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Abstract

Networks rise in several aspects of modern life, motivating us to model and
understand them. Several types of mathematical and algorithmic problems arise
in networks. Opinion dynamics is a process in networks modelling the effect of
local interactions on agents’ beliefs. The beliefs can be thought as a belief for
some common question of interest, for instance the probability of some event. In
this thesis, I will present mathematical models which capture such processes in
networks and state mathematical problems on them. I try to evaluate these pro-
cesses in terms of economic behavior and convergence time of dynamic processes.
We would ideally like to connect these quantities with parameters of the network
structure. Finally, motivated by polls present on political elections, we study the
effect of partial global information on agents’ local interactions and behavior.
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Chapter 1

Introduction - Game Theory

Through the years Game Theory has been studied rigorously, examining math-
ematical models of situations that arise in several aspects of life, starting from
economic situations. In the long run it became valuable in many different sciences
such as economics, computer science, political science and biology. Game Theory
makes a step further from Optimization Theory, studying models where several
different parties interact in a common environment, acting selfishly. Optimization
Theory (individual decision making) sets the groundwork for the study of how the
simultaneous behavior of selfish individuals generates outcomes. Each agent has
available actions and applies these actions in order to optimize an objective func-
tion, using information for the other agents’ behavior. A game can be described
in two forms, the extensive form game and the normal form, but in this thesis
I will deal with normal form games. During the years, there have been studied
several solution concepts, which present an action profile which agents tend to
follow. The most well known is the concept of the Nash Equilibrium, but not the
only one. There is a big debate involving a variety of solution concepts, such as
dominant strategy profiles, subgame perfect equilibria, trembling hand equilibria,
mixed Nash and correlated equilibria, bayesian equilibria, sequential rationality.
In this thesis I will mainly use the idea of a pure Nash Equilibrium. Philosophical
issues arise about the plausibility of such a concept if it is not reached by the
agents. Based on a specific solution concept, one can describe several important
values of the game, depending in its applications. The most basic ideas of Game
Theory can be found in [20] and [17].

In the introduction of my thesis, I would like to introduce some basic tools
used in the study of games. These tools can only apply to a special class of games.
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· H T
H 1/-1 -1/1
T -1/1 1/-1

Table 1.1: Normal Form Game (Matching Pennies)

However, when applied they facilitate the analysis of the game, implying nice prop-
erties for the Nash equilibria and economic behavior of the game. Moreover, they
seem as a starting point towards the understanding of a game and the discovery of
other more general analytic ideas, arising from general fixed point theorems such
as Brower fixed point theorem and Banach fixed point theorem [6].

Figure 1.1: Fixed Point (Sperner’s Lemma)

1.1 Potential Games

In this subsection, I will introduce a specific class of games with nice properties.
Potential games can be seen as an optimization problem, where the agents optimize
a unified function. I will mention several classes of potential games and point out
some guides on how to examine if a game admits a potential.
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Let’s consider a game with n agents. Each agent has a strategy space Xi and
a utility function ui : X → R, where X = X1 × . . .×Xn. We say that a game has

1. an exact potential function Φ : X → R, if for every agent i, every two
strategies xi, x

′
i ∈ Xi and every strategy vector x−i ∈ X−i

ui(xi, x−i)− ui(x
′
i, x−i) = Φ(xi, x−i)− Φ(x′

i, x−i)

2. a weighted w-potential function Φ : X → R, where w = (wi), if for every
agent i, every two strategies xi, x

′
i ∈ Xi and every strategy vector x−i ∈ X−i

ui(xi, x−i)− ui(x
′
i, x−i) = wi(Φ(xi, x−i)− Φ(x′

i, x−i))

3. an ordinal potential function Φ : X → R, if for every agent i, every two
strategies xi, x

′
i ∈ Xi and every strategy vector x−i ∈ X−i

ui(xi, x−i)− ui(x
′
i, x−i) > 0 iff Φ(xi, x−i)− Φ(x′

i, x−i) > 0

Of course an exact potential function for a game can also be called a weighted
potential function or an ordinal potential function. A game with an ordinal poten-
tial function is called a potential game. Consider a game with an ordinal potential
function. If the potential function admits a maximum value in x ∈ X, then the
game admits a Nash equilibrium in X, since for every agent i and strategy x′

i

Φ(x) ≥ Φ(x′
i, x−i) ⇒ ui(x) ≥ ui(x

′
i, x−i)

When considering finite games (finite strategy sets), the potential function surely
admits a maximum value. So, every finite potential game possesses a pure Nash
equilibrium. An analogous result can be proven for infinite potential games, con-
sidering Weierstrass’s theorem. Every game with a continuous potential function
and compact strategy sets possesses a pure Nash equilibrium.

From now on I will present an important theorem which points out the ex-
istence of an exact potential function. When seen as a tool it can be extended
to point the existence of a weighted potential function. Before stating the theo-
rem, I must define some notation. Let’s consider a finite path of strategy profiles
P = (x0, x1, . . . , x

m), where consequent strategy profiles differ in a unique agent’s
strategy. We define the function I given by

I(P, u) =
m∑
k=1

(uik(x
k)− uik(x

k−1))

where ik is the agent who deviates at step k. A path is closed if x0 = xm and
simple if a strategy profile does not appear twice in the path.
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Theorem 1.1.1 Consider a game G. The following claims are equivalent:

1. G has an exact potential function.

2. I(P, u) = 0 for every finite closed path P .

3. I(P, u) = 0 for every finite simple closed path P .

4. I(P, u) = 0 for every simple closed path of length 4.

Proof (1) ⇒ (2): I(P, u) =
m∑
k=1

(uik(x
k) − uik(x

k−1)) =
m∑
k=1

(Φ(xk) − Φ(xk−1)) =

Φ(xm)− Φ(x0) = 0

(2) ⇒ (1): For every two strategy profiles x and y and every two paths P1

and P2 from x to y
I(P1, u) = I(P2, u)

That is because path (P1,−P2), where −P2 is the path P2 when reversed, is closed,
i.e.

0 = I((P1,−P2), u) = I(P1, u) + I(−P2, u) = I(P1, u)− I(P2, u)

Choose an initial strategy profile x0 and consider a path P (x) from x0 to x. We
claim that the function Φ(x) = I(P (x), u) is an exact potential function. Consider
a strategy profile x. Then Φ(x)−Φ(x′

i, x−i) = I(P (x), u)−I((P (x), (x′
i, x−i)), u) =

ui(xi, x−i)− ui(x
′
i, x−i), which proves that Φ(·) is an exact potential function.

(2) ⇒ (3) ⇒ (4): The proof is trivial.

(4) ⇒ (2): We proceed by induction. Assume that for every closed path P
of length m − 1, I(P, u) = 0. Consider a closed path P of length m. Assume
that i1 = 1, then there exists a step 2 ≤ k ≤ m, such that ik = 1, since agent
1 should deviate back to his initial strategy. If i2 = 1 or im = 1, then we can a
smaller path P ′, where x0 → x2 or xn−1 → x1 respectively. Of course I(P, u) =
I(P ′, u) = 0. Assume now that 3 ≤ k ≤ m − 1. Then there exists another
path P ′ = (x0, . . . , xk−2, x′, xk, . . . , xm), where x′ = (xk

1, x
k−2
ik−2

, xk−2
−{i(k−2),1}). Since

I((xk−2, xk−1, xk, x′), u) = 0 by (4), we conclude that I(P, u) = I(P ′, u). Step by
step, one can find a closed path P ′′ with i2 = 1. So, I(P, u) = I(P ′′, u) = 0.

This completes the proof.
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Finally, I will present another theorem which applies on infinite games.

Theorem 1.1.2 Consider a game G, where the strategy sets are intervals of R.
Suppose the utility functions are twice continuously differentiable. Then G has an
exact potential function if and only if

∂2ui

∂xi∂xj

=
∂2uj

∂xi∂xj

for every two agents i and j.

The above theorem is completely analogous to the theorem stated before and
points out a way to compute the exact potential function

Φ(x) =
∑
i

1∫
0

∂ui(x(t))

∂xi

dxi(t)

dt
dt

where x : [0, 1] → X is a piecewise continuously differentiable path in X, such that
x(0) = x0 and x(1) = x.

Potential games have nice properties, since we can apply tools and theorems
from Optimization Theory in a straightforward manner, exploiting the potential
function. It is direct to seek for a concave potential function in order to guarantee
uniqueness of a local maximum or a Nash Equilibrium. Convergence analysis can
be thoroughly applied in the potential function.

1.2 Concave Games

The class of potential games is a well studied class of games with nice properties
and results. However, this is not the case most times. We would like to introduce
a broader class of games with nice properties, maybe begining with the existence
of a Nash Equilibrium. The analysis of such a class would be a generalization of
the Optimization Theory Mathematics. The quest begins by studying Concave
Games, using Fixed Point theorems.

We consider games with n agents. Each agent has a strategy xi in the
Euclidean strategy space Rmi . So, there is a vector of all players strategies

11



Figure 1.2: Convergence (Gradient Descent)

x ∈ Rm1 × . . . × Rmn . Of course the strategy set is restricted to a compact
(closed and bounded) and convex set X = X1 × . . . × Xn ⊂ Rm1 × . . . × Rmn .
Each agent has a utility function ui : X → R and tries to maximize it. The utility
function is continuous in x and concave in xi. In order to prove the result, we will
need a function ρ : X ×X → R given by the following formula

ρ(x, y) =
∑
i

ui(x1, . . . , yi, . . . , xn)

The above function can be proven trivially to be continuous in x and y and is
concave in y for every fixed x. The class of games satisfying these properties
are called concave games. There is an equivalent formulation for minimization
problems and convexity, which we will call convex games. The same results occur.
The following result is fundamental

Theorem 1.2.1 An equilibrium point exists for every concave game.

Proof We consider a mapping U : X → P(X) given by

U(x) = {y|ρ(x, y) = max
z∈X

ρ(x, z)}

12



Since ρ(x, y) is continuous in x and y and concave in y for every fixed x, it can
be proven trivially that U(·) is upper semicontinuous mapping, which maps every
point x in a closed and convex subset of X. Using the Kakatuni fixed point
theorem, there exists a point x ∈ X such that x ∈ U(x), which means that

ρ(x, x) = max
z∈X

ρ(x, z)

By using the above equality, we conclude that for each agent i and strategy
vector x′

i ∈ Xi

ρ(x, x) ≥ ρ(x, (x′
i, x−i)) ⇒

ui(x) ≥ ui(x
′
i, x−i)

This completes the proof.

From a point of view, ρ(x, ·) functions as a potential function on each point
x. This is a generalization of the potential function as one cannot find a potential
function. It remained to prove the existence of a point which is a solution of
maximizing the potential function of that point.

In the rest of [21], Rosen studies concave games using methods of optimization
theory, with the key point of introducing the pseudogradient (▽x1u1(x), . . . ,▽xnun(x))

T ,
as a generalization of the gradient of a function. It seems that the only informa-
tion needed is the change of ui(x) when changing xi. It follows a result on the
uniqueness of a Nash equilibrium, when making assumptions about diagonally
strict concavity similar to the strict concavity of a function. The convergence
to a single point and convergence time can be studied directly in well structured
concave games by exploiting the pseudogradient stated above.

1.3 Smooth Games

In this section I will examine a specific class of games called “smooth”. This class of
games satisfy a given property concerning the cost function. By using an argument
one can prove PoA bounds for the game. I will introduce the framework, present
the argument and the extent of it’s results and mention an example concerning
congestion games. I will shortly discuss an analogous class of games called local
smooth games.
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In [22] Roughgarden introduced the smoothness framework for a cost mini-
mization game. A game is called (λ, µ)- smooth if for every two strategy profiles
x and x∗, ∑

i

ci(x
∗
i , x−i) ≤ λ

∑
i

ci(x
∗) + µ

∑
i

ci(x)

It seems that a game which is (λ, µ)-smooth, with λ > 0 and µ < 1, guarantees
good economic efficiency. Specifically, at a Nash equilibrium x the game satisfies
the following inequalities∑

i

ci(x) ≤ ci(x
∗
i , x−i) ≤ λ

∑
i

ci(x
∗) + µ

∑
i

ci(x)

By considering x∗ as the optimal strategy profile, with respect to the social cost
SC(x) =

∑
i

ci(x), the above inequality guarantees that

SC(x) ≤ λ

1− µ
SC(x∗)

This means that the price of anarchy for pure Nash equilibria is upper bounded

PoApure ≤
λ

1− µ

It seems that the arguments used for upper bounding the PoA can be also be
used for mixed, correlated and coarse correlated equilibria of a game. The value
of (λ, µ) do not change since a smooth game satisfies the smoothness inequality
for every two outcomes x and x∗. This means that the PoA remains the same
for more general classes of equilibria, specifically mixed N.E., correlated N.E. and
coarse correlated N.E.. For this reason the PoA proved with the smoothness
framework is called the robust Price of Anarchy. When the smoothness framework
was introduced it became clear that many bounds of the PoA in several games were
proved by using this specific argument. I will present an example for congestion
games with affine cost functions to illustrate the functionality of the smoothness
framework.

Example A congestion game with n agents is defined by a set E of resources and
strategy sets X1, . . . , Xn ⊆ {0, 1}E. Each resource e ∈ E has an affine cost function
ce(k) = aexe+be where xe is the number of agents using the resource at the strategy
profile x ∈ X1× . . .×Xn. The cost of agent i is defined as ci(x) =

∑
e∈xi

ce(xe). The

social cost of the congestion game is defined by SC(x) =
∑
i

ci(x) =
∑
e∈E

xece(xe).

14



Figure 1.3: Nash Equilibrium Concepts

Figure 1.4: Congestion Games

Let’s try to prove that a game is (λ, µ)-smooth using every two strategy profiles
x and x∗ ∑

i

ci(x
∗
i , x−i) ≤

∑
e∈E

(ae(xe + 1) + be)x
∗
e ≤

∑
e∈E

5

3
(aex

∗
e + be)x

∗
e +

∑
e∈E

1

3
(aexe + be)xe =

5

3

∑
i

ci(x
∗) +

1

3

∑
i

ci(x)

where the last inequality results from a basic algebraic inequality

y(z + 1) ≤ 5

3
y2 +

1

3
z2
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The above computation implies an upper bound of 5
2

on the PoA of pure Nash
equilibria in every congestion game with affine cost functions, as proved in [9].

Consider a class of games G which admit a pure Nash equilibrium. For every
game G ∈ G we get the PoApure which is the ratio of the worst Nash equilibrium
to the optimal strategy profile. When proving that a game is “smooth” we need
the best choice of (λ, µ) to derive an upper bound λ

1− µ
. Suppose that A(G) is

the set of (λ, µ), for which all games in G are (λ, µ)-smooth. It is straightforward
that

sup
G∈G

PoApure(G) = inf
(λ,µ)∈A(G)

λ

1− µ

which can be thought as a weak duality condition. If we derive an equality for a
specific class of games then one can conclude that the upper bound provided by
smooth arguments is tight. It seems a challenge to characterize the class of games
that such a max-min condition is true.

The above results are true for every possible strategy set. However, there
is an idea which brings better results when the strategy sets are continuous. In
[23] Roughgarden et al. introduced the local smoothness framework, which takes
effect into games where Xi is a convex subset of Rmi

and each cost function ci is
continuously differentiable with a bounded derivative.

A game is called locally (λ, µ)-smooth with respect to strategy profile x∗ if for
every strategy profile x,∑

i

[ci(x) +▽xi
ci(x)

T (x∗
i − xi)] ≤ λ

∑
i

ci(x
∗) + µ

∑
i

ci(x)

A locally (λ, µ)-smooth game with respect to the optimal outcome x∗ has good
economic efficiency. At a Nash equilibrium x∑

i

ci(x) ≤
∑
i

[ci(x) +▽xi
ci(x)

T (x∗
i − xi)] ≤ λ

∑
i

ci(x
∗) + µ

∑
i

ci(x)

The above inequality guarantees that

SC(x) ≤ λ

1− µ
SC(x∗)

This means that the price of anarchy for pure Nash equilibria is upper bounded

PoApure ≤
λ

1− µ

16



The above result can be extended for mixed and correlated equilibria. How-
ever, that is not the case for coarse correlated equilibria. The intuition behind the
local smoothness framework derives from the need for a “small” deviation which
is effectively bounded. We would like to move away from the Nash equilibrium
in order to use the Nash inequalities, and then bound the resulted increase of the
cost functions. In the smoothness framework we tried to compute (λ, µ) in order
to bound the change for every possible strategy profile. In the local smoothness
framework we assume a slight (local) move, which restricts the increase that one
has to bound. If the cost functions are convex, this “small” deviation would be
more effectively bounded. To conclude the above results seem the only tools in
hand to derive upper bounds on the PoA.

1.4 Best Responce Matrix

The games which studied mainly in this thesis are continuous games, escaping
from the classical algorithmic framework. That means that we should recall con-
vergence results from “Optimization Theory” to examine such games, especially
since a potential function exists. In many games the best response of each agent
can be given by a combination of the other agents’ strategies. If agents reply
simultaneously a system of equations is implied

x(t+ 1) = Ax(t) +Bu(t)

There is a rich literature ([7]) analyzing such systems with nice properties depend-
ing on the structure of matrix A and B. Using properties of matrix A one examine
if x(t) converges and subsequently the convergence time.
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Chapter 2

Several Models

This section could be the introduction. I preferred to introduce my thesis by
introducing the main techniques discovered writing this thesis. A reader may stop
in the introduction, but I will be confident that he would have read the best points
and learned the most. From now and on I present applications of the theory. So
this chapter will not have any results but a few, but mainly a presentation of the
wide range of the Opinion Dynamics Theory. It is a very important chapter of the
Social Networks Theory, as it can be seen in [16].

Social Networks arise in several aspects of everyday life since they depict ev-
ery kind of interaction between people. Nowadays, the Internet can been seen as
a huge social network, since the last years there is a great rise on the platforms
accomodating social interaction such as Facebook and Twitter. Ofcourse the in-
formation and ideas spread through the “social media” seem to be a gear of the
modern civilized world. Moreover, learning procedures are accomodated in a social
network since agents share information about several beliefs. So, there is a need to
model and understand the interaction in a social network and how the structure
of the network influences learning and the spread of information.

I will mainly present models and the framework that they are studied. I
will shortly present the kind of results researched. Before beginning stating the
models I would like to define an opinion game between n agents. In order to keep
track with the “ingredients” needed, one can suppose that it is a “different” kind
of optimization problem. An optimization problem is defined by it’s parameters
(or exogenous variables or input), it’s endogenous variables and the optimization
procedure (objective function). The optimization procedure is the dynamics of the

18



game and would be discussed later. The input of the opinion game would be

1. The agents’ internal beliefs si (in some models).

2. The Social Network given by functions on each couple of agents. For example,
it can be a graph G = (V,E) (SN) with weights wij on edges (constant
function).

Of course the endogenous variables would be a vector of the agents’ opinions x.

Special talk can be done for the optimization procedure, meaning the set of
solutions. Now it is not decentralized for the purpose of optimizing an objective
function, but it can be thought as the result of a dynamical procedure driven by
the agents. This procedure can be described step-by-step or can be vague as in the
Nash Dynamics. The step-by-step procedure is mostly described by the agent’s
response function and an ordering of the agents’ responses. The Nash Dynamics
are described by the agents’ cost function, knowing that a solution of the system
is the one where each agent has no incentive to change his opinion.

After defining the game by stating it’s 3 ingredients, it would be ideal to
clarify the goals of the research done. I will state briefly three of these goals:

1. The existence of a solution.

2. The economic behavior of the game.

3. The convergence rate of the dynamics, when applicable.

2.1 The Degroot Model

Firstly, I would like to present the first model considered in [10] and define the
notion of consensus. It is a starting point to examine how the structure of a social
network can influence opinion formation. From now each agent’s internal belief
could serve as a starting point of his opinion formed, namely xi(0) = si. This
will mainly be used when describing a kind of dynamics by the agent’s response
formula. DeGroot used a matrix W to represent the social network, where wij

represents the weight of trust that each agent i places on agent j, i.e.

x(t+ 1) = Wx(t)
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So x(t) = W ts and the final opinion vector will be given by

x = lim
t→∞

x(t) = lim
t→∞

W ts

We would assume that
∑
j

wij = 1 for each agent i. The following figure illustrates

W =

 0 1/2 1/2
1/3 0 2/3
3/4 1/4 0



Figure 2.1: Degroot Model (3 agents)

There are two major technical questions that arise for this model. The first
one concerns if this process converge to a specific strategy vector, namely does
lim
t→∞

W ts exist? Of course the process should converge for each possible choice
of s, so we are interested on the convergence of W t. The nodes form strongly
connected components such that the agents in a strongly connected component
influence each other. A strongly connected component is closed when it has not
a directed edge to some other strongly connected component. So it is intuitive
to think that the closed strongly connected components should converge to some
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value by their own and the other sets will assimilate their opinions. It is clear that
a strongly connected component should not be periodic in order to converge to a
specific value, which is a standard result from Markov Chain Theory. A matrix
W is aperiodic if the greatest common divisor of all the directed cycle lengths is
one, where the directed cycles are defined relative to a directed network where a
directed link exists from i to j if wij > 0. We conclude that,

Theorem 2.1.1 W is convergent if and only if every set of nodes that is strongly
connected and closed is aperiodic.

Figure 2.2: Strongly Connected Components ({4, 5} is closed)

As stated above this model can be thought as a learning process. It is im-
portant for the agents to exchange information and converge to the same opinion.
This would be the extracted information from the network and we say that the set
of agents have reached a consensus. In one of the following chapters we will see
what can be done to extract information from the network, when the agents do not
reach a consensus. So the second major technical question concerns if the process
reaches a concensus, trying to characterize the well behaved social networks. The
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following theorem characterizes the convergent value for any strongly connected
and closed component of the graph.

Theorem 2.1.2 Any strongly connected and closed group of individuals reaches a
consensus for every initial vector of beliefs if and only if it is aperiodic.

It is clear from above that each strongly connected component will be indepen-
dent of s on other nodes. So if there are two closed strongly connected components,
for different values of s they cannot possibly extract the same value. I state the
theorem

Theorem 2.1.3 A consensus is reached if and only if there is exactly one strongly
connected and closed group of agents and W is aperiodic on that group.

The following theorem seems a more welcomed characterization of social net-
works which reach a consensus.

Theorem 2.1.4 A consensus is reached if and only if there exists t such that some
column of W t has all positive entries.

Now it is time to proceed with generalizations and variations of the above
model.

2.2 Symmetric Coevolution Games

The main model studied by the Algorithmic Game Theory line of research is the
one introduced in [4].We assume n agents, with internal beliefs (input) si. Each
agent’s strategy set is the line and his strategy is represented by xi. The selfish
agent tries to reduce his cost

ci(xi, x−i) = wi(xi − si)
2 +

∑
j ̸=i

wij(xi − xj)
2

Of course in this model they assume quadratic costs. The model can be
generalized further by assuming general functions:

ci(xi, x−i) = wigi(xi − si) +
∑
j ̸=i

wijfij(xi − xj)
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It remains to picture the game as a system and set an objective function,
which ideally is optimized. I will point out the main one used, which is the social
cost:

SC(x) =
∑
i

wi(xi − si)
2 +

∑
i

∑
j ̸=i

wij(xi − xj)
2

or, more generally

SC(x) =
∑
i

wigi(xi − si) +
∑
i

∑
j ̸=i

wijfij(xi − xj)

Due to the impossiblity results proved in this line of research, as will be evident
afterwards, we assume a symmetric model:

wij = wji

and
fij = fji

The nice property about symmetric coevolution games is the existence of a
potential function. The potential function for the general case stated above would
be

Φ(x) =
∑
i

wigi(xi − si) +
∑
i

∑
j<i

wijfij(xi − xj)

This is easy to prove:

ci(x)−ci(x
′
i, x−i) = wigi(xi−si)−wigi(x

′
i−si)+

∑
j

wijfij(xi−xj)−
∑
j

wijfij(x
′
i−xj)

= Φ(x)− Φ(x′
i, x−i)

It seems that if the functions gi(·) and fij(·) are strictly convex, then the potential
function is stricty convex, which means that the Nash Equilibrium is unique. That
is the case for quadratic cost functions.

2.3 Assymetric Coevolution Games

There are several models which differentiate concerning the “friendship” relation-
ships and their effect on the agents’ cost. Of course the relationships would be
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illustrated by a graph and weights on it’s edges. The only assumptions could be
that a friendship is powered up by the proximity on the agents’ opinions. So a
well formed model would assume agents’ costs

ci(xi, x−i) = wi(xi − si)
2 +

∑
ij

qij(x)(xi − xj)
2

We assume quadratic costs. One can generalize but the quadratic costs have
not been explored yet. The friendship function would be qij(x) = Fi(d

i
j, d

i
−i,−j),

where dij = |xj − si|. We make three assumptions:

1. Fi is a continuous funtion.

2. Fi is decreasing in dij.

3. Fi is increasing in di−j.

An agent j with an opinion close to agent’s i internal belief, influences him
more and agent j influences him more if agent i is far from other agents. The
continuity of Fi is assumed for simplicity, in order to classify assymetric coevolution
games in a well celebrated class of games.

It seems difficult to find a potential function for the above game and by apply-
ing the machinery to test the existence of a potential function it may be impossible.
However, the cost function is continuous in x and convex in xi, since qij(x) does
not depend on xi. This means that the assymetric coevolution game is a convex
game and admits a Nash equilibrium.

2.4 Discrete Strategy Sets

Another direction recently studied is restrict the strategy set. Goldberg et al. [12]
introduced a model by restricting the strategy set to Xi = {0, 1}. They followed
the symmetric model with constant weights and quadratic costs, stated above. It
seems they assume that each agent’s distance from his internal belief has the same
weight for all agents, which is important for the results given. Each agent has a
cost

ci(xi, x−i) = (xi − si)
2 +Di(x)
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where Di(x) =
∑

j:xi ̸=xj

wij is the sum of weights between agent i and each agent

having the opposite opinion.

It seems that the specific model admits a potential function

Φ(x) =
∑
i

(xi − si)
2 +

1

2

∑
i

Di(x)

where D(x) = 1
2

∑
i

Di(x). This occurs since

ci(x)− ci(x
′
i) = (xi − si)

2 − (x′
i − si)

2 +Di(x)−Di(x
′
i, x−i)

Φ(x)−Φ(x′
i, x−i) =

∑
j

(xj − sj)
2+D(x)−

∑
j ̸=i

(xj − sj)
2− (x′

i− si)
2−D(x′

i, x−i) =

(xi − si)
2 − (x′

i − si)
2 +Di(x)−Di(x

′
i, x−i) =

ci(x)− ci(x
′
i, x−i)

Since there exists a potential function, we can justify the existence of a Nash
equilibrium.

The objective function, when studying the model, could be the social cost

SC(x) =
∑
i

(xi − si)
2 + 2D(x)

2.5 Discontinuous Social Network functions

A well studied model with discontinuous social network is the Hegselmann-Krause
model. Most literature assumes that there are no internal beliefs. The dynamics
are given in the form of each agent’s response

xi(t+ 1) =

∑
j:|xj−xi|≤1

xj(t)

|{j : |xj − xi| ≤ 1}|

Each agent forms an opinion as the average of his very close friends. The above
formula gives an idea of the order followed on the agents responses. All agents act
simultaneously. So the existense of a solution is a convergence concept.
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Another model would be the K-NN Model. Each agent’s cost is given by

ci(xi, x−i) = ρK(xi − si)
2 +

∑
j∈S(i)

(xi − xj)
2

where K is a constant and S(i) would be the set of the K closest agents to i, with
respect to the distance |xj − si|. Each agent forms an opinion as the average of
his K closest friends. This model is studied, with respect to it’s Nash Dynamics.
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Chapter 3

Economic Behavior

In this chapter, I examine the economic behavior of some opinion dynamics mod-
els. I will revisit two of the above models, where a solution is guaranteed. The
above models are defined in terms of a cost function and the solution is a Nash
Equilibrium. The measure of economic behavior will be the well celebrated, in
the algorithmic game theory research line, Price of Anarchy. This measure is the
ratio between the social cost of the worst Nash equilibrium and the social cost of
an optimal solution where the agents’ beliefs could be derived from a centralized
authority

PoA = sup
x:N.E.

SC(x)

SC(x∗)

The first to examine will be the symmetric coevolution game by using smoothness
arguments.

3.1 Symmetric Coevolution Games

This result is important for two reasons. Firstly, it is the model that is heavily
studied by the reseach conducted and secondly, it cathces the case of the best-
response dynamics, since the N.E. is unique and is identical to the vector the
dynamics converge. Before studying the symmetric model, it would be ideal to
state an economic result for the assymetric case (directed graph) with quadratic
costs.
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Figure 3.1: Star Network

Example Consider a star with n agents, where agent 1 is the center of the star
and wi1 = 1. Agent 1 has internal belief s1 = 1 and all other agents have internal
belief si = 0. At the Nash equilibrium agent 1 would choose his internal belief
x1 = s1 = 1 and all other agents would choose xi =

1
2
. In the optimal profile x∗

(for large n), agent 1 changes his opinion to 0 and all other agents declare their
internal belief. So, the example has a ratio

SC(x)

SC(x∗)
=

n−1
4

+ n−1
4

1
= Ω(n)

As the ratio is lower bounded by n, one could try to find a special graph class
with better economic efficiency. It seems that even for graphs with constant degree
the ratio of economic efficiency remains high.

Example Let G be a complete 2k-ary tree with n nodes and each edge pointing
to a layer above has weight 1. The tree’s depth is log2k n. The root has internal
belief 1 and all other agents have internal belief 0. At a Nash equilibrium the
agents at layer i declare opinion 2−i. Each agent’s cost in layer i would be (2−i)2+
(2−(i−1) − 2−i)2 = 2−2i. There are 2ki agents in layer i. So, the total social cost at
the Nash equilibrium is

SC(x) = 2

log
2k

n∑
i=1

2(k−2)i
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For k > 2 this cost is equal to

SC(x) = 2 · 2k−2 (2
k−2)log

2k
n − 1

2k−2 − 1
= 2k−1n

k−2
k − 1

2k−2 − 1

The cost of the optimal solution is at most 1 since the root agent can declare
opinion 0. It seems that the PoA gets higher as one increases k. The PoA for
k = 2 would be Θ(logn).

Figure 3.2: Tree Network

Now that it seems difficult to bound the PoA in the assymetric model, it
would be straightforward to consider the symmetric case. In the symmetric model
with quadratic costs, the social cost is given by the following form:

SC(x) =
∑
i

(xi − si)
2 + 2

∑
(i,j)∈E,i>j

wij(xi − xj)
2

The potential function is given by the following form:

ϕ(x) =
∑
i

(xi − si)
2 +

∑
(i,j)∈E,i>j

wij(xi − xj)
2

Let x denote the Nash Equilibrium and x∗ the social cost minimizer. By using
the potential function (it’s form resembles the social cost), one can derive a PoA
bound:

PoA =
c(x)

c(x∗)
=

∑
i

(xi − si)
2 + 2

∑
(i,j)∈E,i>j

wij(xi − xj)
2

c(x∗)
≤

29



2
∑
i

(xi − si)
2 + 2

∑
(i,j)∈E,i>j

wij(xi − xj)
2

c(x∗)
=

2ϕ(x)

c(x)
≤ 2ϕ(x∗)

c(x∗)
≤

2c(x∗)

c(x∗)
= 2

However, the same job can be done by using the local smoothness framework.
Let x denote possible profile and x∗ a fixed profile (I use the optimal sign because
in order to prove any results x∗ is chosen to be the social cost minimizer). A game
is local smooth if for a fixed profile x∗, there are values µ < 1, λ > 0, such that
for every x: ∑

i

ci(xi, x−i) + (x∗
i − xi)

∂ci(xi, x−i)

∂xi

≤ λc(x∗) + µc(x)

Theorem 3.1.1 Let σ denote a correlated equilibrium. If a game is local smooth
(according to the above definition), with respect to the social cost minimizer x∗ as
the fixed profile, the ratio of Ex∼σ[c(x)] to c(x∗) is at most λ

1−µ
. In particular, the

correlated PoA is at most λ
1−µ

.

Let’s assume a more general model for each agent’s cost:

ci(xi, x−i) =
∑
j ̸=i

fij(xi − xj) + wigi(xi − si)

Let’s try to prove that the above game is smooth.∑
i

ci(xi, x−i) + (x∗
i − xi)

∂ci(xi, x−i)

∂xi

=

∑
i

[
∑
j ̸=i

fij(xi − xj) + wigi(xi − si)]+

(x∗
i − xi)[

∑
j ̸=i

f ′
ij(xi − xj) + wig

′
i(xi − si)] =

∑
i̸=j

[2fij(xi − xj) + (x∗
i − xi)f

′
ij(xi − xj) + (x∗

j − xj)f
′
ij(xj − xi)]+

∑
i

wi[gi(xi − si) + (x∗ − xi)g
′
i(xi − si)] =
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∑
i̸=j

2[fij(xi − xj) +
1

2
[(x∗

i − x∗
j)− (xi − xj)]f

′
ij(xi − xj)]+

∑
i

wi[gi(xi − si) + ((x∗
i − si)− (xi − si))g

′
i(xi − si)]

In order to prove the game is smooth, one must bound the right part of the
above equation by using the following terms:

• SC(x∗) =
∑
i

wigi(xi − si) +
∑
i ̸=j

2fij(x
∗
i − x∗

j)

• SC(x) =
∑
i

wigi(xi − si) +
∑
i̸=j

2fij(xi − xj)

So one can desire the best possible (λ, µ), in order to minimize λ
1−µ

, such that:

• gi(xi − si) + ((x∗
i − si)− (xi − si))g

′
i(xi − si) ≤ λgi(x

∗
i − si) + µgi(xi − si)

• fij(xi−xj)+
1
2
[(x∗

i −x∗
j)−(xi−xj)]f

′
ij(xi−xj) ≤ λfij(x

∗
i −x∗

j)+µfij(xi−xj)

Convexity of the functions gi(·) and fij(·) implies that:

• gi(xi − si) + ((x∗
i − si)− (xi − si))g

′
i(xi − si) ≤ gi(x

∗
i − si)

• fij(xi − xj) + [(x∗
i − x∗

j) − (xi − xj)]f
′
ij(xi − xj) ≤ fij(x

∗
i − x∗

j) ⇒ fij(xi −
xj) +

1
2
[(x∗

i − x∗
j)− (xi − xj)]f

′
ij(xi − xj) ≤ 1

2
fij(xi − xj) +

1
2
fij(x

∗
i − x∗

j)

So it seems that the game is (1, 1
2
)-smooth, since (λ, µ) = (1, 1

2
) satisfies the

smoothness inequality. The PoA is equal to λ
1−µ

= 2. When using more re-
stricted cost functions the PoA could be lower. I will analyze the case where the
cost function is a polynomial, i.e. gi(d) = |d|a and fij(d) = |d|a.

Again, we shall find (λ, µ) such that

(xi − xj)
a +

1

2
[(x∗

i − x∗
j)− (xi − xj)]a(xi − xj)

a−1 ≤ λ(x∗
i − x∗

j)
a + µ(xi − xj)

a

Suppose that x = xi − xj and y = x∗
i − x∗

j . So, we need

xa +
1

2
(y − x)axa−1 ≤ λya + µxa
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The same should be proven for functions gi(d) = |d|a, i.e.

(xi − si)
a + ((x∗

i − si)− (xi − si))a(xi − si)
a−1 ≤ λ(x∗

i − si)
a + µ(xi − si)

a

Suppose that x = xi − si and y = x∗
i − si, so the above inequality is transformed

to
xa + (y − x)axa−1 ≤ λxa + µya

The inequalities above are true for

(λ, µ) = ((
a

a− 1
)−(a−1) · (2

a
a−1 − 1)a−1

2
, 1− a

2
+

a

2
(

1

2
a

a−1 − 1
))

So, we can a derive equal to

PoA =
(a− 1)(a−1)

aa
· (2

a
a−1 − 1)a

2
a

a−1 − 2

The following table presents the PoA for sereral degrees on the polynomial of the
cost function

Figure 3.3: PoA bounds for polynomial cost functions

In order to end the discussion for polynomial cost function, it seems that one
can construct a lower bound, for each choice of a, such that the PoA coincides
with the value stated and proven above. I will present a generalized instance with
3 agents.
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Example There are 3 agents with internal beliefs s1 = 0, s2 = 1, s3 = 2. Each
agent’s cost is given by the formula

ci(x) = wg(xi − si) +
∑
j ̸=i

f(xi − xj)

For polynomial cost functions, each agent’s cost function is given by

ci(x) = w|xi − si|a +
∑
j ̸=i

|xi − xj|a

I assume arbitrary values w1, w2, satisfying the constraint (1 − w1)(1 − w2) ≤ 0.
Of course the ordering between the agents in the example will remain the same.
I will prove that, for some w, the Nash equilibrium of the above example is the
following:

(x1, x2, x3) = (
(1− w1)w2

w2 − w1

, 1, 2− (1− w1)w2

w2 − w1

)

I will combine it with an arbitrary solution of the above example

(x∗
1, x

∗
2, x

∗
3) = (

(1− w1)

w2 − w1

, 1, 2− (1− w1)

w2 − w1

)

with cost at least as much as the optimal. It is trivial to prove that the above
value of x is a Nash Equilibrium for some x. Since wij = 1, the game is totally
symmetric, meaning that x2 = 1. So, imagine to reduce the value w. Agent’s 1
equilibrium starts moving to the right and agent’s 3 equilibrium starts moving to
the left, with the same velocity. For some w the equilibrium reaches the above
value, since x1 = 2−x3. So, one can choose that w for our lower bound example. It
is easy to check that for the value of (λ, µ) chosen above, polynomial cost functions
the smoothness inequalities are tight, i.e.

g(xi − si) + ((x∗
i − si)− (xi − si))g

′(xi − si) = λg(x∗
i − si) + µg(xi − si)

f(xi − xj) +
1

2
((x∗

i − x∗
j)− (xi − xj))f

′(xi − xj) = λf(x∗
i − x∗

j) + µf(xi − xj)

Summing up one can conclude for the above example that

SC(x)

SC(x∗)
=

λ

1− µ

We have discussed the symmetric coevolution game, when the cost function
is continuous. I presented a nice proof for the case when the cost function is
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convex, proving that the Price of Anarchy is constant. By deepening in the case of
polynomial cost functions and producing a closed-form computation of the PoA,
depending on the degree of the polynomials, one can see that as the degree of the
polynomial rises the PoA gets closer to 1. The cost function can be written as

fij(xi − xj) = (xi − xj)
a = (xi − xj)

a−2 · (xi − xj)
2

This means that as the degree rises, agents care more about the agents’ opinions
which may be far. So, the social outcome is better if agents are more concerned
about “different” opinions.

3.2 Discrete Strategy Sets

I will analyze the economic behavior of the model introduced in [12]. Unfortu-
nately, the local smoothness framework cannot be used since the cost function is
not continuous.

The case in this model is disheartening. The following example points out
that that the PoA is unbounded.

Example There are n agents with internal beliefs si = 0, and a clique with
edge weights wij = 1. The optimal profile is the one where x∗

i = 0, which admits
SC(x∗) = 0. However, the profile xi = 1 is a Nash Equilibrium, which admits
SC(x) = n.

It seems that nothing can be done. However, in the above example it seems
that the optimal outcome is also a Nash Equilibrium. So, it would be interesting
to study the Price of Stability, where the price of stability is defined as the ratio
between the social cost of the best Nash equilibrium and the social cost of the
optimal solution

PoS =
SC(xbest)

SC(x∗)

We proceed immediately with the price of stability result

Theorem 3.2.1 The Price of Stability is 2.
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Proof The proof for an upper bound for the price of anarchy is straightforward
by using the potential function. The best Nash equilibrium x has lower social cost
than the Nash equilibrium x′ which minimizes the potential function. So,

SC(x) ≤ SC(x′) = Φ(x′) +D(x′) ≤ 2Φ(x′) ≤ 2Φ(x∗) ≤ 2SC(x∗)

In order to prove that PoS = 2 it remains to construct a lower bound example.
Consider a star (agent 1 is the center of the star) of n+1 agents, where s1 = s2 = 1
and each other agent i has internal belief si = 0. The star’s edges have weight
w = 1

n
. The optimal outcome would be x∗, where x∗

1 = 1− s1 = 0 and, for i ̸= 1,
x∗
i = si. The optimal outcome admits social cost

SC(x∗) = 1 +
2

n

The example has a unique Nash equilibrium x. Each agent declares his belief.
It is clear for the agents but the center to prefer declaring their belief, since their
cost would surely be lower than 1. But then, the center, prefers also declaring his
belief since (not yet written). The social cost of the Nash equilibrium is

SC(x) =
n− 1

n
+ (n− 1)

1

n
= 2

n− 1

n

The lower bound is 2n−1
n

n+2
n

= 2n−1
n+2

which approaches 2 as n approaches infinity.
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Chapter 4

Convergence Results

There are two types of convergence results. Firstly, we are interested whether a
specific process converges. It may be the case that when we write down the model
in terms of a cost function, that there are some stable points (N.E.) but the system
will not ever converge. It is important to guarantee that best-response dynamics
converge for every possible initial beliefs. Secondly, if convergence is guaranteed the
next step would be to derive the convergence time of the best-response dynamics,
and ideally in terms of the social structure.

4.1 Symmetric Coevolution Games - Simultaneous Best-Response
Dynamics

I will study the symmetric coevolution game with a more refined model. The cost
function will be given by the following formula

ci(x) = wi(xi − si)
2 +

∑
j∈N(i)

(xi − xj)
2

Of course, we cannot study the convergence rate of the Nash Dynamics. So we
study simultaneous response dynamics, where each agent’s response is given by
the following formula

xi(t+ 1) =
wi

wi + |N(i)|
si +

1

wi + |N(i)|
∑

j∈N(i)

xj(t)
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We can describe the above equations with the vectors x = (xi), s = (si) and the
matrices A and B, where Aij = 1

wi+|N(i)| when j ∈ N(i) and 0 otherwise, and
Bii =

wi

wi+|N(i)| and 0 otherwise. So

x(t+ 1) = Ax(t) +Bs

The above equation implies the following

x(t) = Ats+
t−1∑
s=0

AsBs

4.1.1 Convergence

In order to prove convergence, I will make a further assumption about the stub-
borness of the agents. I suppose that wi = 0 for each agent i. The model without
stubborn players resemble the DeGroot model [10]. This means that B = O and
x(t+ 1) = Ats.

The above matrix is nonnegative. I will assume that the matrix is primitive
which means that there is a constant t such that all elements of At are strictly
positive. This is equivalent with assuming that the social network is not bipartite.
I will examine this case since the bipartite graph case is easy to characterise.

Since matrix A is nonnegative and primitive, by the Perron-Frobenius theorem
the largest eigenvalue is real and nonnegative, i.e. ρ(A) ≥ |λ2| ≥ . . . ≥ |λn|. Since,
A is stohastic, by the Perron-Frobenius theorem

1 = min
i

∑
j

aij ≤ ρ(A) ≤ max
i

∑
j

aij = 1

So, ρ(A) = 1. Since A is stochastic, the eigenvector corresponding to the ρ(A) is
the unit vector:

A1n = 1n

Let’s consider the eigenvector π of ρ(A). Then At converges to 1πT , by the
above theorem. Since A is stochastic, At remains stochastic. It is easy to check
that the left eigenvector of A is

πi =
N(i)

2|E|
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since it satisfies the equation

(πTA)i =
∑

j∈N(i)

N(j)

2|E|
· 1

N(j)
=

N(i)

2|E|
= πi

This is a standard result of Markov chains theory, where A can be interpreted as
transition probability matrix of a random walk and π is the stationary distribution.

We know that lim
t→∞

At = 1πT . This means that x = 1πT s. So, the best-
response dynamics will converge to the unique equilibrium (concave potential
function, as stated above)

xi =
n∑

j=1

πjsj =
1

2|E|

n∑
j=1

|N(j)|sj

4.1.2 Convergence Time

I will prove a result for the convergence time with the assumption of non-stubborn
agents. I define an error at step t

e(t) = x(t)− xi

In order to bound the error at step t, I will introduce a norm, specially constructed
for each graph, given by the following inner product, with respect to the vector π
stated above

(z · y)π =
n∑

i=1

ziyiπi

∥z∥π =

√√√√ n∑
i=1

z2i πi

The best-response dynamics reduce the error significantly, i.e.

∥e(t)∥π ≤ ρt2∥e(0)∥π

where ρ2 = max
i ̸=1

|λi| is the second largest eigenvalue of A.
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Proof The error can be computed recursively

e(t+ 1) = x(t+ 1)− xi = Ax(t)− xi = Ax(t)− 1πT s =

Ax(t)− 1πT s− 1πTx(t) + 1πTx(t) =

Ax(t)− A1πT s− 1πTx(t) + 1πT1πT s =

A(x(t)− 1πT s)− 1πT (x(t)− 1πTx) =

(A− 1πT )(x(t)− 1πT s) =

(A− 1πT )e(t)

Let λi be A’s eigenvalues and vi the corresponding eigenvectors. So we get
the following equations

• (A− 1πT )1 = 1 − 1 = 0

• For i ≥ 2, (A− 1πT )vi = λivi − 1πTvi = λivi

Furthermore the following are true for the error

• e(t) =
n∑

i=2

λi(e(t) · vi)πvi

• (A− 1πT )e(t) =
n∑

i=2

λi(e(t) · vi)πvi

So the error’s norm can be extracted

∥e(t+ 1)∥2π =
n∑

i=2

λ2
i (e(t) · vi)2π∥vi∥2π =

n∑
i=2

λ2
i (e(t) · vi)2π ≤

ρ22

n∑
i=2

(e(t) · vi)2π =

ρ22∥e(t)∥2π

This means that ∥e(t+ 1)∥π ≤ ρ2∥e(t)∥π ≤ ρt+1
2 ∥e(0)∥.
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The convergence time is defined as the time needed to reduce the error under
a value v:

τ(v) = inf{t ≥ 0 : ∥e(t)∥π ≤ v}

By using the theorem proven we get that

(
1

1− ρ2
− 1) log(∥e(0)∥π

v
) ≤ τ(v) ≤ 1

1− ρ2
log(∥e(0)∥π

v
)

which means that the convergence time for each graph is Θ(
1

1− ρ2
).

4.1.3 Stubborn Agents

When agents are stubborn is a bit more difficult to analyze and it can be read
through in [14]. The matrix A is irreducible sub-stohastic and some row has a sum
less than 1. This means that the spectral radius is less than 1 and At converges to
O as t converges to infinity. Moreover, since At converges to zero one can derive
that the sum

∞∑
σ=0

Aσ converges to (I− A)−1. So the agents’ opinions converge to

x =
∞∑
σ=0

AσBs = (I− A)−1Bs

Using an analogy with random walks in graphs, as opinions travel through
the graph, one can prove that agents’ opinions converge to a convex combination
of their initial values. With a similar analysis as before it is proven that the
convergence time can be bounded by

(
1

1− λA

− 1) log(∥e(0)∥π
v

) ≤ τ(v) ≤ 1

1− λA

log(∥e(0)∥π
v

)

where λA now is the largest eigenvalue of A. So, as above, the convergence time
for each graph is Θ(

1

1− λA

).

I would like to highlight the importance of these results, since they strengthen
the notion of the Nash equilibrium when the network is undirected. When consid-
ering undirected networks it holds that the Nash equilibrium is unique, so the best
response dynamics converge to the unique equilibrium. This means that study-
ing the economic behavior at that equilibrium is actually the case we know the
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agents will converge to. It would be ideal to understand the economic behavior
on the point that the system converges when the network is directed, since the
results stated in the previous chapter for directed networks hold for the worst sta-
ble point. Unfortunately, there are cases, a subset of all bipartite graphs that the
system does not converge. A simple example would be for the DeGroot model to
have the following matrix which is aperiodic and hence non primitive

A =

1 0 0
0 1/2 1/2
0 1/2 1/2



4.2 Discrete Strategy Sets - Best-Response Dynamics

In this section I will discuss the best-response dynamics of the model introduced
in [12]. One cannot know the ordering that the agents respond, so we may assume
the worst ordering. The existence of a potential function is important to prove
convergence of the dynamics and bound the steps needed to converge. Of course,
the dynamics converge, since there are 2n profiles and each time an agent responds
the potential function decreases and a new profile occurs. There cannot be a cycle
on the profiles, since a potential function exists. I will demonstrate convergence
time results by assuming unitary weights, i.e. wij = 1. Same results can be proven
for general weights.

Let’s prove a convergence time result in the class of opinion games G where
the internal beliefs set is Si = {0, 1

4
, 1
2
, 3
4
, 1}.

Theorem 4.2.1 The best-response dynamics of a game in G converge after a
polynomial number of steps.

Proof In the proof, I will use the potential function Φ(·). It is clear that,
∑
i

(xi−

si)
2 ≤ n and Di ≤ n. So 0 ≤ Φ(x) ≤ n+ 1

2
n2. It remains to show that at each step

(an agents responds) the potential function decreases by a constant. Let’s assume
that an agent changes his profile from xi to x′

i, at a best-response move.

Φ(x)− Φ(x′
i, x−i) = (xi − si)

2 − (x′
i − si)

2 +Di(x)−Di(x
′
i, x−i)

Of course Di(x)−Di(x
′
i, x−i) > −1, since ci(x) > ci(x

′
i, x−i)
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• If Di(x)−Di(x
′
i, x−i) ≥ 2 then Φ(x)−Φ(x′

i, x−i) ≥ 1, since (xi− si)
2− (x′

i−
si)

2 ≥ −1

• Assume Di(x) − Di(x
′
i, x−i) = {0, 1}. If xi = 0, since the cost decreases

si ≥
1−Di(x)+Di(x

′
i,x−i)+

1
2

2
, and it follows that Φ(x)− Φ(x′

i, x−i) ≥ 1
2
.

So,
Φ(x)− Φ(x′

i, x−i) ≥
1

2

and the best-response dynamics converge in polynomial number of steps.

4.3 Hegselman-Krause Model

In this section, I will prove an upper bound on the convergence time of the HK
model. I will discuss about the simultaneous best-response dynamics, where each
agent’s best response is given by

xi(t+ 1) =

∑
j:|xj−xi|≤1

xj(t)

|{j : |xj − xi| ≤ 1}|

Before proving the convergence time result, it would be useful to state the
order preserving property of the dynamics, i.e. if si ≤ sj then xi(t) ≤ xj(t) for all t.
Suppose that xi(t) ≤ xj(t) and denote Ni(t) the agents connected to i and not to j,
Nij(t) the agents connected to both i and j and Nj(t) the agents connected to j and
not to i. For any k1 ∈ Ni(t), k2 ∈ Nij(t) and k3 ∈ Nj(t), xk1(t) ≤ xk2(t) ≤ xk3(t).

This means that
∑

k1∈Ni(t)

xk1
(t)

|Ni(t)| ≤

∑
k2∈Nij(t)

xk2
(t)

Nij(t)
≤

∑
k3∈Nj(t)

xk3
(t)

Nj(t)
. So,

xi(t+ 1) =

|Ni(t)|
∑

k1∈Ni(t)

xk1(t) + |Nij(t)|
∑

k2∈Nij(t)

xk2(t)

|Ni(t)|+ |Nij(t)|
≤

∑
k2∈Nij(t)

xk2(t)

Nij(t)

≤
|Nj(t)|

∑
k3∈Nj(t)

xk3(t) + |Nij(t)|
∑

k2∈Nij(t)

xk2(t)

|Nj(t)|+ |Nij(t)|
= xj(t+ 1)

Now I can prove an upper bound for the convergence time
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Theorem 4.3.1 The simultaneous best-response dynamics of the HK model con-
verge within O(n3) steps.

Proof Consider the leftmost non-frozen agent l(t), at time step t. All the agents
left from l(t) have frozen meaning, that they do not have neighbors with different
opinions. For every t, at time t+2, agent l(t) “meets” another agent on his right,
or freezes or moves to the right by at least 1

2n2 .

Assume that l′(t) is the leftmost agent in agent’s l(t) neighborhood. If Nl(t)(t) =
Nl′(t)(t) then the two agents meet. If not there must exist an agent r(t) on the
right in Nl′(t)(t) \ Nl(t)(t). This means that xr(t) − xl(t) > 1 and agent l′(t) moves
to the left by at most

δ · (1− k)− (1− δ) · 1
k

= δ − 1

k
≤ δ − 1

n

where δ = xl′(t)(t) − xl(t)(t) and k = |Nl′(t)(t)|. If xl(t)(t + 1) ≥ xl(t)(t) +
1
2n

, then
l(t) has moved at least 1

n2 . Otherwise, xl′(t)(t + 1)− xl(t)(t + 1) ≥ 1
2n

. If xl′(t)(t +
1)− xl(t)(t+1) ≥ 1 then l(t) freezes, otherwise, 1

2n
≤ xl′(t)(t+1)− xl(t)(t+1) ≤ 1.

Then l(t) moves by xl(t)(t+ 2)− xl(t)(t+ 1) ≥
1
2n

|Nl(t)(t+1)| ≥
1

2n2 .

One can assume that sn − s1 ≤ n, because otherwise two consecutive agents
must have distance at least 1. Then, we could assume that the game is seperated to
two other games, which evolve independently. An agent l(t) can meet other agents
at most n times and agents, being the leftmost non-frozen, can only happen to
move to the right 2n3 times. So, after 2(n+2n3) steps the above statement cannot
apply.
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Chapter 5

Social Choice Rules

In this chapter I will introduce a new model. Before doing so I will present a
significant result of social choice rules. The following results will be presented in a
general framework, where the strategy sets is a common one-dimensional strategy
set X. This case may include choosing an alternative from an ordered set of
alternatives or choosing a point of an interval in R. The most standard strategy
set is the interval [0, 1]. Generalizing the notion of a utility function, in order
to model each agent’s i choice behavior we use a preference relation ≽i between
alternatives. A preference relation is single-peaked if there exists a point pi ∈ X,
such that for all x ∈ X \{pi} and λ ∈ [0, 1), (λx+(1−λ)pi ≻i x. The vector of the
agents’ preference relations is ≽∈ R. A social choice rule is a function f : R → X,
which produces an outcome from the agents’ preference relations.

A social choice rule is strategy-proof if every agent has a dominant strategy
to declare his preferences truthfully. A social choice rule is onto if for each x ∈ X,
there exists a preference relations vector ≽, such that f(≽) = x. A social choice
rule is unanimous if p1 = . . . = pn = p implies f(≽) = p. A social choice rule is
Pareto-optimal, there exists no x ∈ X and x ̸= f(≽), such that x ≽i f(≽) for each
agent i. A social choice rule is anonymous if for each ≽ and ≽′, which results from
a permuation on ≽, f(≽) = f(≽′). This means that the rule is irrelevant of the
agents’ labels. The above properties should be satisfied for natural social choice
rules.

Theorem 5.0.2 A rule f is strategy-proof, onto and anonymous if and only if
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there exist x1, . . . , xn−1 ∈ X such that for all ≽∈ R,

f(≽) = med{p1, . . . , pn, x1, . . . , xn−1}

The above theorem is a full characterization of all strategy-proof, onto and
anonymous mechanisms for the above problem. It seems that the median is the
right choice when dealing with social choice problems. This theorem applies even
in similar settings to opinion dynamics, where the strategy set is the real line and
the preference relations are expressed by cost functions depending on a distance.
The cost function defines a single-peaked preference relation, which is completed
for pairs which belong to other sides of the peak. Since the preference relations
are defined by a cost function, we have to deal with rational, single-peaked pref-
erence relations. When dealing with rational, single-peaked relations and need
a strategy-proof rule, the median scheme is the first option. When dealing with
such preference relations, we should only examine if the median scheme remains
strategy-proof.

Consider now the opinion dynamics framework, where the agents have an
extra incentive to influence the global outcome and bring it near their internal
belief. We would like to design a mechanism which defines the global outcome, as
if it was the outcome of political elections.

5.1 Social Choice Rules with the Presence of a Social Net-
work

It seems that searching for strategy-proof social choice rules is a significant re-
striction. We may consider the solution concept of the Nash equilibrium to deal
with this problem. The Nash equilibrium concept may be problematic and not
realistic since there is a convergence issue. I will present a simple example on
opinion dynamics, where a social choice rule is applied in their opinions and an
outcome is produced. This is the main purpose of this chapter. As seen before a
nice property of opinion games is reaching a consensus. It seems that this do not
happen for the models stated this far. So a social choice rule could be applied to
gather the information of the social network. For simplicity, I will assume that
there does not exist a social network yet.
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Example Consider the standard opinion dynamics setting with n agents and
no social network (wij = 0). Each agent i has an internal belief si and his cost
function is given by

ci(x) = (f(x)− si)
2 + (xi − si)

2

where f : Rn → R is the social choice rule. It is trivial to infer that when the
social choice rule is the median, each agent’s i dominant strategy is xi = si. The
median scheme is strategy-proof. However, I will examine the average scheme
f(x) = av{x1, . . . , xn}. It is trivial to infer that the game admits the following
potential function

Φ(x) = (av({x1, . . . , xn})2 −
∑
i

sixi

n
+
∑
i

(xi − si)
2

The potential function is strictly concave which means that there exists a unique
Nash equilibrium. In the Nash equilbrium, each agent’s strategy would be

xi = si +
si − av{s1, . . . , sn}

n

The nice thing about the average scheme is that the outcome remains the same,
i.e.

av{x1, . . . , xn} = av{s1, . . . , sn}+

∑
i

si − n · av{s1, . . . , sn}

n
= av{s1, . . . , sn}

The social cost is given by

SC(x) =
∑
i

(av{x1, . . . , xn} − si)
2 +

∑
i

(xi − si)
2

The social cost at the unique Nash equilibrium x is

SC(x) =
∑
i

(av{s1, . . . , sn} − si)
2 +

∑
i

(
si − av{s1, . . . , sn}

n
)2 =

(1 +
1

n2
)
∑
i

(av{s1, . . . , sn} − si)
2

The optimal solution x∗ occurs when agents declare their internal beliefs, since the
term (xi − si)

2 becomes 0 and the term
∑
i

(av{x1, . . . , xn} − si)
2 gets minimized.

So, SC(x∗) =
∑
i

(av{s1, . . . , sn} − si)
2 and the price of anarchy is given by

PoA = (1 +
1

n2
)
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The average scheme behaves well as the number of agents increase, since each
agent loses the power to change the outcome. That is the power of the average
scheme. The median scheme could not have such a behavior since the median of
the internal beliefs can be away from the average, independently of the number of
agents. Consider the same game with n agents, where the social choice rule is the
median scheme (f(x) = med{x1, . . . , xn}). The agents have a dominant strategy
to declare their internal belief. Consider w.l.o.g. that the internal beliefs of n

2
are

0 and the remaining 1. The median chooses f(x) = 0. The social cost of x is
SC(x) = n

2
. Consider, however, a strategy x′, where an agent from the left moves

to 1
2
. The social cost would be SC(x′) = 1

4
n + 1

4
= n+1

4
. The ratio between the

two is
SC(x)

SC(x′)
=

n
2

n+1
2

= 2− 2

n+ 1

which becomes 2 as the number of agents increase. So, there is a good reason to
consider the average scheme when studying opinion dynamics under the presence
of a social choice rule. Apart from that when considering the median it seems that
the the game may not have a Nash equilibrium.

By studying several models of opinion dynamics nothing has been said about
consensus of the agents’ opinions. It seems that when agents are stubborn, the
effect of their internal belief cannot aveliate. This means that agents cannot agree
to an ’overall’ value to depict their information about a specific quantity. Ofcourse
the overall quantity can be decided by applying a social choice rule on the agents’
opinions. Before studying the outcome of such a social choice rule, we can assume
that each agent has an incentive to influence the overall estimate and drive the
overall behavior near his internal belief. This incentive directly affects a player’s
cost function:

ci(x) = α(avg(x)− si)
2 + wi(xi − si)

2 +
∑

j∈N(i)

wij(xi − xj)
2

where α is an arbitrary constant measuring the effect on the agent’s cost.

In this direction it remains to consider the economic behavior of the above
model. It seems that the model has a potential function

Φ(x) = (av({x1, . . . , xn})2 −
∑
i

sixi

n
+ wi

∑
i

(xi − si)
2 +

∑
i

∑
j<i

wij(xi − xj)
2

The potential function is convex, which means that the Nash equilibrium
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is unique. So, if we will be able to find best-response dynamics converging to
the aforementioned equilibrium, it would be important to evaluate the Price of
Anarchy of the above model.

5.2 Convergence with Polls

On the other side of the coin we tried to examine opinion dynamics, when agents
have an interest on the global outcome and have some kind of information on
the global outcome. As stated before they prefer a social outcome near their
internal belief. However, it would be superficial to assume that the agents have
full information of the global outcome, as long as a mistreat on the subject of local
interactions forming behavior. Nevertheless, a natural assumption would be the
agents having some estimate on specific time periods, as suggested by the presence
of polls during elections. There will be two treatments on this idea, the one with
an initial estimate and another with estimates every time-period. As a first step
towards this direction the estimates would be true values.

5.2.1 Single Estimate

I would assume that the agents have initial opinions given by x[0]. The agents
are informed about the average of their initial opinions and try to minimize the
following cost function

ci(x) = α(
n− 1

n
avg(x[0]) + xi

n
− si)

2 + wi(xi − si)
2 +

∑
j∈N(i)

wij(xi − xj)
2 =

α(
1

n
c′ix[0] +

xi

n
− si)

2 + wi(xi − si)
2 +

∑
j∈N(i)

wij(xi − xj)
2

where ci =
n− 1

n
1n is a constant vector with all the entries equal to n− 1

n
.

By applying first order conditions we get a best response function given by

xi =
∑

j∈N(i)

wij

Wi

xj +
wi +

α
n

Wi

si −
α

n2Wi

c′ix[0]

where Wi = wi +
α

n2
+

∑
j∈N(i)

wij.
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We can now define the matrix C with the i’th row equal to 1

Wi

c′i and define
the following linear system

x[k + 1] = Ax[k] +Bs − α

n2
Cx[0]

This means that

x[k] = (Ak − α

n2

k−1∑
σ=0

AσC)x[0] +
k−1∑
σ=0

AσBs

It is clear that A is an irreducible sub-stochastic matrix with each row-sum less
than one. So the spectral radius of A is less than one and we get that lim

k→∞
Ak = 0.

Since the largest eigenvalue is less than one, we get that
∞∑
σ=0

Aσ converges to

(I− A)−1. Hence,

x[∞] =
∞∑
σ=0

Aσ(Bs − α

n2
Cx[0]) = (I− A)−1(Bs − α

n2
Cx[0])

We can assume that the initial opinions are the agents’ internal beliefs, i.e.
x[0] = s.

5.2.2 Estimate per time period

I would define a period T when the agents are informed about the average of their
opinions. For simplicity, I will define a vector x′[k] = x[kT ]. The above discussion
points out the following linear system

x′[k + 1] = Xx′[k] +
T−1∑
σ=0

AσBs

where X = AT − α

n2

T−1∑
σ=0

AσC.

This means that

x′[k] = Xkx[0] +
k−1∑
σ1=0

Xσ1

T−1∑
σ2=0

Aσ2Bs
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Consider the norm ||A||∞ = max
i

∑
j

|aij|. Since A is sub-stochastic we know

that ||A||∞ < 1. This means that ||AT ||∞ ≤ ||A||T∞ < 1. So we can say that for
large enough n, we get that ||X||∞ < 1. Since, ρ(X) ≤ ||X||∞ < 1 we get that
Xk converges to zero and and the sum

∞∑
σ=0

Xσ equals to (I−X)−1. Finally, we get
that

x′[∞] = (I−X)−1

T−1∑
σ2=0

Aσ2Bs

This is really interesting since the the system converges even with polls taking
part every fixed time period. This result can be farther generalised by considering
polls which take part after an arbitrary time period. Furthermore, it would be
ideal to understand the relationship between the equilibrium without polls, with
a single poll and when several polls are conducted.
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Chapter 6

Conclusions

This thesis presented large part of the opinion dynamics literature. It presents
several models introduced, their economic behavior and convergence results.

The networks research is a line of research heavily based on the models chosen.
As seen in the context above even if we agree that the process will be described
in terms of a cost function or a best-response function, it remains to define many
parameters of the function. It would be ideal to use the data we poccess these
days, extracted from the social networks platforms, in order to derive models and
afterwards analyze them.

It seems that the economic behavior of the opinion dynamics models are stud-
ied using the notion of the Price of Anarchy present on the algorithmic game theory
line of research. There are several results for undirected networks which are wel-
comed. On the other side the case for directed networks is disheartening. However,
it seems that by considering the worst Nash equilibrium is not such a good choice.
It was proven that the best-response dynamics converge to a specific stable point.
What if that point has a good economic behavior?

With regards to convergence results, nothing is said for assymetric coevolution
games. It would be interesting to study the best response dynamics when the
friendship weight is a “continuous” function of the distance between the beliefs
and internal beliefs of two agents.

Moreover, the presence of polls seem to influence the agents’ beliefs but even
now they converge to a specific point (equilibrium). Is the equilibrium achieved
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when considering polls much different from the equilibrium achieved with a single
poll is conducted or when they are totally absent. Furthermore, nothing is said
about how polls influence the convergence time. Do the polls consistently influence
the convergence time of the process?

Finally, the research on opinion dynamics considers questions about opinion
leaders. Suppose that a firm has a limited budget to affect some agents. Which
agents must be affected to achieve the best overall belief on the network? Further-
more, since reaching a consensus is an important feature for learning application,
it would be ideal to know which agents must be influenced in order to achieve a
better convergence time to consensus.
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