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Abstract

In this MSc thesis we are going to present algorithms for computing obstruction sets
of well–quasi–ordered graph classes. Neil Robertson and Paul Seymour’s Graph Minor
Theorem (GMT) [27] guarantees that any minor–closed graph class has a finite obstruc-
tion set. If C is such a class, the obstruction set of C, obsm(C), is the minimal set of
graphs H such that G belongs to C if and only if none of the graphs in H is contained
as a minor in G. The analogous result for another well–quasi–ordering, the immersion
ordering, was shown in the same series of papers (Graph Minors), in [30]. But this
results are non-constructive; we know that a minor or immersion–closed graph class has
a finite obstruction set but the GMT does not imply any algorithm for computing it. K.
Cattell, M. J. Dinneen, R. Downey, M. R. Fellows and M. Langston in “On computing
graph minor obstruction sets” [6] and I. Adler, M. Grohe and S. Kreutzer in “Comput-
ing Excluded Minors” [1] present algorithms to overcome this problem for minor–closed
graph classes, as well as, applications of their methods proving that the obstruction sets
of various graph classes are computable, such as the union problem. By adapting some
of the methods of [1] to immersions, the analogue result for immersion obstruction sets
and an algorithm for the union problem on immersion–closed graph classes are proven
in [17] by A. Giannopoulou, D. Zoros and the author, under the supervision of D. M.
Thilikos.

Keywords: Graph Minor Theorem, obstruction set, Monadic Second-Order Logic, im-
mersion, tree-width.
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Introduction

A classic result by Wagner (equivalent to the well known Kuratowski’s theorem1 for
planar graphs) states that a graph is planar if and only if it does not contain as a minor
K5 or K3,3. So the algorithm that, given a graph G answers yes if no graph in {K5,K3,3}
is contained in G as a minor and no otherwise, is an algorithm that decides the minor–
closed graph class of planar graphs. A first question on the above algorithm would be:
do we have a subroutine to check if a graph is contained into another as a minor? The
answer is yes! Neil Robertson and Paul Seymour showed in [26] that for a known graph
H, given a graph G we can check in cubic time (O(|V (G)|3)) if H is a minor of G. So
our algorithm decides if a graph is planar in cubic time. Of course, planarity testing
can be done in linear time (O(|V (G)|)) by the Hopcroft–Tarjan algorithm [19] (see also
[21]), but we use this familiar problem to describe the framework that we want to work
on. Thus, on a second look one would wonder, can we generalize this algorithm to other
graph classes and other relations on graphs?

Lets step back and look at the framework of the algorithm. We have a minor–closed
graph class, call it Cp, and a set of graphs for that class OCp = {K5,K3,3}. We describe
the algorithm in pseuodcode as shown in Algorithm 1. On input G the algorithm checks
if none of the forbidden graphs is contained in G, and if this holds then it accepts and
in any other case it rejects the input. Since we know algoritms [26, 30] to check if a
fixed graph H is a minor, or immersion of a graph G in cubic time, the only ingredient
missing is the set O of forbidden graphs, or even better the mininal set of forbidden
graphs, which we call the obstruction set for a graph class.

Algorithm 1 Algorithm for the minor-closed graph class Cp
Input: a graph G
for every H ∈ OCp do

if H is contained as a minor in G then
return “no”

end if
end for
return “yes”

1As shown independently by Kuratowski and Pontryagin, a graph is planar if and only if it does not
contain a subgraph that is a subdivision of K5 or K3,3. The result was then proved for minors by Wagner
and it is easy to see that the two theorems are equivalent.

1



2 Introduction

Klaus Wagner conjectured2 that for every infinite set of finite graphs, one of its
members is a minor of another i.e. the minor relation on finite graphs is a well–quasi–
order (WQO). And that (Robertson and Seymour theorem, Graph Minor Theorem,
GMT, [27], 2004) was proved in a series of papers by Robertson and Seymour, called
the Graph Minors (1983–2010). Later on, in [30] the immersion relation was also proven
to be a well–quasi–order. Consequently, every minor or immersion-closed graph class
has a finite obstruction set. Thus, we have the last ingredient to generalize Algorithm
1 but are we done? Unfortunately, the answer here is no! And it is negative because
the GMT guarantees the existense of a finite obstruction set, but since the proof is
non-constructive [23], it gives us no algorithm to construct the obstruction set.

The natural question that arises is

“what pieces of information do we need for a minor or immersion-closed
graph class to transform the existense of the obstruction set to a construction
of it?”

M.R. Fellows and M. Langston proved in [16] that an algorithm for deciding membership
in a minor-closed graph class F is not sufficient to construct the obstruction set of F .
However, the results of “On computing graph minor obstruction sets” by K. Cattell, M.J.
Dinnen, R.G. Downey, M.R. Fellows and M.A. Langston, [6], and “Computing Excluded
Minors” by I. Adler, M. Grohe and S. Kreutzer, [1], showed that there are algorithms
that compute obstruction sets of minor-closed graph classes, but for that we need more
information than just an algorithm for membership in F .

The approach of Cattell et al. is an algorithmic one. The authors employ an analogue
of the Myhill–Nerode theorem [15] and define congruences based on a minor–closed class
that split the class in a finite number of equivalence classes, of which they find the mininal
elements. They demand the knwoledge of a bound on the treewidth of the obstructions
but another algorithm for obstruction set computation is also proven, demanding other
information about the congruence but not the bound on the treewidth. The approach
of Adler et al. requires that the minor–closed graph class we examine is definable in
layerwise monadic second–order logic (layerwise MSO). Again a bound on the treewidth
of the obstructions is needed and Seese’s theorem [31] plays an important role. We are
going to present these two approaches in chapter 3 and 4 respectively.

A main application given in both of the papers is the computation of the obstruction
set of F1 ∪ F2 given the obstruction set of two minor-closed graph classes, F1 and F2.
Using some of the machinery of [1], A. Giannopoulou, D. Zoros and the author, under the
supervision of our advisor D.M. Thilikos, proved that there is an algorithm to compute
the obstruction set of F1 ∪ F2 given the obstruction set of two immersion–closed graph
classes, F1 and F2. This work was published on SWAT 2012 and is presented in chapter
5, in the scope of computability, as an application of the previous chapters. Chapter 5
ends with some concluding remarks, and of course all the basic notions and preliminaries
are presented in chapter 2.

2The conjecture is known to be Wanger’s, but Wagner has said that he never made this conjecture! [12]



3

But have we solved the problem of constructibility of the obstruction sets? The
answer is almost yes. And that is, because eventhough we have algorithms to compute
the obstruction sets of minor and immersion-closed graph classes, the running time of
these algorithms is not constructive. This means that we know that our algorithms will
stop having produced the obstruction set, but we don’t know when. This problem is still
open and we are not sure if we can bound the running time of the algorithms or not.
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Chapter 1

Preliminaries

1.1 Basics

Lets begin with the definitions of some basic notions. N, Z and R denote the sets
of natural numbers, integers and real numbers respectively. By [n] we denote the set
{1, . . . , n} of the first n integers. A (simple) graph G is defined to be an ordered pair
(V,E) consisting of two sets: the set of vertices (or nodes) V or V (G) and the set
of edges E or E(G), where an edge is a two-element set including elements from V :
E ∈ {X ⊂ P(V ) | ∀e ∈ X : |e| = 2}. Schematically, we draw graphs by representing the
elements of V as (labeled) nodes and the edges with lines between the two corresponding
nodes (endpoints). In figure 1.1 we can see some examples of graphs.

A directed graph is a simple graph where the edges are not sets but ordered pairs,
i.e. elements of V ×V , and a weighted graph is a simple graph where a real number (the
weight) is assigned to each edge. We are going to deal with graphs that are undirected,
unweighted and contain no loops (edges with the same endpoints) or multiple edges
between two vertices (E is a set, so an edge {v1, v2} can connect two vertices at most
once).

In a graph G = (V,E) the degree of a vertex v is the number of its neighbours.
We write degG(v) = |{w ∈ V | {v, w} ∈ E}|. The maximum degree of G = (V,E),
is ∆(G) = max{degG(v) | v ∈ V } and its line graph is the graph L(G) = (E,X),
where X = {{e1, e2} | e1, e2 ∈ E ∧ e1 ∩ e2 ̸= ∅ ∧ e1 ̸= e2}. Two graphs G1 = (V1, E1)
and G2 = (V2, E2) are isomporphic if there is a bijection1 f from V1 to V2, such that
{v, w} ∈ E1 ⇔ {f(v), f(w)} ∈ E2. For example try to see that all graphs in figure 1.1
are isomporphic2. Given two graphs G and H, the lexicographic product G ×H, is the
graph with V (G × H) = V (G) × V (H) and E(G × H) = {{(x, y), (x′, y′)} | ({x, x′} ∈
E(G)) ∨ (x = x′ ∧ {y, y′} ∈ E(H))}.

Now lets continue with relations on graphs. We say that a graph G1 = (V1, E1)
is a subgraph of a graph G2 = (V2, E2), G1 ⊆ G2, if a graph isomorphic to G1 can be

1A one-to-one and onto function.
2The first graph of figure 1.1 is called the Petersen graph. Eventhough all graphs in figure 1.1 are

isomorphic its first draw is more popular.

5



6 1. Preliminaries

Figure 1.1: Some graphs.

obtained by G2 after a sequence of vertex or edge deletions. The operations of vertex and
edge deletion are defined as follows: for v ∈ V (G), e ∈ E(G), G\v = (V (G) ∖ {v}, E′),
where E′ is obtained by E(G) after removing all the edges that have an endpoint in v,
and G\e = (V (G), E(G)∖ {e}). Given an edge e = {x, y} of a graph G, the graph G\e
is obtained from G by contracting the edge e, that is, the endpoints x and y are replaced
by a new vertex vxy which is adjacent to the old neighbors of x and y (except x and y).
A graph G1 is a topological minor of a graph G2, G1 ≤tp G2, if a graph isomorphic to
G1 can be obtained by a subdivision of a subgraph of G2. A graph H is a subdivision of
a graph G, if G is obtained from H by replacing some (or maybe none) edges of H with
paths.

A graph H is a subdivision of a graph G if a graph isomorphic to G can be obtained
by H by replacing some of the edges of H with paths. Furthermore, we say that H is a
topological minor of G, H ≤tp G, if H is a subdivision of a subgraph of G. We are now
ready to define the two relations on graphs that are basic for our study.

A graph H is a minor of G, H ≤m G, if an isomorphic graph to H can be obtained
from a subgraph of G after a sequence of edge contractions. An equivalent definition
(which will be useful in chapter 3) would state that H ≤m G if there is a function that
maps every vertex v of H to a connected subgraph Bv ⊆ V (G), such that for every two
distinct vertices v, w of H, Bv and Bw share no common vertex, and for every edge
{u, v} of H, there is an edge in G with one endpoint in Bv and one in Bu.

We say that H is an immersion of G (or H is immersed in G), H ≤im G, if there
is an injective mapping f : V (H) → V (G) such that, for every edge {u, v} of H, there
is a path from f(u) to f(v) in G and for any two disjoint edges of H the corresponding
paths in G are edge-disjoint, that is, they do not share common edges3. Furthermore,

3There is an equivalent definition of immersion stating that H ≤im G, if a graph isomorphic to H
can be obtained from a subgraph of G after a sequence of edge–liftings. The operation of edge–lifting is
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two paths are called vertex-disjoint if they do not share common vertices. Naturally,
the above relations on graphs also define orderings on graphs (e.g. minor ordering,
immersion ordering).

1.2 WQO, GMT and obstructions

Definition 1.1. A well-quasi-ordering, WQO, on a set C is a quasi-ordering (a reflexive
and transitive binary relation) which has no infinite descending sequences and no infinite
antichains.

An infinite antichain in C is an infinite sequence of elements in C such that for every
xi, xj ∈ C, with i < j, we have that xi ≰ xj . For example, we know by Kruskal’s Tree
Theorem [22] that the set of rooted trees is WQO by the topological minor relation.

Theorem 1.2 (Graph Minor Theorem, [27]). The class of finite graphs is well-quasi-
ordered by the minor relation.

Robertson and Seymour in the last of the Graph Minors series also proved the fol-
lowing:

Theorem 1.3 ([30]). The class of finite graphs is well-quasi-ordered by the immersion
relation.

Definition 1.4. Let ≤ be a relation on graphs, such as ≤m or ≤im. A graph class C is
≤–closed, or closed under ≤, if for every graph G in C, if H ≤ G for a graph H, then
H also belongs to C.

As an example, consider the class of planar graphs, Cp. If G is planar and H ≤m G,
then H is also planar, since vertex and edge deletion and edge contraction preserve
planarity. So Cp is a minor–closed graph class. Since edge lifting also preserves planarity,
Cp is also an immersion-closed graph class.

Definition 1.5. The obstruction set of a ≤–closed graph class C, obs(C), is the minimal
set of graphs H satisfying the following property:

G ∈ C ⇔ for every H ∈ H, H ≰ G

As a corollary of theorems 1.2 and 1.3, we get the following:

Corollary 1.6. For every minor or immersion–closed graph class C, the set obs(C) is
finite.

It is obvious that if a graph class C is minor–closed and also immersion–closed, the
minor obstructions obsm(C) are not the same with the immersion obstructions obsim(C),
except for some trivial cases. In addition, obstruction sets are often large sets of graphs.
As an example we give the following theorem (we will not define tree–depth since this
theorem is given only as an example of the cardinality of an obstruction set).

the replacement of two edges {v, x}, {x,w} with a new one {v, w}.
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Theorem 1.7 (A. Giannopoulou and D.M. Thilikos, [18]). Let F be the (≤m–closed)

class of all graphs with tree-depth at most k. Then |O| ≥ 22
k−(2k+1) + 22

k−(k+1), where
O is the obstruction set of the class.

1.3 Treewidth

This section is about a parameter on graphs called treewidth, introduced by N. Robertson
and P. Seymour in [25]. Intuitively this parameter indicates how much a graph resembles
a tree. For a formal approach we have to define tree decompositions.

A tree decomposition of a graph G is a pair (T,B), where T is a tree and B is a
function that maps every vertex v ∈ V (T ) to a subset Bv of V (G) such that:

(i) for every edge e of G there exists a vertex t in T such that e ⊆ Bt,

(ii) for every v ∈ V (G), if r, s ∈ V (T ) and v ∈ Br ∩Bs, then for every vertex t on the
unique path between r and s in T , v ∈ Bt and

(iii)
∪

v∈V (T )

Bv = V (G).

We usually treat a node t of T and the corresponding set of vertices B(t) as equal.
So when we refer to the vertices in t of T it will be clear that we mean B(t).

The width of a tree decomposition (T,B) is width(T,B) := max{|Bv|−1 | v ∈ V (T )}
and the treewidth of a graph G, tw(G), is the minimum over the width(T,B), where
(T,B) is a tree decomposition of G.

If on the above definition we restrict T to be a path, we define path decomposition
and pathwidth, pw(G).

A graph class C is said to have bounded treewidth if there is a k ∈ N, such that for
every graph G in C, tw(G) ≤ k.

Despite the fact that treewidth will play a key role in both approaches studied for ob-
struction set computation, it is a parameter with a wide impact on theoretical computer
science and therefore well studied. Many NP-hard problems on graphs become polyno-
mial time solvable when we know a bound on the treewidth, with exact algorithms or
approximate. For example, computing the maximum independent set4 of a graph is a
classic NP-complete problem and it is also hard to approximate.

Theorem 1.8 (Arnborg and Proskurowski [2]). The size of the largest independent set
in a graph of treewidth k can be computed in O(4kk2n) time.

In both approaches studied to compute the obsrtuction set of a graph class C we
are going to require for obs(C) to have bounded treewidth. This bound always exists,
since the obstruction sets of minor or immersion–closed graph classes are finite. On the
other hand, there are many graph classes that have themselves bounded treewith and

4An independent set of a graph G is a subset X of its vertices, such that no two vertices in X are
adjacent in G.
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as an example we give the following theorem (for a proof of the theorem and a study on
treewidth see [14]).

Theorem 1.9. A minor-closed family of graphs has bounded treewidth if and only if it
excludes at least one planar graph.

On the contrary, there are many classes with no bounded treewidth. A simple
example is, again, the minor–closed class of planar graphs, Cp. All the grid graphs
(Pn × Pm, n,m ∈ N, × is the graph Cartesian product and Pi is a path with i nodes)
are included in Cp, but since tw(Pn × Pn) = n, for any n ∈ N we can find a graph in Cp
with treewidth exactly n. For a survey on treewidth see [5].
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Chapter 2

An algorithmic approach

In [6] K. Cattell, M. Dinneen, R. Downey, M. Fellows and M. Langston present algo-
rithms for obstruction set computation of minor–closed graph classes, which they call
ideals, remarking that their methods can be adapted to other partial–orders on graphs
such as immersions and topological orders. The first algorithm appeared in [15] (but its
correctness was fully proved for the first time in [6]) and is based on the Myhill–Nerode
theorem for regular languages. However, an upper bound of the treewidth of the ob-
structions is an essential ingredient of the algorithm and this piece of information is not
always known. Thus, the authors introduce the notion of second–order congruence for a
graph property, which allows them to compute the obstruction set of an ideal requiring
other information (about the congruence) but not the upper bound of the treewidth of
the obstructions. In this chapter we present these algorithms.

2.1 Introduction

The first algorithm is an analogue of the Myhill–Nerode theorem ([15]), but before
recalling the theorem it is necessary to define some relevant notions. Let L ⊆ Σ∗ be
a language and ∼ an equivalence relation. The canonical equivalence relation ∼L is,
x ∼L y if and only if, ∀z ∈ Σ∗, xz ∈ L ⇐⇒ yz ∈ L. We say that ∼ is a congruence
if, ∀z ∈ Σ∗, x ∼ y ⇐⇒ xz ∼ yz and zx ∼ zy. We can now state the Myhill–Nerode
theorem.

Theorem 2.1 (Myhill–Nerode). Let L ⊆ Σ∗. If an equivalence relation ∼ that is
decidable with a known algorithm satisfies the following:

(1) ∼ has finite index

(2) ∼ is a congruence with respect to concatenation

(3) x ∼ y =⇒ x ∼L y,

then L is regular and an algorithm is known to compute a DFA1 that recognizes L.

1Deterministic Finite Automaton.

11



12 2. An algorithmic approach

Instead of words and languages over an alphabet we deal with graphs and graph
classes. To define an operation analogous to concatenation2 we have to define t-
boundaried graphs in order to “glue” graphs together (on the boundary), as concatena-
tion does with words.

Definition 2.2. A t-boundaried graph G = (V,E,B, f) is a simple graph G = (V,E)
together with:

(i) a subset of vertices B ⊆ V , which we call the boundary, such that |B| = t

(ii) a bijection f : B → {1, . . . , t} (a labeling of the boundary vertices)

We denote by U t
large the set of all t–boundaried graphs and by G = (V,E) the

underlying graph of the t–boundaried graph G = (V,E,B, f). For simplicity, sometimes
we will not distinguish between the t–boundaried graph and the the underlying graph.
So for example when we write G ∈ F and G is a t–boundaried graph, we actually mean
G ∈ F . We now define the following operation on t–boundaried graphs.

Definition 2.3. Let G1 = (V1, E1, B1, f1) and G2 = (V2, E2, B2, f2) be two graphs in
U t
large, then G1 ⊕ G2 is the t-boundaried graph, obtained by the disjoint union of the

graphs G1 = (V1, E1) and G2 = (V2, E2), by identifying each vertex u1 ∈ B1 with the
vertex u2 ∈ B2 for which f1(u1) = f2(u2).

To explain the above, the operation of G1 ⊕ G2, where G1, G2 ∈ U t
large, produces a

new t–boundaried graph which is the disjoint union of the two underlying graphs, having
the boundary vertices with the same labels identified.

⊕

A

B

A⊕B

=

Figure 2.1: A⊕B

Definition 2.4. Let F be a graph class and X,Y ∈ U t
large. The large canonical congru-

ence for F is defined on U t
large as follows: X ≈F Y if and only if,

∀Z ∈ U t
large : (X ⊕ Z ∈ F) ⇐⇒ (Y ⊕ Z ∈ F)

2If v, w are two words (strings) of Σ∗, the concatenation of v and w produces the word vw–we just
join the two strings into a new one.
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Definition 2.5. The small treewidth universe, U t
tree, is the set of all t–boundaried graphs

having tree decomposition of width t − 1 (equivalently, treewidth3 at most t) for which
the set of boundary vertices is the set of vertices indexed by the root of the tree.

The small pathwidth universe, U t
path, is the set of all t–boundaried graphs having a

path decomposition of width t − 1 (equivalently, pathwidth4 at most t) for which the set
of boundary vertices is the last set of the decomposition.

When our statements hold for both U t
tree and U t

path we will simply write U t
small. We

remark that if G is a graph in U t
tree (resp. U t

path) the trees (resp. paths) of a minimal
tree (resp. path) decomposition of G are rooted and the root of the tree (resp. end of
the path) has size exactly t. The following simple lemma will be useful in the sequel.

Lemma 2.6. Let A,B ∈ U t
small. Then tw(A⊕B) ≤ t (equiv. pw(A⊕B) ≤ t).

Proof. Let A,B ∈ U t
tree (the same arguements hold for the case of U t

path). We consider a
tree decomposition (T1, B1) of A and a tree decomposition (T2, B2) of B such that both
decompotitions have width t − 1 and the set of boundary vertices is the set of vertices
indexed by the root of every tree. We concider the tree T which occurs from the disjoint
union of the trees T1 and T2 by identifying their roots, which is also the root of T , and we
name the boundary vertices of A and B with their labels in {1, . . . , t}. We also consider
the function B which is the union of B′

1 and B′
2, where B

′
i is the function Bi having

replaced any occurence of a boundary vertex with its label. Then it is easy to check that
(T,B) is a tree decomposition of A ⊕ B and therefore tw(A ⊕ B) ≤ t (in the case of
U t
path we would join the ends of the paths of the path decompositions of A and B).

Similarly with ≈F (definition 2.4) we define the small canonical congruence ∼F in
U t
small.

Definition 2.7. Let X,Y ∈ U t
small. The small canonical congruence is defined by

X ∼F Y if and only if

∀Z ∈ U t
small : (X ⊕ Z ∈ F) ⇐⇒ (Y ⊕ Z ∈ F)

We denote by [x]∼ the equivalence class of x with respect to ∼ and we say that ∼
has finite index on U , if ∼ has a finite number of equivalence classes in U . We say that
∼ refines ≈, where ∼ and ≈ are two equivalence relations in U , if

∀x, y ∈ U : x ∼ y =⇒ x ≈ y

If we consider ∼F and ≈F it is trivial to see that ≈F refines ∼F (the two relations
though, might not coincide). Finally, it is shown in [11] that on U t

tree the large canonical
congruence ≈F has finite index if and only if the small canonical congruence ∼F has
finte index, for a graph class F .

3For a t-boundaried graph G, tw(G) = tw(G).
4As above, for G ∈ U t

large, pw(G) = pw(G).
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2.2 An algorithm for obs(F)

After defining the analogous notions of the Myhill–Nerode theorem (2.1) for graphs, we
can now state an analogue of the theorem, which is the first algorithm in our study for
obstruction set computation.

Theorem 2.8 ([6]). Let F be a minor closed graph class. If we have the following three
pieces of information:

(i) An algorithm to decide membership in F (of any time complexity).

(ii) A bound B on the maximum treewidth of the obstructions for F .

(iii) For t = 1, . . . , B + 1 a decision algorithm for a finite–index congruence ∼ on t–
boundaried graphs that refines the small canonical congruence for F .

Then we can effectively compute the obstruction set O for F .

Proof. In short, the information given are enough to bound the search space of the
obstructions and by using the algorithm for F–membership we find the minimal graphs
(with respect to an ordering that will be defined) that do not belong to F , i.e. the
obstructions of F . We can now state the algorithm and then explain it and prove its
correctness.

Algorithm 2 obs(F) computation

for t = 1, . . . , B + 1 do
j ← 1
while a stop signal is not detected do

generate all graphs of the jth generation and store them in Gt
j ← j + 1

end while
store all the ≤–mininal graphs of Gt inMt

for every G ∈Mt do
if G /∈ F then store G in Ot

end for
end for

return
B+1∪
t=0
Ot

Algorithm 2 has two loops. The outer loop t = 1, . . . , B + 1 specifies that we are
currently working in U t

tree. In the inner loop the graphs of U t
tree are generated, until a

stop signal is detected and all these graphs are stored in Gt. When this process ends,
we store all the ≤–minimal graphs of Gt in Mt (≤ will be defined in the sequel) and
this process is completed in a finite number of steps, since Gt is finite. Then, by us-
ing the algorithm for F–membership we discard all the underlying graphs of Mt that
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belong to F and store the remaining elements ofMt in Ot. Since Ot contains all the ≤–

minimal graphs of U t
tree that do not belong in F , the algorithm ends by returning

B+1∪
t=0
Ot,

which is (as we will prove in the sequel) the obstruction set of F (the obstruction set of
a class F can be also defined as the set of all ≤–minimal graphs of the complement of F).

To complete the description of the algorithm we need to explain (a) how the graphs
of the inner loop are generated (what is the jth generation in Algorithm 2), (b) the ≤
ordering, and (c) the stop signal.

For (a) we define size(X), where X ∈ U t
tree, to be the number of nodes in the smallest

possible rooted tree of a tree–decomposition for X such that the set of boundary vertices
is indexed by the root of the tree5. By the term jth generation we mean the set of
graphs of U t

tree of size j. This set is finite since a graph G ∈ U t
tree of size j has a tree

decomposition (T,B) such that |V (T )| = j and tw(G) ≤ t, so G can have at most j(t+1)
nodes and there are finitely many graphs with at most j(t+ 1) nodes.

To clarify (b) we firstly extend the minor ordering ≤m to a minor ordering for t–
boundaried graphs, ≤∂m. For H,G ∈ U t

tree, H ≤∂m G if a graph isomorphic6 to H
can be obtained from G by a sequence of vertex deletions of non boundary vertices,
edge deletions, and edge contractions of edges that have at least one non–boundary
endpoint. In fact, ≤∂m is a restriction of ≤m, where we can apply the graph operations
that procude a minor in a way that leaves the boundary vertices unaffected: if H ≤∂m G
then B = BH , where H = (VH , EH , BH , fH) and G = (V,E,B, f). The ≤∂m ordering
can easily be shown to be a WQO on U t

large by using the Graph Minor Theorem for

edge–colored graphs. Let X,Y ∈ U t
tree, we define X ≤ Y if and only if X ≤∂m Y and

X ∼ Y . Since there are finitely many equivalence classes of ∼ (by hypothesis) and ≤∂m

is a WQO, ≤ is a WQO on U t
tree.

And for (c), we say that there is nothing new at time j if none of the t–boundaried
graphs of the jth generation are minimal with respect to the search ordering ≤. A stop
signal is detected at time 2j if there is nothing new at time i for i = j, . . . , 2j − 1 (see
Figure 2.2).

To end the proof we need to prove the correctness of the algorithm. For this we need
to prove that (1) a stop signal will be met eventually for every t = 0, . . . , B + 1, (2) the
stop signal is valid, which means that all the obstructions in U t

tree will be found until the
stop signal will be met, and (3) all obstructions will be found by the end of Algorithm 2.

For (1), we know that ≤ is a WQO on U t
tree, so there is a finite number of minimal

elements for the algorithm to search for.
To prove (2), which is the most crucial part of this proof, we have to show that if for

a given t a stop signal is detected, then no obstruction for F , has size greater than 2j.

5In this proof all the trees of the tree–decompositions are as described in the definition of size(X).
That is, the root of the tree contains all the boundary vertices.

6If G = (V,E,B, f) and G′ = (V ′, E′, B′, f ′) are two t–boundaried graphs, then G and G′ are
isomorphic if there is a bijection g : V → V ′, such that {v1, v2} ∈ E ⇐⇒ {g(v1), g(v2)} ∈ E′,
v ∈ B ⇐⇒ g(v) ∈ B′ and for every v ∈ B, f(v) = f ′(g(v)).



16 2. An algorithmic approach

generation\tw 0 1 . . . t . . . B + 1

1 ✓
2

...
... ✓
j nothing new
...

...

2j − 1 nothing new

Figure 2.2: Algorithm 2 searches the obstructions of U t
tree by examining every generation

for ≤–minimal graphs and stops its search when a stop signal at time 2j is detected.
Thus, the search space is bounded and so the running time of Algorithm 2, which
makes the problem of finding the obstruction set computable, provided that we have the
information needed in Theorem 2.8.

We say that a graph X is a prefix of a graph G if the tree TX of the tree–decomposition
of minimum size for X is a rooted subtree of the tree TG corresponding to the tree–
decomposition of minimum size for G. Notice that we can substitute a prefix of a graph
for another. In terms of tree decompositions, the substitution is done by replacing the
rooted subtree corresponding to the old prefix with the rooted tree corresponding to the
new prefix. This replacement is mirrored on the original graph, since the fact that the
prefix graphs correspond to rooted trees, allow us to have the same result if we substitute
the subgraph that corresponds to the old prefix for the graph which is the new prefix.

Let (T,B) be a tree–decomposition of minimum size for a counterexample H of
our claim for proving (2). Since size(H) > 2j, there exists a prefix X of H such that
j ≤ size(X) ≤ 2j−1. And since H is ≤–minimal, then X (and any prefix of H) must be
minimal. This holds because if X is not minimal then there is an X ′ such that X ′ < X,
that is X ′ ≤ X, X ′ ̸= X and X ′ ∼ X. We know that ∼ is a congruence, so H ′ ∼ H,
where H ′ is obtained by H by substituting the rooted subtree TX of T with the rooted
tree TX′ , where (TX′ , BX′) and (TX , BX) are tree–decompositions, of minimum size, for
X ′ and X respectively. By X ′ < X, we get that H ′ < H, which is a contradiction
to our initial hypothesis that H is minimal. Since X is not minimal because a stop
signal is detected at time 2j, H is also not minimal which is a contradiction, because all
obstructions are ≤–minimal graphs.

Finally, in order to show that by the end of algorithm 2 every obstruction will be
found (3), we just need to prove that if X ∈ O then ∃ t ≤ B + 1 such that X ∈ Mt.
Since tw(X) ≤ B, then X ∈ U t

tree for some t ≤ B + 1. Also, ∼ refines the canonical
F–congruence and any proper minor of X belongs to F . Thus X is ≤–minimal and the
proof is complete.

A pathwidth version of the theorem holds in essentially the same way. Instead of
rooted trees we have paths with a distinct end, and X is a prefix of G if PX has less
nodes than PG, where (PX , BX) and (PG, BG) are path decompositions of X and G
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respectively. In addition, an immersion version of the theorem can be proven, again in
the same way, but we have to define the ordering ≤ on t–boundaried graphs in terms of
immersions. That is, H ≤ G, iff H ≤∂im G and H ∼ G. And ≤∂im is a restriction of
≤im that preserves the boundary. That is, H ≤∂im G if a graph isomporphic to H can
be obtained from G by applying a sequence of vertex deletions of non–boundary vertices,
edge deletions and edge liftings. Finally, Algorithm 2 has been implemented and some
results can be found in [9] and [8].

Knowing a bound on the treewidth of the obstructions was essential information
for Algorithm 2, in terms of bounding the search space for the obstructions. However,
neither such a bound is always known, nor a generic way to find it. So, in the next
section we will try to overcome this difficulty by employing various stop signals.

2.3 Overcoming treewidth bound

Our first attempt to design an algorithm for obstruction set computation without the
knowledge of a bound on the obstructions treewidth is, in a way, a generalization of
Algorithm 2. The search is done in the same way but the whole prosess stops differently.
For this we have to define a notion that will be usefull in the sequel, the alarm.

Definition 2.9. An alarm for a minor–closed class F is a pair of computable functions:

(1) fa : N→ N, and

(2) a : N→ {0, 1}, satisfying:

(a) (reliability) a(t)=1 if there is an obstruction H ∈ O∖Ot of pathwidth more than
fa(t)

(b) (eventual quiescence) ∃t0 such that ∀t ≥ t0, a(t) = 0.

We also have to point out that in this and the following sections of this chapter we will
be working in U t

path.

Theorem 2.10. If the following are known for a minor–closed graph class F :

(1) A decision algorithm for F–membership.

(2) A decision algorithm for a finite–index congruence for F (the congruence can be
either large or small).

(3) Algorithms for computing a and fa for an alarm for F .

then the obstruction set O of F can be computed.

Proof. For every t we compute Ot using the methods of the proof of Theorem 2.8
(adapted to pathwidth computations), namely (1) and (2). That is, we have two (while)
loops, the outer to specify the pathwidth and the inner to specify the generation and at
the end of every itteration of the outer loop, the underlying graphs of the ≤–minimal



18 2. An algorithmic approach

elements of U t
path enumerated that do not belong to F are stored in Ot. For a certain

pathwidth t, the inner loop stops exactly as described in the proof of Theorem 2.8. Since
we don’t know a bound on the pathwidth of the F–obstructions we will employ a certain
stop signal to halt the outer loop (the one that specifies the pathwidth).

We say that a t-stop signal is detected if

(a) Oi = Ot for i = t, . . . , fa(t), and

(b) a(t)=0

Using the t-stop signal we compute the F–obstructions as described in Algorithm 3.

Algorithm 3 obs(F) computation

t← 0
while a stop signal is not detected do

compute Oi, for i = t, . . . , fa(t) and a(t)
t← t+ 1

end while
return Ot

In order to prove that the algorithm is correct we have to show that (a) if O ̸= Ot

then there will be no t-stop signal, and (b) eventually a t-stop signal will be met.
For (a) we have to examine two cases:
(1) There exists an obstruction H ∈ O ∖Ot for which pw(H) ≤ fa(t). In this case the
first condition of the t-stop signal will fail.
(2) There exists an obstruction H ∈ O ∖Ot for which pw(H) > fa(t). In this case, by
the reliability of the alarm (definition 2.9) we have that a(t) = 1, so the second condition
of the t-stop signal will fail.

For (b), let t′ be the maximum pathwidth of the obstructions for F . Then for
i = t′, . . . , fa(t

′) we have that Oi = Ot′ (since for every i ≥ t′, Oi = Ot′) and a(t′) = 0,
since there is no obstruction with pathwidth more than t′. Thus, a t′-stop signal will be
met and Algorithm 3 will stop having correctly computed the obstruction set O = Ot′

of F .

Theorem 2.10 actually gives the general framework that we use for obstruction set
computation. In that sense we can see theorem 2.8 as a special case of theorem 2.10, but
our goal is to have an alarm that does not depend on the bound of the treewidth of the
obstructions. To accomplish that we will employ a terminating second–order congruence
as an alarm. Before that, we give the necessary definitions.

Definition 2.11. The canonical second–order congruence for a minor–closed graph class
F , ≈F , is defined on finite subsets of t–boundaried graphs in U t

large as follows: if S1, S2 ⊆
U t
large then S1 ≈F S2 if and only if

∀Z ∈ U t
large : (∀X1 ∈ S1 : X1 ⊕ Z ∈ F) ⇐⇒ (∀X2 ∈ S2 : X2 ⊕ Z ∈ F)
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Definition 2.12. Let ∼ be an equivalence relation defined on finite subsets of U t
large. ∼

is a second–order congruence if ≈F refines ∼, i.e. ∼ implies ≈F .

Notice that a second–order congruence ∼ defines a first–order congruence when re-
stricted to singletons: {A1} ∼ {A2}, for A1, A2 ∈ U t

large. Thus the canonical second–
order congruence restricted on signletons is actually the canonical first–order congruence
(large canonical congruence).

Definition 2.13. Let ∼ be a second–order congruence defined on a minor–closed graph
class F and S(A) denote all the t–boundaried graphs H, such that H <∂m G, for A ∈
U t
large. Then ∼ is called terminating if it satisfies the condition: ∃t0 such that ∀t ≥ t0,

if A ∈ U t
path such that (1) pw(A) ≥ t0 and (2) |int(A)| ≥ t0, then {A} ∼ {S(A)}.

On the above definition, int(A) denotes the set of non–boundary vertices. In order
to prove the next algorithm we need a structural lemma that first appeared in [7] as the
Wide Factor Lemma, and was slightly adapted to our needs and proved in [6] as the Fat
Factor Lemma.

Let Bh denote the complete binary tree of height h. Bh is a rooted tree, every vertex
that is not a leaf has two children, every leaf has distance h from the root and Bh has
2h+1−1 vertices. We also define h(t) = min{h ∈ N |pw(Bh) ≥ t} and f(t) = |V (Bh(t))|.
It can be shown that f(t) = O(22t). Finally, f−1(y) = max{x ∈ N | f(x) ≤ y}.

Lemma 2.14 (Wide Factor Lemma). Let H be and arbitrary undirected graph and t a
positive integer. Then one of the two following statements must hold:

(a) pw(H) ≤ f(t)− 1

(b) H can be factored in H = A⊕B, where A,B ∈ Uf(a)
large and pw(A) > t.

Additionally, if f(t+ 1) > t′ > f(t), then on of the following must hold:

(c) pw(A) ≤ t′ − 1

(d) H = A⊕B, A ∈ U t′
path, B ∈ U t′

large and pw(A) > t.

Lemma 2.15 (Fat Factor Lemma). There is a (known) recursive function f(t) = O(22t)
such that if H is an arbitrary undirected graph then one of the following three statements
must hold:

(1) pw(A) ≤ f(t)− 1

(2) H can be factored in H = A⊕B, where A,B ∈ Uf(t)
large, pw(A) ≥ t, |int(A)| ≥ t and

A ∈ Uf(t)
path.

(3) H topologically contains Kt, the complete graph on t vertices.

Theorem 2.16. If the following are known for a minor–closed graph class F :
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(1) An algorithm for F–membership

(2) A decision algorithm for a terminating second–order congruence ≈ for F .

Then we can compute the obstruction set O for F (using the algorithms for (1) and (2)
as subroutines).

Proof. Since we are trying to prove a 2.10–type theorem, Ot i.e. the obstructions of
pathwidth at most t is computed in exactly the same way as descirbed in the proof of
theorems 2.10 and 2.8. In particular, we compute all the minimal elements of U t

path with
respect to the order defined in the proof of theorem 2.8, i.e. A ≤ B iff A ≤∂m B and
A ∼ B, where ∼ is the first–order congruence defined by the second–order congruence
of (2) resticeted to singletons: A ∼ B iff {A} ≈ {B}. This set is denoted by Mt and
since ≤ is a WQO (by the GMT) and ∼ has finite index it is also finite. Then by using
the algorithm for (1) we compute Ot, which is the set of all underlying graphs of Mt

that don’t belong to F .
To complete the proof we need to describe the alarm and prove that the resulting

algorithm computes O. In this direction, let m(t) denote the maximum order of an
obstruction H, such that pw(H) ≤ t, f be the function of the Fat Factor Lemma
(lemma 2.15) and t′ > f(m(t)). A t–stop signal is witnessed at t′ if:
(a) Oi = Ot for i = t, . . . t′, and
(b) ∀A ∈Mt′ such that pw(A) > f−1(t′) ≥ m(t) and |int(A)| > f−1(t′) ≥ m(t) : {A} ≈
S(A).

A t–stop signal occurs if there is a t′ > t as above at which a t–stop signal is
witnessed. Using this stop signal we have a version of Algorithm 3 as follows.

Algorithm 4 obs(F) computation using the t–stop signal

t← 0
while a t–stop signal is not detected do

compute Ot andMt

t← t+ 1
end while
return Ot

To prove that Algorithm 4 computes O, we have to show that if O ̸= Ot then no t–
stop signal will occur. Suppose that a t–stop signal is witnessed at t′ and let H ∈ O∖Ot.
If pw(H) ≤ t′, then there can be no stop signal, because condition (a) of the t–stop signal
will fail. And if pw(H) > t′ and t′ > f(m(t)) then by the Fat Factor Lemma (lemma
2.15) we have two cases:
(1) There exists a factorization H = A ⊕ B such that A ∈ U t′

path, B ∈ U t′
large, pw(A) >

m(t) and |int(A)| > m(t). Since A is an obstruction we have that ∀A′ < A, A ̸≈ A′,
which implies that A ∈ Mt′ . Thus, {A} ̸≈F S(A), which implies that {A} ̸≈ S(A), but
this contradicts (b) of the t–stop signal.
(2) Km(t) ≤t H. In this case any obstruction in Ot is a topological minor of Km(t) which
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is a topological minor of H, so any obstruction in Ot is a topological minor of H, which
contradicts the minimality of H.

Thus, if O = Ot, which will eventually happen since ≤ is a WQO, a stop signal will
be witnessed at time t′ = max{f(t0), f(m(t))}, where t0 is the termination constant,
and the proof is complete.

To accomplish our goal for designing an algorithm for obstruction set computation
without the knowledge of a bound on the treewidth of the F–obstructions we need to
show that there exists a terminating second–order congruence.

Theorem 2.17 ([6]). The canonical second–order congruence ≈F for a minor–closed
graph class F is terminating.

2.4 Applications & final remarks

As an application of the two main results of [6] (theorems 2.8 and 2.16–by using ≈F
as the terminating second–order congruence) the problem of computing the obstruction
set O for a union of two minor–closed graph classes F = F1 ∪ F2 is studied. In this
problem we are given the obstruction sets O1 and O2 of the minor–closed classes F1 and
F2 respectively and our objective is to compute O. A weaker version of these problem is
solved in [6], in which O can be computed by O1 and O2 and the use of Theorem 2.16,
under the condition that O1 contains at least one tree7.

In [1] the union problem, among others, is solved without the aforementioned con-
dition. The authors present a different technique for obstruction set computation, in
which they demand the knowledge of a formula in Monadic Second–Order Logic (MSO)
defining a minor–closed graph class F and a bound on the treewidth of the obstructions
of F . We are going to present these methods and their applications (e.g. union problem)
in the next chapter.

7Actually, the condition we need is that a tree is contained in at least one of O1 and O2.
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Chapter 3

Trying Monadic Second–Order Logic

In this chapter we present some of the results in [1] by I. Adler, M. Grohe and S. Kreutzer,
for obstruction set computation of minor–closed graph classes. The main theorem that
is proven states that we can compute the obstruction set O of a minor–closed graph class
F if we are given a formula φF in Monadic Second–Order Logic (MSO) that defines F
and an upper bound on width(F) (the bound on width(F) is related to the bound on
the treewidth of the obstructions for F). By applying these methods, the authors solve
(among others) the union problem. That is, given the obstruction sets O1 and O2 of
two minor–closed graph classes F1 and F2 respectively, we can effectively compute the
obstruction set of their union F1 ∪ F2.

3.1 Graphs and Logic

Lets recall the alternative definition of graph minors in section 1.1. We say that H is a
minor of G, H ≤m G, if there is a function that maps every vertex v of H to a connected
subgraph Bv ⊆ V (G), such that for every two distinct vertices v, w of H, Bv and Bw

share no common vertex, and for every edge {u, v} of H, there is an edge in G with one
endpoint in Bv and one in Bu. The graph that is obtained by the union of all Bv such
that v ∈ V (H) and by the edges between Bv and Bu in G, if there exists an edge {v, u}
in H, is called a model of H in G. The model with the minimum number of vertices
and edges is called minimal model. Obviously, if G′ is a minimal model of H in G, then
every Bv in G′ is a tree with degH(v) leaves.

Lemma 3.1. Let k > 0 and H ≤m G, with |V (H)| = k. Then any minimal model G′

of H in G has tw(G′) ≤ k2 + 1.

Proof. To prove this lemma we have to recall the definition of models. A model consists
of k = |V (H)| mutually disjoint connected subgraphs of G corresponding to the vertices
of H and of |E(H)| edges among them which correspond to the edges of H: there is
an edge between Bu and Bv iff {u, v} is an edge of H. In a minimal model, the Bv

subgraphs are trees with at most degH(v) leaves. Let G′ be a minimal model of G. If
we consider the graph that is obtained by G′ by deleting all the edges among the Bv

23
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trees, v ∈ V (H), then the resulting graph is a forest (a union of trees) and has treewidth
exactly 1. If we start putting back the edges that we removed, then every edge that
we add can increase the treewidth at most by 1. Since we can add at most

(
k
2

)
vertices

(k = |V (H)|) and the fact that when we add all the edges that we removed the resulting
graph will be again G′, we have that tw(G′) ≤

(
k
2

)
+ 1 ≤ k2 + 1.

Corollary 3.2. For all graphs H, G, if H ≤m G then there exists a subgraph G′ of G
with H ≤m G′, satisfying tw(G′) ≤ |V (H)|2 + 1.

By the Graph Minor Theorem and corollary 3.2, for every minor–closed graph class
F there exists a w such that for every G /∈ F there exists a subgraph G′ of G, such that
tw(G′) ≤ w. To see why this holds, firstly consider that, by the GMT, the obstruction set
O of a minor–closed graph class F is finite. And for every G /∈ F , there exists an H ∈ O
such that H ≤m G. Now if G′ is the minimal model of H in G, by corollary 3.2 we have
that tw(G′) ≤ |V (H)|2+1. Since O is finite, and if w = max{|V (H)|2+1 |H ∈ O} then
for the (arbitrary) minor–closed class F and for every G /∈ F there exists a subgraph
G′ of G such that tw(G′) ≤ |V (H)|2 + 1 ≤ w, where H is an obstruction such that
H ≤m G. Finally, since H ≤m G′, G′ /∈ F .

Definition 3.3. Let F be a minor–closed graph class. The least k such that for every
G /∈ F there exists a G′ ⊆ G with G′ /∈ F and tw(G′) ≤ k is called the width of F and
is denoted by width(F).

We now recall some definitions from Monadic Second Order Logic (MSO). An ex-
tended introduction to Logic can be found in [13, 24].

We call signature τ = {R1, . . . , Rn} any finite set of relation symbols Ri of any
(finite) arity denoted by ar(Ri). For the language of graphs G we consider the signature
τG = {V,E, I} where V represents the set of vertices of a graph G, E the set of edges,
and I = {(v, e) | v ∈ e and e ∈ E(G)} the incidence relation.

A τ -structure A = (A,RA
1 , . . . , R

A
n) consists of a finite universe A, and the interpre-

tation of the relation symbols Ri of τ in A, that is, for every i, RA
i is a subset of Aar(Ri).

For every graph we associate a relational structure G := (V (G)∪E(G), V G, EG, IG), over
the signature τG , where V

G = V (G), EG = E(G) and IG = {(v, e) | e ∈ E(G) and v ∈
e∩V (G)}. A graph structure G is a τG-structure, which represents the graph G = (V,E).
From now on, we abuse notation by treating G and G equally.

In MSO formulas are defined inductively from atomic formulas, that is, expressions
of the form Ri(x1, x2, . . . , xar(Ri)) or of the form x = y where xi, i ∈ [ar(Ri)], x and y
are variables, by using the Boolean connectives ¬,∧,∨,→, and existential or universal
quantification over individual variables and sets of variables. Furthermore, quantification
takes place over vertex or edge variables or vertex-set or edge-set variables. Notice that
in the language of graphs the atomic formulas are of the form V (u), E(e) and I(u, e),
where u and e are vertex and edge variables respectively.

Definition 3.4. A graph class C is MSO-definable if there exists an MSO formula φC
in the language of graphs such that G ∈ C if and only if G |= φC, that is, φC is true in
the graph G (G models φC).
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Lemma 3.5. The class of graphs that contain a fixed graph H as a minor is MSO–
definable by an MSO–formula φH .

Proof. Let H = (V,E). Then the MSO–sentence φH is defined as ∃X1 . . . ∃Xkψ where
ψ is the following sentence:(∧

i̸=j

Xi ∩Xj = ∅ ∧
∧
i
(∅ ⊊ Xi ⊆ V ∧ “Xi is connected”∧

∧
{vi,vj}∈E(H)

∃xi ∈ Xi∃xj ∈ Xj∃z((xi, z) ∈ I ∧ (xj , z) ∈ I)

)
where “Xi is connected” can be expressed in MSO by the following formula:

∀u ∈ Xi∀v ∈ Xi∃{x1, . . . , xℓ} ⊆ Xi

(
x1 = u ∧

ℓ−1∧
i=1

{xi, xi+1} ∧ xu = v

)

Thus, H ≰m G iff G |= ¬φH . So if O is the obstruction set of a minor–closed class
C, then if φO ≡

∨
H∈O

φH we have that G ∈ C ⇐⇒ G |= ¬φO and ¬φO defines C.

The following theorem is basic for this chapter’s approch on obstruction set compu-
tation algorithms.

Theorem 3.6 (Seese’s Theorem [31]). For every positive integer k, it is decidable given
an MSO–formula whether it is satisfied by a graph G whose tree–width is upper bounded
by k.

Before we present the main theorem of this approach we have to extend the graph
structures we defined earlier to structures that are defined by a graph and its tree–
decomposition. Intuitively a tree–dec expansion is a pair of two structures, one defined
by the graph G and one defined by a tree decomposition (T,B) of G.

Definition 3.7. Let G = (V,E) be a graph and T = (T,B) a tree decomposition of
G. Let τex = {V,E, I, T,ET , IT , B}, where V,E, T,ET are unary relation symbols and
I, IT , B are binary relation symbols.
The tree–dec expansion TreeExp(G, T ) of G and T is the τex–structure

(V (G) ∪ E(G) ∪ V (T ) ∪ E(T ), V G, EG, IG, TG, EG
T , I

G
T , B

G),

where V G, EG, IG are defined as above and TG := V (T ), EG := E(T ), IGT = {(t, e) | e ∈
E(T ) and t ∈ e ∩ V (T )} and BG := {(t, u) | t ∈ V (T ) and u ∈ Bt ∩ V (G)}.

Lemma 3.8 ([1]). (i) If G is a graph and T = (T,B) a tree decomposition of G of
width k, then the treewidth of TreeExp(G,T ) is at most k + 2.

(ii) There is an MSO-sentence φex so that for any τex–structure G, G |= φex if, and
only if, G is a tree–dec expansion of a graph G.
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The class of structures TreeExp(G,T ) for which G ∈ Tk and T a tree–decomposition
of G of width at most k, is denoted by TreeExp(Tk). It follows from Lemma 3.8 that
TreeExp(Tk) is a class of structures of treewidth at most k + 2.

Corollary 3.9. For all k ∈ N, it is decidable if a given MSO–formula is satisfied in
some G ∈ TreeExp(Tk).

3.2 Obstruction set computation

Definition 3.10. A class of graphs C is layerwise–MSO definable, if for every k ∈ N we
can compute an MSO–formula φk definining C ∩ Tk in TreeExp(Tk).

We are now ready to state and prove the main theorem of this approach for obstruc-
tion set computation.

Lemma 3.11 ([1]). Let C be a minor–closed graph class. If C is layerwise MSO–definable
and we are given an upper bound on its width C, the obstruction set O of C is computable.

Equivalnetly, there exists an algorithm that given w ∈ N and (an algorithm com-
puting) a computable function g : N → MSO so that there is a minor–closed class C
with

• for every k ∈ N, φk := g(k) defines C ∩ Tk in TreeExp(Tk) and

• the width of C is at most w,

then the algorithm computes O.

Proof. Firstly, we have to prove that for any given set F = {F1, . . . , Fℓ} we can decide
if F = O that is, if F is the obstruction set of C. But F = O ⇐⇒ (G ∈ C ⇐⇒ ∀i ∈
[ℓ] : Fi ≰m G), or equivalently,

(G ∈ C =⇒ ∀i ∈ [ℓ] : Fi ≰m G) and (G /∈ C =⇒ ∃i ∈ [ℓ] : Fi ≤m G)
⇐⇒

(i) (G ∈ C ∧ ∃i ∈ [ℓ] : Fi ≤m G) and (ii) (G /∈ F ∧ ∀i ∈ [ℓ] : Fi ≰m G) are unsatisfiable.

To explain the above, the following hold:

φ↔ ψ ⇐⇒ (φ→ ψ) ∧ (ψ → φ)
⇐⇒ (φ→ ψ) ∧ (¬φ→ ¬ψ)
⇐⇒ (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)
⇐⇒ ¬(φ ∧ ¬ψ) ∧ ¬(¬φ ∧ ¬ψ)
⇐⇒ (φ ∧ ¬ψ) and (¬φ ∧ ¬ψ) are unsatisfiable.

Setting φ ≡ (G ∈ C) and ψ ≡ (∀i ∈ [ℓ] : Fi ≰m G) we get the equivalences of the
beginning of the proof. Thus, to decide if for a given set of graphs F , F = O we have
to show that it is decidable that (i) and (ii) are unsatisfiable.

To prove that it is decidable that (i) is unsatisfiable, it suffices to check if Fi ∈ C for
some Fi ∈ F . If there is a G ∈ C such that Fi ≤m G, for some Fi ∈ F , then by lemma
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3.1 there exists a G′ ⊂ G such that tw(G′) ≤ |V (Fi)|2 + 1 and Fi ≤m G′. Since C is
minor–closed, G′ ∈ C. Thus, (G ∈ C ∧ ∃i ∈ [ℓ] : Fi ≤m G) satisfiable iff there exists G
that satisfies the previous sentence such that tw(G) ≤ k, where k := max{|V (Fi)|2 +1 :
Fi ∈ F}. By hypothesis, C ∩ Tk is MSO–definable in TreeExp(Tk) by φC := g(k). Let
φF =

∨
Fi∈F

φFi , where φFi is the formula defined in lemma 3.5. Every model G of φF

has at least one graph F ∈ F as a minor. So, there exists G ∈ C such that Fi ≤m G for
some i ∈ [ℓ]. Equivalnetly, φC ∧ φF is satisfiable in TreeExp(Tk), which is decidable by
Seese’s theorem (theorem 3.6).

To prove (ii), if there exists G /∈ C such that Fi ≰m G, ∀i ∈ [ℓ], since width(C)≤ w
there exists G′ ⊆ G such that tw(G′) ≤ w and G′ /∈ C. Thus, ∀i ∈ [ℓ] : Fi ≰m G′. Let
φw := g(w) be the MSO–formula that defines C ∩ Tw in TreeExp(Tw), then there exists
G /∈ C such that tw(G) ≤ w and ∀i ∈ [ℓ] : Fi ≰m G, iff, ¬φw ∧ ¬φF is satisfiable in
TreeExp(Tw), which is decidable in TreeExp(Tw) by Seese’s theorem (theorem 3.6).

We define an ordering among sets of graphs. Let F1 = {F1, . . . , Fm} and F2 =
{H1, . . . , Hr}, then F1 ≤C F2 if either:

•
m∑
i=1
|V (Fi)| <

r∑
i=1
|V (Hi)|, or

•
m∑
i=1
|V (Fi)| =

r∑
i=1
|V (Hi)| and

m∑
i=1
|E(Fi)| <

r∑
i=1
|E(Hi)|

Thus, by enumerating all finite sets of graphs F with respect to the ordering ≤C , the
first set for which (i) and (ii) are unsatisfiable is the obstruction set of C: F = O. The
latter is also a description of an algorithm for computing the obstruction set O of C:

Algorithm 5 obs(C) computation

F = ∅
while (i) or (ii) is satisfiable for F do

generate a ≤C–minimal set of graphs F ′ such that F ≤C F ′ and F ′ has not been
generated again
F ← F ′

end while
return F

We are sure that the above algorithm terminates by the GMT and by this proof we
are sure that it outputs the obstruction set of C.

3.3 Applications

Using lemma 3.11 it is shown that we can compute the obstruction sets of several classes
such as Tk, the class of graphs of treewidth at most k, Bk, the class of graph of branch-
width at most k [4] and Gk, the class of graphs of genus at most k, by theorems 4.1, 4.2
and 4.3 respectively in [1]. Another theorem and the main combinatorial result of this
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paper is given in theorem 5.1 of the paper, which states that if we are given the obstruc-
tion set of a minor–closed class C, then we can compute the obstruction set of Capex,
where1 G ∈ Capex ⇐⇒ ∃v ∈ V (G) : G\v ∈ C. For proving the latter, Robertson and
Seymour’s Trinity Lemma is essential, as well as the irrelevant vertex technique [26, 29]
play a key role on proving that Capex has bounded width and since it is MSO–definable by
φCapex . φCapex is the following formula: ∃v ∈ V ∃V ′∃E′(V ′ = V ∖ {v}∧E′ = {e ∈ E | v ∈

e ∩ V } ∧ ¬

( ∨
Hi∈OC

φ′
Hi

)
), where OC is the obstruction set of C, φ′

Hi
≡ ∃X1 . . . ∃Xkψ,

ψ ≡ [
∧
i ̸=j

Xi ∩Xj = ∅ ∧
∧
i
(∅ ⊆ Xi ⊆ V ′ ∧Xi is connencted )∧

∧
{vi,vj}∈E(Hi)

∃xi ∈ Xi∃xj ∈

Xj∃z((xi, z) ∈ I(V ′, E′) ∧ (xj , z) ∈ I(V ′, E′))], I(V ′, E′) = {(v, e) : e ∈ E′ ∧ v ∈ e ∩ V ′}
and vi are the vertices of Hi.

By applying the methods that where developed to prove that Capex has bounded
width, the authors prove that if we are given the obstruction sets O1 and O2 of two
minor–closed graph classes C1 and C2 respectively, then C1 ∪ C2 has bounded width and

since C1 ∪ C2 is MSO–definable by the formula ¬

( ∨
H∈O1

φH

)
∨ ¬

( ∨
G∈O2

φG

)
we can

apply lemma 3.11 and prove that OC1∪C2 is computable. This solves the union problem,
and answers an open question from [6].

As a final remark, it is easy to see that for applying lemma 3.11, usually the easy
task is to prove MSO–definability. The hard task is to prove that the class in study
has bounded width, which we can easily understand by the use of the complex combi-
natorial results that were employed to show that Capex has bounded width and to apply
this methods to show that C1 ∪ C2 has also bounded width (given O and, O1 and O2

respectively). However, lemma 3.11 can be adapted to other well–quasi orderings. In
the next chapter we will show that the methods of [1] that were presented in this chapter
can be adapted to immersion–closed graph classes and by combining them with some
other combinatorial results we can also solve the union problem for immersion–closed
graph classes.

1We remind for this definition that G\v = (V ∖ {v}, E′), where E′ = {e ∈ E | v /∈ e ∩ V }.



Chapter 4

Immersion obstructions

In [1], I. Adler, M. Grohe and S. Kreutzer provide tools that allow us to use Seese’s
theorem (theorem 3.6), when an upper bound on the tree-width of the obstructions is
known and an MSO–description of the graph class can be computed, in order to compute
the obstruction sets of minor-closed graph classes. In this chapter we show how we
can adapt their machinery to the immersion relation and prove that the treewidth of
the obstructions of immersion–closed graph classes is upper bounded by some function
that only depends on the graph class. This provides a generic technique to construct
immersion obstruction sets when the explicit value of the function is known. Then, by
obtaining such an explicit upper bound on the tree-width of the graphs in obs≤im(C),
where C = C1 ∪ C2 and C1, C2 are immersion-closed graph classes whose obstruction sets
are given, we show that the set obs≤im(C) can be effectively computed. These results
appeared in [17].

4.1 Preliminaries

We firstly recall and give some basic definitions. We say that H is an immersion of G
(or H is immersed in G), H ≤im G, if H can be obtained from a subgraph of G after
a (possibly empty) sequence of edge lifts, where the lift of two edges e1 = {x, y} and
e2 = {x, z} to an edge e is the operation of removing e1 and e2 from G and then adding
the edge e = {y, z} in the resulting graph. Equivalently, we say that H is an immersion
of G if there is an injective mapping f : V (H)→ V (G) such that, for every edge {u, v}
of H, there is a path from f(u) to f(v) in G and for any two distinct edges of H the
corresponding paths in G are edge-disjoint, that is, they do not share common edges.

Additionally, if these paths are internally disjoint from f(V (H)), then we say that
H is strongly immersed in G. As above, the function f is called a model of H in G and
a model with minimal number of vertices and edges is called minimal model. A graph
class C is called immersion–closed, if for every G ∈ C and every H with H ≤im G it
holds that H ∈ C. For example, the class of graphs Et that admit a proper edge–coloring
of at most t colors such that for every two edges of the same color every path between
them contains an edge of greater color is immersion–closed. (See [3]). Two paths are

29
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called vertex-disjoint if they do not share common vertices.

We will employ the ordering defined in the proof of lemma 3.11. The ordering ≤ is
defined between finite sets of graphs as follows: F1 ≤ F2 if and only if,

1.
∑
G∈F1

|V (G)| <
∑
H∈F2

|V (H)| or

2.
∑
G∈F1

|V (G)| =
∑
H∈F2

|V (H)| and
∑
G∈F1

|E(G)| <
∑
H∈F2

|E(H)|.

Definition 4.1. Let C be an immersion-closed graph class. A set of graphs F =
{H1, . . . ,Hn} is called (immersion) obstruction set of C, and is denoted by obs≤im(C),
if and only if F is a ≤-minimal set of graphs for which the following holds: For every
graph G, G does not belong to C if and only if there exists a graph H ∈ F such that
H ≤im G.

Recall (theorem 1.3) that by Robertson and Seymour’s fundamental result in [30],
the obstruction set of every immersion–closed graph class is finite.

Let r be a positive integer. An r-approximate linkage in a graph G is a family L of
paths in G such that for every r + 1 distinct paths P1, P2, . . . , Pr+1 in L, it holds that∩

i∈[r+1] V (Pi) = ∅ and each endpoint of the paths appears in exactly one path of L. We
call these paths the components of the linkage. Let (α1, α2, . . . , αk) and (β1, β2, . . . , βk)
be elements of V (G)k. We say that an r-approximate linkage L, consisting of the paths
P1, P2, . . . , Pk, links (α1, α2, . . . , αk) and (β1, β2, . . . , βk) if Pi is a path with endpoints
αi and βi, for every i ∈ [k]. The order of such linkage is k. We call an r-approximate
linkage of order k, r-approximate k-linkage. Two r-approximate k-linkages L and L′ are
equivalent if they have the same order and for every component P of L there exists a
component P ′ of L′ with the same endpoints. An r-approximate linkage L of a graph
G is called unique if for every equivalent linkage L′ of L, V (L) = V (L′). When r = 1,
such a family of paths is called linkage. Finally, a linkage L in a graph G is called vital
if there is no other linkage in G joining the same pairs of vertices.

In [28], N. Robertson and P. Seymour proved a theorem which is known as The Vital
Linkage Theorem. This theorem provides an upper bound for the tree-width of a graph
G that contains a vital k-linkage L such that V (L) = V (G), where the bound depends
only on k. A stronger statement of the Vital Linkage Theorem was recently proved
by K. Kawarabayashi and P. Wollan [20], where instead of asking for the linkage to be
vital, it asks for it to be unique. Notice here that a vital linkage is also unique. As in
some of our proofs (for example, the proof of Lemma 4.14) we deal with unique but not
necessarily vital linkages we make use of the Vital Linkage Theorem in its latter form
which is stated below.

Theorem 4.2 (The Unique Linkage Theorem[28, 20]). There exists a computable func-
tion w : N → N such that the following holds. Let L be a (1-approximate) k-linkage in
G with V (L) = V (G). If L is unique then tw(G) ≤ w(k).
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Monadic second–order logic is going to play a key role in this approach too, so it is
suggested to the reader to recall the definitions between definition 3.3 and lemma 3.8.

Lemma 4.3. The class of graphs that contain a fixed graph H as an immersion is
MSO–definable by an MSO–formula ϕH .

Proof. Let V (H) = {v1, v2, . . . , vn} and E(H) = {e1, e2, . . . , em}. Let also ϕH be the
following formula.

ϕH := ∃E1, E2, . . . , Em∃x1, x2, . . . , xn
[
(
∧
i∈[n]

V (xi)) ∧ (
∧

j∈[m]

Ei ⊆ E)∧

(
∧
i̸=j

xi ̸= xj) ∧ (
∧
p̸=q

Ep ∩ Eq = ∅)∧

(
∧

er={vk,vl}∈E(H)

path(xk, xl, Er))
]
,

where path(x, y, Z) is the MSO formula stating that the edges in Z form a path from x
to y. This can be done by saying that the set Z of edges is connected and every vertex
v incident to an edge in Z is either incident to exactly two edges of Z or to exactly one
edge with further condition that v = x or v = z.

4.2 Computing immersion obstruction sets

In this Section we state the analogue of Lemma 2.2 in [1] (Lemma 4.4) and the analogue
of Lemma 3.1 in [1] (Lemma 4.12, see also Lemma 3.11 in chapter 3) for the immersion
relation. We include the necessary definitions and intermediate lemmata in order to give
a sketch of the framework needed in order to prove the main result.

We first state the combinatorial Lemma of this Section.

Lemma 4.4. There exists a computable function f : N → N such that the following
holds. Let H and G be graphs such that H ≤im G. If G′ is a minimal subgraph of G
with H ≤im G′ then tw(G′) ≤ f(|E(H)|).

The proof of Lemma 4.4 is omitted as a stronger statement will be proved later on
(Lemma 4.16). We continue by giving the necessary definitions in order to state the
analog of Lemma 3.1 in [1] for the immersion relation.

Extension of MSO For convenience, we consider the extension of the signature τG to a
signature τex that pairs the representation of a graph G with the representation of one
of its tree–decompositions.

Definition 4.5. If G is a graph and T = (T,B) is a tree-decomposition of G, τex is
the signature that consists of the relation symbols V,E, I of τG, and four more relation
symbols VT , ET , IT and B.
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A tree-dec expansion of G and T , is a τex–structure

Gex = (V (G) ∪ E(G) ∪ V (T ) ∪ E(T ),

V Gex , EGex , IGex , V Gex
T , EGex

T , IGex
T , BGex)

where V Gex
T = V (T ) represents the node set of T , EGex

T = E(T ) the edge set of T ,

IGex
T = {(v, e) | v ∈ e ∩ V (T ) ∧ e ∈ E(T )} the incidence relation in T and BGex =
{(t, v) | t ∈ V (T ) ∧ v ∈ Bt ∩ V (G)}.

We denote by CTk the class of tree–dec expansions consisting of a graph G with tw(G) ≤
k, and a tree decomposition (T,B) of G of width(T,B) ≤ k.

Lemma 4.6 ([1]). 1. Let G be a graph and (T,B) a tree decomposition of it with
width(T,B) ≤ k. Then, the tree-width of the tree-dec expansion of G is at most
k + 2.

2. There is an MSO-sentence ϕCTk such that for every τex-structure G, G |= ϕCTk if
and only if G ∈ CTk .

A classic result of Seese [31] (see Theorem 3.6) states that we can decide, for every
k ≥ 0, if an MSO-formula is satisfied in a graph G of tw(G) ≤ k. An immediate corollary
of this result and Lemma 4.6 is the following.

Corollary 4.7. We can decide, for every k, if an MSO-formula ϕ is satisfied in some
G ∈ CTk .

Theorem 4.8 ([1]). For every k ≥ 0, there is an MSO-sentence ϕTk such that for every
tree-dec expansion G ∈ CTl of G, for some l ≥ k, it holds that G |= ϕTk if and only if
tw(G) = k.

Definition 4.9. A graph class C is layer-wise MSO–definable, if for every k ∈ N we
can compute an MSO-formula ϕk such that G ∈ C ∧ tw(G) ≤ k if and only if G |= ϕk,
where G ∈ CTk is the tree-dec expansion of G.

Definition 4.10. Let C be an immersion–closed graph class. The width of C, width(C)
is the minimum positive integer k such that for every graph G /∈ C there is a graph
G′ ⊆ G with G′ /∈ C and tw(G′) ≤ k.

Note that Lemma 4.4 ensures that the width of an immersion-closed graph class is
well-defined.

Observation 4.11. If C1 and C2 are immersion-closed graph classes then the following
hold.

1. For every graph G /∈ C1 ∪ C2, there exists a graph G′ ⊆ G such that G′ /∈ C1 ∪ C2
and tw(G′) ≤ max{r(|E(H)|, |E(J)|) | H ∈ obs≤im(C1), J ∈ obs≤im(C2)}, where
r is the function of Lemma 4.16 and thus,
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2. For every graph G /∈ C1, there exists a graph G′ ⊆ G such that G′ /∈ C1
and tw(G′) ≤ max{f(|E(H)|) | H ∈ obs≤im(C1)}, where f is the function of
Lemma 4.4.

Finally, we state the analog of Lemma 3.1 in [1] for the immersion relation.

Lemma 4.12. There exists an algorithm that, given an upper bound l ≥ 0 on the width
of a layer-wise MSO-definable class C, and a computable function f : N → MSO such
that for every positive integer k, f(k) = ϕk, where ϕk is the MSO-formula defining C∩Tk,
it computes obs≤im(C).

Remark 4.13. We remark here that Lemma 4.12 provides a generic algorithm for com-
puting the obstruction set of any immersion-closed graph class, given that the conditions
stated are satisfied. However, notice that the above lemma implies that there is an al-
gorithm that given an MSO formula ϕ and k ∈ N, so that ϕ defines an immersion
closed-graph class C of width at most k, computes the obstruction set of C.

The only missing ingredient towards our ultimate goal is an explicit upper bound
on the tree-width of the obstructions of the graph class C1 ∪ C2 where C1 and C2 are
immersion-closed graph classes. In the following Section we prove that such a bound
can be computed, given the obstruction sets of C1 and C2.

4.3 Treewidth Bounds for the Obstructions

We first prove the following generalization of the Unique Linkage Theorem.

Lemma 4.14 ([17]). There exists a computable function f : N → N such that the
following holds. Let G be a graph that contains a 2-approximate k-linkage L̃ such that
V (L̃) = V (G). If L̃ is unique, then tw(G) ≤ f(k).

We remark that, the previous lemma holds for any graph G that contains an r-
approximate k-linkage. This can be seen by substituting (G \T )×K2 with (G \T )×Kr

in its proof.

We now state a lemma that provides the upper bound of a graph G, given the upper
bound of its linear graph L(G).

Lemma 4.15. If G is a graph and k is a positive integer with tw(L(G)) ≤ k then
tw(G) ≤ 2k + 1.

Before we proceed to the next lemma, we need to introduce the notion of an r-
approximate k-edge-linkage in a graph. Similarly to the notion of an r-approximate
linkage, an r-approximate edge-linkage in a graph G is a family of paths E in G such
that for every r + 1 distinct paths P1, P2, . . . , Pr+1 in E, it holds that ∩i∈[r+1]E(Pi) =
∅. We call these paths the components of the edge-linkage. Let (α1, α2, . . . , αk) and
(β1, β2, . . . , βk) be elements of V (G)k. We say that an r-approximate edge-linkage E,
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consisting of the paths P1, P2, . . . , Pk, links (α1, α2, . . . , αk) and (β1, β2, . . . , βk) if Pi is
a path with endpoints αi and βi, for every i ∈ [k]. The order of E is k. We call an
r-approximate edge-linkage of order k, r-approximate k-edge-linkage. When r = 1, we
call such a family of paths, an edge-linkage.

Lemma 4.16 ([17]). There exists a computable function r such that the following holds.
Let G1, G2 and G be graphs such that Gi ≤im G, i = 1, 2. If G′ is a minimal subgraph
of G where Gi ≤im G′, i = 1, 2, then tw(G′) ≤ r(|E(G1)|, |E(G2)|).

Notice that Lemma 4.4 follows from Lemma 4.16 when we set G2 to be the empty
graph. Finally, we show that given two immersion closed graph classes C1 and C2 the
immersion-closed graph class C1 ∪ C2 is layer-wise MSO-definable.

Observation 4.17. Let C1 and C2 be immersion-closed graph classes, then C = C1 ∪ C2
is a layer-wise MSO-definable class defined, for every k ≥ 0, by the formula

ϕk ≡

 ∧
G∈obs≤im

(C1)

¬ϕG

 ∨
 ∧

H∈obs≤im
(C2)

¬ϕH

 ∧ ϕTk
where ϕG and ϕH are the formulas described in Lemma 4.3, and ϕTk the formula of
Theorem 4.8 .

We are now able to prove the Main Theorem.

Theorem 4.18. Let C1 and C2 be two immersion-closed graph classes. If the sets
obs≤im(C1) and obs≤im(C2) are given, then the set obs≤im(C1 ∪ C2) is computable.

Proof. According to Observation 4.17, C1 ∪ C2 is a layer-wise MSO-definable class, and
according to Lemma 4.16 there is a bound on the width of C1∪C2. Therefore, Lemma 4.12
is applicable.

4.4 Concluding remarks

In our study we delt with theorems for obstruction set compution for minor or
immersion–closed graph classes. In both approaches, the algorithmic one and the one
that employs MSO there is a common demand for a bound on the treewidth of the
obstructions. However, in the algorithmic approach (Chapter 2), a way of overcoming
this demand is described but when applied to the union problem we are not able to
have a complete solution. On the other hand, by using the “MSO way” (Chapter 3) we
can finally solve the union problem on its version for minor–closed graph classes. And
by Chapter 4 we know that the theory of Chapter 3 can be adapted to the immersion
relation and that we can solve the immersion version of the union problem.

We have to remark though, that these dependencies for obstruction set computation
are crucial. For example knowing only the MSO–description of a minor (or immersion)
closed graph class is not sufficient information for computing its obstruction set. On the
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other hand, there is a need for a bound on the treewidth of the obstructions in both of
the approaches studied and we do not know a generic procedure to compute one.

Finally, we are only concerned with matters of computability in our study, but all
of our algorithms for obstruction set computation enumerate either graphs or sets of
graphs, which is a rather “expensive” procedure in matters of time complexity. Since
the aspect of computability is well studied, a direction for further research could involve
ways to improve the time complexity of these algorithms or even new approaches that
require less computational time. However, the obstruction sets are usually large sets.
For example, a super–exponential lower bound on the size of the obstruction set for
a certain family of graph classes is proven in [18] (see Theorem 1.7) which implies a
super–exponential bound on the running time of every algorithm that computes it: only
for “writing” an output of size n we need n amount of time.
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