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Abstract

We investigate the problem of verifying the internal state of a remote embedded device

(remote attestation), using what was by Perito and Tsudik introduced as Proofs of Secure

Erasure. This is a procedure that has to take place in many cases, ranging from wireless

sensor networks to any device running a software update: One has to make sure that even

a compromised device will erase all of its memory contents when asked to, leaving no part

of it left unaltered, possibly running malicious software. The protocols proposed thus far

demand either very high communication complexity or very high time complexity that

renders them ineffective for most practical applications.
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Chapter 1

Introduction

Attacks on individual devices can be carried out either physically or remotely. In either

case it is therefore necessary that a trusted party (called here verifier) be able to determine,

whether the device has been compromised or not. The scenarios in which such a demand

arises are many. Consider for example the process of code update: The device updated,

must first erase all of its contents before performing the update. How can one be sure

though that the machine has really deleted all of its contents and has not left a potential

piece of malware, that can still remain and/or replicate itself in the new installed software?

As a second (and potentially more critical) example consider the case of wireless sensor

or actuator network, where the verifier wants to examine which (if any at all) nodes of

the network have been compromised. The suspected nodes would be asked by the verifier

to erase all their memory contents and then perform an update. Knowing however that

there exists malware as small as 13Kb and that networks like the ones mentioned above

can have critical role (utility distribution networks, industrial control systems etc.), urge

for the creation of cryptographic primitives, that will be able to guarantee security for this

problem.

A first attempt in solving this problem was made by Perito and Tsudik in [PT10]. Their

solution is a protocol, that they name Proof of Secure Erasure (PoSE) and works as follows:

The verifier sends to the prover random data, as large as the latter’s memory capacity.

The prover calculates a keyed Hash function (known to both parties), using as key the last

bits of the received data and sends it back to the verifier. The verifier calculates the same

function, on the same data and with the same key and therefore a comparison of the two

results convinces him that the prover has erased all its memory. 1 This solution of course

solves the problem while at the same time achieving a very low computational complexity

(just finding a keyed hash). The prover’s memory will be exhausted in holding the data

1the authors take of course into account the fact that the hash functions based on the Merkle-Damg̊ard
construction should not be used.
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CHAPTER 1. INTRODUCTION

sent to him. It is clear however that the protocol’s communication complexity is so high,

that renders it impractical.

Later in [DKW11] the authors suggest a different better solution, that minimizes the

communication complexity. The idea behind their approach is that the verifier will send a

small ”seed” to the prover, which the latter will ”unravel” into a construction that in order

to hold, the prover will have to use all its available storage. More specifically the prover

has the description of a hash function and receives from the verifier an initial value. He

will calculate the hash function recursively in a way described by a diamond like directed

acyclic graph: Every node has constant in- and out-degrees except for the node at the top

and the one at the bottom of the pyramid. The one at the top is the output value of the

whole calculation and has out-degree 0 and the one in the bottom is given by the verifier

and has in-degree 0. This solution reduces the communication complexity to the minimum,

but demands a quadratic computational complexity on the size of the graph. That said,

it is clear that even for a device having 1GB of memory the protocol would need so much

time to run, that would render it impractical.

In our search for a better solution we came up with two protocols, that both succeed

in attaining a computational complexity of O(n log n) (where n is the prover’s storage

capacity). The first one (named invert-Hash PoSE or iHash) is described in detail (3.3)

and the second (named graphPoSE) in (3.4). The idea behind the iHash PoSE is that the

prover wants to invert a hash function on a given point sent to him by the verifier. The

best way he can do that is through a ”clever” exhaustive search of the hash function’s table.

This search is done using the algorithm devised by Horowitz in [HS74], which we describe

and analyze in (2.1.2), while the security proof is based on the results by Trevisan et. al.

in [Rab10]. What however guided us in finding a second protocol to solve the problem, was

the fact that the adversarial model for the iHash PoSE, for which we prove it secure, is quite

weak, in the sense that we take into account only adversaries that work in the following

way: The adversary acts in two distinct phases: A preparation phase, where he can perform

any number of queries to the oracle and the actual ”attack” phase, where he can no longer

perform any queries to the oracle but he can use the results from the preparation phase as

an advice, in order to invert the hash function on the given point.

Our second approach treads on a similar path like the one in [DKW11]: We want to

find a directed acyclic graph with constant in- and out-degree, on every node of which we

will calculate a function. We want also that the prover can calculate the function on this

graph within a reasonable timeframe (where reasonable here would be anything less that

quadratic), using all his available memory, while any adversary who would use less than all

his memory, would either not be able at all to calculate the function or at least would have

to pay in time that would be in at least quadratic.
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Chapter 2

Preliminaries

2.1 Algorithms

In this section we present the basic algorithm that we will be using in the construction of our

Invert-Hash-PoSE in 3.3. This algorithm is owed to Horowitz and Sahni in [HS74]. Their

idea was later in [SS81] investigated further and improved upon. To our needs Horowitz &

Sahni’s algorithm is fitted perfectly; however due to the generic nature and the fact that

even now Shamir & Schroeppel’s algorithm still remains optimal in solving the problem at

hand optimally, we find it useful to present here the basic ideas of their paper as well.

We begin with some definitions, that will help us put the problem and its solution to a

wider perspective.

Definition 2.1.0.1. A problem of size n is a predicate P over n−bit binary strings. A

string x is a solution (or a witness) of the problem, if P (x) is true. The goal is to find one

such x, if it exists.

Definition 2.1.0.2. A binary operator ⊕ on problems is a composition operator, if:

1. It is additive: for all P ′ and P ′′, |P ′ ⊕ P ′′| = |P ′|+ |P ′′|1

2. It is sound : for any two solutions x′ of P ′ and x′′ of P ′′, the string concatenation x′x′′

is a solution of P ′ ⊕ P ′′

3. It is complete: for any solution x of P and for any representation of x as x = x′x′′,

there are problems P ′ and P ′′ such that x′ solves P ′, x′′ solves P ′′ and P = P ′ ⊕ P ′′

4. It is polynomial : the problem P ′ ⊕ P ′′ can be calculated in time which is polynomial

in the sizes of P ′ and P ′′

1where |P | is the problem size, defined as the number of bits in its solution
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Definition 2.1.0.3. A pair of problems P ′ and P ′′ is said to be a decomposition of P if

P ′ ⊕ P ′′ = P .

Definition 2.1.0.4. A set of problems is polynomially enumerable if there is a polynomial

time algorithm which finds for each bit string x the subset of problems which are solved by

x.

Definition 2.1.0.5. A composition operator ⊕ is monotonic if the problems of each size

can be totally ordered in such a way that ⊕ behaves monotonically, i.e. |P ′| = |P ′′| and
P ′ < P ′′ imply that P ′ ⊕ P < P ′′ ⊕ P and P ⊕ P ′ < P ⊕ P ′′

Definition 2.1.0.6. Given k problem/ solution tables Ti with O(2n/k) solvable problems

each, a monotonic composition operator ⊕, and a problem P , the k−table problem is to

determine whether there are k representatives Pi ∈ Ti such that

P = P1 ⊕ P2 ⊕ · · · ⊕ Pk

under a given parenthesization

We will now apply the above definitions, to an NP-hard problem that we will be

dealing with and is very well known and studied in the literature, namely the SUBSET-

SUM((bi)
n
i=1, B) problem, which is defined as follows:

Definition 2.1.0.7. Given an input of n positive integers b1, b2, . . . , bn and a goal sum B,

decide whether there exists some subset of the bi that add up to B.

Definition 2.1.0.8. Given an input of a k×m table and a goal sum S the k-Table-SUM(S)

problem decides if k integers can be chosen from this table, exactly one from each row, that

add up to S.

2.1.1 Horowitz & Sahni

Horowitz and Sahni in [HS74] solve the SUBSET-SUM((bi)
n
i=1, B) problem, by splitting

the instance into two parts, the first containing b1, b2, . . . , b⌊n/2⌋ and the second containing

b⌊n/2+1⌋, . . . , bn and then tabulating all the target values that can be generated by summing

a subset of each part into two different tables T1 and T2.

Each table can be computed in O∗(2n/2) 2 time using O∗(2n/2) space and the SUBSET-

SUM((bi)
n
i=1, B) instance has a YES answer if and only if the constructed 2-Table-SUM(S)

instance with S = B has a YES answer. Based on this idea, they prove that SUBSET-

SUM((bi)
n
i=1, B) can be solved in O∗(2n/2) time and in O∗(2n/2) space. Their algorithm

follows:
2For a positive real constant c, we write O∗(cn) for a computational complexity of the form O(cn ·poly(n))
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Algorithm 1 Horowitz and Sahni

1: Let P be the target value

2: Sort T1 into increasing problem order{increasing problem order has to do with the fact,

that we have problem solutions in the tables}
3: Sort T2 into decreasing problem order

4: while T1 ̸= ∅ ∨ T2 ̸= ∅ do
5: S ← T1.first⊕ T2.first {⊕ is used since in every table we have a solution to a smaller

problem, so practically we are adding problems}
6: if S = P then

7: return 1 {Indicating success on solving the problem}
8: end if

9: if S < P then

10: delete T1.first from T1

11: end if

12: if S > P then

13: delete T2.first from T2

14: end if

15: end while

16: return 0 {Indicating that the problem has no solution}

Proof. In order to prove the correctness of the algorithm, it suffices to show that whenever

a problem is deleted from T1 or T2, it cannot possibly participate in any sum which equals

P . Since T2 is decreasing and ⊕ is monotonic, we have that

T1.first⊕ P2 ≤ T1.first⊕ T2.first

for any P2 ∈ T2 and therefore the left-hand side cannot be equal to P if the right-hand side

is smaller than P , justifying the deletion of T1.first from T1. Similarly the deletion of T2.first

from T2 is justified. The time complexity of the sorting step is O(2n/2n/2) = O∗(2n/2) and

the time complexity of the search step is O(|T1|+ |T2|) = O(2n/2) since at each iteration at

least one element is deleted. The space complexity is O(2n/2) since we need 2 · 2n/2 space

to store the 2 tables T1 and T2.

The former result can be extended in the 3- and 4- table cases:

Theorem 2.1.1.1. The 3-table problem can be solved in O(22n/3) time and O(2n/3) space.

Proof. For each of the O(2n/3) problems Pi ∈ T1, one can use the algorithm described above

on the tables T2 and T3 in order to find a solution for P = P1 ⊕ (P2 ⊕ P3) in time O(22n/3)

and space O(2n/3).

7
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Theorem 2.1.1.2. The 4-table problem with a nonbalanced parenthesis structure P = P1⊕
(P2 ⊕ (P3 ⊕ P4)) can be solved in O(23n/4) time and O(2n/4) space.

Proof. For each of the O(2n/4) problems P1 ∈ T1 and for each of the problems P2 ∈ T2 one

uses the algorithm described for the problems P3 and P4 of the tables T3 and T4 respectively,

thus resulting in an algorithm of time complexity 23n/4 and space 2n/4.

2.1.2 Schroeppel & Shamir

Later Schroeppel and Shamir in [SS81] improved the previous result based on an observation

on the problem’s structure: One sees that the algorithm used, accesses the elements of

the sorted supertables sequentially, and thus there is no need to store all the possible

combinations simultaneously in memory. All that is needed to be done, is being able to

generate the combinations quickly in a sorted order. To implement this idea the authors

use two priority queues in the following way:

1. Q′ stores pairs of problems from T1 and T2

2. Q′′ stores pairs of problems from T3 and T4

Both queues enable arbitrary insertions and deletions in logarithmic time and produce

the pair with the smallest P1 ⊕ P2 and largest P3 ⊕ P4 sum accessible in constant time

respectively.

We present now the algorithm which provides the paper’s main result:

8
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Algorithm 2 Schroeppel - Shamir

1: Sort T2 into increasing problem order

2: Sort T4 into decreasing problem order

3: Insert into Q′ all the pairs (P1, T2.first) for P1 ∈ T1

4: Insert into Q′′ all the pairs (P3, T4.first) for P3 ∈ T3

5: while Q′ ̸= ∅ ∨Q′′ ̸= ∅ do
6: (P1, P2)←pair with smallest P1 ⊕ P2 sum in Q′

7: (P3, P4)←pair with largest P3 ⊕ P4 sum in Q′′

8: if S = P then

9: return 1 {Indicating success}
10: else if S < P then

11: delete (P1, P2) from Q′

12: if the successor P ′
2 of P2 in T2 is defined then

13: Q′ ← (P1, P
′
2)

14: end if

15: else if S > P then

16: delete (P3, P4) from Q′′

17: if the successor P ′
4 of P4 in T4 is defined then

18: Q′′ ← (P3, P
′
4)

19: end if

20: end if

21: end while

22: return 0 {Indicating Failure}

Theorem 2.1.2.1. The space complexity of this algorithm is O(2n/4)

Proof. At each stage a P1 ∈ T1 can participate in at most one pair in Q′, and a P3 ∈ T3

can participate in at most one pair in Q′′. The space complexity of the priority queues in

thus bounded by O(|Ti|) = O(2n/4).

Theorem 2.1.2.2. The time complexity of this algorithm is O(2n/2)

Proof. Each (P1, P2) pair can be deleted from Q′ at most once, since it is never reinserted

into Q′. Similarly (P3, P4) pair can be deleted from Q′′ at most once. At each iteration one

pair is deleted from Q′ or Q′′ and thus the number of iterations cannot exceed the number

of possible pairs, which is O(2n/2).
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2.1.3 Merkle-Damg̊ard hash function construction

The Merkle-Damg̊ard transform is a way to construct collision-resistant hash functions in

practise. Using this methodology we can maintain the collision-resistance property, while

at the same time being able to handle inputs of arbitrary lengths.

Let (Gen, h) be a fixed-length collision-resistant hash function family for inputs of lengths

2l(n) and with output length l(n). Gen generates the key s, which is public and is used

to specify a particular function hs from the family. While kgen remains unchanged we

construct a variable-length hash function (Gen,H) as follows:

Algorithm 3 The Merkle-Damg̊ard transform

1: input: a key s and a string x ∈ {0, 1}∗ of length L < 2l(n)

2: Set B := ⌈Ll ⌉
3: Pad x with zeroes so its length is a multiple of l

4: Parse the padded result as the sequence of l−bit blocks x1, . . . , xB.
5: Set xB+1 := L {L is encoded using exactly l bits}
6: z0 = 0l

7: for i = 1 . . . B + 1 do

8: compute zi = hs(zi−1 ∥ xi)
9: end for

10: Output zB+1

For more on the basics of hash functions we refer the reader to [Yeh08]

Figure 2.1: A pictorial approach of the Merkle-Damg̊ard transform

2.2 Random Function Inversion

In [Hel80], Hellman proved that for every one-way permutation f : [N ] → [N ] and for

every parameters S, T satisfying S · T = N , there is a data structure of size Õ(S) and an

10
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algorithm that, with the help of the data structure, given f(x) is always able to find x in

time Õ(T ) 3 In particular any one-way permutation can be inverted in time
√
N using

√
N

bits of advice. Hellman’s algorithm only requires oracle access to the permutation. The

construction works as follows:

• The adversary picks
√
N points x1, . . . , x√N , such that xi+1 = f(xi) and holds the

start and end points in a table T .

• On a given y that the adversary wants to invert, he begins calculating f(y), f(f(y)), . . .

until he reaches a point f j(y) which matches one (say xi) of those to be found in T .

• Then in order to find y’s inverse, the adversary starts calculating the values f(xi), f(f(xi)), . . .,

until he reaches the point fm(xi) = y, which means that y’s inverse will be fm−1(xi).

In order to have a visual representation of the way the algorithm works, consider the

graph induced by f , where the vertices are points from the function’s domain and directed

edges describe f ’s operation on a point. Then the above algorithm works perfectly in

the case where this graph can be split in disjoint cycles (e.g. permutations) but only at

these. Hellmans’ breakthrough was the way that he extended this original idea to random

functions as well. What he did was that proposing the following: Consider l = N1/3 different

functions hi : [N ] → [N ], where hi(x) has the form gi(f(x)) and gi is a random function.

Then for every function hi, 1 ≤ i ≤ l take xi1 , xi2 , . . . , xil points and store them in a table

of size l. Let t = N1/3; then each entry is a pair (xij , u), where u is the t-th iterate of

hi on xij . This table requires O(m) = O(N1/3) space per function hi and thus a total

space of O(ml) = O(N2/3) for all the l = N1/3 tables. If f and the gi are all independent

random functions and O(1) time computable, then f can be inverted at a random point with

Ω(1) probability and in time O(lt) = O(N2/3). Hellman suggest modifying the function by

composing it with a fixed permutation of the input bits and to reason heuristically as if

the new function behaved as an independently chosen new random function. Then the

construction can be repeated and we get an algorithm of time and space complexity N1/3

that inverts f in N2/3 points. Iterating the process N1/3 times provides an algorithm with

N2/3 complexity that inverts f everywhere.

Later Fiat and Naor in [FN99] make Hellman’s argument rigorous by picking a good

random hash function g, and then working with the new function h(x) = g(f(x)). If g were

a truly random function and f were a function such that every output has few pre-images,

then one can repeat Hellman’s calculation that N1/3 nearly disjoint paths of length N1/3

exist.

3The notation Õ(·) hides lower order factors that are polynomial in logN but we will ignore such factors
from now on in the interest of readability. We shall refer to S, the size of the pre-computed data structure
(the advice) used by the algorithm, as the space used by the algorithm.
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In [Rab10], De, Trevisan and Tulsiani introduce a new way to analyze the Fiat-Naor

construction, which improves the complexity if one seeks to invert the given function in

an ϵ fraction of the inputs. They also show that in an oracle setting it is not possible to

do better than Ω(
√
ϵN). In their proof they use the adversarys’ advice string to costruct

a randomized Encoding/Decoding procedure, an idea which we use in proving the iHash

PoSE 3.3 secure. Here we repeat the lemma proved in [Rab10], which we use in our proof.

Theorem 2.2.0.1. Let A be an oracle algorithm, which makes at most T oracle queries

and which takes an advice string of length S. Fix a parameter ϵ. There are randomized

encoding and decoding procedures E and D, which use shared randomness and such that if

f is a permutation and adv is an advice string such that

Prob[Af
adv(f(x)) = x] ≥ ϵ

then

Prob[D(r,E(r, f)) = f ] ≥ .9

and the length of E(R, f) is at most

logN !− ϵN

100T
+ S +O(logN)

Proof. Using the shared randomness r we generate a random subset R ⊆ [N ] such that each

element of [N ] is independently chosen to be in R with probability 1
10T

We call an element of R good if the following two properties hold:

1. Af
adv(f(x)) = x

2. for all oracle queries q ∈ T we have that q ∈ [N ] \R except possibly for the query x.

Let G be the set of all good elements and I be the set of elements, that A can invert.

Then we have the following:

Prob [all queries of A are outside of R] ≥
(
1− 1

10T

)T

≈ 1− e−10 ≈ 1− 1

100

which means that

Prob [one query is inside of R] =
1

100

The events that x ∈ R and that one query is in R are independent. Let K be the set of

12
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elements x ∈ R such that A inverts f(x) but makes some queries inside of R. Then

E[|K|] = I · 1

10T
· 1

100
=

I

1000T

By Markov’s inequality we have that

Prob

[
|K| ≥ I

50T

]
≤ E(|K|)

I/50T

so

Prob

[
|K| < I

50T

]
≥ 1−

(
I

1000T

)
· 1

I/50T
= .95 (2.1)

By the Chernoff bound we have that

Prob

[
|R| > I

20T

]
≥ .95 (2.2)

By (2.1) and (2.2) for the set of good elements, G, we have that

|G| ≥ |K| − |R| = 3I

100T

Next we describe the Encoding and Decoding procedures, assuming that |G| ≥ ϵN/100T .

The encoding contains the following information:

• The advice string adv

• The cardinality of the set G

• The set f(R), encoded using log

(
N

|R|

)
bits

• The values of f restricted to f : [N ] \ R → [N ] \ f(R), encoded using log(N − |R|)!
bits

4

• The set f(G) of the images of good elements of R, encoded using log

(
|R|
|G|

)
bits

• The values of f restricted to f : R \G→ f(R \G), encoded using log(|R| − |G|)! bits
4That is, this part of the encoding is a permutation g : [N ] \ |R| → N \ |R| with the meaning that if

g(i) = j, then f maps the i−th element of the set [N ] \ R to the j-th element of the set [N ] − f(R). Note
that knowledge of the sets R and f(R) is needed to decode this part of the encoding. This will not be a
problem because the decoder knows R, which is part of the common random string, and is given f(R))

13
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So choosing f a permutation, we are able to know exactly the amount of bits needed to

represent f or any restriction of it. Given this we could replace f with any one to one and

onto function.

The decoding proceeds as follows:

1. Initialize an empty table to store the values of f

2. Fill up the mapping from [N ] \R to [N ] \ f(R).

3. For every element y ∈ f(G) find its inverse. At this point we know the set G as well

as the value of f on every point in ([N ] \R) ∪G.

4. Compute f on R\G. This can be done, since we now know G, R and the set f(R\G)

as well as the permutation restricted to R \G.

Based on the above the encoding’s length is:

S + encoding of f(R) + encoding of f([N ] \R) + encoding of f(G) + encoding of f(R \G) =

S + log

(
N !

(N − |R|)!|R|!
· (N − |R|)! · |R|!

(|R| − |G|!)|G|!
· (|R| − |G|)!

)
+O(logN) =

S + logN !− log |G|! +O(logN)

Theorem 2.2.0.2. If A is an oracle algorithm that runs in time at most T and such that

for every permutation f there is a data structure adv of size ≤ S such that

Prob[Af
adv(f(x)) = x] ≥ ϵ

then

S · T = Ω(ϵN)

14



Chapter 3

PoSEs Constructions

3.1 PoSE Preliminaries

A non interactive Proof of Secure Erasure (PoSE) is a protocol executed between a com-

putationally powerful verifier V and a more limited prover P. Here we are only interested

in the case where the provers’ limitation is only connected to his limited storage capacity.

Both the verifier and the prover will have to perform a computation, that will need using so

much storage as the provers’ total memory capacity. The verifier will be able to perform the

computation with relative ease, while the prover will have to exhaust all his memory. The

relation between this protocol and general time/space tradeoffs is obvious: The prover has

to use all his memory or else pay in computational cost. As an example one could picture

the protocol running in a wireless sensor network: The prover would be any node of the

network, while the verifier would be an external user, who either remotely or locally runs

the protocol with that node.

3.1.1 Previous PoSEs

The easiest way to implement a Proof of Secure Erasure is the following:

1. The verifier, who knows beforehand the amount of memory that the prover has, sends

to the prover a message as big as the prover’s memory, that contains fresh randomness.

2. The prover stores the message and sends it back to the verifier.

3. The verifier compares the message he received to the message he sent and accepts if

the two messages are identical.

The idea behind the scheme is sound but the communication complexity is high and

renders it inefficient for most practical applications.

15
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The authors in [PT10] improve on this initial idea, trading however its’ unconditional

security for lower communication complexity. In their scheme, again V sends a string to

P, as large as the latters’ memory capacity, but now the prover has to calculate a MAC

with key on that string, using the last k bits of the string as the key and then sending back

the result of this calculation. The authors consider also the straightforward way of using

a cryptographically suitable hash function (chosen for instance from the SHA family) but

of course abandon it immediately as it yields an insecure protocol: Due to the functions’

design (cf. (2.1.3)), a malicious prover does not need to store the entire message; he can

start computing in real time, while receiving the message and no need for storing the random

message would arise.

Although the communication complexity in this scheme is reduced, still the initial step

of sending a message as large as the provers’ memory leaves enough space for improvement.

A solution that would solve the problem would have the verifier sending a very small string

to the prover, who in his turn would ”unravel” this string to a data structure so big, that

he would have to use all of its’ memory to hold it.

And this is exactly what is done in [DKW11], where Dziembowski et al. construct

what they call an (m− δ, ϵ) uncomputable function, which can be easily computed when m

space is used, but when m − δ space is used it can be computed with at most a negligible

probability ϵ. The prover has to create a graph, which he will have to keep in his memory

during the whole time the protocol is ran. We describe this tool and how a PoSE can be

formed using it, later in 3.4 once we have introduced the pebbling game on directed acyclic

graphs.

Using this tool, the communication bandwidth is reduced dramatically but the proto-

cols’ time complexity increases from linear to quadratic, rendering the protocol practically

unsuitable for most applications.

3.1.2 Security Definition

Before we describe the schemes we developed, it is necessary to define the security for an

efficient Proof of Secure Erasure.

Definition 3.1.2.1. A PoSE is (t, s, p)−feasible if

Prob

[
V accepts

P ran for t time and used s space

]
≥ p,

Definition 3.1.2.2. For an 0 < α < 1 a PoSE is α-robust if for every 0 < γ < 1,and

for every s there exists a t > 0 such that the protocol is (t, s, 1− γ)-feasible and (t, αs, γ)-

infeasible.
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Definition 3.1.2.3. An α-robust PoSE is efficient if t is polynomial in log γ−1, s, and (1−
α)−1.

3.2 A first pass

From what we have described so far we could say that we are now in position to know what

we need from a PoSE in order for it to be efficient: We would need that the verifier created

an instance of a problem, which could be described with only a few bits. The answer to

this problem should also be as long as only a few bits. This property would assure that the

communication complexity would be as low as possible. In order also for the problem to be

solved, the honest verifier should have to use all his available memory; and this should be

done with acceptable time complexity (that is any time complexity less than quadratic in

the size of the problem). Last but not least we should be sure, that any dishonest prover

(that is one who would use any less than the honests’ memory, would either be not be able

to solve the problem at all, or in best case he would have to run in time at least quadratic

on the inputs’ size.

With these in mind we begin by describing our first attempts in proposing an efficient

PoSE, which however were soon abandoned due to reasons that will hopefully become clear.

Knapsack PoSE: In this setting we would need the verifier to create a knapsack instance

and a target value, and the prover would have to answer with a yes if and only if

the target value could be generated by the instance given. However this idea cannot

be easily exploited since for hard instances there is no proof that there does (or not)

exist a better time-space tradeoff than a trivial exhaustive search.

Subset Sum PoSE: This is almost the same setting like the previous and has the same

problems with it

Collision PoSE: In this setting the prover uses a hash function (which can be described

with a few bits) and asks the prover to find a collision in it. However an adversary

using Wagner’s tree algorithm [Wag02] or Pollards’ Rho algorithm could solve the

problem using only little (or even constant) space.

What is common behind the problems that arose in trying to create a PoSE in the ways

described just above, is the fact that although there is a great amount of work done on

NP-hard problems in terms of their time complexity, most of them have not been studied

in the average case and/or they have either not been studied in their space requirements or

they have not been studied in a Time-Memory trade-off.

Combining however the problems mentioned above we were able to come up with a

special case which lead to the invert-hash PoSE detailed in 3.3.
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3.3 Invert-Hash PoSE

3.3.1 Adversarial Model

In this first attempt towards a better POSE we have refrained our adversary, in the sense

that we consider the model, where he acts on two distinct phases. Namely a so-called

”preparation” phase, during which he is allowed to perform any queries he wants, store the

answers and perform any calculation he considers necessary. The results of this phase are

stored in the adversarys’ memory. In the second phase the adversary runs the protocol and

uses the results stored in his memory as advice. In this phase he is not allowed to perform

any new queries to the oracle.

3.3.2 PoSE description

In the setting described above we propose the following POSE:

1. P and V have the descriptions of three hash functions f1, f2 and f , with the property

that for every f(x) there exist x1 and x2 such that f(x) = f(x1) + f(x2).

2. The verifier V chooses a challenge x and sends over to P, f(x)

3. P inverts f(x) and sends the result to V.

In order to implement the above protocol, we will need the three above mentioned

random functions with domains and co-domains as specified below:

f : [N2]→ [N2]

f1 : [N ]→ [N2/2]

f2 : [N ]→ [N2/2]

as well as a function

G : [N2/2]× [N2/2]→ [N2]

with the following property:

∀x ∈ [N2] ∃x1, x2 ∈ [N ] such that

G(f1(x1), f2(x2)) = f(x)

18
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For a given y ∈ [N2] such that f(x) = y, in order to find it’s pre-image x, we need to

find x1 and x2, such that x = x1 +Nx2 and satisfy the following property:

f(x) = G(f1(x1), f2(x2))

Of course asking for the values x1 and x2 is actually asking for the inversion of the two

random functions f1 and f2 on the given inputs and how one could do it efficiently is what

we will be concerned in what follows. Of course one could perform an exhaustive search of

the two functions’ tables, but this is far from being time efficient while at the same time

it can be done using only constant space. However one could use a time/space tradeoff

technique like the ones briefly described in 2.2 and this is how we choose our prover to

perform the task of random function inversion: We use the algorithm in [HS74] and achieve

subquadratic time complexity while using the provers’ all available memory. We do this

by creating two tables T1 and T2 in which we insert the images f1(x1) and f2(x2) for all

x1, x2 ∈ [N ] sorted in increasing and decreasing order respectively. Then we add the first

element of the one table to the first of the second and check if this is the element we want

to invert. If yes, then we look at the tables and return the pre-images of the two elements,

that added to the element at hand. Else according to whether the sum we obtained before

was greater or less than the target value, we proceed by adding to the element of the first

(respectively the second) table that we had from the previous step, the next element of the

second (respectively the first) table. The time complexity of this algorithm is governed by

the sorting step, which will require O(N/2 logN/2) time and the space complexity will be

exactly N . The algorithm is described in detail below.
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Algorithm 4 invert-Hash

1: Input: y, T1, T2 {y is the value upon which which we want to invert f , T1 holds the

description of f1 in form of pairs (x, f1(x)) and T2 respectively for f2}
2: Sort T1 in decreasing order on T1[1]

3: Sort T2 in increasing order on T2[1]

4: while T1 ̸= ∅ ∨ T2 ̸= ∅ do
5: S ← G(T1[1].first, T2[1].first)

6: if S == y then

7: x1 ← T1[0].first

8: x2 ← T2[0].first

9: return (x1, x2) {Solution found}
10: end if

11: if S < y then

12: delete T1.first from T1

13: end if

14: if S > y then

15: delete T2.first from T2

16: end if

17: end while

Using the functions f , f1, f2 and G that satisfy the properties stated in 3.3.2 and s1, s2

as the necessary paddings for x1 and x2 in order for them to belong in the domains of f1

and f2 respectively, we get the following PoSE, which we call invert-Hash PoSE

1. V chooses x1, x2, s1, s2 such that

G(f1(s1||x1), f2(s2||x2)) = f(x1 + x2N) = y

and sends s1, s2 and y to P

2. P inverts f on y by finding x1 and x2 and using algorithm (4) and sends x = x1+x2N

to V, who accepts if and only if

f(x) = y

In the following section we analyze the security of our PoSE, assuming adversaries of

the type described in 3.3.1.

3.3.3 Security Proof

In order to prove the security of this PoSE we first need to prove the following
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Lemma 3.3.3.1 (Fact 1). Suppose there exists a randomized encoding procedure Enc :

{0, 1}N × {0, 1}r → {0, 1}m and a decoding procedure Dec : {0, 1}m × {0, 1}r → {0, 1}N

such that

Prob
r∈Ur

[Dec(Enc(x, r), r) = x] ≥ δ

Then

m ≥ N − log 1/δ

Proof. By a standard averaging argument, we get that there is an r such that for at least

a δ fraction of the x’ s, Dec(Enc(x, r), r) = x. However, that means that Enc(x, r) must

attain at least δ2N values as x varies over {0, 1}N . As the total number of values that

Enc(x, r) can take is bounded by 2m, 2m ≤ δ2N , thus giving us the required inequality.

Lemma 3.3.3.2. Let A be an algorithm, that succeeds in inverting a given element y ∈ [N2]

with

Prob[A(y) = f−1(y)] ≥ δ

Then there exist algorithms A1,A2 that succeed in inverting f1(y1) and f2(y2) and

Prob[A1(y1)f
−1
1 (y1)] = Prob[A2(y2) = f−1

2 (y2)] ≥ δ

Proof. We describe the algorithm A1, that inverts an element y1 using A and works as

follows:

1. A1 chooses an element x2 ∈ [N ], forms y = y1 + f2(x2) and passes it to A.

2. A returns all (x1, x2), such that f1(x1) + f2(x2) = y.

3. A1 finds (x1, x2) and returns x1.

We will show that A1 succeeds in inverting a given element y1 with probability at least δ.

Define

Ψ1 = {y1 ∈ [N2/2] : ∃y ∈ [N2]∃(x1, x2) ∈ [N ]2 : (x1, x2) ∈ A(y) ∧ f1(x1) = y1},
Ψ2 = {y2 ∈ [N2/2] : ∃y ∈ [N2]∃(x1, x2) ∈ [N ]2 : (x1, x2) ∈ A(y) ∧ f2(x2) = y2},
S = {(x1, x2) ∈ [N ]2 : ∃y ∈ [N2] : (x1, x2) ∈ A(y)},
Sf1,f2 = {(y1, y2) ∈ [N2/2]2 : ∃(x1, x2) ∈ S : f1(x1) = y1 ∧ f2(x2) = y2}

Now let (y1, y2) ∈ Sf1,f2 . Then there exists (x1, x2) ∈ S such that f1(x1) = y1 and

f2(x2) = y2. Since (x1, x2) ∈ S, there exists a y such that (x1, x2) ∈ A(y). So for this

y, we have that y1 ∈ Ψ1 and y2 ∈ Ψ2, which means that Sf1,f2 ⊆ Ψ1 × Ψ2. Since |S| =
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|Sf1,f2 | (because f1 and f2 are bijections) and by the hypothesis |S| ≥ δN2, we have that

|Ψ1 ×Ψ2| ≥ δN2.

Since S ̸= ∅, we have that Sf1,f2 ̸= ∅ and therefore Ψ1 ̸= ∅ and Ψ2 ̸= ∅. Observe also

that since f1 and f2 are bijections, we have that |Ψ1| ≤ N and |Ψ2| ≤ N . Assume that

|Ψ1| < δN and |Ψ2| = N . Then |Ψ1 × Ψ2| < δN2, which is a contradiction. Therefore it

must hold that |Ψ1| ≥ δN and |Ψ2| ≥ δN .

To conclude the proof, let y1 be a random element from f1([N ]). Since A1 inverts all

the elements in Ψ1 and |f1([N ])| = N , we have that

Prob[A1(y1) = f−1(y1)] ≥
δN

N
= δ

Lemma 3.3.3.3 (Enc/Dec description). Let A, be a probabilistic poly time algorithm, that

on input (α, y), where y is the element to be inverted and α is an advice string of length

|α| = ϵN , returns the set {(xj1, x
j
2) : y = f1(x

j
1) + f2(x

j
2), j = 1, . . . , k, k ≤ N} of all the

preimages of y, with the property that (f1(x
j
1) < f1(x

j+1
1 )) and (f2(x

j
1) > f2(x

j+1
1 )) and let

A succeed on inverting with probability

Prob[A(α, f(x)) = x] ≥ δ

Then using A we can produce a randomized encoding procedure for f1 and f2.

Proof. We begin by describing the Encoding and Decoding procedures:

Encoding Let |α| be the length of the advice string generated by f1 and f2. The encoding

consists of the advice string α and a table T , which contains the 2(1− δ)N elements,

not inverted by A.

Decoding 1. Initialize a table T ′ that will hold the values of f1 and f2

2. Fill the T ′ with the contents of T

3. For every element in T ′ that has not yet been inverted, use A to invert it.

Next we calculate the space needed for the encoding:

• Encode the values of f1 : [N ]→ [N2/2] that A cannot invert, using log (1− δ)N ! bits.

• Encode the set f1((1 − δ)N) of the images of the elements, that cannot be inverted

by A using log

(
N2/2

(1− δ)N

)
bits.
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The total space needed for the encoding is:

|α|+ 2 log ((1− δ)N)! + 2 log

(
N2/2

(1− δ)N

)
= |α|+ 2 log ((1− δ)N)!

(
N2/2

(1− δ)N

)

= |α|+ 2 log
((1− δ)N)!N

2

2 !

(1− δ)N !(N
2

2 − (1− δ)N)!

= |α|+ 2 log
(N2/2)!

(N2/2− (1− δ)N)!

= |α|+ 2 log

(1−δ)N∏
k=1

N2

2
− (1− δ)N + k

= |α|+ 2 log

(1−δ)N∏
k=1

N2

(
1

2
− 1− δ

N
+ 2

k

N2

)

= |α|+ 2 logN2(1−δ)N

(1−δ)N∏
k=1

(
1

2
− 1− δ

N
+ 2

k

N2

)

= |α|+ 2 logN2(1−δ)N + 2 log

(1−δ)N∏
k=1

(
1

2
− 1− δ

N
+

k

N2

)

= |α|+ 4(1− δ)N logN + 2 log

(1−δ)N∏
k=1

(
1

2
− 1− δ

N
+

k

N2

)
≤ |α|+ 4(1− δ)N logN

Proposition 3.3.3.1. The Invert-Hash-PoSE is α-robust.

Proof. Let S be the memory size that we want to securely erase, γ the adversary’s success

probability and αS the amount of memory, that the adversary will use. It is easy to see, that

using the algorithm described in 4 the Invert-Hash-PoSE is (O(S logS), S, 1− γ)-feasible,

since it needs O(S logS) time in order to sort the elements and needs S space to hold them.

Since in order to find the inverse element, it has to go through all the table that contains

f1 and f2, we see that

Prob

[
V accepts

P ran for O(S logS) time and used S space

]
= 1,

Next we show that Invert-Hash-PoSE is (O(S logS), αS, γ) infeasible. Assume that it
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is (O(S logS), αS, γ) feasible. Then

Prob

[
V accepts

P ran for O(S logS) time and used αS space

]
≥ γ

In other words there exists an algorithm A such that given an advice string of length αS

and an element y to invert succeeds with probability ≥ γ.By lemma 3.3.3.3 and using A we

can construct a randomized encoding procedure that uses space αS + 4(1− γ)S logS bits.

By lemma 3.3.3.1 we have that

αS + 4(1− γ)S logS ≥ log

(
S2

2

)
S

αS + 4(1− γ)S logS ≥ log

(
S2

2

)
S

≥ log

(
S2

2
− S

)S

= S log

(
S2

2
− S

)
4(1− γ) logS ≥ log

(
S2

2
− S

)
− α

≥ (1− α) log

(
S2

2
− S

)

(1− γ) ≥ (1− α)
log
(
S2

2 − S
)

4 logS

γ ≤ 1− (1− α)
1

2

γ ≤ 1− (1− α)
1

2

Suppose that the protocol is repeated k times. Then given that(
1− (1− α)

1

2

)k

≤ e−(1−α) 1
2
·k
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we have that

e−(1−α) 1
2
·k ≤ γ

−(1− α) · k/2 ≤ ln γ

(1− α) · k ≥ 2 ln γ−1

k ≥ 2 ln γ−1

(1− α)

which means that

k = Ω(1.39(1− α)−1 log γ−1)
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3.4 Graph based PoSE

3.4.1 Introduction

From what we have seen up to now, it is clear that for a PoSE to be practical, a computa-

tional problem must be used, for which we know lower bounds in its space complexity and

the time needed for the honest prover to solve the problem must be less than quadratic. Not

many problems have been studied in both their space and time requirements and from the

ones studied in such a fashion, we have not been able to come up with a better scheme than

the one described in 3.3. There is however a problem which has been studied extensively

and combines all of our needs in order to come up with a practical Proof of Secure Erasure;

namely the problem of pebbling games over graphs. We refer to [Nor11] for a detailed sur-

vey - here we provide only the necessary background for our purposes. We recall first that

for a DAG G, a sink vertex is a vertex with out-degree 0 and a source vertex is a vertex

with in-degree 0.

Definition 3.4.1.1. (Pebble game). Let G be a directed acyclic graph (DAG). A pebble

game on G is the following one-player game. At any time t, we have a configuration Pt of

pebbles on the vertices of G, at most one pebble per vertex. The rules of the game are as

follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them, a pebble

may be placed on v. In particular, a pebble can always be placed on a source vertex.

2. A pebble may be removed from any vertex at any time.

A pebbling of G, also called a pebbling strategy for G, is a sequence of pebble configu-

rations P = ⟨P0, . . . ,Pτ ⟩. In case P0 = X and Pτ = Y where X,Y are the source and sink

vertices of G then we call this a complete strategy. Furthermore, if for all t ∈ [τ ], Pt follows

from Pt−1 adhering to the rules above, we call this a legal strategy. The time of a pebbling

P = {P0, . . . ,Pτ} is simply time(P) = τ and the space is space(P) = max0≤t≤τ{|Bt|} where
Bt represents the set of vertices that carry a pebble in time t. The pebbling price of G,

denoted Peb(G), is the minimum space of any complete legal strategy for G.

In the case of black-white pebbling, one has in his disposal two sets of pebbles, black

and white, where the black can be placed following the rules mentioned above, while the

white can be placed following the rules stated here:

1. A white pebble can be placed on any empty vertex at any time.

2. If all immediate predecessors of a white-pebbled vertex u have pebbles on them, the

white pebble on u can be removed. A white pebble can always be removed from a

source vertex.
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Definition 3.4.1.2. (Compact Recursive Representation) A family of Directed Acyclic

Graphs {Gn}∞n=1 will be called Compactly Recursively Representable (CRR), if for every

graph Gn = (Vn, En), there exists a circuit C of polylogarithmic size in |Vn| that given a

node returns its incoming edges.

In other words, a graph that belongs in this family, will have a short (independent of

the usual matrix or list) representation, which is what we need in our protocol, since for

the verifier to send the whole graph in its matrix or list representation, would increase the

communication complexity to the levels of [PT10].

3.4.2 Computational model

Consider G = (V,E) to be a DAG of |V | = n vertices. In G we distinguish some special

vertices : an input vertex is a vertex with no incoming edges and an output vertex is a

vertex that has no outgoing edges.

For any such graph G we define the following symbolic labeling : input vertices are

labeled by xi where i ranges over {1, . . . , k} where k is the number of input vertices. Any

other node v is labeled by H(v, l1, . . . , lm) where m is the number of incoming edges and

l1, . . . , lm are the corresponding labels of the incoming (parent) vertices.

Definition 3.4.2.1. Let U = {0, 1}s. Given a DAG G = (V,E) with k input vertices, m

output vertices and bounded in-degree d, we define for a given function H : V × Ud → U

the function GH : Uk → Um to be the function that maps x1, . . . , xk ∈ U to the values

y1, . . . , ym ∈ U that correspond to the evaluations of the symbolic labelings of the output

vertices of G using the function H.

We now fit the notion of ex-post-facto pebbling from [DKW11] to our setting.

Definition 3.4.2.2. Fix U = {0, 1}s and DAG G. Given a probabilistic algorithm A

utilizing an oracle H : V ×U s → U . The ex-post-facto pebbling of G corresponding to A is

a pebbling strategy P parameterized by input x1, . . . , xk ∈ U , the choice of H and the coins

ρ of A that satisfies the following :

1. The time of the pebbling equals the number q of oracle queries of A to H.

2. Initially pebbles are placed on all k of the input vertices of G.

3. If in the i-th query A asks H for an input u and it holds that u equals the label of a

node v then a pebble is placed on that vertex for the configuration Pi.

4. Suppose a label l of a non-output vertex v never appears in any query j succeeding

the i-th query until the sequence terminates or the label of v is recomputed. Then,

no pebble is placed on v in any configuration Pi+1, . . . ,Pj .
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We say that an algorithm A has an execution that computes the function GH for a given

function H if it happens that the ex-post-facto pebbling of G corresponding to A on input

x1, . . . , xk for some coins ρ of A is complete (i.e., it terminates in a configuration where

all output nodes of G are pebbled). We prove the following theorem for the case when the

function H behaves as a random oracle.

Theorem 3.4.2.1. Fix U = {0, 1}s and a d-bounded DAG G = (V,E) with n = |V | and k

input vertices. Consider an algorithm A and the random variable P defined as the ex-post-

facto pebbling of G parameterized by x1, . . . , xk selected uniformly at random from U and

H selected uniformly at random from (V × Ud → U). Then we have that

Pr[P is legal] ≥ 1− q · 2−s

Proof. Let P = ⟨P0, . . . ,Pq⟩ be a possible pebbling strategy of A. If P is not legal this

means that there exists a smallest i ≥ 1 such that the transition from Pi−1 to Pi does not

adhere to the rules of definition ??. This means that for some i ∈ {1, . . . , q}, a pebble

appears for vertex v in Pi while in Pi−1 at least one of the parent nodes of v have no pebble

placed in them. This means that the label of the parent node of v was never placed. In

either case the fact that the ex-post-facto pebbling places a pebble on v means that the

i-th query to H by A contains the label l of the node v′. We first consider case (2). We

know that in this case v is not an input node (given that input nodes have pebbles placed

on them automatically in any ex-post-facto pebbling). Let a = (l′1, . . . , l
′
d, v) be the string

that defines the label l = H(a). Since there was never a pebble in v′ this means that a was

never queried. It follows that the value l is uniformly random over U from the perspective

of A, hence predicting it correctly as part of the i-th query can occur with probability at

most 2−s. The result follows given that i ranges in {1, . . . , q}.

Using the above theorem we conclude that any algorithm A performs legal peblings.

Next we need to establish a relation between the price of pebbling and the space required

by an algorithm A. We have the following:

Theorem 3.4.2.2. Fix U = {0, 1}s, a d-bounded DAG G = (V,E) with n = |V | and k input

vertices, and H : V ×Ud → U . (1) There exists an algorithm AH,P in the RAM model that

on input x1, . . . , xk computes GH(x1, . . . , xk) using Peb(G) space and time O(|V |) where

P : V → V d ∪ {⊥} is a function that returns the d parents of a given node v or ⊥ if it is

a source node. (2) Any other algorithm A that agrees with GH(x1, . . . , xk) on a fraction of

inputs above α uses space Peb(G).

Proof. (1) The proof is using P to perform a depth first search over G. Further details are

omitted.
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(2) Consider an execution of A for which the space complexity is less than Peb(G). This

means that there is a strategy that calculates GH(x1, . . . , xk) but the pebbling induced by A

in this execution path has price strictly smaller than Peb(G) something that suggests that

either it is not complete or not legal (given Peb(G) is the minimum such price for complete

and legal strategies). Given that there is an α fraction of complete strategies there should

be at least α− q2−s that are legal.

Having described the computational model upon which we will be relying, we next

describe the graph family that will be used in the construction of our PoSE. An essential

role as the building blocks of these graphs will be played by the superconcentrator graph

family, which we describe next giving also some well known results about it, which will help

us prove the security of our PoSE.

3.4.3 Superconcentrators

Superconcentrators are graphs that solve the problem of connecting N clients to N servers

in a setting where either the clients or the servers are interchangeable and therefore it does

not matter which client is connected to which server. A formal definition follows:

Definition 3.4.3.1. A directed acyclic graph G with N input and N output nodes, will be

called an N− superconcentrator if for every r ≤ N , every set of r inputs, and every set of

r outputs, there exists an r−flow (a set of r vertex-disjoint directed paths) from the given

inputs to the given outputs.

As a first example of superconcentrator one could see that a graph family that satisfies

the above definition is the complete bipartite graph with N nodes. However we cannot

apply this family in the construction of a PoSE, since in our computational model the node

indegree must be bounded.

A first non-explicit and low density 1 construction of superconcentrators was given by

Pippenger in [Pip77]. Currently the record is held by Schöning [Sch06]. Regarding the

explicit construction on the other hand, the most recent advances were made in [AC03],

a construction of an N−superconcentrator with 44N + O(1) edges and N = k · 2l with

k = 262, 080. For our purposes, the graphs produced must belong in the CRR family of

graphs 3.4.1.2, and indeed the superconcentrators proposed by Alon do fall into this family,

a result that we prove in the appendix B.0.4.2.

Next we prove some basic results on superconcentrators, which we will use in our protocol

constructions.

1where graph density is defined as 2|E|/(|V |(|V | − 1))
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Lemma 3.4.3.1. Suppose that Q : u⇝ v is a path in G and that P = {Pσ,Pσ+1, ...,Pt} is a
black-white pebbling such that the whole path Q is completely free of pebbles at times σ and

t but the endpoint v is pebbled at some point in the time interval (σ, t). Then the starting

point u is pebbled during (σ, t) as well.

Proof. By induction over the length of the path Q. The base case u = v is trivial. For the

induction step, let w be the immediate successor of u on Q. By the induction hypothesis,

w is pebbled and unpebbled again sometime during (σ, t). Then u must be covered by a

pebble either when the pebble on w is placed there (if this pebble is black) or when it is

removed (if it is white). The lemma follows.

Lemma 3.4.3.2. Let G be an N− superconcentrator, S the set of its sources and Z the

set of its sinks. Then for every pebble configuration P with Space(P) < s there exist S′ ⊆ S

and Z ′ ⊆ Z, with |S′| ≥ N − s and |Z ′| > s such that for every s ∈ S′ and z ∈ Z ′ the vertex

path from s to z is completely pebble free.

Proof. Let P be a pebbling configuration, using space less than s and S′′ ⊆ S such that

|S′′| = s+ 1 and Z ′ ⊆ Z, |Z ′| > s. Since G is a superconcentrator we have that there exist

s+1 vertex disjoint paths from S′′ to Z ′. Since Space(P) < s we have that at most s paths

will be blocked by pebbles. Therefore there exist at least N − s sources with completely

pebble-free paths to Z ′. Setting S′ = S \ S′′ we attain the result.

Lemma 3.4.3.3 (Basic Lower Bound Argument). Suppose that P = {Pσ,Pσ1 , . . . ,Pt}
is a conditional (i.e.Pσ ̸= ∅) black-white pebbling of an N− superconcentrator such that

space(Pσ) ≤ sσ, space(Pt) ≤ st, and P pebbles at least sσ + st + 1 sinks during the closed

time interval [σ, t]. Then P pebbles and unpebbles at least N − sσ − st different sources

during the open time interval (σ, t).

Proof. For the pebbling configuration Pσ we have from lemma 3.4.3.2 that there exists a set

S′ ⊆ S and a set Z ′ ⊆ Z, with |S′| ≥ N − sσ, Z
′ > sσ such that all paths from S′ to Z are

completely pebble free. Similarly for the configuration Pt there exists a set S′′ ⊆ S and a set

Z ′′ ⊆ Z, with |S′′| ≥ N−sσ, Z
′ > sσ such that all paths from S′ to Z are completely pebble

free. For the sets S′∪S′′, Z ′∪Z ′′ it holds that |S′∪S′′| ≥ N−sσ−st and |Z ′∪Z ′′| > sσ+st

and there exist completely pebble free paths from S′ ∪ S′′| to Z ′ ∪ Z ′′. By lemma 3.4.3.1

it follows that since P pebbles the sinks Z ′ ∪ Z ′′ then the sources in S′ ∪ S′′ must also be

pebbled in the interval (σ, t).

Theorem 3.4.3.1 (Pebble lower bound). Any complete black-white pebbling of an N−
superconcentrator G in space at most s has to pebble at least Ω(N2/s) sources.
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Proof. Let P1 = {P1
σ,P1

σ+1, . . . ,P1
τ} be a pebbling such that Space(P1) ≤ Space(Pσ+Pτ ) ≤

s. By lemma 3.4.3.3 we have that P pebbles at least s sinks, while pebbling and unpebbling

at least N − s sources. For the remaining N − s sinks we can find another pebbling

P2 = {P2
σ,P2

σ+1, . . . ,P2
τ} again using space at most s and apply the same reasoning as

described above.

Repeating the procedure N/s times, we will have pebbled all the sinks of G in time

Ω(N2/s).

Paul, Tarjan and Celoni in [PTC76] create a family of graphs for which we can find the

lower bound pebbling price. This graph family construction we describe here as presented

in [Nor11]. Graphs that belong in this family we will be calling Paul-Tarjan-Celoni (PTC)

graphs.

Definition 3.4.3.2. Let C(k) = SCN(k) for k = 0, 1, 2, . . . denote any arbitrary but fixed

family of superconcentrators withN(k) = K ·2k sources and sinks for some constantK ∈ N+

and Θ(N(k)) vertices of indegree 2. Then the PTC graph Ξ(0) is C(0), and Ξ(i + 1) for

i ≥ 0 is defined inductively as follows:

The graph Ξ(i + 1) has sources si+1[j] and sinks zi+1[j] for j = 1, 2, . . . , N(i + 1). It

contains two copies Ξ1(i),Ξ2(i) of the PTC graph of one size smaller with sources sci [j] and

sinks zci [j] for j = 1, 2, . . . , N(i) and c = 1, 2, and two superconcentrator copies C1(i), C2(i)

with sources xci [j] and sinks yci [j] for j = 1, 2, . . . , N(i) and c = 1, 2. The edges in Ξ(i+ 1)

are all internal edges within Ξ1(i),Ξ2(i) and C1(i), C2(i), as well as the following edges:

1. (si+1[j], x
1
i [j]) and si+1[j+N(i)], x1i [j]) for j = 1, . . . , N(i), from the sources in Ξ(i+1)

to the sources of C1(i),

2. (y1i [j], s
1
i [j]) for j = 1, . . . , N(i), from the sinks of C1(i) to the sources of Ξ1(i),

3. (z1i [j], s
2
i [j]) for j = 1, . . . , N(i), from the sinks of Ξ1(i) to the sources of Ξ2(i),

4. (z2i [j], x
2
i [j]) for j = 1, . . . , N(i), from the sinks of Ξ2(i) to the sources of C2(i),

5. (y2i [j], zi+1[j]) and (y2i [j], zi+1[j + N(i)]) for j = 1, . . . , N(i), from the sinks of C2(i)

to the sources of Ξ1(i+ 1),

6. (si+1[j], zi+1[j]) for j = 1, . . . , N(i + 1), directly form the sources to the sinks of

Ξ(i+ 1).

The question though remains, as to which should be the superconcentrator family SC(i)

used. In the PoSE we construct, we use the butterfly superconcentrator family (for more

on butterfly graphs, cf.[Nor11]).

31



3.4. GRAPH BASED POSE CHAPTER 3. POSES CONSTRUCTIONS

In the following image we show the butterfly graph with 8 in- output nodes and the PTC

graph with 8 in- output nodes (PTC(8)) using as the superconcentrator family, the Butterfly

graph one. In fact in our graph PoSE construction we will be using this superconcentrator

family, since it is easy to see that it belongs to the CRR family of graphs. Also in the proof

of the main lower bound lemma ?? we will be using the PTC(8) graph from ??, in order to

visualize the various cases that we will examine.

Table 3.1: Butterfly graph with 16 sinks and PTC graph with 8 sinks

For this graph family we have the following lemma, which is the main lemma upon

which we base the result regarding the graph-based PoSE.

Lemma 3.4.3.4 (Lower Bound on Superconcentrator pebbling). Let m(i) = |S(i)| =
|T (i)| = 2i, let Ξ(i) be a DAG as in the [PTC76] construction and suppose that in the

interval [0, t] at least c1m(i) sinks of Ξ(i) are pebbled with any colors in any order. Suppose

also that at times 0 and t there are at most c2m(i) pebbles on the graph. Then there is a

time interval [t1, t2] ⊆ [0, t] during which at least c3m(i) sources of Ξ(i) are pebbled and at

least c4m(i) pebbles are always on the graph.
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The proof will be carried out by induction. However we must be careful on how we will

use the induction hypothesis, since in order to do so, one would need an upper bound of

c2m(i) pebbles on the number of pebbles at the start and at the end of the subpebblings,

but the lemma’s statement only provides a c2m(i+1) = 2c2mi upper bound on the number

of pebbles. What we want to do is apply the induction hypothesis on the two copies Ξ1(i)

and Ξ2(i). In doing so we will come up against specific cases of pebbling configurations for

which we will prove the lemma without calling the induction hypothesis. In proving these

special cases, as well as in the core case of the lemmas’ proof, certain demands will arise,

which we will write down, as the further study of them determines the hidden constants in

the asymptotic notation.

We now proceed to the description and proof of the special cases.

Special Case 1: Let P be a pebbling of Ξ(i + 1) meeting the prerequisites of the lemma

3.4.3.4. Suppose that there exists a time interval [t1, t2] ⊆ [0, t] such that at least

c3/2m(i) sources of the subgraph Ξ1(i) are pebbled and there are at least c2m(i)

pebbles on Ξ(i + 1) throughout the whole interval. Then there exists an interval

[t0, t2] ⊆ [0, t] such that at least c3/2m(i) sources of Ξ(i+ 1) are pebbled and at least

c4m(i+ 1) pebbles are constantly on the graph.

Proof. Let H
′
L be the subgraph induced by C1(i) along with the sources of Ξ1(i) and

the left-hand half of the sources of Ξ(i+1), i.e. the verices {si+1[j], s
1
i [j] : j ∈ [N(i)]}

along with the edges {(si+1[j], x
1
i [j]), j ∈ [N(i)]}, that are connected to the sources

of C1(i) and the edges that come from the sinks of C1(i), {(y1i [j], s1i [j]), j ∈ [N(i)]}.
In the same manner define H

′
R, that instead takes the right-hand half of the sources

of Ξ(i + 1). For a pictorial approach to these two induced graphs, refer to 3.2. For

these two graphs, it is easy to see that they are superconcentrators. Now let t0 be the

last time before t1 at which there are no more than c2m(i+ 1) pebbles on the graph

and assume that
c3
2
m(i) ≥ c2m(i+ 1) + 1 (3.1)

Then by 3.4.3.3 there are at least 2(m(i) − c2m(i + 1) = (1 − 2c2)m(i + 1) (adding

the ones from H
′
L and H

′
R) sources of Ξ(i+ 1) connected to pebble-free paths to the

c3m(i)/2, that are pebbled from t1 to t2. Then during the interval [t0, t2] at least

these sources of G(i + 1) must be pebbled and at least c2m(i) − 1 pebbles must be

constantly on the graph. Then assuming that

1− 2c2 ≥ c3 (3.2)
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and

c2m(i)− 1 ≥ c4m(i+ 1) (3.3)

and observing that the sinks of C1(i) are the sources of Ξ1(i) we have that in the time

interval [t0, t2] c3m(i+ 1) sources of Ξ1(i) are pebbled, while at least c4m(i) pebbles

are constantly on the graph, thus proving the lemma for this case.

Table 3.2: The induced graphs used in this part of the proof

Special Case 2: Let P be a pebbling of Ξ(i + 1) meeting the lemmas’ prerequisites and

suppose that there exists a time interval [t1, t2] ⊆ [0, t] such that at least c3m(i)/2

sources of the subgraph Ξ2(i) are pebbled and there are at least c2m(i) pebbles on

Ξ(i+ 1) throughout the whole interval. Then the lemma’s conclusions hold.

Proof. The proof is similar to the one in Case 1. We only need to adjust the induced

graphs H ′
L and H ′

R in two new subgraphs H
′′
L and H

′′
R in the way shown in figure
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3.3 (i.e. including the sinks of Ξ1(i), the sources of Ξ2(i), and take only the edges

connecting directly the sources of Ξ1(i) directly to its’ sinks, while bypassing the rest

of Ξ1(i)). Then we can apply the same reasoning as in the Special Case 1, 3.4.3.2.

above.

Table 3.3: The induced graphs used in this part of the proof

Special Case 3: Let P be a pebbling of Ξ(i + 1) meeting the lemmas’ prerequisites and

suppose that there exists a time interval [t1, t2] ⊆ [0, t] such that at least c1
2 m(i + 1)

sinks Ξ(i+ 1) are pebbled while there are at least c2m(i) pebbles on Ξ(i+ 1). Then

the lemma’s conclusions hold.

Proof. We follow a similar reasoning as in the aforementioned special cases 1 and

2. We consider again two induced graphs H
′′′
L and HR

′′′, which are constructed as

follows and can be seen in figure 3.4. H
′′′
L (and respectively H

′′′
R ) is the subgraph H

′′
L
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constructed in 3.4.3.2 plus the sinks of Ξ2(i), the superconcentrator C2(i) and the

left-hand half of the sinks of the PTC graph Ξ(i+ 1). The edges of H
′′′
L are those of

H
′′
L as well as the ones of C2(i), the edges connecting directly the sources of Ξ2(i) to

its’ sinks, bypassing all the edges of Ξ2(i), the edges connecting the sinks of Ξ2(i) to

the sources of C2(i) and the edges connecting the sinks of C2(i) to the left-hand half

sinks of Ξ(i + 1). As in the previous cases, we consider t0 to be the last time before

t1, where there are no more than c2m(i + 1) pebbles on the graph. Then assuming

that
c1
4
m(i+ 1) ≥ c2m(i+ 1) + 1 (3.4)

and since H
′′′
L and H

′′′
R are superconcentrators, the same reasoning as in 3.4.3.2

applies, thus proving the result.

Table 3.4: The induced graphs used in this part of the proof
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Note here that in the proof of 3.4.3.2 we could have as well used a specifically selected

set of paths from the sources of the second superconcentrator C2(i) to its’ sinks, thus

avoiding this superconcentrators’ inclusion to the subraphs H
′′′
L and H

′′′
R . So until

now we have not yet seen the necessity of the second superconcentrator C2(i) to the

construction of the PTC graphs. As we will move to the proof of lemma 3.4.3.4 using

the induction hypothesis, the reason behind the need for the second superconcentrator

will become clear.

We are now ready to proceed in proving lemma 3.4.3.4.

Proof. Base Case: Let i0 be the first superconcentrator, which we will use for generating

the PTC graph and consider an initial configuration of no more than c2m(i0) pebbled

vertices. Suppose now that c1m(i0) sinks of the graph are pebbled during the time

interval [0, t]. Then any c2m(i0) + 1 of these sinks are connected to at least m(i0) −
c2m(i0) sources via initially pebble free paths. Thus at least one of these sinks (let’s

call it v) is connected to at least m(i0)
c2m(i0)+1 of these sources via initially pebble free

paths. When v is pebbled, none of these m(i0)/(c2m(i0)+ 1 sources is connected to v

via a pebble-free path. Also the set of sources connected to v via a pebble-free path

can decrease by at most one at each time step. Let t1 − 1 be the last time at which

m(i0)/(c2m(i0)+ 1 sources are connected to v via pebble-free paths. During the time

interval [t1, t],
m(i0)

c2m(i0) + 1
− 1

sources of Ξ(i0) must be pebbled, while at least one pebble is always on the graph.

For the base case to hold we must demand that

m(i0)− c2m(i0)− 1

c2m(i0) + 1
≥ c3m(i0) (3.5)

thus proving the lemma for the base step of the induction.

Induction Hypothesis: In [0, t] at least c1m(i) sinks of Ξ(i) are pebbled and at times 0

and t there are at most c2m(i) pebbles on the graph. Then there exists a time interval

[t1, t2] during which at least c3m(i) sources are pebbled and at least c4m(i) are on the

graph.

Inductive step: Suppose that in [0, t] at least c1m(i + 1) sinks of Ξ(i + 1) are pebbled

and at times 0 and t there are at most c2m(i+ 1) pebbles on Ξ(i+ 1). We will show

that there exists a time interval [t7, t6] during which at least c3m(i + 1) sources are

pebbled and at least c4m(i+ 1) pebbles are always on the graph.

37



3.4. GRAPH BASED POSE CHAPTER 3. POSES CONSTRUCTIONS

Suppose that none of the previous special cases holds. Then since case 3 (lemma

3.4.3.2) does not hold, there must be a time t1 ∈ [0, t] such that in [0, t1] fewer than

c1m(i+1)/2 sinks of Ξ(i+1) are pebbled and Space(Pσt1
) ≤ c2m(i). Then this means

that in [t1, t] at least c1m(i + 1)/2 sinks of Ξ(i + 1) are pebbled. Then by demand

3.4.3.2 we have that
c1
4
m(i+ 1) ≥ c2m(i+ 1) + 1 (3.6)

which clearly means that

c1m(i) ≥ c2m(i) + 1

and then since C2(i) is a superconcentrator, applying 3.4.3.3 we see that the number

of sinks of Ξ2(i) connected to these c2m(i) + 1 sinks of Ξ(i+ 1) via pebble free paths

is at least (1− c2)m(i). Then demanding

(1− c2m(i)) ≥ c1m(i) (3.7)

we can apply the induction hypothesis on Ξ2(i) for the time interval [t1, t] (since

Space(Pσt1
) ≤ c2m(i)) and find a time interval [t2, t3] ⊆ [t1, t] during which c3m(i)

sources of Ξ2(i) are pebbled and c4m(i) pebbles are always on the Ξ2(i).

Now in this time intervarl, there must exist a time t4 such that fewer than c3/2m(i)

sources of Ξ2(i) are pebbled in [t2, t3] and the number of pebbles on Ξ(i + 1) at this

time is less thatn c2m(i) because otherwise case 2 (lemma 3.4.3.2) would hold. Then

at time t4 there are at least c3/2m(i)−c2m(i) sinks of Ξ1(i) connected to these sources

of Ξ2(i) via pebble-free paths. Demanding now

c3
2
m(i) ≥ c1m(i) (3.8)

we can apply the induction hypothesis to Ξ1(i) for the time interval [t4, t3] and

obtain a subinterval [t5, t6] during which c3m(i) sources of Ξ1(i) are pebbled and at

least c4m(i) pebbles are always on Ξ1(i).

Until now we have found a time interval [t5, t6] ⊆ [0, t] in which c4m(i + 1) pebbles

are always on the graph Ξ(i + 1). What remains to be shown is that in this interval

at least c3m(i+ 1) sources of Ξ(i+ 1) are pebbled.

Since case 1 does not hold, then there exists a time t7 ∈ [t5, t6] such that in [t5, t7] at

most c3/2m(i) sources of Ξ1(i) are pebbled and the number of pebbles on Ξ(i+1) at

time t7 ia less than c2m(i). Then in the interval [t7, t6] at least c3/2m(i) sources of

Ξ1(i) are pebbled. Now recall that c3/2m(i) ≥ c2m(i+1) (3.4.3.2) which means that

c3m(i)/2 ≥ c2m(i) + 1. Notice then that in time t7 at least (1 − c2)m(i+ 1) sources
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of Ξ(i+ 1) are connected via pebble-free paths to the c3m(i)/2 sources of Ξ1(i). But

then by 3.4.3.2 we have that

(1− 2c2)m(i+ 1) ≥ c3m(i+ 1)

which means that in the time interval [t7, t6] at least c3m(i + 1) sources of Ξ(i + 1)

are pebbled, completing the proof.

Using the above lemma we can now prove that for the PTC superconcentrator family

of graphs the following pebbling lower bound holds:

Theorem 3.4.3.2. There exists a family of explicitly constructible DAGs {Gn}∞n=1 with

Θ(n) vertices, unique sink and indegree 2, such that BW − Peb(G) = Ω(n/ log n).

Proof. Let Ξ(i) be the PTC graph built on explicitly constructed superconcentrators and

define the graph family {Hn}∞n=1 by Hn = Ξ(⌊logn− log log n⌋). Then by lemma 3.4.3.4 we

have that BW −Pebb(Hn) = Ω(n/ log n) and Hn has size Θ(n). For the single-sink version

of this graph, it is easy to see that the same results apply.

3.4.4 Graph PoSE

The PTC graph using Butterfly graphs

The graph constructed in the previous section belongs to the CRR family of graphs, as long

as the superconcentrator family used also does. Also since the number of vertices is Θ(i2i)
2 (where 2i = n is the number of sinks), running a BFS on the graph can pebble it in time

O(n log n). Using lemma 3.4.3.4 makes also clear the fact, that any algorithm that pebbles

it, must use Θ(n) space. It is therefore reasonable to assume that this family of graphs has

all the desired properties for constructing an efficient PoSE:

• It is compactly recursively representable

• It requires Θ(n) space

• It can be pebbled in O(n log n) time

Unfortunately a closer look to the proof of lemma 3.4.3.4 reveals that the situation is

far from ideal:
2Solving the recursive relationship

V (i) = 2(2i + 2i−12(i− 1) + V (i− 1)

, where V (i) is the number of vertices of the PTC graph with 2i sinks and 2i−12(i − 1) is the number of
vertices added by the But(1i−1, proves the claim
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Lemma 3.4.4.1. Any algorithm that pebbles a [PTC76] superconcentrator of 2i sinks/sources

uses at least 2i−6 pebbles.

Before proving the above lemma, we show the next lemma which will play an important

role in the formers’ proof:

Lemma 3.4.4.2. Any pebbling strategy that pebbles at least 14 sinks of the butterfly graph

with 64 sinks/sources (But(64)) and starts with a configuration of 3 pebbles, pebbles at least

34 sources, while maintaining at least one pebble throughout the whole time.

Proof. We will prove this lemma by actually proving something stronger: namely we argue

that in order to pebble 1 sink, all the sources of the graph need to be succintly pebbled. We

start by observing that in order to pebble a single sink of the But(4), any strategy would

have to pebble all the 4 sources of the graph. Then since any sink of But(8) needs to pebble

two sinks of the two distinct But(4) subgraphs and all of the latters’ sources need to be

pebbled, then for 1 sink of But(8) to be pebbled, all the 8 sources need to be pebbled as

well. The idea propagates in the next members of the butterfly graph family, thus proving

that for one sink of the But(64) graph to be pebbled, all its’ 64 sources need to be pebbled.

Then clearly the lemma holds for the case of this graph.

Table 3.5: The But(8) and But(64) graphs
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Proof. In the proof of lemma 3.4.3.4 we had to demand certain inequalities in order to be

able to apply certain superconcentrators facts. These are repeated here, along with a brief

reminder of their necessity, for ease of reading:

m(i0)− c2m(i0)− 1

c2m(i0) + 1
≥ c3m(i0) (3.9)

c3
2
m(i) ≥ c2m(i+ 1) + 1 (3.10)

N(0)− 2c2 ≥ c3 (3.11)

c2m(i)− 1 ≥ c4m(i+ 1) (3.12)
c1
4
m(i+ 1) ≥ c2m(i+ 1) + 1 (3.13)

(1− c2)m(i) ≥ c1m(i) (3.14)
c3
2
m(i) ≥ c1m(i) (3.15)

(3.16)

We had to assume that ?? holds so that the base case of the induction would hold. We

assumed 3.10 and 3.13 in order to apply 3.4.3.3 to C1(i) and C2(i) respectively. We assumed

3.11 and 3.12 for the results to hold in the case 1 (3.4.3.2). We assumed 3.14 in order to

apply the induction hypothesis on Ξ2(i) and 3.15 in order to apply the induction hypothesis

in Ξ1(i) and conclude the number of sources of Ξ(i + 1) pebbled in the time interval we

had found. In [PTC76] these constants are set to m(i0) = 28, c1 = 14/256, c2 = 3/256,

c3 = 34/256 and c4 = 1/256. Regarding c2 we cannot do much, since the in- and out- degree

of the graph is bounded by 2. Ideally we would like to lower the number of sinks/sources

of the recursions’ base case, m(i0). And indeed we can (however not dramatically) ask

for m(i0) = 64, if instead of using any other superconcetrator family, we use the butterfly

graphs illustrated in 3.4.4. Then we can apply 3.4.4.2 and then we can check constants

c1 = 14/64, c2 = 3/64, c3 = 34/64 and c4 = 1/64 satisfy the conditions stated earlier.

Let G be a single-sink/single source N−superconcentrator. We construct the following

Proof of Secure Erasure, based on the ideas described in the previous sections:

1. V sends to P G’s description and the label of its source S0 and measures the time

that P needs in order to pebble G and output the label of G’s sink vertex.

2. P pebbles G and sends back to V the label of G’s sink.

3. V accepts if and only if P calculated the sinks’ label correctly within the expected

timeframe.
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Instead of the butterfly graphs, we could of course use any other superconcentrator

family with linear vertices in the number of the sources. As a previous step in our graphPoSE

construction we prove in the Appendix, that the superconcentrator family proposed in

[AC03] is CRR and therefore could be used in building the PTC graphs. The construction

of this superconcentrator family is inductive but the base begins with a number of sources

equal to 218 which may not be suitable for a great variety of the cases that we will be willing

to apply our protocol. Therefore for our graphPoSE we use the family of the butterfly

graphs, for which the lemmata in this section hold.

Security Proof

In this section we describe the algorithm that is ran by an honest prover and prove the

graphPoSE to be secure under the definition 3.1.2.

Assume that each node’s encoding is of the form (index, Label, layer) and that for the

labeling of each node a hash function H : {0, 1}2w → {0, 1}w is used. Then using the

following algorithms we can pebble the i-th layer of a given GT butterfly graph (which

has 2i sinks/sources) in space 2i−1 + 3 and time i2i, given each node’s in- and out-degree

equaling 2 as well as the butterfly graph’s structure.
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Algorithm 5 Pebbler(S0)

1: Input: The unique sinks’ label, S0

2: for j = 1 to j = 2i do

3: L[j]← (j, label(j), 0)

4: end for

5: for j = 1 to j = 2i do

6: tmp1← label(2i+j)

7: tmp2← L[j].label()

8: L[j]← (j, tmp2, 1)

9: end for

10: for j = 1 to j = log n do

11: for all ai ∈ L do

12: if ai.layer == k then

13: tmp1← a1.Child1{only index needed}
14: tmp2← a1.Child2{only index needed}
15: tmp3← tmp1.Parent2{assume that Parent1 is ai and tmp3 is some ah}
16: tmp4← H(a1.Label(), ah.Label())

17: a1 ← (tmp1, tmp4)

18: a1.layer ++

19: tmp4← H(ah.Label(), a1.Label())

20: ah ← (tmp2, tmp4)

21: ah.layer ++

22: else

23: Go to the next element in L

24: end if

25: end for

26: end for

Algorithm 6 i-Pebbler

1: Input: A GT graph with 2i sources

2: Storage capacity: 2i+1

3: Output: The label of the unique sink

4: Pebble the sources of C2(i− 1)

5: Use the additional 2i registers to hold the labels of the initial sources

Lemma 3.4.4.3. The graphPoSE is 1/32-robust

Proof. The lemma holds using lemmata 3.4.4.1 as well as algorithm 5
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Chapter 4

Conclusions & Future Work

In the following table, we show the results and compare the PoSEs that have been proposed

in the literature, along with our two constructions. One can see that the problem of erasing

securily all the contents of a devices’ memory is still open: On one hand Tsudik’s solu-

tion guarantees the erasure in the standard model, but pays in communicating complexity.

Diembowskis’ solution also guarantees secure erasure, but the time complexity is very high,

while at the same time the protocol is being proven secure in the random oracle model.

Our iHash guarantees secure erasure but only in a specific adversarial model. And the

graphPoSE guarantees erasure of only a fracture of the provers’ memory. This is only the

beginning of the research in this field, which due to its practical applications seems like it

will receive more interest in the near future. When this done, these protocols could become

part of any code update.

Communication Complexity Time α

[PT10] S S 1− ϵ

[DKW11] log γ−1 S2 1− ϵ

iHash 1.39(1− α)−1 log γ−1 S logS · 1.39(1− α)−1 log γ−1 any

graphPoSE log γ−1 S logS 1/32
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Appendix A

Arrowhead Functions are CRR

Let G be an arrowhead graph, as described in [DKW11] and n be the maximum number

of nodes, that we can have in memory. Then the total number of nodes for an arrowhead

graph is n(n + 1)/2 (excluding the input node). In order to run the protocol described in

[DKW11], the prover has to create G. However in order to represent this graph, the prover

has to use more memory than what he has available. In this section we give a polynomial

time and constant space algorithm, that given a node of an arrowhead function, returns

its incoming edges, thus proving that the arrowhead head functions used in [DKW11] are

compactly recursively representable.

We name the nodes in increasing order starting from 0 for the input node and ending

with n(n + 1)/2 for the output node. An instance of a resulting graph can be seen in the

following picture:
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Let level 1 be the level of the output node, increasing to level n + 1, which will be the

input nodes’ level. Then we can see that for a node u, its’ right parent is u− level and its’

left parent is u − level − 1, unless the nodes’ level is equal to n, in which case we set its’

left parent equal to NULL and its’ right parent equal to 0. So all one needs to do is to find

the nodes’ level, which in order to do, it suffices to run the following algorithm:
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Algorithm 7 LevelFinder(u, n)

1: Input: u the node’s name whose level we want to find,

n the input node’s number of children

2: A = n

3: if A ≥ u then

4: level = n

5: else

6: for i = 1 to n do

7: A = A+ n− i

8: if A ≥ u then

9: level = n− i

10: break

11: end if

12: end for

13: end if

14: return level

The above algorithm clearly runs in polynomial time and in constant space, thus proving

the statement.
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Appendix B

Graph PoSE with other

Superconcentrators

We begin by describing the N−superconcentrator construction given in [AC03]: First we

need to construct a 9-regular Ramanujan graph with k · 218l−c vertices. To do this we need

to:

1. Select an irreducible polynomial of degree 2, g in the field of 8 elements, F8[x] and

construct the field Kl = F8[x]/gF8[x]

2. Construct the group Hl = PGL2(Kl)
1.

3. Fix a γ in F8[x] such that the resulting polynomial q(x) = x2 + x+ γ is irreducible in

F8[x] and let βl be a root of q(x) in F8[x]/g
l(x)F8[x]. Let Σl be the following subset

of Hl:

Σl =

{(
1 ϵ+ δβl

(ϵ+ δβl + δ)x 1

))
: δ, ϵ ∈ F8, ϵ

2 + ϵδ + δ2γ = 1} (B.1)

Then Σl has 9 elements, each of degree 2 in PGL2(Kl)

4. Consider the set

H′ =

{(
1 + gl(x)s gl(x)r

tgl(x) 1

)
: r, s, t ∈ F8[x]/gF8[x]

}
1recall that PGL2(Kl) = GL2(Kl)/Z(Kl), where Z(GL2(PGL2(Kl))) = {cI, c ∈ Kl} and I the 2 × 2

identity matrix
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which forms a group under multiplication and is isomorphic to F18
2

2. Then for every

c ≤ 18 there exists a subgroup H′
c ≤ H.

5. The Schreier graph Λl = (Hl+1; Hl+1/H
′
c; Σl+1) is a 9-regular Ramanujan graph with

k · 218l vertices.

Lemma B.0.4.4. The family of explicitly constructed 9-regular Ramanujan graphs pre-

sented in [AC03] is Compactly Recursively Representable.

Proof. First we show that the 9-regular Ramanujan graph Λl is CRR: Let Λl be the Schreier

graph (Hl+1; Hl+1/H
′
c; Σl+1). For ease of reading, for a polynomial f(x) we will write simply

f . The vertices of this graph will be cosets, whose elements will be 2×2 matrices (represented

as 4 dimensional vectors) of the form a1 + gp1 + (a1s+ a2t)g
l a2 + gp2 + ra1g

l

a3 + gp3 + (a3s+ a4t)g
l a4 + gp4 + ra3g

l

 (B.2)

where aj , s, r, t ∈ K1 = F8[x]/g(x)F8[x] and pj ∈ Kl, j ∈ {1, 2, 3, 4} and the edges will be

of the form (u, u · σi), where u is a coset g1Hl+1/H
′
c, g1 ∈ Hl+1, σi ∈ Σl and i ∈ {1, · · · , 9}.

We will show that for every c ≤ 18, there exists a family of vertices, called coset leaders,

with the following properties:

1. Every coset has exactly one member in this family.

2. For every coset it is easy to find its leader, given a member of the coset.

We examine the case where c = 18. Observe that an element of the coset will be of the

form (
υ1 + (a1s+ a2t+ π1)g

l υ2 + (ra1 + π2)g
l

υ3 + (a3s+ a4t+ π3)g
l υ4 + (ra3 + π4)g

l

)
, (B.3)

where aj , s, r, t ∈ K1, pj ∈ Kl and υj , πj are the remainder and the quotient respectively,

of aj + gpj divided by gl, j ∈ {1, 2, 3, 4}. By the construction of K1 we have that (since

a1a4 ̸= a2a3) it is always possible to find s and t such that:(
a1 a2

a3 a4

)(
s

t

)
=

(
−π1
−π3

)
(B.4)

2H′ is the kernel of a surjective homomorphism ϕ : Hl+1 → Hl such that(
a11 a12

a21 a22

)
7→

(
a′
11 a′

12

a′
21 a′

22

)
where a′

ij = aij mod gl(x) for each i, j ∈ {1, 2}.
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If a1 ̸= 0 then by setting r = −π2/a1, the coset leader will be:(
υ1 υ2

υ3 υ4 +
(
π4 − π2a3

a1

)
gl(x)

)
, (B.5)

and if a1 = 0 we have that a3 ̸= 0 and setting r = −π4/a3 we set the coset leader to be:(
υ1 υ2 + π2g

l(x)

υ3 υ4 + (π4 + ra3)g
l

)
, (B.6)

Identifying a coset leader is easy, since by its form in (B.5) we see that υ1, υ2, υ3 will be

encoded as bitstrings, whose bits after position 2l will be zeros, while υ4 will have at least

one bit equal to 1 after the position 2l. Therefore in order to find out if an element is the

coset leader or not, we just need to check that in υ1, υ2, υ3 all bits after the position 2l are

zeros and there is at least one bit different than zero, after the 2l position in υ4.

Next we show that the coset leader is unique for every coset: Let g1H
′
18 be a coset and

suppose that there exist two different coset leaders,(
υ1 υ2

υ3 υ4 +
(
π4 − π2a3

a1

)
gl(x)

)
and

(
υ∗1 υ∗2

υ∗3 υ∗4 +
(
π∗
4 −

π∗
2a

∗
3

a∗1

)
gl(x)

)

Then it is easy to see that υi = υ∗i , and πi = π∗
i for i ∈ {1, 2, 3, 4} because of the uniqueness

of polynomial division.

The last step that we need to show, is that if l1 and l2 are coset leaders from different cosets,

found from two elements x and y respectively and l1 = l2, then x = y.

Let x ∈ g1H
′
18, y ∈ g2H

′
18,

g1 =

 a1 + gp1 a2 + gp2

a3 + gp3 a4 + gp4

 , g2 =

 a∗1 + gp∗1 a∗2 + gp∗2

a∗3 + gp∗3 a∗4 + gp∗4


and

x =

(
x1 x2

x3 x4

)
=

(
υ1 + (a1s+ a2t+ π1)g

l υ2 + (ra1 + π2)g
l

υ3 + (a3s+ a4t+ π3)g
l υ4 + (ra3 + π4)g

l

)

y =

(
y1 y2

y3 y4

)
=

(
υ∗1 + (a∗1s+ a∗2t+ π∗

1)g
l υ∗2 + (ra∗1 + π∗

2)g
l

υ∗3 + (a∗3s+ a∗4t+ π∗
3)g

l υ∗4 + (ra∗3 + π∗
4)g

l

)
By our assumption we have that l1 = l2, or in other words:
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(
υ1 υ2

υ3 υ4 + (π4 − π3a3/a1)g
l

)
=

(
υ∗1 υ∗2
υ∗3 υ∗4 + (π∗

4 − π∗
3a

∗
3/a

∗
1)g

l

)
which means that υi = υ∗i for i ∈ {1, 2, 3, 4},
Equivalent arguments hold for the case where a1 = 0 and the coset leader is of the form

(B.6).

Given the above, the algorithm for finding the coset leader, given an element in the

coset (CosetLeaderFinder(u), where u is the given coset element) is straightforward:

Algorithm 8 CosetLeaderFinder(v)

1: Input: A coset member of the form (B.3)

2: Solve the system in (B.4)

3: if a1 ̸= 0 then

4: return the coset leader of the form (B.5)

5: else

6: return the coset leader of the form (B.6)

7: end if

and the following algorithm for finding the predecessors of a given vertex v ∈ V can be

implemented by a circuit of polylogarithmic size and is as follows:

Algorithm 9 SuperConcentratorPredecessorFinder(v)

1: Initialize a queue Q

2: u = CosetLeaderFinder(v)

3: for σi ∈ Σl do

4: t = u · σi
5: t = CosetLeaderFinder(t)

6: Q← t

7: end for

Definition B.0.4.1. Let x be a coset leader of the form (B.5) or (B.6). Define its

representational number (reprNumber) be the integer which has the binary representation

of the concatenation of υ1, υ2, υ3, υ4+(ra3+π4)g
l in the first case or the binary representation

of the concatenation of υ2 + π2g
l(x), υ3, υ4 in the latter case.

Lemma B.0.4.5. The family of explicitly constructed Superconentrators presented in [AC03]

is Compactly Recursively Representable.
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Proof. Let X be a set of coset leaders defined in (B.0.4.4) and |X| = N = 262, 080 · 2l.
The graphs’ vertices will consist of four copies of X, X1, X2, X3, X4. In the representation

of every coset leader we will add an index, that signifies the copy of X, in which this coset

leader belongs. The vertices in X1 will be the input nodes of the superconcentrator and the

vertices of X4 will be the output nodes of the superconcentrator. The edges will be added

in the following manner (where an edge (a, b) will be directed from a to b):

• For a vertex u ∈ X4 its incomming edges are the set:

{(u · σi, u, 3), σi ∈ Σl as it is defined in (B.1)} ∪ (u, u, 3)

• For a vertex u ∈ X3 we have the following two cases:

– If numRepr(u) ≤ N/2 then its incomming edges will be (v, u, 3), (v, u, 2), where

numRepr(v) = numRepr(u)+N/2 and the 9 incoming edges when considering the

Ramanujan graph with output nodes, the ones in X3 that have numRepr ≤ N/2

and input nodes the ones in X2 that have numRepr ≤ N/2.

– If numRepr(u) > N/2 then its only incoming edge will be (v, u, 2), where numRepr(v) =

numRepr(u)−N/2

For a vertex u ∈ X2 we have again two cases:

– If numRepr(u) ≤ N/2, then its incomming edges will be the set

{(u · σi, u, 1), σi ∈ Σl as it is defined in (B.1)} ∪ (u, u, 1)

and (v, u, 2), where numRepr(v) = numRepr(u) +N/2.

– If numRepr(u) > N/2, then its incomming edges will be the set {(u ·σi, u, 1), σi ∈
Σl as it is defined in (B.1)} ∪ (u, u, 1).

Remark. For the graphs to work in the setting we want, the superconcentrator must have

bounded indegree 2. However in the above construction, the nodes’ indegree vary from 9

to 11. This can be easily fixed by making the following adjustment, which we present for

the case of indegree 9 and can be easily extended to the cases of 10 and 11.

In the description of a vertex v we will add the 9 elements σi ∈ Σl defined in (B.1) along

with a pointer, which we will symbolize here with ∗. v will be connected with an incoming

edge to a vertex whose description will be (v · σ9, σ1, · · · , σ9) and to a vertex uv7 whose

description will be (v, σ1, · · · , σ8, σ∗
9). u

v
7 will be connected to uv6, whose description will be
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(v, σ1, · · · , σ∗
8, σ9). In a similar manner we will make the connections to uv6, · · · , uv2 and we

will connect uv1 to the two vertices with description (v · σ1, σ1, · · · , σ9), (v · σ2, σ1, · · · , σ9).
A graphical depiction of the above described procedure follows.

Figure B.1: Changing bounded indegree 9, to indegree 2

In a similar manner we can connect all the output nodes to one single output node,

preserving the constant indegree 2 property for every graph node. We therefore have the

following

Definition B.0.4.2. (Single-sink/Single-source Superconcentrator). LetG be anN−superconcentrator
with sinks Z(G) = {z1, . . . , zN} for N > 1 and sources S(G) = {s1, . . . , sN}. The single-sink
version G, consists of all vertices and edges in G plus the extra vertices {z∗1 , . . . , z∗N} and the

edges {(z1, z∗1), (z2, z∗1), (z∗1 , z∗2), (z3, z∗2), (z∗2 , z∗3), (z4, z3∗}), etc. up to {(z∗N−2, z
∗
N−1), (zN , zN−1)}

and an extra vertex S0 along with the edges {(S0, s1), (S0, s2), . . . , (S0, sN )}.

Lemma B.0.4.6. The Gilbert-Tarjan graphs using the superconcentrators from [AC03] are

CRR.

Proof. Let G be Gilbert-Tarjan graph with N(l) = K · 2l+1 output nodes. We divide G in

6 layers, namely:

• layer 1, which contains the graphs’ input nodes,

• layer 2 which is the first copy of the superconcentrator C1
i ,

• layer 3 which is the first copy of the Gilbert-Tarjan graph with N(l) nodes, Ξ1
i ,

• layer 4 which is the second copy of the Gilbert-Tarjan graph with N(l) nodes, Ξ2
i ,

• layer 5 which is the first copy of the superconcentrator C2
i and

• layer 6 which contains the graphs’ output nodes.
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In every nodes’ description we will add an index j, j ∈ {1, 2, · · · , 6} which will indicate the

layer at which the node resides. Let Pi(x) be the i-th (i ∈ {1, 2}) predecessor of node x.

Then the algorithm recursive algorithm, which returns x’s predecessors is:

Algorithm 10 PredFinder(x)

1: if layer ̸= 2 then

2: if x > N(l) then

3: P1(x) = (x−N(l), 5)

4: P2(x) = (x, 1)

5: else

6: P1(x) = (x, 5)

7: P2(x) = (x, 1)

8: end if

9: else

10: P1(x) = (x, 1)

11: P2(x) = (x+N(l), 1

12: end if

Combining (B.0.4.5), (B.0.4.1) and (B.0.4.2) we attain the result.

By the above construction we have that the representation of a node of the graph will

be a vector of the form:

((ai)
4
i=1, (σj)

9
j=1, k, l,m)

where ai, i ∈ {1, 2, 3, 4} is the coset leader representation (B.5) or (B.6), σj , j ∈ {1, . . . , 9}
are the elements in Σl as described in (B.0.4.1) and (B.1), k will be the representational

number of (ai)
4
i=1 as defined in (B.0.4.1), l will be the layer of the superconcentrator and

m will be the layer of the Gilbert-Tarjan graph.
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