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Abstract

The approximate nearest neighbor problem (ANN) in Euclidean settings is a fundamental
question, which has been addressed by two main approaches: Data-dependent space parti-
tioning techniques perform well when the dimension is relatively low, but are affected by
the curse of dimensionality. On the other hand, locality sensitive hashing has polynomial
dependence in the dimension, sublinear query time with an exponent inversely proportional
to the error factor 𝜖, and subquadratic space requirement.

We generalize the Johnson-Lindenstrauss lemma to define “low-quality” mappings to a
Euclidean space of significantly lower dimension, such that they satisfy a requirement weaker
than approximately preserving all distances or even preserving the nearest neighbor. This
mapping guarantees, with arbitrarily high probability, that an approximate nearest neighbor
lies among the 𝑘 approximate nearest neighbors in the projected space. This leads to a
randomized tree based data structure that avoids the curse of dimensionality for (1 + 𝜖)-ANN.
Our algorithm, given 𝑛 points in dimension 𝑑, achieves space usage in 𝑂(𝑑𝑛), preprocessing
time in 𝑂(𝑑𝑛 log 𝑛), and query time in 𝑂(𝑑𝑛𝜌 log 𝑛), where 𝜌 is proportional to 1− 1/ln ln𝑛,
for fixed 𝜖 ∈ (0, 1). It employs a data structure, such as BBD-trees, that efficiently finds
𝑘 approximate nearest neighbors. The dimension reduction is larger if one assumes that
pointsets possess some structure, namely bounded expansion rate.
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Chapter 1

Introduction

Nearest neighbor searching is a fundamental computational problem. Let 𝑋 be a set of 𝑛

points in R𝑑 and let 𝑑(𝑝, 𝑝′) be the (Euclidean) distance between any two points 𝑝 and 𝑝′. The

problem consists in reporting, given a query point 𝑞, a point 𝑝 ∈ 𝑋 such that 𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝′, 𝑞),

for all 𝑝′ ∈ 𝑋 and 𝑝 is said to be a “nearest neighbor” of 𝑞. For this purpose, we preprocess

𝑋 into a data structure. However, an exact solution to high-dimensional nearest neighbor

search, in sublinear time, requires prohibitively heavy resources. Thus, many techniques focus

on the less demanding task of computing the approximate nearest neighbor (ANN). Given a

parameter 𝜖 ∈ (0, 1), a (1 + 𝜖)-approximate nearest neighbor to a query 𝑞 is a point 𝑝 in 𝑋

such that 𝑑(𝑞, 𝑝) ≤ (1 + 𝜖) · 𝑑(𝑞, 𝑝′), ∀𝑝′ ∈ 𝑋. Hence, under approximation, the answer can be

any point whose distance from 𝑞 is at most (1 + 𝜖) times larger than the distance between 𝑞

and its nearest neighbor. We can naturally have more than one approximate nearest neighbors

and the nearest neighbor is also an approximate nearest neighbor as depicted in Figure 1-1.
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Figure 1-1: Two approximate nearest neighbors.

1.1 Existing work

As it was mentioned above, an exact solution to high-dimensional nearest neighbor search, in

sublinear time, requires heavy resources. One notable solution to the problem [Mei93] shows

that nearest neighbor queries can be answered in 𝑂(𝑑5 log 𝑛) time, using 𝑂(𝑛𝑑+𝛿) space, for

arbitrary 𝛿 > 0.

One class of methods for 𝜖-ANN may be called data-dependent, since the decisions taken

for partitioning the space are affected by the given data points. In [AMN+98] they introduced

the Balanced Box-Decomposition (BBD) trees. The BBD-trees data structure achieves query

time 𝑂(𝑐 log 𝑛) with 𝑐 ≤ 𝑑/2⌈1 + 6𝑑/𝜖⌉𝑑, using space in 𝑂(𝑑𝑛), and preprocessing time in

𝑂(𝑑𝑛 log 𝑛). BBD-trees can be used to retrieve the 𝑘 ≥ 1 approximate nearest-neighbors at

an extra cost of 𝑂(𝑑 log 𝑛) per neighbor. BBD-trees have proved to be very practical, as well,

and have been implemented in software library ANN.

Another data structure is the Approximate Voronoi Diagrams (AVD). They are shown to

establish a tradeoff between the space complexity of the data structure and the query time

14



it supports [AMM09]. With a tradeoff parameter 2 ≤ 𝛾 ≤ 1
𝜖
, the query time is 𝑂(log(𝑛𝛾) +

1/(𝜖𝛾)
𝑑−1
2 ) and the space is 𝑂(𝑛𝛾𝑑−1 log 1

𝜖
). They are implemented on a hierarchical quadtree-

based subdivision of space into cells, each storing a number of representative points, such

that for any query point lying in the cell, at least one of the representatives is an approximate

nearest neighbor. Further improvements to the space-time trade offs for ANN, are obtained

in [AdFM11].

One might directly apply the celebrated Johnson-Lindenstrauss lemma and map the points

to 𝑂( log𝑛
𝜖2

) dimensions with distortion equal to 1 + 𝜖 in order to improve space requirements.

In particular, AVD combined with the Johnson-Lindenstrauss lemma require 𝑛𝑂(log 1
𝜖
/𝜖2) space

which is prohibitive if 𝜖≪ 1 and query time polynomial in log 𝑛, 𝑑 and 1/𝜖. On the other hand

BBD-trees combined with the JL lemma require 𝑂(𝑑𝑛) space but query time superlinear in 𝑛.

Notice that we relate the approximation error with the distortion for simplicity. Our approach

(Theorem 10) requires 𝑂(𝑑𝑛) space and has query time sublinear in 𝑛 and polynomial in 𝑑.

In high dimensional spaces, data dependent data structures are affected by the curse of

dimensionality. This means that, when the dimension increases, either the query time or the

required space increases exponentially.

It is known [HIN12] that the (1 + 𝜖)-ANN problem reduces to the (1 + 𝜖, 𝑅)-Approximate

Near Neighbor problem with a roughly logarithmic increase in storage requirement and query

time. A data structure which solves the (1 + 𝜖, 𝑅)-ANN problem answers queries of the

following form: for some query 𝑞 if there exists a point in distance ≤ 𝑅 return a point in

distance ≤ (1 + 𝜖)𝑅. The (1 + 𝜖, 𝑅)-ANN problem is already hard when the dimension is

high.

An important method conceived for the (1 + 𝜖, 𝑅)-ANN problem for high dimensional

data is locality sensitive hashing (LSH). LSH induces a data independent space partition

and is dynamic, since it supports insertions and deletions. It relies on the existence of

locality sensitive hash functions, which are more likely to map similar objects to the same

bucket. The existence of such functions depends on the metric space. In general, LSH

requires roughly 𝑂(𝑑𝑛1+𝜌) space and 𝑂(𝑑𝑛𝜌) query time for some parameter 𝜌 ∈ (0, 1). In

15



[AI08] they show that in the Euclidean case, one can have 𝜌 ≤ 1
(1+𝜖)2

which matches the

lower bound of hashing algorithms proved in [OWZ11]. Lately, it was shown that it is

possible to overcome this limitation with an appropriate change in the scheme which achieves

𝜌 ≤ 7
8(1+𝜖)2

+ 𝑂( 1
(1+𝜖)3

) + 𝑜(1) [AINR14]. One approach with better space requirement is

also achieved in [And09]. In particular, they present a data structure for the (1 + 𝜖, 𝑐)-ANN

problem achieving near-linear space and 𝑑𝑛𝑂(1/(1+𝜖)2) query time. One different approach

[Pan06] achieves near linear space but query time proportional to 𝑂(𝑑𝑛
2

1+𝜖 ). For comparison,

in Theorem 10 we show that it is possible to use 𝑂(𝑑𝑛) space, with query time roughly 𝑂(𝑑𝑛𝜌)

where 𝜌 < 1 is now higher than the one appearing in LSH.

Exploiting the structure of the input is an important way to improve the complexity of

nearest neighbor search. In particular, significant amount of work has been done for pointsets

with low doubling dimension. In [HPM05], they provide an algorithm for ANN with expected

preprocessing time 𝑂(2dim(𝑋)𝑛 log 𝑛), space 𝑂(2dim(𝑋)𝑛) and query time 𝑂(2dim(𝑋) log 𝑛 +

𝜖−𝑂(dim(𝑋))) for any finite metric space 𝑋 of doubling dimension dim(𝑋). In [IN07] they

provide randomized embeddings that preserve nearest neighbor with constant probability, for

points lying on low doubling dimension manifolds in Euclidean settings. Naturally, such an

approach can be easily combined with any known data structure for ANN.

In [DF08] they present random projection trees which adapt to pointsets of low doubling

dimension. Like kd-trees, every split partitions the pointset into subsets of roughly equal

cardinality; in fact, instead of splitting at the median, they add a small amount of “jitter”.

Unlike kd-trees, the space is split with respect to a random direction, not necessarily parallel

to the coordinate axes. Classic 𝑘𝑑-trees also adapt to the doubling dimension of randomly

rotated data [Vem12]. However, for both techniques, no related theoretical arguments about

the efficiency of 𝜖-ANN search were given.

In [KR02], they introduce a different notion of intrinsic dimension for an arbitrary metric

space, namely its expansion rate 𝑐; it is formally defined in section 3.1. The doubling

dimension is a more general notion of intrinsic dimension in the sense that, when a finite

metric space has bounded expansion rate, then it also has bounded doubling dimension, but
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the converse does not hold [GKL03]. Several efficient solutions are known for metrics with

bounded expansion rate, including for the problem of exact nearest neighbor. In [KL04], they

present a data structure which requires 𝑐𝑂(1)𝑛 space and answers queries in 𝑐𝑂(1) ln𝑛. Cover

Trees [BKL06] require 𝑂(𝑛) space and each query costs 𝑂(𝑐12 log 𝑛) time for exact nearest

neighbors. In Theorem 13, we provide a data structure for the 𝜖-ANN problem with linear

space and 𝑂((𝐶1/𝜖3 + log 𝑛)𝑑log 𝑛/𝜖2) query time, where 𝐶 depends on 𝑐. The result concerns

pointsets in the 𝑑-dimensional Euclidean space.

1.2 Our contribution

Tree based space partitioning techniques perform well when the dimension is relatively low,

but are affected by the curse of dimensionality. To that end, randomized methods like Locality

Sensitive Hashing are more efficient when the dimension is high. One may also apply the

Johnson-Lindenstrauss Lemma to improve upon standard space partitioning techniques, but

the properties guaranteed are stronger than what is required for efficient approximate nearest

neighbor search.

We define a "low-quality" mapping to a Euclidean space of dimension 𝑂(log 𝑛
𝑘
/𝜖2), such

that an approximate nearest neighbor lies among the 𝑘 approximate nearest neighbors in

the projected space. This leads to our main Theorem 10 which offers a new randomized

algorithm for approximate nearest neighbor search with the following complexity. Given

𝑛 points in R𝑑, the data structure which is based on Balanced Box-Decomposition (BBD)

trees, requires 𝑂(𝑑𝑛) space, and reports an (1 + 𝜖)2-approximate nearest neighbor in time

𝑂(𝑑𝑛𝜌 log 𝑛), where function 𝜌 < 1 is proportional to 1 − 1/ ln ln𝑛 for fixed 𝜖 ∈ (0, 1) and

shall be specified in Section 2.2. The total preprocessing time is 𝑂(𝑑𝑛 log 𝑛). For each

query 𝑞 ∈ R𝑑, the preprocessing phase succeeds with probability > 1− 𝛿 for any constant

𝛿 ∈ (0, 1). The low-quality embedding is extended to pointsets with bounded expansion rate

𝑐 (see section 3.1 for exact definitions). The pointset is now mapped to a Euclidean space of

dimension roughly 𝑂(log 𝑐/𝜖2) for large enough 𝑘.

One part of this work also appears in [AEP15]. Comparison of our result with previous

17



Space Query
BBD-trees 𝑂(𝑑𝑛) 𝑂((𝑑

𝜖
)𝑑 log 𝑛)

AVD �̃�( 𝑛
𝜖𝑑

) 𝑂(log 𝑛)
BBD-trees+JL 𝑂(𝑑𝑛) 𝜔(𝑛)

AVD +JL 𝑛𝑂(log 1
𝜖
/𝜖2) 𝑂(log 𝑛)

LSH �̃�(𝑑𝑛
1+ 1

(1+𝜖)2 ) �̃�(𝑑𝑛
1

(1+𝜖)2 )

multi-probe LSH ˜̃𝑂(𝑑𝑛) �̃�(𝑑𝑛
2

(1+𝜖) )

Our approach 𝑂(𝑑𝑛) �̃�(𝑑𝑛1−𝜖2/𝐶 log log𝑛)

Table 1.1: Comparison with other results.

work can be viewed in Table 1.1.
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Chapter 2

Randomized Embeddings and

Approximate Nearest Neighbor Search

2.1 Low Quality Randomized Embeddings

This chapter examines standard dimensionality reduction techniques and extends them to

approximate embeddings optimized to our setting. In the following, we denote by ‖ · ‖ the

Euclidean norm and by | · | the cardinality of a set.

Let us start with the classic Johnson and Lindenstrauss lemma:

Proposition 1. [JL84] For any set 𝑋 ⊂ R𝑑, 𝜖 ∈ (0, 1) there exists a distribution over linear

mappings 𝑓 : R𝑑 −→ R𝑑′, where 𝑑′ = 𝑂(log |𝑋|/𝜖2), such that for any 𝑝, 𝑞 ∈ 𝑋,

(1− 𝜖)‖𝑝− 𝑞‖2 ≤ ‖𝑓(𝑝)− 𝑓(𝑞)‖2 ≤ (1 + 𝜖)‖𝑝− 𝑞‖2.

In the initial proof [JL84], they show that this can be achieved by orthogonally projecting

the pointset on a random linear subspace of dimension 𝑑′. In [DG02], they provide a proof

based on elementary probabilistic techniques. In [IM98], they prove that it suffices to apply a

gaussian matrix 𝐺 on the pointset. 𝐺 is a 𝑑× 𝑑′ matrix with each of its entries independent

random variables given by the standard normal distribution 𝑁(0, 1). Instead of a gaussian
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matrix, we can apply a matrix whose entries are independent random variables with uniformly

distributed values in {−1, 1} [Ach03].

However, it has been realized that this notion of randomized embedding is somewhat

stronger than what is required for approximate nearest neighbor searching. The following

definition has been introduced in [IN07] and focuses only on the distortion of the nearest

neighbor.

Definition 2. Let (𝑌, 𝑑𝑌 ), (𝑍, 𝑑𝑍) be metric spaces and 𝑋 ⊆ 𝑌 . A distribution over mappings

𝑓 : 𝑌 → 𝑍 is a nearest-neighbor preserving embedding with distortion 𝐷 ≥ 1 and probability

of correctness 𝑃 ∈ [0, 1] if, ∀𝑐 ≥ 1 and ∀𝑞 ∈ 𝑌 , with probability at least 𝑃 , when 𝑥 ∈ 𝑋 is

such that 𝑓(𝑥) is an 𝜖-ANN of 𝑓(𝑞) in 𝑓(𝑋), then 𝑥 is a (𝐷 · (1 + 𝜖))-approximate nearest

neighbor of 𝑞 in 𝑋.

While in the ANN problem we search one point which is approximately nearest, in the 𝑘

approximate nearest neighbors problem (𝑘ANNs) we seek an approximation of the 𝑘 nearest

points, in the following sense. Let 𝑋 be a set of 𝑛 points in R𝑑, let 𝑞 ∈ R𝑑 and 1 ≤ 𝑘 ≤ 𝑛.

The problem consists in reporting a sequence 𝑆 = {𝑝1, · · · , 𝑝𝑘} of 𝑘 distinct points such that

the 𝑖-th point is an (1 + 𝜖) approximation to the 𝑖-th nearest neighbor of 𝑞. Furthermore, the

following assumption is satisfied by the search routine of tree-based data structures such as

BBD-trees.

Assumption 3. Let 𝑆 ′ ⊆ 𝑋 be the set of points visited by the (1 + 𝜖)-𝑘ANNs search such

that 𝑆 = {𝑝1, · · · , 𝑝𝑘} ⊆ 𝑆 ′ is the set of points which are the 𝑘 nearest to the query point 𝑞

among the points in 𝑆 ′. We assume that ∀𝑥 ∈ 𝑋 ∖ 𝑆 ′, 𝑑(𝑥, 𝑞) > 𝑑(𝑝𝑘, 𝑞)/(1 + 𝜖).

Assuming the existence of a data structure which solves 𝜖-𝑘ANNs, we can weaken Defini-

tion 2 as follows.

Definition 4. Let (𝑌, 𝑑𝑌 ), (𝑍, 𝑑𝑍) be metric spaces and 𝑋 ⊆ 𝑌 . A distribution over mappings

𝑓 : 𝑌 → 𝑍 is a locality preserving embedding with distortion 𝐷 ≥ 1, probability of correctness

𝑃 ∈ [0, 1] and locality parameter 𝑘, if ∀𝑐 ≥ 1 and ∀𝑞 ∈ 𝑌 , with probability at least 𝑃 , when
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𝑆 = {𝑓(𝑝1), · · · , 𝑓(𝑝𝑘)} is a solution to (1 + 𝜖)-𝑘ANNs for 𝑞, under Assumption 3 then there

exists 𝑓(𝑥) ∈ 𝑆 such that 𝑥 is a 𝐷 · 𝑐 approximate nearest neighbor of 𝑞 in 𝑋.

According to this definition we can reduce the problem of (1 + 𝜖)-ANN in dimension 𝑑 to

the problem of computing 𝑘 approximate nearest neighbors in dimension 𝑑′ < 𝑑.

We use the Johnson-Lindenstrauss dimensionality reduction technique.

Lemma 5. [DG02] There exists a distribution over linear maps 𝐴 : R𝑑 → R𝑑′ s.t., for any

𝑝 ∈ R𝑑 with ‖𝑝‖ = 1:

∙ if 𝛽 < 1 then Pr[‖𝐴𝑝‖2 ≤ 𝛽2 · 𝑑′
𝑑

] ≤ 𝑒𝑥𝑝(𝑑
′

2
(1− 𝛽2 + 2 ln 𝛽),

∙ if 𝛽 > 1 then Pr[‖𝐴𝑝‖2 ≥ 𝛽2 · 𝑑′
𝑑

] ≤ 𝑒𝑥𝑝(𝑑
′

2
(1− 𝛽2 + 2 ln 𝛽).

We prove the following lemma which will be useful.

Lemma 6. For all 𝑖 ∈ N, 𝜖 ∈ (0, 1), the following holds:

(1 + 𝜖/2)2

(2𝑖(1 + 𝜖))2
− 2 ln

(1 + 𝜖/2)

2𝑖(1 + 𝜖)
− 1 > 0.05(𝑖 + 1)𝜖2.

Proof. For 𝑖 = 0, it can be checked that if 𝜖 ∈ (0, 1) then, (1+𝜖/2)2

(1+𝜖)2
− 2 ln 1+𝜖/2

1+𝜖
− 1 > 0.05𝜖2.

This is our induction basis. Let 𝑗 ≥ 0 be such that the induction hypothesis holds, namely
(1+𝜖/2)2

(2𝑗(1+𝜖))2
− 2 ln (1+𝜖/2)

2𝑗(1+𝜖)
− 1 > 0.05(𝑗 + 1)𝜖2. Then, to prove the induction step

1

4

(1 + 𝜖/2)2

(2𝑗(1 + 𝜖))2
− 2 ln

(1 + 𝜖/2)

2𝑗(1 + 𝜖)
+ 2 ln 2− 1 > 0.05(𝑗 + 1)𝜖2 − 3

4

(1 + 𝜖/2)2

(2𝑗(1 + 𝜖))2
+ 2 ln 2 >

> 0.05(𝑗 + 1)𝜖2 − 3

4
+ 2 ln 2 > 0.05(𝑗 + 2)𝜖2,

since 𝜖 ∈ (0, 1).

A simple calculation shows the following.

Lemma 7. For all 𝑥 > 0, it holds:

(1 + 𝑥)2

(1 + 2𝑥)2
− 2 ln(

1 + 𝑥

1 + 2𝑥
)− 1 < (1 + 𝑥)2 − 2 ln(1 + 𝑥)− 1. (2.1)
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Theorem 8. Under the notation of Definition 4, there exists a randomized mapping 𝑓 : R𝑑 →

R𝑑′ which satisfies Definition 4 for 𝑑′ = 𝑂(log 𝑛
𝛿𝑘
/𝜖2), distortion 𝐷 = 1 + 𝜖 and probability of

success 1− 𝛿, for any constant 𝛿 ∈ (0, 1).

Proof. Let 𝑋 be a set of 𝑛 points in R𝑑 and consider map

𝑓 : R𝑑 → R𝑑′ : 𝑣 ↦→
√︀
𝑑/𝑑′ · 𝐴 𝑣,

where 𝐴 is a matrix as in Definition 4. Wlog the query point 𝑞 lies in the origin and its

nearest neighbor 𝑢 lies at distance 1 from 𝑞. We denote by 𝑐 ≥ 1 the approximation ratio

guaranteed by the assumed data structure. That is the assumed data structure solves the

𝑐-𝑘ANNs problem. For each point 𝑥, 𝐿𝑥 = ‖𝐴𝑦‖2 where 𝑦 = 𝑥/‖𝑥‖. Let 𝑁 be the random

variable whose value indicates the number of “bad” candidates, that is

𝑁 = | {𝑥 ∈ 𝑋 : ‖𝑥− 𝑞‖ > 𝛾 ∧ 𝐿𝑥 ≤
𝛽2

𝛾2
· 𝑑

′

𝑑
} |,

where we define 𝛽 = 𝑐(1 + 𝜖/2), 𝛾 = 𝑐(1 + 𝜖). Hence, by Lemma 5,

E[𝑁 ] ≤ 𝑛 · 𝑒𝑥𝑝(
𝑑′

2
(1− 𝛽2

𝛾2
+ 2 ln

𝛽

𝛾
)).

By Markov’s inequality,

Pr[𝑁 ≥ 𝑘] ≤ E[𝑁 ]

𝑘
=⇒ Pr[𝑁 ≥ 𝑘] ≤ 𝑛 · 𝑒𝑥𝑝(

𝑑′

2
(1− 𝛽2

𝛾2
+ 2 ln

𝛽

𝛾
))/𝑘.

The event of failure is defined as the disjunction of two events:

[𝑁 ≥ 𝑘 ] ∨ [𝐿𝑢 ≥ (𝛽/𝑐)2
𝑑′

𝑑
],

and its probability is at most equal to

Pr[𝑁 ≥ 𝑘] + 𝑒𝑥𝑝(
𝑑′

2
(1− (𝛽/𝑐)2 + 2 ln(𝛽/𝑐))),
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by applying again Lemma 5. Now, we bound these two terms. For the first we choose 𝑑′ such

that

𝑑′ ≥ 2
ln 2𝑛

𝛿𝑘
𝛽2

𝛾2 − 1− 2 ln 𝛽
𝛾

. (2.2)

Therefore,
𝑒𝑥𝑝(𝑑

′

2
(1− 𝛽2

𝛾2 + 2 ln 𝛽
𝛾
))

𝑘
≤ 𝛿

2𝑛
=⇒ Pr[𝑁 ≥ 𝑘] ≤ 𝛿

2
. (2.3)

Notice that 𝑘 ≤ 𝑛 and due to expression (2.1), we obtain (𝛽/𝛾)2 − 2 ln(𝛽/𝛾) − 1 <

(𝛽/𝑐)2 − 2 ln(𝛽/𝑐)− 1. Hence, inequality (2.2) implies inequality (2.4):

𝑑′ ≥ 2
ln 2

𝛿

(𝛽/𝑐)2 − 1− 2 ln(𝛽/𝑐)
. (2.4)

Therefore,

𝑒𝑥𝑝(
𝑑′

2
(1− (𝛽/𝑐)2 + 2 ln(𝛽/𝑐))) ≤ 𝛿

2
. (2.5)

Inequalities (2.3), (2.5) imply that the total probability of failure is at most 𝛿.

Using Lemma 6 for 𝑖 = 0, we obtain, that there exists 𝑑′ such that

𝑑′ = 𝑂(log
𝑛

𝛿𝑘
/𝜖2)

and with probability of success at least 1− 𝛿, these two events occur:

∙ ‖𝑓(𝑞)− 𝑓(𝑢)‖ ≤ (1 + 𝜖
2
)‖𝑢− 𝑞‖.

∙ |{𝑝 ∈ 𝑋|‖𝑝− 𝑞‖ > 𝑐(1 + 𝜖)‖𝑢− 𝑞‖ =⇒ ‖𝑓(𝑞)− 𝑓(𝑝)‖ ≤ 𝑐(1 + 𝜖/2)‖𝑢− 𝑞‖}| < 𝑘.

Now consider the case when the random experiment succeeds and let 𝑆 = {𝑓(𝑝1), ..., 𝑓(𝑝𝑘)}

a solution of the 𝑐-𝑘ANNs problem in the projected space, given by a data-structure which

satisfies Assumption 3. We have that ∀𝑓(𝑥) ∈ 𝑓(𝑋) ∖ 𝑆 ′, ‖𝑓(𝑥)− 𝑓(𝑞)‖ > ‖𝑓(𝑝𝑘)− 𝑓(𝑞)‖/𝑐

where 𝑆 ′ is the set of all points visited by the search routine.

Now, if 𝑓(𝑢) ∈ 𝑆 then 𝑆 contains the projection of the nearest neighbor. If 𝑓(𝑢) /∈ 𝑆 then
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if 𝑓(𝑢) /∈ 𝑆 ′ we have the following:

‖𝑓(𝑢)− 𝑓(𝑞)‖ > ‖𝑓(𝑝𝑘)− 𝑓(𝑞)‖/𝑐 =⇒ ‖𝑓(𝑝𝑘)− 𝑓(𝑞)‖ < 𝑐(1 + 𝜖/2)‖𝑢− 𝑞‖,

which means that there exists at least one point 𝑓(𝑝*) ∈ 𝑆 s.t. ‖𝑞 − 𝑝*‖ ≤ 𝑐(1 + 𝜖)‖𝑢− 𝑞‖.

Finally, if 𝑓(𝑢) /∈ 𝑆 but 𝑓(𝑢) ∈ 𝑆 ′ then

‖𝑓(𝑝𝑘)− 𝑓(𝑞)‖ ≤ ‖𝑓(𝑢)− 𝑓(𝑞)‖ =⇒ ‖𝑓(𝑝𝑘)− 𝑓(𝑞)‖ ≤ (1 + 𝜖/2)‖𝑢− 𝑞‖,

which means that there exists at least one point 𝑓(𝑝*) ∈ 𝑆 s.t. ‖𝑞 − 𝑝*‖ ≤ 𝑐(1 + 𝜖)‖𝑢− 𝑞‖.

Hence, 𝑓 satisfies Definition 4 for 𝐷 = 1 + 𝜖.

2.2 Approximate Nearest Neighbor Search

This section combines tree-based data structures which solve (1 + 𝜖)-𝑘ANNs with the results

above, in order to obtain an efficient randomized data structure which solves (1 + 𝜖)-ANN.

BBD-trees [AMN+98] require 𝑂(𝑑𝑛) space, and allow computing 𝑘 points, which are

(1+𝜖)-approximate nearest neighbors, within time 𝑂((⌈1+6𝑑
𝜖
⌉𝑑+𝑘)𝑑 log 𝑛). The preprocessing

time is 𝑂(𝑑𝑛 log 𝑛). Notice, that BBD-trees satisfy the Assumption 3. The algorithm for

the (1 + 𝜖)-𝑘ANNs search, visits cells in increasing order with respect to their distance from

the query point 𝑞. If the current cell lies in distance more than 𝑟𝑘/𝑐 where 𝑟𝑘 is the current

distance to the 𝑘th nearest neighbor, the search terminates. We apply the random projection

for distortion 𝐷 = 1 + 𝜖, thus relating approximation error to the allowed distortion; this is

not required but simplifies the analysis.

Moreover, 𝑘 = 𝑛𝜌; the formula for 𝜌 < 1 is determined below. Our analysis then focuses

on the asymptotic behaviour of the term 𝑂(⌈1 + 6𝑑′

𝜖
⌉𝑑′ + 𝑘).

Lemma 9. With the above notation, there exists 𝑘 > 0 s.t., for fixed 𝜖 ∈ (0, 1), it holds that

⌈1 + 6𝑑′

𝜖
⌉𝑑′ + 𝑘 = 𝑂(𝑛𝜌), where 𝜌 ≤ 1− 𝜖2/𝑐(𝜖2 + ln(max(1

𝜖
, ln𝑛))) < 1 for some appropriate
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constant 𝑐 > 1.

Proof. Recall that 𝑑′ ≤ 𝑐
𝜖2

ln 𝑛
𝑘

for some appropriate constant 𝑐 > 0. The constant 𝛿 is hidden

in 𝑐. Since (𝑑′

𝜖
)𝑑

′ is a decreasing function of 𝑘, we need to choose 𝑘 s.t. (𝑑′

𝜖
)𝑑

′
= Θ(𝑘). Let

𝑘 = 𝑛𝜌. Obviously ⌈1 + 6𝑑′

𝜖
⌉𝑑′ ≤ (𝑐′ 𝑑

′

𝜖
)𝑑

′ , for some appropriate constant 𝑐′ ∈ (1, 7). Then, by

substituting 𝑑′, 𝑘 we have:

(𝑐′
𝑑′

𝜖
)𝑑

′
= 𝑛

𝑐(1−𝜌)

𝜖2
ln(

𝑐𝑐′(1−𝜌) ln𝑛

𝜖3
). (2.6)

We assume 𝜖 ∈ (0, 1) is a fixed constant. Hence, it is reasonable to assume that 1
𝜖
< 𝑛.

We consider two cases when comparing ln𝑛 to 𝜖:

∙ 1
𝜖
≤ ln𝑛. Substituting 𝜌 = 1− 𝜖2

2𝑐(𝜖2+ln(𝑐′ ln𝑛))
into equation ( 2.6), the exponent of 𝑛 is

bounded as follows:
𝑐(1− 𝜌)

𝜖2
ln(

𝑐𝑐′(1− 𝜌) ln𝑛

𝜖3
) =

=
𝑐

2𝑐(𝜖2 + ln(𝑐′ ln𝑛))
· [ln(𝑐′ ln𝑛) + ln

1

𝜖
− ln (2𝜖2 + 2 ln(𝑐′ ln𝑛))] < 𝜌.

∙ 1
𝜖
> ln𝑛. Substituting 𝜌 = 1 − 𝜖2

2𝑐(𝜖2+ln 𝑐′
𝜖
)

into equation( 2.6), the exponent of 𝑛 is

bounded as follows:
𝑐(1− 𝜌)

𝜖2
ln(

𝑐𝑐′(1− 𝜌) ln𝑛

𝜖3
) =

=
𝑐

2𝑐(𝜖2 + ln 𝑐′

𝜖
)
· [ln ln𝑛 + ln

𝑐′

𝜖
− ln (2𝜖2 + 2 ln

𝑐′

𝜖
)] < 𝜌.

Notice that for both cases 𝑑′ = 𝑂( log𝑛
𝜖2+log log𝑛

).

Combining Theorem 8 with Lemma 9 yields the following main theorem.

Theorem 10 (Main). Given 𝑛 points in R𝑑, there exists a randomized data structure which

requires 𝑂(𝑑𝑛) space and reports an (1 + 𝜖)2-approximate nearest neighbor in time

𝑂(𝑑𝑛𝜌 log 𝑛), where 𝜌 ≤ 1− 𝜖2/𝑐(𝜖2 + ln(max(
1

𝜖
, ln𝑛)))

25



for some appropriate constant 𝑐 > 1. The preprocessing time is 𝑂(𝑑𝑛 log 𝑛). For each query

𝑞 ∈ R𝑑, the preprocessing phase succeeds with any constant probability.

Proof. The space required to store the dataset is 𝑂(𝑑𝑛). The space used by BBD-trees is

𝑂(𝑑′𝑛) where 𝑑′ is defined in Lemma 9. We also need 𝑂(𝑑𝑑′) space for the matrix 𝐴 as

specified in Theorem 8. Hence, since 𝑑′ < 𝑑 and 𝑑′ < 𝑛, the total space usage is bounded

above by 𝑂(𝑑𝑛).

The preprocessing consists of building the BBD-tree which costs 𝑂(𝑑′𝑛 log 𝑛) time and

sampling 𝐴. Notice that we can sample a 𝑑′-dimensional random subspace in time 𝑂(𝑑𝑑′2) as

follows. First, we sample in time 𝑂(𝑑𝑑′), a 𝑑× 𝑑′ matrix where its elements are independent

random variables with the standard normal distribution 𝑁(0, 1). Then, we orthonormalize

using Gram-Schmidt in time 𝑂(𝑑𝑑′2). Since 𝑑′ = 𝑂(log 𝑛), the total preprocessing time is

bounded by 𝑂(𝑑𝑛 log 𝑛).

For each query we use 𝐴 to project the point in time 𝑂(𝑑𝑑′). Next, we compute its 𝑛𝜌

approximate nearest neighbors in time 𝑂(𝑑′𝑛𝜌 log 𝑛) and we check its neighbors with their

real coordinates in time 𝑂(𝑑𝑛𝜌). Hence, each query costs 𝑂(𝑑 log 𝑛 + 𝑑′𝑛𝜌 log 𝑛 + 𝑑𝑛𝜌) =

𝑂(𝑑𝑛𝜌 log 𝑛) because 𝑑′ = 𝑂(log 𝑛), 𝑑′ = 𝑂(𝑑). Thus, the query time is dominated by the time

required for 𝜖-𝑘ANNs search and the time to check the returned sequence of 𝑘 approximate

nearest neighbors.

To be more precise, the probability of success, which is the probability that the random

projection succeeds according to Theorem. 8, is greater than 1− 𝛿, for any constant 𝛿 ∈ (0, 1).

Notice that the preprocessing time for BBD-trees has no dependence on 𝜖.
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Chapter 3

Exploiting hidden structure

3.1 Bounded Expansion Rate

This section models the structure that the data points may have so as to obtain more precise

bounds.

The bound on the dimension obtained in Theorem 8 is quite pessimistic. We expect that,

in practice, the space dimension needed in order to have a sufficiently good projection is less

than what Theorem 8 guarantees. Intuitively, we do not expect to have instances where all

points in 𝑋, which are not approximate nearest neighbors of 𝑞, lie at distance almost equal to

(1 + 𝜖)𝑑(𝑞,𝑋) as in Figure 3-1. To this end, we consider the case of pointsets with bounded

expansion rate.
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Figure 3-1: Bad case.

Definition 11. Let 𝑀 a metric space and 𝑋 ⊆ 𝑀 a finite pointset and let 𝐵𝑝(𝑟) ⊆ 𝑋

denote the points of 𝑋 lying in the closed ball centered at 𝑝 with radius 𝑟. We say that 𝑋 has

(𝜌, 𝑐)-expansion rate if and only if, ∀𝑝 ∈𝑀 and 𝑟 > 0,

|𝐵𝑝(𝑟)| ≥ 𝜌 =⇒ |𝐵𝑝(2𝑟)| ≤ 𝑐 · |𝐵𝑝(𝑟)|.

Theorem 12. Under the notation introduced in the previous definitions, there exists a

randomized mapping 𝑓 : R𝑑 → R𝑑′ which satisfies Definition 4 for dimension 𝑑′ = 𝑂(
log(𝑐+ 𝜌

𝛿𝑘
)

𝜖2
),

distortion 𝐷 = 1 + 𝜖 and probability of success 1− 𝛿, for any constant 𝛿 ∈ (0, 1), for pointsets

with (𝜌, 𝑐)-expansion rate.

Proof. We proceed in the same spirit as in the proof of Theorem 8, and using the notation

from that proof. Let 𝑟0 be the distance to the 𝜌−th nearest neighbor, excluding neighbors at

distance ≤ 1 + 𝜖. For 𝑖 > 0, let 𝑟𝑖 = 2 · 𝑟𝑖−1 and set 𝑟−1 = 1 + 𝜖. Clearly,

E[𝑁 ] ≤
∞∑︁
𝑖=0

|𝐵𝑝(𝑟𝑖)| · 𝑒𝑥𝑝(
𝑑′

2
(1− (1 + 𝜖/2)2

𝑟2𝑖−1

+ 2 ln
1 + 𝜖/2

𝑟𝑖−1

))

≤
∞∑︁
𝑖=0

𝑐𝑖𝜌 · 𝑒𝑥𝑝(
𝑑′

2
(1− (1 + 𝜖/2)2

22𝑖(1 + 𝜖)2
+ 2 ln

1 + 𝜖/2

2𝑖(1 + 𝜖)
)).
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Now, using Lemma 6,

E[𝑁 ] ≤
∞∑︁
𝑖=0

𝑐𝑖𝜌 · 𝑒𝑥𝑝(−𝑑′

2
0.05(𝑖 + 1)𝜖2),

and for 𝑑′ ≥ 40 · ln(𝑐 + 2𝜌
𝑘𝛿

)/𝜖2,

E[𝑁 ] ≤ 𝜌 ·
∞∑︁
𝑖=0

𝑐𝑖 · ( 1

𝑐 + 2𝜌
𝑘𝛿

)𝑖+1 = 𝜌 ·
∞∑︁
𝑖=0

𝑐𝑖 · (1

𝑐
)𝑖+1 · ( 1

1 + 2𝜌
𝑘𝑐𝛿

)𝑖+1 =
𝜌

𝑐
·

∞∑︁
𝑖=0

(
1

1 + 2𝜌
𝑘𝑐𝛿

)𝑖+1 =
𝑘𝛿

2
.

Finally,

Pr[𝑁 ≥ 𝑘] ≤ E[𝑁 ]

𝑘
≤ 𝛿

2
.

Employing Theorem 12 we obtain a result analogous to Theorem 10 which is weaker

than those in [KL04, BKL06] but underlines the fact that our scheme shall be sensitive to

structure in the input data, for real world assumptions.

Theorem 13. Given 𝑛 points in R𝑑 with (ln𝑛, 𝑐)-expansion rate, there exists a randomized

data structure which requires 𝑂(𝑑𝑛) space and reports an (1+𝜖)2-approximate nearest neighbor

in time 𝑂((𝐶1/𝜖3 + log 𝑛)𝑑log 𝑛/𝜖2), for some constant 𝐶 depending on 𝑐. The preprocessing

time is 𝑂(𝑑𝑛 log 𝑛). For each query 𝑞 ∈ R𝑑, the preprocessing phase succeeds with any constant

probability.

Proof. Set 𝑘 = ln𝑛. Then 𝑑′ = 𝑂( ln 𝑐
𝜖2

) and (𝑑
′

𝜖
)𝑑

′
= 𝑂(𝑐

1
𝜖2

ln[ ln 𝑐
𝜖3

]). Now the query time is

𝑂((𝑐
1
𝜖2

ln[ ln 𝑐
𝜖3

] + ln𝑛)𝑑
ln 𝑐

𝜖2
ln𝑛) = 𝑂((𝐶1/𝜖3 + log 𝑛)𝑑

ln𝑛

𝜖2
),

for some constant 𝐶 such that 𝑐ln(ln 𝑐/𝜖3)/𝜖2 = 𝑂(𝐶1/𝜖3).

3.2 Doubling dimension

In this section, we generalize our idea for pointsets with bounded doubling dimension.
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Definition 14. The doubling dimension of a metric space 𝑀 is the smallest positive integer

𝑑𝑑𝑖𝑚(𝑀) such that every set 𝑆 with diameter 𝐷𝑆 can be covered by 2𝑑𝑑𝑖𝑚(𝑀) (the doubling

constant) sets of diameter 𝐷𝑆/2.

Now, let 𝑋 ⊂ R𝑑 s.t. |𝑋| = 𝑛 and 𝑋 has doubling constant 𝜆𝑋 . Now let 𝑆𝑖 ⊆ 𝑋 with

diameter 2𝑟𝑖. Then we need 𝜆
log

8𝑟𝑖
𝜖

𝑋 tiny balls 𝑏𝜖 ⊆ 𝑋 of diameter 𝜖/4 in order to cover

𝑆𝑖. However under the approximate nearest neighbor setting, it is impossible to bound the

number of points per tiny ball which is needed in order to generalize our idea. To that end,

we focus on the approximate near neighbor problem. Recall that in the (𝑐, 𝑅)-ANN problem

we build a data structure which answers queries of the following form: given a query point

𝑞, if there exists a point in 𝑋 in distance ≤ 𝑅 from 𝑞 then return a point in distance ≤ 𝑐𝑅,

where 𝑐 > 1. We extend this definition in order to define the (𝑐, 𝑅)-𝑘ANNs problem in which

a data structure answers queries of the following form: given a query point 𝑞, if there exist 𝑘

points in 𝑋 in distance ≤ 𝑅 from 𝑞 then return 𝑘 points in distance ≤ 𝑐𝑅, where 𝑐 > 1. The

(𝑐, 𝑅)-ANN problem is already hard in high dimensions.

We can assume that 𝑅 = 1, since we can scale 𝑋. The idea is that we first compute

𝑋 ′ ⊆ 𝑋 which satisfies the following two properties:

∙ ∀𝑝, 𝑞 ∈ 𝑋 ′ ‖𝑝− 𝑞‖ > 𝜖/8,

∙ ∀𝑞 ∈ 𝑋∃𝑝 ∈ 𝑋 ′ s.t. ‖𝑝− 𝑞‖ ≤ 𝜖/8.

The obvious naive algorithm computes 𝑋 ′ in 𝑂(𝑛2) time.

∙ 𝑌 = ∅

∙ for all 𝑥 ∈ 𝑋 ∖ 𝑌 :

– 𝑋 ′ ← 𝑋 ′ ∪ {𝑥}

– 𝑌 ← 𝑌 ∪ {𝑥}

– for all 𝑦 ∈ 𝑋 ∖ 𝑌 then

* if ‖𝑥− 𝑦‖ < 𝜖/8 then 𝑌 ← 𝑌 ∪ {𝑦}
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Then, for 𝑋 ′ we know that each 𝑆𝑖 ⊆ 𝑋 ′ contains ≤ 𝜆
log

8𝑟𝑖
𝜖

𝑋 points.

Theorem 15. The (𝑐, 𝑅)-ANN problem in R𝑑 reduces to the (𝑐, 𝑅)-𝑘ANNs problem in R𝑑′,

where 𝑑′ = 𝑂(
log(1/𝜖) log 𝜆𝑋+log(1+ 2

𝑘𝛿
)

𝜖2
), by a randomized algorithm which succeeds with probability

at least 1− 𝛿. Preprocessing costs an additional of 𝑂(𝑛2) time and the delay in query time is

proportional to 𝑘.

Proof. Once again we proceed in the same spirit as in the proof of Theorem 8. Let 𝑟𝑖 =

2𝑖+1(1 + 𝜖) for 𝑖 ≥ −1 and let 𝐵𝑝(𝑟) ⊆ 𝑋 denote the points of 𝑋 lying in the closed ball

centered at 𝑝 with radius 𝑟.

E[𝑁 ] ≤
∞∑︁
𝑖=0

|𝐵𝑝(𝑟𝑖)| · 𝑒𝑥𝑝(
𝑑′

2
(1− (1 + 𝜖/2)2

𝑟2𝑖−1

+ 2 ln
1 + 𝜖/2

𝑟𝑖−1

))

≤
∞∑︁
𝑖=0

𝜆
log

8𝑟𝑖
𝜖

𝑋 · 𝑒𝑥𝑝(
𝑑′

2
(1− (1 + 𝜖/2)2

22𝑖(1 + 𝜖)2
+ 2 ln

1 + 𝜖/2

2𝑖(1 + 𝜖)
)).

Now, using Lemma 6,

E[𝑁 ] ≤
∞∑︁
𝑖=0

𝜆
log(

2𝑖+4(1+𝜖)
𝜖

)

𝑋 · 𝑒𝑥𝑝(−𝑑′

2
0.05(𝑖 + 1)𝜖2),

=
∞∑︁
𝑖=0

𝜆
(𝑖+4+log(

(1+𝜖)
𝜖

)

𝑋 · 𝑒𝑥𝑝(−𝑑′

2
0.05(𝑖 + 1)𝜖2),

and for 𝑑′ ≥ 40 · ((3 + log( (1+𝜖)
𝜖

) ln𝜆𝑋 − ln( 1
1+2/𝑘𝛿

))/𝜖2,

E[𝑁 ] ≤ 𝑘𝛿

2

and

Pr[𝑁 ≥ 𝑘] ≤ E[𝑁 ]

𝑘
≤ 𝛿

2
.

Now if ∃𝑝 ∈ 𝑋 s.t. ‖𝑝−𝑞‖ ≤ 1 then ∃𝑝′ ∈ 𝑋 ′ s.t. ‖𝑝′−𝑞‖ ≤ 1+ 𝜖/8. Hence, if 𝛼 = 1+ 𝜖/8
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and 𝛽 = 1 + 𝜖/2, it suffices 𝑑′ ≥ 2
ln 2

𝛿

(𝛽/𝛼)2−1−2 ln(𝛽/𝛼)

Pr[‖𝑓(𝑝′)− 𝑓(𝑞)‖ > (1 + 𝜖/2)‖𝑝′ − 𝑞‖] ≤ 𝛿

2
.

Hence, it suffices 𝑑′ = 𝑂(
log(1/𝜖) log 𝜆𝑋+log(1+ 2

𝑘𝛿
)

𝜖2
).

Notice that if 𝑘 = 1/𝛿 then 𝑑′ = 𝑂( log(1/𝜖) log 𝜆𝑋

𝜖2
). This bound improves upon [IN07] by a

factor of log 1/𝛿 which is useful in case we need 𝛿 ≪ 1 even if the query time increases by a

factor of 1/𝛿.
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Chapter 4

Experiments

Our method was implemented and tested1 in [AEP15]. The following chapter summarizes our

experimental results. We generated our own synthetic datasets and query points to verify our

results. First of all, as in [DI04], we followed the “planted nearest neighbor model” for our

datasets. This model guarantees for each query point 𝑞 the existence of a few approximate

nearest neighbors while keeping all others points sufficiently far from 𝑞. The benefit of this

approach is that it represents a typical ANN search scenario, where for each point there exist

only a handful approximate nearest neighbors. In contrast, in a uniformly generated dataset,

all the points will tend to be equidistant to each other in high dimensions, which is quite

unrealistic.

More precisely, in our scenario each query 𝑞 has a nearest neighbor at distance 𝑅 and the

rest of the points lie at distance > (1 + 𝜖)𝑅. Moreover a significant amount of points lie close

to the boundary of the ball centered at 𝑞 with radius (1 + 𝜖)𝑅.

1Credit to Evangelos Anagnostopoulos
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Figure 4-1: Our approach against E2LSH: query time.
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Figure 4-2: Our approach against E2LSH: memory usage.

We built a BBD-tree data structure on the projected space using the ANN library with

the default settings. Next, we measured the average time needed for each query 𝑞 to find its

𝜖-𝑘ANNs, for 𝑘 =
√
𝑛, using the BBD-Tree data structure and then to select the first point

at distance ≤ 𝑅 out of the 𝑘 in the original space. We compare these times to the average

times reported by E2LSH range queries, given the range parameter 𝑅, when used from its

default script for probability of success 0.95. The script first performs an estimation of the

best parameters for the dataset and then builds its data structure using these parameters.

We required from the two approaches to have accuracy > 0.90, which in our case means that
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in at least 90 out of the 100 queries they would manage to find the approximate nearest

neighbor.

It is clear from Figure 4-1 that E2LSH is faster than our approach by a factor of 3.

However in Figure 4-2, where we present the memory usage comparison between the two

approaches, it is obvious that E2LSH requires more space. Figure 4-2 also validates the linear

space dependency of our embedding method.
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Chapter 5

Open Questions

In terms of practical efficiency it is obvious that checking the real distance to the neighbors

while performing an 𝑘ANNs search in the reduced space, is more efficient in practice than

naively scanning the returned sequence of 𝑘-approximate nearest neighbors and looking for

the best in the initial space. Moreover, we do not exploit the fact that BBD-trees return a

sequence and not simply a set of neighbors.

Our embedding possibly has further applications. One possible application is the problem

of computing the 𝑘-th approximate nearest neighbor. The problem may reduce to computing

all neighbors between the 𝑖-th and the 𝑗-th nearest neighbors in a space of significantly smaller

dimension for some appropriate 𝑖 < 𝑘 < 𝑗. Other possible applications include computing

the approximate minimum spanning tree or the closest pair of points.

It is also worth mentioning that our ideas may apply in other norms. For example it is

known that there exist JL-type random projections from 𝑙2 to 𝑙1 norm. However solving the

ANN problem in 𝑙1 appears to be at least as difficult as solving it in 𝑙2.
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