + · · · + a1x

1 + a0x
0 for some a0, a1, ..., an−1 ∈ Z

we have h(x) =
n−1∑
i=0

ai · xi · g(x), that is, every random element h(x) ∈

〈g(x)〉 depends only on the choice of a0, a1, ..., an−1 thus, the set {g(x) · xi
mod f(x) : i ∈ [0, n− 1]} form a basis for the ideal 〈g(x)〉.

Lemma 8. For an ideal lattice produced by [f(x), g(x)] with f(x) = xn − 1
we have that its rotation basis has columns all possible circular permutations
of the coefficients’ vector of g(x).

Proof. Let g(x) = an−1 · xn−1 + an−2 · xn−2 + ... + a0, then but g(x) · xi =
f(x) · p(x) + r(x) for

p(x) =

j=i∑
j=1

an−j · xi−j

and

r(x) =

j=n+i∑
j=i

an−i−j · xn−j+1

So that r(x) has the required form and for every i its coefficients are cyclically
rotated.
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Chapter VII

An Abstract Scheme

H
ere we present an example on how to operate addition and multi-
plication homomorphically using the space Z. This leads us to the

main idea that is behind Gentry’s homomorphic encryption scheme.

Choose two primes (or coprimes) integers p and q and take q to be
much smaller than p. In this scheme the ”plaintext” space will be the set
P = {0, 1, 2, ..., q − 1} and the ”ciphertext” space the set {0, 1, ..., p− 1}.

The ”encryption” procedure for a x ∈ P is: find a k ∈ Z such that
x · k < p define the ”ciphertext” to be ψ = k · x mod p. Then, one recovers
x when he computes the result of the operation (ψ mod p) mod q. Also, we
can define the addition and multiplication operations homomorphically. Let
x1, x2 ∈ P and ψ1 = k · x1 mod p, ψ2 = l · x2 mod p their corresponding
”ciphertexts”. If the sum k · x1 + l · x2 remains smaller than p then the
”ciphertext” ψ1 + ψ2 is the ”encryption” of x1 + x2 the same holds for the
multiplication when the product k · x1 · l · x2 is smaller than p.

The above construction seems reasonable for the homomorphic opera-
tions but there is one big issue, this is not a cryptographic scheme. The
problem though is obvious, as we don’t have distinguish the public and pri-
vate keys. In order to made this scheme a public encryption scheme we have
to modify the fake encryption procedure by replacing the mod p operation
by a mod p′ operation. But for a plaintext x ∈ P take the ciphertext ψ = x
mod p′ then must hold that ψ mod p = x. From this simple example it is
obvious that we can’t find such a p′ 6= p. But what if we could? Then a
homomorphic scheme would begin to comes out. The real answer though,
to the previous problem, is that we can construct such a scheme but with-
out using integers or numbers modulo an integer, but with the utilization

63
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of lattices. In order to achieve such a goal we need to find out a way of
equivalent modulo reduction. That is, we need to replace a, private known
only, modulo ring, say R1, with another, public, modulo ring, R2, without
R2 revealing any information about R1 but with R1 to be a ring that offers
the easiness of calculating with low cost circuits some stuff that is not easy
to calculate in the second ring.

The answer in the above quest hides in lattices. We have already seen
that a lattice can be defined by a infinite, countable, set of different bases.
Also, for every basis B we defined the reduction modulo B (i.e. the operation
mod B) and, furthermore, we have seen that only a few ”good” bases provide
easiness in computing shortest lattice vectors or closest vectors to our lattice.

VII.I A first construction

We now present a scheme that is homomorphic under addition and multipli-
cation. This will give us a first sense in how the finally scheme will look like.
First we define the problem in which is based the security of the following
scheme.

Definition 63. (Ideal Coset Problem) Let R be a ring, BI is a basis of the
ideal I ⊂ R, Samp1 is an algorithm that efficiently samples from R and also
let IdealGen(R,BI) is an algorithm that produces two bases of an ideal J
in R which is relatively prime to I. We define the ideal coset problem to

be the following game: The first player chooses a b
R←− Samp1(R) and two

bases (Bsk
J , B

pk
J )

R←− IdealGen(R,BI). If b = 0 he chooses r
R←− Samp1(R)

and t ← r mod Bpk
J . If b = 1 he chooses randomly a t from R mod Bpk

J .

The second player has to find b given (t, Bpk
J ).

Now we describe every contraption that the scheme uses as black box or
that requires to be secure.

We define the algorithm IdealGen, this algorithm takes as input a ring
R and a basis of an ideal I ⊂ R and outputs a basis for an ideal J ⊂ R such
that I + J = R, i.e. I and J are relatively prime.

Next, we use the algorithm Samp which takes an input of the form
(x,BI , R,BJ) and outputs a random chosen polynomial from the coset x+I.

Here is a scheme that gives us homomorphic operations for circuits con-
sisting of gates AddBI and MultBI , i.e. the gates of addition and multipli-
cation respectively in the space of cosets of I. Bellow we geve a detailed
description of the algorithms that the scheme uses:
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Scheme 4 (Abstract).

KeyGen(R,BI): the input here is a ring R and a basis BI of the ideal

I ⊂ R. It returns a pair (Bsk
J , B

pk
J )

R←− IdealGen(R,BI). The public

key is the pair R,BI , B
pk
J , the algorithm Samp(x,BI , R,BJ) is also

public known. Its output is an element from a coset x + I which is
selected totally uniform. The private key is the basis Bsk

J . Also, the
plaintext space is P ⊂ R mod BI

Encrypt(pk, π): with input the plaintext π ∈ P chooses randomly a ψ′ ←
Samp(π,BI , R,BJ) and returns ψ ← ψ′ mod Bpk

J .

Decrypt(sk, ψ): the input here is a ciphertext ψ and the output a π ← (ψ
mod Bsk

J ) mod BI

Evaluate(pk,C,Ψ): the inputs are a circuit C, consisting only of gates
AddBI and MultBI , and a tuple of ciphertexts Ψ. This algorithm also
uses the circuits Add(pk, ψ1, ψ2) and Mult(pk, ψ1, ψ2) that operate as
follows:

� Add(pk, ψ1, ψ2): returns ψ1 + ψ2 mod Bpk
J

� Mult(pk, ψ1, ψ2): returns ψ1 × ψ2 mod Bpk
J

We now show that this scheme is correct. First observe that the circuit
C which is an input for the algorithm Evaluate(pk, C,Ψ) has to convert in a
circuit which executes operations in the ring R since after the encryption we
are in the whole ring R and we are not in cosets of I because of the mod BI
and mod Bpk

J operations and also because I, J are relatively prime.
We call the circuits that being used for this purpose generalized and we

denote them by g(C), where C is the initial circuit for operations in cosets
of I and g(C) is the respective circuit which operates in R.

With XEnc we denote the image of Samp and with XDec the represen-
tative of the cosets R mod Bsk

J .
From now on when we say acceptable circuits we refer to an element of

the following set of circuits:

C′E = {C : ∀(x1, ..., xt) ∈ Xt
Enc, g(C)(x1, ..., xt) ∈ XDec}.

That is, they are the circuits whose generalizations with inputs from XEnc

return representatives of cosets R mod Bsk
J which means that after oper-

ating over their inputs the output remains inside the area that decryption
works correctly.
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Theorem 21 (Correctness of the Evaluation). Let CE a set of acceptable
circuits (that includes the identity gate). Then if ψ is a tuple of ciphertexts
for C the scheme E is correct for inputs Ψ of C.

Proof. We have that Ψ = {ψ1, ..., ψt} with ψk = πk + ik + jk, where pk ∈ P,
ik ∈ I, jk ∈ J and πk + ik ∈ XEnc with i ∈ [1, t].

Then the following are true:

Evaluate(pk,C,Ψ) = g(C)(Ψ) mod Bpk
J ∈ g(C)(π1 + i1, ..., πt + it) + J

but if C is in the set of acceptable circuits CE then it maps the elements of
XEnc inside XDec thus, we take:

Decrypt(sk,Evaluatepk(C,Ψ)) = g(C)(π1 + i1, ..., πt + it) mod BI

= g(C)(π1, ..., πt) mod BI = C(π1, ..., πt)

Remark that the hardness assumption for the ICP problem relies on the
choices that the algorithm Samp1 makes. If Samp1 samples uniformly from
R then the ICP problem does not make any sense since in both occasions
(for b = 0 or for b = 1) the resulting element is uniformly sampled from R

mod Bpk
J . Thus, all we need in order to construct a hard instance of ICP is

a biased instantiation of Samp1. This gives us a hint on how to reduct the
security of the abstract scheme in the ICP problem.

First we instantiate the Samp algorithm as:

Samp(x,BI , R,BJ) = x+ r × s, with r
R←− Samp1(R)

Proposition 8 (Security of the Scheme). Suppose that A is an algorithm
that efficiently breaks the semantic security of the scheme with advantage ε
when it uses Samp. Then there is an algorithm B that solves efficiently the
ICP with advantage ε/2.

Proof. Let A be an algorithm that breaks the semantic security of the above
scheme when it uses Samp. Since Samp does not samples uniformly from R
mod Bpk

J a player B can break the ICP problem with the following strategy.

Let (x,Bpk
J ) an output of the game for the ICP that is given to B. Now

B has to choose if x is randomly chosen from the ideal which basis is the
matrix Bpk

J .
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When A sends B the plaintexts π1, π2 then B randomly sets π to be π1

or π2 and sends back to A the ciphertext ψ computed as:

ψ ← π + x× s

Observe now that if x ← r mod Bpk
J for r

R←− Samp1(R) then ψ is a well
formed output of the Encrypt algorithm. In this case A has advantage ε to
discover it and this also is an advantage for B.

But, if the output of Samp1, is a random element of R then t is also a
random element taken by the cosets of ideal J then A’s advantage is 0 and
this gives on advantage to B.

In first case, B responds with b = 0 and his advantage is ε. In second
case, B’s answer is b = 1 with no advantage for it. The overall advantage of
B is then ε/2

VII.II The importance of XEnc and XDec

At this point, we have an almost homomorphic scheme, but none can say
that this is what we want to build. Note also that suffices to focus only on the
scheme’s additive and multiplicative homomorphic structure since the set of
gates {+,×} is complete. Consequently, we can start consider only addition
and multiplication in order to understand the scheme’s homomorphic ability.
It is obvious that our construction is not fully homomorphic and that’s
because we have set up an upper bound on the value of a ciphertext in
order to be decrypted correctly. That is, the correctness proof relies on the
assumption that every ciphertext lies inside XDec.

To see why this is necessary, we cite the following trivial example:

Example 7. Let I = 〈5〉 and J = 〈101〉, our plaintext space then is
{0, 1, 2, 3, 4} (i.e. the distinguished representatives of Z5) to encrypt the
messages π1 = 3, π2 = 1 we call algorithm Samp, suppose that Samp maps
π1, π2 to the ciphertexts ψ1 = 23 and ψ2 = 36 respectively. Then if one sum
up the two ciphertexts the result is ψ1+ψ2 = 59 which is equal to π1+π2 after
decryption (apply first mod 101 and then mod 5 operations). Thought,
for multiplication the same issue does not hold since ψ1 ∗ ψ2 = 828 which
is 20 mod 101 and finally the decryption outputs 0 which, of course, is not
equal to π1 · π2.

Let’s try to figure out now what are the differences between + and ·
operations that cause this significant discrepancy. On the one hand addition
increases the ciphertext but 23 + 36 is still smaller than XDec which in our
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case is 101, on the other hand multiplication produces a larger ciphertext
so that it also exceeds XDec.

The above difference is the reason for this asymmetric behavior of ψ1,
ψ2 to addition and multiplication respectively. The weakness of multiplica-
tion is that the product overheads XDec and that causes a decryption error
since the mod 101 operation produces a result, different than the initial
product which had built as (3 + k1 · 5) · (1 + k2 · 5) and hopefully after the
mod 5 operation everything but 3, 1 has been eliminated. But, now after
multiplication there is no guarantee that the product continues to have the
form (3 + l1 · 5) · (1 + l2 · 5) since we hold everything that gets through the
mod 101 operation.

From the above analysis we have now a visualized sense of procedures
that may cause mistaken homomorphic operations. All we need is the XEnc

and XDec to be set so that every operation of elements of XEnc results inside
XDec. Actually, last restrictions have already been set; rearmost requirement
is exactly an outline of the acceptable circuits!

In any case, it’s infeasible to get fully homomorphic encryption from
this abstract scheme; it offers, at most, only a few homomorphic steps of
addition and multiplication. But its no so bud, we already have a somewhat
homomorphic scheme. Recall now the notion of bootstrappability that we
introduced in chapter IV, if we manage to modify the abstract scheme so
that it become bootstrappable then our problem is over.

Now is the time that we have define our goals, and we know what we are
asking in order to achieve fully homomorphic encryption. In next chapters
we have to answer the following questions:

1. For fixed XEnc, XDec how deep can we evaluate homomorphically in
a circuit?

2. How can XEnc and XDec can be initialized?

3. For how many operations does the scheme works correctly?

4. May we shorten the decryption circuit size to attain bootstrappability?



Chapter VIII

Modifying The Scheme

U
p to this point we have take a taste of a homomoprhic scheme.
Remember now that we ended chapter IV by obtaining a trick

on how to build fully homomorphic encryption schemes starting by leveled
ones. This is the subject of this chapter, we try to modify the scheme to
fulfil the requirements that a scheme must have to be bootstrappable. There
are two main tasks to complete here, first we have to increase the scheme’s
-homomorphic- evaluative capacity but in parallel we also have to decrease
the scheme’s decryption circuit size.

VIII.I Homomorphic depth

In previous section we show a somewhat homomorphic scheme which is able
to operate only a limited number of homomorphic steps. Here we describe
a formula that counts these steps and also show that the depth depends on
the ring that we chose our lattices to based on.

Before start presenting the results, we make a redefinition of XEnc and
XDec in order to give them a more geometrically sense than they have.

Definition 64 (rEnc and rDec). Denote by rEnc the smallest radius such that
XEnc ⊆ B(rEnc) and by rDec the largest radius such that B(rDec) ⊆ XDec

Define also the set of permitted circuits as the following set:

C′E = {C : ∀(x1, ..., xt) ∈ B(rEnc)
t, g(C)(x1, ..., xt) ∈ B(rDec)}. (VIII.1)
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Hereinafter, our big challenge is to setup rEnc and rDec to get the more
evaluative capacity for arbitrary circuits that we can. As you can see from
figure VIII.I if we fix rEnc and rDec then the sum of two vectors a, b ∈ B(rEnc)
lies inside rDec more often than their product does. This is because, gen-
erally, multiplication has an expansion factor that is bigger than addition’s
expansion witch is bounded by the triangle inequality. In the same figure we
denote by γMult, γMult the expansion factor of multiplication and of addition
respectively. Next we prove that γMult depends on the ring that our ideal
lattice is based on, for γAdd though the bound only depends on the length
of the added in vectors.

Next theorem characterizes the correct evaluation capacity of scheme 4
for arbitrary circuits based on their depth.

Lemma 9. Let rEnc ≥ 1 and rDec ≥ rEnc be the closed spheres defined
above for scheme 4. Consider also a circuit C, consisting only of + and
× gates, with additive fan-in γMult(R) and multiplicative fan-in 2. Then
the scheme 4 correctly evaluates circuit C implies that C’s depth is at most
log log rDec − log log(γMult(R) · rEnc).

Proof. Suppose that C has depth d, and denote by ri an upper bound on
the Euclidean norm of the values at level i. We also have that r0 = rEnc.
Note now that for every two consecutive levels i, i + 1 of circuit C it holds
that the output of an addition gate of level i is at most γMult(R) · ri also
the output of a level-i multiplication gate is at most γMult(R) · r2

i . In either
case we take that ri+1 ≤ γMult(R) · r2

i and because C has d levels we have:

rd ≤ (γMult(R) · r0)2d

Observe now that the scheme 4 correctly evaluates circuit C when: (γMult(R)·
rEnc)

2d ≤ rDec this gives the required relation:

d ≤ log log rDec − log log(γMult(R) · rEnc)

Now, insomuch every circuit may be replaced by one that uses only +
and × gates we can prove a more general result about the depth that scheme
4 is able to evaluate.

Theorem 22. Scheme 4 correctly evaluates circuits of depth up to

log log rDec − log log(γMult(R) · rEnc).
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Proof. Direct consequence of the previous lemma 9.

From the above we get that the expansion factor of multiplication is
an important issue towards working on getting a deep circuit. This factor
though is more flexible from the corresponding factor of addition, since for
addition the upper bound of γMult is in any ring bounded by the triangle
inequality, the same does not hold for γMult which depends on the ring. To
make it clear, consider the ring Z[x]/〈f(x)〉 with f(x) = xn−2 ·xn−1. Then
take the polynomials g1(x) = xn−1 + 〈f(x)〉, g2(x) = xn−1 + 〈f(x)〉 and
g3(x) = x2 + 〈f(x)〉, their product is x2n which, after the reduction modulo
f(x) equals to 2n+1 ·xn−1+〈f(x)〉. In this case after only two multiplications
we have an exponential growth of the coefficient (initially it was 1 in every
polynomial but finally becomes 2n+1). So, such a choice for the ring to base
an ideal lattice on is not efficient. Nevertheless, not all rings have this bad
behavior; one good example is the ring Z[x]/〈f(x)〉 for f(x) = xn − 1.

Lemma 10. Consider the ring R[x] = Z[x]/〈f(x)〉 with f(x) = xn−1, then
for every g1(x), g2(x) ∈ R[x] it holds that

‖g1(x) · g2(x)‖ ≤ √n · ‖g1(x)‖ · ‖g2(x)‖

Proof. Let g1(x), g2(x) ∈ R[x] and h(x) = g1(x) · g2(x), denote by hi the
coefficient of xi for polynomial h(x) and by ai, bi the coefficients of xi for

polynomials g1(x), g2(x) respectively. We have that hi =
n−1∑
j=0

(ai ·ai−j mod n).

Consider now the absolute value for each one of the hi’s. We have

|hi| = |
n−1∑
j=0

(ai · bi−j mod n)|, (VIII.2)

denote by g3,i(x) the polynomials

n−1∑
j=0

bi−j mod n ·xj in particular g3,i(x) are

all possible circulant rotated versions of g2(x). But for every g3,i(x) holds
that ‖g3,i(x)‖ = ‖g2(x)‖. Now we can rewrite the equation VIII.2 as:

|hi| = |
n−1∑
j=0

(ai · b′i)| =

√√√√√
n−1∑
j=0

(ai · b′i)

2

, (VIII.3)



72 CHAPTER VIII. MODIFYING THE SCHEME

with b′i we denote the coefficient of xi for polynomial g3,i(x) now the last
equation after the Cauchy-Schwarz inequality gives:

|hi| ≤

√√√√n−1∑
i=0

(ai)
2 ·

√√√√n−1∑
i=0

(b′i)
2 = ‖g1(x)‖ · ‖g2(x)‖. (VIII.4)

To end the proof consider now the Euclidean norm of h(x),

‖h(x)‖ =

√√√√n−1∑
i=0

(hi)
2 (VIII.5)

from the inequality VIII.4 follows that: ‖h(x)‖ ≤

√√√√n−1∑
i=0

(‖g1(x)‖ · ‖g2(x)‖)2

which implies ‖h(x)‖ ≤
√
n · (‖g1(x)‖ · ‖g2(x)‖)2 =

√
n · ‖g1(x)‖ · ‖g2(x)‖ as

required.

Remarkably, theorem 10 gives us a ”low” upper bound on the expansion
factor of multiplication in the ring Z[x]/〈xn − 1〉. This bound perfectly fits
to our needs and this will be the ring that the ideal lattices of the scheme
will be based on.

Previous results provide some tips for achieving the more efficiency from
addition and multiplication procedures after showing how we can cram more
and more of those gates in order to get the maximum homomorphic evalu-
ations that we can in scheme 4.

VIII.II Instantiating rEnc, rDec

Recall rEnc and rDec now, and keep an eye on the figure VIII.I, since we
try to increase the set of permitted circuits C′E a good idea would be to
shrink the ball rEnc and simultaneously increase the ball rDec, this also can
be deduced by equation VIII.1. After this modification, geometrically, there
is more space between the rEnc and rEnc so, the result of an addition or
multiplication from elements of rEnc is more likely to fall within the ball
rDec. Formally, we want to increase the ratio rDec/rEnc. Yet, this is not
a trivial task because the more we shrink the ball rEnc the more identified
it becomes among the cosets of ideal I, thus we may hurt security. Under
last restriction we have to take care on how small the ball rEnc could be
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rDec

rEnc

a

b

a+ b

a · b

γMult

γAdd

Figure VIII.I: A geometrically view of rEnc and rDec.
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and then we can set it to be smallest possible. Towards trying to specify a
perfect size for rEnc we dig up the early definition of Samp made especially
for the security proof of scheme 4.

Samp(x,BI , R,BJ) = x+ r × s, with r
R←− Samp1(R)

Now, by definition we have that rEnc = max{‖x + r × s‖} we now get an
upper bound for this max.

Lemma 11. When we use Samp and Samp1 as they instantiated in security
proof of proposition 8, and considering also that BI is the rotation basis
corresponding to vector s in the ideal Z[x]/〈xn − 1〉 then we get that:

rEnc ≤ n · ‖BI‖+ `Samp1 · ‖BI‖

where `Samp1 is an upper bound on the length of r.

Proof. By the definition of rEnc and the triangle inequality we immediately
have the following inequality: rEnc ≤ max{‖x‖+ ‖r × s‖} but because the
vector x is a distinguishable representative for cosets of ideal I we have
that x = BI · y, y = (y1, y2, ..., yn) with |yi| ≤ 1, ∀i ∈ [1, n]. Let BI =
(b1, b2, ..., bn), with bi we denote the column vectors of BI . Then the i-th
coordinate of vector x is at most |b1,i + b2,i + ...+ bn,i| thus |xi| ≤ n · |bk,i|,
where |bk,i| ≥ |bt,i|,∀t ∈ [1, n]. Finally:

‖x‖ =

√√√√ n∑
i=1

|xi|2 ≤

√√√√ n∑
i=1

(n · |bk,i|)2 ≤ n · ‖BI‖ (VIII.6)

For the other term r × s, we first obtain by that ‖r × s‖ = |r| · ‖s‖, we also
have that `Samp1 is an upper bound for the length of r, this implies that

‖r × s‖ ≤ `Samp1 · ‖s‖. (VIII.7)

Also, according to lemma 8 the columns of basis BI consisted of circular
permutations of s we take that

‖s‖ = ‖BI‖ (VIII.8)

We have the result after combining the three labeled equations.

Last lemma provides us a nice upper bound on rEnc which is essentially
based only on `Samp1 , but as already mentioned we can’t let rEnc be arbitrary
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small because then the ICP problem becomes vulnerable to attacks. But,
actually a choice of `Samp1 = n makes the entropy of rEnc is sufficiently
large to provide security based on ICP . On the other hand according to
Babai’s Nearest Plane Algorithm we can’t let the fraction λ1(J)/rEnc be as
large as 2n because then the scheme becomes vulnerable to attacks that hurt
tis semantic security. Nevertheless, as far as we know up to this date if we
set up the parameters so that the problem of finding closest lattice vectors
needs approximation factor 2n

c
for c < 1 its practically infeasible for one

to solve this instance. Under this observation we can set rDec = 2n
c1 and

γMult · rEnc = 2n
c2 , for c1 − c2 < 1. Now, if we set up the parameters this

way according to theorem 22 the homomorphic evaluative capacity of the
scheme is (c1 − c2) log n

We already have a stepping stone for setting up rEnc, now we have to find
a way to instantiate the outer ball which is the limit for the homomorphic
operations. About rDec there are no security issues, so we can set it as long
as we can. The only restriction for rDec is to be circumscribed by Bsk

J . If
we choose to scale up the whole basis Bsk

J is equivalent to have a small rEnc
and thus it is not a good idea in order to increase rDec. For fixed I, J the
only think one could do to make rDec as large as possible is to find a basis
that, geometrically, is the fattest achievable among all bases of J . Formally,
last property described by the following lemma.

Lemma 12. Let B be a lattice basis and r the radius of the largest sphere

centered at 0 and circumscribed by P(B), then r =
1

2 · ‖(B−1)T ‖
Proof. Consider a vector x, then x ∈ P(B) ⇔ x ≡ x mod B but it holds
only when x−B · dB−1 · xc = x which means dB−1 · xc = 0. Now, to prove
the lemma we have to show first that:

∀y : ‖y‖ < r ⇒ dB−1 · yc = 0 (VIII.9)

and also that:

∀ε > 0∃y : ‖y‖ > r + ε and dB−1 · yc 6= 0 (VIII.10)

For the first part we consider a vector y : ‖y‖ < r, then ‖y‖ < 1

2 · ‖(B−1)T ‖ ⇒
‖y‖ · ‖(B−1)T ‖ < 1/2. Note now that every single coefficient vi of the vector
v = B−1 · y is the inner product of the corresponding column of matrix
(B−1)T and y. Formally, vi = 〈b∗i , y〉, where b∗i is the i-th column of matrix
(B−1)T . Next, we can mull over |vi|, |v1| ≤ |〈b∗i , y〉|, by Cauchy-Schwartz
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B2(rDec)B1(rDec)

Figure VIII.II: Different bases, different rDec.

inequality |v1| ≤ ‖b∗i ‖ · ‖y‖ but, since ‖b∗i ‖ ≤ ‖(B−1)T ‖ we conclude that
|v1| ≤ ‖(B−1)T ‖ · ‖y‖ which combined with ‖y‖ · ‖(B−1)T ‖ < 1/2 implies
that |vi| < 1/2⇒ dvc = 0⇒ dB−1 · yc = 0 as required.

Let ε > 0, consider the vector y : ‖y‖ = r + ε which is also parallel to
the longest column vector, say bk of matrix (B−1)T . ‖y‖ = r + ε implies
‖y‖ > r which means ‖y‖ · ‖(B−1)T ‖ > 1/2. Furthermore, because y is
parallel to bk we have that |〈y, bk〉| = ‖y‖ · ‖bk‖ = ‖y‖ · ‖(B−1)T ‖ > 1/2,
thus the k-th coordinate of the vector B−1 · y has magnitude bigger than
1/2, consequently dB−1 · yc 6= 0

Direct consequence of the last lemma is the following lemma.

Lemma 13. For the scheme 4 the following equality holds:

rDec =
1

2 · ‖((Bsk
J )−1)T ‖

VIII.III Achieving Bootstrappability

Starting from scheme 4 we have managed to efficiently instantiate each of
its algorithms without hurting its security. This modified scheme is almost
homomorphic, until this point it offers correct homomorphic evaluation for
deep enough circuits, but this does not hold for arbitrary circuits. In previ-
ous subsection we show that the depth of clear evaluation that one can get
is about log n. The final step in order to obtain a fully homomorphic scheme
is then to implement the theory of chapter IV, that is, we have to manage
to shorten the decryption circuit’s depth. A fully homomorphic encryption
scheme after swallowing the circuit is feasible by implementing the generic
construction of chapter IV in our scheme.
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In this section our main goal is to modify the decryption circuit in order
to implement the above. We first refitting the decryption algorithm as in
a way that affects the key generation algorithm also. The main concept
behind the alteration is to give the decrypter a ciphertext that is as easy to
be decrypted as possible, we bring off such a task by forcing the encrypter
to start operating on the data on behalf of the decrypter.

Algorithm 5 (SplitKey(sk, pk)).

� Extracts Bsk
J from sk

� τ is a set of δ(n) uniformly random matrices B1, B2, ..., Bδ(n). There
is an ordered subset S of [1, δ(n)] consisting of δsub(n) elements, such
that ∑

i∈S
Bi = Bsk

J
−1

� sk′ is a square matrix M with dimensions δsub(n)× δsub(n):

Mi,j =

{
1 ,if j is the i-th member of S
0 ,otherwise

� Outputs (sk′, τ)

Algorithm 6 (ExpandCT(pk, ψ)).

� Outputs ci ← Bi · ψ mod BI , for i ∈ [1, δ(n)]

Algorithm 7 (Decrypt(sk, ψ)).

� Set the vectors wi,j = Mi,j · cj.

� Set xi =

δ(n)∑
j=1

wi,j.

� Generate δsub(n)+1 integer vectors y1, y2, ..., yδsub(n)+1 with sum


δsub(n)∑
i=1

xi

.

� Compute π = ψ −BI ·

δsub(n)+1∑
i=1

yi

 mod BI
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After describing the two new algorithms its obvious that the modified
decryption algorithm is useless for the scheme 4 since the form of of the keys
and ciphertexts differentiate from those the last algorithm can decrypt. We
will present the final scheme in the next chapter, where we also show that
this above approach is secure so that it can be adapted to previous scheme
smoothly.

In order to make the scheme bootstrappable our requirement is a low
depth decryption circuit. Recall now the decryption algorithm and the op-
erations needed to be done. We first focus on how to efficiently generate
n + 1 integer vectors with the same sum to the rounded of previous n vec-
tors. Surprisingly this is a demanding task and lead us to reconsider some
parts of the system in order to achieve low depth decryption circuit.

There is the classic Karp’s algorithm presented in [15] for obtaining n+1
integer vectors from n vectors having rounded the same sum. This algorithm
is also known as the ”3 for 2 trick” on account of the way it approaches the
solution. In breath, the algorithm takes three numbers and then replaces
them by two integers having the same sum, this is an operation that takes
place once in every single level of the circuit and consequently we need
log3/2 n depth for its operation. The problem that causes such a depth
is that for every number we cannot eliminate none of its bits because it is
possible for the least significant bit of a number to affect the most significant
bit of the sum. But even if we have the promise that every xi is sufficiently
close to an integer it is not possible to create a circuit with depth much
smaller that log n which means that our scheme will be inefficient after all
those decryption calls.

Next theorem implies a strategy for computing the problematic rounded
sum in a low complexity circuit:

Lemma 14. Consider t real numbers a1, a2, ..., at, the binary representation
for each of these numbers, ai = ... + ai,1 · 21 + ai,0 · 20 + ai,−1 · 2−1 + ...,
and suppose that if Ai is the closest integer number to ai then holds that
|Ai − ai| ≤ 1/4. We can create a mod BI circuit that generates t + 1,

represented in binary, integer numbers whose sum is

⌈
n∑
i=1

ai

⌋
, such that if

its inputs are in B(rin) the its outputs are in B((γMult(R) · n · ‖BI‖ · (1 +
γMult(R) · rin)t · t)polylog(t)).

Proof. The advantage that causes the efficiency of this method is that we
can eliminate all but blog tc + 2 from every ai without break down their
rounded sum. Indeed, let T = blog tc+ 2 and a′i = ...+ ai,1 · 21 + ai,0 · 20 +
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ai,−1 · 2−1 + ...+ai,−T · 2−T , then

∣∣∣∣∣
t∑
i=1

a′i −
t∑
i=1

ai

∣∣∣∣∣ =

∣∣∣∣∣∣
t∑
i=1

+∞∑
j=T

2−j · ai,−j

∣∣∣∣∣∣ < 1

4

because all ai’s are at most 1/4 far from an integer.

The first n numbers that the algorithm returns are every integer part
of the ai’s and then the final integer to be returned is the rounded sum,
say S, of their fractional parts witch now has only T elements for each
number. Consider now the T vectors bi = (a1,−i, a2,−i, ..., at,−i), for i = 1 to

T . Let ci be the Hamming weight of vector bi we have that S =
T∑
j=1

2−j · ci.

Now if we put one more constraint to our hypotheses then this sum can
be computed efficiently. Our extra requirement is to restrict the plaintext
space to P = {0, 1} mod I in order to be able to use the property∗ of
symmetric elementary polynomials that gives us the binary representation
of Hamming weights. This is because the known algorithms for computing
such sums work only in Z2 which also implies that, for convenience, it would
be helpful to instantiate the ideal I to represent Z2 inside n dimensions,
that is we set up I as (2 · ei), where with ei we denote the vector witch is
all zero but its i-th position has 1. After these assumptions we have that
ci = (e2dlog te(bi,1, bi,2, ..., bi,t) mod 2, ...., e20(bi,1, bi,2, ..., bi,t) mod 2) which
essentially gives us the final information to compute S. The time complexity
for the computation each of these polynomials is poly(n) and because every
polynomial among e20 , ..., e2dlogne has a degree upper bounded by t it causes
the exponential factor polylog(t).

The above algorithm provides us with a strong and efficient algorithm
that is a solution to the problem of computing the rounded sum of n real
numbers but as we have already seen it causes an inconvenience in the whole
schema, since it limits the plaintext space to {0, 1} which means that we lose
an advantage of lattices which is a huge plaintext space within low dimen-
sions and small bases. Up to this date the problem of finding a scheme that
utilizes the whole basis as plaintext space remains open. Another constraint
that being introduced after the above proof is the instantiation of BI to be
the full of zeros except one position where it has 2 instead of 0.

Lemma 14 implies for our choice of parameters that after the compu-
tation of the rounded sum of t real numbers the results lie in a sphere of
radius (

√
n · rEnc)t+polylog(t).

∗A detailed proof is on appendix A
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Lemma 15. Consider t real numbers a1, a2, ..., at, the binary representation
for each of these numbers, ai = ... + ai,1 · 21 + ai,0 · 20 + ai,−1 · 2−1 + ...,
and suppose that if Ai is the closest integer number to ai then holds that
|Ai − ai| ≤ 1/4. Suppose also that we have set up the ring of our scheme to
be R = Z[x]/〈xn − 1〉, BI a matrix full of zeros except one position where it
has 2 instead of 0 and the plaintext of the scheme to be {0, 1} Then, we can
create a mod BI circuit that generates t+ 1, represented in binary, integer

numbers whose sum is

⌈
n∑
i=1

ai

⌋
, such that if its inputs are in B(rDec) the

its outputs are in B((
√
n · rEnc)t+polylog(t)).

Last theorem also indicates that the modification of the decryption cir-
cuit using the SplitKey algorithm is necessary since in the initial scheme
there were n numbers to be added for the computation of the problematic
rounded sum. This implies that rDec/rEnc ≥ rout/rin ≥ 2n which, as we have
already seen, is a bad instantiation of rDec, rEnc because of the existence of
Nearest Plane Algorithm.

After all the above combine the last lemma with the the proof of lemma
9, then we get the next theorem.

Theorem 23. The scheme is bootstrappable when we set

δsub(n) · logc1 δsub(n) ≤ log(rDec/2)

2c2 · log(γMult(R) · rEnc

where logc1 δsub(n) is a polylog term and c2 is a constant representing the
depth needed in a circuit having AddBI gates with γMult(R) = nΩ(1) fan-in
and MultBI gates with constant fan-in.

We close this chapter by obtaining one more instantiation, this time for
δsub(n). Suppose that γMult(R) · rEnc is polynomial in n, and rDec = 2n

C

for C < 1. In this case, δsub(n) can be sub-linear polynomial in n.



Chapter IX

Fully Homomorphic
Scheme

A
fter chapter IV where we first show that we can develop a fully
homomorphic scheme without the need of an ad-hoc fully homo-

morphic encryption function we start building a homomorphic scheme step
by step. Our first approach was the initial scheme that we present in chapter
VII which followed by various modifications conducive to botstrappability
of the scheme. In this chapter we demonstrate the resulting fully homomor-
phic scheme with every instantiation that has to be taken into account. In
the second part of this chapter we discuss about the security of the scheme
after the modifications that we make.

IX.I The Final Scheme

Before start presenting each algorithm of the final scheme we have to declare
that we use algorithms that defined either in abstract scheme or during the
modifications in previous chapter. To avoid confusion we denote by E∗ the
abstract homomorphic scheme and by E the final scheme.

81
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Setting up the Parameters

1. Set the degree, n, of the polynomial f(x) = xn− 1 according to λ and
δsub(n) sub-linear polynomial in n.

2. Set BI to be a matrix with small norm.

3. Set `Samp ≈ n.

4. Set rEnc to be the maximum possible such that:

rEnc ≤ n · ‖BI‖+ `Samp1 · ‖BI‖.

5. Set rDec so that:

δsub(n) ≤ log(rDec/m)

α · 2c · log(γMult(R) · rEnc)
.

6. Compute an ideal J relational prime to I = 〈f(x)〉 with the rotation
basis Bsk

J of a polynomial h2(x) ∈ J so that:

rDec ≈
1

2 · ‖((Bsk
J )−1)T ‖ .

7. Set as Bpk
J the HNF of Bsk

J

8. Plaintext space: C = {0, 1} for every polynomial g(x) ∈ Z[x]/〈f(x)〉
let s be the sum of its coefficients, then g(x) encodes 0 or 1 if s ≡ 0
mod 2 or s ≡ 1 mod 2 respectively.



IX.I. THE FINAL SCHEME 83

A Fully Homomorphic Encryption Scheme

KeyGenE(λ)

1. (pk∗, sk∗)← KeyGenE∗(λ)

2. (sk, τ)← SplitKeyE(sk
∗, pk∗)

3. return {sk, (pk∗, τ)}

EncryptE(pk, π)

1. ψ∗ ← EncryptE∗(pk
∗, π)

2. ψ′ ← ExpandCTE(pk, ψ
∗)

3. return ψ = {ψ∗, ψ′}

DecryptE(sk, ψ)

1. Set the vectors wi,j = Mi,j · ψ′j and xi =

δ(n)∑
j=1

wi,j .

2. Generate δsub(n) + 1 integer vectors y1, y2, ..., yδsub(n)+1 with sum
δsub(n)∑
i=1

xi

 .
3. Compute π = ψ∗ −BI ·

δsub(n)+1∑
i=1

yi

 mod BI

AddE(pk, ψ1, ψ2)

1. Extracts (ψ∗1, ψ
∗
2) from (ψ1, ψ2)

2. ψ∗ ← AddE∗(pk
∗, ψ∗1, ψ

∗
2)

3. ψ′ ← ExpandCTE(pk, ψ
∗)

4. return ψ = {ψ∗, ψ′}

MultE(pk, ψ1, ψ2)

1. Extracts (ψ∗1, ψ
∗
2) from (ψ1, ψ2)

2. ψ∗ ←MultE∗(pk
∗, ψ∗1, ψ

∗
2)

3. ψ′ ← ExpandCTE(pk, ψ
∗)

4. return ψ = {ψ∗, ψ′}
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IX.II Security

This section is entirely devoted to security of the whole scheme as it comes
from its different parts. But before all recall the ICP on which we based
the abstract scheme’s security. The whole construction is a modification of
that scheme, consequently its security must be based on a similar problem.
The main difference is the use of lattices instead of rings, but ideal lattices
essentially is just another interpretation of ideal rings. For completeness we
define a, hard, lattice problem analogous to the ICP.

Definition 65 (Bounded Distance Decoding Problem for Ideal Lattices
(BDDP)). Consider the ring R = Z/〈f(x)〉, the algorithm Samp1 that effi-
ciently samples from Zn and also let IdealGen is an algorithm that pro-
duces a basis of an ideal in R. We define the bounded distance decod-
ing problem problem to be the following game: The first player chooses a

b
R←− Samp1(R) and two bases (Bsk

J , B
pk
J )

R←− IdealGen(R,BI). If b = 0 he

chooses r
R←− Samp1(R) and t← r mod Bpk

J . If b = 1 he chooses randomly

a t from R mod Bpk
J . The second player has to find b given (t, Bpk

J ).

The security proof, based on BDDP, for the final scheme is akin to the
proof for the ring based scheme. The hardness of BDDP depends on Samp1

algorithm as in the case of rings because we need the entropy of its output
to be sufficient big inside the lattice to prevent it from being easily identified
among the points of the lattice. Another subject that affects the hardness
of BDDP is the length of the shortest vector of the lattice J .

But after all the alterations that we have made to the initial scheme the
above security proof does not suffice. We also have to show that the new
decryption method does not hurt security. The problem that we based on is
the SplitKey Distinguishing Problem which refers to a game similar to the
key generation algorithm.

Definition 66 (SplitKey Distinguishing Problem (SDP)). The challenger
sets (sk, pk) ← KeyGenE and b ← {0, 1}. If b = 0, it sets (sk, τ) ←
SplitKey(sk, pk). If b = 1, it sets (sk, τ)← SplitKey(⊥, pk), where ⊥ is a
special symbol. The problem: guess b given (τ, sk, pk).

Theorem 24. Let A be an algorithm that breaks the semantic security of E
with advantage ε. Then there exist algorithms B0, B1 such that either B0’s
advantage against the SplitKey Distinguishing Problem or B1’s advantage
against the semantic security of E∗ is at least ε/3.
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Proof. Next we consider two games between the challenger and A. Let
Game 0 be the classic semantic security game, and Game 1 is like Game 0,
except the challenger generates pk differently. Instead of inputting sk into
SplitKey, it inputs ⊥ to obtain τ , and adds τ to the pk it sends to A. By
assumption, is As advantage in Game 0. Let be A’s advantage in Game 1.
B0 runs as follows. The challenger sets bit b← {0, 1} and sends a SplitKey
Distinguishing Problem instance (τ, sk, pk) to B0 . B0 sends pk ← (pk, τ)
to A. When A asks for a challenge ciphertext on one of (π0, π1), B0 sets
β ← {0, 1} and sends ψ ← EncryptE(pk, πβ). After all, A sends back a bit
β. B0 sends b ← β ⊕ β to the challenger. Note that the public key pk is
distributed exactly as in Game b. We compute that B0’s advantage is at
least |ε− ε′|/2. B1 runs as follows. It receives an E∗ public key pk from the
challenger. Then it runs (sk, τ)← SplitKey(⊥, pk) and sends pk ← (pk, τ)
to A. When A asks for a challenge ciphertext on one of (π0, π1), B1 asks the
challenger for a challenge ciphertext on one of (π0, π1). The challenger sends
back ψ . B1 sets ψ to include ψ∗ and the output of ExpandCTE(pk, ψ

∗) and
sends ψ to A. A sends a bit b , which B1 forwards to the challenger. We
see that the distribution is the same as in Game 1. Also, B1’s bit is correct
if A’s bit is correct; so B1 has advantage ε′.
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Part III

Appendices
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Appendix A

Algebra

I.I Symmetric Elementary Polynomials

Definition 67. A multivariate polynomial P on variables x1, x2, ..., xn called
symmetric if there is no permutation of its variables that changes the poly-
nomial.

An alternative, but more practical, definition would be:

Definition 68. We call elementary symmetric polynomial on n variables
the polynomials ei defined as:

� e0(x1, x2, ..., xn) = 1

� e1(x1, x2, ..., xn) = x1 + x2 + ...+ xn

�

...

� ek(x1, x2, ..., xn) =
∑

1≤a1<...<ak≤n
xa1 · xa2 · · ·xak

�

...

� en(x1, x2, ..., xn) = x1 · x2 · · · · xn
Elementary symmetric polynomials will soon be our key to construct the

preferred shallow circuit. We also fall over the notion of Hamming weight
which is momentary presented.
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Definition 69. Let x be a vector of n elements in Z2, we define the Ham-
ming weight of x to be the number of non-zero coordinates of x.

Surprisingly, there is a tight relationship between Hamming weight and
symmetric elementary polynomials since for a vector (x1, x2, ..., xn), xi ∈ Z2

the binary presentation of its hamming weight is:

(e2dlogne(x1, x2, ..., xn) mod 2, ...., e20(x1, x2, ..., xn) mod 2)

Towards the direction of proving the above we give the following funda-
mental theorem established by Adrien-Marie Legendre in 1808.

Theorem 25. Let p prime and a ∈ N, consider the p-adic representation of
a, a = ak · pk + ak−1 · pk−1 + ...+ a1 · p+ a0, pk ≤ a < pk+1, 0 ≤ ai ≤ p− 1.
Then if m is the biggest value of p that divides a! (i.e. pm | a! but pm+1 - a!)
it holds that

m =

∞∑
i=0

[
a

pi

]
=
a− (a0 + a1 + ...+ ak)

p− 1

Proof. Let a, p,m as stated in the theorem, then a! = pm · b, where b is
an integer such that p - b. Now, by the Euclidean algorithm, there exists
integers p1, r1 satisfying

a = q1 · p+ r1, with 0 ≤ q1 and 0 ≤ r1 < p, (A.1)

namely, q1 is the quotient of the division of a by p, that is, q1 =

[
a

p

]
.

By the relation A.1 we obtain that all possible positive multiples of p
smaller than a are the numbers: p, 2 · p, ..., q1 · p, which implies that p · 2 ·
p · · · q1 ·p = pm · b′ for some integer b′ : p - b′, equivalently pq1 · (q1!) = pm · b′.
Let m1 be the biggest integer such that pm1 | q1! then the last gives that
q1 +m1 = m.

If we repeat the above process for q1 = q2 · p + r2 we take that m1 =
m2 + q2, where m2 be the biggest integer such that pm2 | q2!. Inductively,

we have that m = q1 + q2 + ... + qi + ..., where qi =

[
a

pi

]
and mi that by

definition is the biggest integer such that pmi | qi!.
After the above we take that

m =
∞∑
i=0

qi =
∞∑
i=0

[
a

pi

]
. (A.2)
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But we also have that [
a

p

]
= ak · pk−1 + · · ·+ a1,[

a

p2

]
= ak · pk−2 + · · ·+ a2,

...[
a

pk

]
= ak.

Combining the last with the equality A.2 the following comes out

m = (ak · pk−1 + · · ·+ a1) + (ak · pk−2 + · · ·+ a2) + · · ·+ (ak)

= ak · (pk−1 + · · ·+ 1) + ak−1 · (pk−2 + · · ·+ 1) + · · ·+ a2(p+ 1) + a1

=
1

p− 1

(
ak · (pk − 1) + ak−1 · (pk−1 − 1) + · · ·+ a2 · (p2 − 1) + a1 · (p− 1)

)
=

1

p− 1

(
ak · pk + ak−1 · pk−1 + ...+ a1 · p+ a0 − (ak + ak−1 + · · ·+ a1 + a0)

)
=

1

p− 1
(a− (ak + ak−1 + · · ·+ a1 + a0))

as required.

Direct consequence of last theorem is the following corollary that instan-
tiates the theorem for p = 2.

Corollary 1. Let a ∈ N, and ak · 2k +ak−1 · 2k−1 + ...+a1 · 2 +a0 its binary
representation. Then if m is the highest power of 2 that divides a! it holds
that

m = a− (a0 + a1 + ...+ ak)

We continue by establishing a useful lemma for

Theorem 26. Let a, b ∈ Z2, with a > b, consider also the mapping h : Z2 ←
N defined as

h(x) = the number of 1’s in the binary representation of x

then for arbitrary numbers a, b, represented both in binary, the following
equality holds:

h(a− b) = h(a)− h(b) + borrows(a− b)
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by borrows(a− b) we denote the number of borrows when subtracting b from
a.

Proof. We will prove the above by induction in the bit size of a, b. First we
assume without loss of generality that the numbers a and b represented by
the same number of bits (otherwise fill with 0’s the shortest of them).

First, easily verified that the proposition holds when a and b are at most
2 bits long.

Assume now that it also holds for integers of size up to k bits, we will
prove that the same holds for (k + 1)-bit integers.

Theorem 27. Consider two natural numbers n, k, n ≥ k, then
(
n
k

)
= 1

mod 2 iff there are no borrows when subtracting k from n in binary.

Proof. For convenience denote by borrows(a − b) the number of borrows
appearing during subtracting the binary number b from the binary number
a and by ones(n) the number of 1’s in the binary representation of n, also
t(n) represents the highest power of 2 that divides n.

First from corollary 1 we get that t(n) = n− ones(n), consequently:

t(

(
n

k

)
) = t(e!)−t(k!)−t((n−k)!) = (n−t(n))−(k−t(k))−(n−k−t(n−k))

the last implies that:

t(

(
n

k

)
) = ones(k) + ones(n− k)− ones(n) (A.3)

But, we also know that ones(a−b) = ones(a)−ones(b)−borrows(a−b),
this gives that

ones(n− k)− ones(n) = borrows(n− k)− ones(k) (A.4)

From A.3 and A.4 we get that:

t(

(
n

k

)
) = borrows(n− k)

which is a generalization of the required relation.

Now we can present the main theorem of this section used in chapter
VIII to achieve an efficient algorithm for addition of many numbers.

Theorem 28. The i-th bit of the binary representation of Hamming weight
of a binary vector b equals to e2i−1(b1, b2, ..., bn) mod 2.
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Proof. Observe that if the Hamming weight of b equals to w then by the
definition of symmetric elementary polynomials we have that

e2i−1(b1, b2, ..., bn) =
∑

1≤a1<...<a2i−1≤n
(ba1 · ba2 · · · ba2i−1 ) =

(
w

2i−1

)
.

According to previous theorem though, e2i−1(b1, b2, ..., bn) = 1 mod 2 iff
the i=th bit of the binary representation of w is 1.

I.II Quadratic Residues

Definition 70. Let m > 1 be a natural number and a an element in Zm,
we say that a is a quadratic residue modulo m if there exists x ∈ Zp with
x2 ≡ a mod p.

In this case, we call x a square root of a. An element that is not a
quadratic residue is called a quadratic non-residue.

Lemma 16. For every prime p > 2 it holds that in Zp every quadratic
residue has exactly two square roots.

Proof. Take an element y ∈ Zp and suppose that y is a quadratic residue.
Then, by definition, ∃x ∈ Zp such that x2 ≡ y mod p. But we also have
that, (−x)2 ≡ x2 mod p, so −x is a square root of y. Because p is odd,
−x 6≡ x mod p. So, y has at least two square roots.

Let x′ ∈ Zp be a square root of y different than x,−x. Then x2 ≡ y ≡
(x′)2 mod p implying that x2 − (x′)2 = 0 mod p. Factoring the left-hand
we obtain (x−x′)(x+x′) ≡ 0modp, so that either p | (x−x′) or p | (x+x′).

In the first case, x′ ≡ x mod p and in the second case x′ ≡ −x mod p,
showing that y indeed has only x,−x as square roots

Direct consequence of last theorem is the following corollary.

Corollary 2. The number of quadratic residues modulo a prime p > 2 is
exactly p−1

2 .

Definition 71 (Jacobi Symbol). Let p > 2 be a prime, and x ∈ Zp, we
define Jp(x), the Jacobi symbol of x modulo p, as follows.

Jp(x) =

{
1 if x is a quadratic residue modulo p
−1 if x is not a quadratic residue modulo p
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Lemma 17. Let p > 2 be a prime. Then Jp(x) = x
p−1
2 mod p.

Proof. Consider an arbitrary generator g of Zp \{0}. If x = gi for some even
integer i is a quadratic residue. Writing i = 2j with j an integer we have:

x
p−1
2 = (g2·j)

p−1
2 = g(p−1)·j = (gp−1)j = 1j = 1 mod p

and so Jp(x) = 1 = x
p−1
2 mod p as claimed.

On the other hand if x is not a quadratic residue then x = gi for some
odd integer i. Writing i = 2j + 1 with j an integer we have

x
p−1
2 = (g2·j+1)

p−1
2 = (g2·j)

p−1
2 · g p−1

2 = g
p−1
2 mod p.

Now, (g
p−1
2 )2 = gp−1 = 1modp, and so g

p−1
2 = 1modp or g

p−1
2 = −1modp

since both 1,−1 are the two square roots of 1. Since g is a generator it has

order p − 1 and so g
p−1
2 6= 1 mod p. It follows that Jp(x) = −1 = x

p−1
2

mod p.

Lemma 18. Let p > 2 be a prime, and x, y ∈ Zp, then Jp(x · y) = Jp(x) ·
Jp(y).

Proof. Using the previous lemma, Jp(x · y) = (x · y)
p−1
2 = x

p−1
2 · y p−1

2 =
Jp(x) · Jp(y) Since Jp(x · y), Jp(x), Jp(y) are all 1 or −1, equality holds over
the integers as well

Lemma 19. Let N = p · q with p, q distinct primes and y ∈ ZN \ {0} with
y ≡ yp mod p and y ≡ yq mod q. Then y is a quadratic residue modulo
N if and only if yp is a quadratic residue modulo p and yq is a quadratic
residue modulo q.

Proof. If y is a quadratic residue modulo N then, by definition, ∃x ∈ ZN
such that x2 = y mod N . Let x ≡ xp mod p and x ≡ xq mod q, y ≡ yp
mod p and y ≡ yq mod q. Then x2

p ≡ yp mod p and x2
q ≡ yq mod q. We

have thus shown that yp = x2
p mod p and yq = x2

q mod q and yp, yq are
quadratic residues (with respect to the appropriate moduli). Conversely, if
y ≡ yp mod p and y ≡ yq mod q with yp, yq be quadratic residues, then
there exists xp ∈ Zp and xq ∈ Zq such that the previous equation holds.
Let x ∈ ZN be such that x ≡ xp mod p and x ≡ xq mod q. Reversing the
above steps shows that x is a square root of y modulo N.

Now, we can extend the definition of the Jacobi symbol to the case of
N = p · q a product of distinct, odd primes as follows.
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Definition 72. For any x relatively prime to N = p·q, JN (x) = Jp(x)·Jq(x).
We define J+1

N as the set of elements in ZN having Jacobi symbol +1, and
J−1
N analogously.

Note now that JN (x) = +1 can also occur when Jp(x) = Jq(x) = −1,
that is, when x is not quadratic residue neither modulo p nor modulo q
which implies that x is not a quadratic residue in ZN .

All the above are useful properties that used in Goldwasser-Micali cryp-
tosystem which also takes advantage of the following property:

Lemma 20. Let N = p · q be a product of distinct, odd primes, and x, y ∈
ZN . Then JN (x · y) = JN (x) · JN (y).

Proof. Using the definition of Jacobi symbol and lemma 18, we have JN (x ·
y) = Jp(x·y)·Jq(x·y) = Jp(x)·Jp(y)·Jq(x)·Jq(y) = Jp(x)·Jq(x)·Jp(y)·Jq(y)
which implies that JN (x · y) = JN (x) · JN (y) as required.
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