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Abstract

In recent years, the technology of mobile communications has evolved rapidly
due to increasing requirements, such as access to Internet services via mobile
phones and requirements better quality services. Nowadays, the devices use
the Long Term Evolution (LTE), which called also as 4G networks. The fourth
generation (4G) networks replace the third networks generation (3G) and offer
to users improved services at higher speeds. Mobile devices to access the
Internet, such as smartphones, tablet PCs and netbooks are in high demand
in the market for it is an effort to develop in energy consumption level, that
the user does not need recharge the device at regular time intervals. Game
theory provides valuable mathematical tools that can be used to solve problems
of wireless communication networks and can be applied to multiple layers of
wireless networks.

In this thesis, we study power control issue and consider it at the physical
layer of wireless networks. Specifically, we study game theoretic models for
power control in wireless communication networks (CDMA & LTE). In the
game theory, we have focused in the non-cooperative power control games
and assumed that both transmitters and receivers are selfish and rational. In
addition, we insert regret learning techniques and their connection with the
game theory. Finally, we investigate the regret learning techniques applied to
the problem of power control in the next generation networks.

Keywords

Game Theory, Non-Cooperative games, Cooperative Games, Power Control,
Wireless Networks, Regret Learning Algorithms, No-External Regret, No-
Internal Regret, No-Swap Regret, LTE/LTE-Advanced, Uplink Transmission
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Chapter 1

Introduction

An important part of applied mathematics is the game theory. That means,
game theory is an important study tool for our everyday life. Our actions or
moves for a situation depends not only on what we do, but also on what other
people do. Some examples or else ”games” in game theory are the negotiation
of a price with a seller, the vote at a presidential election, the participation in
an auction on the Internet, even for trying to find a seat in a bus. Other most
known games are chess, football, monopoly, etc.

Therefore, people have interactions between them for a situation. Their
decisions for an everyday problem depends on themselves and the actions from
the other people, so they are interdependent. Then, a game consist of two
players or multi-players and they can have conflicting or common interests.
All the players can have a strategy in order to move for a situation. Game
theory provides mathematical process for selecting an optimum response to
player to face the opponent player. Therefore, a definition of Game Theory
can be as follows: a set of tools developed to analyze the interactions among
multiple agents to achieve their goals. Game theory has been applied to many
fields such as biology, economics political science, law, sociology, phylosophy
and computer science.

Recently, the game theory is used more and more in computer science and
specific in artificial intelligence, cybernetics, and networks. Using the game
theory, we can model scenarios in which there is no centralized entity with
full/partial information network conditions. Thus, considerable interest has
been observed mainly in solving communication and network issues. The most
interest for research using the game theory in these issues are the congestion
control, the routing, the power control, the flow control and the adaptive
interference avoidance.

In continuous of this chapter, we introduce some historical points of game
theory and its connection with communications networks and mainly with the

11



1.1 The Relation between Games and Wireless Networks 1. Introduction

power control in wireless networks. Also, we introduce the evaluation of the
wireless networks from CDMA to LTE and LTE-A (4G) networks. The aim
and the motivation of this thesis is the connection of the next generation of
wireless networks (LTE-A) with the game theory. Finally in this section, we
analyze the motivation and the scope of this thesis.

1.1 The Relation between Games and Wire-

less Networks

The game theory can be classified as cooperative, non-cooperative. In non
cooperative games, the agents make decisions independently and can not coor-
dinate their strategies. Each non-cooperative game consists of a set of players,
a selfish utility function for each player and a set of feasible strategy space
for each player. To solve a problem in this theory, we study the existence,
the uniqueness, the stability under various strategies and optimality gap. The
basic element of the non-cooperative game theory is the Nash equilibrium [1].
Thus, in the non-cooperative networks, the agents are involved in the non-
cooperative games.

A cooperative game is a game, that groups of players may enforce to work
together to maximize their payoffs. Then, in this case, there is a competition
between coalitions of players, rather than between individual players. In the
cooperative networks, the agents are involved in the cooperative games. In
the cooperative game theory, the wireless agents (users) in a network have
an agreement on how to fairly and efficiently share the available spectrum
resources [1].

The optimization of Wireless networks is a vast area of research. The
systems of Telecommunication such as cellular networks, Wireless Local Area
Networks (WLANs), Long Term Evolution (LTE) systems and cognitive radio
systems have been designed using layered architecture based models.

The layers of OSI and the connection with the corresponding application
fields are as follows:

Layer Application Field
Tranport Call admission control,

Load Control, Cell selection
Network Routing

Data Link Medium Access Control
Physical Power control, Spectrum allocation,

Cooperative communications, MIMO systems

12



1. Introduction 1.2 Historical Points

The components of a wireless network can be represented as components
of a game. Figure 1.1 shows this connection.

Figure 1.1: The connection between of the game theory and the wireless net-
works

1.2 Historical Points

1.2.1 Game Theory

Historically, the first published problems/games are developed by the compe-
tition of Cournot at the end of the 19th century. In the early of 20th century,
Emil Borel worked systematically with games for two players with zero-sum.
The zero-sum means that one of the two players gains and the other losses,
then there is not cooperation between of these players. In the other hand,
Borel could not to answer in the question about the existence of the solution
for an arbitrary game. The first textbook about game theory published in
1944 with title ”The Theory of Games and Economics Behavior” by John von
Neumann and Oscar Morgenstern. In the last of 20th century (1928), John von
Neumann proved the existence and uniqueness of a solution using the theorem
of Brouwer’s fixed point theorem. This theorem is called Minimax theorem.
In 1950, John Nash introduced a generalization of the Minimax theorem. The
thesis of Nash, contained the definition and properties of equilibrium for non-
cooperative games and so called the ”Nash Equilibrium”. Since then, many
others researchers have contributed to game theory and its applications to
many fields.

13



1.2 Historical Points 1. Introduction

1.2.2 Game theory in Communication Networks

Game theory has recently been applied to telecommunications. Indeed, this
theory can be applied to analyze interactions between entities such as telecoms
regulator, operators, manufactures and customers. The connection between
game theory and communication problems is started by Benoit Mandelbrot in
his thesis in 1952. From then, the interest of the game theory in the area of
wireless communications has increased more and more.

In communications engineering, game theory is often used for distributed
resource management algorithms. Some applications of game theory in wire-
less communications are transmission or power control, pricing, flow control,
congestion control and load balancing.

More specific, power control in cellular networks has been extensively stud-
ied since the late 1980s as an important mechanism to control Signal-to-
Interference Ratios (SIR), which in turn determine Quality-of-Service (QoS)
metrics such as rate, outage, and delay [2].

In 1992, the work of Zander was one of the first studies about the power con-
trol techniques in cellular networks. The aim of Zander was to investigate the
performance of transmitter power control algorithms and to find performance
bounds and conditions of stability for all types of transmitter power control
algorithms. He proposed a centralized power control scheme and proved that
there is a unique solution. The unique solution is always feasible. This means
that all the links converge to the same SIR, thus the system is in balanced.

An other study, Foschini and Miljanic (1993) [3] proposed an iterative dis-
tributed protocol in order to solve the problem of power control in cellular
networks using the game theory.

The studies of Foschini, Miljanic and Zander were very important and
useful for study and research from many other researchers. In chapter 4, we
study and analyze the work and the outcomes of these authors. However, we
will introduce additionally important studies for the power control.

In a later work, J. Dams, M. Hoefer, T. Kesselheim [4] proposed an other
technique, the regret learning in non-cooperative networks, in order to solve
drawbacks of the iteration of [3] such as lack of robustness, the adaption of
power when the SINR is known.

In [5], the authors study algorithms in wireless networks where there are
intereferences, using the Rayleigh model. For this reason, this model based
on the SINR using stochastic propagation to address fading effects observed
in reality. Also, they study the behavior of the external regret learning of
some user at a time T. The authors apply the regret learning in ordrer to
achieve the maximum capacity. In continuous, they proved that any no-regret
learning algorithm, the number of successful transmissions needs to converge

14



1. Introduction 1.3 Motivation and Scope of this Thesis

to a constant fraction of the non-fading optimum.

1.3 Motivation and Scope of this Thesis

In this thesis, we consider that the players of the games are user equipments
such as mobile phones, base stations. Interaction between mobile phones is
naturally present in wireless networks, since interference often exists and com-
mon resources must be shared.

Nowadays, in our smartphones and tablets is the fourth generation of mo-
bile telecommunicaions technology, which called also Long Term evolution
(LTE or 4G). LTE is an enhancement to the Universal Mobile Telecommunica-
tion System (UMTS) which will be introduced in 3rd Generation Partnership
Project (3GPP) Release 10. One important feature of 3GPP LTE system, dif-
ferentiating it from previous generations of cellular systems, is the distributed
network architecture.

In particular, we assume that our network is compatible with the LTE
Release 10 and beyond (LTE-Advanced) in 3rd Generation Partnership Project
(3GPP) standard for wireless data communications and the wireless devices are
in a non-cooperative network. Our goal is the minimum transmisstion power
with the maximum throughput in a realistic environment based on economic
incentives rules.

1.4 Organisation of this Thesis

The remainder of this thesis is organised as follows:

• In chapter two, we analyze the game theory, which can be classified as
cooperative and non-cooperative games.

• In chapter three, we analyze the regret learning techniques.

• In chapter four, we analyze and discuss about some notations of the
wireless netwotks, as well as the next generation wireless networks (LTE-
A). Mainly, we focus on the related work for the power control in CDMA
and LTE networks.

• In chapter five, we propose a network system model.

15
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Chapter 2

Game Theory

Game theory is a mathematical tool for analyzing the strategic interactions
between agents. Historically, the first publication of game theory and economic
behavior was 1944 by Von Neumann and Oskar Morgenstern [6], [1]. During
the 1950, John Nash developed the concept of Nash equilibrium. A Nash
equilibrium consists of strategies of players in a game [1]. A Nash equlibrium
is a stable point that no user can gain by unilaterally deviating, which means
that no player has incentive to change his strategy [7].

The Prisoner’s Dilemma is the most well-known and well-studied game in
the literature of game theory [8]. The participants of this game interact or
affect each other’s outcomes. The description of this Dilemma is as follows:
There is a crime and two prisoners, who are on trial. Each one of prisoners have
to make a decision to confess or to non-confess. If they both do not confess,
then the authorities have not elements against of them. Thus, we assume that
the authorities will give 2 years to each of them. If only one of them do not
remain silent then the authorities will give him one year and the other prisoner
will have 5 years. If they both confess, then will give 4 years to each of them.

Therefore, these two prisoners have to choose between two possible strate-
gies, to confess or to non-confess. The four outcomes are the costs incurred
by the players in each situation. The strategies and the costs are presented
in the following table. From the table, we can observe that the only stable
solution in this game is that both prisoners confess, that at least one of the
prisoners can switch from non-confess to confess and improve his own payoff.
But, the better solution for both prisoners is when neither of them confesses.
This solution is not a stable solution because of each of them prisoners would
be tempted to defect and thereby serve less time.

A confess A non-confess
B confess (4, 4) (1, 5)

B non-confess (5, 1) (2, 2)

17



2. Game Theory

A strategic-form game model has three components: a finite set of players,
denoted by N, a set of possible actions for each player i, denoted by Ai and
a set of utility functions, denoted by ui : A → <. A Nash equilibrium is a
strategic profile a ∈ A of actions such that for every player i ∈ N,

u(ai, a−i) ≥ u(a∗i , a−i)

However, the main types of representation of a game are:

• strategic form or else normal form. It is the most used form in the
game theory and wireless networks. A strategy can be a pure strategy
of a player, this means that the strategy assigns zero probability to all
moves, except one. But, a strategy can be a mixed strategy, this means
that there are more and different moves with different probabilities. A
game with this form is usually represented by a matrix which shows the
players, strategies, and payoffs such as we see in the previous example,
the Prisoner’s Dilemma.

• extensive form. A game in this form is represented as a tree, where
the root of the tree is the beginning of the game. A sequence of moves
defines a path on the tree and is referred to as the history of the game.
The terminals nodes of the tree defines the outcome and is assigned
the corresponding payoffs. Every extensive form can be transformed to
a strategic form and reverse. This form is used to describe dynamic
games, this means that the players have a sequential interaction. Thus,
the players have some information about the choices of the other players.
This form is more complete than the strategic form.

• coalition form or else characteristic function form. This form is used in
non-cooperative games. The characteristic function describes how much
collective payoff a set of players can gain by forming a coalition. Then
the game is sometimes called a profit game.

The games can be classified according to their features mainly as state or
dynamic games, cooperative or non-cooperative games. Therefore, the strategic
form and the extensive form are used to describe non-cooperative games. On
the other hand, the coalition form is used to describe cooperative games.

In this chapter, we discuss about cooperative and non-cooperative games.
We analyze separately each area, given definitions and games/examples. Also,
we discuss and analyze the fundamental concepts of game theory and the
connection of this theory with a traditional wireless network.

18



2. Game Theory 2.1 Cooperative Games

2.1 Cooperative Games

In game theory, a cooperative game is a game where groups of players may
enforce cooperative behaviour. A group of players is also called as a coalition.
However, in this game exists a competition between coalitions of players, rather
than between individual players. The cooperative games pay attention to the
fairness and effectiveness.

An example is the following: we have two cars, which are running on the
same narrow road head to head. Then, the drivers should choose a side to
swerve in order to avoid the collision. If the drivers cooperate with each other
and choose different sides to swerve, they can avoid the collision. If they choose
the same side, they can not pass each other. In continuous, a table of this game
is represented:

Left Right
Left (0, 0) (5, 5)

Right (5, 5) (0, 0)

The above table shows us the payoff of pass for one driver as 0 and then
the payoff for the other driver is 5, which means that there is a collision. If
the drivers cooperate with each other, the payoff will be 5 to each other. We
can observe, that there are two Nash equilibrium: (5, 5) and (5, 5), that they
choose different side. Then, thay can have a Pareto efficiency solution.

In the cooperative networks, the agents are involved in the cooperative
games. In the cooperative game theory, the wireless agents (users) in a net-
work have an agreement on how to fairly and efficiently share the available
spectrum resources [1]. The users may increase the Quality of Service (QoS)
via cooperation [9]. In a cooperative communication, the single antenna mo-
biles in a multi-user environment can share their antennas such as these can
generate a virtual multiple-antenna transmitter that allows them to achieve
transmit diversity. Thus, in a cooperative communication system, each wire-
less user can transmit data as well as act as a cooperative agent for an another
user, as illustrated in the Figure 2.1.

In this section, we study two types of cooperative games. Thus, we study
the bargaining games and the coalitional games.

2.1.1 Bargaining Games

A known game for cooperation is the bargaining game. In the bargaining game,
the users have the opportunity to reach a mutually beneficial agreement.

19



2.1 Cooperative Games 2. Game Theory

Figure 2.1: Cooperative communication

In [1] the authors considered two players and they are in bargaining game.
This bargaining problem is a pair of (U, (u0

1, u
0
2)), where U ⊂ <2 is a compact

and convex set and there is a set of possible utility pairs. Therfore, there is at
least one utility (U, (u1, u2)) such that u1 > u0

1 and u2 > u0
2. A solution of this

problem is (u∗1, u
∗
2)=f(U, (u0

1, u
0
2)).

There is a list of axioms that must be satisfied:

• Individual rationality : u∗1 > u0
1 and u∗2 > u0

2.

• Feasibility : (u∗1, u
∗
2) ∈ U .

• Pareto efficiency : If (u1, u2), (u′1, u
′
2) ∈ U , u1 < u′1 and u2 < u′2 then

f(U, (u0
1, u

0
2)) 6= (u1, u2).

• Symmetry : (u1, u2) ∈ S ⇔ (u2, u1) ∈ S and u0
1 = u0

2. Then u∗1 = u∗2.

• Independence of irrelevant alternatives : If (u∗1, u
∗
2) ∈ U ′ ⊂ U , then

f(U ′, (u0
1, u

0
2)) = f(U, (u0

1, u
0
2)) = (u∗1, u

∗
2).

• Independence of linear transformations : Let u′1 = c1u1 + c2 and u′2 =
c3u2 + c4 with c1, c3 > 0. Then f(U ′, (c1u

0
1 + c2, c3u

0
2 + c4)) = (c1u

∗
1 +

c2, c3u
∗
2 + c4).

The basic element of the cooperative game theory is the Nash Bargaining
Solution (NBS). For two-player bargaining game, the NBS is as follows:

(u∗1, u
∗
2)=arg max (u1 − u0

1) · (u2 − u0
2)

For more players the NBS is as follows:

s∗=arg max
∏N

i=1(ui − uri )

where N is the players and uri is the target utility value which the user will
realize.

20



2. Game Theory 2.1 Cooperative Games

2.1.2 Coalitional Games

An other known game for cooperation is the coalitional game. In this game, a
set of players can cooperate with others by forming cooperating groups. Let
N is denoted the set of players, that N = {1, 2..., n} and S ⊆ N , S 6= ∅ is a
coalition. The set of all coalition is denoted by 2N . The set N is also a coalition
and is called as grand coalition. Also, there is the empty coalition for the
empty set. The worth, the value or the power of coalition S is denoted as vS,
that the players in S are in cooperation.

For a game with two players, i.e. n=2, then there is a set of 4 coalition
{∅, {1}, {2}, N}. For a game with three players, there is a set of 8 coali-
tion {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, N}. Then, for n players, we have 2N

coalitions. In continuous, the coaltitonal form is defined as [10]:

Definition 2.1.1 Coalitional Form or Characteristic Function Form:
The coalitional form of an n-person game is given by the pair (N, v), where
N = {1, 2..., n} is the set of players and v is a real-valued function. This form
called the characteristic function of the game, defined on the set, 2N , of all
coalitions and satisfying

• v(∅) = 0, i.e. the empty set has value equals to zero.

• Superadditivity: if S and T are disjoint coalitions (S ∩ T = ∅), then
v(S) + v(T ) ≤ v(S ∪ T ), i.e. the value of two disjoint coalitions is at
least as great when they work together as when they work apart.

Definition 2.1.2 Core: In a coalitional game < N, v >, its core is the set
of feasible payoff profile (xi)i∈N for which there is no coalition S and S-feasible
payoff vector (yi)i∈S such that yi > xi, ∀i ∈ S.

C = {(xi) :
∑
i∈N

xi = v(N) and
∑
i∈N

xi ≥ v(S), ∀S ⊆ N}

The core is the set of payoff profiles that satisfy a system of weak linear
inequalities, and thus is closed and convex. We can sovle a linear program in
order to compute the core:

min(xi)i∈N

∑
i∈N

xi∑
i∈N

xi = v(N)∑
i∈N

xi ≥ v(S),∀S ⊆ N

Definition 2.1.3 A game with no transferable utility or NTU game is a func-
tion V that assigns every coalition S a set V (S) ⊂ RS.
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Definition 2.1.4 A game V is transferable utility or TU game if for a real-

valued function v = (v(S))S∈C, V (S) =

{
uS ∈ RS :

∑
i

uSi ≤ v(S)

}
.

The existence of the core depends on the feasibility of the linear program
and is related to the balanced property of a game. A coalitional game with
transferrable payoff is called balanced iff holds the above:∑

S⊆N
λSv(S) ≤ v(N),∀λ = (λS)S⊆N ,

where λ is a non-negative weight collection.

Theorem 2.1.1 A coalitional game with transferrable payoff has a non-empty
core iff it is balanced.

Shapley proposed a solution concept, known as the Shapley value ψ. In
each player in the game is assigned a unique payoff value. The value ψi denotes
the payoff assigned to player i accordding to the Shapley value.

In continuous, there is a list of axioms that must be satisfied:

• Symmetry : If player i and player j are interchangeabl in v, i.e. v(S∪ i) =
v(S ∪ j) for every coalition S that does not contain player i or j, then
ψi(v) = ψj(v).

• Dummy player : If player i is a dummy in v, i.e. v(S) = v(S∪ i) for every
coalition S, then ψi(v) = 0.

• Additivity : For any two games u and v, define the game u + v by (u +
v)(S) = u(S) + v(S), then ψi(u+ v)(S) = ψi(u) + ψi(v) for all i ∈ N .

• Efficiency :
∑
i∈N

ψi(v) = v(N).

The Shapley value is the only value that satisfies all the above axioms, and
is usually calculated as the expected marginal contribution of player i when
joining the grand coalition given by

ψi(v) =
∑

S⊆|N |−i

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ i)− v(S)].
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2.2 Non-cooperative Games

In the non-cooperative networks, the agents are involved in the non-cooperative
games. The basic element of the non-cooperative game theory is the Nash
equilibrium [1]. A Nash equilibrium of a game is the strategy profile such that
no agent can decrease his individual cost by unilaterally changing his strategy.

In this subsection, we will see the meanings of the strategic form, the Nash
equilibrium and when a strategic game is pure strategy and when is mixed
strategy. A game can have complete information or incomplete information.
Also, a game can be static which means that the players have not more than
one move. But a game can be dynamic, which means that the players can
observe previous moves or data and after they make a new decision to move.
Therefore, the dynamic games are general game models.

In continuous, we will introduce some conditions that can gurantee us the
uniqueness of equilibrium. A game can have more than one equilibrium, then
there are also some conditions in order to select one of these equilibrium. So,
we will see the definition of Pareto optimality, which is widely used in the game
theory.

2.2.1 Strategic Form

The components in a strategic form game model are the N set of players, the Ai
set of actions for each player i and the ui: A→ <, which is the payoff/utility
function. The payoff function measures usually the outcome for player i of a
stage. While, the utility is usually used for the outcome for a player i, which
determined by the actions of all players (whole game). This strategy game can
be represented as G =< N, (Ai), (ui) >.

The utility or payoff ui expresses the benefit of player i given the strategy
profile s. However, the normal form is a matrix representation of a static game.
A static game can be also called as simultaneous game. A static game is one
in which all players make decisions without knowledge of the strategies that
are being chosen by other players. But there is the case, that the players
make decisions at different points in time, then the game is also simultaneous
because each player has no information about the decisions of others.

A game with normal form is usually represented by a matrix which consists
of the players, their strategies, and their payoffs. Thus, Let we have a game
with two players, then one is the ”row” player, and the other, the ”column”
player. Each rows or column represents a strategy and each box represents
the payoffs to each player for every combination of strategies. Generally, such
games are solved using the concept of a Nash equilibrium. The definition of
the Nash equilibrium is refered in the next paragraph.
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The prisoner’ dilemma is an example of a static game. An other example
is the ”Rock-Paper-Scissor” game. Both of the players can make a decision
at the same time, randomly. Each of the players have no information about
the decisions of the other. Therefore, there is a game with two players and
each of them has 3 different strategies to make decision. Then, we have a 3×3
table because of the combination of their strategy profiles forms. Thus, the
Player 1’s strategies are denoted as rows and Player 2’s strategies as columns.
In each cell, the first number represents the payoff to the Player 1 and the
second number represents the payoff to the Player 2.

p1/ p2 Rock Paper Scissor
Rock (0, 0) (−1, 1) (1,−1)
Paper (1,−1) (0, 0) (−1, 1)
Scissor (−1, 1) (1,−1) (0, 0)

In this examplee, we have the following:

• Players: N = 1, 2

• Actions: A1 = A2 = Rock, Paper, Scissor

• Payoffs for Player 1:

r1(Rock, Scissor) = r1(Scissor, Paper) = r1(Paper,Rock) = 1,

r1(Scissor, Rock) = r1(Paper, Scissor) = r1(Rock, Paper) = −1,

r1(Rock,Rock) = r1(Paper, Paper) = r1(Scissor, Scissor) = 0,

• Payoffs for Player 2: r2(a) = −r1(a), for each a.

However, this game is a zero-sum game because of the property:∑
i ri(a) = 0.

Which means, that one player’s gain is exactly the other players’ loss.

Definition 2.2.1 A game in strategic form is defined as finite if (i) N the
set of players is finite and (ii) the Ai for each i ∈ N are finite.

Mixed Strategies

In the pure strategies, the players clearly decide on one behavior or another [6].
While in the mixed strategies, the players can decide to play each of these pure
strategies with different probabilities. Below is defined the mixed strategy [6].
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Definition 2.2.2 Mixed Strategy: The mixed strategy σi (ai) or else σi of
player i is a probability distribution over his pure strategies ai ∈ Ai.

Let Σi is the mixed strategy space of player i, where σi ∈ Σi. The notion of
profile is chacterized by the probability distribution assigned by each player to
his pure strategies, i.e. σ = σ1, ..., σN . The strategy profile of the opponents
players is denoted as σ−i. The utility to profile σ for the player i is defined as

ui (σ) =
∑
ai∈Ai

σi (ai)ui (ai, σ−i)

2.2.2 Extensive Form

In a game, the players can have a sequential interaction, which means that
the move of one player is conditioned by the move of the other player. These
games are called dynamic games and can be represented in an extensive
form. An extensive form game is a game tree. This tree is a rooted tree
where each non-terminal node represents a choice that a player must make,
and each terminal node gives payoffs for all players. A game in extensive
form can be analyzed directly or can be converted into an equivalent strategic
form. The extensive form can seperate into two categories, the extensive
form with perfect information and the extensive form with imperfect
information.

In an extensive game with perfect information, every player is at any point
aware of the previous choices of all other players. The players have a sequential
interactions, which means that only one player moves at a time. These games
can be analyzed by backward induction. This technique solves the game by
first considering the last possible choices in the game.

2.2.3 Nash Equilibrium & Existence

Definition 2.2.3 Nash Equilibrium (NE): A Nash equilibrium of a strate-
gic game with components N, Ai and ui is a profile a′ ∈ A of actions such that
∀i ∈ N then

ui(a
′
i, a
′
−i) ≥ ui(ai, a

′
−i) ∀ai ∈ Ai

where ai is the strategy of player i and a−i is the strategies of all players other
than player i.

The Nash equilibrium defines the best response strategy of each player.
Thus, no player can improve his payoff by a unilateral deviation from the NE,
given that the other players adopt the NE.
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Theorem 2.2.1 Kakutani’s Fixed Point Theorem: Let X be a compact
convex subset of <n and let f : X → X be a set-valued function such that the
set f(x) is nonempty and convex for all x ∈ X and the graph of f is closed.
Then, there exists x∗ ∈ X such that x∗ ∈ f(x∗).

Definition 2.2.4 Closed Graph: A set-valued function f : X → X is said
to have a closed graph if the set {(x, y) |y ∈ f(x)} is a closed subset of X × Y
in the product topology i.e. for all sequences {xn} and {yn}, n ∈ N such that
xn → x, yn → y and yn ∈ f(xn), ∀n ∈ N , we have y ∈ f(x).

From the Kakutani’s Fixed Point Theorem is denoted the next theorem for
the existence a Nash equilibrium in a stretegic game [1].

Theorem 2.2.2 A strategic game with components N, Ai and ui has NE if
∀i ∈ N , the set Ai 6= ∅ is a compact convex subset of a Euclidian space and
the payoff function ui is continuous and quasi-concave on Ai.

Definition 2.2.5 Mixed Strategy NE: The mixed strategy NE of a strategic
game is a NE where players’ strategies are non-deterministic but are regulated
by probabilistic rules.

Theorem 2.2.3 [Nash 1951]: Every finite strategic game has a mixed
strategy Nash equilibrium.

Theorem 2.2.4 [Kuhn 1953]: Every finite extensive game of perfect in-
formation has a pure strategy Nash equilibrium.

2.2.4 Uniqueness of an Equilibrium

From the above theorem, we have the existence property of a mixed strategy
Nash equilibrium in games. An other property is the uniqueness of an equilib-
rium [1]. If the feasible region and the payoff function of each user are convex
shapes then there is a unique equilibrium in the game.

The NE gives the best strategy given that all the other players persist
to their equilibrium strategy too. There is an aspect to find the NE. If the
players adjust their strategies iteratively based on accumulated observations
as the game unroll then the process could converge to some equilibrium point.
A such case that can guarantee us the convergence to the NE is the potential
game. The idea of potential games was first proposed by Monderer and Shapley
(1996) [11].

In game theory, a game with components N, Ai and ui is said to be a
potential game if there is a potential function P : A→ < such that one the
following conditions holds:
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• Exact potential game: P (ai, a−i)−P (a′i, a−i) = u(ai, a−i)−u(a′i, a−i),
∀i ∈ N, a ∈ A, a′i ∈ Ai.

• Ordinal potential game:

sgn (P (ai, a−i)− P (a′i, a−i)) = sgn (u(ai, a−i)− u(a′i, a−i)),

∀i ∈ N, a ∈ A, a′i ∈ Ai, where sgn(·) is the sign function.

Theorem 2.2.5 A strategic game is an exact potential game with a potential
function P():

• iff ∂2ui
∂ui∂uj

=
∂2uj
∂ui∂uj

∀i, j ∈ N

• iff there are functions Po: A→ < and Pi:A−i → < such that u(ai, a−i) =
Po(ai, a−i) + Pi(a−i), ∀i ∈ N , where P (ai, a−i) = Po(ai, a−i)

• if there exist functions Pij : Ai × Aj → < and Pi : Ai → < such that
Pij(ai, aj) = Pji(aj, ai) and ui(a) =

∑
j∈N

Pij(ai, aj) − Pi(ai), ∀i, j ∈ N

and a ∈ A.

This game is known as bilateral symmetric game:

P (a) =
∑
i∈N

i−1∑
j=1

Pij(ai, aj)−
∑
i∈N

Pi(ai)

An other case that can guarantee us the convergence to the uniqueness of
equilibrium is the standard function. In [12], proposed an interference function
I (p) in order to reduced the problem of the uplink power control in cellular
networks. Yates defined the inequality pi ≥ I (p), where p = (p1, ..., pn) is the
power vector of the N users, Ii (p) = (I1 (p) , ..., In (p)) is the interference of
other users that user i must overcome.

Definition 2.2.6 [YATES] : An Interference function I(p) = (I1 (p) , ..., In (p))
is standard if for all p ≥ 0, the following properties are satisfied:

• Positivity: I(p) > 0, if p > 0

• Monotonicity: if p ≥ p′ then I(p) ≥ I(p′)

• Scalabity: ∀a > 1, a · I(p) > I(a · p)

Theorem 2.2.6 [YATES] : If I(p) is feasible, then for any initial power vec-
tor p, the standard power control algorithm converges to a unique fixed point
p∗.
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2.2.5 More than one Equlibrium?

A non-cooperative game can have more than one equilibrium. In such a
game, we wonder if some points outperform others and if there is an opti-
mal one. Then, we have to face multi-objective optimization problems, that
these problems are not easy to define the optimaity. So, we can reduce this
multi-dimension problem into one-dimension one and it is achieved from the
comparison of the weighted sum of the individual payoffs.

Pareto Optimality

The Pareto optimality or Pareto efficiency is a payoff profile that no player can
improve its own utility without reducing the utility any other player. There-
fore, if there are more than one equilibrium points, usually the optimal ones in
the Pareto sense are preffered [1]. The term is named after Vilfredo Pareto, an
Italian economist who used the concept in his studies of economic efficiency and
income distribution [13]. The Pareto optimality has been used in economics,
social sciences and also in wireless networks.

Definition 2.2.7 Pareto-optimal/efficient: Given a set of choices and a
way of valuing them, the Pareto frontier or Pareto set or Pareto front is the
set of choices that are Pareto efficient. The utility u belongs to a set U ∈ <N
is Pareto efficient if there is no u’ ∈ U for which u′i > ui, ∀i ∈ N . The utility
u belongs to a set U ∈ <N is strongly Pareto efficient if there is no u’ ∈ U for
which u′i ≥ ui, ∀i ∈ N and u′i > ui for some i ∈ N .

Equilibrium Refinement

Sometimes, we have to face multiple Nash equilibria in a game. From these
equilibrium solutions, we may have non desirable or non reasonable outcomes,
then it is necessary to refine them. Therefore, an equilibrium refinement
provides a way of selecting one or a few equilibria from among many in a
game. Each refinement attempts to define some equilibria as more likely, more
rational or more robust to deviations by players than others. For example,
if one equilibrium Pareto dominates another, then it may be viewed as more
likely to be chosen by the players.

Firstly, the concept of equilibrium refinement is proposed by Selten (1975),
Myerson (1978). Selten introduced the concept of a perfect equilibrium. To de-
fine it, the mixed extension of a finite strategic gameG = (N, {Ai}i∈N , {ui}i∈N)
is considered. Also, there exists at least one perfect equilibrium in any finite
game [14].
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Definition 2.2.8 ε-Perfect Equilibrium: An ε-Perfect Equilibrium G is a
strictly mixed strategy xε, such that, for each player i, xεi ∈ argmaxpiui(pi, xε−i)
subject to xεi(ai) ≥ ε(ai) for some ε(ai) where 0 < ε(ai) < ε.

Definition 2.2.9 Perfect Equilibrium: A Perfect Equilibrium is any limit
of ε-constraint equilibria as ε goes to zero.

Let see an example/game with two players:

player 1/ player 2 x1 x2

y1 (1, 1) (2, 0)
y2 (0, 2) (2, 2)

We can observe that the matrix game has two Nash equiliibrium (y1, x1)
and (y2, x2). The second equilibriumm solution is perfect. It can be confirmed
that for the first equilibrium, if Player 1 plays y1 with probability 1− ε and y2

with probability ε, the player 2 has no interest in deviating from his equilibrium
action x1. Respectively process for the player 2 is applied. On the other hand,
if player 1 plays y2 with probability 1− ε and y1 with probability ε, the player
2 has a better expected utilty by deviating from his equilibrium action x2.
Respectively process for the player 2 is applied.

We have to note that the meaning of perfect information is different from
the meaning of complete information, respectively the concepts of imperfect
and incomplete information. In games with complete information, it is as-
sumed that the data of the game is common knowledge. Considering a strate-
gic form game, which means that the actions available to the players and the
utility functions are common knowledge. Every player knows the data of the
game and all players know that the opponent players know the data of the
game. The games with incomplete information are known as Bayesian games
in game theory. The players have only partial information about the game.
But in a game with perfect information, all the players have perfect knowledge
of the history in the game, and imperfect information otherwise [6].

2.2.6 Examples/Games

In this subsection, we introduce some non-cooperative games [6]. These games
are applied in a wireless network. The players are the users controlling their
devices, so we denote their devices as players. We assume that the players
are rational, they try to maximize their payoffs or to minimize their costs
according to their strategies.
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Static Games

1. Forwarder’s Dilemma Game

Forwarder’s Dilemma is a symmetric nonzero-sum game, beacause the players
can mutually increase their payoffs by cooperating. This game can be classified
in the network layer. The Forwarder’s Dilemma is regarded as the Prisoner’s
Dilemma in classical game theory. We assume that there is a two-player game.
Let p1, p2 are two players. Each of them has a packet and want to transmit
to his receiver, r1, r2, correspondigly. The communication between pi and his
ri is possible if the other player pj (j 6= i) forwards the packet. The payoff
is equal to the difference of the reward and the cost. The cost c is fixed,
0 < c << 1. In this example c is the energy and computation spent for the
forwarding action. This action is able to enable the communication between
p2 and r2, which gives p2 a reward of 1. Then the dilemma is that each player
can be found in temptation to drop the packet that it should forward to the
corresponding receiver, as this would save some of his resources. Let p2 the
player, that should forward the packet but he drop it. Then, the packet that
the p1 wanted to be relayed will be dropped. The solution of this problem is
that they could do by mutually relaying each other’s packet. We can see the
network scenario in this game, as follows:

Figure 2.2: Forwarder’s Dilemma Game

This game can be represented by the following table, whch is a strategic-
form representation. In this table, the corresponding columns and rows are
the payoffs of the actions of players p1, p2. The strategy options of players are
F forward packet of the other player and D drop packet.

p1/ p2 F D
F (1− c, 1− c) (−c, 1)
D (1,−c) (0, 0)

This game can be solved in several ways, such as strict dominance, iterated
strict dominance. Strict dominance is the strictly best strategy for any strategy
of the other players. Let strategy si is the strategy for player i and is said to
be strictly dominates if ui (s

′
i, s−i) < ui (si, s−i), ∀s−i ∈ S−i, ∀s′i ∈ Si.
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We can observe, that the strategy D strictly dominates the strategy F. In
continuous, we solve the game by iterated strict dominance. From the first row
of the matrix, we can see, that the player p1 will never choose the F strategy.
From the first column of the matrix, we can see, that the player p2 will never
choose the F strategy. Then, the solution of the game is (D,D) and the payoff
is (0, 0). This is paradox, as the pair (F, F ) would have led to a better payoff
for each of the players.

According to the definition of Nash equilibrium, that none of the players
can unilaterally change its strategy to increase its payoff/utility. Therefore,
the pair (D,D) is the Nash equilibrium.

2. Joint Packet Forwarding Game

The players in the Joint Packet Forwarding Game are not in a symmetric
situation. Also, this game can be classified in the network layer. We assume
that there is a two-player game. Let s is a sender and wants to send a packet
to the receiver r in each time slot. In order to transmit this packet, sender
needs players/devices p1 and p2 to forward. The cost c is fixed, 0 < c << 1, if
a player forwards the packet of the sender. If both players p1 and p2 forward,
then they each receive a reward of 1. We can see the network scenario in this
game, as follows:

Figure 2.3: Joint Packet Forwarding Game

This game can be represented by the following table, that the corresponding
columns and rows are the payoffs of the actions of players p1, p2. The strategy
options of players are F forward packet of the other player and D drop packet.

p1/ p2 F D
F (1− c, 1− c) (−c, 0)
D (0, 0) (0, 0)

We can observe, that none of the strategies of any player strictly dominates
the other. In order to overcome this problem, is defined the meaning of weak
dominance. Weak dominance is the strictly better strategy for at least one
opponent strategy. Let strategy s′i is the strategy for player i and is said to
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be weakly dominated by strategy si if ui (s
′
i, s−i) ≤ ui (si, s−i), ∀s−i ∈ S−i,

∀s′i ∈ Si.
If player p2 uses the strategy D, then it is weakly dominated by the the

strategy F. Using the elimination based on iterated weak dominance, which
results in the strategy profile (F, F ). An important notation is that the result
of the iterative weak dominance is not unique in general. While the solution
of the iterated strict dominance is unique.

In addition, the pairs (F, F ) and (D,D) are Nash equilibria.

3. Multiple Access Game

Multiple Access Game is a nonzero-sum game. In this game, the players have to
share a common resource, the wireless medium. This example can be classified
in the medium access layer. We assume again that there is a two-player game.
Let p1 and p2 players, who want to send some packets to their receivers r1, r2,
correspondigly. This transmission can be done through a shared medium.
The players have a packet to send in each time slot. Each player have one
move in each time slot. So, they can decide to transmit this packet or not.
The transmission cost c for a player p1 is fixed, 0 < c << 1. If p2 does not
transmit in a time slot and the p1 send a packet to r1 in that time slot, then
the transmission of this packet is successful. Then the p1 gets a reward of 1.
On the other hand, if both players want to transmit in the same time slot then
there is a collision.

This game can be represented by the following table, that the corresponding
columns and rows are the payoffs of the actions of players p1, p2. The strategy
options of players are T transmit packet to the other player and NT not
transmit packet.

p1/ p2 T NT
T (0, 0) (0, 1− c)

NT (1− c, 0) (−c,−c)

We can observe that there is not a strictly dominating strategy. In order to
give us a solution this game, is using the concept of best response, i.e. b(s−i) =
arg maxsi∈Si ui (si, s−i). The best response is not unique in general. There are
two Nash equilibria, the pair (NT, T ) and the pair (T,NT ). This game has a
mixed-strategy Nash equilibrium, the pair (p = 1− c, q = 1− c). We denote p
the probability that player p1 transmit the packet and q the probability that
player p2 transmit the packet. The payoff of player p1: u1 = p (1− c− q) and
the payoff of player p2: u2 = q (1− c− p).
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4. Jamming Game

On the other hand, Jamming Game is a zero-sum game. This example can be
classified in the physical layer. We assume that the wireless medium is split
into two channels CH1 and CH2, accordind to the Frequency Division Multiple
Access (FDMA). We assume again that there is a two-player game. Let the
player p1 wants to send a packet in each time slot to his receiver r1. The
player p2 is a malicious player. His objective is to prevent p1 from a successful
transmission by transmitting on the same channel in the given time slot. The
aim of p1 is to have a successful transmission in spite of the presence of p2.
The p1 gets a payoff of 1 if p2 can not jam his transmission. He gets a payoff
of -1 if p2 can jam the transmission of the packet. The payoffs for the p2 are
the opposite of those of p1. For transmission cost c, then each payoff would be
1-c and -1-c. Therefore, we have a zero-sum game:∑

i∈N
(rewardi − costi) = 0

This game can be represented by the following table, that the corresponding
columns and rows are the payoffs of the actions of players p1, p2. The strategy
options of players are CH1 channel 1 and CH2 channel 2.

p1/ p2 CH1 CH2

CH1 (−1, 1) (1,−1)
CH2 (1,−1) (−1, 1)

The Jamming game can not be solved by iterated strict dominance. Also,
this game has not pure-Nash equilibrium. There are only a mixed-strategy
Nash equilibrium, that the players play a uniformly random distribution strat-
egy. For example, each one of the player select one of the channel with 1/2
probability.

Dynamic Games

1. Sequential Multiple Access Game

Sequential Multiple Access Game is a modified version of the Multiple Access
Game. Which means that the moves of players are not in synchronized. Thus,
this game is characterized by the extensive form. So, these players have a
sequential interaction. We assume again that there is a two-player game. Let
p1 and p2 players, who want to send some packets to their receivers. The player
p1 always moves first played one of his strategies and the player p2 observes the
move of p1 before making his own move. The strategy options of players are
T transmit packet to the other player and NT not transmit packet. The set
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of possible strategies for the p1 is the {T,NT}, the set of possible strategies
for the p2 is the {TT, TNT,NTT,NTNT}. The strategy TNT means that p2

transmits if p1 transmits and remains in the state of non transmit if p1 does
not transmit. The transmission cost c for a player p1 is fixed, 0 < c << 1.
The player gets a reward of 1 if there is a successful transmission. This game
can be represented by the following tree:

Figure 2.4: Sequential Multiple Access Game

There are three pure Nash equilibria, the pairs (T,NTT ), (T,NTNT ) and
(NT, TT ). We can observe that if p2 plays the strategy TT, then the best
response of the p1 is to paly NT. The move TT from the p2 is a destruction,
as this strategy is not the best strategy for the player p2 because of the choice
of the player p1, i.e. if p1 plays T in the first round. This destruction is called
as incredible threat.

Then, the technique of Backward Induction is able to avoid the destruc-
tive equilibrium. This game with the backward induction technique can be
represented by the following tree:

Figure 2.5: The backward induction solution of the Sequential Multiple Access
Game

This game is finite and belongs to the case of complete information. The
player p2 knows that he will play the last move. Let that the history h in the
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game is T, then the p2 notes that the move NT is the best payoff for him to
play in the last stage. The move T is the best for the p2, if the p1 has NT. The
best choices of the game are the red lines of the tree, that is represented in
Figure 2.5. Given all the best moves of p2 in the last stage, then the p1 finds
his best moves as well. Using the backward induction technique, we arrive at
the root of the tree.

We conlclude that this game is perfect information, as each player knows
at which node he is when he makes his decision. In addition, it belongs to the
game of complete information. We also assume that the players are reliable.
Then, this method will give a unique prediction. Therefore, the backward
induction solution is the (1− c, 0), as h = {T,NT}.
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Chapter 3

Regret Learning Techniques

In the real life, we are making decisions in order to face some difficulties such
as the decision for the optimal route to drive from home to work each day, as
in the Figure 3.1. Thus, in this example, we have to face a repeated play of
a game against an opponent with an unknown strategy. So at each time step,
the algorithm probabilistically chooses an action and then incurs the loss for
its action chosen, such as how long its route took. In the next day, all this
process is repeated. Then, we have to solve a dynamic system when there
are multiple players, all adjusting their behavior in such a way. The regret
analysis is an important technique to try to solve such as analyzing problems.
The space of study consists of a finite number of actions.

Figure 3.1: A decision is picked for the optimal route from home to work.

In [15],[16] are referred that the regret minimizing algorithms become known
from the author Hannan [17]. Hannan was the first, who presented the repeated
two-player games 60 years ago. The regret is defined as a measure of the qual-
ity of a sequence of actions. According to [16], the regret consists of two
categories, the external regret and the internal regret. The external regret is
also known as best expert problem. This category compares the performance
an online algorithm to the best of a finite number of actions. On the other
hand, the internal regret compares the loss of an online algorithm to the loss
of a modified online algorithm, which consistently replaces one action by an-
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other. The notion of internal regret introduced first by Foster and Vohra [18].
In continuous, Blum and Mansour introduced the notion of swap regret. So,
this algorithm is a simple online algorithm,which can efficiently convert any
low external regret algorithm into a low internal regret algorithm. This means
that the swap regret algorithm is stronger than internal regret algorithm, as
well the former allows simultaneously swap multiple pairs of actions. The
internal and the swap regret are tight connencted to the correlated equilibria.

Also, the authors in [16] give us a full information model and a partial
information model, as follows:

Definition 3.0.10 [Blum and Mansour]: Let N available actions X= {1,...,N},
an algorithm H selects a distribution pt over the N actions, lti ∈ [0, 1] is the
loss of the i-th action at time t and a loss vector lt ∈ [0, 1]N . In the full
information model, the online algotithm H receives the loss vector lt and
experience a loss ltH =

∑N
i=1 p

t
il
t
i.

Definition 3.0.11 [Blum and Mansour]: Let N available actions X= {
1,...,N }, an algorithm H selects a distribution pt over the N actions, lti ∈ [0, 1]
is the loss of the i-th action at time t and a loss vector lt ∈ [0, 1]N . In the
partial information model, the online algotithm H receives (ltkt , k

t), where
kt is distributed according to pt and ltH = ltkt is its loss. The loss of the ith action

during the first T time steps is Lti =
∑T

t=1 l
t
i and the loss of H is LtH =

∑T
t=1 l

t
H .

In continuous, are given the most known definitions [19] about no-external
regret learning and no-internal regret learning. Specifically, a no-external re-
gret via a multiplcative updating scheme is achieved by Foster and Schapire. In
1997, Foster and Vohra prosposed the no-internal regret learning, that depends
on complete payoff information at all times t and including also information
about strategies, that are not employed at time t.

Definition 3.0.12 [Freund and Schapire (96)]: No-external-regret learn-
ing converges to the set of minimax equilibria, in zero-sum games.

Definition 3.0.13 [Foster and Vohra (97)]: No-internal-regret learning
converges to the set of correlated equilibria, in general-sum games.

In 1974, Robert J. Aumann [20] was the first, who proposed the concept
of correlated equilibrium. This new concept of correlated equilibrium is more
general than Nash equilibrium. Thus, a strategy profile is chosen randomly
according to a certain distribution. When a strategy is recommended then
the users have to conform with this strategy. So, the distribution is called
the correlated equilibrium [21]. The definition of correlated equilibrium is as
follows [1]:
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Definition 3.0.14 CE: A correlated equilibrium of a strategic game with com-
ponents: a finite set of players, denoted by N, a set of possible actions for each
player i, denoted by Ai and a set of utility functions, denoted by ui : A → R
consists of:

• a finite probability space (Ω, π), where Ω is a set of states and π is a
probability measure on Ω,

• an information partition Pi of Ωi, ∀i ∈ N ,

• a function σi : Ω → Ai, which represents strategy of player i and maps
an observed state to an action, with σi(ω) = σi(ω

′), ω, ω′ ∈ Pi, for some
Pi ∈ Pi,

such that ∑
ω∈Ω π(ω)ui(σ−i(ω), σi(ω)) ≥

∑
ω∈Ω π(ω)ui(σ−i(ω), τi(ω))

for all i ∈ N and any strategy function τi().

In [19], is defined a general class of no-regret learning algorithms referred as
Φ-no-regret learning algorithms. Also, they showed that the no-external-regret
and the no-internal-regret are special cases of Φ-no-regret.

Definition 3.0.15 [Greenwald]: Let Φ be a finite of the set of linear maps
φ : ∆(A)→ ∆(A): ∀α, 0 ≤ α ≤ 1, ∀q1, q2 ∈ ∆(A)

φ(αq1 + (1− α)q2) = αφ(q1) + (1− α)φ(q2)

Each φ ∈ Φ converts one nondeterministic action for an agent into another.

Proposition 3.0.1 [Greenwald]: If learning algorithm A satisfies no-internal-
regret, then A also satisfies Φ-no-regret, for all finite subsets Φ of the set of
stochastic matrices.

In continuous of this chapter, we will see fundamentals concepts such as
one-shot game, transforamtion, the definition of regret game that depends on
these previous concepts. Also, we will see the external regret minimization
and its connection with the game theory, the interrnal regret, the swap regret
and a generic reduction from swap to external regret. Finally, we will give
examples to each of them and some bounds.
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3.1 More Preliminaries

3.1.1 One-Shot Game

Definition 3.1.1 One-Shot Game: The real-valued, one shot game can be
represented as a triple Γ = 〈N,< Ai >i∈N , < ri >i∈N〉, where N is a finite set
of players, Ai is the set of actions for each i player and ri :

∏
j Aj → R is the

reward function for player i.

Thus, each player i independently selects an action from Ai and receives a
reward (payoff/utility) according to its reward function. That is, if each player
j plays action aj ∈ Aj, then player i obtains reward ri. This one-shot game can
be represented in a table. An example is the ”Rock-Paper-Scissor” game.
This game is analyzed in the previous chapter.

3.1.2 Transformations

The concept of an action transformation or else transformation serves as the
basis for our definitions of both equilibria and regret. An action transformation
is denoted as φ, which is a measurable function from a set of actions A to
itself, φ : A → A [22]. Measurability is defined with respect to the σ-algebra
associated with the action set.

A σ-algebra or sigma-algebra or σ-field or sigma-field is an important con-
cept in mathematical analysis and in probability theory. Thus, a σ-algebra on
a set X is a collection of subsets of X that is closed under countable-fold set
operations. Let σ-algebra F of subsets of X that are satisfied the following
conditions:

• ∅ ∈ F .

• If B ∈ F then its complement Bc is also in F .

• If B1, B2, ... is a countable collection of sets in F then their union ∪∞n=1Bn.

Let A denote an action set and a function φ : A→ ∆(A) denote an action
transformation, where ∆(A) is denoted as the set of probability distributions
over the set A. Then, there are several sets of action transformations such as
the set of swap transformations ΦSWAP (A), the set of external transformations
ΦEXT (A), the set of internal transformations ΦINT (A), the set of σ transforma-
tions Φσ(A). Thus, the ΦSWAP (A) is the set of all action transformations that
map actions to pure strategies. An external action transformation is simply a
constant transformation, so for a ∈ A, is defined as
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Φ
(a)
EXT (x) = δa, ∀x ∈ A

An internal transformation act as the identity, except on one particular
input, so for a, b ∈ A, is defined as

Φ
(a,b)
INT (x) =

{
δb , x = a
δx , otherwise

The external and the internal action transformations are subsets of ΦSWAP .
Also, we have that |ΦSWAP (A)| = |A||A|, |ΦINT (A)| = |A|2 and |ΦEXT (A)| =
|A|. An action transformation can be extended as a strategy transformation.
Let [φ] : ∆(A)→ ∆(A) is the linear transformation and is defined as

[φ](q) =
∑
a

q · φ(a)

Let a measurable set S ⊂ Ai and an action a ∈ Ai then the set of σ
transformations ΦS→a

σ is defined as

ΦS→a
σ (x) =

{
δa , x ∈ S
δx , otherwise

Note that ΦINT (Ai) ⊆ Φσ(Ai) for any Ai and a measurable set S. Also,
the set of σ transformations is as powerful as ΦSWAP .

In introduction of this chapter, we give the definition of the correlated
equilibrium. Below, we give an other definition, Φ-Equilibrium [19].

Definition 3.1.2 Φ-Equilibrium: Given a game and a collection of sets of
transformations Φ =< Φi >i∈N , a probabilty distribution q over the set of all
possible actions A is called a Φ-equilibrium iff

E [ri(φ(ai), a−i)− ri(a)] ≤ 0,

for all players i and for all φi ∈ Φi.
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3.1.3 Repeated Game

There are the cases that the players interact repeatedly over time. Thus, the
repeated game model is an extensive-form game in which the same stage game
is played at each date for some duration of T rounds. The rounds may be
finite or infinite. The repetition of the same game might foster cooperation.
The case of infinitely repeated game is more interesting, because of the players
can care about their future payoff except of their current payoff. So, a current
behavior of a player can affect the other players in the future.

Definition 3.1.3 Infinitely Repeated Game: A strategic game can be rep-
resented as a triple < N, (Ai), (ui) >. A δ-discounted infinitely repeated game
is an extensive-form game with perfect information and simultaneous moves,
having the following:

• N, that is the set of players.

• at that is the chosen action, which depends on the history (a1, a2, ..., at−1).

• Ai, that is the set of actions available to any player i, regardless of any
history.

• The payoff function for player i is the discounted average of immediate
payoffs from each round of the repeated game,

ui(a
1, a2, ..., at−1, ...) = (1− δ)

∞∑
t=1

δt−1ui(a
t).

where, the discount factor δ measures how much the players value the future
payoff over the current payoff.

Theorem 3.1.1 For any feasible and strictly payoff profile v such that vi >
vNi , for all i ∈ N and vNi being the payoff of the stage-game Nash equilibrium,
there exists δ ∈ (0, 1), such that for all δ ∈ [δ, 1], there exists a repeated-game
strategy profile which is a subgame perfect equilibrium of the repeated game
and yields the expected payoff profile v.

3.1.4 Vector Game

A generalization to vector payoffs started to study by Nieuwenhuis and Cor-
ley. They defined the concept of vector maximization (or efficiency or Pareto
optimality) and the vector of minimization [23], as follows:
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Definition 3.1.4 Vector Maximization: Let u = (u1, ..., un), v = (v1, ..., vn) ∈
D ⊂ Rn. If ui ≤ vi, i = 1, ..., n and uj < vj for some j. The point u ∈ D is
said to be a vector maximum of D, which means that u ∈ vmaxD, if u ≮ v,
∀v ∈ D.

In continuous, we consider a two-person bimatrix vector and we will give
the definition of the vector game or else the vector-valued game.

Definition 3.1.5 Vector Game: A vector game is a tuple < A,A′, V, r >
where:

• A is the set of actions available to the first player,

• A’ is the set of actions available to the opponent player,

• V is a real HIlbert space,

• r is the opponent’s reward function, r : A× A′ → V

A real Hilbert space is a vector space over R with an inner product. The
space must be complete with respect to the norm ||x|| = √< x, x >.

3.1.5 A Learning Model

A single agent learning model consists of a set of actions N = {1, ..., n}, a
mixed action vector qt ∈ Q for all times t, a pure action vector at = ei for
some pure action i for all times t and a reward vector rt = (r1, ..., rn) ∈ [0, 1]n.

A learning algorithm H is a sequence of functions qt : Historyt−1 → Q,
where a History is a sequence of action-reward pairs (a1, r1), (a1, r1), .... Thus,
we gave the definition of a learning algorithm for an informed repeated game.

3.1.6 Price of Anarchy

The notion of the Price of Anarchy (PoA) is introduced by Koutsopias and
Papadimitriou in 1999 [24]. The PoA is a measure of the effect of selfishness in
games. Therefore, the Price of Anarchy is the ratio between the social welfare
of the optimum solution and that of the worst Nash equilibrium.

Initially, we consider that Ai is the set of pure strategies for the player i.
The set of mixed strategies for the player i is denoted as Si. Then, in each game
there is an associated social utility function u : A → R. The individual utility
function for the player i is denoted as ai : A → R. Therefore, the function
ū : S → R is the expected social utility over randomness of the players. The
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function ā : S → R is the expected value of the utility of a strategy profile to
player i.

The social value of the socially optimum strategy profile is defined as
OPT = maxS∈S ū (S) in maximazation problems. Similarly in the minimaza-
tion problems, we have OPT = minS∈S ū (S).

Definition 3.1.6 Price of Anarchy: Consider an instance of a maximiza-
tion game, then the Price of Anarchy is defined to be OPT

ū(S)
, where S is the worst

Nash equilibrium for the game. On the other hand, the Price of Anarchy for
an instance of a minimization game is defined to be ū(S)

OPT
, where S is the worst

Nash equilibrium for the game.

3.2 Regret

Regret can be characterized as a feeling of remorse over something that has
happened, particularly as a result of one’s own actions [25]. In the game theory,
we consider a player i with strategy si. Then, the concept of regret is defined
as the difference between the payoffs obtained by utilizing strategy si and the
payoffs that could have been achieved had some other strategy s̄i, been played
instead. So, the regret is denoted as a measure of performance and is closely
related to equilibrium concept.

Definition 3.2.1 Regret: The average payoff that player i would have ob-
tained if that player had adopted strategy s̄i every time in the past instead of
the si is the Regret value. Let uti(s̄i, s−i) is the payoff of player i at time t
by taking s̄i against the other player taking s−i. Therefore, the formulating of
regret value is:

<Ti = max

{
1

T

T∑
t=1

[uti(s̄i, s−i)− uti(si, s−i)] , 0
}

Let a repeatedly game in an uncertain environment that the players have
to make decisions in order to choose their next action. We need to choose a
route of N possible routes, everyday from the home to the work. Let that the
traffic is different each day. Thus, an algorithm can probabilistically choose an
action (a route), at each time step. The algorithm incurs the loss of its action
chosen (the duration time). Therefore, we are interested to study and analyse
learning algorithms that the resulting behavior relates to the game-theoretic
equilibria, when all players in that system are simulataneously adapting in
such a manner.

The no regret can be described as follows: ”a sequence of plays is optimal
if there is no regret for playing the given strategy sequence rather than playing
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any other possible sequence of strategies” [19]. Thus, we want algorithms that
minimize the regret.

Let that we have a game with cost and N players. If the strategy vector
s = (s1, ..., sn) is palyed then the cost for player i is ci(s). This game is played
T days, with st = (st1, ..., s

t
n) being the strategy vector used on day t. The cost

of player i is
T∑
t=1

ci(s
t). Then, the overall cost is

T∑
t=1

∑
i

ci(s
t). The formulation

of regret is defined as:

Definition 3.2.2 Regret or Time-averaged Regret: A sequence of strat-
egy vectors (s1, ..., sT ) is regret for player i with respect to action s if:

1

T

[
T∑
t=1

ci(s
t)−

T∑
t=1

ci(s)

]
The formulation of no-regret is defined as [26]:

Definition 3.2.3 No-Regret: A sequence of strategy vectors (s1, ..., sT ) is
no-regret for player i if:

T∑
t=1

ci(s
t) ≤ min

x

T∑
t=1

ci(x, s
t
−i)

where
T∑
t=1

ci(x, s
t
−i) is the cost of strategy x.

Definition 3.2.4 Vanishing Regret: A sequence of strategy vectors sT , ..., sT )
has vanishing reret for player i if, assuming that 0 ≤ ci(s) ≤ 1:

lim
T→∞

sup 1
T

T∑
t=1

ci(s
t)−min

x

1
T

T∑
t=1

ci(x, s
t
−i) ≤ 0

Definition 3.2.5 (λ, µ)-smooth: A cost game is (λ, µ)-smooth if for any
strategy vectors s, s∗, we have:∑

i

ci(s
∗
i , s−i) ≤ λ

∑
i

ci(s
∗
i ) + µ

∑
i

ci(s)

The above definitions give us the next theorem that is related to the Price
of Anarchy.

Theorem 3.2.1 If a cost game is (λ, µ)-smooth and all players have no regret
on a sequence s1, ..., sT of plays, then we have the following:
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T∑
t=1

∑
i

ci(s
t) ≤ λ

1−µT min
x

∑
i

ci(s)

where the ratio λ
1−µ is the same bound as Price of Anarchy.

Proof. Initially, we start from the definition of No-regret, as follows:

T∑
t=1

ci(s
t) ≤ min

x

T∑
t=1

ci(x, s
t
−i)

In continous, we consider s∗ that is the min cost vector, which means that for
any player i, s∗i is no-regret. Therefore:

min
x

T∑
t=1

ci(x, s
t
−i) ≤

T∑
t=1

ci(s
∗
i , s

t
−i)

For all the players i and from the two above inequalities we have:

T∑
t=1

∑
i

ci(s
t) ≤

T∑
t=1

∑
i

ci(s
∗
i , s

t
−i)

Then, we use the definition of (λ, µ)-smooth and is applied in the right hand
of the inequality, as follows:

T∑
t=1

∑
i

ci(s
∗
i , s

t
−i) ≤ λ

T∑
t=1

∑
i

ci(s
∗) + µ

T∑
t=1

∑
i

ci(s
t) = λT

∑
i

ci(s
∗) + µ

T∑
t=1

∑
i

ci(s
t)

Therefore, we conclude that:

T∑
t=1

∑
i

ci(s
t) ≤ λT

∑
i

ci(s
∗) + µ

T∑
t=1

∑
i

ci(s
t)⇒

(1− µ)
T∑
t=1

∑
i

ci(s
t) ≤ λT

∑
i

ci(s
∗)⇒

T∑
t=1

∑
i

ci(s
t) ≤ λ

1−µT
∑
i

ci(s
∗).

�

There is an other form of regret that sometimes called distribution regret.
The previous definitions are referred to the actions that the players actually
plays. The distribution regret is calculated with respect to the player’s mixed
strategy. Let now qt−i the probability distribution, which serves as a model of
the environment at time, then the expected regret felt by player i at time t is
the difference between the expected payoff of strategy s̄i and strategy si [27].
The formula of this is as follows:
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Definition 3.2.6 Expected Regret:

E
[
Rt
si→s̄i

]
= E

[
ri(s̄i, q

t
−i)− ri(si, qt−i)

]
In continuous, is given the definition of the cumulative expected regret

through time T . It is defined the feeling by player i from strategy si towards
strategy s̄i is the summation over the instantenous values of expected regret,
whenever strategy si is played rather than strategy s̄i, as follows:

Definition 3.2.7 Cumulative Expected Regret:

E
[
RT
si→s̄i

]
=

T∑
t=1

1{sti=si}E
[
Rt
si→s̄i

]
where, the indicator function 1{sti=si}

Following, is defined the Φ-Regret Game. Thus, is constructed a vector
game such that the rewards obtained in the vector game correspond to the
regret experienced in a repeated game.

Definition 3.2.8 Φ-Regret Game: Given a one shot game Γ =< N,<
Ai >i∈N , < ri >i∈N>, a player i and a set of action transformations Φ ⊆
ΦSWAP (Ai), the Φ-regret game for player i the vector game

< Ai, A−i,RΦ, ρΦ
i >

where ρΦ
i : Ai × A−i → RΦ is defined as

ρΦ
i (ai, a−i) = ri(φ(ai), a−i)− ri

3.2.1 External Regret

Initially, the concept of the external regret is introduced by Hannan (1957).
In 1995, the no-external-regret property is denoted as universal consistency
by Fudenberg & Levine. The aim for the external regret setting is to design
an online algorithm that will be able to approach the performance of the
best algorithm from a given class of algorithms G. The external regret are also
called as the best expert problem. One important application of external regret
is a general methodology for developing online algorithms whose performance
matches that of an optimal static offline algorithm, by modeling the possible
static solutions as different actions.

At each time step t, an online algorithm H selects a disrtibution pt over
the N actions. In continous, the adversary selects a loss vector lt ∈ [0, 1]N .
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The loss of the i-th action at time t is li ∈ [0, 1]. The loss of the i-th action

during the first T times steps is lTi =
T∑
t=1

lti and the loss of online algorithm H

is lTH =
T∑
t=1

ltH . The aim is to minimize the external regret RG = LTH − LTG,min,

where G is a class of algorithms and is called the comparison class.

Definition 3.2.9 Given a sequence of plays {st} of length T , the sequence of
plays {sti} for player i is said to exhibit no-external regret if and only if
∀ε > 0, ∀s̄i ∈ Si,

ExternalRegretTSi→s̄i < εT ,

where ExternalRegretTSi→s̄i =
∑
si∈Si

ExternalRegretTsi→s̄i

3.2.2 Internal Regret

In 1997-1999, the authors Foster and Vohra were the first, who introduced
the concept of internal regret algorithms. Other authors in this procedure
were Hart and Mas-Collel (2000), Cesa-Bianchi and Lugoci (2003), and Blum
and Mansour (2005). Internal regret allows us to modify an online action
sequence by changing every occurrence of a given action i to an other action j.
Therefore, internal regret compares the loss of an online algorithm to the loss
of a modified online algorithm and changes one action by another [28]. The no-
internal regret criterion is a refinement of the no-external regret, in which the
only substitutions that are considered are those which are preferable. Thus,
the regret is positive, when one strategy is considered in place of another.

In introduction of this chapter, we see the definition of Foster and Vohra
that it refer us in a general game. Thus, the importance of internal regret
in game theory is due to the fact that in a general game, if each player has
sublinear internal regret then the empirical frequencies converge to a correlated
equilibrium [28].

The no-regret regret can be written as mathematical formula. Let

InternalRegretTsi→s̄i =
(
InternalRegretTsi→s̄i

)+
,

where X+ = max{X,O}.

Definition 3.2.10 Given a sequence of plays {st} of length T , the sequence
of plays {sti} for player i is said to exhibit no-internal regret if and only if
∀ε > 0, ∀s̄i ∈ Si,
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InternalRegretTSi→s̄i < εT ,

where InternalRegretTSi→s̄i =
∑
si∈Si

InternalRegretTsi→s̄i

Theorem 3.2.2 No-internal regret implies no-external regret.
Proof
We have that ∀T , ∀s̄i ∈ Si, ExternalRegretTSi→s̄i ≤ InternalRegretTSi→s̄i.

From the no-internal regret, it follows that ∀s̄i ∈ Si, for arbitrary ε > 0,

E
[
InternalRegretTSi→s̄i

]
< εT

Thus, from the previous inequality it follows that E
[
ExternalRegretTSi→s̄i

]
<

εT . Therefore, no-internal regret implies no-external regret.

�

An addition work about these algorithms was by Greenwald and Jafari
(2003) [19]. They introduced a general class, which spans the spectrum from
no-internal-regret learning to no-external-regret learning, and beyond. Green-
wald and Jafari used the approachability of Blackwell and the generalization
of this approachability by Jafari (2003) in order to prove the next proposi-
tion. Before of this proposition are useful the next definition, lemma and its
corollary.

Definition 3.2.11 A Φ-no-regret learning algorithm is one that ρΦ-approaches
RΦ.

Lemma 3.2.1 If learning algorithm A satisfies Φ-no-regret, then A also sat-
isfies Φ′-no-regret, for all finite subsets Φ′ ⊆ SCH(Φ), the super convex hull
of Φ, defined as follows:

SCH(Φ) ={
k+1∑
i=1

aiφi | φi ∈ Φ, for 1 ≤ i ≤ k, φk+1 = I, ai ≥ 0, for 1 ≤ i ≤ k, ak+1 ∈ R and
k+1∑
i=1

ai = 1

}
Corollary 3.2.1 If learning algorithm A satisfies Φ-no-regret, then A also
satisfies Φ′-no-regret, for all finite subsets Φ′ ⊆ CH(Φ), the convex hull of Φ.

Proposition 3.2.1 [Greenwald & Jafari] : If learning algorithm A satisfies
no-internal-regret, then A also satisfies Φ-no-regret, for all finite subsets Φ of
the set of stochastic matrices.

Proof For the proof are used a lemma and proposition

�
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3.3 External Regret Minimization

We referred in the previous section the concept of the external regret. The
main goal is the minimization of the external regret, RG = LTH−LTG,min, where
G is a class of algorithms and H is an online algorithm. Startly in this section,
we will see some results that are not guaranteed a low regret with respect to
the overall optimal sequence of decisions in hindsight. The next theorem show
us a very large regret, as we used all possible functions. The set of all possible
function is denoted as Gall.

Theorem 3.3.1 For any online algorithm H there is a sequence of T loss
vectors such that regret RG is at least T (1− 1/N).

Proof At each time t, the action it of lowest probability pti gets a loss of
0. The other actions get a loss of 1. Then mini{pti} ≤ 1/N . Thus in T time
steps, the loss of algorithm H is at least T (1− 1/N). There exists a function
g, which belongs to Gall, g (t) = it with a total loss of 0.

�

In continuous, we study some regret minimization algorithms. Initially, we
describe a Greedy algorithm, in which all losses are assumed to be either 0
or 1. It is proved that this algorithm is weak. The loss is at most an O (N)
factor from the best action. Thereafter, we go to the Randomized Greedy
(RG) algorithm, that is an improvement version of the first algorithm. In the
RG algorithm is assigned a uniform distribution over all those actions with
minimum total loss. It achieved to be the loss at most an O (logN) factor
from the best action. This algorithm is also weak. Howerver, a Randomized
Weighted Majority (RWM) algorithm and a Polynomial Weights (PW) algo-
rihm are designed in order to found a better bound for the total loss and are
analyzed below.

3.3.1 Greedy and Randomized-Greedy Algorithms

A regret minimization algorithm is developed, a Greedy algorithm. Let Lti =
t∑

τ=1

lτi is the cumulative loss at time for the action i. The algorithm, at each time

t, selects action xt = arg mini∈X L
t−1
i . The pseudo-code of Greedy algorithm

is presented in the following table.

Theorem 3.3.2 The Greedy algorithm, for any sequence of losses has

LTGreedy ≤ NLTmin + (N − 1).
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Algorithm 1 Greedy Algorithm

Initialization:
x1 = 1
Procedure at time t:
Let Lt−1

min = mini∈X L
t−1
i and St−1 =

{
i : Lt−1

i = Lt−1
min

}
.

Let xt = minSt−1.

Proof At each time t, the Greedy gets a loss of 1 and the LTmin does not
increase, at least one action is removed form ST . This can occur at most
N times, i.e. the algorithm get loss at most N, before LTmin increases by 1.
Therefore, we use induction to prove that LtGreedy ≤ N − |St|+NLtmin.

�

The pseudo-code of Randomized Greedy algorithm is presented in the fol-
lowing table.

Algorithm 2 Randomized Greedy Algorithm

Initialization:
p1
i = 1/N , for i ∈ {1, ..., N}

Procedure at time t:
Let Lt−1

min = mini∈X L
t−1
i and St−1 =

{
i : Lt−1

i = Lt−1
min

}
.

Let pti = 1/|St−1| for i ∈ St−1, otherwise pti = 0.

Theorem 3.3.3 The Randomized Greedy algorithm, for any sequence of losses
has

LTRG ≤ lnN + (1 + lnN)LTmin.

3.3.2 Randomized Weighted Majority Algorithm (RWM)

The idea of Randomized Weighted Majority Algorithm is introduced by Little-
stone and Warmuth. The RWM algorithm is also known as Hedge algorithm.
In the previous algorithm, we can observe that the losses are greatest when
the sets St = {i : Lti = Ltmin} are small, which means that the online loss
is inversely proportional to |St|. Then, the authors Littlestone and Warmuth
proposed to give weights to the actions which are near best at the present time,
in order to overcome this weackness.

The weight for an action i is denoted as wi = (1−ε)Li , where Li is the total
loss for an action i and ε is a parameter, a small constant. The total weight
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Algorithm 3 Randomized Weighted Majority (RWM) Algorithm

Initialization:
w1
i = 1, for i ∈ X

p1
i = 1/N , for i ∈ X

Procedure at time t:
if lt−1

i = 1, let wti = wt−1
i (1− ε);

else lt−1
i = 0, let wti = wt−1

i ;

Let pti =
wti
W t =

wti∑
i∈X

wti
.

is denoted as W T . The losses are assumed that belong to the set {0, 1}. The
pseudo-code of RWM algorithm is presented in the following table.

Theorem 3.3.4 For ε ≤ 1/2, the loss of RWM algorithm on any sequence of
binary {0, 1} losses satisfies:

LTRWM ≤ (1 + ε)LTmin + lnN
ε

,

for ε = min{
√
lnN/T , 1/2}, we have LTRWM ≤ LTmin + 2

√
LminlnN

Proof In [16], they showed that any time the online algorithm has signifi-
cant expected loss, the W t must drop substantially. Also, they considered that
W T+1 ≥ maxiw

T+1
i =⇒ W T+1 ≥ (1− ε)LTmin.

Let W t =
∑

iw
t
i, W

1 = N . The fraction

∑
iw

t
i

W t
is the expected loss of RWM

algorithm at time t and is denoted as F t. So, each of the actions experiencing
a loss of 1 has its weight multiplied by (1 − ε) while the rest are unchanged.
Then

W t+1 = W t − εF tW t = W t(1− εF t) = W 1
T∏
t=1

(1− εF t) = N ·
T∏
t=1

(1− εF t)

In continuous, the inequality (1− ε)LTmin ≤ W T+1 is used and then we have

(1− ε)LTmin ≤ N ·
T∏
t=1

(1− εF t)⇒

ln
(

(1− ε)LTmin
)
≤ ln

(
N ·

T∏
t=1

(1− εF t)

)
⇒
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LTmin ln (1− ε) ≤ (lnN) +
T∑
t=1

ln (1− εF t)
using the Bernoulli’s inequality:
==================⇒

ln(1−x)≤−x

LTmin ln (1− ε) ≤ (lnN)−
T∑
t=1

εF t ⇒

LTmin ln (1− ε) ≤ (lnN)− εLTRWM ⇒

εLTRWM ≤ (lnN)− LTmin ln (1− ε)⇒

LTRWM ≤
(lnN)

ε
− LTmin ln (1− ε)

ε

−ln(1−x)≤x+x2

==========⇒
for 0≤x≤ 1

2

LTRWM ≤
(lnN)

ε
+ (1 + ε)LTmin

�

3.3.3 Polynomial Weights Algorithm (PW)

An extension of the RWM algorithm to losses in the closed interval [0,1] is the
Polynomial Weights (PW) algorithm.

Let W t =
∑

iw
t
i , W

1 = N . The term of weight for the action i at time t is

wti = wt−1
i (1− εlt−1

i ) The fraction

∑
iw

t
i

W t
is the expected loss of PW algorithm

at time t and is denoted as F t. Then

W t+1 = W t − εF tW t = W t(1− εF t) = W 1
T∏
t=1

(1− εF t) = N ·
T∏
t=1

(1− εF t)

The pseudo-code of PW algorithm is presented in the following table.

Algorithm 4 Polynomial Weights (PW) Algorithm

Initialization:
w1
i = 1, for i ∈ X

p1
i = 1/N , for i ∈ X

Procedure at time t:
Let wti = wt−1

i (1− εlt−1
i );

Let pti =
wti
W t =

wti∑
i∈X

wti
.

Theorem 3.3.5 The Polynomial Weights (PW) algorithm, using η ≤ 1/2,
for any [0,1]-valued loss sequence and for any k has,
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LTPW ≤ LTk + ε ·QT
k + lnN

ε

then for ε = min{
√
lnN/T , 1/2} and QT

k ≤ T , where QT
k =

∑
t=1

T (ltk)
2 , we

have LTPW ≤ LTmin + 2
√
T lnN .

Proof From the analysis of RWM, we have

W t+1 = W t (1− εF t)⇒ W T+1 = N
T∏
t=1

(1− εF t)

where W t = N and F t is PW’s loss at time t. In continuous, we have

lnW T+1 = lnN +
T∑
t=1

ln (1− εF t) ≤ lnN − ε
T∑
t=1

F t = lnN − εLTPW .

In continuous, we analyze the lower bound for lnW T+1, as follows

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− εltk)
−ln(1−x)≤x+x2

==========⇒
for 0≤x≤ 1

2

.

lnW T+1 ≥ −
T∑
t=1

εltk −
T∑
t=1

(εltk)
2 ⇒

lnW T+1 ≥ −εLTk − ε2QT
k

Therefore, the upper and the lower bounds on lnW T+1 are combined, as
follows:

−εLTk − ε2QT
k ≤ lnN − εLTPW ⇒

LTPW ≤ LTk + ε ·QT
k + lnN

ε

�

In continuous, we will give two theorems, which are showed us that the
regret bound is near optimal. In the first theorem is proved that one cannot
hope to get sublinear regret when T < log2N . In the second theorem is proved
that one cannot hope to achieve regret o(

√
T ) even when the actions is two.

Theorem 3.3.6 Let T < log2N . There exists a stochastic generation of losses
such that, for any online algorithm R1, we have E[LTR1

] = T/2 and LTmin = 0.

Proof Let at time t = 1, a random subset of N/2 actions get a loss of 0
and the rest get a loss of 1. Let at time t = 2, a random subset of N/4 actions
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get a loss of 0 and these actions have loss 0 at time t = 1. The rest subset
of actions get a loss of 1. We repeat this process and we can observe that at
each time step, a random subset of half of the actions that have received loss
0 so far get a loss of 0. The rest subset of actions get a loss of 1. Any online
algorithm incurs an expected loss of 1/2 at each time step. At each time step
t, the expected fraction of probability mass pti on actions that receive a loss of
0 is at most 1/2. Let T < log2N , then there will alwaays be some action with
total loss of zero.

�

3.4 Regret Matching Algorithms

The regret matching algorithms are considered as a general class of learn-
ing algorithms for a repeated game setting. These algorithms are parameter-
ized by a set Φ of transformations over the set of actions and a link function
f : RΦ → RΦ

+. Firstly, a Φ-regret vector is analyzed by comparing the aver-
age reward obtained by an agent over some finite sequence of rounds to the
average reward that could have been obtained had the agent instead played
each transformations of its sequence of actions [22]. A property closely related
to Blackwell’s condition for approachability is satisfied by the regret matching
algorithms.

The regret matching property is defined as:

Definition 3.4.1 Given a finite set of action transformations Φ ⊂ ΦALL(A)
and a function f : RΦ → RΦ

+, a learnig algorithm A is called an (f,Φ)-regret
matching algorithm if for all reward functions r, for all times T , for all histo-
ries h ∈ HT−1,

f(RΦ
t−1(h))·Ea∼At(h)[ρ

Φ
t (a, r)] ≤ 0

Definition 3.4.2 Let f : RΦ → RΦ
+, f ′ : RΦ → RΦ

+ be link functions. If there
exists a function ψ : RΦ → RΦ

+ such that ψ(x)f(x) = f ′(x) and ||f(x)|| > 0⇒
ψ(x) > 0, ∀x ∈ RΦ, then a learning algorithm is an (f,Φ)- regret-matching
algorithm if and only if it is an (f ′,Φ)- regret-matching algorithm.

3.5 Regret Minimization and Game Theory

In this section, we will discuss and analyze the connection between regret
minimization and the fundamentals concepts of the game theory. If we have
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a two-player game and a player with external regret sublinear in T then will
have an average payoff that is at least the value of the game minus a vanishing
error term. If we have a general game, that all the players use procedures with
sublinear swap-regret then they will converge to an approximate correlated
equilibrium. Therefore, we will define a game G and we will give the definitons
of ε-Correlated Equilibrium and ε-Dominated. The last definition means that
for a player who minimizes swap-regret, the frequency of playing dominated
actions is vanishing [16].

3.5.1 Correlated Equilibria and Swap Regret

Let a game G =< M, (Ai), si > has a finite set M of m players. Player i has a
set Ai of N actions and a loss function si : Ai × (×j 6=iAj) → [0, 1] that maps
the action of player i and the actions of the other players to a real number.

A correlated equilibrium is a distribution P over the joint action space and
means that if for each player it is the best response to play the suggesed action.

Definition 3.5.1 ε-Correlated Equilibrium: A joint probability distribu-
tion P over ×Ai is an ε-correlated equilibrium if for every player j and for any
function F : Ai → Aj, then we have:

Ea∼P [sj(aj, a
−j)]− Ea∼P [sj(F (aj), a

−j)] ≤ ε

where a−j denotes the joint actions of the other players.

In continuous, we will see an important theorem, which relates the swap
regret to the distance from equilibrium. An other result is that the payoff of
each player is its payoff in some approxiamate correlated eqyilibrium. Also, we
can observe that the algorithm converge to the set of CE if the average swap
regret vanishes [16].

Theorem 3.5.1 Let a game G =< M, (Ai), si >. Let that for T times steps,
the strategy for every player has swap regret of at most R(T,N). Which means
that the empirical distribution Q of the joint actions played by the players is
an R/T -correlated equilibrium.

Proof We fix a function F : Ai → Ai for player i. The player i has swap
regret at most R. Then, we have LT ≤ LTF +R, where LT is the loss of player
i. The empirical distribution Q assigns to every P t a probability 1/T . Using
the definition of the regret, we have that:
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LT − LTF =
T∑
t=1

Ext∼P t [si (xt)]−
T∑
t=1

Ext∼P t [si
(
F (xti) , x

t
−i
)
] =

=
T∑
t=1

Ext∼P t [si (xt)− si
(
F (xti) , x

t
−i
)
] =

=
T∑
t=1

Ext∼P t [Ri (x
t, F )] =

= T · Ext∼Q[Ri (x
t, F )] ≤ R⇒

⇒ Ext∼Q[Ri (x
t, F )] ≤ R

T

�

3.6 Approachability

Definition 3.6.1 Blackwell Instnance[29]: A Blackwell instnance is a
tuple (X ,Y , u, S) with X ⊂ Rn and Y ⊂ Rm compact and convex, u : X×Y −→
Rd biaffine and S ⊂ Rd convex and closed . Then, for any Blackwell instance,
we have that

• S is satisfiable if ∃x ∈ X∀y ∈ Ysuchthatu(x, y) ∈ S.

• S is response-satisfiable if ∀y ∈ Y∃x ∈ X suchthatu(x, y) ∈ S.

• S is halfspace-satisfiable if, for any halfspace H ⊇ S, H is satisfiable.

Definition 3.6.2 Approachable: Given a Blackwell instance (X ,Y , u, S), S is
approachable if there exists some algorithm A which selects points in X , such
that for any sequence y1, y2, ... ∈ Y, we have that

dist( 1
T

)
T∑
t=1

u(xt, yt), S)→ 0 as T →∞,

where xt ← A(y1, y2, ..., yt−1).

Theorem 3.6.1 (Blackwell’s Approachability Theorem (1956)) For any Black-
well instance (X ,Y , u, S), S is approachable iff it is response-satisfiable.
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3.7 From Swap to External Regret

Startly, we consider a ”black box reduction” showing that from the problem
of designing a no-swap regret algorithm we can design a no-external regret
algorithm. The ”black box reduction” is presented in the Figure 3.2.

We consider, that the number of actions is denoted as N and so the different
no-external algorithms are denoted as A1, A2, ..., AN . Each of these algorithms
give us a probability distribution qti at each time step t. We note that an al-
gorithm Ai will be responsible for ensuring against profitable deviations from
action i to other actions. In the following theorem, we will see that the out-
come of the combination of the no-external algorithms is the same of that of
the no-swap algorithm. So, if each algorithm Ai provide a no-external-regret
guarantee then we take a no-swap-regret guarantee. The last algorithm is also
called as ”master algorithm” and is denoted as H. At each time step t, the
algorithm H works as follows:

• receives distributions qti , ∀i ∈ {1, ..., N} over actions from the algor-
rithms A1, A2, ..., AN .

• compute a single distribution pt and we will take the pt as a stationary
distribution of the Markov chain.

• receives a loss vector lt from the adversary.

• returns to each Ai the loss vector pti · lt.

Figure 3.2: The structure of the swap regret reduction.
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Theorem 3.7.1 If there is a no-external regret algorithm, then there is a no-
swap regret algorithm.

Proof The time averaged expected loss of the H algorithm is

LH =
1

T

T∑
t=1

N∑
i=1

pti · lti

The time averaged expected loss of the H algorithm under a switching func-
tion δ : {1, ..., N} → {1, ..., N} is

LH,δ =
1

T

T∑
t=1

N∑
i=1

pti · ltδ(i)

Our goal is to prove that the swap regret of H is at most NR, where R is
an external regret algorithm:

LH ≤ LH,δ +NR

The actions of an Aj algorithm are being chosen according to its recom-
mended distributions q1

j , ..., q
T
j and that the true loss vectors are p1

j ·l1, ..., pTj ·lT .
The time averaged expected loss of the algorithm Aj is

LAj =
1

T

T∑
t=1

N∑
i=1

qtj,i
(
ptj · lti

)
In continuous, we fix an action k ∈ 1, ..., N to the loss lti and also the Aj

is a no-regret algorithm, then we take the following inequality

1

T

T∑
t=1

N∑
i=1

qtj,i
(
ptj · lti

)
≤ 1

T

T∑
t=1

ptj · ltk +Rj

where the term Rj goes to 0 as T →∞.
Thereafter, we fix a switching function δ, that the above inequality is witten

as

1

T

T∑
t=1

N∑
i=1

qtj,i
(
ptj · lti

)
≤ 1

T

T∑
t=1

ptj · ltδ(i) +Rj
Summing the two sides
=============⇒

over all j=1,2,...N

1

T

T∑
t=1

N∑
i=1

N∑
j=1

qtj,ip
t
j · lti ≤

1

T

T∑
t=1

N∑
j=1

ptj · ltδ(i) +
N∑
j=1

Rj
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where the term
N∑
j=1

Rj goes to 0 as T → ∞ and from them we can ob-

serve that the right-hand side of this inequality is equal to the time-averaged
expected loss under a function δ of the master algorithm. From this observa-
tion, we choose the splitting of the loss vector lt amongst the no-external regret
algorithms A1, ..., AN to guarantee this property.

Therefore, we have to prove that the left-hand side of this inequality is equal
to the time-averaged expected loss of the master algorithm:

1

T

T∑
t=1

N∑
i=1

pti · lti =
1

T

T∑
t=1

N∑
i=1

N∑
j=1

qtj,ip
t
j · lti

We want
=====⇒
to prove

pti =
N∑
j=1

qtj,ip
t
j

Using the definition of the stationary of a Markov chain, we want to show
that the above equality is satisfied. For this reason, we have to show that pt is a
stationary distribution. The set of states is {1, ..., N}. The distribution qtj,i is
a transition probability from the state j ∈ {1, ..., N} to the state i ∈ {1, ..., N}.
If the pt is a probability distribution then it is the stationary distribution of
this Markov chain. The Markov of chain is showed in the Figure 3.3.

�

Figure 3.3: The Markov chain.

Therefore, we proved the next theorem. From this theorem is derived the
following corollary:
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Theorem 3.7.2 : An R external regret proceduce H guarantees that for any
sequence of T losses lt and for every function delta : 1, ..., N → 1, ..., N , we
have

LH = LH,δ +N · R

Corollary 3.7.1 There exists an online algorithm H such that for every func-
tion F : {1, ..., N} → {1, ..., N},

LH ≤ LH,F +O
(
N
√
T logN

)
,

Therefore, the concept of this corollary is that the swap regret of H is at most
O
(
N
√
T logN

)
.

3.8 The Hierarchy of Equilibrium Concepts

There are three relaxations of Pure Nash Equilibrium (PNE), that each of
them has more permissive and more computationally tractable than PNE.
These three equlirium concepts are the set mixed Nash equilibrium (MNE),
Correlated Equilibria (CE) and Coarse Correlated Equilibria (CCE). We have
note that there are games such as Rock-Paper-Scissors game, atomic selfish
routing games with multiple players that need not have PNE, even with only
2-players and quadratic cost functions [30]. Thus, the sets CCE, CE and MNE
are guaranteed us the existence equilibrium in such finite games. The hierarchy
of the equilibrium concepts is represented in the Figure 3.4.

From the Figure 3.4, we can observe that the biggest set is CCE. That set
is a quite tractable set of equilibria, and hence a relatively plausible prediction
of realized play. In the previous section, we see that there are simple learning
procedures, which are computationally efficient and converge quickly to the
set of CCE. Such as, the no-external regret algorithm that converges to CCE.

The next set of hierarchy is the CE and is tractable. In the previous sec-
tion, we see that there are learning procedures that converge fairly quickly
to CE [31]. Such as, the no-internal regret algorithm and the no-swap regret
algorithm, which converge to CE.

We have note that the CE is tractable in the same strong as CCE, because
of the proof of Theorem 3.7.1: ”if there is a no-external regret algorithm, then
there is a no-swap-regret algorithm”. This reduction preserves computational
efficiency.

The next set of hierarchy is mixed Nash equilibrium (MNE). However, MNE
is a computationally intractable set of equilibria. The set MNE is guaranteed us
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the existence of a point but it is hard to compute. When we have 2-player zero-
sum games then the no-external regret converges quickly to an approximate
MNE.

We conclude that the sets CCE and CE are tractable in general games.
The set MNE is tractable in 2-player zero-sum games. And the last set PNE
is tractable in symmetric routing/congestion games [32].

Figure 3.4: The hierarchy of the equilibrium concepts.
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Chapter 4

Power Control in Wireless
Networks

In this chapter, we study game theoretic models for power control in wireless
networks. Initially, we introduce the evolution of wireless networks, from the
first generation (1G) to the fourth generation (4G) wireless networks. In the
next section, we analyze with more details the evolution of the 4G and mailnly
the physical layer. At the physical layer analysis, the transmit power of wireless
nodes has a huge impact. If there are two users and they want to communicate
among them, then the ideal is to exist a sufficient power. If the transmit power
is too high, significant interference will be generated to other users which will
degrade other users performance. We have note that a mobile device has
limited energy and hence cannot afford high power consumption. Thus, it is
necessary to exist a sufficient transmit power in order to achieve better Quality-
of-Service (QoS), to minimize the interference to the other users, to maxomize
the battery life of the mobile devices and general to maximize the throughput
of the wireless system. Therefore in the last section, we study some game
theoretic algorithms, which have designed to in order to control the power of
each user and hence the QoS in a given wireless environment.

4.1 Introduction in Wireless Networks

The first operational cellular communication system, that called as 1G, was
deployed in the Norway in 1981 and was followed by similar systems in the
US and UK. The 1G provided voice transmissions by using frequencies around
900 MHz and analogue modulation.

In continuous, the second generation (2G) of the wireless mobile network
is developed. The 2G was based on low-band digital data signaling. The most

63



4.1 Introduction 4. Power Control in Wireless Networks

popular of this generation is known as Global Systems for Mobile Communi-
cations (GSM). The first GSM systems used a 25MHz frequency spectrum in
the 900MHz band [33]. GSM systems operate in the 900MHz and 1.8 GHz
bands throughout the world with the exception of the Americas where they
operate in the 1.9 GHz band. The GSM uses time-division multiple access
(TDMA) and Frequency-division multiple access (FDMA) for user and cell
separation. Within Europe, the GSM technology made possible the seamless
roaming across all countries. Simultaneously, an other technology was devel-
oped in North America, which is called CDMAOne (Code Division Multiple
Access).

So, FDMA is a method that the total bandwidth available is devided into a
series of frequency bands. These frequencies are not overlapping among them
and each of them carry a seperate signal. On the other hand, TDMA is an
other method that the total time is devided into time slots of fixed length,
one for each sub-channel. Two of four fundamental types of channel access
schemes, as shown in Figures 4.1:

Figure 4.1: FDMA-TDMA

In third generation (3G) networks, there is Universal Mobile Telecommu-
nication System (UMTS) from 3GPP standard, which based on Wideband
Code Division Multiple Access (W-CDMA). Also in 3G, there is CDMA-
2000 from Qualcomm standard. CDMA200 is also known as C2K or IMT
MultiCarrier(IMT-MC). These technologies use code-division multiple access
(CDMA). CDMA distinguishes between multiple transmissions carried simul-
taneously on a single wireless signal. It carries the transmissions on that signal,
freeing network room for the wireless carrier and providing interference-free
calls for the user. The 3G telecommunication networks support services that
provide an information transfer rate of at least 200 kbit/sec.

The next generation is the fourth generation (4G) networks, which devel-
oped the Long Term Evolution (LTE) from 3GPP standard (in 2007) and the
Mobile WiMAX from IEEE standard (in 2009). WiMAX and LTE use orthog-
onal frequency division multiple access (OFDM). OFDM is a FDM scheme
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used as a digital multi-carrier modulation method as well orthogonal sub-
carrier signal are used to carry data. So, each sub-carrier can be modulated
as a QAM (Quadrature amplitude modulation) or phase-shift keying at a low
symbol rate.

The other two fundamental types of channel access schemes, as shown in
Figure 4.2:

Figure 4.2: CDMA-OFDMA

In 2010, LTE Advanced was to be standardized as part of Release 10 of the
3GPP specification. LTE Advanced based on the existing LTE specification
Release 10. In Figure 4.4 is represented the evolution of wireless networks
from 1G to 4G LTE and we can observe that the last technology has achieved
faster and better mobile broadband [34]. However, the evolution of wireless
networks is continued.

Figure 4.3: Aiming to faster and better services

In the following table, the evolution of mobile standards is presented with
additional details as
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Figure 4.4: Aiming to faster and better services

4.2 LTE Release 10 & beyond (LTE-Advanced)

The Long Term Evolution (LTE) is proposed by the Third Generation Partner-
ship Project (3GPP) [35], [36]. The LTE cellular system is the evolution of the
Third Generation (3G) Universal Mobile Telecommunication System (UMTS),
which achieve a higher data rate (100 Mbps for downlink and 50 Mbps for up-
link), a reduced latency and and a maximized in capacity to support the recent
rapidly growing demand for high-speed multimedia applications such as video
streaming, online games, Voice over Internet Protocol (VoIP), internet surfing
[37]. The LTE standard is specified in 3GPP Release 8 [35]. An enhanced
version of LTE is LTE-Advanced (LTE-A), which is introduced more specifi-
cations into Radio Resource Management (RRM) by the International Mobile
Telecommunications-Advanced (IMT -Advanced) [36], [38]. The LTE-A stan-
dard is specified in 3GPP Release 10 and beyond and this technology is known
as Fourth Generation (4G) [38].

The architecture of the LTE/LTE-A cellular system called as System Ar-
chitecture Evolution (SAE), which consists of two parts: the Evolved Packet
Core (EPC) and the Evolved Universal Terrestrial Radio Access Network (E-
UTRAN), as illustrated in Figure 4.5 [35], [36]. The EPC consists of the
mobility management entity (MME), the serving gateway (S-GW) and the
packet data network gateway (P-GW) [35]. The E-UTRAN consists of user
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Figure 4.5: LTE/LTE-A cellular system

equipments (UE) and evolved NodeBs (eNodeBs or eNBs). The eNBs are the
LTE base stations. The user equipment is a device and can be a smart phone
or a laptop. The connection between eNBs is established by X2 interface and
the connection between EPC and E-UTRAN becomes by the S1 interface [35],
[36], [38].

Figure 4.6: Downlink/Uplink Transission

The bandwidht of an LTE system is from 1.4 MHz to 20 MHz, while the
bandwidht of an LTE-A system is up to 100 MHz. The technology of orthog-
onal frequency division multiple access (OFDMA) is used in the LTE/LTE-A
for the downlink transmission, where the data are transmited from the eNB to
the UE, as illustrated in Figure 4.6 [39], [38]. In this technology, the channel
bandwidth is divided into small radio resources, which are called physical re-
source blocks (PRBs). The OFDMA is based on the use of the Discrete Fourier
Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). The up-
link/downlink transmissions in an LTE/LTE-A are organized in radio frames.
The LTE/LTE-A use the Time Division Duplex (TDD)and the Frequency Di-
vision Duplex (FDD). Each PRB consists of 12 consecutive subcarriers and 7
OFDM symbols. One time slot consists of 7 OFDM symbols, where one time
slot is 0.5 msec [39], [37]. A PRB always consists of 180 kHz in frequency.
One subframe consists of 2 consecutive slots. One frame is 10 msec, which
equals to 10 subframes, as illustrated in Figure 4.7 [39], [38]. The technology
of Single-carrier frequency division multiple access (SC-FDMA) is used in the
LTE/LTE-A for the uplink transmission, where the data are transmited from
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the UE to the eNB, as illustrated in Figure 4.6 [39], [38]. Using the SC-FDMA
in the uplink is achieved a reduction to the peak-to-average power ratio of
UEs, a reduction to their power consumption [37].

Figure 4.7: LTE/LTE-A frame structure

The E-UTRA radio interface between the eNB and UE is composed of the
layer 1 (Physical Layer-PHY), the layer 2 ( Medium Access Control-MAC) and
the layer 3 (Radio Resource Control-RRC) [36]. The PHY modulates symbols
over the radio interface, the MAC controls shared access to the radio interface
across different UEs. The RRC handles radio configuration control and radio
resource management with the purpose of broadcasting system information,
paging and maintenance or establishment of a connection between the UE and
E-UTRAN [39], [36].

Figure 4.8: LTE/LTE-A channels and protocol layers

The physical layer (PHY) provide services to the MAC layer as shown in
Figure 4.8. The provision of the services is done from the transport channels
[39]. Therefore, the PHY is characterized from the coding, the modulation,
multiantenna processing and from the mapping of the signal to physical time-
frequency resources [39], [40]. The channels are divided into two parts: the
uplink channels and the downlink channels. The types of physical channels
are [39]:
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Figure 4.9: Downlink Physical Channels

Figure 4.10: Uplink Physical Channels

In LTE, power control has open loop in the downlink and closed loop in the
uplink. The power control in uplink is necessary, that the interference at the
eNB is reduced. The algorithm of closed loop power control based on average
power over a SC-FDMA symbol. The received power is estimated at the UEs
with the reference signal received power. The power control for the PUSCH
channel [36], [41], [42] is as follows:

PPUSCH = min{Pmax, 10 · log10 ·M + P0 + α · PL+ δTF + f} [dBm]

where,

• Pmax is the maximum allowed transmit power of the UE class.

• M is the number of physical resource blocks (PRBS).

• P0 is the noise power adjustment and is used to control SNR target.

• PL is the downlink path loss and is fractionally compensated up to the
factor α with range [0,1].

69



4.3 Game Theoretic Models 4. Power Control in Wireless Networks

• δTF is UE specific power offset. It is cell/UE specific modulation and
coding scheme defined in the 3GPP specifications for LTE.

• f is a function, which is a UE specific correction value (an absolute or
an accumulated) depends on δTF .

The power control for the PUCCH channel [42] is as follows:

PPUCCH = min{Pmax, h(nCQI , nHARQ) + P0 + PL+ δ + g}

where,

• Pmax is the maximum allowed transmit power of the UE class.

• h(nCQI , nHARQ) is a PUCCH format dependent value, that it depends
on nCQI and nHARQ.

• nCQI is the number of bits for CQI information.

• nHARQ is the number of bits for HARQ ACK or HARQ NACK informa-
tion.

• P0 is the noise power adjustment and is used to control SNR target.

• PL is the full path loss.

• δ is UE specific power offset. It is cell/UE specific modulation and coding
scheme defined in the 3GPP specifications for LTE.

• g is a function, which is a UE specific correction value and depends on
δ.

4.3 Related work - Game Theoretic Models

for Power Control

The issue of the power control has been extensively studied since the late
1980s, especially for CDMA systems. An appropriate and useful mathematical
tool that has applied in wireless communications systems is the game theory.
Firstly, the game theory has been applied in the CDMA systems. Specifically,
there is a literature that the game theory is applied to the power control in a
wireless network. The power control is continued to employ many authors. In
the rest of this section, we see some studies, some game theoretic models for
power control in CDMA and LTE networks.

We study the problem of power control that can be modeled as a non-
cooperative game under the aspects of the game theory. The users in a network
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are considered as individual players. The aim of the players is to maximize
their degree of satisfication that it is expressed as utility function. A non-
cooperative power control game consists of the next basic components:

• A set of players, N = {1, 2, ..., N}. The players are the users in the
network.

• A set of possible actions for each player i ∈ N , Ai. We have note, that
A = A1 × A2 × ... × AN is the strategy space. It is determined with
respect to mobile terminal’s physical limitations on the resources ai that
user i controls. Such as the transmission power, that 0 ≤ pi ≤ pmaxi ,
when ai = pi. An other example is the control of 0 ≤ pi ≤ pmaxi and of
the transmission rate Ri ≤ Rmax

i , when ai = (pi, Ri).

• A set of utility functions mapping action profiles into the real numbers,
Ui : A → R for each player i ∈ N . In the network, Ui are usually
functions that represent the number of bits successfully transmitted per
unit of battery energy, as in [43].

Therefore, a non-cooperative game or a non-cooperative network is usually
represented as G =< N, {Ai} , {Ui} >. The aim of each user i is to select its
strategy (a transmission power) from the set Ai in order to maximize its own
uility. The choice of an utility function determines the nature of the game as
well the actions of the users.

The power control in cellular networks has been extensively studied as
an important mechanism to control Signal-to-Interference Ratios (SIR). The
SIR is also known as CIR (Carrier-to-interference ratio or C/I), which in turn
determine Quality-of-Service (QoS) metrics such as rate, outage, and delay [2].
We have note, that the reducing of the transmitter power can affect negative
a certain link, because that link will also be more vulnerable to interference.
The SIR at user i is denoted as follows:

SIRi =
GiiPi∑

j 6=i
GijPj

where, Gii is the path gain of the signal path in cell i, Pi is the transmitter
power used by the base station in cell i. The product GijPj is the interference
power.

Thus, the aim is to adjust the power of each user for a given channel alloca-
tion, such that the interference levels at the receiver locations are minimized.
We have note that this problem have studied and analyzed in several works
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and remain one of the most important problem in wireless networks. In con-
tinuous of this section, we will study some algorithms, which have designed in
order to mitigate that problem. We can observe that most studies have been
based on the work of Zander and on the work of Foschini and Miljanic.

Iterative power control algorithms invented since the early 1990s find a
transmit power vector so as to ensure that each user attains the target SIR [44]
while the overall power consumption is minimized. So, the aim of Zander was
to investigate the performance of transmitter power control algorithms and to
find performance bounds and conditions of stability for all types of transmitter
power control algorithms [45]. Zander tried to minimize the outage probability,
which is the probability that some randomly chosen link is subject to excessive
interference. Startly, he considers a TDMA/FDMA scheme and m links. He
proposed a centralized power scheme.

A minimum SIR, γ0, is considered in the transmission system. This value
is a threshold and is also called as protection ratio. The outage probability is
defined as

P (γ0) = Pr {SIR ≤ γ0} =
1

N

N∑
j=1

Pr {SIRj ≤ γ0}

It is shown that the maximum achievable SIR, SIR∗, is the following

SIR∗ =
1

λ∗ − 1

where λ∗is the largest eigenvalue of the matrix Z = [Zij]. In order to prove
that there is a unique maximum achievable SIR was used the Perron-Frobenius
theorem. That theorem is analyzed in the appendix A.

He proposed the Stepwise Removal Algorithm (SRA), which is a dynamic
algorithm. In each step exists only one eigenvalue computation. At each time
step, one cell is removed until all the CIR in all remaining cells are larger than
γ0. Then, the goal is to maximize the lower bound for the γ∗ of the next matrix
Z′. Drawback of the SRA algorithm is its centralized nature because of the
full information of the link gain matrix.

The pseudo-code of Stepwise Removal Algorithm is presented in the fol-
lowing table.

In 1993, Foschini and Miljanic [3] proposed an iterative distributed protocol
in order to solve the problem of power control in cellular networks. A n×n
matrix C=

β·Gi,j
Gi,i

for i 6= j, otherwise C=0 and a vector u= β·vi
Gi,i

are defined.

Therefore, the linear equation is P* = C· P ∗ + u, where the P ∗ is a unique
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Algorithm 5 Stepwise Removal Algorithm (SRA)

Step 1:
Determine γ∗ corresponding Z.
If γ∗ ≥ γ0

use the eigenvector P∗

Else set N ′ = N
Step 2:
Remove the cell k for which the maximum of the row and column sums

rk =
N∑
j=1

Zkj and rTk =
N∑
j=1

Zjk

is maximixed and form the (N ′ − 1)× (N ′ − 1) matrix Z′.
Determine γ∗ corresponding to Z′.
If γ∗ ≥ γ0

use the eigenvector P∗

Else set N ′ = N ′ − 1 and repeat the step 2.

vector. The iteration is P [t+ 1] = C ·P [t] + u, where t is the time step. In [3]
proved that P [t] congerges to P*, where P ∗ is a Nash equilibrium.

Specifically in [3], they assumed a cellular network with N links. Each link
is a pair of a transmitter and a receiver. The channel gains are fixed. The
SIR for the user i is denoted as

SIRi =
GiiPi∑

j 6=i
GijPj + vi

where Gi,j is the cross channel gain from the jth transmitter to the ith
receiver, Pi is the power of the ith transmitter and vi is the thermal noise
power at the ith receiver.

In continuous, each SIRi is constrained by a positive constant βi. The aim
is to minimize the total power such that SIRi ≥ βi. Then, this constaint can
be represented in matrix form as

(I−C)P ≥ u

where P = (P1, ..., PN)T is the power vector, u is the vector of noise powers
and is formulated as

u =

(
β1v1

G11

,
β2v2

G22

, ...,
βNvN
GNN

)T
The matrix C is denoted as
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Cij =


βiGij

Gii

, i 6= j

0, i = j

where i, j ∈ 1, ..., N .
In continuous, Foschini and Miljanic showed that the iterative power control

algorithm P[t+ 1] = C ·P[t] + u congerges to P∗ when the Perron-Frobenius
eigenvalue of C, ρC < 1. Thus, the iterative power control algorithm, which
can referred also as Foschini and Miljanic (FM) algorithm or Distributed Power
Conttrol (DPC) algorithm can be rewritten as

Pi[t+ 1] =
βi

SIRi[t]
Pi[t], ∀i

We have note that the above work has studied on distributed power control
algorithm (DPC) for wireless networks with fixed channels. Then, the authors
of the paper [46] showed that the outcomes of the DPC algorithm do not
accurately capture the dynamics of a time varying channel. So, the authors
in [46] based on the algorithm of Foschini and Miljanic [3] and they added a
new assumption that the channel gains Gij are allowed to vary with time. In
continuous, they showed that their power control algorithm converges to the
optimal power allocation in a random channel environment.

Therefore, the distributed power control of [46] is formulated as

p [t+ 1] = C [t] · p [t] + v [t]

In [46], they shown that the power p [t] converges in distribution to a well
defined random variable if and only if the Lyapunov exponent λC < 0 and it
is defined as

λC = lim
t−→∞

1

t
log ||C[1]C[2]...C[t]||

In addition, it is proved that p[t] converges weakly to a limit random
variable p(∞) if λC < 0 and E [log(1 + ||u[t]||)] < ∞. Moreover, the next
lim
t−→∞

E [log(SIRi[t])] = log βi, ∀i is valid. On the other hand, if λC > 0 then

p [t]→∞, as t→∞.
It is noticed that the target SIR have changed in a random channel envi-

ronment, rather than being limited SIRi = βi. The random version of the FM
algorithm is limited by E[logSIRi] = logβi, where logE[SIRi] ≥ E[logSIRi].

Thus, the power updates of the random version of FM algorithm are un-
likely to provide a minimum expected power solution, when the gain matrices
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G[t] are independent identically distributed. This algorithm does not suffi-
ciently track any information on the random channel, for this reason they
insert a new QoS criterion. They showed that the optimal power allocation
can be found through a stochastic approximation algorithm. This stochastic
process yielded an optimal fully distributed on-line algorithm for controlling
transmitter powers in wireless networks.

An other study for the uplink power control is came from Yates in [12].
Specifically, Yates proposed an interference function I (p) in order to reduced
the problem of the uplink power control in cellular networks. Yates defined the
inequality pi ≥ I (p), where p = (p1, ..., pn) is the power vector of the N users,
Ii (p) = (I1 (p) , ..., In (p)) is the interference of other users that user i must
overcome. Thus in a network, it is considered that there are M base stations
and N users. The above inequality can be rewritten as:

pi ≥ I (p) =
βi
Gi,j∑

i 6=j Gi,j · Pj + vi

where, Gm,i is the channel gain of user i to base station m and vm is the
noise power at base station m.

Definition 4.3.1 (YATES) An Interference function I(p) = (I1 (p) , ..., In (p))
is standard if for all p ≥ 0, the following properties are satisfied:

• Positivity: I(p) > 0, if p > 0

• Monotonicity: if p ≥ p′ then I(p) ≥ I(p′)

• Scalabity: ∀a > 1, a · I(p) > I(a · p)

Therefore, when I (p) is a standard interference function then the iteration
p[t+1] = I(p[t]) is called a standard power control algorithm. From the above
properties, we can examine the convergence of a problem. Note that, if the
standard power control algorithm has a fixed point then that fixed point is
unique.

The idea of standard function has been used in some works such as in
[47]. The authors in [47] considered the best strategy as a standard function.
Finally, they showed that their non-cooperative power control game (NPG)
has a unique equilibrium. The NPG is expressed as

max
pj⊂Pj

Uj (pj, p−j), ∀j ∈ N

where the utility Uj is denoted as
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Uj (pj, p−j) =
LR

Mpj
f(SIRj), bits/joule

where L is the information bits that a user transmits, R is the rate, M are
bits that M > L and pj is the power of user j.

An other important point about the the convergence is came from the
reference [48]. In [48], they study the rate of convergence for cellular radio
systems using iterative power control algorithm. They showed that the FM
algorithm converges to the fixed point at a geometric rate. An observation from
[48] is that the increasing of the number of users is corresonding to slower speed
of convergence in a cellular network.

Let N users, M base stations, p = [p1, ...pN ]T is the power vector of the
system and λ = ρ(G) is denoted the Perron-Forbenius eigenvalue of the matrix
G.

Theorem 4.3.1 [48] Let λ < 1 in the FM algorithm. Starting from any initial
power vector p[0], the sequence p[t] converges geometrically to the fixed point,
such that ||p[t]− p∗|| ≤ at||p[0]− p∗||, for some a ∈ [0, 1).

In [43], the authors proposed a non-cooperative power control game. They
used the case of an AWGN channel, where the BER expressions for Binary
Phase Shift Keying (BPSK), Differential Phase Shift Keying (DPSK), Coher-
ent Frequency-Shift Keying (Coherent-FSK), Non Coherent Frequency-Shift
Keying (Non-coherent FSK) modulation techniques. In [43], they used SIR
and utility functions in order to achieve an efficient power control.

The utility function is the number of bits successfully transmitted per unit
of battery energy, thus the utility for the use i by power level pi, as follows

ui(pi, p−i) = R
pi
· f(γi), [bits/joule]

where R is the rate that each user transmits information i.e bits/sec, γi is
the SIR of user i and the function f is the efficiny function that depends on
the BER (the bit error rate), i.e. f(γi) = (1− 2 ·BER(γi))

L.
In continuous, they consider a game Γc with components N, {Pi} and

{uci(·)}. This game is called as non-cooperative power control game (NPGP).
The utilities of that game are uci(p) = ui(p)− ci(pi, p−i), where ci is the pricing
function. They take account a linear pricing scheme as ci(pi, p−i) = caipi. The
value of c is a constant.

Therefore, the multiobjective optimization problem that game solves and
is as follows

max piu
c
i(pi, p−i)

s.t. pi ∈ Pi, ∀i
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The next interest move of the authors are the using of supermodularity. In
supermodula games, each player’s want to increase its strategy increases with
an increase in other players’ strategies. Therefore, they modified the NPGP
with a parameter c and it is proved that the new game is a supermodular
game. The Nash equilibrium of the new game is unique.

In [7], the authors present us a detailed example that the power control
problem in a CDMA system can be solved by game theory. In this problem,
each user’s utility is increasing in his SINR and decreasing in his power level. In
a real communication environment, when a user raises his transmission power
then the interference by other user is increased. The authors in [7] define the
SINR of user j as follows:

SINRj = γj =
W

R

hj · pj∑
i 6=j hi · pi + σ2

where hj is the path gain from user j to the base station, pj is the power
transmitted by user j, W is the bandwidth, R is the rate that users transmit
information, L is the bit packes and σ2 is the additive white Gaussian noise
(AWGN).

The utility function of user j has the unit of bits/J and is such that [7],
[43]:

uj =
R

pj
(1− 2BER(γj))

L

where, BER(γj) is the bit error rate. In the utility function is applying non-
coherent frequency shift keying (FSK) in an AWGN channel, then is rewritten
as follows:

uj =
R

pj
(1− e−0.5γj)

L

In continuous of [7], a refereed game and a repeated power control game
are considered. In the first game, they showed that if the base station is a
”referee”, then it could achieve a solution which is a Pareto improvement over
the Nash Equilibrium of the simple pricing game. In their repeated game, the
model is a discrete time system, where in each time slot, every user transmits
one packet. Also, it is assumed that every user knows the received power of
all transmissions in the previous time slots. Finally, these two games operates
with the same way, when there are not cheats.

In a later work, J. Dams, M. Hoefer, T. Kesselheim in [4] proposed an
other technique, the regret learning in non-cooperative networks, in order to
solve drawbacks of the iteration of [3] such as lack of robustness, the adaption
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of power when the SINR is known. An important observation is that the
iteration system of [4] converges from each starting point to a fixed point if that
point exists. In the Figure 4.11 is represented the difference of these schemes.

However, the iteration pt = Ct · p0 +
t−1∑
k=0

Ckη can not approach the fixed point.

Thus. the time T is bounded until each transmission is ”almost” feasible. The

result is that from the starting point p0 = 0 and after t ≥ log δ

log λmax
·n · log(3n)

rounds implies that (1− δ)p∗ ≤ pt ≤ p∗, for all pt.

Theorem 4.3.2 If the starting point is an arbitrary p0 and after t ≥ T =

log δ − log maxi

∣∣∣∣p0
i

p∗i
− 1

∣∣∣∣
log maxi

∣∣∣∣1− ηi
p∗i

∣∣∣∣ implies that (1− δ)p∗ ≤ pt ≤ (1 + δ)p∗.

Proof Let that the p∗ is used as weights, then ||x|| = maxi
xi
p∗i

In continuous,

the matrix C is denoted as matrix norm, ||C|| = maxi
1

p∗i

∑
j

Ci,jp
∗
j . The term

C · p∗i is replaced by p∗i − ηi. The the matrix norm of C is rewritten as ||C|| =

maxi

∣∣∣∣1− ηi
p∗i

∣∣∣∣. Therefore, the distance pt from the point p∗ is defined as

||pt − p∗|| ≤ ||C||t maxi

∣∣∣∣p0
i

p∗i
− 1

∣∣∣∣ ≤ δ

�

Figure 4.11: The comparison of FM iteration and No-swap Regret Learning.

Thus, the model of [4] is considered as a normal form game, where each
sender i picks a transmission power as a strategy. Each user i chooses his power
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out of an interval from 0 to the maximal power level of user i, [0, Pmax
i ]. The

Φ− regret user i is as follows:

RΦ
i (T ) = supφ∈Φ

T∑
t=1

ui(φ(pti), p
t
−i)− ui(pti, pt−i)

where Φ is a set of measurable functions, ui is a utility function. The authors in
[4] considered two cases for the set Φ, the external regret and the swap-regret.

The no-regret sequences can be computed in a distributed way. These
algorithms are randomized. In the previous literatures [16], the space of ac-
tions is finite and the expected regret of a user after T rounds is at most
O(
√
TNlogN). The authors in [4] study an algorithm A, which can be used

to construct an algorithm for power control on infinite action spaces achieving

swap regret at most O(T
a+b
1+b ). An other important point is that they prove

that all no-swap-regret sequences converge to the optimal power vector p*.
But, a no-external-regret sequence might make only 2 of n links successful.
Finally, they use the definition of ε - correlated equilibrium in order to bound
the probability that user i has successfully transmission. Bellow, we see the
results of paper [4] with more details.

Initially, they consider the following utility function:

ui (p) =

{
fi (pi) , if user i is successful with pi against p−i

0, otherwise

where fi : [0, pmaxi ]→ [0, 1] is a continuous and strictly decreasing function
for each i ∈ [n]. The power for user i is denoted as pi ∈ [0, pmaxi ]. The powers
for all users except the user i is denoted as p−i.

The following theorem show us that no-swap regret sequences can be com-
puted in a distributed way. It is applied no-swap regret algorithm for finite
action spaces on a suitable finite subset of the powers. The finite subset is con-
structed by the following method: the set of powers are divided into intervals
of equal length and is used the right borders as the input action set for the
algorithm. The discretization is chosen in an iteratively refined to guarantee
that the no-swap regret property holds.

Theorem 4.3.3 Let A be any no-swap regret algorithm for arbitrary finite
action spaces, whose swap regret after T rounds in case of N actions is at most
O(T a ·N b), where a and b are suitable constants with 0 ≤ a < 1, b ≥ 0. Then
A can be used to construct an algorithm for power control on infinite action

spaces achieving swap regret at most O(T
a+b
1+b ).

Proof Let the utility function ui(·, p−i) for the user i. Let [0, pmaxi ] is the
set of strategies. That set is devided into N intervals of equal lenght. So, the
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utility at the right border of each interval is at most
Si·pmaxi

N
worse than the

maximum in the respective interval, where Si = maxpi,h
fpi−fpi+h

h
. Then, we

have

ui (x, pi) ≤ ui(
(k+1)pmaxi

N
, pi) +

Si·pmaxi

N
, ∀x ∈

[
kpmaxi

N
,

(k+1)pmaxi

N

]
Let T is the number of steps. Then, the intervals are set N = dT

1−a
1+b e. The

algorithm use the finite strategy set of size N:
{
pmaxi

N
,

2pmaxi

N
, ..., pmaxi

}
.

Therefore, the regret is at most O(T a · N b) + T · Sipmaxi = O(T
a+b
1+b ). This

bound is produced from:

• Due to the restriction to the optimal strategies in the above finite set, the
swap regret is at most O(T a ·N b).

• Due to the restriction to the finite set, at T steps are lost at most T ·
Sip

max
i .

�

In continuous, we see the analysis of the convergence of no-swap regret
sequences to the optimal power vector p∗ and the fraction of rounds in which
each link is successful converges to 1. However, the next theorem gives us a
lower bound for the number of steps that there is a successful transmission in
a link. The power vector belongs to the closed interval [(1− δ) p∗i , (1 + δ) p∗i ].
The bound depends on the utility function and the fraction of rounds that we
have a successful transmission. Finally, from the theorem we can conclude a
bound converging to 1 as the swap regret per step approaches 0.

Theorem 4.3.4 For every sequence p1, ..., pT with swap regret at most ε · T
and for every δ > 0 the fraction of steps in which user i sends successfully is
at least

Q · fi ((1 + δ) p∗i )

fi ((1− δ) p∗i )
− ε

fi ((1− δ) p∗i )

where Q denotes the fraction of rounds in which a power vector p with (1− δ) p∗i ≤
p ≤ (1 + δ) p∗i is chosen.

Using the definition of ε-correlated equilibrium, the above theorem can be
rewritten as follows:

Proposition 4.3.1 For every ε-correlated equilibium π and for every δ > 0
the probability that user i sends successfully is at least
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Q · fi ((1 + δ) p∗i )

fi ((1− δ) p∗i )
− ε

fi ((1− δ) p∗i )

where Q = Prp∼π [(1− δ) p∗i ≤ p ≤ (1 + δ) p∗i ].

Proof

Ep∼π [ui ((1 + δ) p∗i , p−i) |E ]− Ep∼π [ui (p) |E ] ≤ ε
Prp∼π [E]

(1)

• Ep∼π [ui ((1 + δ) p∗i , p−i) |E ] ≥ fi ((1 + δ) p∗i )·Prp∼π
[
p−i ≤ (1 + δ) p∗−i|E

]
⇒

Ep∼π [ui ((1 + δ) p∗i , p−i) |E ] ≥ fi ((1 + δ) p∗i )·
Prp∼π[(1−δ)p∗i≤p≤(1+δ)p∗i ]

Prp∼π [E]
(2)

• Ep∼π [ui (p) |E ] ≤ fi ((1− δ) p∗i ) · Prp∼π [S|E ]⇒

Ep∼π [ui (p) |E ] ≤ fi ((1− δ) p∗i ) ·
Prp∼π [S]

Prp∼π [E]
(3)

From the inequalities (1), (2) and (3), we have the next inequality:

fi ((1 + δ) p∗i ) ·
Prp∼π[(1−δ)p∗i≤p≤(1+δ)p∗i ]

Prp∼π [E]
− fi ((1− δ) p∗i ) ·

Prp∼π [S]

Prp∼π [E]
≤ ε

Prp∼π [E]
⇒

fi ((1 + δ) p∗i ) ·Prp∼π [(1− δ) p∗i ≤ p ≤ (1 + δ) p∗i ]−fi ((1− δ) p∗i ) ·Prp∼π [S] ≤ ε

�

In order to bound the probability Prp∼π [(1− δ) p∗i ≤ p ≤ (1 + δ) p∗i ] is dev-
ided in the case of Prp∼π [p > (1 + δ) p∗i ] and in the case of Prp∼π [p > (1− δ) p∗i ].
Then

• Prp∼π [p > (1 + δ) p∗i ] ≤ ε
(
n
δ

maxi
2
siηi

+ 2
)T+1

where, T =

log δ
4
− log maxi

∣∣∣∣∣ pmaxi

(1 + δ
2
)p∗i

∣∣∣∣∣
log maxi

∣∣∣∣1− ηi
p∗i

∣∣∣∣
• Prp∼π [p > (1− δ) p∗i ] ≤

(
ε

1−r + Prp∼π [p � (1 + δ) p∗i ]
) (

n
r

)T ′+1

where, T ′ =
log δ

log maxi

∣∣∣∣1− ηi
p∗i

∣∣∣∣ and r ≤ mini fi ((1− δ) p∗i )
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In [5], the authors study algorithms in wireless networks where there are in-
tereferences, using the Rayleigh model. For this reason, this model based on
the SINR using stochastic propagation to address fading effects observed in
reality. Also, they study the behavior of the external regret learning of some
user at a time T. The authors apply the regret learning in ordrer to achieve
the maximum capacity. In continuous, they proved that any no-regret learn-
ing algorithm, the number of successful transmissions needs to converge to a
constant fraction of the non-fading optimum.

They used an utiliy function that depends on the success probability Qi of
link i. The utility for the user i is as follows:

ui(q1, ..., qn) =

{
2 ·Qi(q1, ..., qn)− 1, if qi = 1

0, if qi = 0

The success probability Qi(q1, ..., qn) of link i interpreted as follows: let each
sender si transmits with probability qi to the receiver ri and the propagation
is applied in a Rayleigh-fading environment, then the successful probability is
defined as

Qi(q1, ..., qn) = qi · e
βν
S̄i,i
∏
j 6=i

1− βqj

β +
S̄i,i
S̄j,i


where β is the threshold of the SINR, ν is a constant for the ambient noise

and S̄j,i is the received signal strength.
In continuous, it is considered a sequence q1, ..., qt of action vectors that

exhibits external regret ε ·T for each user i = 1, ..., n and they showed that the
average number of successful transmission is in Ω(OPT−ε·n). The term OPT
is the size of the largest feasible set in the non-fading model under uniform
transmission powers.

In [49], the authors designed a non-cooperative power control game (NCPCG)
and a non-cooperative throughput game (NCTG). Also, they proposed an op-
timal complex centralized algorithm and is developed as a performance bound.
Studied the social behavior of individual users in the proposed system model
and the authors in [49] tried to enhance the overall system performance. The
proposed schemes converge to the near-optimal solutions, compared with the
optimal solutions from the centralized scheme.

Specifically, the NCPCG is denoted as max
Pi≤Pmax

ui (Pi, P−i, vi), where Pi is

the transmitted power level of user i and vi is the assigned value function that
depends on the throughput Ti and the bit error rate BER of user i. Thus, the
value function is vi = ln

((
2Ti − 1

)
/ci3
)

+ 1, where ci3 = −ci2/ ln (BERi/c
i
1),

c1 ≈ 0.2 and c2 ≈ 1.5, as well they used MQAM modulation scheme and the

BER ≈ c1 expc2(Γi/2
Ti−1). The utility function is represented as
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ui = Pi (vi − ln Γi)

where ln Γi is denoted the cost.
The main goal is to assign a vi by the NCTG in order to maximize the

throughput of the overall system with the constraint of Pi ≤ Pmax for all
users.

Therefore, the NCTG is denoted as max
Ti

u′i, where the utility function u′i =

Ti ·L and L is an indication function for system feasibility. Note that the game
starts from any feasible initaial value.

In [21], the authors study the behavior of individual distributed secondary
user to control its rate when the prime user is absent. The aim of each sec-
ondary user is to maximize its rates over different channels. The authors in
[21] proposed a distributed protocol based on an adaptive learning algorithm
for multiple secondary users using only local information. The proposed learn-
ing algorithm in [21] based on no-regret learning and converges to a set of
correlated equilibria with probability one. Finally, they showed that the opti-
mal correlated equilibria has better fairness and better performances than the
Nash equilibrium.

Specifically, the authors considered that there are N channels, M primary
users and K secondary users in a wireless network. These channels are shared
among M and K. They defined an interference matrix L, that the adjacent sec-
ondary users can interference with each others. Also, they defined a channel
availability matrix A(t), that each user can transmit over a specific channel
with a set of variety rates. For each available channel, a secondary user can se-
lect L+1 discrete rates Y = {0, v1, ..., vL}. The strategy space Ωi for secondary
user i is on the available channels and can be denoted as:

Ωi =
N∏
n=1

Y Ain

The action of user is rni = vl representing user i occupies channel n by rate
ul. The strategy profile is defined as rn = (rn1 , r

n
2 , ..., r

n
K)′. The utility function

is defined as the maximum achievable rate for the secondary users over all the
available channels as follows:

Ui =
N∑
n=1

AinRi(r
n
i , r

n
−i)

where Ri(r
n
i , r

n
−i) is the outcome of resource competition for user i and the

other users.
They proposed two refinements. The maximum sum correlated equilibrium

that maximize the sum of utilities of the secondary users. And the maximum
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fair correlated equilibrium that seeks to improve the worst case situation. In
continous is presented the linear programming problem:

maxp
∑
i∈K

Ep(Ui) or maxpminiEp(Ui)

s.t.
p(ri, r−i)[Ui(r

′
i, r−i)− Ui(ri, r−i)] ≤ 0

∀ri, r′i ∈ Ωi, ∀i ∈ K.

where Ep(.) is the expectation over p. The constraints guarantee the solu-
tion is within the correlated equilibrium set.

They used the regret-matching learnig algorithm. For any two distinct
actions ri 6= r′i in Ωi and at every time T, the regret of user i at time T for not
playing r′i is

RTi (ri, r
′
i) := max{DT

i (ri, r
′
i), 0}

where DT
i is the average payoff that the user i would have obtained, if it

had played action r′i every time in the past instead of choosing the action ri.
The adaptive learning algorithm can guarantee us that the relative fre-

quency of users’s action r converges almost sure to a set of correlated equilib-
rium.

The relative frequency of users’s action r that the use play till T periods
of time is defined as

zT (r) = 1
T

#{t ≤ T : rt = r}

The pseudo-code of Regret-Matching Learning Algorithm is presented in
the following table.

The authors in [50]propose a Coalitional Game Theoretical mechanism and
a Correlated equilibrium Game Theoretical mechanism, in order to achieve
Co-Channel Interference (CCI) mitigation in a distributed manner. They con-
sidered two types of cognitive base stations in a Long Term Evolution (LTE)
network, i.e. the macro cell evolved NodeB (eNB) and the femtocell Home
evolved NodeBs (HeNB). The UMTS LTE proposes a distributed network ar-
chitecture. In the case of Correlated Equilibrium Games, the authors compare
the Nash equilibria (NE) and the correlated equilibria, that the latter has more
advantages than the NE. Then, the authors propose that the resource block
(RB) selection of eNBs in the downlink of an LTE system can be formulated
as a correlated equilibrium game. The solution of this game can be taken by
using the non-regret learning algorithm.

An other study is the combination of power control (PC) and the Inter-cell
interference control (ICIC) based on game theory [51]. This combination had
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Algorithm 6 Regret-Matching Learning Algorithm by [21]

Initialization:
For each user i assign arbitrarily probability p1

i (ri)
For t = 1 to T
Step 1:
Find DT

i (ri, r
′
i).

Step 2:
Find average regret RTi (ri, r

′
i).

Step 3:
Let ri ∈ Ωi be the strategy last chosen by i, i.e. rti = ri.
Then, pt+1

i (r′i) = 1
µ
RTi (ri, r

′
i), ∀r′i 6= ri

Then, pt+1
i (ri) = 1−

∑
r′i 6=ri

pt+1
i (r′i)

where µ is a certain constant that is sufficient large.

as a result to achieve a better performance. Also, the authors study their
model in a LTE network. In wireless networks, the SINR in the center of the
cell is different from the one in the outage zones. This difference in a cell
give not equal service quality to the users. They proposed a model that based
on defining different roles of the users within a cell. The roles of a user is

determined by its activity (
k∑
j=1

UEAj), distance from eNB (UEP0si), load of

the system, type (UETi). So, the role of a user i can be formulated as

Rolei(PCAi) =

{
UETi,

k∑
j=1

UEAj, UEP0si,max[ufi(STi, pi, Pi)]

}

where, ufi is the utility function of user i that depends on the service type
such as voice, data, text, image, video, also depends on the power level pi and
the overall power limit in the cell Pi. Then, the utility measures the quantity of
information that is received and the throughput that is achieved by consuming
a basic unit of energy. The utility is the total number of correct bits that a
user can transmit per unit of its battery energy.

In paper [52], they study a no-regret learning algorithm for simulateneous
power control and channel allocation in cognitive radio networks. Specifically,
they tried to find an algorithm for an exact potential game that allows cogni-
tive radio pairs to update their transmission powers and frequencies simulate-
neously. This algorithm converges to a pure Nash equilibrium. They observed
through simulations that the no-regret learning algorithm can achieve the same
performance as the traditional potential game. In the no-regret learning algo-
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rithm, the player knows the strategy in the current round and the utilities of
all possible strategies.

The authors studied the game Γ =
{
N, {Si}i∈N , {Ui}i∈N

}
. Thus, N is the

finite set of players. The players are transmitting-receiving pairs. In continu-
ous, Si is the set of strategies associated with player i and Ui : S → R. They
used the utility function from the paper [53], as follows:

Ui(si, s−i) = T 1
i (si, s−i) + T 2

i (si, s−i) + T 3
i (si, s−i)

where the term T 1
i express the impact that other players have on the in-

terference sensed by the receiver in the pair i, as follows:

T 1
i (si, s−i) = −

N∑
j 6=i,j=1

pjhjiI(j, i)

The term T 2
i give the impact of a potential action for player i on the

interference observed by all other users, as follows:

T 2
i (si, s−i) = −

N∑
j 6=i,j=1

pihijI(i, j)

The term T 3
i depends only on the action selected by player i and provides

an incentive for individual players to increase their power levels, as follows:

T 3
i (si, s−i) = a log(1 + pihii) + β

pi

The β
pi

term takes account the utility associated with longer battery life.
The game Γ with the above utility has proved that is an exact potential

game [53].
In each iteration, the player examine all the various possibilities of the

action space, by calculating the corresponding weights of actions of the player.
Each player has |C|× |P | weights. Therefore, each player catch the action pair
with the highest weight. The weight assigned to action pair si = (ci, pi) ∈ Si,
at time t+1, is denoted as qt+1

i . Also, it is used a parameter γ, which is defined
as 0 < γ < 1.

After each iteration, the above no-regret algorithm updates weights as-
sociated with each action based the cumulative utility function, U t

i (si) =
t∑

j=1

Ui(si, s
j
−i) and calculates again the weights associated with the set of its

strategies for the next round. We have note in this algorithm that, the play-
ers update their actions simultaneously, instead to the traditional potential
game, that the players update their actions sequentially. Finally, they observed
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through simulations that the no-regret learning algorithm is slower than a tra-
ditional potential game. However, it is noticed that this learning algorithm is
very useful for the evolving of wireless networks.

The pseudo-code of No-regret algorithm is presented in the following table
[52].

Algorithm 7 No-Regret Algorithm by [52]

Initialization:
For each user i assign randomly a power level and a channel.
Procedure:
For t = 1 to T
For i = 1 to N
For k = 1 to |P |
For kk = 1 to |C|
Calculate Ui as Ui (si, s−i) = T 1

i (si, s−i) + T 2
i (si, s−i) + T 3

i (si, s−i).

Calculate the weight qt+1
i =

(1 + γ)U
t
i (si)∑

s′i

(1 + γ)U
t
i (s′i)

.

End for kk
End for k
Select the largest weight for all the users,
Assign the power level and channel corresponding to the largest weight to
all the users.
End for i
End for t
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Chapter 5

Proposed System Model

We assume that our network is compatible with the LTE Release 10 and beyond
(LTE-Advanced) in 3rd Generation Partnership Project (3GPP) standard for
wireless data communications. We follow the parameters settings agreed in
3GPP such as Bandwidth, Modulation Coding Schemes (MCS), Carrier Fre-
quency, Path Loss, Thermal Noise [39]. In our scheme, the wireless devices are
in a non-cooperative network. Our goal is the minimum transmission power
with the maximum throughput in a realistic environment. Therefore, our ob-
ject is to design a framework for power control using regret learning algorithm.

Figure 5.1: The connection between of the game theory and the wireless net-
works

5.1 Network Model

5.1.1 Signal Model-SINR

We consider that our network consists of i receivers and j senders (i, j =
1,...,N). Each sender is a selfish agent and use a power level to transmit packets
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with success to the receiver, so the sender j transmit the signal at power pj
multiplied by the gain Gi,j and by the Fi,j model Rayleigh fading. In particular,
the gain represent the distance between sender and receiver. In the Rayleigh
fading environment there are many objects that scatter the radio signal before
it arrives at the receiver and the received signal power has an exponential
distribution.

The received signal in Rayleigh fading channel is given from the follow:

Y=H·X+Z,

where Z is AWGN at tha base station, X is the transmitted signal by user i
and H is the channel gain.

Therefore, the received signal at each input is given by

ri =
∑N

j=1

√
Gij · Fij · Pjbjsj + ni

where, bj are data bits taking on values of ±1 with equal probability, sj
is the fixed k-dimensional spreading sequence of user j with elements taking
values ±1/

√
k, ni is assumed to be additive white Gaussian noise (AWGN)

with zero mean and covariance σ2I.

The SINR for user i is as follows:

SINRi =
Gi,i · Fi,i · Pi∑

i 6=j Gi,j · Fi,j · Pj + vi
≥ βi

The transmission of packet is successful if the above conastraint of SINRi

is satisfied. The SINR in dB for user i is as follows:

SINRi = 10log1010
Gi,i · Fi,i · Pi∑

i 6=j Gi,j · Fi,j · Pj + vi

where vi = σ2I is the noise at the receiver i and βi is a threshold of SINR. The
communication can become more reliable when we use the ratio bit energy
(Eb) per noise spectral density (N0) such that

Eb
N0

=
BW

R

Gi,i · Fi,i · Pi∑
i 6=j Gi,j · Fi,j · Pj + vi

where BW is the channel bandwidth and R is the channel data rate.
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5.1.2 Rayleigh Fading

The Rayleigh distribution has a probability density function (pdf) [54] given
by

f(z) =

{ z

σ2
e
−z2
2σ2 , 0 ≤ z ≤ ∞

0, z < 0

where z is a random variable and σ2 is the fading envelope of the Rayleigh
distribution.

5.1.3 Shadowing

The wireless signals are blocked by many objects such as high building and
mountains [54]. This often hapend in large urban areas.

p(s) =
e−((lns−ms)2/2σ2

s)

sσs
√

2π

5.1.4 Path Loss

Path loss represents signal attenuation between the effective transmitted power
and the receiver power. Path loss is measured on dB.

pathloss =
g

dnij

where, n is the path loss exponent for different propagation environments
depending on the characteristics of the communication medium, dij is the
distance between transmitter of the jth link to receiver of the ith link and g is
a constant equals to 1.

5.1.5 Outage Probability

The outage probability Pouti of the ith receiver/transmitter pair is given by

Pouti = Prob(SINRi ≤ βi) = Prob(Gii ·Fii ·Pi ≤ βi · [
∑

i 6=j Gi,j ·Fi,j ·Pj + vi])

The outage probability Pout of the system is given by

Pout = maxi Pouti

which means that Pout is the worst outage probability of the ith receiver/transmitter
pairs.
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Theorem 5.1.1 The outage probability Pouti of the ith receiver/transmitter
pair in a Rayleigh fading is given by

Pouti = 1− e
−vi·βi
Gii·Pi

∏
i 6=j

Gii · Pi
Gii · Pi + βi ·Gi,j · Pj

Proof. We assume that all the received powers x1, ..., xn are independent
exponentially distributed, with means E[xi] = 1/λi. The value x1 = Gii ·Fij ·Pi
is the received power from the desired user and the received mean value of
E[x1] = E[Gij ·Fij ·Pj] = Gij ·Pj [55], [5]. The outage probability for the user
can be expressed as

Pouti = Pr[SINRi ≤ βi] = Pr

[
Gii · Fii · Pi∑

i 6=j Gi,j · Fi,j · Pj + vi
≤ βi

]

= Pr
[
Gii · Fii · Pi ≤ βi · (

∑
i 6=j Gi,j · Fi,j · Pj + vi)

]
= 1− Pr

[
Gii · Fii · Pi > βi · (

∑
i 6=j Gi,j · Fi,j · Pj + vi)

]
Pr
[
x1 > βi · (

∑
i 6=j Gi,j · Fi,j · Pj + vi)

]
= E

{
exp

[
−
βi · (

∑
i 6=j Gi,j · Fi,j · Pj + vi)

E[x1]

]}

= e
−vi·βi
Gii·Pi

∫∞
t2=0

...
∫∞
tn=0

e−λ1(t2+...+tn)
∏n

i=2 λie
−λitidt2...dtn

= e
−vi·βi
Gii·Pi

∏n
i=2

∫∞
ti=0

λie
−(λ1+λi)tidti

= e
−vi·βi
Gii·Pi

∏n
i=2

λ1

λ1 + λi

5.1.6 Modulation Schemes

For the numerical results, we have considered a system employing Quadrature
phase-shift keying (QPSK), 16 Quadrature amplitude modulation (16QAM),
64 Quadrature amplitude modulation (64QAM), for which the Bit Error Rate
(BER) in Additive White Gaussian Noise (AWGN) is given respectively by
[56], [57]:

BERQPSK = 1
k

2√
π

∫∞
x

e
−(

Eb·k
2·N0

)
d(
√

Eb·k
2·N0

)

BER16QAM = 3
2k

2√
π

∫∞
x

e
−(

Eb·k
10·N0

)
d(
√

Eb·k
10·N0

)
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BER64QAM =
7
4k

2√
π

∫∞
x

e
−(

Eb·k
42·N0

)
d(
√

Eb·k
42·N0

)− 49
64
· ( 2√

π

∫∞
x

e
−(

Eb·k
42·N0

)
d(
√

Eb·k
42·N0

))2

where k = log2M .

5.2 Power Control in Uplink

5.2.1 Power Control Game

Theorem 5.2.1 A strategic game G with components N, Ai and ui has a NE
if ∀i ∈ N , the set Ai 6= ∅ is a compact convex subset of a Euclidian space and
the payoff function ui is continuous and quasi-concave on Ai [1].

Definition 2. [Dams, Hoefer and Kesselheim (12)] In a non-cooperative
game G, we assume that each link i chooses his power out of an interval
Pi =[0,pmaxi ], which is a strategy set for the ith user.We define pmaxi as the
maximum power level user i can use.

Utility Let ui : A→ < is the utility function fot the user i, each user selects
a power level pi from the set Pi. The power set of all the users except the user
is is denoted by p−i. The utility level for the ith user is:

u(pi, p−i) = f1i(SINR(pi, p−i))− f2i(pi)

where, f1i(·) is a function of the SINR and f2i(·) is the energy price, as follows

f1i(SINR(pi, p−i)) = Throughput(i) · S

f2i(pi) = ci · pi

where, S is a constant of our system.

Throughput In this model, we take a function to compute the throughput
as follows [58]:

Throughput(i) = BW · log2(1 + SINRi
dni,j

)

where, BW is the channel bandwidth, dij is the distance between transmit-
ter of the jth link to receiver of the ith link.

Theorem 5.2.2 In this power control game G exists a Nash equilibrium.
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Proof. To prove the existence, we have to show that the condition ∂2u(Pi,P−i)
∂2Pi

<
0 is valid.

The first order partial derivative function of the utility function with respect
to Pi is as follows:

∂u(Pi, P−i)

∂Pi
=

BW · S ·

(
1 +

Gi,i · Fi,i · Pi∑
i 6=j Gi,j · Fi,j · Pj + vi

)−1

· Gi,i · Fi,i∑
i 6=j Gi,j · Fi,j · Pj + vi

− ci

The second order partial derivative function of the utility function with
respect to Pi is as follows:

∂2u(Pi, P−i)

∂2Pi
=

−BW · S ·
G2
i,i · F 2

i,i(∑
i 6=j Gi,j · Fi,j · Pj + vi

)2 ·

(
1 +

Gi,i · Fi,i · Pi∑
i 6=j Gi,j · Fi,j · Pj + vi

)−2

< 0

Theorem 5.2.3 In this power control game G the Nash equilibrium is unique.

Proof. To prove the uniqueness, we take an interference function I(p) =
(I1(p), I2(p), ..., IN(p)) such that pi ≥ I (p) and the proporties of the definition
in [12] must be satisfied.

The outage probability of the ith receiver/transmitter pair is given in the
previous theorem. We want to minimize the outage probability of the ith user
in order to reduced his power. Then, Pouti ≤ Ci

1− e
−vi·βi
Gii·Pi

∏
i 6=j

Gii · Pi
Gii · Pi + βi ·Gi,j · Pj

= 1− e
−vi·βi
Gii·Pi

∏
i 6=j

1

1 +
βi·Gi,j ·Pj
Gii·Pi

=

1− e
−vi·βi
Gii·Pi

∏
i 6=j

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]−1

Pouti ≤ Ci =⇒

1− e
−vi·βi
Gii·Pi

∏
i 6=j

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]−1

≤ Ci =⇒

1− Ci ≤ e
−vi·βi
Gii·Pi

∏
i 6=j

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]−1

=⇒
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e
vi·βi
Gii·Pi

∏
i 6=j

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
≤ 1

1− Ci
=⇒

log
(
e
vi·βi
Gii·Pi

∏
i 6=j

[
1 +

βi·Gi,j ·Pj
Gii·Pi

])
≤ log

(
1

1− Ci

)
=⇒

vi·βi
Gii·log

(
1

1−Ci

) +
Pi ·

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
log
(

1
1−Ci

) ≤ Pi

The interference function is given by:

I(p) = vi·βi
Gii·log

(
1

1−Ci

) +
Pi ·

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
log
(

1
1−Ci

)
This function is positive because of the Gij > 0, Gii > 0, Pi > 0, Pj > 0,

vi > 0, βi > 0 and 0 < Ci < 1. Then the property ”I(p) > 0, if p > 0 ”is
satisfied.

The property of scalabity ”∀a > 1, a ·I(p) > I(a ·p)” is satisfied, as follows:

I(a · p) = vi·βi
Gii·log

(
1

1−Ci

) +
a · Pi ·

∑
i 6=j log

[
1 +

βi·Gi,j ·a·Pj
Gii·a·Pi

]
log
(

1
1−Ci

)

= vi·βi
Gii·log

(
1

1−Ci

) +
a · Pi ·

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
log
(

1
1−Ci

)

< a ·

 vi·βi
Gii·log

(
1

1−Ci

) +
Pi ·

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
log
(

1
1−Ci

)


= a · I(p)

The property of monotonicity ”if p ≥ p′ then I(p) ≥ I(p′)” is satisfied, as

follows: The interference function I(p) = vi·βi
Gii·log

(
1

1−Ci

)+
Pi ·

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
log
(

1
1−Ci

)
can be written as:

95



5.2 Power Control in Uplink 5. Proposed System Model

I(p) = vi·βi
Gii·log

(
1

1−Ci

) +

Gii·Pi
βi
·
∑

i 6=j log
[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
Gii
βi
· log

(
1

1−Ci

)

I(p) = vi·βi
Gii·log

(
1

1−Ci

) +

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]Gii·Pi
βi

Gii
βi
· log

(
1

1−Ci

)
Firstly, if Pj ≥ P ′j for j 6= i then I(Pj) ≥ I(P ′j) is satisfied for j 6= i. Proving

the monotonicity of Pi, we consider a = Gi,j · Pj as a positive constant. The
known function f(x) = log(1 + a

x
)x for a > 0 is monotonic. Then I(p) is also

monotonic.
Therefore, the term I(p) is denoted as standard interference function, as

well the properties of Yates [12] are satisfied. Thus, the game converges to the
fixed and unique solution p∗, where p∗ = I(p∗).

But, we want the minimum outage probability. So, we can redefined the
standard interference function as A(p) = min I(p). We can observe that the
game converges to p∗ as well the solution p∗ = A(p∗).

In continuous, we can observe that we can find an upper and a lower bound

for the SINR, as well βi ≤ SINR ≤ 1

βi
log

(
1

1− Ci

)
. The parameter Ci is the

threshold of the outage probability of the ith user. The upper bound about
SINR is analyzed as follows:

Pouti ≤ Ci =⇒

1− e
−vi·βi
Gii·Pi

∏
i 6=j

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]−1

≤ Ci =⇒

1− Ci ≤ e
−vi·βi
Gii·Pi

∏
i 6=j

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]−1

=⇒

log(1− Ci) ≤ −vi·βi
Gii·Pi −

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
=⇒

It is known that log(1 + z) ≤ z, for z ≥ 0. From this, we take that∑
i 6=j log(1 + z) ≤

∑
i 6=j z, for z ≥ 0. Then:

−vi·βi
Gii·Pi −

∑
i 6=j log

[
1 +

βi·Gi,j ·Pj
Gii·Pi

]
≤ −vi·βi

Gii·Pi −
∑

i 6=j
βi·Gi,j ·Pj
Gii·Pi = −βi · SINR

Therefore, we have that
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log(1− Ci) ≤ −βi · SINR =⇒

βi · SINR ≤ log(1− Ci)−1 = log

(
1

1− Ci

)
We conclude that

SINR ≤ 1

βi
log

(
1

1− Ci

)
Finally, from the upper and the lower bounds of the SINR, we can observe

that a power of ith user pi can belong to the next closed interval

pi ∈

βi ·
(∑

i 6=j Gi,j · Fi,j · Pj + vi

)
Gii

,

(∑
i 6=j Gi,j · Fi,j · Pj + vi

)
βi

log

(
1

1− Ci

).

5.2.2 Power Control via Regret Learning

In this section, we see that the convergence to the optimal power p∗ is guaran-
teed, as well we use the correlated equilibrium from game theory. An correlated
equilibrium (CE) behaves similar with that of mixed equilibrium (MNE) of
the game theory because of the probability distribution over strategy vectors.
From the chapter 3, we know that the set of MNE is a subset of CE.

Below, we give an example, in which there is CE. Initially, we will prove
that this example has MNE.

Let that we have two players PI , PII . In the below matrix, these players
with their differents actions C and D are represented. If the both players
choose the action C then they have the best overall benefit. The action C
gives us the choice of the cooperation and in the case of wireless networks
is the transmission with the less aggressively. But, one of the two players
can become more aggressive. In that case he will choose the action D, while
the other user will remain in the action C. Then, the first player will obtain
better utility function. But, the other player will obtain lower utility function.
Then the overall benefit is decreased. However, the both players can become
aggressive (D,D) then the utility function of the both users will be very low.

C D
C (6, 6) (2, 7)
D (7, 2) (0, 0)

Initially, we observe, in the above matrix, that (D,C) and (C,D) are Pure
Nash equilibrium (PNE).
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In the case of mixed strategies, the user PI will follow a probability dis-
tribution p over action C and a probability distribution 1 − p over action D.
Accordingly for the user PI , which will follow a probability distribution q over
action C and a probability distribution 1 − q over action D. If the user PI
follows the action C, then the expected profit of PI is equal to 6p + 2(1− p).
If the user PI follows the action D, then the expected profit of PI is equal
to 7p + 0(1 − p). We have note that this game is symmetric. Similarly, the
accordance outcomes for player PI are calculated. We can conclude that the
users PI , PII choose C and D with probabilities 2/3 and 1/3, respectively.
Finally, the expexted utility function for each player i is equal to ui = 42

3
.

The case of correlated equilibrium is applied as follows: Let that there is
a trusted party, which tells each player what to do based on the outcomes
(C,D), (D,C) and (C,C). Each of them outcome has probability 1/3. We
have note that the game has correlated equilibrium if no user wants to deviate
from the trusted party’s instruction. Let that the trusted party tells player
PI to choose the action D, then PI has no incentive to deviate because of his
payoff = 7. This payoff is the highest for him. Thus, the player PI knows the
outcome (C,D) and that PI will obey the instruction to remain in the action
C.

Let that the trusted party tells player PI to choose the action C. PI knows
that the outcome must have been either (D,C) or (C,C), each happening
with equal probability 1/2. Then, the expected utility of PI on playing C (no
deviate from the trusted party’s instruction) is equal to uC = 6·1/2+2·1/2 = 4,
where 6 is the payoff from P playing C and the number 2 is the payoff from
P playing D. If the player PI decides to deviate from the trusted party’s
instruction playind the action D instead of C, then the expected utility of PI
on playing D is equal to u = 7 ·1/2+0 ·1/2 = 3.5 < 4. We can observe that the
last expected utility is lower than the expected utility from the trusted party’s
instruction. So, PI has no incentive to deviate. Finally, the expected utility
function for each player i is equal to ui = 7 ·1/3+6 ·1/3+2 ·1/3 = 5 > 42

3
. We

conclude that the expected utility of CE is higher than the expected utility of
MNE. Therefore, the set of MNE is a subset of CE.

Howeever, in a game there is a case to exist more than one CE. In order
to adjust the strategies of players and converge to the set of CE, they can
track a set of ”regret” values for strategy update. Remember, the regret is the
expected utility function that each user i would have obtained, if that player
had adopted an other action a’ every time in the past instead of the action a.

In this section, we use the definition of ε-correlated equilibrium [28] and is
defined as follows:

Definition 5.2.1 ε-CE: A joint probability distribution π over the set of power
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vectors P1 × ...× Pn, where Pi = [0, pmaxi ], is an ε-correlated equilibrium if for
every user i and for any function φ : Pi → Pi, we have

Ep∼π [ui (φi (pi) , p−i)]− Ep∼π [ui (pi, p−i)] ≤ ε

where p−i denotes the joint actions of the other users.

It means that π is an ε-correlated equilibrium if each user can increase
its expected utility at most ε. From the paper of [4], we have that a game
has swap regret at most RT, for T times steps each user follow a strategy.
Therefore, each sequence p1, ..., pT of swap regret at most R corresponds to an
R/T -correlated equilibrium.

Moreover in [4], the power pi of ith user belongs to the interval [(1− δ) p∗, (1 + δ) p∗].
The swithcing operation φi (pi) is equal to (1 + δ) p∗, as well the user i could
always choose (1 + δ) p∗.

Therefore, the expected utility due to the above switching operation, using
the utility function of section 5.2.1, can be written as follows:

Ep∼π [ui ((1 + δ) p∗i , p−i)] =

Ep∼π

[
BW · log2(1 +

Gi,i·Fi,i·(1+δ)p∗i∑
i 6=j Gi,j ·Fi,j ·pj+vi

dni,j
)− ci (1 + δ) p∗i

]

The expected utility without the switching operation, using the utility func-
tion of section 5.2.1, can be written as follows:

Ep∼π [ui (p)] = Ep∼π

[
BW · log2(1 +

Gi,i·Fi,i·pi∑
i6=j Gi,j ·Fi,j ·pj+vi

dni,j
)− cipi

]

In [4], a bound of the probability that user i sends successfully was found.
Therefore, we can rewritten this bound using the utility function of section
5.2.1, as follows:

For every π, which is an ε-correlated equilibrium, and for every δ > 0 the
the probability that user i sends successfully is at least

Prp∼π [(1− δ) p∗i ≤ p ≤ (1 + δ) p∗i ]
BW ·log2(1+

Gi,i·Fi,i·(1+δ)p∗i∑
i 6=j Gi,j ·Fi,j ·pj+vi

dn
i,j

)−ci(1+δ)p∗i

BW ·log2(1+

Gi,i·Fi,i·(1+δ)p∗
i∑

i 6=j Gi,j ·Fi,j ·pj+vi
dn
i,j

)−ci(1+δ)p∗i

−

ε

BW ·log2(1+

Gi,i·Fi,i·(1−δ)p∗i∑
i6=j Gi,j ·Fi,j ·pj+vi

dn
i,j

)−ci(1−δ)p∗i
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An other idea for the finding of an ε-correlated equilibrium is to take ac-
count an other switching operation. In the previous section, we found an other

interval, that pi ∈
[
βi·(

∑
i6=j Gi,j ·Fi,j ·Pj+vi)

Gii
,
(
∑
i 6=j Gi,j ·Fi,j ·Pj+vi)

βi
log
(

1
1−Ci

)]
.

Therefore, the swithcing operation φi (pi) is equal to
(
∑
i 6=j Gi,j ·Fi,j ·Pj+vi)

βi
log
(

1
1−Ci

)
,

as well the user i could always choose this operation. The expected utility due
to the above switching operation, using the utility function of section 5.2.1,
can be written as follows:

Ep∼π
[
ui

(
(
∑
i 6=j Gi,j ·Fi,j ·Pj+vi)

βi
log
(

1
1−Ci

)
, p−i

)]
.

Now, we assume that each user i can choose a power level pi from the set
of strategies. Let that each pi has a weight qi [52]. Then, in each iteration t,
the user i chooses that power level pi with the largest weight qi. The weight
can be calculated as follows:

qt+1
i =

(1 + γ)u
t
i(pi)∑

p′i

(1 + γ)u
t
i(p′i)

where uti is the utility function for the user i at time t of the section 5.2.1
and the parameter γ is 0 < γ < 1.
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Appendix A

Perron-Frobenius Theorem

Let a non-negative matrix squqre Z, which is an irreducible matrix [59]. Then:

• The matrix Z has a positive (real) eigenvalue λmax such that all other
eigenvalues of Z satisfy |λ| ≤ λmax.

• The eigenvalue λmax has algebraic multiplicity one and has an eigenvector
x > 0.

• Any non-negative eigenvector is a multiple of x.

• If y > 0 is a vector and µ is a number, where Zy ≤ µy then µ ≥ λmax.
For µ = λmax iff y is a multiple of x.

• If 0 ≤ S ≤ Z and Z 6= S then every eigenvalue s of S satisfies |s| < λmax.

• All the diagonal components Zii of Z have eigenvalues all of which have
absolute value < λmax.

• If Z is primitive matrix, then all other eigenvalues of Z satisfy |λ| < λmax.
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