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Secure multi party computations for electronic voting

by Panagiotis Grontas

In this thesis, we study the problem of electronic voting as a general decision making process that can
be implemented using multi party computations, fulfilling strict and often conflicting security require-
ments. To this end, we review relevant cryptographic techniques and their combinations to form voting
protocols. More specifically, we analyze schemes based on homomorphic cryptosystems, mixnets with
proofs of shuffles and blind signatures. We analyze how they achieve integrity and privacy in the vot-
ing process, while keeping efficiency. We examine the types of social choice functions that can be
supported by each protocol. We provide two proof of concept implementations. Moreover, we review
ways to thwart stronger adversaries by adding receipt freeness and coercion resistance to voting sys-
tems. We build on the latter concept to propose a modification to a well known protocol. Finally, we
study two actual e-Voting implementations namely Helios and Prêt à Voter .
Keywords: Electronic Voting, Homomorphic Cryptosystems, Proofs Of Knowledge, Mixnets, Blind

Signatures, Coercion Resistance

Περίληψη
Στην παρούσα εργασία, μελετούμε το πρόβλημα της ηλεκτρονικής ψηφοφορίας. Θεωρούμε ότι

είναι έκφανση μιας γενικής διαδικασίας αποφάσεων που μπορεί να υλοποιηθεί μέσω υπολογισμών
πολλαπλών οντοτήτων, οι οποίοι πρέπει να ικανοποιούν πολλές και αντικρουόμενες απαιτήσεις ασφαλείας.
Έτσι μελετούμε σχετικές προσεγγίσεις οι οποίες βασιζονται σε κρυπτογραφικές τεχνικές, όπως τα
ομομορφικά κρυπτοσυστήματα, τα δίκτυα μίξης και οι τυφλές υπογραφές. Αναλύουμε πώς προσφέρουν
ακεραιότητα και ιδιωτικότητα (μυστικότητα) στην διαδικασία και την σχέση τους με την αποδοτικότητα.
Εξετάζουμε τα είδη λειτουργιών κοινωνικής επιλογής που μπορούν να υποστηρίξουν και παρέχουμε
δύο υλοποιήσεις. Επιπλέον ασχολούμαστε με την αντιμετώπιση ισχυρότερων αντιπάλων μη παρέχοντας
αποδείξεις ψήφου ή προσφέροντας δυνατότητες αντίστασης στον εξαναγκασμό. Με βάση την τελευταία
έννοια προτείνουμε μια τροποποίηση σε ένα ευρέως χρησιμοποιούμενο πρωτόκολλο. Τέλος μελετούμε
δύο γνωστές υλοποιήσεις συστημάτων ηλεκτρονικής ψηφοφοριας το Helios και το Prêt à Voter .
Λέξεις Κλειδιά Ηλεκτρονικές Ψηφοφορίες, Ομομορφικά Κρυπτοσυστήματα, Αποδείξεις Γνώσης,

Δίκτυα Μίξης, Τυφλές Υπογραφές, Αντίσταση στον Εξαναγκασμό
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Chapter 1

Introduction

1.1 Overview

In this thesis, we deal with the problem of voting. An informal definition of voting can serve as a
starting point. We consider voting as a distributed decision making process where each participant
selects one or more items from a collection. Afterwards a computation is performed that outputs the
most preferred item(s). All participants must accept the result and adhere to it, until the next time the
process is repeated. Voting can be modelled as amulti party computation system, since multiple parties
submit inputs to a system which in turn does some processing and yields the output.
This definition is kept intentionally broad in order to stress that voting is as old as society, since it

is a generic decision making process. In spite of this fact, voting is usually associated with the selec-
tion of a government to decide for a number of people, for a specified period of time. Furthermore,
its implementation has changed considerably through the ages, adapting to the various prevalent tech-
nologies of the times. In this thesis, we will examine voting through the computational lens, which
is the prevalent scientific and technological instrument of the 20th century and beyond. In a manner
typical to the computer science approach, we will focus on the characteristics of the voting process, its
inherent requirements and difficulties, in order to be able to give and apply the appropriate solutions.
Electronic voting is a heated area of research, partly because of the importance of the voting process to

society and mainly because of the conflicting nature of the system requirements which is augmented by
the notorious unreliability of computer systems. However we must keep in mind that all technological
tools that have been used during the ages to implement voting systems have suffered similar problems,
but due to the lack of the methodological tools that were available, to the public they were accepted
and used in practice for centuries. On the other hand the lens of computer science brings out the
incompatibilities of the voting process (that are already there) in order to build general systems to
reconcile them. As a result the shortcomings of the voting process seem as shortcomings of computer
science and technology, when such a statement could not be any further from the truth. To be specific
the exact opposite happens: We have a feel for the hardness of voting, and because of the rigorous
analysis that was carried out in order to implement it electronically.

1.2 Requirements for voting systems

The multi party computation in a voting system (electronic or not) must be secure i.e. it should exhibit
some characteristics in order to fulfil its goal. In general, it must thwart attacks both from the inside
and from the outside. The attacks might be targeted to a specific individual (retail attacks), or to the

1
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voting body as a whole (wholesale attacks). In this section, we introduce the security characteristics,
in the line of the framework presented in [68].

1.2.1 Integrity

Integrity, in brief, means the voting system should only relay the choices of the voters to the output
computation. It should neither alter nor delete votes, or inject votes that do not correspond to actual
voters. This is captured beautifully in the phrases:

• Votes should be cast as intended, which is officially called ballot casting assurance [15]. In
simple terms, this means that the user interface of the voting system should aid the voter to
express his choice without interfering in any way.

• Votes should be recorded as cast, meaning that the voting system should internally represent the
vote in a manner that does not deviate from the voter choice.

• Votes should be counted as cast, reflected in the famous saying by Joseph Stalin: "Those who
cast the votes decide nothing. Those who count the votes decide everything".

Integrity is there to correctly determine the winner, to convince the loser [54] and, maybe more
importantly, the integrity requirement can be used to give confidence to the participants that the result
correctly expresses their will. In order to convince that integrity is preserved the voting system must
provide credible evidence [54] that can be utilized with the following processes:

• Individual verifiability. Each voter must be able to verify that his selection was correctly in-
cluded in the outcome.

• Administrative verifiability. The organizers of the election can verify that everything went as
planned [16]. This is because the election official act as trusted proxies of the individuals, so
their actions are on their behalf.

• Universal verifiability. Any interested party should be able to verify that the result computa-
tion was correct, i.e. all the valid inputs and only the valid inputs were included in the output
without any change and that the computation adhered to the specification. The observant reader
should immediately see that a voting system that provides universal verifiability, also provides
administrative and individual verifiability.

• Eligibility verifiability Everybody is able to verify that every ballot cast, originated from a voter
with the right to vote. This type of verifiability was defined by Kremer et al. in [86]. Until then
it was considered part of universal verifiability, but it can studied separately.

Amore anthropomorphic manifestation of integrity is fairness. The output of the computation should
not only be correct, but it should also be fair. This means that all inputs from participants should be
treated exactly as the computation specification dictates. This should happen from the moment they
cast their votes. It follows that intermediate results should not be available, since they can affect some
inputs. Moreover, it should not be allowed to a participant to vote in such a way as to cancel out
another input (vote cancellation), or it should not be acceptable, that a voter votes exactly as someone
else (vote duplication). A major consequence of fairness, is that the elections cannot be repeated, since
by definition the conditions are not the same. This places additional burden to the security requirements.
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1.2.2 Ballot Secrecy

The concept of ballot secrecy is the most important feature of a voting system, at least in public percep-
tion. The privacy of the input to the system guarantees that it conveys the true belief of the voter without
any influence from external agents. A related yet distinct notion is that of voter anonymity, meaning to
remove the correlation between the voter and vote. Anonymity is often referred to as unlinkability [90].
Conceptually ballot secrecy and voter anonymity are different, but an implementation might use one to
achieve the other. Anonymity can be achieved through ballot secrecy if the result is computed on the
secrets. Vice versa, ballot secrecy might not matter if voter anonymity holds, since the latter allows the
voter to express his/her will. An important remark here is that ballot secrecy cannot be totally achieved
since the result of the computation might leak some information, as in the case of the unanimous vote.
Even if only a single voter begs to differ, she is entitled to it and must be protected. Generalizing the
above observation, we must note [40] that any corrupted subset of voters can collaborate and deduce
the subtally of the honest ones. However no more should be deducible from the outcome.
In the simplest case, privacy means that no further information is deducible from the votes and the

tally alone. A more elevated threat is that of coercion, that might be involuntary or voluntary. In the
first case a voter can be threatened to vote in a particular way, so as not to face dire consequences in the
personal, family, professional or societal front. In the second case a voter might volunteer to sell her
vote and be rewarded in some fashion. In the more general case [77] the voter might be impersonated
by giving up his credential or in the most brute force case the voter might be forced to abstain from
voting altogether. In [17] it is argued that little can be done in order to thwart a determined attacker
that coerces before the election, as modern technology can beat even the most sophisticated scheme.
However post election coercion can be dealt with.
Ballot secrecy hardens coercion, as it makes it difficult for the coercer to validate that the party being

coerced carried out its part as was agreed. However individual and universal verifiability can aid the
coercer. Since we would like the voter to be able to verify his vote, the system must enable it by
somehow providing an indication that can be utilized for verification. But this receipt can also enable
the coercer to verify that the coercion was carried out as agreed. As a result, to strengthen ballot secrecy
voting systems should also provide receipt freeness and coercion resistance. Coercion resistance is
formally defined in [77] as a game where the attacker must guess whether the victim complied to his
directions and has negligible advantage over a random guess.
We see here that two requirements in a voting systems are contradicting. This is a general pattern in

voting and it is the main reason that it is such a hard problem to solve, as it leads to complexity.
Another aspect of ballot secrecy that must be taken into account is its duration. It is debated whether,

it should be everlasting or apply for a specified period of time. In many implementations that we
will see in this thesis, ballot secrecy is conditional on the premise that it depends on the solution of
computational problems that currently seem infeasible. However, in 50 years this might not be the
case. In some regimes this might lead to negative consequences if the revealed votes are not favorable
at the time.

1.2.3 Authentication and Authorisation

The requirements in this section allow voting to fulfill its claim as a decision making process. In
more simple terms it allows voting to actually implement the democracy [90] criterion, and not merely
claim to implement it. To begin with, voting may be a general way to reach a decision, however not
everybody should be able to participate. Thus there must be a way for the eligible voters to stand out.
Authentication serves this purpose. However authentication requires some form of identification and
this might contrast the anonymity requirement. As a result solutions can identify the largest possible
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subset for each participant. The next logical step is authorisation which makes sure that the participant
behaves as is expected so as not cheat the system. For instance, a voter should vote as many times
(usually one) as the election law mandates and no more.

1.2.4 Enfranchisement

All participants eligible to vote should be encouraged to participate. This is easier said than done. For
example, in order to be authenticated, voters should issue some form of credentials. These excludes the
people that cannot issue these credentials for some reason. In addition, voters should not be intimidated
by the voting system and be discouraged to participate. This is particularly true for electronic voting,
since technologically illiterate people might find it hard to use the system. Of course solutions should
respect the previous requirements. Assistance in voting for example might solve the problem, if ballot
secrecy is maintained. Enfranchisement implies that voters trust the system to compute their intent.
Complex voting systems might succeed in implementing some or most of the requirements but might
fail in convincing the voters. We do not address, the question if the solutions described in this thesis,
actually convince voters.

1.2.5 Availability and Efficiency

The voting system should always be available to receive input from the participants and it must output
the result of the computation in a reasonable time. Availability is crucial since the repetition of the
vote casting phase, sheds doubts on fairness. Availability in the presence of an active and persistent
adversary is often called robustness. The adversary might pose as a voter or as the authority or both. In
addition, lack of availability hinders enfranchisement, since a voting system that has 'ups and downs' in
its operation, is perceived as untrustworthy. It is very important to point out that a voting systemmust be
robust in its complete lifecycle and not only on the vote casting stage. For example, a verifiable voting
system must have a detailed process to deal with 'alleged' verification problems, or else verifiability
can be used against the system.
Efficiency is one of the reasons put forth by electronic voting proponents, especially when the voting

population is extremely large. It refers to the resources used by the voting system in all its workflow.
Such resources are referred to as cost and might be time, money, requirements on infrastructure and
people participation etc.

1.3 A brief history of voting

Since voting is a universal decision making process, it can be encountered in all periods of recorded
human history. In this section we shall review some of the more widely used voting methods and
analyse the from a technological viewpoint as well as the requirements laid out in the previous section.
A lot of material presented here, has been drawn from [68] and [54]. Our goal is to demonstrate that
voting is aligned with the prevalent technologies of each era, however imprefect they may be.

1.3.1 Early Voting

The simplest and probably one of the earliest methods of voting is done by a show of hands, i.e. by
raising one's hand if one agrees with the proposition put forth. This method is binary in nature, since
the voter has two options, to show or not to show. Tallying takes place by counting raised hands
in the presence of all voters. This method guarantees that votes are cast as intended, but counting
can be accurate only if the deciding group is small and its composition is fixed. However, universal
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verifiability is easier to achieve since everybody can count raised hands. It is interesting to note that
while this method provides evidence, they are of an ephemeral nature. In case of a dispute the process
must be repeated and it is not guaranteed that each voter will behave exactly the same (repetition is not
fair). This method provides efficiency in small groups only and enfranchisement since voting is a very
easy action without any requirements. The last characteristic is very important and probably the reason
that this method is so often used, even today.
However this method has serious drawbacks. First of all it does not provide any secrecy. Everybody

can see what the next person has voted. This fact is essential to tallying. This opens up and avenue
of coercion and blackmail opportunities. However a very important observation can be made. As this
scheme is very easy to implement it can be used for impromptu elections, thus minimizing the prepa-
ration opportunity of the coercer. On the other hand it does not thwart coercion after the fact. Another
issue with this method is that it is not usually used with any method of authorization or authentication.
We have personally witnessed occasions were voting by show of hands has taken place in rooms with
open doors and people freely walking in and out. Of course many more can go wrong, as since no
authentication is provided. For instance somebody can inject voters at will, thus altering the result.
A similar method in simplicity and use is voice voting (Viva Voice). As its name suggest voting

takes place by voicing the name of the desired selection (candidate or course of action). As sound is
transient the vote must be recorded in order to be counted. A more primitive form of voice voting takes
advantage of the amplitude characteristics of sound, as voters orally cast their votes. The sound with the
higher amplitude wins. However in the majority of cases the votes are recorded in a more permanent
medium such as paper, by an election official.
This method is characterized by individual verifiability as the voter can check whether his vote was

correctly recorded. However it lacks universal verifiability as after the recording process nobody can
check if the recorded votes correspond to the votes cast. This can be corrected by allowing representa-
tives of conflicting parties to witness the counting. As with the show of hands this method requires no
particular effort or abilities for voters and as a result promotes enfranchisement. Counting is efficient
only in small groups. Authentication is also provided as an election official records the vote probably
in the presence of many witnesses. If this method is used in well established communities, an impostor
will be surely recognized. It is evident that this method has serious drawbacks analogous in nature with
the show of hands methods described previously.

1.3.2 Paper ballots

The drawbacks of the previous methods were apparent even to its users. As a result a replacement was
sought, that would provide mainly secrecy and permanency in the form of physical storage. Many can-
didate technologies were tried, that culminated in what is now called the secret ballot or the Australian
ballot, the golden standard of voting [17], which was adopted in the late 19th century. An example
of such technologies were colored balls placed in an opaque container. Analogues of paper ballots
were even found in ancient Greece, where the names of people to be ousted from the city of Athens
were written on sea shells, a practice referred to as ostracism. A reason often cited for the delay to the
whitespread use of this methodm is that paper ballots would hinder enfranchisement as the literacy of
the general public was poor.

Process The general process of voting by paper ballots as used today has evolved in many ways, in-
corporating other societal changes. As these changes vary by country, the process has different versions
in many parts of the world. However a common base line consists of the following phases:

• Preparation
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– Voters register and their identity is validated. In some countries this is done when a person
receives citizenship, or even when she is born. In other countries registration is done per
election. As a result, a catalog of registered voters is prepared.

– Special places are designated as polling stations. Usually public schools serve this purpose
as these places must be easily accessible.

– The actual paper ballots are printed and transported to the polling stations. The paper ballots
must be identical.

– Containers for the ballots are distributed. These containers come in 2 forms. The first form
serves the purpose of providing ballot secrecy and can be a simple envelope. The second
container, usually called theballot box, gathers all the ballots cast. As such its operation is
essential for the integrity of the election. For example it must be difficult to extract ballots
cast before the elections end. In addition the ballot box must be empty in the beginning and
must not be allowed to open before the election ends. Consequently, the ballot box must be
locked, sealed, transparent and supervised.

– Personnel must be appointed to handle the preparation process, i.e. seal the ballot boxes,
distribute the ballots, prepare the polling station. This trusted personnel includes 'impartial'
observers as well as members of all the parties that have an interest in the integrity of the
election. Trust is achieved by conflict of interest.

• Vote Casting

– As voters proceed to vote they are identified and authenticated, using some token obtained
from the registration phase.

– They receive a copy of all the ballots and an empty envelope, which aims to provide ballot
secrecy. In order to hide the selection and marking process the voter enters a booth, alone,
where he can secretly select the desired ballot, mark it and place it in the envelope. There
he must safely discard the rest of the ballots. Observe that ballot secrecy is mandatory. The
voter cannot deny it, even if he wants to. This presents a huge obstacle to coercers. The
booth provides secrecy even if the voter does not want it [18].

– The voter exits holding only the envelope and casts it in the ballot box.

– The vote casting phase lasts a predetermined period of time, usually from dawn to dusk.

• Vote Tallying

– After the vote casting phase the ballot boxes are unsealed for ballot counting to begin.

– The sealed ballots are counted and for each one the envelope is removed.

– The opened ballot is examined and its contents are recorded. Ballots marked improperly
are annulled.

– This process is supervised by the trusted and mistrusting individuals appointed in the prepa-
ration phase. As an additional measure to preserve integrity, it is checked the total number
of voters authenticated must match the total number of sealed ballots and the total number
of votes (including the annulled ones).

• The vote tallying phase happens in parallel in all voting stations. The partial results must then be
combined to produce the final tally. It is vital that aggregate values reported must correspond to
the actual results of counting.
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As this process was being constantly refined it has many advantages. First of all people are ac-
customed to it and trust it. Another important general advantage is that its security is guaranteed by
constitutions that have evolved around it. For example, if a person tries to escort a voter inside the
voting booth, he might be arrested on the spot. Observe that this process, does not entirely depend on
paper, it has been built around it. However, the versatility of paper, as a vote registering medium, is an
additional advantage. Anything can be written on paper and the voters can mark it as they wish. As a
result multiple election methods can be supported. It is even possible that the voter, bypasses entirely
the proposed candidates and freely vote for his own, by simply writing them down. This practice is
called voting with write-ins and is applicable in many parts of the world.
Such ballots though are not without problems. An inherent problem that may not be attributed to

malice is that the counting process is inaccurate. Another problem is that the existence of many of
the desired properties of elections described earlier are not verified, but trusted upon. For example a
voter cannot be sure that her vote was counted, as the vote is anonymous and she is not present during
the counting process. Of course she can trust that the sums of voters and votes agree, but she cannot
prove it. Consequently, various attacks have been proposed and successfully carried out. One such
attack, chain voting bypasses the secrecy mechanism to achieve coercion of individual voters. If the
coercer can smuggle a ballot during the preparation phase, he can mark it and hand it to his victim.
Upon exit the voter must provide proof of coercion in the form of an identical but unmarked ballot.
Another successful attack, firstly used in Italian villages, that we describe later in detail, can be used to
break anonymity utilizing unused candidates.
Another substantial problem with paper ballots is that the tallying phase is quite inefficient. In small

countries tallying usually finishes overnight, but in larger ones tallying by hand can last for weeks. The
duration of the vote counting phase must be as small as possible in order to avoid the revelation of
partial results, that may affect the acceptance of the result leading to dire consequences. The process
can be sped up by adding more counters but that simply transfers inefficiency to another area, that of
cost.

1.3.3 Mechanical Voting

The advent of the industrial revolution and the first machines, brought the cutting edge technology of
that era to voting. Mechanical voting machines where introduced to speed up counting and improve
accuracy. But these machines subtly changed the semantics of voting. Voting would by done by proxy,
as the voter authorized the machine to record his vote. The essential difference with paper is that it is
considered a passive medium as it does not implement any kind of process, as is the case with voting
machines. Mechanical contraptions could have a static behavior. When they were introduced this was
seen as a desirable feature, since a machine was considered impartial, contrary to humans.They resem-
bled a mechanical voting booth that recorded votes using levers and gears. There were mechanisms in
place to ensure that no double voting would occur. The vote would be stored inside the machine and no
copy would be printed. After each vote the machine would update a running total, making the counting
of votes unnecessary.
The biggest problem with mechanical voting machines is that they did not provide verifiable evi-

dence. At first this didn't seem to matter as one of their aims was to do away with untrustworthy human
counters. During their use however, breakdowns would occur. The machines would stop updating to-
tals, thus losing many votes. Such failures might be silent, as the official sometimes could not be sure if
the machine had stopped functioning any some time. A smaller problemwith this kind of machines was
that it was quite difficult for their designers to ensure that they would accept all types of ballots possible
in an election to achieve re usability. The machines were tailor made for the particular elections.
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A variation of mechanical voting machines would appear in the 1950s with punched card voting. We
note here that lever machines and punched cards, utilized the process that was cemented with the Aus-
tralian ballot. In punched card voting, the voters would record their votes on special purpose cardboard
sheets using a special device that would consist of two parts. The first one resembled a pen and its pur-
pose was to actually make the holes. The second one was 'the user interface', a template that displayed
the candidates and guided the voter to cut the hole in the position corresponding to the selection. The
voter would slip the card into the template and vote using the pen. The punched ballots would then
be transferred to a counting machine, a mainframe computer, which would calculate the tally. Such
machines are still used today. Punched card voting offers the same advantages as mechanical voting,
while retaining physical proof. The proof however is useless without the template. The most important
problem encountered with punched card voting is individual verifiability. Quite often ballot designers
would cram a lot of information into a very small space on the ballot, thus resulting in voters getting
confused and voting for the wrong candidate. Due to the complexity of the user interface a simple
check did not reveal the error. Punched card ballots introduced computers to the voting process.

1.3.4 Electronic Voting

In punched card voting the role of the computer was merely to perform the tally. This was consistent
with the view of computers in the 1950s. Computers were used to perform calculations with large
amounts of data. Nowadays however the computer's role has changed dramatically, as it is an essential
part of everyday life. This change is also reflected in their use in voting. In electronic voting, computers
are present in every step of the process, from the casting of the vote to the announcement of the results.
Electronic voting comes into many flavors that make up two large categories: the first one reuses the
established infrastructure of a typical paper ballot election and the other one merely allows voting from
anywhere.

1.3.4.1 Supervised Voting

In electronic voting in polling stations two technologies have been used. We shall give a short de-
scription of each and mention their particular short comings. In the next section we shall deal with the
problem of electronic voting in a general fashion.

Direct Recording Electronic (DRE) Voting Machines These machines are usually custom built
computers that run software that displays ballots, allows the voter to input her selections using some
input device (usually touch screen) and stores the vote on a removable memory card. A DRE machine
can display many ballot formats and provide accessibility options. Often such a machine can allow
the voter to verify the choice by printing a paper receipt like an ATM. However there is usually no
option to change the selection after the receipt has been printed. The voter may or may not cast the
receipt in a ballot box for parallel counting. After voting has concluded the memory cards are ejected
and like punch card voting tabulated by a computer. The memory cards is the easiest attack point for
anyone who wishes to tamper with an election. Attacks have been reported were memory cards contain
executable code or an initial count of votes before voting begins [129].

Optical Scan Voting Machines In this type of elections, voters mark a paper ballot, which is then
scanned by the voting machine. Everything happens electronically afterwards. The votes are stored in
memory cards, inside the machine. After election ends the machine prints out its local total and the
memory cards are transferred to a tabulator and summed. As in DREs, the original paper ballot is not
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mandatorily cast in a separate ballot box, to be used for recounting purposes. It is clear to see that the
DRE attacks described in [129] and [68] are applicable here as well.

1.3.4.2 Internet Voting

Internet voting is the process where the voter casts the ballot through his personal computer or smart
phone and the vote is relayed through the Internet. Unlike supervised voting the voter can cast the
ballot in the comfort of their homes or their offices without any official being present. The software
used must be platform independent so it usually takes place through a web browser. Internet voting is
an example of remote voting, a practice that occurs quite often in real elections. An example is vote
by mail, where the voter receives the ballots via the postal service or prints them from a web site, fills
them at home and mails them back to the election authorities.
Internet Voting has many advantages: Firstly it allows people to make their choices without having

to go to the polling station, stand in the queue etc. It can also be accessible from any part of the world,
allowing greater turnout and replacing the need for vote by mail. It can also be more usable, as the
voting software can provide guidance over the process. As it is implemented in computer software it
has significant cost savings in the long run. The administrative costs of setting up an election are also
quite low, leading to frequent elections. The proponents of Internet voting have even gone as far as
claiming that it will bring back the direct democracy witnessed in classical Athens 2500 years ago!
On the other hand, Internet voting has many other disadvantages. The most important one is that it

sacrifices the mandatory imposition of privacy offered in voting booths. Since voting is done without
official supervision, it is open to coercion and vote selling as the attacker can be present and oversee
the voting process. Moreover, Internet voting enables a weaker kind of coercion to take place: pressure
from family or close friends to take place, as the voter is never alone. In addition since the whole
process takes place completely in software so must the authentication. This allows for identity theft,
an important threat for common Internet transactions.Another important problem is that its security
depends on the security of the voters' computer. The security research literature is full of vulnerabilities
and attacks leading the safe conclusion that computer client software cannot be trusted for security.
Malicious software might alter votes, fail to submit them (without reporting it) and many other thing
can go terribly wrong. Things are not as bright on the server side as well. As the voting server resides
on an open network it is a target of attacks as well, that are not restricted inside a country, but can come
from external opponents as well. Furthermore, the software used for voting might be inaccessible to
certain groups of people such as the elderly as they are not comfortable with using a computer.
We can see why many computer security and voting researchers think that Internet Voting is a bad

idea [68]. However as we strongly believe that Internet transactions will be the preferred method of
interaction in the next 50 years, voting will probably follow. As a result, it is an important challenge to
make Internet Voting viable.

1.4 Problems with Electronic Voting

In the previous sections we have described some important problems found in the three major ap-
proaches for electronic voting. In this section we shall sum them up, express them in the framework
described previously and provide the general framework of the proposed solutions that this thesis will
focus on.
To begin with, the main issue of electronic voting is the universal nature of computers. Computers

can run any type of software. As a result nobody can be completely sure of exactly what the computer is
executing at any moment. To paraphrase the well known Ryle quote: There are ghosts in the machine.
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As electronic voting is voting by proxy, we delegate our choices to these ghosts and hope that they
convey it accurately and secretly. In addition these ghosts implement very complex and conflicting
requirements. Software testing is known to be an inexact science and as a result the ghosts are not to
blame.
Integrity, to begin with, is difficult to achieve with software. An attacker might inject code to alter

the votes cast, transferring them to a candidate of his choice, or to decoy candidates in order to achieve
some believable distribution of votes. Alternatively malicious code might cause some votes not to be
counted, or lose their proper weight, by initiating the candidate counters to non zero values. One might
argue that this can be remedied with the different flavors of verifiability, but they too are dependent
on software. For example, in a DRE voting machine the verification receipt, might contain the correct
choice, but the memory card might contain an altered one. If universal verifiability includes a recount
based only on the contents of the memory cards then the cheating cannot be detected. The moral here
is that the production of credible evidence required for integrity, are generated by software. Moreover,
it is difficult to guarantee that voting software does not leak intermediate result, that break the fairness
premise.
Ballot secrecy and anonymity are also difficult to achieve. DREs provide no ballot secrecy. It is very

easy to sort the contents of the memory card with the order of appearance of the voters and deduce
their choices. Many systems employ cryptography to provide ballot secrecy, but they must maintain
integrity. Of course since the software that implements the cryptographic algorithms, knows of the
initial choice, it can intervene and store it unencrypted or relay it to the coercer. Other attacks include
the duplication of an encrypted vote, or vote canceling, producing a vote that nullifies an existing one,
without of course knowing what it is. Finally as far as anonymity is concerned, how can one draw a
non crossing line between authentication and anonymity, if the same system must handle both.
One approach for solving this process has been certification. The producers of the voting system

supply the hardware and software specifications to an independent auditor, who runs some tests and
decides whether the system meets certain criteria. The problem with certifications, in general, is that
the auditor does not evaluate the system as a whole, but tests whether specific claims made by the
producer are substantiated or not. As a result it is not essential that the system is evaluated completely
but it maybe evaluated in part.
Another approach, a generalization of certification uses the concept of open source software. The

creator of voting software releases the source code of the system and independent auditors to analyze
it as they wish. It is essentially the universal verifiability approach applied to the election software.
This approach was believed adequate in the previous decade, but it suffers from a very important flaw.
Nobody can guarantee that the code released and analyzed matches the code that is executed during an
actual vote. Of course the same applies for the more restricted form of analysis, namely certification.
What must be verified is the performance of the software in relation to the election data.
A more holistic view is needed. Such an approach was proposed in [115]. It is based on the simple

idea of software independence which states that the result of an election should not depend on the
software that is used to run the election:
Definition 1.1. A voting system is (weakly) software independent if an undetected change or error in
its software cannot cause an undetectable change or error in the election outcome.

The whole idea is that software problems should not propagate to the election results. To better
understand how this can happen, we shall use a simple method to implement it. We refer to the case of
DRE machines. Suppose that authorities allow the voter to cast the receipt, printed by the machine, in
a ballot box, after verifying that it accurately reflects his vote. In this way a paper trail is left behind,
which is approved by the voter (such systems possess voter verifiable paper audit trails - VVPAT).
The resulting system is software independent, because the software can be replaced by a hand count.
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Another way to achieve software independence is to use results from cryptography to verify the actions
of the system.
A variation of this concept, called strong software independence requires detection and recovery

mechanisms to be in place, so that a detected error does not require re running the election. A VVPAT
system where the paper trail is considered as an official ballot is strongly software independent. For a
system to really by software independent a mechanism must be in place for handling detected verifica-
tion problems.
Another relevant idea can be summed up in the notion that the elections are the ones needing verifi-

cation and not the voting system.

1.5 Thesis structure

This thesis' topic is how techniques from cryptography can be used to build electronic voting systems
that implement all the features described in this chapter, in a non conflicting manner. We introduce
approaches to electronic voting by continuously adding layers one on top of the other. A road map
follows:

• In chapter 2 the primitives that a voting system utilises will be introduced. We shall introduce
concepts from cryptography and from the theory of social choice. These concepts will be utilized
in the rest of the chapters to build larger building blocks to be used in a voting system.

• In chapter 3 we shall introduce the idea of homomorphic voting systems. The systems that are
described here maintain the ballot secrecy property till the very end, since the actual votes are
never revealed.

• In chapter 4 we introduce the concept of a mixnet, which is a generic tool used to build an
anonymous system. It is the electronic counterpart of the traditional ballot box shuffling, that is
employed in order to lose track of the correspondence between votes and voters.

• In chapter 5 we describe approaches to electronic voting that can be combined with the before
mentioned categories. This chapter can be thought of an enhancement of 4, as the schemes
describe offer addons to enhance the privacy requirement. More specifically we deal with the
blind signature model and methods to provide everlasting privacy. A large part of the chapter is
devoted to methods for countering the threat of coercion. Finally, we combine the approaches
presented in this chapter to sketch a novel coercion resistant protocol based on blind signatures.

• In chapter 6 we deal with two implementations of voting systems, namely the Helios voting
system for remote elections and the Prêt à Voter voting system for supervised ones. In addition
we describe two 'home made' proof of concept implementations of voting protocols.

• In chapter 7 we conclude this thesis and describe important avenues for future work.



Chapter 2

Preliminaries

2.1 Cryptography Building Blocks

Cryptography is the art and science of exchanging secret messages. As such it has an immediate re-
lationship with the ballot secrecy requirement for electronic voting. However the cryptographic tech-
niques employed in electronic voting have become more ambitious. They aim to provide the verifia-
bility requirements that enable the sought trust. It can be argued that the role of cryptography as trust
builder is more important than the role of merely keeping secret messages.In this section we shall re-
view the basic building blocks that cryptography provides to a voting system. From the onset we must
make it clear that a thorough and rigorous mathematical review of the cryptograpy found in voting sys-
tems, isn't even found in classical cryptography textbooks, like [78] Consequently, the review in this
chapter, is not about cryptography in itself, but its purpose is to merely lay the ground for the actual
focus of this thesis, namely the voting systems that utilise cryptography to achieve the requirements
described in Chapter 1. As a result the exposition style, will not be formal in well known cases.

2.1.1 Public Key Cryptography

Cryptography has been used from the ancient times. However all cryptographic systems used had a
significant shortcoming. The parties that wanted to communicate securely had to agree to a secret
key prior to communicating. All that changed in 1976, when Diffie and Hellman invented public key
cryptography [50]. The system proposed, used 2 keys, one for encryption and one for decryption.
The encryption key could be made public to enable communication without prior engagement. The
decryption key would be kept secret and used by the recipient of the cipher text to recover the original
message. More formally [81] a public key cryptosystem is made up of three algorithms:

• A Key Generation algorithm that is given a security parameter η and returns the public and
private keys.

• An Encryption algorithm that is given a message, some randomness and the public key and
returns the encryptedmessage. Aswe shall see in 2.1.3 any deterministic public key cryptosystem
cannot be secure. To this end, randomness is essential to a public key encryption function.

• A Decryption algorithm that given the cipher text and the private key recovers the plaintext.

2.1.1.1 The RSA Cryptosystem

One of the most widely used public key cryptosystems was proposed in [113]. It works as follows:

12
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• Key generation

– Select Randomly and Independently Two Large Primes p, q of length η bits

– Calculate product n = p · q

– Calculate ϕ(n) = (p− 1) · (q − 1)

– Randomly select e ∈ Z∗
n st: gcd(e, ϕ(n)) = 1

– Calculate reverse d = e−1 (modϕ(n))

– Public key is (e, n) and private key is (p, q, d)

• Encrypt The messagem is aised to the public key c = me (modn)

• Decrypt The cipher c is raised to the private key cd (modn) = med (modn) = m

One way to randomize the encryption function, is by appending random padding to the message. To
retrieve the ciphertext without the private key, one must be able to compute e − th roots in Zn. This
is called the RSA Problem. Moreover, if n can be factored than breaking RSA is easy, since we can
calculate ϕ(n) and recover d using the Euclidean Algorithm.

2.1.1.2 The El Gamal Cryptosystem

Another very popular cryptosystem was proposed in [60] and provides randomised Public Key Encryp-
tion from the Diffie-Hellman Key Exchange:

• Key Generation

– Select 2 large primes p, q such that q | (p− 1) and a generator g of the q order subgroup of
Z∗
p G. Such primes will be henceforth called safe primes.

– Randomly select x ∈R Zq

– Calculate y = gx (mod p)

– Return (pk = y, sk = x)

• Encrypt: Multiply the input message with a randomisation of public key

– Randomly select r ∈R Zq

– Calculate G = gr (mod p)

– CalculateM = m · yr (mod p)

– Return c = (G,M)

• Decrypt message (G,M) with secret key x is a a function Zp × Zp × Zq → G

– returnM/Gx (mod p)

The security of the cryptosystem is based on the difficulty of computing discrete logarithms, which
is the problem of computing x given gx in a cyclic group G. Another way to express this difficulty
is throught the Decisional Diffie Hellman Assumption, which states that the tuples (ga, gb, gc) and
(ga, gb, gab) are indistinguishable by an adversary with limited computational power.
The exponential El Gamal variation can be utilised for electronic voting, since it has homomorphic

properties 2.1.2. The key generation phase remains the same, but the encryption and decryption phases
change:
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• EncryptMessagem: Raise message to the exponent and multiply with randomisation of public
key

– Randomly select r ∈R Zq

– Calculate G = gr (mod p)

– CalculateM = gm · yr (mod p)

– Return c = (G,M)

• Decrypt message (G,M) with secret key x

– ReturnM/Gx (mod p)

– Calculatem from gm

It is evident that the decryption of exponential El Gamal requires to solve the discrete logarithm prob-
lem. This can be done efficiently if we choose the message space with caution.

2.1.1.3 The Paillier Cryptosystem: Origins and Generalisation

The Paillier Cryptosystem was proposed in [107]. It can be said that it is a cryptosystem that is tailor-
made for electronic voting, as it has the favourable property of the exponential El Gamal cryptosystem,
namely the encryption of amessage handles it as an exponent, but without solving a discrete log problem
in decryption. Thus, it is interesting to review the evolution of the various cryptosystems that led to
[107].

Goldwasser-Micali The forefather of Paillier was the cryptosystem proposed in [63] which is the
first provably secure cryptosystem. It can be described as a proof of concept cryptosystem, the concepts
being probabilistic encryption and semantic security 2.1.3, since encryption and decryption are done
bit by bit. Its three phases are described below:

• Key Generation

– Select Randomly and Independently Two Large Primes p, q

– Calculate the RSA modulus n = p · q

– Select y ∈ Z∗
n with gcd(y, n) = 1 and more over without any x ∈ Z∗

n such that y =

x2 (modn). Such a y is called a quadratic non-residue.

– The public key is N, y

– The private key is p, q

• Encryption

– For a messagem = m1 · · ·mk the ciphertext is produced bitwise:

ci =

{
yr2i (modn) ifmi = 1

r2i (modn) ifmi = 0

or more compactly: ci = ymir2i (modn)

• Decryption

– When the recipient receives the ciphertext c = c1 · · · ck the decryption is performed bitwise:
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mi =

{
1 if ci is a non quadratic residue (modn)

0 if ci is a quadratic residue (modn)

This operation can be easily performed by the receiver since she knows the factorisation of
n.

The security of [63] rests on the quadratic residuosity problem, namely that it is difficult to discern
if a x ∈ Z∗

n is a quadratic residue without known the factorisation of n.

Benaloh cryptosystem The next step in the evolution of cryptosystems that led to Paillier was the
cryptosystem proposed in [40]. This paper directly relates the proposal with the problem of electronic
voting. As a result we shall examine it in more detail in the following chapter. In this section we
shall deal with the cryptographic details. The cryptosystem proposed in [40] generalises the quadratic
residue approach of [63] using r−residues. A number y is an r−residue (modn) if there exists
x such that y = xr (modn). If the factorisation of n is known, then there is a polynomial algorithm
to recognise if a given number is an r − residue. Otherwise the problem is considered hard.

• Key Generation

– Select a prime number r

– Select Randomly and Independently two large primes p, q such that r p (p−1) and r . (q−1)

– Calculate the RSA modulus n = p · q

– Select y ∈ Z∗
n with gcd(y, n) = 1 and more over without any x ∈ Z∗

n such that y =

xr (modn). Such a y is called a quadratic non-residue.

– The public key is N, y

– The private key is p, q

• Encryption

– For a messagem the ciphertext is produced by c = ymxr (modn) where x is random.

• Decryption

– Since the factorisation of n is known, the receiver can calculate ϕ(n) = (p− 1)(q − 1)

– Subsequently he raises the ciphertext to ϕ(n)
r :

u = Enc(m)
ϕ(n)
r = (ymxr)

ϕ(n)
r = ym

ϕ(n)
r xϕ(n) = ym

ϕ(n)
r

– If u = 1 then the message is decrypted andm = 0

– If u ̸= 1 then the receiver can iterate over all the possible t ∈ {0, · · · , r − 1} checking if

uEnc(t) = Enc(m)Enc(t) = Enc(m+ t) = Enc(0) = 1

. When such a t is found, the message is decryptedm = −t (modn).

– This brute force approach is not efficient for large r. It can be improved using the baby step
- giant step algorithm ([140],[135]) and achieve the result in O(

√
r) steps.
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Paillier cryptosystem Now we will turn our attention to the Paillier cryptosystem [107] and its gen-
eralisation in ([47], [46]), which is usually referred to as the Damgård-Jurik cryptosystem. Both cryp-
tosystems are ideally suited for a voting context.
Firstly we shall describe the Paillier cryptosystem that consists of the standard three phases:

• Key Generation

– Choose two large primes p, q randomly and independently such that gcd(pq, (p − 1)(q −
1)) = 1. It can be proved that this property is easily attained, if p, q are of the same length
η

– Calculate RSA modulus n = pq

– Calculate λ = lcm(p− 1, q− 1) = (p−1)(q−1)
gcd(p−1,q−1) (Carmichael's Function). This function is

easy to calculate if we know p, q and has the following very important properties:

* ∀x ∈ Z∗
n2 : xλ(n) = 1 (modn) because of Carmichael's Theorem

* ∀x ∈ Z∗
n2 : xnλ(n) = 1 (modn2) because nλ(n) = λ(n2)

– Select generator g ∈ Z∗
n2 such that the order of g is a non zero multiple of n.

– Calculate inverse µ = L(gλ (modn2))−1 (modn) where L(x) = x−1
n . This function

is very important in the Paillier cryptosystem. Its role can be summarized as:

* L() is given elements that are equal to 1 (modn)

* L() 'solves' the discrete log problem and 'decrypts'
* The inverse to be calculated, always exists if g is a valid generator

– Release the keys. The public key is (n, g) and the private Key (λ, µ)

• Encryption: Zn × Z∗
n → Z∗

n2

– Encode messagem into Zn

– Select random r ∈ Z∗
n

– Return c = Enc(m, r) = gmrn (modn2)

• Decryption: Z∗
n2 → Zn

– Ciphertext c ∈ Z∗
n2

– Returnm = L(cλmodn2)µ (modn) = L(cλ modn2)
L(gλ modn2)

(modn)

The security of the Paillier cryptosystem depends on the composite residuosity problem which can
be stated as:
Definition 2.1. Given n = pq and z ∈ Z∗

n2 decide if z is n − residue module n2, does there exist
y ∈ Z∗

n2 st: z = yn (modn2).

It is assumed that there is no polynomial time algorithm to decide the composite residuosity problem.
To state it differently, it is assumed that theDecisional Composite Residuosity Assumption-DCRA holds,
which states that In order to get a hint about the relation of the DCRA with the Paillier cryptosystem,
we must observe that if there was an algorithm to decide if z ∈ Z∗

n2 is the encryption of message 0 then
we could solve the composite residuosity problem.
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An Exercise:Proving Correctness In order to familiarize ourselves with the Paillier cryptosystem
we can check that it operates correctly ([132], [104])
We must prove the following theorem:

Theorem2.2. For c = Enc(m, r) = gmrn (modn2) the decryption operation L(cλ (modn2))
L(gλ (modn2)

(modn)

yieldsm.

Proof. It is proved in [47], [46] that g = n + 1 can allways be used. As a result we shall use this
special case. To simplify the notation we shall employ [c]n+1 to mean the plaintext that corresponds to
ciphertext c using g = n+1. That means w = Encn+1([w]n+1, r). The main step will be the proof of
the lemma:

Lemma 2.3. ∀w ∈ Z∗
n2 : L(wλ (modn2)) = λ[w]n+1 (modn)

Proof. At first we prove that:

Lemma 2.4. ∀x ∈ Zn : (1 + n)x = 1 + nx (modn2)

Proof. Most terms of the binomial expansion are zero in Zn2 :

(1 + n)x (modn2) =

1 +

(
x

1

)
n+

(
x

2

)
n2 + · · ·+

(
x

x

)
nx (modn2) =

1 + xn (modn2)

Then we prove that:

Lemma 2.5. ∀c ∈ Z∗
n2 , and proper generators g1, g2 : [c]g1 = [c]g2 [g2]g1

Proof. Let y = [g2]g1 . This means that: g2 = gy1b
n where b ∈R Z∗

n

Let z = [c]g2 . This means that c = gz2d
n where d ∈R Z∗

n.
Now c = gz2d

n = (gy1b
n)zdn = gzy1 (bzd)n which means that yz = [c]g1

Rewriting gives us [c]g1 = [c]g2 [g2]g1

Moving on to the main lemma: ∀w ∈ Z∗
n2 : L(wλmodn2) = λ[w]n+1modn

Since n+ 1 is a proper g, ∀w ∈ Z∗
n2 : by definition:

w = Encn+1([w]n+1, r) = (n+ 1)[w]n+1rn (mod ()n2)

Now decryption computes:

wλ = (n+ 1)λ[w]n+1rnλ (modn2)

Because of the binomial terms disappearing (modn2) we get:

wλ = (1 + λ[w]n+1n)r
nλ (modn2)

Since nλ(n) = λ(n2):

wλ = (1 + λ[w]n+1n)r
λ(n2) (modn2)



Chapter 2. Preliminaries 18

which leaves:

wλ = (1 + λ[w]n+1n)

Then: L(wλ) = wλ−1
n = λ[w]n+1

So during the decryption operation:

L(cλmodn2)

L(gλmodn2)
=

λ[c]n+1

λ[g]n+1
=

[c]n+1

[g]n+1
=

[c]g[g]n+1

[g]n+1
= [c]g = m

The Damgård-Jurik cryptosystem In [47],[46], both a generalisation and a simplification is given.
Firstly for each s ≥ 1 a cryptosystem CSs is defined:

Generalisation

• Key Generation:

– Select admissible n = pq with length η bits

– Choose random j with gcd(j, n) = 1 and random x ∈ Zns and calculate g = (1 +

n)jx modns+1

– Calculate λ = lcm(p− 1, q − 1)

– Select d such that

* d = 1modn ∈ Z∗
ns

* d = 0 (modλ)

– Output: Public key is (n, g) and private key is d

• Encryption Zns × Z∗
n → Z∗

ns+1

– Encode messagem into Zns

– Select random r ∈ Z∗
n

– Return c = Enc(m, r) = gmrn
s
(modns+1)

• Decryption

– Ciphertext c ∈ Z∗
ns+1

– Calculate cd modns = (1 + n)mjd modns

– Extractmjd. There is a specific algorithm for this task, which will be presented later (figure
2.1)

– Calculate gd modns = (1 + n)jd modns

– Extract jd
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– m = mjd
jd

It is obvious that Paillier cryptosystem is the special case s = 1. The security properties follow from
the security properties of the original cryptosystem.
Theorem 2.6. ∀s CSs is one way if Paillier (CS1) is one way and semantically secure iff the DCRA is
true

Simplification For the simplification, it must be noted that g = (1 + n) is a valid generator. So we
can define the following cryptosystem:

• Key Generation

– Public key is n = pq

– Private key is λ = lcm(p− 1, q − 1)

• s can be selected at any point in time before encryption, as long asm < ns

• Encryption Zns × Z∗
n → Z∗

ns+1

– Choose s that the messagem can be encoded into Zns

– Select random r ∈ Z∗
n

– Return c = Enc(m, r) = (1 + n)mrn
s

(modns+1)

• Decryption Z∗
ns+1 → Zns

– Ciphertext c ∈ Z∗
ns+1 . Discover s by the length of c

– Calculate cλ (modns+1) = (1+n)mλ (modns)rλn
s

(modns+1) = (1+n)mλ (modns+1)

because rλns
= rλn

s+1=1 (modns+1)

– Extractmλ from (1+n)mλ (modns+1). In order to do this we shall use the L() function
(modns), taking into account that some terms will be reduced to 0 (modns)

L((1 + n)mλ (modns+1)) =

1− (1 + n)mλ (modns+1)

n
(modns) =

mλ+

(
mλ

2

)
n+ · · ·+

(
mλ

s

)
ns−1 (modns)

However, we cannot extract mλ as easily as in the case of n2. Consequently we shall
extract it step-by-step, meaning that we shall first extract the value ofmλ (modn), then
(modn2), etc. This process can be compared to accumulating the digits of a number from
the least significant to the most significant (first the final one, then the final two and so on).
For convienience, we shall refer to the value being extracted as i. Note that this process
means that if we have computed ij−1 then ij = ij−1 + knj−1 where k ∈ {0, · · ·n − 1},
that is we get the next number by adding a digit to the left. Consequently:

L((1 + n)i (modnj+1)) =

ij +

(
ij
2

)
n+ · · ·+

(
ij
j

)
nj−1 (modnj) =

ij−1 + knj−1 +

(
ij−1

2

)
n+ · · ·+

(
ij−1

j

)
(modnj)
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The crucial step in the above calculation is the replacement:
(
ij
t

)
nt−1 =

(
ij−1
t

)
nt−1 This is

easy to show since: (
ij
t

)
nt−1 =

nt−1
t∏

x=1

ij − (t− x)

x
=

nt

n

t∏
x=1

ij − (t− x)

x
=

1

n

t∏
x=1

n(ij − (t− x))

x
=

1

n

t∏
x=1

n(ij−1 + knj−1 − (t− x))

x
=

1

n

t∏
x=1

(nij−1 + knj − n(t− x))

x
= (modnj)

1

n

t∏
x=1

(nij−1 − n(t− x))

x
=

nt

n

t∏
x=1

(ij−1 − (t− x))

x
=

nt−1

(
ij−1

t

)
As a result:
L((1 + n)i (modnj+1)) = knj−1 + ij−1 +

(ij−1

2

)
n+ · · ·+

(ij−1

j

)
(modnj)

which means that:
knj−1 = L((1 + n)i (modnj+1))− (

(ij−1

2

)
n+ · · ·+

(ij−1

j

)
) (modnj)

If we replace knj−1 in ij = ij−1 + knj−1 we get:

ij = L((1 + n)i (modnj+1))− (

(
ij−1

2

)
n+ · · ·+

(
ij−1

j

)
nj−1) (modnj)

which provides a computation algorithm (figure 2.1):

i=0
for j in range(1,s+1):

nj = n**j
t1=(x%(nj*n)-1)//n
t2=i
sum=0
for k in range(2,j+1):

sum += binomial(t2,k)*n**(k-1)%nj
t1=(t1-sum)%nj
i=t1

Fං඀ඎඋൾ 2.1: Message Extraction Algorithm during Damgård-Jurik Decryption

– After extraction we can retrievem frommλ by multiplying with λ−1 (modns+1)

Once again, the security properties follow from the security properties of the original cryptosystem.
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Theorem 2.7. ∀s the simplified version is one way if Paillier (CS1) is one way and semantically secure
iff the DCRA is true.

2.1.2 Homomorphic Cryptosystems

Homomorphic encryption enables computations on encrypted data. It allows to apply a function to the
cipher texts that corresponds to another function on the plaintexts. The result can then be obtained by
a single decryption. This can be illustrated with the following relation:

Enc(m1)⊗ Enc(m2) = Enc(m1 ⊕m2)

In the voting context homomorphic encryption allows us to compute the tally while maintaining se-
crecy. For simple tallying we would require to evaluate a function on cipher texts that corresponds to
adding the plain texts (additive homomorphism). For other ways to compute the tally we would require
computation of arbitrary functions on encrypted data.
It is easy to see that:

• The RSA and the El Gamal cryptosystem are multiplicatively homomorphic.

• The exponential El Gamal cryptosystem is additively homomorphic.

• The Goldwasser Micali and the Benaloh Cryptosystems are additively homomorphic.

• The Paillier cryptosystem and the related generalisations and simplification are additively homo-
morphic.

In this thesis we shall extensively use homomorphic cryptosystems. In what follows, we describe
some useful homomorphic properties.
The multiplicative homomorphishm of the El Gamal cryptosystem yields a nice property called reen-

cryption, which will be used extensively in Chapter 4. Specifically:

Enc(m1, r1) · Enc(m2, r2) = (gr1 ,m1y
r1) · (gr2 ,m2y

r2)

= (gr1gr2 ,m1m2y
r1+r2) = Enc(m1m2, r1 + r2)

Form2 = 1 the above relationship implies that:

Enc(m1, r1) · Enc(1, r2) = Enc(m1, r1 + r2) = ReEnc(m1)

whichmeans that we changed the cipher text corresponding to the original message, simply by adding
randomness and without knowing the decryption key. The same can happen in an dditively homomor-
phic cryptosystem, if we combine withm2 = 0.
Some other interesting homomorphic properties concern the Damgård-Jurik cryptosystem based

on the fact that a ciphertext c from CSs belongs to Z∗
s+1 which places it in the plaintext space of

CSs+t, for t ≥ 1 namely Zs+t, t ≥ 1 [8]. More concretely: Z∗
s+1 ⊆ Zs+t, t ≥ 1. This has the fol-

lowing properties as a result (where Encs means encryption in CSs and Enct means encryption in
CSs+t):

• Enct(1)
Encs(m) = Enct(m)

• Enct(0)
Encs(m) = Enct(0)

• Enct(0)Enct(Encs(m)) = Enct(Encs(m))
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• Enct(Encs(0, r0))
Encs(m,rm) = Enct(Encs(0, r0)Encs(m, rm)) = Enct(Encs(m, r0rm))

These properties enable to transfer from CSs to CSs+t without changing keys (since s can be selected
after the key generation phase).

2.1.3 Secure Cryptosystems

The security of a cryptosystem is a very important factor in its use. In order to formalise the exact
meaning of the concept of security, a game paradigm is followed, resulting in the following notions
and corresponding definitions ([81], [21] ):

Semantic Security This is the most basic notion characterising a cryptosystem. Given a ciphertext
the (computationally bounded) adversary A should not learn anything regarding the plaintext. This
is formally defined using a the concept of indistinguisability. A selects two challenge messages and
obtains an encryption of one at random. A should not be able to guess to which message the encryption
corresponds with probability better than pure chance (12 ). Note that in this definition the adversary is
entirely passive.

Chosen Plaintext Security (IND-CPA) A more dangerous A can freely and adaptively encrypt
messages of his choice before and after the encryption of the challenges. For a cryptosystem to be
secure in this fashion the attacker should still be unable to distinguish between an encryption of two
possible plaintext messages of his choice with probability better than a lucky guess.

Chosen Ciphertext Security (IND-CCA) This time the adversary can tamper with the ciphertexts
produced. More specifically the adversary can use the system as a decryption oracle, by submitting
ciphertexts of his choice and retrieving their decryption. At some point A will submit two possible
plaintext messages of his choice. The goal remains the same: A should not be able to distinguish
which of the plaintext messages got encrypted.

Adaptive Chosen Ciphertext Security (IND-CCA2) The adversary in this game acts as previously.
However he might continue using the decryption oracle, after submitting his plaintexts of choice.
IND-CCA and IND-CCA2 are related to homomorphic cryptosystems. For instance if a cryptosystem

supports reencryption it cannot be CCA2 secure, since after submitting the challenges,Awill reencrypt
the response, and forward it to a decryption oracle, which will cause him to win the game with certainty.

2.1.4 Commitment Schemes

Commitment Schemes are tools that enable a party, to commit to a value, without revealing it (hid-
ing property) and without being able to change it (binding property). The usefulness of commitment
schemes becomes immediately evident with the following classical example of coin flipping over the
telephone, due to Manuel Blum:
Alice (the sender) and Bob (the receiver) are in different locations but want to flip a coin. They

agree that Alice selects head/tails and Bob flips and reports the result. A malicious Bob doesn't have
to flip the coin, he can just announce that he wins and Alice can do nothing about it. On the other
hand, a malicious Alice can require that she doesn't announce her option first, so that Bob cannot make
an informed selection. Consequently Bob flips the coin and Alice select the option that results in her
winning.
A commitment can solve this problem, due to the hiding and binding properties.
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• Alice commits to heads or tails and sends the commitment to Bob. Due to the hiding property
Bob cannot learn anything from the token he received.

• Bob flips the coin and announces the result

• Alice reveals her choice. Due to the binding property Alice cannot change her commitment after
the fact in order to win.

• They both check the result and accept the winner.

The interaction above, implies two phases for a commitment scheme: The commitment phase and
the opening phase.
In general commitment implementation, referred to as blobs in [24], must satisfy the following prop-

erties:

• The sender can commit to a bit - the commitment phase is realisable.

• The sender can open any commitment made by her and convince the receiver. A commitment
must open in a unique so the receiver can be convinced that this was the initial value selected by
the sender. A bit commitment cannot open both as a 0 and as 1. This is the binding property.

• Commitments reveal nothing about their values. This is the hiding property.

• Commitments must not leak any information.

Chameleon Blobs A blob is said to be chameleon, if the receiver can do what the second property
above prohibits the sender, ie. to open a bit commitment both as 0 and a 1. This twist is very important
in some voting schemes.

2.1.4.1 Hash Functions

Hash Functions is a generic cryptographic tool that can also be used for commitments is a function h

that maps arbitrary size data (message) to fixed size data (hash) with the following properties [121]:

1. Given the message it is easy to calculate the hash

2. Given the hash it is computationally infeasible to find the message.

3. Given a messagem it is computationally infeasible to find another messagem′ such that h(m) =

h(m′)

4. It is computationally infeasible to find two messagesm1,m2 such that h(m1) = h(m2)

The second item defined above can constitute the hiding property of commitments, while the latter
items can be used to implement the binding property. Of course, the computational parameter must be
noted, as a computationally unbounded adversary can defeat the scheme.

2.1.4.2 Pedersen Commitment

A commitment scheme that is computationally binding and unconditionally hiding was proposed by
Pedersen and described in [81]. It is based on the DLOG Problem and works as follows:

• The receiver selects the two safe primes p, q and a generator g from a q order subgroup of Z∗
q .



Chapter 2. Preliminaries 24

• In addition he generates a random value r ∈ Zq and calculates h = gr

• The sender receives (p, q, g, h).

• To commit to a valueM ∈ Zq she selects R ∈ Zq and calculates C = gRhM

The verification of the commitment works as follows:

• The sender sendsM,R to Bob

• The receiver verifies if gRhM = C and accepts if this is the case.

Theorem 2.8. The Pedersen Commitment scheme satisfies the binding and hiding properties if the
DLOG Problem is hard.

Proof. At first we shall prove that the scheme satisfies the binding property if the DLOG Problem is
hard. We shall prove the contrapositive. If it didn't the Sender would be able to change her message to
M' without breaking the commitment. This means that:

C = gRhM

C = gR
′
hM

′

As a result:

gRhM = gR
′
hM

′ ⇒

gR−R′
= hM −M ′ ⇒

g(R−R′)k = h where: k(M −M ′) = 1 (mod q)

This contradicts the DLOG problem as k can be found easily using the Euclidean Algorithm.
For the hiding property, we shall prove that it is unconditional which means that any valueM∗ ∈ Zq

has an equal probability of being the committed one. If the Receiver has unbounded computational
abilities than given C, he can computeM,R. However:

∀M∗ ∈ Zq ∃R∗ such that :
C = gR

∗
hM

∗as
C = gR+Mr = gR

∗+M∗r ⇒
R+Mr = R∗ +M∗r ⇒

R∗ = (M −M∗)r +R (mod q)

The perfect hiding property will be used extensively in some election schemes described in the fol-
lowing chapters.

2.1.4.3 Designated Verifier Proofs [75]

The chameleon twist in commitment schemes, has many applications in electronic voting. An example
was given in [75]. Instead of proofs with public verifiability, voting also requires proofs that can be
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verified only by a specific voter (the vote caster) in order to evade an aspiring coercer (more on this on
chapter 5). Such proofs are called designated verifier proofs (short: DV proof) since only the verifier
designated by the prover can validate the proof. If under coercion or in any other case the verifier
wants to transfer the proof to an attacker, the proof will be rendered useless (under some assumptions
of course).
This is implemented using a simple idea. If the prover wants to prove statementΦ to the verifier, she

constructs a designated verifier proof by proving the disjunction Φ
∨

DV where DV corresponsds to
the statement I am the designated verifier. In practice,DV corresponds to knowledge or possession of
some secret trapdoor information on a chameleon commitment scheme. Only the designated verifier
has access to the trapdoor information (a secret key). On this premise, he is convinced of Φ, since the
second argument to the disjunction evaluates to false. However, when he presents the proof to a third
party, it obtains no extra knowledge since the designated verifier indeed possesses the secret key and
the disjunction evaluates to true regardless of the validity ofΦ. For the scheme to work, the prover must
use a scheme that can be decommitted in many different indiscernible ways. As a case in point, one
can use the Pedersen commitment scheme 2.1.4.2 with the public key of the verifier. More specifically
(parameters are assumed to come from the appropriate groups with hard DLOG):

• Let xV , yV = gxv be a secret public key pair.

• The prover commits to w by computing gwyrV

• To open the commitment the prover sends (w, r)

• The verifier can validate the commitment since he knows xV

• The verifier can present to an adversary (w′, r′) such that the commitment is valid

2.1.5 Secret Sharing

In a public key cryptosystem the holder of the secret key has the power to decrypt. This power is critical
in voting implemented by a homomorphic cryptosystem, since the holder will be the first to know the
election outcome. In that case too much trust is placed on a single entity, allowing for a single point of
failure. The secret key should be distributed to as many entities as possible. The entity that distributes
the secret is called the dealer, while the entities that receive the share are called the players.

2.1.5.1 Shamir Secret Sharing

The first method to enable such secret sharing was proposed in [125]. The objective of the scheme is
to share a secret element s between l players so that any t subset can recover it, but no t − 1 element
subset can. To achieve this, it utilises as a main idea that of polynomial interpolation, using Lagrange
coefficients.

• A polynomial P of degree t− 1 can be reconstructed from t distinct elements {(xi, yi)}ti=1

• P (x) =
∑t

i=1 yi
∏t

j=1,j ̸=i
x−xj

xi−xj

As a result in order to share a secret:

• Dealer chooses a random polynomial of degree t− 1 so that P (0) = s

• Distributes l pairs (xi, P (xi)), xi ̸= 0

• t players can reconstruct the polynomial (and recover s), but t− 1 players cannot
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In order to share an integer secret, the scheme can be applied to Zp where p is a prime larger than
the secret.The polynomial coefficients are selected randomly from Zp and all arithmetic operations are
done (mod p).
The scheme above assumes that all the players are honest. However this might not always be the

case [122]:

• The dealer might give out incorrect shares to all or part of the players. As a result the secret will
not be reconstructed. To deal with this threat the players must be able to validate them.

• The player might not present their correct shares during reconstruction. To deal with this threat
the shares need to be checkable by everybody.

As a result the basic protocol by [125] needs to be augmented to account for these threats.

2.1.5.2 Verifiable Secret Sharing [53]

The dealer includes additional information for correctness verification of the shares. More specifi-
cally, commitments to the coefficients are released. If P (x) =

∑t
i=0 aix

i, then the dealer releases the
commitments {ci = gai}ti=0, where g is a generator of a group where the DLOG problem is hard.
In order to verify that a share (xi, yi) is valid, that is yi = P (xi) indeed holds, the interested party

checks if:

gyi =
∏t

j=0 c
xj
i

j

which should be valid since:∏t
j=0 c

xj
i

j =
∏t

j=0 g
ajx

j
i = g

∑t
j=0 ajx

j
i = gP (xi)

2.1.5.3 Public Verifiable Secret Sharing

A player in a secret sharing scheme might not present their correct shares during the reconstruction
phase. To solve this problem, the verification is not restricted to each player's own shares, but the
protocol information needs to be verifiable by anyone, ie. publicly verifiable. A representive of such a
protocol is presented in [122] and consists of the distribution and reconstruction phases:

• Distribution

– Suppose that the polynomial to aid in sharing is: P (x) =
∑t

i=0 aix
i

– Each participant has a secret key ski and a public key pki = Gski where G is a generator
of a group where the DLOG problem is hard. Along with G, another generator g will be
used.

– The dealer commits to the coefficients {ci = gai}ti=0

– The dealer encrypts the shares with the public key of the corresponding participant: {Yi =
pk

p(i)
i }ni=1

– The dealer proves using the Chaum-Pedersen protocol of 2.1.7.2 that the shares are consis-
tent by proving that {logg

∏t
j=0 c

xj
i

j = logpkiYi = p(i)}ni=1.

– The shares are verified by checking if:

• Reconstruction



Chapter 2. Preliminaries 27

– Each participant decrypts the shares by calculating: Y
1

ski
i = pk

p(i) 1
ski

i = G
skip(i)

1
ski =

Gp(i)

– The shares are reconstructed using the Lagrange interpolation technique in the exponents.

2.1.5.4 Secret Sharing Homomorphisms

An important property of some secret sharing schemes was observed by Benaloh in [20]. Suppose
a super secret S can be computed from m sub secrets {Si}mi=1 using a function f S = f(S1, ..., Sm).
Depending on the secret sharing scheme, the super secret can be computed while keeping the sub secrets
private, thus realising secure function evaluation. This can be done without any assumptions using the
following procedure:

• Each of the sub secret holder acts as the dealer in the secret sharing scheme and deals the shares
into n entities {Ej}nj=1 each receiving {Sij}m,n

i=1,j=1. The receiving entities are the same for each
holder.

• Each entity combines its shares using a function g and produces: Rj = g(S1j , ..., Smj)

• A subset of the entities reconstruct S using the secret sharing scheme.

S ←f


S1

S2

· · ·
Sm

→share

[
E1 · · · En

]
→


S11 · · · S1n

S21 · · · S2n

· · ·
Sm1 · · · Smn

→


g(S11, · · · , S1n)
g(S21, · · · , S2n)

· · ·
g(Sm1, · · · , Smn)

→ S

Fං඀ඎඋൾ 2.2: Secret Sharing Homomorphisms

Such a secret sharing scheme is called (f, g)− homomorphic. To be feasible each g combination
of the shares of a secret must be a share of the f combination of the secrets. For example the secret
sharing scheme of Shamir 2.1.5 is (+,+) − homomorphic since the sum of the polynomials use to
share the sub secrets is itself a polynomial that can be used to deal shares of the super secret. Another
property that must be satisfied is the preservation of the reconstruction threshold. For example, if the
sub secrets can be reconstructed using t participants the same must hold for the super secret as well.

2.1.6 Threshold Cryptosystems

If the schemes of the previous sections are applied to the secret sharing of the private key in a public key
cryptosystem, resulting in the distribution of the decryption function we get threshold cryptosystems.
These cryptosystems generate a public key and shares of the secret key. The encryption function pro-
ceeds as usual. For the decryption however, all authorities apply their shares to the ciphertext creating
intermediate values, that are then combined to retrieve the plaintext. More specifically, a threshold
cryptosystem consists of 4 algorithms, which are described in the figures 2.1.6.

2.1.6.1 Threshold El Gamal

The El Gamal cryptosystem can be combined with the secret sharing technique of 2.1.5 in order to share
the private key to l shareholders (voting authorities in our case) so that each one possesses a share xi of
it and that decryption proceeds without anybody learning the key. Robustness and privacy is provided
by the fact that at least t authorities must cooperate to decrypt, but they cannnot recreate the key.
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Fං඀ඎඋൾ 2.3: Threshold Cryptosystem Components

• Key Generation A trusted dealer splits the key x ∈R Zq in l shares {xi = P (i)}li=1 using
Shamir's scheme and distributes them to the authorities. The public key can be computed as
always as y = gx

• Encryption Encryption proceeds as in regular El Gamal yielding the ciphertext c = (G,M)

• Share Decryption The authorities extract the first part of the ciphertext and calculate ci =

Gxi (mod p) and publish their results

• Combination The combinator gathers t decryption shares and multiplies them yielding ĉ =∏t
i=1 c

λi
i (mod p) where λi = j(j − i)−1 (mod q) are the Lagrange coefficients. As a result

ĉ = GP (0) = Gx

• Decryption The ciphertext is decrypted as usual by computing M
ĉ

Alternatively the construction in [109] can be used to eliminate the need for a trusted dealer. More
specifically:

• Key Generation

– Each authority i chooses xi ∈R Zq to be his share of the key.

– Moreover, he chooses polynomial fi(z) =
∑t−1

j=0 fijz
j where fi0 = xi and fij ∈R Zq.

– For each coefficient he broadcasts Fij = gfij .

– Each participant i sends sij = fi(j) to participant j.

– Each participant verifies the shares he received against the broadcasted ones, by checking
if gsij =

∏t−1
l=0 F

il

jl

– Each authority i commits to the shares by announcing yi = gxi

• Encryption Encryption can proceed as in regular El Gamal.
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• Share Decryption and Combination To decrypt the ciphertext (G,M) each auhority calculates
wi = Gxi . The plaintext can be uncovered as M∏

i∈Λ w
λi
j

. A technical detail remains, namely that

xi = logGwi = loggyi which can be done using the Chaum-Pedersen protocol that is described
later.

2.1.6.2 Threshold Versions of Damgård Jurik cryptosystem

Similar constructions have been proposed for the RSA cryptosystem [126]. We are not interested in
the scheme per se, but it yields a nice property by allowing some secret sharers holding pieces of an
exponent, to raise an item to it as a whole (modn) where n = pq.Based on the this scheme [56]
proposed a threshold version of the Paillier cryptosystem. This approach was simplified in [46] and
applied to the Damgård Jurik cryptosystem. It comes as no surprise, that security of the threshold
versions depend on the security of the original cryptosystem. In Chapter 7 we implement a proof of
concept implementation of a voting scheme that utilities this approach.

• Key Generation

– Two safe primes p = 2p′ + 1, q = 2q′ + 1 and their products n = pq and m = p′q′ are
formed

– The secret key d is created by using the chinese remainder theorem on the equations d =

0 (modm) and d = 1 (modns). It should be noted here that the above step means that
s should be selected during the key generation phase, and not during the encryption phase.
However a larger s can be selected in this phase and a smaller one can be used later.

– The secret key is shared to l parties using 2.1.5 where all operations take place in Znsm.
The shares will be denoted si

– The public key is (n, s,∆ = l!)

• EncryptionEncryption ofmessagem takes place as in 2.1.1.3 namely c = (1+n)mrn
s

(modns+1)

• Share Decryption Given the ciphertext c, each shareholder computes ci = c2∆si (modns+1)

• Combination

– The combinator selects t valid shares and computesλi = 2∆
∏t

j=1,j ̸=i j(j−i)−1 (modnsm).

– Then he calculates
∏t

i=1 c
λi
i utilising the secret sharing scheme.

• Decryption

– In effect the combinator has found c4∆2d = (1 + n)4∆
2m since:

* d = 0 (modλ) ⇒ 4∆2d = 0 (modλ). Consequently: r4∆2d = 1 (modns)

because of Carmichael's theorem
* d = 1 (modns)⇒ 4∆2dm = 4∆2m (modns)

– The extraction algorithm 2.1 is used to retrieve 4∆2m (modns)

– The message is found by multiplying with (4∆2)−1 (modns)

If we assume dishonest players or a dishonest dealer then a validity proof should be added to the
share decryption process.
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2.1.7 Zero Knowledge Proofs

In zero knowledge (ZK) protocols, proposed in [62], 2 parties namely the prover and the verifier interact.
The prover wants to convince the verifier about the knowledge of a secret (often referred to as witness),
without disclosing (any part) of it. A typical use of such a protocol is for authentication. The prover
is the user that would like to login to a system. In order to validate her identity she must provide a
password. This means that she must send some form of the password over the network and that the
system (the verifier) must compare the received value with a form suitable for storage. This interaction
opens a window of opportunity to attack the password. Security degrades when the protocol is executed
multiple times [128]
Zero Knowledge Protocols, are probabilistic in nature and can convince the verifier that the prover

knows the password without requiring it to be transmitted or stored in any form. Attacks, of course,
are not excluded. To be useful, zero knowledge proofs must have three properties:

• Completeness: Honest prover convinces honest verifier with overwhelming probability

• Soundness: A dishonest prover that does not possess the secret, cannot succeed with overwhelm-
ing probability in convincing an honest verifier. More formally if a dishonest prover can convince
an honest verifier, then a polynomial algorithm can be constructed that can extract the secret from
the protocol interactions.

• Zero Knowledge: The verifier cannot learn anything from the protocol and as a result cannot
impersonate the prover. More formally, if the protocol does not leak information than an entity
that does not possess the secret (simulator) can construct valid instances of the protocol. Based on
the concept of simulated transcripts, the following variations of zero knowledge can be observed.

– (Perfect) Zero Knowledge: The real and simulated transcripts are indistinguishable to a
third party with unlimited computational power, which means that they indeed have the
same distribution.

– Computational Zero Knowledge: The real and simulated transcripts are indistinguishable
to a third party with computational power limited to probabilistic polynomial algorithms.

– Statistical Zero Knowledge: The real and simulated transcripts come from probability
distributions with negligible statistical distance.

– Honest Verifier Zero Knowledge (HVZK): In this setting the verifier is honest, however
performs additional computations except the ones necessary for protocol execution.

An illustrating example to further clarify the use of a zero knowledge protocol is described in: [100]

• Prover holds two identical boxes of different color

• Verifier is color blind

• Prover wants to convince the Verifier that the boxes have different color

The solution to this problem can be achieved with the following protocol:

1. Prover gives the boxes to the verifier

2. Verifier hides the boxes behind her back, one box per hand

3. With probability 1
2 verifier switches boxes in each hand, behind her back
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4. Verifier reveals boxes

5. Prover can tell whether the verifier switched hands

6. Repeat n times to decrease cheating probability to 1
2n

7. Verifier is convinced, that the boxes have different color, without ever knowing what it is

In voting systems Zero Knowledge Protocols can be used so that a voter might demonstrate that his
vote is valid without revealing it and that an entity has performed according to a specification without
revealing the result of the computations.

2.1.7.1 The Schnorr Protocol and variations

The Schnorr Protocol enables the prover to demonstrate knowledge of the discrete logarithm without
revealing it and is depicted in the figure below, as described in [81] and [123]:

Fං඀ඎඋൾ 2.4: The Schnorr Protocol

The common inputs to the protocol are two safe primes p, q and a generator g of a group of order q.
The prover knows x such that h = gx and wants to prove this knowledge without revealing x. The
protocol consists of three phases:

• Offer: Randomly select t ∈R Zq, calculates y = gt and sends y its to the verifier

• Challenge: The verifier randomly selects c ∈R Zq and sends c it to the prover

• Response: The prover calculates s = t+ cx (mod q) and sends s to the verifier

• The verifier accepts if gs = yhc

The protocol is complete as an honest prover can always convince an honest verifier since: gs =

gt+cx = gtgcx = yhc. The protocol is sound [123], as a prove that does not know x can cheat the
verifier with probability 1

q which is negligible. This is because a cheating prover can only execute the
following steps:

• Select randomly a challenge c′

• Randomly select t ∈R Zq and offer y = gth−c′

• If the verifier chooses c = c′ then the prover can answer by sending s = t and the verifier will
accept since yhc

′
= gth−c′hc

′
= gt = gs. However, this is the only choice that causes the

verifier to accept and the probability of this happening is exactly 1
q .
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However the protocol cannot be proved zero knowledge. The only case a simulator can handle is the
one described above where c′ is chosen in advance and c = c′. In order to obtain this particular value the
verifier must be run (and stopped) on average q times which is exponential in the security parameter. It
can however be proved honest verifier zero knowledge, since the distributions producted by an honest
verifier is identical to the one produced by the simulator [123].
A similar proof is given for the Paillier cryptosystem [14], amd a simplification is described in [46],

who note that if x = Enc(m, r) = (1+n)mrn
s

(modns+1) then x(1+n)−m = rn
s

(modns+1).
So the only thing to be proved is that u = x(1 + n)−m is an encryption of zero, or equivalently that
the prover knows r such that u is a ns power. This can be done using the protocol below:

Fං඀ඎඋൾ 2.5: Proof of knowledge of randomness

The completeness of the proof is easy to see, since Enc(0, z) = zn
s
= tn

s
rc

ns

= Trn
sc

=

TEnc(0, r)c = Tuc. It is also proved honest verifier zero knowledge in [46].

2.1.7.2 The Chaum-Pedersen Protocol

A variation of the Schnorr Protocol can be used to show that two discrete logarithms are equal [33].
The common inputs to the protocol are two safe primes p, q and two generators g1, g2 of a group of
order q. The prover knows x such that h1 = gx1 h2 = gx2 and wants to prove this equality without
revealing x. The protocol consists of three phases:

Fං඀ඎඋൾ 2.6: The Chaum-Pedersen Protocol

• Offer: Randomly select t ∈R Zq, calculates y1 = gt1, y2 = gt2 and sends y1, y2 to the verifier

• Challenge: The verifier randomly selects c ∈R Zq and sends it to the prover.
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• Response: The prover calculates s = t+ cx (mod q) and sends it to the verifier

• The verifier accepts if gs1 = y1h
c
1 and gs2 = y2h

c
2

This protocol can be proved complete, sound and honest verifier zero-knowledge using the same tech-
niques used in the previous protocol [123].
The Chaum-Pedersen protocol in conjuction with the Schnorr protocol can be used to prove that a

tuple c1, c2 is an ElGamal encryption of messagem. If this is the case then (c1, c2) = (gr,mhr) which
means that loggc1 = logh(

c2
m ).

2.1.7.3 Witness Hiding and Proofs of Partial Knowledge

A variation of zero knowledge proofs that has many applications in electronic voting systems was
proposed in [52]. Witness Indistinguishable (WID) andWitness Hiding (WH) proofs relax the condition
of no information leakage found in ZK proofs. WID proofs dictate, informally, that if the prover has a
choice of multiple witnesses for the same value, the verifier cannot find out which one has been used in
the transcript. This means that the protocol might leak some information, but not enough to determine
the witness. In WH protocols the cheating verifier cannot fully uncover the witness from the transcript.
In [42] a general framework is given for converting a ZK proof to a WID proof. The ZK proof must

be generated from a three round honest verifier protocol with special soundness. The method employed
uses a simulator and a secret sharing scheme and in simple terms it proceeds as follows:

• LetW = {w1, · · · , wn} the set of alternative witnesses.

• For the actual witness used the prover calculates the offer dictated by the ZK protocol.

• For the alternate witnesses the prover calls the simulator, which returns the relevant offers that
would cause the verifier to accept in a simulated transcript.

• The prover sends all the offers computed in the previous steps to the verifier.

• The verifier sends a random challenge.

• The prover interprets the challenge as a secret to be shared. The shares of the secret will be the
random values employed by the simulator.

• The prover calculates the rest of the shares and the appropriate responses.

• The verifier validates the responses.

To be more concrete we shall make the Schnorr protocol witness indistinguishable [123]. The prover
must prove that he knows x1 such that h1 = gx1 or (exclusively) x2 such that h2 = gx2 without
revealing which one. Assume that the prover has a witness for the first case.

• Offer

– For the actual witness the prover calculates y1 = gt1 where t1 ∈R Zq

– For x2 the prover calculates y2 = gt2h−c2
2 where t2 is a random value and c2 to be inter-

preted as a random share of the challenge.

– The prover sends y1, y2 to the verifier.

• Challenge
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– The verifier challenges with the secret to be shared c ∈R Zq

• Response

– The prover calculates the other part of the share c1 = c− c2

– The response for the actual protocol is calculated as z1 = t1 + c1x and for the simulated
protocol as z2 = t2.

– The responses z1, z2 and the shares c1, c2 are sent to the verifier.

• Verification

– The verifier checks that the challenge was shared correctly c = c1 + c2

– The verifier checks the offers conform the ZK protocol i.e. if gz1 = y1h
c1
1 and gz2 = y2h

c2
2

Fං඀ඎඋൾ 2.7: Schnorr Proof (partial knowledge)

2.1.7.4 The Fiat Shamir Heuristic

The protocols described above are interactive because they require active participation of the verifier.
In [55] such interactive protocols can be made non interactive, as the prover can incorporate the role
of the verifier and produce the proof transcript all by himself. The transcript can then be validated
by any interested party. The key idea of this transformation is that instead of requiring an external
random challenge, the prover can create it himself by applying a pseudorandom function to the offer. A
common candidate for a pseudorandom function is a hash function. In essence the Fiat Shamir Heuristic
transforms a proof scheme to a signature scheme. For practice the non interactive version of the schnorr
scheme is:

• Randomly select t ∈R Zq, calculates y = gt and sends y its to the verifier

• Generate c = H(y) where H is a hash function yielding values in Zq

• Calculate s = t+ cx (mod q)

The script of the protocol, that is what should be distributed, becomes (c, s). Anybody can verify it
by checking if c = H(gsh−c), which is how the scheme is used in practice. In addition, in order to
make the proof dependent on the prover the hash function include some identification information for
the prover.
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2.1.7.5 Range Proofs

In many scenarios a proof must be given that a ciphertext (or a commitment) corresponds to a number
that lies in a specific interval. For example if there are C candidates that are represented by indices
1, · · · , C (or 0, · · · , C−1) a valid selection is an integer in the particular range. A a result a voter must
provide a relevant proof of vote validity without of course exposing the actual vote. The details of such
a proof largely depend on the cryptosystem used, but there are some general techniques available. We
shall deal with proofs regarding homomorphic cryptosystems. The relevant bibliography is [23], [88],
[87], [66], [26].

• The simplest and most general way such a proof can be achieved, is a disjunction of C WID
proofs, that c = 0 ∨ c = 1 ∨ · · · ∨ c = C − 1.

• Another classical case assumes that C is a power of 2, ie. c ∈ {0, · · · 2l − 1} the voter must
prove that her choice is an l-bit number. That is c =

∑l−1
i=0 bi2

i where bi ∈ {0, 1}. The prover
can release the encryptions of each individual bit and prove that all ciphertexts correspond to a 0
or 1. The final proof will be a conjuction of l WID proofs. If this is not the case than

• More generally for arbitrary ranges {a, · · · , b} it suffices to prove that c− a > 0 and b− c > 0

[23]. As a result we must prove that a number is positive. This can be done using a theorem of
Lagrange stating that any positive integer is the sum of four squares. A proof is required that a
number is a square.

More details will be given in 3 where the case of homomorphic voting will be examined.

2.1.7.6 Plaintext Equivalence Tests [73]

A Plaintext Equivalence Test, henceforth referred to as PET, is a cryptographic primitive introduced in
[73] which aims to convince a set of participants that two ciphertexts indeed encrypt the same plaintext.
It is meant to operate in a distributed setting, which means the the decryption key is shared among the
participants.
More specifically, in the case of ElGamal, the inputs to the protocol are two ciphertexts (G,M), (G′,M ′)

and the output is true if the encrypt the same plaintext and false otherwise. The main idea of the pro-
tocol is that the ciphertext CPET = ( G

G′ ,
M
M ′ ) will be the encryption of 1 if the ciphertexts encrypt the

same plaintext. Otherwise it will decrypt to a random integer. More specifically, after all participants
have agreed to CPET :

• Each player selects a random integer zi and commits to it using the Pedersen commitment scheme.

• Each player i blinds CPET using the random value zi thus producing (Gi,Mi) = ( G
G′

zi , M
M ′

zi)

• Everybody proves that the (Gi,Mi) are indeed blinded with the random values.

• The players calculate (
∏

iGi,
∏

iMi) and decrypt by combining their shares of the key.

• If the decryption yields 1 the test return true, otherwise the test return false.

2.1.8 Blind Signatures

Blind signatures were presented by David Chaum in [29] as a means of realising anonymous electronic
payments. The concept is very simple and can be presented with a simple analogy. Consider a consumer
who wants to pay a merchant some money to purchase a good [30].
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• The consumer put a blank sheet of paper into an envelope. On it, there is a carbon sheet attached.

• He sends the envelope into the bank requesting the amount of money that the good costs.

• The bank validates that the consumer has the money into his bank account and signs the envelope.

• The consumer validates the signature and empties the envelope. Due to the properties of the
carbon paper the signature is transferred to the enclosed sheet.

• The merchant is paid with the signed sheet of paper.

• She presents it to the bank.

• The bank validates its own signature and pays the merchant the appropriate amount.

• The transaction is complete. Since the bank's signature is transferred to many identical blank
sheets, the bank cannot trace who purchased which items.

This analogy can be formalised as follows [81]: A blind signatures scheme is a set of algorithms
(Blind, Sign, V erify, Unblind) such that:

1. The message m to be signed is blinded using the Blind Algorithm and some randomness. b =

Blind(m, r)

2. Afterwards it is signed Sb = Sign(b) in a way that the signature is transferred to the original
message.

3. The Unblind function is used on the blind signature obtaining: Sm = Unblind(Sb)

4. The signature is verified by executing V erify(Sm)

More concretely if Sign and Verify are the classical RSA signatures, we get:

1. b = Blind(m, r) = reH(m) (modn)

2. Sb = Sign(b) = red (modϕ(n))H(M)d (modn) = rH(m)d

3. Sm = Unblind(Sb) = Sb
1
r = H(m)d (modn)

4. The signature is verified by executing
V erify(Sm) = if Sm

e = H(m) then True else False

The anonymity provided by blind signatures has made them an interesting candidate for electronic
voting.

2.1.9 Visual Cryptography

Visual Cryptography encrypts written material in a perfectly secureway. Decryption is done by human
visual system. The ciphertext and the secret key are printed in a special way on two pages of papers.
The ciphertext can be transmitted by fax or published. The secret key is printed on transparent paper.
Each sheet of paper on its own is indistinguishable from random noise, but when placed on top of each
other we have decryption. An accurate analogy to describe visual cryptography would be a visual one
time pad The scheme can be extended to k of n threshold secret sharing scheme [97].
In voting visual cryptography is used to issue voter receipts that make coercion difficult. In a system

proposed by Chaum [31] the receipts consist of two layers laminated together. A printer prints the
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selection of the voter but does not conclude the job. The voter selects to keep top or bottom layer and
then the printing concludes. The machine keeps the same layer in digital form. Neither layer is readable
on its own, but both encode the vote. The other layer is securely destroyed by the voting personnel and
the voting booth.

Fං඀ඎඋൾ 2.8: Visual Cryptography [31]

2.2 Voting Theory

As we mentioned in the introduction, voting is a general decision making process that enables a group
of individuals to decide for a course of action or for a representative. The voting process is a two
step process. The interested parties indicate their opinions for the various alternatives. Afterwards a
computation is applied to the inputs and a decision is reached. If everybody agrees then the decision
is simple. However if there are varying choices then a choice must be made that reflects the 'collective
preference' of the group. Voting theory is the field of social choice theory that deals with this problem.
In this section we shall describe the basics of voting methods, borrowing heavily from [105] and

[106]. A voting method consists of two parts:

• Allow the voter to express his opinion

• Compute on the opinion

Now based on variations of these 2 actions, some prevalent voting methods are:

Plurality Count This is the simplest andmost widely usedmethod. Each voter expresses her opinion
by selecting a single candidate, her most preferred one. This can be modelled by creating a vector
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consisting of c elements. Then the element with index c gets the value 1 and the rest retain the value
zero. Subsequently, all the voters' choices are aggregated and the candidates are sorted based on the
collective preference. In practice, this means that all the vector are added-up, creating the results vector.
The favourite candidate's index is the largest element of the vector. One problem with plurality count
is the existence of the spoiler effects [38], where a candidate that cannot be elected affects the final
result. For instance in the 2000 elections in the USA, the result would be different if there was not a
third candidate, since the citizens that voted for him, would alternatively pick the candidate that ranked
second, hadn't they voted for the one that ranked third, in a numbers that would swing the result [93].

Approval Voting In this votingmethod, the participants are asked to select more than one candidates,
with all the selections being equal in weight. Since no ranking is used, the selection of a candidate from
a voter carries less weight than other voting methods. As a result the voter selection is called approval.
The candidate that gathers the most approvals wins the election. To represent the choice, a vector of
binary elements can be used where the one value indicates approval. If we use a vector of ones adding
up and looking for the maximum number of approvals will yield the winner.

Borda Count Plurality count, forces the voter to concentrate her opinion on a single choice, while
approval voting cannot discern which approval is the strongest. There exist voting methods that allow
the voters to convey more information about their thinking by employing candidate ranking. One such
voting method is the Borda Count, where the voters:

• Rank the candidates in their order of preference

• The winner between C candidates is computed with the following process:

– The candidate ranked in position i, i ∈ {1 · · ·C} receives C − i points (or in a variation
C − i+ 1)

– The Borda score is calculated for each candidate c as
BS(c) =

∑C
i=1(C − i) ·

∑N
j=1 r(j, c, i)

where r(j, c, i) =

{
1, if voter j has ranked candidate c in position i
0 otherwise

– To put it more simply, the voter rankings' are summed per candidate

– The winner is the candidate with the highest Borda Score

Limited voting is a voting method that combines the Borda count and approval voting. The voter
gives a specified number of approvals to the candidates, with the twist that the same voter can choose
a candidate more than once, thus creating a free form ranking.

Runoff Voting In runoff voting the candidates are asked to express their opinion in stages, where
in each stage they are faced with a reduced set of candidates. Runoff elections might actually be con-
ducted in multiple phases, which means that election might be conducted many times. Alternatively
the reduction might be reflected in the voters' ballots using their ranking. This can happen in two ways:

• The candidate with the most last position rankings is the one selected for elimination (Comb
Rule)

• The candidate with the fewest first position rankings are removed (Hare Rule)
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Single Transferable Vote (STV) The objective of STVVoting is to reduce vote waste, for candidates
that cannot win the election, or have already been elected. Each voter gets a single vote, but 'this vote'
can be used bymany candidates. Each voter ranks candidates. Ranking selects the candidates to receive
the votes in case favourites are eliminated. When a candidate is eliminated, 'his' votes are transferred
to the next ones in the ranking.
Tallying begins, by partitioning ballots according to the first choice of the voter. The candidate with

the fewest votes is eliminated. As a result his votes are transferred according to the second choices.
This process is repeated until there is only one candidate left, who is declared the winner of the election.
If during this process a ballot with all the candidates eliminated is found, it is discarded.
A variation of STV, includes quotas, which is the number of votes that assure election. If a candidate

has reached the quota, he cannot be eliminated. In order to make better utilisation of the ballots, the
surplus of votes has to be transferred, as well.
In STV, the voter should not provide a complete ranking of the candidates. This can be used against

the protocol in what is called the Italian attack. The unused preferences that are left out of a complete
ranking can be used as a covert channel, with ower ranked preferences providing the identify of the
voter. For instance, an election might mandate maximum number of choices is α. A potential coercer,
might require a voter to vote for his β preferred candidates. As proof he might require a particular
permutation of the (α− β)! left, to be present when the ballots are counted.

Condorcet Voting In this voting method, the voter provides a full ranking of the candidates. All
candidates engage in pairwise comparisons (duels). The Condorcet winner (loser) of the election is the
one whole wins (loses) all the duels. It is evident from the description above that an election might not
have a Condorcet winner, so an additional processing is required. This additional processing is referred
as completion method:

• Black's procedure: If there is no Condorcet winner, then the winner of the election is the Borda
winner.

• Dodgson's method: If there is no Condorcet winner, then then winner of the election is the one
that requires the fewest swaps in order to be declared the Condorcet winner. A swap is made in
the initial ranking of the candidates by the voters.
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Homomorphic Voting Systems

3.1 Introduction

In chapter 2 we defined the homomorphic property of cryptosystems and secret sharing schemes, which
allows operations to be performed on ciphertexts/secret shares that result in potientially different op-
erations performed on the corresponding plaintexts/secrets. If, for instance, the ciphertexts, encrypted
under the public key of an election authority, are combined in a way that results in the plaintexts be-
ing added, then the election authority can, using its private key, decrypt the combination revealing the
election outcome. This property implies that the authority can calculate the election result, without any
processing on the actual votes. Only the ciphertexts are used. As a result, ballot secrecy is maintained
throughout the election process, which is very desirable. Of course, in this case ballot secrecy depends
on some cryptographic assumptions. In theory using secret sharing homomorphisms, these assumption
can be lifted. Of course due to the verifiability requirements this is not always the case.
Systems that utilise this homomorphic property have been proposed from the onset of electronic vot-

ing. There are, however, many caveats in such efforts, a situation that can be easily predicted from the
discussion in Chapter 1. For example, a malicious voter can encrypt the equivalent of 1000 votes, thus
adding 1000 votes to the preferred candidate, resulting in unfair elections. As a result, ballot secrecy
is not enough for fair elections. This means that the homomorphic cryptosystems employed for this
purpose need to be augmented with verifiability and robustness in order to qualify for voting proto-
cols, which is the subject of the current chapter. Before we begin we must note that the development
of homomorphic protocols was parallel to the mixnet based protocols that we studied in the previous
chapter. As a result ideas presented here were used in mixnets and vice versa.

3.2 Early Schemes based on Residuosity Cryptosystems

The first to create a verifiable voting scheme from homomorphic cryptosystems were Cohen(Benaloh)
and Fischer in [40]. This basic scheme was improved in [19]. The cryptosystem used is additively
homomorphic and is described in 2.1.1.3. It is based on the r−th residuocity problem and is applicable
to yes-no elections. A more important contribution of this work however is the concept of the bulletin
board which permeates all subsequent work. It is modelled after early traditional election systems,
like the show of hands where everybody could verify the result, changed however to accommodate for
privacy.

Bulletin Board It can be broadly defined as broadcast channel with memory. More specifically it:

• Allows appending and reading
40
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• Integrity Preserving, meaning that its contents cannot be modified

• Authenticated, which means that 'it' knows the initial association of voter and vote (of course in
encrypted form). The protocol dictates if the vote is stored with the user actual name, a user id,
or a user digital signature.

• Accessible to every participant

• Tamper Proof

• Resistant to DoS attacks

• Implemented via Byzantine agreement algorithms. The exact implementation is out of the scope
of this thesis (and of the majority of papers for electronic voting).

The participants areN processes that are designated as voters and a centralised authority referred to
as the government. The system includes a bulletin board, a source of randomness (beacon) and a timer.
The beacon is used for verifying the election. More specifically during various points of the protocol,
it provides a sequence of η bits as random challenges to the participating entities. Depending on the
values of these beacon bits, the entities either reveal their parameters or perform some calculations
that bind them to the correct execution of the protocol. The verifiability of the protocol is a direct
consequence of the fact that an entity cannot predict the beacon bits. The timer's function is to signal
the execution of the protocols' phases, which are:

1. Parameter Generation: The government releases the set of security parameters for the cryp-
tosystem. In particular r is a prime number, n = pq where r | p − 1 and r - q − 1 and a y

such that, there exists no x for which y = xr (modn). For verifiability the government must
prove that the parameters released, possess the above properties. To this end, the government
generates η1 'bundles' of security parameters and a random one is chosen as the one actually used
in the election. The randomness is provided by the beacon. The probability of cheating by the
government in this phase is 1

η1
where η1 is a security parameter.

2. Ballot Preparation: Each voter i prepares a ballot that consists of a yes-vote and a no-vote
in random order. The yes vote is the encryption of 1, y · f r (modn), and the no vote is the
encryption of 0: gr (modn) where f, g are random values, with gcd(f, n) = gcd(g, n) = 1.
It must be noted, that the order of the yes and no votes in every ballot constructed by the protocol
is random.

In reality, in a manner analogous to the previous step the voter generates η2 + 1 ballots one of
which, randomly selected, will be actually used. The ballot used is called the master ballot. The
voter must prove that the master ballot is of the correct type, which means that it consists only of
a correct encryption of 1 and 0, and not say of 100 and -100. The proof of correctness proceeds
as follows:

• Let (y · f̂ r (modn), ĝr (modn)) be the ballot to be used by the particular voter.

• η2 random bits {bj}η2j=1 are generated by the beacon.

• If bj = 1 the j-ballot is revealed and is unused.

• If bj = 0 then the voter reveals f

f̂
and g

ĝ

The main insight for this procedure is that due to the homomorphic property of the cryptosystem
used, both f

f̂
and g

ĝ are r − th roots of encryptions of zero. Indeed g
ĝ = ( g

r

ĝr )
1
r = (E(0,g)

E(0,ĝ))
1
r =
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E(0, gĝ )
1
r . The same rationale applies to f

f̂
. This means that the corresponding components of the

master and the test ballots are the same. As a result, if the voter can produce a pair of potential
encryption of zero, it means that the master ballot is of the same type as the ballots for which the
beacon has sent bj = 0. Since the voter can only guess the beacon bits with negligible probability,
it follows that the master ballot is of the same type as all the test ballots, which are encryptions
of one and zero in random order.

3. Voting: The voter i selects one of the options of the ballot as the vote cast vi, either y·f̂ r (modn)

for yes or ĝr (modn) for no.

4. The government collects the valid votes, (the ones that conform to the parameters), computes
the tally and proves that it is correct. The tally is computed by multiplying the valid ballots cast.
Since the cryptosystem is additively homomorphic this corresponds to adding the yes votes. The
no votes will be calculated using subtraction from the total votes cast. More specifically:

N∏
i=1

vi =

N1∏
i=1

y · f̂i
r
N0∏
i=1

ĝi
r = yt · xr

The result is an encryption of the sum of the yes votes. The numbers t, x are unknown. The
government must calculate them, by applying the decryption algorithm described in 2.1.1.3. This
time the value of the randomness x should be calculated as well to prove correct decryption.

5. For the scheme to provide verifiability the tallier must convince that his operations are correct.
This is done in the spirit of the protocol by using the beacon.

• The tallier generates η values ci coprime to n and publishes Ci = cri

• The beacon generates η bits.

• For all beacon bits with value 1 the tallier reveals ci and for all bits with value 0 he reveals
c′i = cix. The server cannot pass the test if he does not know the randomness used. The
potential verifiers check that for the tally released: ytc′ri = Ci

∏N
i=1 vi

This protocol is robust as no coalition of voters can disrupt an election. In addition it is verifiable. It
also provides privacy against other voters. The problemwith the scheme presented here is that since the
government can calculate the parameters for the final tally, it can progressively calculate the parameters
for any intermediate tally, thus violating voter privacy.
A solution to this problem was given a year later. The main idea is to split the function of the

government into k entities, the tellers. It views the voter as the dealer in a secret sharing scheme
(2.1.5). The voter splits the vote into k parts and distributes them to the k telles. If the scheme is
homomorphic the authorities aggregate the shares and reconstrunct the result, which produces the tally.
This approach was proposed by Benaloh in [19]. Secrecy is achieved by vote sharing.
Each teller j releases its own parameters (nj , yj) and each vote consists of k encryptions. During

tallying each tallier extracts its own components from the votes submitted and multiplies them together
as in [40]. The product is similarly encrypted and the partial sum is extracted. The election tallying is
finally calculated as the sum of the partial tallies mod the residuosity parameter r. Of course, protocols
are included to verify the validity of the ballot and the final tally. More specifically:

1. Parameter Generation: The general parameter r is a number larger than the total voters. Like
the government in [40] each teller selects its parameters nj = pjqj where r | p− 1 and r - q− 1

and r non-residue yj
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2. Parameter Verification: The tellers demonstrate that indeed yj is a non residue (modnj) and
the voters prove that they can construct a valid ballot. To prove the validity of a master ballot:

• A number of test ballots are generated

• Some of them are randomly decrypted

• The rest are proved of equivalent in type with the master ballot

To prove the validity of yj

• Each voter randomly selects a vote from a ballot

• Each teller decrypts its own correspondent component of the vote

• The voter verifies the decryption

• If all work out the tellers are honest and voting can proceed

3. Voting: The voters generate their ballot and validate it as proposed in the previous step and
designate their votes.

4. Tallying: Each teller tj computes the products of the components of the voteswj =
∏N

i=1(zi)j (modnj).
Since tj knows pj , qj it can compute τj such thatwj = y

τj
j xrj (modnj) thus revealing its partial

subtotal. The tally of the election is computed as
∑k

j=1 tj (mod r)

3.3 Discrete Logarithm Based Schemes

The complexity of [19] is O(ηk2N) where η is a security parameter. The overhead in the scheme
stems from the way the vote is validated, where for each tallier η ballots are generated. More efficient
schemes can be constructed using the technique in [42] which was described in 2.

3.3.1 Improving the work required in secret sharing homomorphisms

Another protocol of this form was presented in [43] and relies on Pedersen commitments and secret
sharing. The work required by the voter is O(ηk) and by each individual authority O(ηN). The
scheme requires the existence of a bulletin board and private communication channels between voters
and authorities in the form of a public key cryptosystem. The voter initially commits to a vote and
posts the commitment to the bulletin board, alongs with a proof of validity. More accurately the voter
commits to a masked version of the vote, which enables the actual vote to be revealed in a later time.
In order to open the commitments the voter uses the private channels with the authorities, distributing
the actual votes so that privacy can be maintained. The authorities accumulate the votes by employing
the homomorphic property of the cryptosystem and announce the tally along with a proof of validity.
In more detail the scheme in [43] proceeds in the following phases:

• Ballot Construction

– The i− th voter vi selects a masked vote bi as a random value in {−1, 1}

– The voter commits to bi using the Pedersen commitment scheme by calculatingBi = grihbi

– The voter proves that bi = 1 or bi = −1 by transforming an appropriate ZK proof to a
proof of partial knowledge

* If the voter selects bi = 1 then the ballot becomes Bi1 = grih. She must prove that
she possesses the randomness ri to generate the ballot.
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* The voter calculates yi1 = gti1

* The prover must create a bogus proof using the simulator for bi = −1 which will be
yi,−1 = gti,−1(Bh)−ci,−1 where (Bh)−ci,−1 will be cancelled out.

* The voter sends B, yi1, yi,−1 to the verifier
* The verifier generates the random challenge ci
* The prover splits the challenge ci1 = ci − ci,−1

* The prover calculates the normal response zi1 = ti1 + ci1ri and the bogus response
zi,−1 = ti,−1 and sends zi1, zi,−1, ci1, ci,−1

* The verifier validates all the relations below:
· ci = ci1 + ci,−1

· gzi1 = yi1(B/h)ci1

· gzi,−1 = yi,−1(Bh)ci,−1

* The process is analogous if the voter selects bi = −1. In that case the bogus proof will
be yi1.

Fං඀ඎඋൾ 3.1: Proof of validity for yes ballot in [43]

* It should be noted that in both cases the proof can be made non interactive using the
Fiat - Shamir technique.

– The voter shares ri, bi by computing t− 1 degree polynomials Gi(x), Hi(x) and commits
to the coefficients (this is the Pedersen verifiable secret sharing scheme). Let's denote the
commitments Bil = {grilhbil}t−1

l=1

– The voter postsBi, the validity proof and the coefficient commitments to the bulletin board,
where the proof is checked by all interested parties

– The k shares of (ri, bi), {rij = Gi(j), bij = Hi(j)}kj=1 are sent to the authorities where
they are validated. Each authorityAj checks that grijhbij = Bi

∏t−1
l=1 B

jl

il whereBi, {Bil}t−1
l=1

are retrieved from the bulletin board. If everything is ok the above relation holds since:
Bi

∏t−1
l=1 B

jl

il = gGi(j)hHi(j).

– It must be noted that the communication in the previous step happens through private chan-
nels, bypassing the BB. Since this action is not universally verifiable, it opens up the pos-
sibility for didn't receive/didn't send complaints, that might block the election.
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Fං඀ඎඋൾ 3.2: Proof of validity for no ballot in [43]

• Vote Casting

– The voter forms the desired vote vi ∈ {−1, 1} by selecting si such that vi = sibi. Due to the
use of masked ballots the vote casting phase can be separated from the ballot construction
phase and carried out as late as possible.

• Tallying using secret sharing homomorphism

– The authorities sum their shares rij , bij for all the voters' selected values si. Authority Aj

posts Sj =
∑N

i=1 rijsi and Tj =
∑N

i=1 bijsi and posts them to the bulletin board

– The partial sums are validated by any interested party that may operate as a prospective
tallier. The validation procedure is similar to the one performed by the authorities at the last
step of the ballot construction, but this time it is applied to all the voters. More specifically
each authority checks if gSjhTj =

∏N
i=1(Bi

∏t−1
l=1 B

jl

il )
si

– The final tally is computed from the t correct partial tallies of the authorities forming a set
A as T =

∑
j∈A Tj

∏
l∈A−{j}

l
l−j

3.3.2 An optimal scheme for the voter

The second protocol utilising the construction of protocols for proofs of partial knowledge of [42] was
presented in [44] and is optimal as far as the voter is concerned, meaning that the voter does as little as
possible. This is why it is dubbed as vote 'n' go or single pass scheme. It relies on El Gamal encryption.
The work required by the voter is O(η), linear in the security parameter, while the work of each of the
k authorities is O(ηN).
The election scheme of [44] is simple and efficient. Each voter posts her choice encrypted using El

Gamal and provides a proof that the vote is valid. The private key corresponding to the public key
of the encryption is shared between the election authorities in a threshold manner. The private key is
never reconstructed even when the final tally is computed.
In more detail the protocol proceeds in the following phases:
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• Ballot Construction The vote is cast in two phases in a similar way as in [43]. During the
phase of the ballot construction a subgroup of order q and a generator G is selected. A yes vote
will be represented as my = 1 and a no vote as mn = −1 The voter selects again a random
b ∈ {1,−1} and prepares the encryption (x, y) = (gr, hrGb). The voter must prove that b = 1

or b = −1 without of course revealing which one is it. This boils down to a disjunction of two
discrete logarithm equalities, namely that loggx = logh(y/G) for b = 1 or loggx = logh(yG)

for b = −1. This can be done with a partial knowledge version of the Chaum-Pedersen protocol,
depicted in the 3.3 and 3.4.

Fං඀ඎඋൾ 3.3: Proof of validity for yes ballot in [44]

Fං඀ඎඋൾ 3.4: Proof of validity for no ballot in [44]

Again the Fiat Shamir heuristic can be applied to make the proofs non interactive. In order to
avoid vote duplication, the hash of the offer must contain a unique identifier for each voter, such
as an id.

• Vote Casting The voter forms the desired vote vi ∈ {−1, 1} by selecting si such that vi = sibi
and posts it to the bulletin board.
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• TallyingWhen the voting period has ended the talliers check the proofs. All the votes are then
multiplied forming (A,B) = (

∏N
i=1 g

ri ,
∏N

i=1 h
riGvi). The talliers then execute the share com-

bination and decryption portion of the threshold El Gamal cryptosystem and calculateW = A
Bx .

Due to the homomorphic properties of the cryptosystem we have W = G
∑N

i=1 vi = GT where
T is the tally of the election. In order to retrieve the tally the discrete logarithm logGW must
be computed. This of course is a hard problem. The solution proposed involves trying all the
possible values of G and returning the one that matches. More specifically, since−N ≤ T ≤ N ,
a tallier can successively compute in order G,G2, G3, · · · and so on, untilW is found.

3.3.3 Voting using Publicly Verifiable Secret Sharing (PVSS)

The scheme in 3.3.1 has the didn't send / didn't receive problem. To deal with cheating authorities
and/or cheating voters while maintaining secrecy the verifiability property needs to be public. That is,
the validity of the dealer shares should be validateble by everybody. As a result the authors of [122]
have created a voting protocol based on their publicly verifiable secret sharing scheme and the bulletin
board:

Fං඀ඎඋൾ 3.5: Voting with Secret Sharing [122]

• Each voter in the scheme, selects the vote vi ∈ {0, 1}. In order to create the secret to be shared,
she selects a random element si and create Ui = Gvi+si . To share the vote she creates a polyno-
mial pi(x) =

∑t
l=0 ailx

l. The commitments to the coefficients are denoted {Cil = gail}ti=0

• The voter constructs a proof of partial knowledge [42] that the vote is valid using the com-
mitments of the previous step. More specifically the voter proves the statement logGUi =

logGCi0 ∨ logGUi = 1 + logGCi0. The voter includes in the bulletin board the value Ui

• Each authority Aj has an ElGamal public key yj = Gxj

• Each share pi(j) is encrypted using the public key of the corresponding authority Yij = y
pi(j)
j

• The voter provers using the Chaum Pedersen Protocol that logg(gpi(j)) = logyjYij thus achieving
public verifiability.
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• The reconstruction phasewill not happen per voter, but per authority. Each authority will multiply
all the voters' shares producing Yj =

∏n
i=1 Yij =

∏n
i=1 y

pi(j)
j = y

∑n
i=1 pi(j)

j

• The result of the reconstruction phase is G
∑n

i=1 pi(0) = G
∑n

i=1 si . From multiplication of the
secrets we get

∏n
i=1 Ui = G

∑n
i=1 si+vi

• A division yields G
∑n

i=1 vi . The tally can be computed with exhaustive search since there are n
possible values for

∑n
i=1 vi

This scheme lies in between [44] and [43]. It resembles the second due to the secret sharing approach
and the first due to the optimality (everything takes place through the bulletin' board). Their only
difference is that the sharing in [44] happens only between the authorities, while in [122] it takes place
through the voters. As a result the protocol of [44] may be used when the talliers are few and the voters
are orders of magnitude larger, and when the talliers do not change between elections. In contrast [122]
is more versatile, can be used when the talliers change between elections and when the voter might be
a tallier in smaller scale elections.

3.4 Paillier Based Schemes

The election scheme of [44] is very simple and efficient, as we saw in the previous section. It has
however one serious drawback - the need to calculate a discrete logarithm. However the other com-
ponents are generic and as a result the protocol can be adapted to various cryptosystems. In [46] the
generalisation of the Paillier cryptosystem is used. The steps of the protocol are as follows:

• The voters encrypt their votes and prove that the encryption is either a yes vote or a no vote.
Ei = E(vi, ri) = (1 + n)virn

s

i (modns+1) where vi ∈ {0, 1}

• The votes are posted on a bulletin board along with proofs that they contain a valid vote

• Each tallying authority computes the product of the votes

• The authorities jointly decrypt the product of the votes using a threshold scheme like the one
in [56] that we described in Chapter 2, thus revealing the election result. This time no extra
processing, such as a discrete log computation is required.

The missing piece in the protocol is a description of how to prove whether an encryption corresponds
to a yes or no vote. In order to achieve this the protocol in ?? will be used as a basis, as depicted in
figure 3.6.
The ciphertexts in the case of yes− no votes will be Ei = (1 + n) ∗ rns and Ei = rn

s respectively.
As a result the voter must prove that Ei

(1+n) orEi encrypts the message zero. Since the tally is computed
(modns) then ns > N must hold.

3.5 Optimisations and extensions to multiple candidates

The homomorphic schemes presented in the previous sections are described mainly for yes− no elec-
tions and can be used without any changes when there are two candidates. They can be extended.
however. when there are C > 2 candidates. In such a case the voter can select either 1− out− of −C

candidates or t − out − of − C candidates. As is the general case in the schemes studied in this sec-
tion the secrecy of the vote leads to a need to prove that it is of valid form and that the voter followed
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Fං඀ඎඋൾ 3.6: Proof of partial knowledge of ns power [46]

the protocol exactly, which, in our case means, that she voted precisely t − out − of − C different
candidates.
The simplest way to extend the schemes, was presented early in [19], and works by creating a super

ballot for C yes-no elections. If 1− out− of − C candidate is to be voted, then this super ballot will
contain 1 yes vote and C − 1 no votes. In order to tally the elections there must be C counters where
the corresponding ballots are aggregated.
The idea of the multiple counters can be applied to the framework of [44]. In the first step of the

protocol however an addition must be made in order to prove the validity of the vote. The Chaum
Pedersen Protocol must be used with C generators and a proof must be given that exactly one of them
was used. The final tally is calculated by solving C discrete logarithms since the decrypted value will
be of the form GT1

1 · · ·G
TC
C . It is easy to see that the vote size in the above cases will be C times the

vote size of the corresponding yes − no protocols. The most important problem is that declaration of
the winner requires the calculation of a discrete log of a larger number than the single vote case, which
is a difficult computational task.
In the Paillier version of [44] the voter ballot must consist of exactly t yes votes and C − t no

votes. As a result the entry for voter i in the bulletin board will contain C votes and C proofs namely
{Eij = E(vij , rij)}Cj=1 and proofs that Eij

(1+n) Eij are encryptions of zero, where j ∈ {1, · · ·C}.
However the voter must take an extra step to prove that there are exactly t yes votes or equivalently
that

∏
j Eij = (1+n)t

∏
j r

ns

ij = E(t, r). To allow the verification despite of the encryption the voter
computes the product of the randomness r =

∏
j rij and posts it to the bulletin board. Now every

interested verifier can compute E(t,r)
r = (1+ n)t which is public information. As far as the other case

is concerned, namely that the voter may choose up t votes, an easy solution will be to include some
dummy candidates. The votes remaining to reach number t are case on the dummy votes.
An improvement has been proposed in [14] and independently in [46] that reduces the vote size.

Both approaches utilise the Paillier cryptosystem, which has an efficient decryption process, however
the first one relies on the standard version, while the second one uses the generalised version. The main
idea in both approaches is that a numberD is selected and used as a single counter for voting. In order
to vote for candidate c, instead of encrypting c, the system encrypts Dc. As the encrypted votes are
multiplied, the homomorphic property creates the tally to be decrypted as T =

∑C
c=0 tcD

c (modns),
a number in base − D. In a single decryption we can obtain T and retrieve the digits, which will be
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the individual subtallies of each one of the C candidates. In order to implement this idea the protocol
parameters must be tweaked and some new proofs must be added. This is were the two approaches
differ.
In [14] D is a number larger than the number of voters N , for example D = 2⌈log2N⌉. The tallying

process is hierarchical and takes place in three levels: local, regional and national. There are authorities
in each level respectivelyAij , Ai, Awith public keys pkij , pki, pk. The corresponding private keys are
shared in a threshold manner. In order to vote for candidate c the voter creates 3 encryptions of Dc

El, Er, En with the public keys of the local, regional and national authorities. In addition the voter
creates 3 proofs that c is a valid candidate index by proving that it lies in the interval 0, · · · , C − 1 and
a proof that all ciphertexts encrypt the same plaintext.
In the first case, the proof can be considered a WID variation of the proof in Chapter 2 that a

voter knows the message that corresponds to an encryption. Here the voter wants to prove that he
knows the index c so that the encryption ec = gmcrn (modn2) corresponds to a mc from the set
{m1,m2, · · · ,mC}. Of course, the actual message mc remains hidden. The verifier is convinced
though that the encryption comes from the set. The proof consists of the following steps:

• The prover creates

– c − 1 simulated offers Tj = (g
mj

ec
)tjrnj (modn2) where tj ∈R Z∗

n, rj ∈r Zn, j ∈
{1, · · · , C} − {c}

– and a single valid one Tc = rnc (modn2)

and sends all Ti's to the verifier.

• The verifier sends a random challenge t

• The voter computes tc = t−
∑

j tj and Tc = rcr
tcgtc divN and sends (ri, ti) to the verifier

• The verifier validates that

– t =
∑

i ti

– rni = Ti(
ec
gmi )

t
i∀i

The tallying occurs in three levels. First the local authorities compute and decrypt (using the share
combination algorithm) the product of the local votes (the ones encrypted with the local authority public
key), calculating the local partial sum. Each local authority computes without decrypting the product
of the votes encrypted with the regional and national public keys and forwards the computation to
the regional level. The regional authority combines the regional products provided by the subordinate
local authorities and decrypts using the combination algorithm. Then it validates that the sum of local
authorities' decryptionsmatch the result of its own decryption. The same process happens at the national
level, where the election result is computed.
The approach in [46] tweaks the system based on the value of s. More specifically

∑C
c=0 tcD

c < ns

must hold, so ClogD < ηs. More importantly, for the vote to be considered valid the voter must
prove:

• the ballot encrypts properly a number of the formDc

• the exponent c ∈ {0, ..., C − 1}

Proving that the encrypted vote corresponds to a proper power of the basisD involves the following
steps, based on the classical range proof technique that we first referred to in 2.1.7.5. To sum it up, the
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prover should commit to all the ηbits of the witness, then prove that each committed value corresponds
to a 0 or a 1 while maintaining that exactly η commitments are used (nothing is left out).
This will be accomplished with the help of a new protocol that enables a prover to convince a verifier

that encryptions ea, eb, ec correspond to plaintext a, b, c such that ab = c (modns). The protocol is
depicted in the figure below:

Fං඀ඎඋൾ 3.7: Proof of Paillier encrypted product [46]

• The number of candidates is a power of 2 C = 2l+1

– Convert the candidate index power to its binary representation c = b02
0+ b12

1+ · · ·+ bl2
l

where bj ∈ 0, 1.

– Then Dc = D20
b0
D21

b1 · · ·D2l
bl which means that Dc is a product of powers of two or

ones.
– The voter encrypts each product term providing encryptions e0 = D20

b
0 , e1 = D21

b
1 , · · · , el =

D2l
b
l

– There are l+1 encryptions, exactly the same as the number of bit - length of C. As a result
it is proved that 0 ≤ c < C.

– The voter uses the proof of partial knowledge of the protocol in 3.6 to prove that either
ei

(1+n)1
or ei

(1+n)D2i
is an ns power, which we described earlier when discussing ballot va-

lidity.
– The voter calculates the partial products Ei =

∏i
x=1D

2xb
x such that El = Dj

– The voter uses the partial products with the 3.7 proof with a = Ei−1, b = ei, c = Ei to
conclude the proof.

• The number of candidates is not a power of 2 The first three steps of the previous case are
repeated. However we cannot depend on the number of bits to conclude if c < C so we must
add extra steps.

– Convert, again the candidate index c to its binary representation c = b02
0+b12

1+· · ·+bl2
l

where bj ∈ 0, 1.
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– Then Dc = D20
b0
D21

b1 · · ·D2l
bl

– The voter encrypts each product term providing encryptions e0 = D20
b
0 , e1 = D21

b
1 , · · · , el =

D2l
b
l

– Define βi = 1

(D2i−1)
(modns)

– Compute e′i = ei
(1+n)

βi (modn2) = Enc(bi) since bi = 0 or bi = 1

– C = (Bl · · ·B0)2

– c < C ⇔ ∃i > 0 : Bi = 1 and bi = 0 and ∀j > i : Bj = bj

– Need to prove equality of j indices and inequality of i

– Bi = bi ⇔ zi =
(2Bi−1)(2bi−1)+1

2 = 1

– Zi = zl · · · zi+1Bi(bi − 1) = 1⇔ c < C

– Use the product proof with a = Zi+1, b = zi, c = Zi

– Use WID of ns power protocol to show that ∃i : Zi = 1

All the above hold for the case of a single selection. They can be extended for multiple selections by
allowing t ballots and checking that they don't encrypt the same candidate choice. This can be done by
computing the pairwise differences of the votes and proving that each one is not an encryption of zero.

3.6 Variations for alternate voting methods

Ahomomorphic voting system is an ideal candidate for elections that compute on alternate social choice
functions. The reason behind this, is the fact that the votes remain secret during the entirety of the
process. This is important because such an alternate function might convey more information about
the voter opinion, than a traditional yes or no vote, or a one out of C vote, making relevant the italian
attack mentioned in Chapter 1. If the vote remains secret through the entire process, such an attack is
made infeasible. Moreover the level of secrecy required is is an interesting question. A further topic of
difficulty in such systems are the increased efficiency difficulties from the complexity of the required
zero knowledge proofs. Such protocols are therefore worthy of further examination.
Borda Count In [133] a protocol is given to homomorphically implement a Borda count. The

scheme, is quite restrictive, releasing only the winner of the election, without revealing either the order
of the losing candidates or the points they accumulated. The rationale behind this level of secrecy is the
fact, that if the total points of a candidate are known, thenN −1 voters might collude in order to reveal
the points awarded by the remaining voter. In addition, it utilises a distributed setting a la [44], taken
to its extreme (full privacy), namely the secret key for the decryption of the tally is shared between all
voters. This contradicts, the privacy of the score of each candidate, as according to the motivation of
full privacy if n− 1 voters can collude, than maybe elections are not necessary.

• The voting process begins by registration and calculation of the El Gamal secret keys and the
joint public counterpart.

• Each ballot is an encrypted vector Bi = {Enc(2pic)}C,N
c=1,i=1 where pic are the points awarded

to candidate c by voter i. From the specification of the Borda protocol it follows that pic ∈
{1, · · ·C}.

• The voter must prove that pic ∈ {1, · · ·C} and that each component of the ballot is an encryption
of 2pic
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• The authority has the single task to multiply the components of all the ballots for each voter∏N
i=1Bi = {

∏N
i=1Enc(2pic)} = {Enc(2

∑N
i=1 pic)}. The homomorphic property has placed the

total points of each candidate in the exponent.

• The authority must find the component with the largest exponent without exposing the exact
value of the collected points. To this end a comparison operator must be implemented between
2 ciphertext c1, c2, for which the only available information is that they each encrypt a power of
2, say m1,m2, the total points for a candidate according to the protocol. This operator will be
used to find the maximum value and will utilise the homomorphic nature of the cryptosystem:

– The ciphertexts are divided c = c1
c2

= Enc(2m1−m2) wherem1,m2 ∈ {N, · · · , NC}.

– Consequentlym1 −m2 ∈ {−N(C − 1), · · · , N(C − 1).

– As a result,m1 ≥ m2 ⇒ c ∈ {{Enc(2i)}N(C−1)
i=0 )}

– The tallier must compute the encryptions in set {Enc(2i)}N(C−1)
i=0 accompanied by a proof

of knowledge.

– Afterwards the tallier computes the ciphertexts ci = { c
Enc(2i)

}N(C−1)
i=0 ). This calculation

utilises public values and can be verified by all participants. It is evident that ifm1 ≥ m2

one of the items of the set should be the encryption of 1.

– A straightforward decryption would reveal the total points. To avoid this, the items in the
set are mixed and then threshold decrypted (in a manner similar to [73]).

– If an item with the value 1 is found in the list then we can deduce thatm1 ≥ m2. Otherwise
it follows thatm1 < m2

• Now that a comparison operator has been implemented, the winner can be found using O(C)

comparisons.

Another approach to homomorphically implement the Borda count is given in [66]. This approach,
is more relaxed as it does not aim to hide the votes that were received by each candidate. All the
preferences are aggregated in a single vote using Baudron counters. Moreover, the fact that each ranking
is a permutation π of the set of candidated indices {0, · · · , C − 1} is also used. As a result the input of
the voter is a number in base-D with digits in the set of candidates, namely v =

∑C
i=0−1π(i)Di−1 .

To prove the correctness of the vote, the following non interactive protocol is used:

• P proves that π is indeed a permutation. To do so, a protocol proposed in [65] will be used.
Since the proof is aimed at proving the correctness of a permutation,it is applied in verifying the
shuffle of a mixnet. It will be described in greater detail in its natural place, in Chapter 4.3.4.

• P uses a typical proof of knowledge of the plaintext.
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Mixnets

4.1 Overview

In this chapter we shall study extensively the concept of amix net, firstly introduced by David Chaum
in [28]. The mix net is a general anonymity primitive that is, itself, constructed using building blocks
from Chapter2. As such, it has been used in systems that provide anonymous services i.e. browsing,
auctions and of course elections.
A mixnetMN anonymises a set of input items, by garbling and shuffling them. It is composed

of entities called mix servers, {Mj}kj=1. Each mix server receives a set of input items {vi}ni=1. To
anonymise them, it breaks the link between input and output, by changing their exit position and form.
More formally, an item entering as vi will exit as v′π(i) where π is a random permutation. Since an item
traveling through the mix net always changes exit position and form it cannot be tracked. Of course to
be of some use, an authorized recipient should have a mechanism to reconstruct the input items from
the output items. The mechanism used for this task is cryptography. Upon entrance the input items are
encrypted. Inside the mix net the items are processed and in the output they are decrypted. When they
are used for voting the mix servers communicate through a bulletin board BB, akin to the one assumed
in chapter 3. Traditionally the mix servers operate in sequence. However, on a practical level the mix
servers can operate in parallel [49]. For k mix servers the votes are split into k distinct groups. Each
group is assigned to one mix server that performs the shuffling and transformation. After the operation
each group is assigned to next mix server (group i to server (i + 1) (modk)). In the last phase the
first group will be processed by the k − th server.
In the context of voting, the anonymised items using the mixnet are the votes. They enter the mixnet

in encrypted form. However, since the bulletin board is authenticated, each vote can be linked to a
voter (maybe each vote is digitally signed). The authentication information is validated and stripped,
and the votes are then processed. The shuffling and garbling that takes place, break the link between
vote and voter. Thus in the output the votes can be decrypted and counted. This general idea has many
variations (and unfortunately caveats), which we shall review in this chapter. However it is important
to stress from the onset, that the decryption of votes opens up an array of possibilities regarding the
social choice functions that can be used. This is an important departure from the framework described
in the previous chapter.
In the theory of mixnets, one honest mix server suffices to achieve privacy. However as we shall see,

there are attacks, that can use implementation specific flaws, and break the anonymity of the senders
even in the presence of an honest mix server.
The research on mix nets is very rich and they can be considered a mature technology. the literature

is full of different notations. One objective of this chapter is to homogenize the notation.A thorough

54
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exposition is given in [3]. We build on it and try to enrich with newer approaches.

Fං඀ඎඋൾ 4.1: Mixnet Operation

4.2 First Generation Mixnets

4.2.1 RSA Mixnets

The original mix net idea proposed in [28], operates in layers, akin to onion peeling. As a result the
implementation of mix nets for anonymous browsing is also called onion routing. Each mix server has
a key pair (pkj , skj) for the RSA cryptosystem where pkj is published.

• Each sender (the voter in our case) encrypts the message by employing the public keys in reverse
order and input the messages to the mix net.

L0 = {Encpk1(Encpk2(· · ·Encpkk(vi, ri) · · · , r2), r1)}ni=1

• Each mix server removes a layer of encryption using its private key and removes the randomness
applied to each input. This actions changes the form of the input message.

• For the shuffling part, a random permutation is applied to each item and the result is outputted.
For example the output of the first mix server is

L1 = {Encpk2(· · ·Encpkk(vi, ri) · · · , r2)}
π1(n)
i=π1(1)

• This process is repeated. In the end, the last mix server has fully decrypted the items.

Lk = {vi}πk◦···◦π1(n)
i=πk◦···◦π1(1)

)

• In the case of voting, the votes can be counted.

The Chaumianmix - net anonymizes the input messages, by breaking the link between input and output,
but there are some remarks to be made:
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• The communication between the mix servers takes place through the bulletin board, which is
available to all interested parties.

• Mk has access to the plain text.

• A mix server can block the mixing process by refusing to decrypt.

• The number of encryptions needed and the ciphertext size are proportional to the number of mix
servers, since each mix server adds its own randomness.

4.2.2 Reencryption Mixnets

A variation of the Chaumian mixnet was presented in [108]. It is based on the idea of reencryption for
El Gamal that was described in chapter 2. Reencryption implements the transformation requirement
and thus makes decryption redundant. It comes in two flavours, one combining the Chaumian idea with
re-encryption and one employing solely re-encryption. Again each mix server has its own key pair. In
El Gamal notation:

• The input list is

L0 = {(gr0i , vi(y1 · · · yk)r0i)}Ni=1

This is exactly the same idea as previously, with the only difference that the encryptions are not
layered, but combined using an aggregate public key

∏k
i=1 yi where yi is the public key of each

mix server. As a result the ciphertext size and the number of encryptions needed are constant and
do not depend on the number of mix servers.

• Mj partially decrypts each item in

Lj−1 = {(g
∑j−1

t=0 rti , vi · (
∏k

t=j yt)
∑j−1

t=0 rti)}Ni=1

by dividing with gxj ·
∑j−1

t=0 rt and rerandomises with rji producing

Lj = {(g
∑j

t=0 rti , vi · (
∏k

t=j+1 yt)
∑j

t=0 rti)}Ni=1

• Then a random permutation πj is applied.

• As previously. the last mix server fully decrypts the items.

The second flavor uses only reencryption and only one decryption takes place. EachMj :

• The input list is L0 = {(gr0i , vi · yr0i)}Ni=1 - that is, there exists a single key pair for all mix
servers.

• re randomises each item in

Lj−1 = {(g
∑j−1

t=0 rti , vi · y
∑j−1

t=1 rti)}Ni=1

producing

Lj = {(g
∑j

t=0 rti , vi · y
∑j

t=1 rti)}Ni=1

• applies a random permutation πj



Chapter 4. Mixnets 57

The decryption key is shared by a number of trusted parties (can be the mix servers themselves) in a
threshold manner (ala [44]). In this variation all mix servers are of equal power since no one has access
to the plain text without the cooperation of others. The remaining combination, namely a decryption
only mixnet, cannot be applied when the underlying cryptosystem is El Gamal, as it would create a
way to track the messages, since the first part of each ciphertext would remain unchanged. In other
cryptosystems such as Paillier, it would be feasible, though.
This mixnet can provide anonymity and individual verifiability in elections, the former by definition,

the latter by embedding redundant information in the form of randomness in each vote and searching
for it in the output list.
However this randomness can be used as a receipt to prove how one voted [84]. The issue of receipt

freeness will be extensively studied in chapter 5.

4.2.3 Tagging Attacks

The first attacks on mix nets were described in [112] and [111] for Chaumian and reencryption mix nets
respectively. These attacks are quite powerful and permeate the entire mixnet literature. Their nature
is active. The main idea that underlies them is to tag a particular item, in a way that is shuffling - and
garbling - proof. As a result, the mixing can be bypassed, by looking for the tag in the output. Thus
the sender's privacy can be broken. To create the tag, they benefit from the malleability implied by the
homomorphic properties of the underlying cryptosystems. For example E(m)k = E(mk) in the case
of multiplicative homomorphism.
In [112] the tagging attack is employed against a Chaumian mix net, where randomness of length b

is applied to message of length B, for the reasons explained in 2.1.1.1. As a result the mix net input
becomes Enc(m, r) = (r · 2B +m)e (modn) and the output ism.
The attack works as follows:

1. A wants to track messagem through the mixnet, which travels as Enc(m, r)

2. A chooses a small factor f

3. A input the following tagging message Enc(m, r) · Enc(f) = (r · 2B + m)e · f e (modn).
The encryption Enc(m, r) is freely available in BB

4. MN operates as usual, thinking that its input is of the general form: (r∗ · 2B +m∗)e

5. This also applies to the tagging message, which means:

(r∗ · 2B +m∗) = (r · 2B +m) · f ⇒
(m∗ − f ·m) · 2−B = (f · r − r∗)

6. MN outputs bothm∗,m in the decrypted list

7. A know the randomizer space, namely that :r, r∗ ∈ {0, · · · , 2b−1}This implies that (f ·r−r∗) ∈
{2−b + 1, · · · , f · (2b − 1)}

8. A can search the output list for messages (m,m∗) for which (m∗− f ·m) has a value in {2−b+

1, · · · , f · (2b − 1)}

9. [112] prove that such messages can be found with high probability.

In [111] the tagging attack is employed against a reencryption mix net.



Chapter 4. Mixnets 58

• Again the attacker A wants to track input vi for participant Pi.

• He can retrieve the initial encryption ci0 = (gR, vi · (y1, · · · , yk)R).

• Each mix serverMj receives the input: cij = (gR
′
, vi · (yj , · · · , yk)R

′
) which is a tuple (t, u)

• For some random x known to her, A can generate c′′ij = (tx, ux) = (gR
′x, vxi · (yj , · · · , yk)R

′x)

• MN output will contain both vxi , vi due to the homomorphic nature of the underlying cryptosys-
tem.

• A can retrieve all decrypted output messages and raise them to the x.

• Then she can check for duplicates. When a duplicate is found, A deduces that she has found the
message tracked from the output list, since vxπ(i) = vxi . As a result she learns the vote cast in
vπ(i)

In both attacks, it is assumed that A can inject messages of her preference into the BB. This is rea-
sonable despite the authenticating nature of the bulletin board. For instance, the attacker can cooperate
with a legitimate voter, and issue the tracking message using his credentials.

4.3 Verifiable Mixnets and proofs of shuffles

The attacks on the previous section raised some awareness on what can go wrong with mixnets.

• At the initial encryption stage, an encryption of a vote not known by the user might enter the
mixnet. As we saw A copies the encryption of a legitimate vote and uses it to track a message.
However there are other possibilities as well. For instance, in vote copying, A can copy exactly
the ciphertext found in BB. This, in some scenarios can have the effect of vote canceling, as an
exact duplicate of a vote is found.

• More importantly it raises the following question. If a user has so much power, if she cheats, what
can be said about a cheating mix server. More specifically processess all the encrypted votes. A
cheating mix server might change them by applying the copying attack, or it might drop some
of them all together and replace them in the output, controlling in effect the complete election.
Additionally a cheating mix server might not apply any permutation, reencrypt the votes in a
known manner allowing an attacker to get hints about the link between the voter and the vote.

The problems regarding cheating mix servers stem from the fact that the they are viewed a sort of black
box, whose actions must be blindly trusted. However this powerful entity has a pivotal role in the
election, so we cannot simply trust it. A mix server must verify that it operated correctly. To do this,
we can use techniques from chapter 2, namely zero knowledge proofs in order not to give away the
actions of both the voter and server. More specifically:

• The voter must provide a zero knowledge proof, that he knows the contents of the vote, and that
his input is not simply a reencryption of some other input.

• Each mix server must provide a zero knowledge proof that he correctly applied re encryption or
processing required by the protocol specification

• Each mix server must provide a zero knowledge proof that he shuffled correctly and that no
messages were altered, dropped or replaced.
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The general idea in proving that a voter knows the contents of the vote is a Schnorr based protocol
to prove knowledge of discrete logarithm.
In order to prove correct shuffling, we must prove [114] that each encrypted vote in the input, appears

in the output, which means equivalently that each encrypted vote in the input, has a re-encryption in
the output, which corresponds to the following NP statement:

∃ permutation π on {1, · · · , n}, ∃s1, ..., sn,
∀ vote i ∈ {1, · · · , n},

∀ mix server j ∈ {1, · · · , k} :
If Ci,j = (ai,j , bi,j) and Cπ(i),j+1 = (aπ(i),j , bπ(i),j) then

aπ(i),j+1 = ai,j · gsi and bπ(i),j+1 = bi,j · ysi

As the above statement is in NP, there exists a corresponding zero knowledge proof. The most prac-
tical protocol to prove the above statement is the Chaum-Pedersen protocol [33] (repeated many times)
to prove equality of discrete logarithms.
These observations gave birth to the second generation of mixnets, verifiable mixnets. The schemes

of this category provide universal verifiability and as a result individual verifiability.

4.3.1 Sako Killian mix net

The first universally verifiable mixnet was proposed by Sako and Killian in [84]. It builds upon an
ElGamal based re-encryption [108], for which:

• The i− th voter's choice is vi

• Each mix serverMj has its own ElGamal secret key: xj and public key: yj = gxj

• The input to the mix net is the list L0 = (G0,M0) = {(gr0 , vi · (y1 · · · yk)r0 (mod p))}ni=1

• Each Mix server before permutting

– Rerandomises its input list using his randomisation factor rj producingGj = Gj−1 · grj =
gr0+r1+...+rj

– Partially decrypts by adding the random exponent and dropping one public key Mj =

Mj−1 · (yj ...yk)rj/G
xj

j

• The last mix server decryptsMk/G
xk
k = m permutes and announces.

As we mentioned before, verifiability requires that each mix server verifies its operation. In this case
it must:

• Prove correct partial decryption

• Prove correct reencryption and shuffling

The solution given in [84] was a cut and choose protocol with 1
2 soundness, which means that a mix

server might cheat in reencryption and shufflin gand getaway with it. In order to avoid this situation
however the protocol can be repeated η times reducing the cheating probability to (12)

η, but increasing
the complexity.
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More specifically in order to prove the correctness of the partial decryption, each mix server must
prove knowledge of secret key and correct decryption without of course revealing anything. It assumes
the role of a prover in the cut and choose protocol. More specifically it must prove:

1. that H = Gxmodp where the common input is (G,H, g, y = gxmodp)

2. The mix server sends (y′, G′) = (gr (mod p), Gr (mod p)) where r ∈r Zp

3. The verifier with probability 1
2 requests r or r

′ = r − x

4. The prover complies with the request, providing either r or r′

5. If the r is revealed to the verifier, then it checks that y′ = gr (mod p) andG′ = Gr (mod p).
This is the cheating case, since the private key is not used

6. If r′ is revealed then the verifier checks that y′ = gr
′
ymodp and G′ = H ·Gr′modp

The verification can be batched, executing one time for each mix server and not per vote:

• We proved that for each messageH = Gxmodp

• Instead of proving correct encryption for each vote, a mix server proves correct encryption of all
the votes.

• The verifier chooses random exponents ci (one for each vote).

• Calculate
∏

iH
ci and

∏
i(G

x)ci

• Prove that
∏

iH
ci =

∏
i(G

x)ci

• The proof implies that all encryptions are done correctly

This cut and choose general idea can be employed to prove correctness of the shuffle. The trick is
that each mix server generates another secret permutation and another set of randomization values. It
uses them to perform a secondary shuffle, both reencryption and permutation. When challenged, it
reveals either the secondary shuffle or the difference between primary and secondary shuffle. To be
more specific:

• The common input is (g, w,A,B) where

– g, w are constants

– A = (a
(1)
i , a

(2)
i ) is the input encryption tuple to the mix server

– B = (a
(1)
π(i) · g

r′
π(i) , a

(2)
π(i) · w

r′
π(i)) is the output reencrypted tuple

• To prove that B can be generated from A, the mix server P generates a new permutation λ and
randomization values ti.

• P sends C = (a1λ(i) · g
tλ(i)modp, a2λ(i) · w

tλ(i)modp)

• V requests (λ, ti) or (λ′ = λ ◦ π−1, t′i = ti − r′i) with probability
1
2

• P complies by revealing the requested items

• On receiving the values, V , checks C by definition, if λ, ti was requested or

• if λ′, t′i was requested then for B = (b
(1)
i , b

(2)
i ), checks if:
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C = (b
(1)
λ′(i) · g

t′
λ′(i) , b

(2)
λ′(i) · w

t′
λ′(i)modp)

i.e.. λ(i) = λ′ ◦ π(i) or λ(i) = λ ◦ π−1 ◦ π(i)

It is easy to see, that the verification complexity of the Sako-Killian mixnet is O(ηkN) for error
proability 1

2η .

An attack There was an implementation error in [84] which allowed an attacker to break voter
privacy even when there is only one honest mix serverMj and without need for colluding voters. This
attack was documented in [94].The attack happens before Mj performs the shuffle. The first j − 1

corrupt mix servers trace the message to be revealed. The last k − j servers reveal the message. In
more details:

• Voter Alice sends toM1 her input v as (G1,M1) = (gr0 , v · (
∏k

t=1 yt)
r0)

• Honest Mix Server receives: (Gj ,Mj) = (gr0+R, v · (
∏k

t=j yt)
r0+R) where R =

∑j−1
t=1 rt

• HonestMix Server follows the protocols and reveals in order to prove that he can partially decrypt
correctly. Hj = G

xj

j = (gr0+R)xj

• The rest of the corrupted servers contribute their private keys xj and compute:

Mj

Hj ·
∏k

t=j+1 G
xt
j

=
v·(

∏k
t=j yt)

r0+R

(gr0+R)xj ·(gr0+R)
∑k

t=j+1
xt

= v

There is a simple countermeasure to this attack which is first to perform the shuffling and then the
re-encryption.
In [1] a more efficient variation of the [84] protocol was proposed. To put it simply, [1] made uni-

versal verifiability of [84] independent of the number k of mix servers (O(ηN) for error probability
1
2η ), by having them present a single aggregate proof which is checked by the verifier. It assumes a
reencryption based El Gamal mixnet, where the decryption key is split among the mix servers. The
scheme employs a bit commitment scheme, that allows each server to commit to the secret permutation
and the randomization values used. The aggregate proof scheme works as follows:

• Each mix server, P , cuts by performing a secondary mix with permutation λj and random values
{tij}Ni=1, thus producing a new output list.

• Verifier issues a random bit c as his challenge

• If c = 0:

– P commits to λj , {tij}Ni=1 and distributes the commitments to the rest of the servers.

– After all commitments are distributed they are opened and are validated by each participant

– The last mix server publishes the composition of λ of λj and the sum of random values
following the permutations namely t̂ik =

∑k
j=1 tiλj ···λ1(i)

– Each mix server validates the items published by the last mix server

• If c = 1:

– P publishes the permutationϕj = π−1
j ϕj−1λj and randomisation values {wij = wλj(i)(j−1)+

tλj(i)(j−1) − rϕj−1λj(i)(j−1)}Ni=1 where the initial values are the identity elements.

– The final mix server publishes ϕk = π−1
k · · ·π

−1
1 λk · · ·λ1 and {ŵik}Ni=1
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As can be seen in response to both challenges the last mix server publish an aggregate value. As a
result the will be only one verification. Since the protocol has 1

2 soundness it can be repeated η times.
A similar proof can be given for correct decryption. While the verification complexity decreases to
O(ηN), the communication complexity of the scheme increases.

4.3.2 Permutation and Sorting Networks

The first efforts to eliminate the costly cut and choose based verification of [84] and [1] were presented
in [92] and in the Millimix network ([91]). The former is based on permutation networks, which is
a N × N construction that receives as input a list of N items and outputs them in permutted order
for a specific permutation of N items. The latter is based on sorting networks, which are permutation
networks for which the selected permutation sorts the input items based on the permutted indices.
Both can be recursively constructed from 2 × 2 elementary constructions, called switching gates or
comparators respectively, and utilise the homomorphic properties of El Gamal.

Fං඀ඎඋൾ 4.2: Reencryption in a 2× 2 mixnet

A simple 2 × 2 mixnet can be constructed from such a switching gate. Its input is two ciphertexts
C0 = Enc(m0, r0) and C1 = Enc(m1, r1). It applies a reencryption to the inputs resulting in C ′

0 =

Reenc(C0) = Enc(m0, r0 + r′0) and C ′
1 = Reenc(C1) = Enc(m1, r1 + r′1). The output is C ′

b

and C ′
1−b where bR ∈ {0, 1}. In a comparator the output is not selected randomly but it implements

a function f such that: f(x, y) =

{
(x, y), if x < y

(y, x), if x ≥ y
, where x, y are the permutted indices. In both

cases, if the encryption scheme is semantically secure, then an adversary cannot distinguish which input
C0, C1 encrypts m0 and m1. This implies that they cannot tell which reencrypted output corresponds
tom0,m1 as well.
This simple 2 × 2 mixnet can be made verifiable by using a providing a proof that each C ′

b is a
reencryption of either C0 or C1. More spefically:
Proposition 4.1. The ciphertext C ′

1 = (G′
1,M

′1) = (gu,m′
1 · yu) is a reencryption of the ciphertext

C1 = (G1,M1) = (gt,m1 · yt)

Proof. C ′
1 is a reencryption of C1 iff they both encrypt the same message, meaning that m′

1 = m1.
By dividing the parts of both ciphertexts we get:

G′
1

G1
=

gu

gt
= gu−t

M ′
1

M1
=

m′yu

myt
= yu−t
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Equivalently we need to show that G′
1

G1
,
M ′

1
M1

have the same logarithm in bases g, y respectively, that is
logg

G′
1

G1
= logy

M ′
1

M1
. This can be achieved using the Chaum-Pedersen protocol we reviewed in 2.1.7.2.

This is the approach defined in [92]. A simpler but equivalent method is described in [72], where
it is noted that if C ′

1 is a reencryption of C1 then the ciphertext (
G′

1
G1

,
M ′

1
M1

) is an encryption of 1 with
randomness r = u − t. Then Y =

G′
1

G1

z1 M ′
1

M1

z2
= (gz1yz2)r = Gr, where z1, z2 ∈R Zq. Proof of

reencryption now becomes equivalent to running the Schnorr protocol for knowledge of discrete log r
of Y in base G.

The correctness of the permutation corresponds to the following statement:
Proposition 4.2. Prove that {C ′

0, C
′
1} is a reencryption of a permutation of {C0, C1} without revealing

the correspondence.

Proof. We must prove that C ′
0 reencrypts C0 and C ′

1 reencrypts C1 or that C ′
0 reencrypts C1 and C ′

1

reencrypts C0.

(C ′
0 = Reenc(C0) ∧ C ′

1 = Reenc(C1))
∨
(C ′

0 = Reenc(C1) ∧ C ′
1 = Reenc(C0))

What is required is the execution of 4 Chaum-Pedersen protocols. In order not to leak the permutation
however this proofs must be converted to witness indistinguishable using the framework we described
in section 2.1.7.3.
The above relation is equivalent to:

(C ′
0 = Reenc(C0) ∨ C ′

0 = Reenc(C1))
∧
(C ′

1 = Reenc(C1) ∧ C ′
1 = Reenc(C0))

since:

(C ′
0 = Reenc(C0) ∨ C ′

1 = Reenc(C0)) and (C ′
1 = Reenc(C1) ∨ C ′

1 = Reenc(C0))

are true and cancel out.
This is a conjunction of 2 proofs of knowledge of discrete logarithm (see 2.7).

Alternatively [91] one can prove that C ′
0 = Reenc(C0) ∨ C ′

0 = Reenc(C1) and that C0C1 =

Reenc(C ′
0C

′
1).

Having created a private, verifiable and correct 2×2mixnet we can generalise it to aN ×N mixnet.
As a result, the resulting mix network as a whole will simulate the permutation: π = πn◦· · ·◦π1. In the
literature for permutation networks it is well known that such a permutation network can implement all
permutations and requires Ω(nlogn) gates [41]. One way to compose the switching gates is the Benes
Network ([92]).

Fං඀ඎඋൾ 4.3: Recursive construction of a permutation network (Modified from http://goo.gl/
iNiwXB)

The question that remains is how to distribute the switching gates to the mix servers. Firstly both
propositions on mixing with permutation networks agree on the use of threshold El Gamal. That is,
all the mix servers obtain a share xj of the decryption key x and calculate their respective public key
yj = gxj which is a share of the public key y that is used to encrypt the votes, which are subsequently

http://goo.gl/iNiwXB
http://goo.gl/iNiwXB


Chapter 4. Mixnets 64

written in the BB. Subsequently the mixnet operates. There are two modes of operation, borrowing
from [108]:

• Reencryption [91] lets eachMj uses the network in its entirety. [92] assigns a subset of the gates
to each mix server. Both proceed in the same serial manner however: After the execution of the
protocol fromMj , verification of the generated proofs take place. If the proofs validate the next
mix server uses the sorting network and so on. On the other hand if the proofs of a mix server
do not validate, then his output is ignored, that is Mj+1 operates on the output of Mj−1. This
process is repeated t + 1 times where t is the number of honest mix servers. After the mixing
process has concluded the mix servers cooperate to decrypt the output.

• Decryption The second mode of operation suggested in [92] assigns a subset of the gates to each
mix server in a way thatMj controls a column. EachMj validates the proofs of every previous
one. If the proofs of a single server Mĵ are invalid then all outputs from ĵ to j − 1 is ignored,
and Mj operates on the output of Mĵ−1. To do so however the output of the intermediary mix
servers needs to be decrypted. As a result t+1mix servers must cooperate to decrypt it. After all
these tasks Mj operates the column it is assigned and produces the required proofs. This mode
of operation results in a decrypted output.

Both mixnets based on permutation networks exhibit complexity of O(tnlog2n). This might seem
larger than the O(ηkn) complexity of the [84] mixnet, but for smaller populations it is actually more
efficients due to the smaller constanst used. A security issue in [92] was discovered by [2]. The prob-
lem regards permutation networks that can generate (due to the number of switching gates they contain)
more than the N ! permutations of N items. Then some permutations have more representations then
other. If the switching gates operate randomly and independently (e.g. by outputting (C0, C1) or
(C1, C0) using a random control bit), it is proved that the network as a whole is biased and selects the
permutations with more representation more often. A simple solution is to preselect a permutation,
uniformly before the mixing process and set the switching gates accordingly.

4.3.3 Furukawa - Sako

During that time, Furukawa and Sako [59] proposed another mixing technique that except for veri-
fiability was very fast (18n exponentiations). Their paper focuses completely on verifying a shuffle
without examining applications in voting or elsewhere. The main idea behind their work was to repre-
sent mixing with permutation π by using a permutation matrix, which is a matrix A with:

Aij =

{
1, π(i) = j

0, otherwise
.

For example the permutation π(1, 2, 3) = (2, 3, 1) can be represented using:0 1 0

0 0 1

1 0 0


As a consequence shuffling and reencryption of a list of El Gamal ciphertexts Lj = {(gi,mi)}Ni=1 to

produce Lj+1 = {(g′i,m′
i)}Ni=1 takes the form:

g′i = gri · gπ−1(i) (mod p) = gri ·
n∏

j=1

g
Aji

j (mod p)

m′
i = yri ·mπ−1(i) (mod p) = yri ·

n∏
j=1

m
Aji

j (mod p)
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Note that ifπ−1(i) = j, thenπ(j) = iwhichmeans thatAji = 1 (mod q). SinceA is a permutation
matrix, for each i, a single Aji in the products above is 1 (mod q).
With this representation, to verify the shuffle of Lj to Lj+1 Mj must:

1. Prove that there exist randomness ri and matrix [Aij ] that satisfy the above relations for all
(gi,mi) and (g′i,m′

i).

2. Prove that to generate each output pair, the same ri, [Aij ] have been applied to the input pair.

3. Prove that the matrix [Aij ] is a permutation matrix.

The first two items can be proved using a variation of the Chaum-Pedersen Protocol (2.1.7.2).
In order to prove that A is a permutation matrix [59] use the following observation:

Proposition 4.3. A matrix [Aij ] is a permutation matrix iff ∀i, j, k the relations below hold:

Pij =
n∑

h=1

Ahi ·Ahj =

{
1 i = j

0 otherwise

Pijk =

n∑
h=1

Ahi ·Ahj ·Ahjk =

{
1 i = j = k

0 otherwise

It is easy to see that the relations above hold in the case of a permutation matrix. The intuition, for
the reverse, is that the equations, imply that exactly a single item x for each row and column is non
zero. Moreover x2 = 1 (mod q) and x3 = 1 (mod q), which implies that x = 1.
As a result the protocol for proving a shuffle becomes a combination of the following proofs:

1. P1 Prove that P knows ri, Aji such that g′i = gri ·
∏n

j=1 g
Aji

j (mod p) where [Aij ] statisfies
Pij = 1 if i = j and Pij = 0 otherwise.

2. P2 Prove that P knows ri, Aji such that g′i = gri ·
∏n

j=1 g
Aji

j (mod p) where [Aij ] statisfies
Pijk = 1 if i = j = k and Pijk = 0 otherwise.

3. P3 Prove that the exponents used are the same in both of the relations above

4. P4 Prove that the same exponents are used for both parts of the input items (gi,mi)

As far as the first part of P1 is concerned, that is, knowledge of ri, Aij and correctness of the trans-
formation, the verifier will check a single relation. That is the proof will be a batch proof:

• Offer:

– P selects random values α, {ai}ni=1 to blind the randomization and matrix values respec-
tively.

– He calculates g′ = ga
∏

j g
aj
j

– He sends g′

• Challenge: V sends the n random challenges {ci}

• Response P computes and submits s =
∑

j rjcj and {si =
∑

j Aijcj + ai}
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• Verification: V checks if gs
∏

j g
sj
j = g′

∏
g
cj
j

Completeness follows since:

gs = g
∑

j rjcj+a = ga
∏
j

grjcj

∏
j

g
sj
j =

∏
j

g
∑

k ajkck+aj
j =

∏
j

(g
aj
j

∏
k

g
ajkck
j )

By combining and rearranging we get:

gs
∏
j

g
sj
j = (ga

∏
j

grjcj )(
∏
j

(g
aj
j

∏
k

g
ajkck
j )) =

= (ga
∏
j

g
aj
j )(

∏
j

(grjcj
∏
k

g
ajkck
j )) = g′

∏
j

(grj
∏
k

g
ajk
j )cj =

g′
∏
j

g′
cj
j

In order to prove the second part of P1, namely that the entries [Aij ] indeed satisfy that Pij = 1 ⇔
i = j and Pij = 0⇔ i ̸= j the following steps will be merged with the proof above.

• Offer: P generates a random value σ and utilises α, {ai}ni=1

• Challenge: V has already sent the n random challenges {ci}

• Response: P calculates:

– ẇi = g
∑

j 2ajAji+σri

– ẇ = g
∑

j a
2
j+σα

• Verification: V checks if wsg
∑

j(s
2
j−c2j ) = ẇ

∏
j ẇj

cj

For completeness it must be noted that

s2j = (
∑

k Ajkck + aj)
2 = (

∑
k Ajkck)

2 + 2aj
∑

Ajkck + a2j

The first term reduces to c2j if the matrix A has property we want to prove. As a result s2j =

c2j + 2aj
∑

Ajkck + a2j

As a result wsg
∑

j(s
2
j−c2j ) = wsg2aj

∑
k Ajkck+a2j = gσ(

∑
j rjcj+α)g

∑
j 2aj

∑
k Ajkck+a2j

By rearranging the terms we get: wsg
∑

j(s
2
j−c2j ) = gσα+

∑
j a

2
j gσ

∑
j rjcjg

∑
j 2aj

∑
k Ajkck which

can easily lead to the required relation.

The proof P2 from the 4.3.3 is implemented in a similar manner. It is more complex however since
the hiding of the permutation table that satisfies the second property creates a cubic polynomial. The
final protocol is the combination of P1, P2, P3, P4. It is complete, sound upon the DLOG assumption
and does not leak any information about the permutation. The number of exponentiations required for
the protocol is 18n and the communication complexity is n211 bits. In a subsequent paper [58], the
previous proof of a shuffle is combined with a decryption proof, to yield a complete mixnet and a voting
protocol.
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4.3.4 Neff Verifiable Mixnet

Around the same time as [59], Andrew Neff [98] proposed a new proof of a shuffle of ElGamal cipher
texts that can be used in a verifiable mixnet. It is unconditionally sound and computationally zero
knowledge. Its main idea resides on a key property of polynomials: A polynomial is unaffected by
permutation of the roots:

∏n
i=1(mi − x) =

∏n
i=1(mπ(i) − x). To utilise this idea both inputs and

outputs are represented as polynomials Pin, Pout with coefficients∈ Zq. The verifier chooses a random
t ∈ Zq and evaluates both input and output polynomials. If mixing is correct the results match with
very high probability. The scheme was improved in [99].
Specifically, the Neff proof consists of three subprotocols:

• Iterated Logarithmic Multiplication Proof Protocol (ILMPP): A generalisation of Chaum and
Pedersen protocol to prove equality of the product of a sequence of discrete logarithms

• Simple n-shuffle Proof Protocol: It verifies the evaluation of a pair of polynomials at a common
random point when the coefficients are known.

• General n-shuffle Proof Protocol: It verifies the evaluation of a pair of polynomials at a common
random point when the coefficients are not known.

At first we shall describe the ILMPP subproof: Both the shuffler (P) and the verifier (V) know Zp

sequences {Xi}ni=1, {Yi}ni=1. The prover also knows {xi = loggXi, yi = loggYi}ni=1 and wants to
convince the verifier that

∏n
i=1 xi =

∏n
i=1 yi without exposing the logarithms. For n = 2 it is the

Chaum Pedersen protocol with the two sequences being {h1, g2}, {h2, g1} (as in 2.1.7.2) respectively.
The proof takes place in 3 rounds:

1. P picks n− 1 random offer values θi ∈ Zq and uses them to compute and send n values Ai:

A1 = Y θ1
1

· · ·

Ai = X
θi−1

i · Y θi
i

· · ·
An = Xθn−1

n

2. V generates a random challenge γ ∈ Zq

3. P calculates n− 1 random response values ri = θi + γ(−1)i
∏i

j=1
xj

yj
and sends them to V 1

4. The verifier accepts if all the above relations hold.

Y r1
1 = A1 ·X−γ

1

· · ·
X

ri−1

i · Y i
i = Ai

· · ·

Xrn−1
n = An · Y (−1)n−1·rn−1

n

1In order to keep the exposition simple we do not deal with edge cases which almost never occur. The full exposition can
be found in [98].
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It is proved that the subproof is complete, that is pairs {θi, ri} can always be found if the prover indeed
knows the logarithms {xi, yi} and

∏n
i=1 xi =

∏n
i=1 yi. In addition it is sound with probability

1
q and

honest verifier zero knowledge.
The second part of the Neff scheme is called the simple n-shuffle proof protocol. It allows a prover

to commit to a permutation without revealing it, by using the ILMPP protocol. The public data of the
protocol are again n Zp sequences {Xi}ni=1, {Yi}ni=1 and two commitments C,D. P has also private
inputs the discrete logarithms of the sequences and the opening of the commitments. The objective is
to convince the verifier that he knows the a permutation π such that Y d

i = Xc
π(i) without revealing

any discrete logarithm or permutation. Note that the permutation is implicit in the ILMPP, however
in this case it is blinded using the committed values. The simple n-shuffle proof protocol is a 4 round
protocol. More spefically:

• Verifier challenges with random t ∈ Zq

• BothP andV computeCt, Dt and run the ILMPPwith the following 2n sequences: (X1
Dt , · · · , Xn

Dt , C, · · · , C)

and ( Y1
Ct , · · · , Yn

Ct , D, · · · , D)

The above protocol is complete because, successful execution of the ILMPP protocol will mean that:
ck

∏n
i=1(xi − dt) = dk

∏n
i=1(yi − ct). By dividing with cndn and reversing the signs, we get the

equivalent relation:
∏n

i=1(t −
xi
d ) =

∏n
i=1(t −

yi
c ) which can be translated as equality of n degree

polynomials in t. If dyi = cxπ(i) ⇒ yi
c = xi

d then the polynomials are obviously equal.
Soundness is probabilistic, since equality without knowing the logarithms and the permutation might

mean that the challenge was a root. This can occur with probability n−1
q , since then degree terms cancel

out. Alternatively, it might mean that P tries to cheat. This happens with probability n−1+q
q2

.
In a typical shuffle of El-Gamal ciphertexts, however, the prover does not know the discrete loga-

rithms of the input sequence. As a result the previous proof must incorporate this scenario. This gives
us the General n-shuffle Proof Protocol. The public input of the protocol are again n Zp sequences
{Xi}ni=1, {Yi}ni=1 and a single commitment C,D. In this case P can only open the commitments. The
objective is to convince the verifier that he knows the a permutation π such that Y d

i = Xc
π(i) without

revealing any discrete logarithm or permutation. Themain idea of the proof is to haveP verifiably com-
mit to a permutation by executing the simple n-shuffle proof using random exponents exchanged with
V . Using the committed permutation then, V is convinced that P indeed knows the dsuch thatD = gd.
In more details the protocol consists of the following steps:

• Commit to permutation

– P generates randomly two non zero n-item sequences of exponents {e1i}, {e2i} and sends
{E1i = ge1i}, {E2i = ge2i} and sends them to V

– V challenges with two different non zero n-item sequences {f1i}, {f2i}

– P calculates {F1i = g
df1π−1(i)e1π−1(i)}, {F2i = g

df2π−1(i)e2π−1(i)}

– V challenges with a single random value c

– Both P and V compute the sequences Ui, Vi respectively as:

* P : Ui = gf1ie1i+cf2ie2i , V : Ui = Ef1i
1i E

cf2i
2i

* P : Vi = g
df1π−1(i)e2π−1(i)+cdf2π−1(i)e2π−1(i) , V : Vi = F1iF

c
2i

* They execute the simple n-shuffle proof for (U, V, g,D = gd)

– If the proof succeeds the V is convinced that P knows the values of ui = logUi, vi =

logVi, d and the permutation π.
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• Prove knowledge of the d used in Ui, Vi, Xi, Yi

• This can be done using n executions of the Schnorr Protocol for knowledge of d, along with a
Chaum Pedersen proof.

Groth's Application To Homomorphic Schemes In [65], Jens Groth applied the main idea of [98]
to the mixing of homomorphic ciphertexts, obtaining efficiency improvements. In the particular setting,
the input and output ciphertexts under π satisfy: {E′

i = Eπ−1(i)E(0, ri)}ni=1.
The homomorphic property implies that if the mix server is honest, then the product of the outputs

is a reencryption of the product of the inputs:∏n
i=1E

′
i =

∏n
i=1Eπ−1(i)E(0, ri) =

∏n
i=1E(mπ−1(i), r

′
i), E(0, ri) = E(

∑n
i=1mi,

∑n
i=1 ri +

r′i) =
∏n

i=1EiE(0, ri)

This provides a way to check correctness. As a result the scheme works as follows:

• P and V exchange knowledge of a permutation π without revealing it.

– To this end P commits to π by selecting n random elements {si}, applying π to them to
create {sπ(i)}, and committing to the result csi = commit(sπ(i)). For efficiency a homo-
morphic multicommitment scheme can be used, where k items are committed to simulta-
neously

– V challenges with n items of its own {ti}

– P applies pi and returns them to V as commitments cti = commit(sπ(i))

– V sends a single value λ

– P calculates {si + λti} and proves that a shuffle of it is contained in {csicλti}, by using the
idea of Neff's simple n-shuffle proof.

• V selects challenges which will be used to blind the inputs and the permuted outputs

• P proves the equality of the products of the blinded inputs and output

4.3.5 Sender Verifiability

As we described in 4.2.2, a decryption only mixnet cannot be achieved using the underlying El Gamal
cryptosystem, since the first part of the ciphertext would remain unchanged. In [138] DouglasWikström
overcomes this difficulty by proposing a two component key, so as to enable modifying both parts of
each ciphertext. In more detail:

• The secret key of each mix server is constructed from a pair of values generated by each of the
participants (wj , xj) ∈ Zq2 , while the public keys are (gwj , gxj )

• The public key is computed iteratively from the last to the first mix server:

– The last mix server selects (g, 1) and calculates (zk, yk) = (gwk , gxk)

– Each previous mix server computes (zj , yj) = (z
wj

j+1, yj+1z
xj

j+1) that is, raises the first
component of the public key created so far with the first part of his own share, andmultiplies
the second component of the public key so far with the first raised to the second component
of his share.

– As a result the first mix server has computed the key of the mixnet as

(Z1, Y1) = (g
∏k

t=1 wt , g
∑k

t=1(xt
∏k

s=j+1 ws))
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– Each intermediate key calculated with this process can be made public.

• Each voter i encrypts using the classical El Gamal process, by selecting a random value ri and
computing (Zri

1 , viY
ri
1 )

• Each mix server Mj receives as input a list of tuples and decrypts each item in it, by raising
the first component to 1

wj
and the multiplying the second component to −xj

wj
and following the

normal El Gamal decryption. More specifically for a single item (aj−1, bj−1) = (Zr
j , vY

r
j ) we

get aj = a
1
wj

j−1 = gr
∏k

t=j+1 wt = Zr
j and bj = bj−1a

−xj
wj

j−1 = mY r
j

• After the decryption the mix server sorts the partially decrypted items, in effect applying the
permutation

This construction has a desirable side effect, that is called sender verifiability. The voter can compute
the partially decrypted item by retrieving (Zj , Yj) apply the encryption producing (Zr

j , vY
r
j ) and search

for it in the input list.

4.3.6 Performance Analysis

In order to compare the above schemes, we try to calculate their efficiency in terms of computation
and communication cost. The computation cost is is measured in the total number of exponentiations
for reencryption, proof and decryption. The authors however use precomputed values, and we could
not exactly compare their schemes. As a result, we refer to [22] as a source for the total number of
exponentiations of n items by k servers. The performance of the mixnets described above is:

• [84] 2n+ 642nk + (2 + 4k)n

• [91] 2n+ 7nlogn(2k − 1) + (2 + 4k)n

• [59] 2n+ 18n(2k − 1) + (2 + 4k)n

• [98] 2n+ 8n(2k − 1) + (2 + 4k)n

According to [22] the Neff mixnet is the fastest one, while according to [65] the Furukawa-Sako is
the fastest.Everybody agrees though that verification via such proofs is computationally expensive. As
a result the next step in the mix net research was to construct verifiable mix nets without using zero
knowledge proofs.

4.4 Almost Verifiable Mixnets

The protocols in this section provide a performance enhancement over verifiable mix nets by sacrificing
either privacy or correctness. This, in simple terms, means that the mix net will unveil the correlation
between some of the inputs and the output or provide a less 'convincing' proof of correctness or both.
The specifics of each protocol aim to minimise the probability the association between a voter and vote
is discovered and that a mix server cheated, by injecting fake votes or changing a subset undetected or
aided in privacy breaking. However, as we shall see, this is not always the case. Various attacks have
been demonstrated that utilise the tagging concept first presented by Pfitzman and described earlier the
alleged security of most of these constructs.
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4.4.1 Almost Entirely Correct Mixing

The first such case to describe here was proposed in [22]. It is based on the idea, that we might not need
a 100% correct proof of mixing, especially if the margin of victory is wide. An almost correct proof of
mixing might do. This approach yields a huge speed up over previous techniques. For instance and for
106 votes it provides instantly a 99% correct proof of mixing. The method employed consists of the
following steps:

• Verifier selects a random subset S of mix server inputs

• Calculates the product πs

• Reveals S to the mix server.

• Ask to produce a set of outputs S′ st. πs = πs′

• This challenge is easy for an honest mix server, as it can simply apply the permutation

• But for a cheating mix server it might not be impossible to find such S′.

More specifically:

• Let the input ciphertexts be El Gamal encryptions Ci = (gri ,mi · yri)

• Let the output ciphertexts be Cπ(i) = (gr
′
i ,m′

i · yr
′
i)

• Each serverMj generates and commits to random rj .

• All mix servers calculate r = ⊕jrj and agree on a security parameter α.

• Each Mix-ServerMj proves that
∏n

i=1mi =
∏n

i=1m
′
i using 2.1.7.2

• Generate α sets S1, · · · , Sα, Si ⊂ S by including each input item with probability 1
2 where

randomness stems from r.

• The sets S1, · · · , Sα are given toMj .

• Mj must produce S′
1, · · · , S′

α st. ∀i ∈ {1, · · ·α}∥Si∥ = ∥S′
i∥ and

∏
k∈Si

mi =
∏

k∈S′
i
m′

i.
Proof is given using using 2.1.7.2

• If a server fails in the previous test it is considered dishonest and is excluded and the protocol is
restarted.

• If the protocol succeeds then the ballots are decrypted.

Now for k mix servers and n inputs the following performance evaluation apply:

• Proof Cost = 2α(2k − 1) exponentiations

• Decryption Cost = (2 + 4k)n

• Privacy Every input is hidden among n/2α.

• Cheating will be detected with probability 1− 5
8

α or the DLOG problem can be solved in poly-
nomial time.

The authors in [22] calculated that in an election with 160K voters and α = 6 subsets to check per
server every vote is hidden in 2500 votes and cheating will be detected with probability 94%.
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4.4.2 Optimistic Mixing

A best of both worlds approach was given in [64] and is called Optimistic or Exit - Poll Mixing. It
assumes an El Gamal re-encryption mixnet. It produces a fast proof when all mix servers are honest.
If a cheating mix server is found the no output is produced, and all the relevant data are forwarded to a
verifiable mixnet, in a way that privacy is not compromised. As it is designed to execute several mix
sessions with the same set of keys all the proofs of knowledge are bound to a session id.
The technique in this approach borrows form [22] as it uses a proof of product again, albeit with a

checksum. The mix net is given input the encryption of plaintexts with cryptographic checksum. In
order to prove correct operation the mix net the relationship

∏
input plaintexts =

∏
output plaintexts

must be satisfied without any knowledge of the plaintexts (for privacy reasons). However product
preservation does not imply absence of cheating, and for this reason the check sum is employed. If
cheating occurs some plaintexts will have been replaced so that the product is not altered, but the
checksums will still be invalid. An invalid check sum however does not only point to a cheating mix
server but to a cheating voter as well (the checksum was invalid from the onset). The protocol requires
extra investigation to discriminate between the two cases.
In order to apply the checksum solution, the input plaintexts vi (and the output plaintexts v′i) are

restricted to a particular format so that it is infeasible {vi} ̸= {v′i} and
∏

vi =
∏

v′i. The checksums
are computed by applying a hash function to the input. A triple (E(m, r), h(m), E(h(m), r′)) is created
in this form and this triplet is given to the mix net. The authors of [64] cite a theorem by Wagner that
states that it is impossible to find two different lists of ciphertexts of equal length {(ui, vi)}Ni=1 ̸=
{(u′i, v′i)}Ni=1 such that

∏N
i=1 h(ui, vi) =

∏N
i=1 h(u

′
i, v

′
i) in a group where the discrete logarithm is

hard.
Because there will be two mixing sessions extra care must be given to privacy. As cheating will be

detected after the fact not much can be done if privacy has been compromised or the votes have been
decrypted. For example:

• User i submits ti = (E(mi, ri), E(h(mi), r
′
i) )

• Cheating mix server replaces u1 with t1 · t2 and t2 with (1, 1, 1, 1).

• Cheating will be discovered after the decryption

• The cheating server will be disqualified but

• If mixing is restarted the cheating server will be able to distinguish the output of the first two
users from the outputs of the rest by comparing the output of the second run with the output of
the first run by checking for the product of the two plaintexts

In order to avoid this situation double enveloping is proposed:

• User input is encrypted twice

• Each user submits the triple: ti = (E(Gi, ri), E(Mi, r
′
i), E(h(M,G), r′′i ) ) where (Gi,Mi) =

(gri ,m · yri) = E(mi, ri)

• Verification Step: Decrypt Once

• If verification succeeds (both product and checksum) then decrypt twice and tally

• If cheating is discovered then encrypted inputs the cause of cheating is sought:

– Cheating senders: Solution: Ignore them, and proceed with the rest
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– Cheating mix servers: The messages will be forwarded to the slower mixnet with the mix
server replaced

• Cheating will not expose privacy, since the cheating server will cheat on (single) ciphertexts

However extra investigation must be give for the invalid triples, the ones where wi ̸= h(ui, vi).
Their path through the mix netback is back-traced by the following process:

• Last server reveals: (input, randomisation)

• Validate that the triple can be obtained from the input

• Repeat until the first server

• If the first server is reached then classify as user cheating

• If a server fails validation the classify as server cheating

4.4.2.1 Attacks

In [137] a variety of attacks are described against optimistic mixing. The main idea is based on the
attack of Pfitzmann [111], adapted to the double enveloping setting. Moreover, some weaknesses that
apply to the particular protocol are used. In this section we detail these attacks:

Break privacy when all servers are honest This attack exploits the fact, that the protocol employs
proof of ciphertext knowledge and not of message and that it uses the same keys for both layers of
encryption. An attacker must be able to send 2 messages to the mixnet (e.g. by corrupting two vot-
ers) in order to mount this attack. The attacker targets user Alice, who submits messagem to mixnet.
The message is 'double enveloped': m →E1→ (µ1, µ2) →H→ (µ1, µ2, w) →E2 . The attacker ran-
domly select γ, δ and calculates µδ

1, µ
δ
2, wδ = H(µδ

1, µ
δ
2) and µγ

1 , µ
γ
2 , wγ = H(µγ

1 , µ
γ
2) and submits

E(µδ
1), E(µδ

2), E(wδ) and E(µγ
1), E(µγ

2), E(wγ), by corrupting two voters. The mixnet operates as
usual and since all mix servers are honest removes both layers of encryption and produces output Lk.
Then the attacker raises outputs to δ

γ producing output L′
k. This is more clear in the following sketch:

output→D1



(u1, v1, w1)
· · ·

µδ
1, µ

δ
2, wδ

· · ·
µ1, µ2, w
· · ·

µγ
1 , µ

γ
2 , wγ

· · ·
(uN , vN , wN )


→D2to produceLk



m1

· · ·
mx = mδ

· · ·
m
· · ·

my = mγ

· · ·
mN


→ raise to δ

γ to produce L
′
k



m
δ
γ

1

· · ·
m

δ
γ
x

· · ·
m

δ
γ

· · ·
m

δ
γ
y = mx

· · ·
m

δ
γ

N


Fං඀ඎඋൾ 4.4: Pfitzmann attack in optimistic mixing

Between Lk and L
′
k there will be 2 identical outputs mx = mδ. Now the attacker can calculate

m
1
γ
y = m in Lk, where my is indicated by the duplicate in L

′
k. As a result the message m will be

revealed. The attacker will search the output list for duplicates and find index l of message m. Since
the attacker would like to correlate the vote with the voter, she will search the initial encryption for
ciphertext corresponding to l. As a result alice is revealed. Of course this attack can be generalised to
break the privacy of s senders, by corrupting 2s voters.
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Different Keys and Corrupt Mix Server Now, if we apply some countermeasures and strengthen
the protocol by requiring that double enveloping uses different keys, we can still exploit the fact that
the voters prove knowledge of ciphertext and not of message. This time we would require the aid
of one corrupt mix server to mount the attack. Let's denote the initial (inner) encryption as Ein and
the outer encryption (where we encrypt each triple) Eout. In [137] it is assumed that the protocol al-
lows 2 mix sessions with the same keys, which is unclear in [64]. The corrupted mix server is the
first and this is identified by the mix net after the first mix session. The attack works as follows:
During the first mix session that attacker targets user Alice with message m and user Bob with mes-
sage m′. The corrupted mix server swaps encryption of hashes m → Ein → (u, v) → H →
w → Eout → [Eout(u), Eout(v), Eout(w

′)] = α and m′ → Ein → (u′, v′) → H → w′ →
Eout → [Eout(u

′), Eout(v
′), Eout(w)] = α′. The protocol proceeds as usual. By the swapping the

output contains two invalid tuples (u, v, w′) and (u′, v′, w). Back-Tracing reveals first mix server as
cheater, but the attacker has linked Alice to (u, v) and Bob to (u′, v′). The second mix session will
be used as a decryption oracle, by a relation attack on Alice's ciphertext (u, v), similar to the one de-
scribed in the previous paragraph. The attacker will randomly select γ, δ and calculate uδ, vδ, wδ =

H(uδ, vδ) and uγ , vγ , wγ = H(uγ , vγ). Then he calculates and submitsEout(u
δ), Eout(v

δ), Eout(wδ)

and Eout(u
γ), Eout(v

γ), Eout(wγ). The mix net operates as usual and since all mix servers are honest
(now) removes both layers of encryption. The attacker raises outputs to δ

γ and correlates messages as
before.

AttackOnPrivacywithout corrupted users Adifferent attack in [137] assumes no corrupted voters
(all senders are honest) and a single corrupted mix server, the last oneMk. This mix server is extremely
powerful, which results in breaking the privacy of all users. The actions ofMk are:

1. Generate the tuple (a′, b′, · · · , f ′) = (
ak−1

a0
,
bk−1

b0
, · · · , fk−1

f0
) where aj =

∏N
i=1 aji the product

of the first components of the N inputs ofMj

2. Generate the tuple α1 = (a′ · a01, · · · , f ′ · f01)

3. Generate the listL′
k−1 by retrievingL0, the input list to themixnet, and replacing the first message

with α1

4. Instead of processing the normal input list Lk−1 process the list L′
k−1.

5. Mixnet output is a permutation and reencryption of L′
k−1, essentially of L0

If Mk doesn't get caught then after decryption, privacy is broken. It turns out that this is the case and
the corrupted server passes verification. It can prove correct reencryption:

• The modification to the input list is invisible a′k−1 = a′a01 ·
∏N

i=2 a0i = a′ ·
∏N

i=1 a0i = a′ ·a0 =
ak−1

a0
· a0 = ak−1

• SubsequentlyMk behaves honestly

During a potential investigation of invalid triplesMk cannot correlate the real Lk−1 with Lk but it is
not necessary as:

• All users are honest

• All mix servers exceptMk are honest

• Mk does not corrupt inner triples

As a result, there are no invalid triples,Mk doesn't get caught and the privacy of all users is breached.
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Attackwith two corruptedmix servers Using number theory and 2 corruptedmix servers (M1,Mk)
the privacy of a particular user can be broken, assuming all senders are honest.
Let P,Q the primes in the initialisation of the El Gamal Cryptosystem. All ciphertexts should be in

GQ. If no check is made, we can use elements in Z∗
P −GQ to 'tag' messages and break privacy. More

specifically:

• Corrupt mix serverM1 and select γ ∈R Z∗
P −GQ

• Compute α′
1 = (γ · a01, · · · , f01) where α1 is the message of Alice (target) and α′

2 = (γ−1 ·
a02, · · · , f02) where α2 is the message of another user Bob.

• Replace α1 with α′
1 and α2 with α′

2 and proceed as usual

• Corrupt mix serverMk−1 receives input Lk−1 and processes it as usual

• Output would be Lk = {βi}Ni=1 = {(·aki, · · · , fki)}Ni=1

• Search for l, l′ st: aQkl = γQ, aQkl′ = γ−Q

• Replace βl with (γ−1akl, · · · , fkl) and βl′ with (γakl′ , · · · , fkl′)

• Output the result. Decryption takes place. Alice's message isml

This attack works because: ∀b ∈ GQ : bQ = 1. As a result aQkl = γQ(gra01)
Q = γQ. The

attack passes validations since only the a-component of the tuple is changed and the products are left
unchanged: a1 = γa01γ

−1a02
∏N

i=3 a0i =
∏N

i=1 a0i = a1 and ak = γakl′γ
−1akl

∏N
i̸=l,l′ a0i =∏N

i=1 aki = ak

Delayed Effect Attack In a different kind of attack, the adversary can cancel out the cheating based
on an event after the vote casting phase. The first mix server must be corrupted asmust be the case for an
even number of senders. This scenario is applicable in situations such as double elections. The adver-
sary might inject votes in the second election, but depending on the first outcome he might cancel them
out.In more details let xi = (ai, bi, ci, di, ei, fi) = (E(ui), E(vi), E(wi)), i = 1, · · · , N be the casted
votes. The attacker can select z ∈ GQ and two voters k, l and compute x′k = (ai, bi, ci, zdi, ei, fi) and
x′l = (ai, bi, ci, z

−1di, ei, fi). Since the product is maintained an attacker might replace xk, xl andM1

Might choose to correct them or not

4.4.3 Randomised Partial Checking

The most widely used mix net of this category was proposed in [74] and it is named after the technique
of random partial checking that it uses to check on the correct operation of the mix net. Henceforth we
shall refer to the mix net proposed in [74] as RPC. More specifically, the RPC gives up the expensive
notion of proof and provides strong evidence that the mix server has operated correctly, that is the
output is indeed a permutation of the input. Strong evidence here means that the verification here is
probabilistic. The idea here is simple: The mix server are 'asked' to partially reveal the input output
correspondence. For n items, n

2 are randomly chosen and the input/output relation is revealed. Of
course, the mix server has no control of which items are revealed. The idea is that a cheater cannot
get away with altering too many votes. Of course, there is a privacy trade off, as a mix server is not
completely anonymizing the votes. This is circumvented, as each mix server reveals different portions
of its input and output. As a result, no vote can be traced end to end, and privacy is attained albeit at
the mix net as a whole. It must be noted, that one of the most important benefits of the system is that it



Chapter 4. Mixnets 76

is crypto system agnostic, as it can be used with any public key crypto system. More specifically, after
system setup, ballot Bi preparation and encryption Ci,0 = EPK(Bi), ballot validity checking takes
place. Then each mix server commits to a permutation by the following scheme:

• A commitment to integer i using witness w, ζw[i] is selected. For speed: ζw[i] = h(w||i) where
h is a hash function.

• The actual commitment ofMj to the permutation is denoted γij .

• There are two options:

– Commit to the mappings of input elements to output elements ΓIN = {ζwij [πj(i)]}ni=1

– Commit to the mappings of output elements to input elements ΓOUT = {ζwij [π
−1
j (i)]}ni=1

After permutation commitment the mix net processing takes place: Cij = Xj(Cij−1), that is the mix
server reencrypts or partially decrypts its input items or both. Then the committed permutation is
applied. The complete operation can be summarised as:

Cij = Xj(Cπ−1
j (i),j−1)

Then verification proceeds. Mj reveals a fraction p > 0 of the input - output correspondence:

• Let πj(k) = i and Cij = Xj(Ckj−1)

• Reveal (k, i, Rijk)whereRijk is the necessary information to reconstruct the processing (padding,randomness
etc.)

• Reveal the in-commitment γk or the out-commitment γi.

The specifics of what to reveal are:

• EachMj commits to random value rj

• Let R = ⊕jrj

• Let Q = h(R,BB) where BB are the contents of the bulletin board

• Qj = h(Q, j) determines which values must be revealed.

• PIN (Qj , k) = true⇒ reveal the pair with k as input

• POUT (Qj , i) = true⇒ reveal the pair with i as output

Since revelations take place extra care must given to preserve privacy. To this end RPC, pairs the
servers so that we never reveal the same pair twice. The requirement for one honest mix server, now
turns into a requirement for one honest pair of mix servers. Let j odd and (Mj ,Mj+1) a server pair .
Then:

• PIN (Qj , k) = false

• POUT (Qj , i) = true with probability 1
2

• PIN (Qj+1, i) = ¯POUT (Qj , i)

• PIN (Qj+1,m) = false

For the security analysis, let k minimum number of votes to alter election result. The probabil-
ity Prund that someone switches k votes without detection, ff p = 1

2n permutations are revealed is
Prund = 1

2k
. This can be explained as testing is independent and since mix servers are paired, we

check only predecessors or successors of intermediate items. If a mix server is not honest, we will find
it out by checking predecessor or successor.
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Fං඀ඎඋൾ 4.5: Mixnet with Randomised Partial Checking [74]

4.4.3.1 Attacks

The RPC protocol withstood 8 years of cryptanalysis and was used in many commercial products such
as Prêt à Voter and in many real elections. Fairly recently, however some serious attacks were reported
[80], both on El Gamal mix nets and Chaumian mix nets.

Tagging attacks First of all, one must note that the Pfitzmann attacks work with probability 1
2 . If the

first mix server is corrupted along with one voter then a single message can be traced. The submitted
ciphertext is c. The corrupted mix server chooses an integer δ and replaces an output by cδ. This is
not detected during verification with probability 1

2 . The output can be searched for messagesm,m∗ st
m∗ = mδ. If such a message is found then c was encryption of m. A variation of this attack, allows
the tracing of multiple messages:

• Submitted ciphertexts are {ci}si=1

• Corrupted mix server chooses integers{δi}si=1

• Replace an output by
∏s

i=1 c
δi
i

• This is not detected during verification with probability 1
2

• Search the output for messages {mi}si=1,m
∗ stm∗ =

∏s
i=1m

δi
i

• Correspondence formi is revealed

Duplicates are dangerous A chaumian RPC mix net that does not check for duplicates can be suc-
cessfully attacked with 2 corrupt mix server (M1,Mk) and s(s+1)

2 corrupted voters. The first mix server
targets ciphertexts {ci}si=1. According to the protocol it removes the first layer of encryption. The cor-
ruption takes place as for ci it makes i independent encryptions using his public key totalling s(s+1)

2

ciphertexts replaced with duplicates. The last mix server is given input that contains i + 1 duplicate
for ciphetext i. It decrypt using public key as always. But it can identify correspondence based on the
number of duplicates. While s+ s(s+1)

2 ≤ N , the privacy of O(
√
N) voters can be broken. Of course,

a simple countermeasure to this attack is to remove duplicates everywhere.
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Commitmentsmust be valid permutations Themost serious attack is based on the fact that nowhere
in [74] the commitments are validated to be correct permutations. This omission was reflected in many
implementations. The specifics assume a reencryption mix net, 2 corrupted mix servers that due to the
nature of RPC, appear as one and are operated by the same entity and 2 corrupted voters. The result is
impressive as privacy can be broken without detection.
During initialisation the submitted ciphertexts are {ci}si=1 and the attacker chooses integers{δi}si=1

calculating c =
∏s

i=1 c
δi
i . The corrupted voters post 2 messages that are reencryption of each other

ci1,0, ci2,0.
M1 is passive and only keeps track of corrupted messages permutations and reencryption random-

ness. M2 commits ci1 , ci2 to same output π2(i1) and replaces output π2(i2) with c as depicted in the
figure below:

Fං඀ඎඋൾ 4.6: Mix Server with invalid permutation

After mixing the attacker can search the output for messages {mi}si=1,m
∗ stm∗ =

∏s
i=1m

δi
i . The

correspondence for mi is revealed without detection, as both commitments verify since ci1 , ci2 are
reencryptions of the same message andM2 can provide the randomness to prove it.
More generally, if the attacker can provide r + 1 reeencryptions of a message and r + 1 false com-

mitments then she can track r · s messages.
In a extreme scenario this allows to rig an election undetected:

• Corrupt the first mix server and the first sender

• First sender sends m as plaintext c10 = Enc(m)

• Replace all the ciphertexts with c10

• Corrupted mix server commits all outputs to 1

• Corrupted Mix Server can pass verification

Of course, it would be more realistic to replace the actual outputs with the distribution of votes that she
likes.
The above apply for unopened commitments as well. If unopened commitments are not be consistent

with a permutation, an attacker might replace a message sent by an honest sender with a cheating
message and commit to the same output. The detection probability is equal to the probability of opening
both commitments namely 1

4 . For t messages the success probability equals (
3
4)

t.

4.4.4 The Puigally Mix Net

A more recent implementation, [10] was proposed by Puiggali and Castello in 2010 and was part of
the Norwegian 2011 municipal elections. It combines the principles of Randomised Partial Checking,
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Fං඀ඎඋൾ 4.7: Mix server replaces unopened commitments

Almost Entirely Correct Mixing and Optimised Mixing into a reencryption based mixnet. Verification
occurs after operation and before decryption. Inputs and outputs are split into groups with constant
group size l and group membership is revealed for all votes, by comparing

∏
inputs with

∏
outputs

for each group in zero-knowledge. More specifically the verifier groups encrypted input. For each
output the prover reveals the input group and then calculates:

• Input Integrity Proof: Products per group of input votes

• Output Integrity Proof: Products per input group of output proofs

Afterwards it provides a Chaum-Pedersen Proof that the output integrity proof is a reencryption of the
input integrity proof. The first grouping is random and for eachMj Regrouping takes place:

• Sort outputs ofMj−1 by group index

• Input group #1 Receive first item of each output group

• Input group #2 Receive second item of each output group ...

Fං඀ඎඋൾ 4.8: Puigally Mix Net

The randomness of the first grouping can be created using an application of the Fiat Shamir heuristic
[49], without any need for an external verifier. The first mix server concatenates the ciphertexts that
it must process, and supplies them to a hash function. The output is then used as a seed in a random
number generator, whose output is split into log2l sized groups which indicate group membership for
each input ciphertext. Subsequent groups can be formed using the rule described above.

4.4.4.1 Attacks

The pattern of attacks must be evident by now. Each almost verifiable mix net, accept some form of the
tagging attack, that succeeds with some probability or that uses more messages to trace its target. The
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same apply for the Puigally mix net [79]. Before we begin the description of the attacks, let's remind
ourselves of the birthday paradox: If we want to pick s elements from a multiset with b elements the
collision probability can be bounded: P (s, b) ≥ 1 − e

−s2

2·b . Now lets formulate the basic Pfitzmann
Attack:
The attacker is after the privacy of s voters with inputs c1, ..., cs. He corrupts 2 voters with inputs

c01, c02 and the first mix server/ Then he select s random exponents δ1, ..., δs and calculate u1 =∏s
i=1 c

δi
i and u2 = c01·c02

u1
to replace c01, c02 respectively. Note that the product is preserved: c01 ·

c02 = u1 · u2. In order to pass verifcation u1, u2 must belong to the same block, which happens with
probability: 1

b . If this is the case the original message might be recovered after decryption, by searching
s+ 1 messages to find the ones withm =

∏s
i=1m

δi
i .

A variation of this attack can be made undetected: Again we target privacy of s voters and we have at
our disposal a single corrupted mix server andB corrupted voters that post votes that are reencryptions
of each other for the corrupted mix server can handle them without affecting the verification process
We can get a very high probability of success with few corrupted voters. For instance with B = 3 ·

√
b

corrupted voters we can get 98% chance of success, by the following reasoning:

• Build u1, u2 'malicious messages', where u1 =
∏s

i=1 c
δi
i and u2 = c01·c02

u1

• u1, u2 must end up in the same input block

• Say that u1, u2 exit the mix server at positions e1, e2

• Let i1, i2 two corrupted messages that are indeed in the same input group

• Say that i1, i2 exit at positions x1, x2

• The corrupted mix server can swap u's with the i's to put them in the same block

Swapping can go undetected with very hight probability due to the birthday paradox, as the corrupted
mix server must prove that x1 · x2 = ReEnc(i1 · i2). But ReEnc(i1 · i2) = ReEnc(c01 · c02) =

ReEnc(u1 ·u2). Of course by hushing up the replacement the other 'processing' can be proved as well
e1 = ReEnc(u1) = ReEnc(i1) and e2 = ReEnc(u2) = ReEnc(i2). Then Probability of success =
Probability 2 corrupted messages end up in the same block

Attack On Correctness Using 1 corrupted mix server and if l ≥ b it can replaceR = 1
3

√
b−1 votes

without detection. The corrupted mix serverMj replaces thefirst R+1 votes:

• The first corrupted votes cj−1,1 · · · cj−1,R get replaced by 'malicious' messages u1, · · ·uR

• In order to maintain the product the vote cj−1,R+1 gets replaced by
∏R+1

i=1 cj−1,i∏R
i=1 uj

The replaced list L′
j−1 gets reencrypted and shuffled. The probability that 2 integers in {1, R + 1}are

in the same block is 0.05 With very high probability all such integers are in different blocks. By way
of output partitioning all end up in the same output, with very high probability and the proof is valid
both for Lj−1 and L′

j−1.
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4.5 Other Approaches

4.5.1 Online-Offline Mixing

So far, we have built our description of mixnets on the premise that they operate online, that is, during
the election. As a result the mixing and verification should happen with reasonable duration, which
justifies all the research we presented for more efficient proofs of shuffling. However, if we lift this
assumption and allow part of the mixnet operation to happen before the election, aka offline, inter-
esting side effects might come about. Firstly the performance requirements can be relaxed as far the
offline phase is concerned, since it typically lasts for days and it is not as heated as the actual elections,
because of the need for immediate results. As a consequence, the complex operations can be moved
there, leaving an efficient online phase. In addition if the online functions are public, the scheme gets
instant verifiability. This approach has its roots on the simple precomputation of values that aid in the
encryption, decryption and the various proofs used in mixnets, but has evolved in the preexecution of
entire operations.
This idea first appeared in [7] asmixnet obfuscation. Obfuscation is a term originating from software

engineering, and refers to a functionality-preserving transformation of a program's source code, that
yields no more information about it than black-box access. The actual shuffling takes place online and
in public. However the process follows a specification which can be obfuscated and proved offline,
before the cipherexts are even given. In order to be applicable a homomorphic cryptosystem should
be used. The insight of this method is that shuffling can be represented as multiplication between the
ciphertexts and a permutation matrix like the one we saw earlier in 4.3.3. This idea has the following
implications:

• Shuffling becomes deterministic as each mix server is not selecting a random permutation each
time it operates, but uses the permutation matrix that is fixed

• In order to implement homomorphic matrix multiplication, a cryptosystem is required that is both
additive and multiplicative homomorphic

• The permutation matrix should be generated in a distributed fashion, as its knowledge breaks
anonymity

• The security of the system is characterised by the inability of an attackerA to distinguish between
two permutations resulting from the application of the mixnet

In more detail the scheme operates as follows:

• Distributed generation of permutation matrix

– An identity matrix is encrypted using deterministic encryption (aka randomisation 0)

– The stakeholders form a (traditional) mixnet, which receives as input the rows of the identity
matrix. Each mix server permutes and reencrypts the entries in the permutation matrix

– In the end, an encrypted permutation matrix is generated. A single honest shareholder
guarantees the security of the scheme

• Proof of correctness

– It must be proved that the output of the mixnet is the encryption EP of some permutation
matrix P

– To this end, the verifier can simply generate encryptions of random vectors
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– These vectors are mixed with the permutation matrix

– Since they are known the verifier can check if the results were a correct shuffle

• The obfuscated mixnet is simply the encryption of the permutation matrix, which is made public

• The mixing is performed by multiplying the encryptions of the inputs with the obfuscated matrix,
utilising the homomorphic property of the scheme: ⊕N

i=1Enc(vi) ⊗ Enc(EPij) where ⊕,⊗
correspond to addition and multiplication of the plaintexts

Initially the scheme was generic and applied to every homomorphic cryptosystem that was both
additively and multiplicatively homomorphic. In [8] a clever modification was made in order to use
the Paillier cryptosystem (2.1.1.3), based on the properties we described in 2.1.2 combined with the fact
that a permutation matrix contains only the elements 1 and 0.The problem with both schemes is that
the element - wise encryption of the permutation matrix has complexity O(N2) which is impractical
even for medium populations.
A further refinement and simplification was given in [9], which uses an additively homomorphic

scheme. The offline phase generates encryptions of |v| multiples of powers of 2, where |v| is the size
of the vote. That is Vi = 2(i−1)|v|. It is well known that a multiplication with a power of 2, causes a left
shift in position dictated by the exponent in the binary representation of the number. These encryptions
are rerandomised and shuffled and then assigned to each voter V ′

π(i).

In the voting phase each voter computes (V ′
π(i))

vπ(i)Enc(0, ri) = Enc(vπ(i)2
(π(i)−1)|v|, ri). In

effect the voter has calculated the encryption of his vote, offset by (π(i)− 1)|v| bits. It is clear that the
|v| guarantees that the shifts will not overlap each other.
In the online phase all the ciphertexts are multiplied. As a result the shifted votes are added together.

In binary notation, all the permutted and ofset votes are concatenated. The result is decrypted, and each
vote is detached from the plaintext. More concretely:

N∏
i=1

Enc(vπ(i)2
(π(i)−1)|v|, ri) = Enc(

N∑
i=1

vπ(i)2
(π(i)−1)|v|,

N∑
i=1

ri) = Enc(v1|| · · · ||vN ,

N∑
i=1

ri)

It useful to note, that the approach in [9] is a combination of a mixnet (offline phase), with a ho-
momorphic cryptosystem (online phase). In order for the scheme to work all the votes should fit in a
ciphertext, that is N |v| ≤ |c|, where |c| is the length of the ciphertext of the cryptosystem used. This
limits the application of the scheme, to small populations.
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Enhancing Privacy

In this chapter, we shall review some approaches to electronic voting that do not fit into any of the
approaches discussed in the previous chapters. These approaches share the common characteristic that
they defend against stronger adversaries targeting the privacy of the votes.

5.1 Voting with Blind Signatures

Exploiting the anonymity feature of blind signatures for electronic voting was one of the goals of the
original Chaum paper [29] that put them forth. The scheme proposed there, provides ballot secrecy and
individual verifiability:

• The voter submits a blinded version of the ballot along with his registration information.

• The voting authority validates the voter data, and if the voter has the right to vote, signs the
blinded ballot and returns it to the voter.

• The voter validates the signature of the authority and posts the signed ballot anonymously.

• The authority receives the signed ballots, validates its signature and posts them to a bulletin board
for verification. Verification is done through a random pattern that the voter has embedded into
the ballot, known only to him.

The problem with [29] is twofold. Firstly, it lacks fairness as the authority knows the intermediate
voting results. In addition in the case of dispute the voter must show its vote, thus defeating privacy.
A solution was proposed in [57] that is based on separation of functions between 2 entities:

• The election authority, that knows the voter's identity but not the actual vote. As a result it can
provide authorisation and authentication checking voter eligibility.

• The tallying authority, that knows the vote but not the identity. As a result it can provide the
counting.

In greater detail, the scheme assumes an authority with a public and private key pair (eA, dA), and
voters each with their own key pairs (eI , dI). It proceeds in phases:

1. Preparation

(a) The i-th voter prepares her vote vi

83
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(b) Based on the vote and using randomness rci, she creates a ballot bi = commit(vi, rci) =

grcihvi . The bit commitment scheme ensures that the voter cannot behave differently in the
preparation and generation phases. Moreover it substitutes the random pattern that the user
must embed into her vote in order to verify it in the bulletin board.

(c) Using randomness rbi and the public key of the authority she creates the blinded ballot
bbi = blind(bi, rbi) = birb

eA
i

(d) Using her private key she signs the blinded ballot: sbbIi = signdI (bbi)

(e) She submits the message (i, bbi, sbbIi ) to the election authority, where the index i denotes
identity information for the voter.

2. Authorisation

(a) Upon receipt, the authority validates voter's signature, voter's eligibility from the identity
information and checks for double requests so as to defend against double voting.

(b) If all checks turn out ok, it signs the blinded ballot sbbAi = signdA(bbi) = bdAi rbi

(c) The authority sends sbbAi to voter i and announces the total number of voters

3. Voting

(a) Upon receipt, the voter unblinds the signed blind ballot, obtaining the signature of the au-
thority to the ballot. sbAi = unblind(sbbiA) = bdAi

(b) The signature is validated with the public key of the authority. Authority cheating can be
proved by showing bi, sb

A
i , without revealing the vote, so that everybody can verify that

the signature is invalid.

(c) If all checks turn out ok, then she anonymously sends bi, sbAi to the counter. The use of an
anonymous channel is required, to hide the network identity of the voter from the counter,
who should not to be able to trace it back to the real identity.

4. Collecting

(a) The counter validates the sbAi with the public key of the authority

(b) If all checks turn out ok, it publishes an indexed list of all the ballots along with the signature
{idx, bi, sbAi }

5. Opening

(a) Each voter validates that the voters published by the authority equal the number of ballots
and that her ballot is included on the list, with index idx. A corrupt counter, that has not
included or has altered the ballot, can be uncovered by presenting the valid ballot and the
valid signature by the authority.

(b) If all checks turn out ok, she sends anonymously the decommitment value idx, rci.

(c) A corrupt voter might send an invalid opening value in order to cancel the vote. This is a
weakness of the current scheme.

(d) A corrupt counter might claim that it received invalid values and cannot open the commit-
ment. The offended voter might object, but since the opening values are sent anonymously
the dispute cannot be resolved anonymously. A solution would be to use a verifiable mixnet
in this stage, but this will hamper the performance.

6. Counting
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(a) Now all the ballots can be made public, by opening the commitments. Since the voting
phase has ended nobody can benefit from knowledge of a premature and partial result. This
guarantees fairness. In addition the ballots to be opened are anonymous, since they were
transported through an anonymous channel and lack any other identifying information.

(b) After opening, the votes are checked to conform to the voting scheme. Then they are
counted and the result is announced.

(c) Everybody can verify the result, by computing it on their own.

Fං඀ඎඋൾ 5.1: Voting with blind signatures [57]

The scheme offers privacy in the form of anonymity, fairness, individual verifiability. Its actual
efficiency depends on the actual form of the anonymous channel used in the opening and voting phases.
On the other hand, universal verifiability is problematic in our opinion. It might be the fact that

everybody can check that the published decommitments indeed open the commitments and that the
result corresponds to the opened values. However as we saw dispute resolution is problematic, as a
corrupt voter or a corrupt counter can nullify votes without being able to prove invalidity.
Another drawback is that the scheme requires voter interaction in at least three stages, namely during

authorization, voting and opening. The last of these is the most problematic, as it requires from a voter
to wait until everybody else has cast their votes. This provides inefficiency especially if we contrast it
to the vote and go approach of [44](3.3.2).
Moreover it does not provide the stronger forms of privacy, namely receipt freeness and coercion

resistance. The commitment serves as a receipt of voting. As a result, the voter can sell his vote, and
prove his offer by providing a vi, rci that open the commitments. Alternatively a coercer might provide
the openings himself and check the bulletin board for compliance.

Variations Despite its drawbacks, a blind signature based scheme is conceptually simple, efficient
and supports many social choice functions. As a result many improvements have been proposed.
In [101], the authors reduce the voter interaction by one step. They achieve this by replacing the

commitment scheme with a threshold encryption scheme. More specifically the counter receives a
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(public, private) key pair. To maintain confidentiality the private key is split into m parts that require
a subset of minimum size t to reconstruct. Instead of committing to her choice, during step 2 of the
preparation phase, the voter encrypts with the public key of the counter. The encrypted vote is then
blind-signed by the registration authority, and sent with the signature to theBB during the voting phase.
This is the last step of the voter interaction, assuming nothing goes wrong. After everybody has voted,
the voter can simply check theBB for her encrypted vote and object if it is not found by revealing the
authority signature (Note: This step does not count towards the total number since it is not mandatory).
Instead of the opening phase, the counters collectively decrypt each vote and write the result to the
bulleting board. An omission of [101] is that they do not require a proof of correct decryption, but this
is purportedly dealt by the existence of the threshold scheme. Subsequently the votes are aggregated.
Another variation from He and Su [69] to the [57] scheme gives the voter the option and capability to

change her vote if she wishes. This is an interesting problem that has not been studied in the literature
and can potentially have important consequences. Each voter is required to have a public, private key
pair. Instead of signing an encrypted/committed ballot, the authority blindly signs the voter public key.
Consequently, instead of submitting a ballot, the voter submits their public key. The actual ballot sent
during the voting phase the is encrypted using a symmetric cipher. To decrypt it the voter must 'open'it,
by sending the symmetric key. It will, of course, be encrypted with the certified public key, which acts
as a sort of blind identifier and allow to group the votes. As a result, if a voter changes his mind, she
can omit to send the symmetric key, and/or resubmit the new in a similar manner. To prevent double
voting, the counter can check that there is only one decrypted vote per public key or retrieve the last
vote per public key.
The scheme of [57], can provide an idea on how to build a simple anonymous (one-time) login system

that can be used for voting. Such a system can be used where there is a requirement for voting, but the
requirements for integrity and secrecy are of little importance and only anonymity is required. Such a
system was discussed in [67].

• The participants register with a registration authority using their real names and passwords.

• When voting is required the participants create a random credential m and commit to it using a
hash function h(m)

• Then the credential is blinded, using for example the technique described in chapter ?? creating
bm = h(m)kemodn

• To validate that they are indeed authorised to vote, they login with their real credentials and
submit bm

• The registration authority checks that the login credentials are valid and that the participant is
authorised to vote. In that case, it signs the blinded credentials bsA = bdm = h(m)dked =

h(m)dk (modn) and presents them to the participant

• The participants unblinds the signature and retrieves the signature on the committed credential:
bsAk

−1 = h(m)d = sA

• As a result the participant has an anonymous usernamem signed by an authority that can validate
his identity.

• Now when voting is due, the participant providesm and sA to a login form. The voting system
retrieves the public key of the authority and validates whether seA = h(m). If the signature is
valid then the participant can vote.
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A variation of this idea has been also proposed in [27]. Instead of a one-time login, the voter can
create multiple identities, called pseudo-voter identities (PVID). The registration authority blindly signs
each one of them. Each PVID should be used with a single authority (either tallying, verifying etc.)
An interesting implementation of the main scheme presented in this paragraph was given in [95].

It avoids the malicious software vulnerability found in client computers by using smartcards that can
execute programs written in the Java programming language. In the most recent version these programs
can execute network calls and implement the HTTP protocol both as client and as servers. Furthermore,
the Java Information Flow, controls the reading and writing of data between the processes that execute
in the Java card or on the network. The interesting aspect of their work in the protocol level is the
implementation of the anonymous channel. Instead of using a mixnet they execute the blind signature
protocol twice. Once to get a blindly signed username for the voter and once to get a blind signature
on the ballot.
Proposals that add receipt freeness to [57] will be reviewed in section 5.2.3.

5.2 Coercion Resistance

In chapter 1 we noticed that a non-technical threat to ballot secrecy is coercion, the involuntary or
voluntary dictation of the vote contents. Coercion is very easily achieved if the voting system provides
any kind of receipt as to how the voter actually voted. As a result, a desirable property of any voting
system, is the inability of the voter to construct a voting receipt. This property is called receipt-freeness
and was first defined in [18].

5.2.1 Receipt Freeness

The main difficulty for achieving receipt freeness is that any voting system based on probabilistic
encryption cannot be receipt free. Since the voter uses a random value to construct his vote, this random
value can serve as a receipt. The coercer simply retrieves the random value and compares the encryption
of the alleged vote with the actual secret vote. As a result further modifications must be made to any
such scheme, the most important one being that the voter should not create the vote encryption on his
own.
The Benaloh-Tuinstra [18] protocol was the first to claim the receipt-freeness property. It utilises

the concept of a voting booth which of course is inspired by the concept found in traditional elections,
offering isolation to the voting agent.
Definition 5.1. A voting booth is an addon to the voter that provides information theoretically secure
communication between two entities.

An interpretation of this definition is that, a voter in booth mode cannot initiate communication with
external processes by sending neither public nor private messages. On the other hand the voter can
receive messages from external processes. The voting booth provides the voter plausible deniability,
allowing him to construct a receipt for all possible votes, thus making it useless. The rest of the protocol
is the scheme presented in chapter 3 by Benaloh, Fischer and Yung in [40] and [19]. The difference is
that the vote preparation protocol is executed by the authority instead of the voter, while he is inside
the booth. The vote casting phase is executed in normal mode. In more details:

1. The authority generates η+1 ballots as randomised encryptions of a yes− vote and a no− vote

in random order.

2. Inside the voting booth, the voter receives the decryption of a specific component for each of the
η + 1 ballots.
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3. The authority proves publicly that the ballots are of the correct form as in [40].

4. The voter indicates the preferred index in the first ballot, to be his vote.

Every 'external' observer and possible coercer will be convinced that the ballot is valid by the third
step in the process. However, in step 2, the voter actually learns the decryption of the ballot and can
correctly indicate the choice of preference.
Of course the receipt-free version of [40] suffers from the same flaw: The authority can progressively

decrypt each subtally before and after each vote is cast, thus learning each individual vote. A receipt
free version of [19] fixes this problem by having the voter distribute his vote to multiple authorities.
Specifically:

• Each authority Aj selects a blinding factor fj and supplies its encryption ej to each voter

• Inside the voting booth, the voter is given fj and convinced with overwhelming probability that
the encrypted value given previously corresponds to the actual blinding factor without yielding
a proof

• The voter selects the vote vi and a polynomial Pi in order to share the votes to the authorities.
Pi(0) = vi

• Each share is blinded by calculating yj = P (j)− fj

• Each voter releases the pair (yj , ej) for all authorities. This tuple is the actual vote

• The authorities add the blinded shares and multiply the encryptions for all the voters. Since the
encryption is homomorphic the product of the ej can be decrypted and used to unblind the sum
of the blinded shares

• Each authority now has a point for the combined voter polynomialQ =
∑N

i=1 Pi whereQ(0) =∑N
i=1 Pi(0) yields the election result

• At least t authorities can reconstruct the polynomial and retrieve the tally

The above scheme has a loose end. The voter must prove that his vote is valid. This can be done
with η random bits. The voter constructs η + 1 ballots (in total) and uses the probabilistic technique
of [40] to prove the master ballot's validity. This technique however can provide a receipt of the vote,
as remarked in [71]. The coercer can force the voter to commit to a particular string of ballots and
can watch the verifications. The coercion succeeds with the same probability that the ballot is valid,
namely 1− 2−η.
The second approach to receipt free voting schemes was presented in [84], which we reviewed in

chapter 4 as the first verifiable mixnet. The receipt free component of the protocol rests again on the
idea that the encrypted votes must not be prepared by the voter, but by the system. However the system
must convince the voter of the validity of the encryption in a way that is not transferable to a coercer.
For the first part [84] utilises the mixnet backwards. The last mix server prepares encryptions of a pair
of yes/no votes in random internal order for each voter. He shuffles and reneencrypts the lists and proves
the correctness of the action using the cut and choose protocol. He then sends the list to the next mix
server, which is actually the previous one. Each mix server rearranges randomly the internal order of
the votes and proceeds to his normal reencryption. When the mixnet terminates the voter must pinpoint
the encryption destined for him in the shuffled list and choose internally his preferred option, either yes
or no. To be able to do so, he must know the internal reorderings, the shuffles and the reencryptions.
Each mix server must commit to these actions and send the commitments to the voter. The opening
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of the commitments will provide the necessary information to the voter. It must be done however in a
manner that does not provide a receipt. As a result all the commitments given to the voter are chameleon
blobs, which are bit commitments that can open to all possible values. The chameleon technique was
due Chaum, Brassard and Crepeau. In order to vote, the voter selects the correct component and uses
the mixnet in the normal forward fashion. The Sako-Killian scheme provides receipt freeness without
a need for a voting booth. The only requirement is that the channels used for the transmission of the
decommitments are physically untappable.

5.2.2 Adding Receipt Freeness to Homomorphic Schemes

This approach of [84] was pursued further by Hirt and Sako in [71], where a solution to the problem of
[18] described above was presented, along with a framework to provide receipt freeness to any voting
scheme based on homomorphic cryptosystems. The main idea is the one in [84] which frees the voter
from the need to encrypt his choice. Again, the voting authorities prepare encryptions of the possible
votes and the voter simply picks the choice of interest. Of course, ballot secrecy must be maintained.
To achieve this, the voting authorities operate as a reencryption mixnet. The voter is notified of all the
permutations and reenecryption factors used. As a result he can follow his vote of choice through the
mixnet and pinpoint it in the end. The notification is tailor-made for each voter in a way that cannot be
used by any coercer. This is achieved using designated verifier proofs. The work of [71] requires only
untappable one way communication channels from the authorities to the voters.
Definition 5.2. An untappable channel is an addon to the voter that provides information theoretically
secure one way communication to another party.

In more details their protocol operates in the following phases:

1. Vote Generation

(a) Each valid choice vi ∈ {v1, v2, · · · vC} is deterministically encrypted by the public key
encryption algorithm (using predetermined randomness) producing the list of the encryp-
tions of the valid choices L0 = {e01, · · · , e0C}. Everybody can validate these encryptions
by encrypting each choice with the randomness agreed.

(b) Each authority Ak reencrypts and permutes Lk−1 thus producing Lk

(c) Each authority publicly proves that each vote in Lk−1 has a reencryption in Lk.
(d) Each authority privately sends using the untappable channel the permutation πk it applied

and privately proves that it is valid.

2. Vote Casting Using the permutation information received from each authority the voter tracks
down the output item that encrypts his choice. The vote cast is the index of the desired item.

3. Vote Tallying Since the scheme applies to homomorphic cryptosystems, the authorities compute
the homomorphic function and decrypt the tally, while proving its correctness.

The correctness of the protocol relies on the public proof in the description above while the receipt
freeness relies on the subsequent private proof. The actual proofs are cryptosystem dependent. We
follow [71] and present them for the exponential El Gamal cryptosystem as used in [44].
In the first case the prover wants to prove that an encrypted item has a reenencryption in a list of

items, without revealing which item is the reencryption. This can be accomplished by applying the
framework of witness indistinguishable proofs of [42]. More specifically the prover wants to convince
the verifier that there exists a reencryption for the encrypted vote (x, y) in a list of encrypted votes
{(x1, y1), · · · , (xL, yL)} without revealing its position t or the reencryption factor ξ. Let (xt, yt) =

(gξx, hξy) the reencrypted item.
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• The prover randomly selects {di}Ci=1, {ri}Ci=1 and calculates {ai = xi
x
digri}Ci=1 and {bi =

yi
y
dihri}Ci=1. For the actual reencrypted value the prover calculates at = gξdt+rt and bt =

hξdt+rt . The prover offers the calculated values to the verifier.

• The verifier randomly selects a challenge c and returns it to the prover.

• The prover recalculates dt as d′t = c −
∑C

i=1,i ̸=t di and finds r′t such that ξdt + rt = ξd′t + r′t.
Then he updates the values of dt, rt to d′t, r

′
t. Finally he submits the values {di}Ci=1, {ri}Ci=1 to

the verifier.

• The verifier validates that:

– c =
∑

i di

– {ai = xi
x
digri}Ci=1

– {bi = yi
y
dihri}Ci=1.

In the second case the prover wants to convince the verifier that an item is a reencryption of another
in a way that the verifier can fool a coercer. It is assumed that the verifier has a (public,secret) key
pair (hver, zver). The main idea of the proof is that the verifier can use her private key in order to
forge the proof for the coercer, while maintaining its validity. The item in question is that (x′, y′) is a
reencryption of (x, y) with witness ξ or the relation (x′, y′) = (gξx, hξy):

• The prover randomly select d,w, r and sends to the verifier the values a = gd, b = hd, s =

gwhrver = gw+zverr

• The verifier selects a random challenge c and sends it to the verifier.

• The prover calculates u = d+ ξ(c+ w) and sends u,w, r to the verifier.

• The verifier validates that:

– s = gwhrver

– gu = x′

x

c+w
a

– hu = y′

y

c+w
b

The verifier using his knowledge of the secret key can find w′, r′ such that w + zverr = w′ + zverr
′

and as a result can forge the proof for any (x′′, y′′), with the same offers. The values (x′′, y′′) which
may play the role of other encrypted options.

5.2.3 Adding Receipt Freeness to Blind Signature based Schemes

As we mentioned in 5.1, the blind signature scheme of [57] is not receipt free. The commitment can
serve as a proof of vote, which the voter can sell or the coercer can demand. The standard solution
to this problem, proposed by [102], is to use a trapdoor bit commitment scheme (2.1.4.3) instead of
the standard one.This means that the voter must create a new private and public key pair for use in
this phase. Commitment will be made using the public key, so that opening will require the private
key, allowing the voter to open it in multiple ways. The scheme proceeds as usual. The resulting
protocol is receipt free since the voter can lie about the commitment, but it does not protect against a
stronger attacher, who might require the voter to throw away the private key and vote using a public
key provided by the coercer. A solution given in [103] requires a set of entities collectively referred
to as the parameter registration committee - PRC with the assumption of an untappable channel or a
voting booth. More specifically the scheme works as follows:
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• Secret sharing of the commitment private key: Let ai be the commitment key andGi = gai . It is
split in n parts aij such that ai =

∑N
j=1 aij (mod q) and a commitment Gij = gaij is created

for each one. The registration authority blinds Gi and eachGij along with the committed vote.
During voting the parts aij are sent to each RPC member through the untappable channel along
with Gi. They compute Gij on their own and submit it to the bulletin board. The commitment
is reconstructed during counting as Gi =

∏
j Gij .

• Verifiable threshold secret sharing of the commitment private key. The first version has the
downside that even one corrupted authority can block the scheme by refusing to submit their
shares. As a result a t out of n scheme can be used.

• Voting booth: The voter proves using a voting booth that he knows the ai

The main idea of this approach is that the voter can split the private key of the trapdoor bit com-
mitment. As a result the public key is divided accordingly and the registration authority blinds each
individual share of it. During the voting phase, the voter sends each share of the private key to each
PRC member using an untappable channel. They reconstruct the public key shares and submit them
to the bulletin board. During counting the tallier validates the public shares and reconstructs the pub-
lic key. Afterwards the votes are counted. It must be noted, that in order to disallow malicious PRC
members to disrupt the process, the secret key must be distributed using a verifiable scheme.
An alternative method (still from [103]) does not require the help of extra members but requires

strengthened security in the form of an anonymous voting booth, which enables the voter to prove
knowledge of the private key.
A more general treatment of the following situation will be given in the following paragraph.

5.2.4 Strengthening the attacker

Receipt freeness does not imply coercion resistance. An attacker can influence the outcome of an
election without the need for a receipt by forcing a voter to:

• abstain from the voting process alltogether

• vote in a way that cancels out a particular vote

• vote randomly, in effect nullifying a vote and denying the right of a voter to express his opinion

• give away the secret keys (and be impersonated)

These extended capabilities of the attacker were firstly presented in [77]. For example here is how
these attacks can be launched in a mixnet environment:

1. The adversary retrieves the private key for a voter

2. Then he selects its own preferred vote v

3. and encrypts it with the public key of the mixnet u = E(pkMN , v)

4. The vote is signed with the stolen private key s = E(ski, E(pkMN , v))

5. The pair (u, s) is appended to the bulletin board

6. Signature validates and so the vote is anonymised by the mixnet
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The above attack is an impersonation of the voter. However it can be applied as a coercion attack, if
the attacker skips the first three steps and simply presents the voter with the ready ciphertext to be cast.
He can then check that the particular voter submitted to his coercion by checking the bulletin board for
the pair (u, s).
A framework to counter such attack was proposed in [77], having in mind application to Internet

voting. The main idea, is that a voting system has the property of coercion resistance, if the aspiring
attacker cannot tell whether the voter actually succumbed to the coercion attempt. In order to achieve
this the voter can cast more than one ballots with invalid credentials thus fooling the attacker. The
vote to be counted will be the one containing the valid credential. Of course the scheme is dependent
on some assumptions, which however, are more relaxed than a physically untappable communication
channel throughout the election that we saw earlier:

• The attacker must be uncertain about the behaviour of at least some voters (apart from the victim).
These means that the attacker cannot control all the voters.

• The vote casting channel must be anonymous. This is essential in order to thwart the forced
abstention attack, because if the votes are not anonymised but are only secret than the coercer
can check them to verify if the target voted indeed. As a result an anonymous channel is an
essential prerequisite to achieve coercion resistance.

• The voting credentials must be anonymous and indiscernible ones must be able to be generated.
In order for this assumption to hold, the credential acquiring phase must be conducted without
the attacker watching - through an untappable channel. This requirement might seem strict, but
it applies only to the registration phase which happens rarely, sometimes even only once, and can
be reused for many elections.

• The voter has at least a moment of privacy, when he can cast his real vote.

If these requirements are met then the protocol of [77] can provide coercion resistance. The main
idea is that during the registration phase voters are given anonymous credentials which are recorded in
a voter credential list (referred to as the voter roll). These credentials can be faked. As a result, during
a coercion attempt the voter uses the fake credential, which cannot be distinguished from the real one.
This fake ballot is treated as a normal one by the system, except during the tallying phase where it is not
taken into account. This can be achieved, because the tallying authority can compare the credentials
embedded into the ballot, with the ones in the voter roll and count the votes corresponding to the real
ones. These authorities should not be fully corrupted by the coercer, so that he cannot have access to
the voter roll and validate the voter credentials. In more detail the protocol proceeds as follows:

1. SetupPhase: Key pairs are created for registrationR and tallying authoritiesT , namely (pkR, skR)
and (pkT , skT ) . Corruption of a minority of registration authorities can be tolerated.

2. Registration Phase: During this phase, the voter identity is validated and the voter credentials
are generated. The voter credentials are a public and private pair (pki, ski) derived from a random
anonymous token σi which can be aa simple as a random number (or more elaborate as is the
case in later refinements). The anonymous token is encrypted with the public key of the talliers
and placed on the bulletin board Si = EpkT (σi). This is the public component, while the token
itself is the private component, which is transmitted using the untappable channel. The voter
roll is built from the public encryptions V R = {Si}Ni=1. In order to avoid corruption during this
phase:

• The credential is generated in a distributed fashion
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• The voter must delete all the transcripts from the interaction with the registration authority
or

• The coercer cannot corrupt any registration authority or

• The voters can distinguish the corrupted players.

3. Voting Phase:

• Ballots are cast in the bulletin board as usual.

• The ballot is amodified El Gamal encryption of both the candidate choice and the credential.
More specifically:
B = (E(vi), E(σi)) = ((gr11 , gr12 , vih

r1), (gr21 , gr22 , σih
r2))where r1, r2 are random values

• The ballot is completed by proofs of knowledge of vote and credential, proof of vote va-
lidity, namely that the candidate index is valid, and proof that the first two components of
the encryptions use the same randomness. These proofs are essential to achieving coercion
resistance, by the following rationale:

– Since the voter roll is public, the attacker might spoof a credential by reencrypting a
voter roll entry. A legitimate voter must prove that he knows the credential.

– An invalid vote might indicate a forced abstention or a randomisation attack.

• The voting phase takes place using an anonymous channel. This is very important as to
thwart the forced abstention attack and to make the coercer unaware of the actual vote
position in the bulletin board.

4. Tallying Phase: The authorities collect the ballots from the bulletin board and compute the
election result. Because there are more ballots than voters, on account of coercion evasion, there
must some preprocessing. This pre-tallying phase was aptly named vote authorisation by [120]
and consists of the following subphases:

• Invalid Ballot Removal: Before counting begins, the proofs of correctness are extracted
and validated. Ballots with invalid proofs are discarded

• Duplicate Ballot Removal: If multiple ballots correspond to the same credential, they are
filtered and a single vote per credential is kept. To this end:

– From ballots with valid proofs, two lists are created. The first one contains the en-
crypted votes and the second one the encrypted credentials.

– The list of credentials is filtered and duplicate entries are deleted. The duplicates are
found using the PET technique described in 2.1.7.6.

– The removal is cascaded to the list with the encrypted votes. Given multiple duplicate
entries the one to keep can be identified using a first vote counts or last vote counts
rule.

– Both lists that now contain distinct items are merged.

• Fake Ballot Removal: Votes with fake credentials must be eliminated. To this end:

– The merged list of the previous subphase is forwarded to a verifiable mixnet.
– The voter roll is forwarded to the verifiable mixnet as well.
– Themixed credential list is compared to the mixed voter roll leading to the discovery of
the fake credentials using PET. Both the fake credentials and the corresponding votes
are removed.
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– The reason for employing a mixnet is for the coercer to lose track of the credential
index in the voter roll and the vote index in the bulletin board. If this particular vote
corresponds to a fake credential it will be removed from the bulletin board before
counting without raising any suspicion.

• The resulting list of encrypted votes is decrypted and the votes are counted.

During the tallying phase the adversary can only corrupt a minority of the authorities.

The above scheme inherits the property of universal verifiability from the mixnet used in the tallying
phase. Other properties for which a security proof is provided include correctness and verifiability.
However our focus in studying [77] is coercion resistance which is proved using the following game:

• The target voter flips a coin b

• If b = 0 then the voter evades coercion by using a fake credential

• If b = 1 the voter submits to coercion

• Coercion resistance is achieved when the adversary has a negligible advantage on guessing b

The proof will involve comparison of the output of the adversary in the real experiment with the
corresponding output in an ideal experiment [77].
The real experiment proceeds as follows:

• The adversary A selects the controlled voters. It is assumed that except for the coercion target
the attacker can control the behaviour of a subset of voters, such that the uncertainty of the total
voter behaviour is maintained.

• Voters register and receive the credentials

• A sets the coercive target and its choice

• The voter flips a coin b

• If b = 0 then the voter makes a voting choice and returns a fake credential to the adversary to
evade coercion

• If b = 1 then the voter votes, and returns the real credential to the adversary

• It must be remarked that in both cases the voter actually votes as the adversary suggested. Even
in such a favourable case that attacker cannot deduce this from the credentials.

• The rest of the honest voters cast their ballots

• A posts to the bulletin board the votes of the controlled voters

• The tallying authorities count the votes

• A gets the result and tries to guess if the coercion attempt succeeded, by setting b′

• If b′ = b then output 1 else output 0

On the other hand in the ideal experiment the adversary A′ is passive, and the only information at
his disposal is the tally result computed in an ideal way:
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• The adversary A′ selects the controlled voters.

• Voters register and receive the credentials

• A sets coercive target and choice

• The voter flips a coin b

• If b = 0 then the voter makes a voting choice

• The voter always returns the real credential to the coercer since in the ideal experiment the at-
tacker should not learn anything from the keys.

• A′ posts to the bulletin board the votes of the controlled voters

• The tallying authorities count the votes in an ideal way, which means that they know all the
private keys, can tell the controlled voters apart. More specifically:

– Ballots by honest voters are counted normally

– Double votes are not counted

– Corrupted players' votes are not counted

– If b = 0 (evade corruption) the target vote is not counted

– If b = 1 (submit to corruption) the target vote is counted

In short ideal tallying counts the votes of the honest voters and the target voters only if he submit
to coercion

• A′ gets the result and tries to guess if the coercion attempt succeeded, by setting b′

• If b′ = b then output 1 else output 0

If the powerful adversary A has no advantage in guessing if coercion succeeded than A′ than the
election protocol is coercion resistant.
Coercion resistance is proved in the following theorem:

Theorem 5.3. If the Decisional Diffie-Hellman (DDH) Assumption holds, then the protocol provides
coercion resistance

Proof.

A simulator S capabe of simulationg all the components in all the phases of the election is constructed

S takes the honest votes and simulates c− resist

Instead of the votes S provides random ciphertexts for the honest voter's ciphertexts and the output of
the mixnet

Due to the DDH the adversary cannot distinguish the simulated ciphertexts with the real ciphertexts
that would come up in an election

As a result A in fact interacts with c− resist− ideal and is no more powerful than A′
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5.2.5 Implementation Efficiency, Security and Practical Improvements

The method in [77] requires comparison by 'PETting' the ballots to check for duplicates and fakes.
Each ballot is checked with every other ballot for duplicates, based on the credential. Subsequently
each ballot is checked against the voter roll for fakes. If v is the total number of votes, then these
operations requires O(v2) +O(vn) comparisons, a quadratic quantity in the number of votes cast, not
in the number of actual voters. Due to the nature of coercion resistance, v >> n since a voter might
cast many votes with different credentials. This constitutes the method impractical even for medium
populations. The next logical step, would be to improve the efficiency of the method with the goal
of converting it to linear complexity. The standard method of converting such quadratic methods to
linear involves hashtables. However it cannot be immediately applied to this setting, as both the ballot
credentials and the voter roll credentials are encrypted using randomised algorithms. As a result, some
intermediate steps are required.
A first line of relevant proposals are due to [130] and [134]. They proposed a way to remove the

randomisation of the encrypted credential, without revealing it, and thus make hashtables relevant.
More specifically, if (u, v) = (gr, σhr) is an El Gamal encryption of credential σ, where s is the
shared private key and h = gs is the public key and r the randomness employed, then the randomness
can be removed as follows:

• The authorities select a second private key z which should be generated in a distributed fashion.

• They blind the ciphertext by computing (usz, vz) = (grsz, σzgrsz)

• Subsequently they divide the components which leave only the plaintext credential blinded σz

• These accomplishes the removal of the randomness.

• The hashtable approach can now be used

[130] proposes, with efficiency in mind, to split the blinded credential to two pieces and use the first
half as a key to the hashtable. This approach is problematic since it will imply an increase in hashing
collisions. This side-effect is particularly problematic during fake detection and removal, since a valid
credential might collide with a fake one, and be wrongly removed, thus altering the election result and
violating fairness. [134] skips this problem by using the complete blinded credential and appropriately
adjusting the system parameters, such that σz is unique.
Both these approaches suffer from a variant of the tagging attack. To start with ([12], [38]), the

coercer is able to retrieve the encryption of the voter's credential. Then he can utilize the malleability
of the encryption scheme and construct a ciphertext that is somehow related to the original. For instance
the coercer can compute the product of the encrypted credential and the encryption of a random value
known to him. From this he computes as a tagged value, the encryption of the product of the credential
and the random value. The decryption mixnet then decrypts all the votes. Using the knowledge of
randomness and the tagged value the coercer pinpoints the position of the credential and the vote.
Afterwards, he can find out if the particular vote passed the credential validity test by checking if it
was removed from the final output and thus can know if the provided credential was valid or not. This
particular attack can even succeed in the blinded versions of [130] and [134] if the blinding scheme is
malleable and allows the tagging of credential by some operation [11].
A more concrete implementation was presented in [124]. In this particular scheme, only two creden-

tials are needed, the real one and the fake one. At this point, it must be pointed out, that the fake and
real credential are indistinguishable in form and content. The property that makes a credential valid is
that it is included in the voter roll. The two credentials are included in an observer: a tamper resistant
device like a smartcard.
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Civitas In [38], the scheme of [77] is elaborated in details and an implementation is described. First
of all, a concrete specification of the credential generation and distribution is given and the faking
mechanism is discussed.
To generate a credential, a set of registration tellers cooperate:

• Each teller generates a share sj of the credential, which is encrypted using standard ElGamal
yielding Sj , which is placed in the bulletin board.

• The public part of the credential is calculated as S =
∏

j Sj

• Due to the multiplicative homomorphism of El Gamal S = Enc(
∏

j sj)

The untappable channel is implemented using the concept of designated verifier proofs 2.1.4.3 through
an untappable channel.

• Each teller gives its credential share to the voter and a mechanism to validate it.

• More specifically the teller presents (sj , r, S
′
j = Enc(sj , r), D) where D is a DVP that S′

j is a
reencryption of Si

• The voter is convinced of the share validity, but cannot transfer the proof to the coercer

• The full private credential is constructed by multiplying received shares.

In order to fake the credential, a coerced voter can simply select a fake credential share ŝj , which is
assumed belongs to a teller not controlled by A. Its existence is an assumption of both [38] and [77].
To solve the scalability problem, Civitas employs parallelism. The voters are partitioned in virtual

precincts, called blocks. Vote authorisation and tallying happens independently in each block, and the
results are aggregated. As a result the complexity of the scheme is O(BM2) + O(BKM) where M
is the maximum number of votes per block, B is the number of blocks andK is the minimum number
of voters per block.

Extra Information and Anonymity Sets [131] noticed that the tagging attack is irrelevant in the
duplicate removal subphase. As a result the blind hashtables can be used there thus achieving the goal
of linearity in the number of votes. For linear fake removal something more is needed. During the
registration phase the voter retrieves through the untappable channel the index where his credential
is located in the bulletin board, along with the credential itself. During the vote casting phase, the
ballot cast is a triple, containing the encrypted credential, the encrypted choice and the encrypted index
accompanied with the corresponding proofs. During the tallying phase the index will be decrypted
and the encrypted credential will be retrieved from the initial version of the voting roll. A single PET
between the retrieved credential and the one contained in the ballot can reveal a fake vote. It must be
noted here that there in this scheme a ballot can be excluded from counting not only by providing a σ
value that does not appear in the bulletin board, but by specifying a different value for the index. If
1 ≤ i ≤ n the PET will fail. If i > n the ballot will be removed during the first check of the vote
authorisation phase. If the voter decides to cheat the coercer by supplying a fake index than the system
must make sure that a uniform distribution of fake indices appears. To this end it is proposed that the
tallying authorities themselves append fake votes. This has also the effect that a coercer that monitors
the bulletin board cannot tell whether a target voter made use of his moment of privacy.
This approach is improved in [120] and the Selections scheme ([37]), based on the concept of anonymity

sets, which in general is a set of identical items, only one of which is relevant and the rest are used as
a decoy. During vote casting the voter presents the real credential accompanied by β − 1 credentials
from the voter roll. More specifically in Selections:
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• The voter encrypts the credential σ using exponential El Gamal. This is done to enable reran-
domisation for use in multiple elections and more importantly to remove fake votes.

• During vote casting the voter commits to gσ and rerandomises her entry from the voter roll. In
addition she randomly picks β − 1 encrypted credentials from the voter roll and embeds them
into the ballot. Along with the standard [77] proofs she proves that her credential is indeed a
rerandomisation of one of the β credentials, without of course revealing which one (ala [42]).

• During the vote authorisation phase the deduplication process occurs in linear time as the same
value gσ is present in all of them. The last vote per gσ is kept.

• For fake credential removal the commitment is treated as a deterministic encryption of the creden-
tial. As such it is randomised from the standard [77] mixnet and is 'PETted' with the rerandomised
voter roll entry. A real vote is determined by a successful such test.

Selections borrows heavily from the self contained nature of [11], which we shall describe later. [120]
lifts the processing from the voters by letting them specify the ballot anonymity set without any proof.
During the vote authorisation stage the authorities create β ballots for every index in the anonymity set,
by retrieving the credentials from the voter roll.
A practical aspect of the coercion resistance schemes that were presented above, relates to how does

the voter actually creates the fake credentials when under coercion. This issue is quite vague in the
literature reviewed. The [37] scheme tackles this problem using the notion of panic passwords [36].
During registration the voter selects a password to be used during vote casting. In reality the voter
partitions the space of possible passwords into three categories:

• The actual password to authenticate the voter and submit the real credential

• The panic passwords which indicate that the user is under coercion and generate fake creden-
tials. The interaction however is indistinguishable from the one that takes place with the actual
password.

• The inadmissible passwords that indicate authentication failure and do not allow vote casting

Ideally panic passwords should be a sparse subset of inadmissible passwords and the actual password is
a pre selected panic password. To illustrate the concept, better, we describe an example implementation
from [36], 5-Dictionary. The password space consists of any combination of five words. The valid
passwords are any combination of five words from an agreed upon dictionary. A particular combination
is selected as the actual password during registration. Any other combination from the dictionary is a
panic password. Any other five word combination from the password space is invalid.

Structure to the credentials Another line of relevant proposals tries to avoid the pitfalls described
above by adding structure to the credentials ([11], [12], [13]). This structure aims to make the voter
roll irrelevant. To begin with, in [11], instead of σ being a random binary string, it is a quadruple
(r, a, b = ay, c = ax+xry) where x, y are two secret keys generated by the registration authorities, a
is a random number a ̸= 1 and r is a random number in a group where the Decision Diffie Hellman
problem is hard. This implies that an adversary cannot tell whether a quadruple is a valid one or it
merely consists of randomly selected components. Another assumption cited in [11] is that an attacker
that comes across quadruples (ri, ai, bi, ci) cannot use them to create a distinct valid one (the LRSW
assumption). From the credential component the r part should be kept secret, while (a, b, c) could be
made public. In the scheme, the modified El Gamal encryption of [77] is employed during the following
phases:
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• Setup The parameters of the election are created, namely:

– Two generators g, o of a group of prime order where the DH assumption holds. g will be
used for the standard ElGamal operations while o will be used for duplicate removal in
linear time.

– The private keys x, y of the registration authorities and the corresponding public keys Rx,
Ry

– The public key T of the tallying authorities and the corrsponding private key T̂

• RegistrationAs usual, the voter identity is validated and the credential is sent to the voter through
an untappable channel with a DV proof (2.1.4.3) for well formedness. If the received credential
(r, a, b, c) is valid, then every credential of the form (r, al, bl, cl) is valid. The voter can use this
fact to vote in generate credentials for many elections

• Voting The ballot consists of encryptions with the tallier public key and proofs of knowledge.
More specifically the voter computes the tuple (ET [c], ET [a

r], ET [b
r], ET [c]). He also provides

the value a in plaintext and a blinded version or of owith the random credential r. In addition the
voter proves that c is a valid candidate selection, proofs of knowledge of each encrypted plaintext
and proof that the blinding factor is the same in ET [a

r] and or. This is the reason why the value
of a is initially unencrypted.

• Tallying

– Proof Validity Check The proofs of the ballots are checked and the ones which are not
verified are eliminated

– Duplicate RemovalThe value or is passed through a hashtable and based on it the duplicate
ballots are removed. Afterwards for all unique ballots the proofs as well as the value or are
removed. The plaintext a is encrypted using the T .

– Anonymisation The unique ballots are anonymised via a verifiable reencryption mixnet.
The output of the mixnet is a quintuple
(t, u, v, w, z) = (Reenc(c), Reenc(a), Reenc(ar), Reenc(br), Reenc(c))

– Credential Validity Check The identification of the invalid ballots is done with the coop-
eration of the registration authorities which is an active participant in the whole process.
Instead of supplying the voter roll as in [77], they supply their private keys (x, y) in order
to:

* Compute vy = Reenc(ar)y = Reenc(ary)

* Check if PET (vy, w) = 1. If everything is OK the check should be successful since
vy = Reenc(ary) and w = Reenc(br) = Reenc(ay

r
), which means that both are

encryptions of ary

* The registration authorities compute a new shared key k and use it to blind the cal-
culation ( z

(uw)x )
k = ( Reenc(c)

(Reenc(a)xReenc(br)x))
k. If the credential is valid then the result

of the computation should decrypt to 1. The decryption is carried out by the tallying
authorities.

– Result Computation The valid ballots are decrypted and aggregated.

The scheme works clearly in linear time, since deduplication is done using hashtables on or and each
credential is validated 'internally'. A practical aspect of the scheme is that the credentials cannot be
revoked since the registration authorities' keys are global and every change would affect all voters. A
solution to this problem splits the credential in two parts: a private one which consists of r and a public
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one which consists of (a, b, c). Only the private portion should be communicated in an untappable way.
This separation allows the authorities to recompute their registration keys in each election and forward
them to the eligible voters each time. The main flaw of this line of work, is that the authorities can
easily generate fake credentials that are identical to valid ones.
Finally, the approach of [77] has potentially another problem. The bulletin board is by design filled

with fake votes to fool the coercion attempts. However this fact yields another attack vector. An
entity wishing to disrupt an election can cause a denial of service attack, by deliberately injecting fake
votes, causing a quadratic effect in the vote authorisation phase. A solution to this problem might
be considered out of scope as far cryptographic election research is considered, as in all the literature
reviewed the bulleting board is an always available structure. A solution however might affect the
credentials. [85], who first described the problem, proposes the use of dummy credentials. These are
anonymous tokens that are given to the voters during registration and aim to bound the total number
of ballots. The approach relies on a 'smart' bulletin board that immediatelly rejects duplicate and fake
votes using blind hashtables (note: that the tagging attack does not apply since the respective ballots
dissapear and therefore cannot be tracked). As a result the only votes that are present in the bulletin
board are the ones with valid and dummy credentials. Since both types are issued by the registration
authorities, they present a bound to flooding of votes. Consideration must be given to the number of
dummy credentials d per voter. If d is fixed, then the system is not coercion resistant as the attacker can
force the voter to vote d+1 times and rest assured that the voter has used his real credential. As a result
a variable number of credentials per voter di is required. Unfortunately a percentage of voters are still
vulnerable to coercion: the ones that receive the minimum and the maximum number of credentials.
Their numbers must be kept to a minimum. In addition practical aspects of the credential selection
remain unspecified.

5.3 Everlasting Privacy

The vast majority of the voting schemes presented so far in this thesis base their privacy on various
computational assumptions like the difficulty of solving the DLOG problem. This difficulty is only
temporary, however. In the worst case, future cryptographic advances might render the underlying
problems easy. Even if such a development does not occur, advances in computing power might some-
time render the schemes vulnerable to cracking (while in the theory the assumption holds). Adi Shamir
is quoted in [96] saying that in 30 years' time all currently used keys will be insecure. This situation
has very important consequences in voting. For example, a future totalitarian regime, might want to
extract the political convictions of its subjects by examining their choices (or extrapolate based on the
choices of relatives) in current democratic elections. This situation is made more difficult by the fol-
lowing facts: First of all, since votes might be considered public record, even in encrypted form, there
might be legal obligation to hold them for some unforseeable amount of time. To make matters worse,
bulletin boards for Internet voting schemes, cannot be permanently due to the nature of the internet.
Finally, electronic storage nowadays is cheap and abundant. As a result the threats list above, are easy
to implement. As a result voting systems require a stronger form of privacy than the one offered by
computational assumption. They require information theoretic or everlasting privacy. On the other
hand it is worth noticing that the integrity requirements of an election are ephemeral, required until the
loser is convinced.
According to [48] the first one to consider voting with everlasting privacy was Bos, a student of

Chaum. The first complete protocol to provide it explicitly is the [43] which we covered as a homo-
morphic scheme in 3.3.1. Its major drawback is that the work required by the voter depends on the
number of authorities. Alternatively, everlasting privacy can be achieved as a byproduct of using a
blind signature based scheme with anonymous channel. There, the bulletin board of the anonymous
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channel contains only anonymous information. Recent work in this area includes [96],[48] and [25].
The main theme permeating all these works is the use of the Pedersen commitment scheme 2.1.4.2 to
unconditionally hide the vote. Recall that this scheme is computationally binding which does not mat-
ter, since there is no use in changing a vote after the elections are concluded (and no way to do it, for
that matter). However there is a different and more important problem to be dealt with: how does one
provide verifiability while maintaining (everlasting) privacy. More concretely, in order to verify the
operations of the authorities ie. mixing and/or homomorhpic tallying one must open the commitments.
But then the scheme does not provide privacy at all, let alone everlasting privacy. To fix this situa-
tion a compromise is made: The protocols provide everlasting privacy to the public but computational
privacy to the authorities.
In more detail [48] incorporates everlasting privacy to [44] as follows:

• The voter commits to a candidate using the Pedersen scheme, namely by computing commit(c, r) =

grhc

• The voter encrypts c, r using a homomorphic public key scheme such as Exponential El Gamal
or Paillier by computing Enc(c), Enc(r)

• The ballot is a triple containing commit(c, r), Enc(c), Enc(r)) along with the required proofs:

– The commitment and the encryption of the candidate hide the same c

– The randomness used by the commitment and the second encryption is the same

– c is a valid candidate index (either 0 or 1)

– There is a single selected candidate

• However only the commitment is placed on the public bulletin board

• The tallier multiplies the commitments and produces commit(
∑

c,
∑

r)

• The tallier receives the encryptions through a private channel. By multiplication he computes
Enc(

∑
c), and Enc(

∑
r), which are then decrypted in a threshold manner

• The decrypted values open the accumulated commitment thus realising universal verifiability

Everlasting privacy can be useful to mixnet based schemes as well [25]. In this case, the lifting of
the computational assumption means that the processed messages will no longer remain anonymous
as the input - output link will be revealed - the attacker will break the reencryption. The main idea is
to replace the public key encryption scheme of the mixnet with a commitment scheme. That is, the
voter does not merely encrypt the selection but instead she commits to it. If the commitment scheme is
homomorphic like in the case of 2.1.4.2 the mixnet operates without any significant changes. The same
problem arises however: In order to count the votes, the commitments must be opened. This requires
that they are somehow sent to the tallying authorities. In order to enable privacy a private mixnet is
proposed for the decommitment values. Again, everlasting privacy can be guaranteed only against the
general public. More specifically:

• The voter against inputs a triple to the mixnet, commit(c, r), Enc(c), Enc(r)) along with the
required proofs, as described previously. The only part of the input that is published is the com-
mitment.

• Each mix server rerandomises the commitments and reenecrypts the opening values and yields a
random permutation of the triples.
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• The new commitments are published to the bulletin board, while the rest of the values are sent
to the next mix server using a private channel, while at the same time using techniques from 4

• After the last mix server has finished, the opening values are decrypted and the commitments are
verified.

• When the elections finish, the authorities destroy all the private information that has passed
through them.

The private channels between the mix servers can be implemented using the chaumian paradigm
(decryption mixnet). Thus the system as a whole combines the work of [28] and [108]. A problem that
arises in this scheme is that the first mix server gets to see the encryption of the voter choice c. If that
is the case, then the private parts of each triple, can be split in two, mixed in parallel and recombined
before decryption.

5.4 Coercion Resistance in a practical secret voting scheme for large
scale elections

In this section, we propose a way to combine the voting scheme in [57] with the coercion resistance
paradigm of [77], in order to provide coercion resistance to schemes based on blind signatures. As far
as we know, there hasn't been any relevant attempts in the bibliography.
More specifically, we modify the system of [101] that provides the vote and go property to [57].

Our approach takes advantage of the function splitting architecture between the registration authority
and the counter to reduce the quadratic complexity of the JCJ scheme. Consequently, we check for the
validity of the voter credential during the blind signing of the ballot. This can be done in constant time
as the voter identity is known. In our scheme the RA has access to the voter roll. As a result, it can
PET the credential sent to it, with the one stored in the voter roll and find out if it is fake, meaning that
the voter is under coercion.
After the check the authority will apply the blind signature scheme with a twist. It will use a different

signature on a ballot with valid credential and a different one on a ballot with a fake credential. Of
course, to satisfy coercion resistance both signatures must be indistinguishable to the coercer, that is
verify with the public key of the authority. However the counter must be able to tell, whether the
signature corresponds to a fake credential or not, in order to include the ballot in the tallying phase.
To implement this functionality we turn to group signature schemes proposed by Heyst and Chaum in
[32], with the counter playing the role of the manager. While many group signatures schemes have
been proposed, we will built upon the simplicity of the work of [110]. Apart from these adjustments
the scheme will follow the basic principles of [57] and [101].
Each of the participants in our scheme has a public and private key pair: The voters (V, v), the

registration authority (RA, ra) and the counter (C, c). In more detail our scheme proceeds as follows:

• Pre-Election Phase

– Each voter interacts with the registration authority using an untappable channel (for instance
in person)

– This is not prohibitive as the registration phase can be reused in multiple elections and as a
result would occur rarely or only once.

– The RA creates the voter credential σ and transfers it to the voter, following the JCJ restric-
tions.
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– The RA creates and publishes the voter roll, that is a list of encrypted voter credentials
V R = {ERA(σ)}. In our version there is no use in announcing total number of votes, as
there can by multiple votes per voter.

• Authorisation Phase

– The voter prepares her vote and commits to it using the public key of the counter. That
results in the creation of EC(vote) which will be called the ballot henceforth.

– The ballot is blinded as Bl(EC(vote))

– The tuple (ID,ERA(σ), Bl(EC(vote))) is sent to the authority signed with the voter public
key. If the voter is under coercion, the voter will create a new fake anonymous credential,
while in hermoment of privacy the voter will supply the credential given during registration.
This will be the only difference between a coerced and a non coerced vote.

– Upon receipt the registration authority, validates the voters signature using the correspond-
ing public key.

– The RA checks using the identity information to check whether the voter has a right to vote,
or if she has voted again.

– If the previous check turns out ok, then the authority will sign the blinded ballot.

– Before, however, it uses the identity of the voter to retrieve the encrypted credential from
the voter roll.

– Using the plaintext equivalence technique it compares the supplied credential with the re-
trieved one.

– If the check is successful, that is both ciphertexts refer to the same plaintext, then the RA
encrypts a validity token using the public key of the tallier, EV = Encc(valid) else it
creates an encryption of an invalidity token EV = Encc(invalid)

– Subsequently, it signs the blinded ballot and submits the tuple (signRA(Bl(EC(vote))),

EV, signRA(EV )) to the voter

• Voting Phase The system continues as in 5.1 with the difference that EV is carried around as
well.

– That is the voter, unblinds the signed ballot to receive signRA(EC(vote))

– Both signatures are validated and then the voter proceeds to vote by submitting through an
anonymous channel the tuple:
(EC(vote), signRA(EC(vote)), EV, signRA(EV ), ERA(σ))

• Tallying Phase After the voting phase ends, counting can begin.

– For each vote both signatures are validated.

– Then the actual ballot is threshold decrypted, as well as the validity token. Only valid votes
are counted.

Discussion One thing we did not deal with in the protocol above, is the handling of the duplicate
votes, that are implied by the JCJ scheme. In our case, we must note that duplicates are dealt with after
the validation procedure, instead of before as in the JCJ scheme. As a result they apply only to the
valid credentials. One way to deal with such duplicates, is to have the registration authority implant
a credential specific token of validity. As a result, valid votes by the same voter will bear the same
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credential. In this way the counter can identify if a valid vote is duplicate using a O(1) technique and
then apply a first vote or last vote counts policy.
At first glance our protocol, seems to lack one important property: universal verifiability. To analyze

this issue, we must note that the following actions must be verifiable:

1. The RA should only mark as valid the votes that correspond to valid credentials.

2. The counter should only use the validity tokens as provided by the RA.

3. The counter should only count the votes that correspond to valid tokens.

Of course universal verifiability should not make the scheme any less coercion resistant and vice versa.
Firstly, since our scheme inherits from [101] it bases its verifiability on the threshold nature of the ballot
decryption. If a vote is not correctly decrypted then one of the key shareholders might complain. A
single counter cannot be trusted, but several talliers with conflicting interests might seem more trust-
worthy. The same applies for the registration authority.
Despite the above arguments, the verifiability of the protocol deserves further investigation.
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Case Studies and Implementations

6.1 Helios

6.1.1 Introduction

Helios is an open source voting system, with a web interface that enables remote voting. It was proposed
and implemented by Ben Adida in [5]. Being a remote voting system, it cannot do away with coercion.
As a result it is targeted to small elections, that can tolerate some levels (dubbed low coercion elections).
It can also serve as a teaching tool for the general public to get to know electronic voting. It is currently
in the third version. Its main characteristics are:

• Integrity. Helios supports unconditional integrity, which means that even if everybody is cor-
rupted the tally will reflect the way users really voted.

• Voter Privacy. Ballot secrecy is conditional as it depends on the Helios server or on a set of
trusted parties.

• Individual Verifiability. Each voter can check that her vote was correctly recorded.

• Universal Verifiability. Each voter can verify if the election result was calculated correctly.

As open source software, Helios can be downloaded and installed on local machines. Elections
however, can be created and carried out in the cloud from www.heliosvoting.org. Helios includes
a publicly accessible bulletin board where user initially post their identities and their encrypted ballots.
The initial version uses a reenecryption mixnet based on [84] implemented with El Gamal. Subsequent
versions use homomorphic encryption ala 3.3.2.
The properties described above can be reinforced with the following audits from the elections share-

holders :

• Verify that the encrypted ballot, reflects their actual choice, before casting.

• In addition, verify that the posted ballot, reflects their casted choice.

• Verify that the tallying procedure has been run correctly, ie. that the result corresponds to the
contents of the bulletin board.

• Verify that there is no ballot stuffing, ie. that all the ballots in the bulletin board correspond to
actual voters.
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www.heliosvoting.org


Chapter 6. Case Studies 106

6.1.2 Operation

An administrator creates the election through a web interface. He sets the duration of the election
and creates a voter list by providing email addresses. Each voter receives an email that provides per-
election-credentials and a link to the web bulletin board. Voting can now begin.
An important characteristic of Helios is that ballot preparation and casting are distinct actions. Each

user can construct a ballot as often as she wishes but is authenticated only when it is cast. This idea was
first proposed by Benaloh [15]. As a result, everybody can construct a ballot irregardless of whether she
is a voter, which makes individual verifiability accessible to everyone. Ballot preparation is concluded
with ballot encryption and a commitment to the encrypted ballot in the form of a hash. After ballot
preparation the user can choose to either audit or cast the ballot. In the audit phase Helios, proves that
the hash corresponds to a correct encryption of the vote. In the casting phase, the voter is authenticated
and the encrypted ballot is added to the bulletin board. Auditing and casting are mutually excluded,
not allowing a voter to cast the audited ballot. In Helios 3, however following [51], audited ballots can
be post the bulletin board, for verifiability purposes.
Voting is done inside aWeb browser and implemented in Javascript using technologies and APIs such

as jQuery, AJAX and LiveConnect to utilise the rich Java libraries for cryptography and number theory.
The data exchange format is JSON. During vote preparation, no network connections are established.
All processing takes place in the browser, implementing the concept of a voting booth. The voters can
check this by setting their browsers to offline mode.
After ballot casting, the votes are sealed, meaning there can be no further changes. When the voting

period has expired the election administrator initiates tallying, which is done either using a mixnet or
homomorphically. In Helios v1.0, shuffling occurs, using 80 [84] secondary mixes. Thus the cheating
probability is 2−80. In the end, all the votes are decrypted and a tally is performed. The ballot process-
ing occurs in the server side and is implement in Python. In the initial version no threshold decryption
occurs, and as a result the server must be trusted for decryption. In Helios 2.0 [6] shuffling has been
replaced by homomorphic tallying, in order to gain the efficiency that is required for larger scale elec-
tions. As a consequence the underlying cryptosystem has been changed to exponential El Gamal as
described in chapter 2 in order to gain additive homomorphism. The ballot consists of:

• encryption of yes or no vote.

• disjunctive proof of knowledge of the contests of the vote like the one in 3.3.2

• proof of correct sum of all answers to a ballot's question

In order to increase the privacy of the system, multiple parties are required for decryption.
Helios shares a lot of similarities with a previous system named ADDER from [82]. Both systems

are open source and implement essentially [44]. One difference is that the cryptographic operations
in Helios are performed in Javascript which is embedded in all modern web browsers, while ADDER
requires client-side software or Java applets. The most important difference however is that Helios
allows users to audit the ballots, while in adder trust should be given to the voting software.

Attacks As a remote voting system, the security of Helios depends on the security of the client
computer. Consequently, it is vulnerable to malicious software and exploits, such as buffer overflows,
not only regarding its own client code, but that of other extensions. In [51] an attack is mounted that
utilises buffer overflow vulnerabilities in Acrobat Reader. In the attack, the Helios Javascript client
code is replaced by malicious code that alters the voter's choice to a candidate of the attacker's choice.
Since the voter can audit the ballot, the malicious code interferes with the auditing and affirms the initial
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choice in spite of the actual vote being different. Of course, there is nothing to prevent the attacker,
since he controls the client, to retrieve the user id of the voter, thus breaking privacy as well. The
integrity attack can be revealed by auditing the bulletin board that contains the altered vote, however
itis quite probable that it can go unnoticed.

Helios with mixnets The departure of Helios from the mix net model with version 2, was mainly
for efficiency and for the support of votes with different weights according to voter type [6]. How-
ever the mix net model has some desirable properties, for instance the support of many social choice
function such as STV voting, since the votes are decrypted. As a result there have been some efforts
to reinstate mix net back to the Helios system. For example the Zeus system, [61] a variation of Helios
with 128 [84] mix nets, has been implemented and tested in the elections for the Greek Universities'
Governing Councils. After voting, a mixing phase occurs by the Zeus server and optionally external
agents. Decryption is partially done by trusted parties and combined to produce the final unencrypted
and anonymous ballots.

Everlasting privacy In section 5.3 we stressed an approach from [48] to provide everlasting privacy
to homomorphic based system. The idea is to replace vote encryptions with perfectly hiding commit-
ments. These commitments will be placed in the bulletin board. The opening values will be sent to
the tallier using a compatible homomorphic encryption scheme. Both values will be combined and the
aggregate commitments will open the aggregate result. Everlasting privacy is provided towards the
bulletin board data, but not towards the opening data. This approach applied to Helios (with shuffling
or homomorphic tallying), provides everlasting privacy towards outside parties, but not towards the
Helios server.

6.2 Prêt à Voter

6.2.1 Introduction

Prêt à Voter is an end-to-end verifiable voting system and a design of ballots for electronic voting. It
was created by Peter Ryan in 2004 ([34],[118]), however a similar idea can be found earlier in [45].
Its aim was to improve a previous cryptographic scheme by Chaum [31]. As it was successful on this
task, it also influenced a subsequent voting scheme by Chaum. It is still in active development. Its
characteristics are:

• Integrity

• Voter Privacy

• Receipt Freeness

• Voter Verifiability

• Voter Friendly

• Modular: Can implementmany cryptographic voting protocols (encryption, zero knowledge etc.)

• Versatile: Can be used with many social choice functions

In order to be deployed certain assumption must be met:
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• A voting infrastructure must be present, which means Voter registration and authentication is
outside the scope of the system

• The ballot forms are properly managed (remain confidential, cannot be forged) between their
creation and use

• Voting occurs in a voting booth with the traditional privacy characteristics

• There exists a tamper - free public bulletin board that can be used for verification

The most important concept in Prêt à Voter is the ballot, which is key to the operation. The main
idea of the system is that: The vote is recorded on a different frame of reference for each ballot.As
a result the system encrypts the ballot not the vote.
Prêt à Voter is an effort to achieve verifiable reflections with receipts. As mentioned before, cryp-

tographic voting with receipts assures voters that their vote is being counted, while maintaining ballot
secrecy and avoiding coercion. It seems as an uttainable goal but it has clear advantages as it

• Mathematically ensures election integrity

• Allow software independence [115] with the known advantages:

– Avoid trust on proprietary hardware

– Detect errors early (at the polling station)

– Rerun the elections without software

The process of voting with receipts in general but in Prêt à Voter as well can be described by the
following steps:

1. The voter enters the choices on the touch screen of the voting machine

2. A printer prints the receipt and issues a challenge

3. A voter checks the printout

4. Accept or Change Vote and answers the challenge

5. A mechanism for ballot secrecy is used

6. The receipt is printed

7. A mechanism for receipt secrecy comes into play in order to avoid coercion attacks.

8. A vote anonymisation technique might be applied.

9. Tallying takes place.

10. For universal and individual verification a web bulletin board exists. The voter enter some in-
formation about the receipt (e.g. receipt SN) and verifies that it is included in the tally.

One mechanism to apply to create the voter receipts is visual cryptography, as described in chapter
2. The system shown [31] might be considered the father of Prêt à Voter .
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6.2.2 Ballot Form and Processing

As we mentioned before, the main idea of Prêt à Voter is that the vote is recorded on a different frame of
reference for each ballot. For secrecy the system encrypts the ballot not the vote. The ballot consists of
two columns: one for the candidate list and one for the voter selection. The candidate list is randomly
ordered and the order is different for each ballot. The voter votes by marking or ranking the candidates
on his/her ballot. It is very important that by exiting the voting booth the candidate list be disposed.
The actual vote is the mark or rank that is recorded on the vote column. No encryption is needed, since
the vote is useless without the candidate list and the vote column can be used as a receipt for voter
verifiability. Another advantage of this ballot form is that since the vote order is different, a source of
voter bias is removed but compliance might be affected. An extra bonus is that as we shall see side
channel attacks are side stepped.
To be more specific, in the initial version of Prêt à Voter [34], there is a base ordering of a candidates

generated by the election authority that creates the ballots. The actual ballots are produced by printing
an ordering that is a transposition of the base by a particular offset. This offset is encrypted and printed
on each ballot. This encrypted value is called onion, as in [34], it is processed by a classic Chaumian
mixnet, as described in chapter 4. The voting equipment records the index/ranking and transmits it
along with the encrypted onion. If the candidate list is destroyed only the voter knows the order of the
candidates that he voted on. To sum up, no encryption takes place at the booth (the onion is created in
advance) and the vote without the candidates is useless.

Fං඀ඎඋൾ 6.1: Prêt à Voter Ballot [34]

After this initial phase, the (vote,onion) pair is anonymised using a mixnet. Verification of the mixnet
is done using RPC. After decryption, tallying takes place.

Fං඀ඎඋൾ 6.2: Prêt à Voter Vote Processing [34]

More specifically, the system parameters are n voters,m candidates, kmix servers (also called tellers
in Prêt à Voter ) and 2k key pairs as each each mix server performs 2 mixes (a different perspective on
RPC than the one presented in chapter 3.
The ballot generation is layered:
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• 2k random values {gi,j}n−1,2k−1
0,0 - germs - are generated for each voter.

• The germs will be used for the randomised encryption of the ballot.

• The onion for ballot i: Di,2k = Enc(gi,2k−1, Enc(· · ·Enc(gi1, Enc(gi0, Di0)), · · · ))whereDi0

random value for initialisation

• The offset is calculated as θi =
∑2k−1

j=0 dj mod m where dj = hash(gij)

The vote i is a pair (ri, Di,2k) where ri is the index of the marked candidate (in the simple voting
case).
The vote is casted and the mixing takes place:

• Input L2j = {ri, Di,2j}n−1,0
i=0,j=k−1

• Decrypt the onion with the private key (gij,Dij)

• Apply the hash to the germ value of the onion dij = hash(gij)

• Calculate new shift rij = ri,j−1 − dij

• Sort the list by the value of the onions

• Audit with RPC

Fං඀ඎඋൾ 6.3: Auditing with RPC [34]

As mixing and auditing (RPC) is cryptosystem-agnostic the procedure above can be applied for reen-
cryption based mix nets. [116].
Prêt à Voter has many advantages but is vulnerable to the following threats:

• Confidentiality of ballots, before elections. There is a need to trust the authority and the inter-
mediates

• Chain Voting: Coercion by smuggling a ballot, pre-voting, and require a replacement ballot

• Kleptographic Channels: Choose special values of cryptographic variables in order to leak in-
formation to a colluding party, like the tagging attack in mixnets.
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6.2.3 Distributed ballot generation

The processing as described above, places too much trust in a single authority. In order to surpass
the need for trusting a single authority distributed generation of ballots. It is interesting that the same
mechanism for used for vote processing can be used for this process [116].
In the distributed generation of ballots 2 encrypted 'onions' will be generated. The first onionL will

be used to produce the random candidate list and will be read (decrypted) by the voting machine in
order to display the candidates to the voter. The second onionR will be used for voter verifiability
and reconstruction of the candidate list during tallying. The ballot forms will be generated by l entities
called clerks. Each clerk contributes to the generation of a common encrypted seed. The candidate list
is constructed from the seed. To reveal the seed values all clerks must be corrupted.
Let p, q safe primes, α, γ generators of Z∗

q , βT the public key of the tellers and βR the public key of
the vote recording machines.
Clerk C0 generates a batch of initial seeds s0i - one for each ballot - and creates voting machine

ER(γ
−s0i , x0i ) = (αx0

i , β
x0
i

R · γ−s0i ) and teller ET (γ
−s0i , y0i ) = (αy0i , β

y0i
T · γ−s0i ).

Clerk Cl receives batch of onions from previous clerk, generates fresh randomness and perform
reencryption and shuffle. The final onions will look like:

• onionL = ER(γ
−

∑
i si ,

∑
i xi)

• onionR = ET (γ
−

∑
i si ,

∑
i yi)

If all the above operated correctly operation then the 'plaintexts' match.

Fං඀ඎඋൾ 6.4: Distributed ballot generation in Prêt à Voter [116]

Voting with distributed ballots The onions are stored in encrypted form and are presented to the
voter on the ballot form. The voting booth device reads and decrypts the left hand onion s is revealed.
The candidate permutation is reconstructed as a function of s. The device should not see the right
onion. The voter now faces a classical Prêt à Voter ballot. She marks the candidate index and embed the
selected candidate index into seed by reencryption vote = ET (γ

r−
∑

i si ,
∑

i yi). The mixing proceeds
as usual. After decryption,the plaintexts are of the form γr−

∑
i si . In order to reveal the tally a discrete

logarithm must be solved. In order for this to be easy the seeds must be selected so that the exponent
is not too large and the search space is bounded. Alternatively the Paillier Cryptosystem [117] can be
used.

6.2.4 Alternate social choice functions

6.2.4.1 Singe Transferable Vote

In [70] an effort was presented to incorporating STV into Prêt à Voter . STV as described in chapter 2
has some useful characteristic that were helpful in the implementation:

• Unused Preferences: Some of the preferences might not be used, since the winner might get
declared earlier.
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• Transfer history is irrelevant. We are not interested for the previous candidates since they are
eliminated

• Lazy evaluation can be applied. We can work on the candidates one by one.

However since tallying in Prêt à Voter uses a mix net based approach, the ballots will be decrypted.
Thus the italian attack can be applied. More specifically, the cyclic shift proposed in [34] cannot be
used to encode a partial ranking as it might leak too much information, because it preserves the relations
found in the canonical ordering, as depicted in the figure below:

Fං඀ඎඋൾ 6.5: A permutation that might leak information [70]

As a result a random but complete permutation, must be applied in each ballot. This cannot be done
using El Gamal and reencryption. It can be done however using RSA onions, where each layer in the
onion encodes a permutation that can be recovered and applied. However this approach has problems
as well since:

• It is evident how many choices were made

• This can be used to partition ballots and leak information

• No random padding can be added, since it will affect the election results

• The Italian attack is still applicable.

The solution found by [70] is multi valued reencryption mixes. The vote is encoded as a sequence of
cryptograms {c1, · · · , ck} that decrypt to a candidate index. The order of the cryptograms reflects the
ranking of the candidates by the voter, ie c1 is the encryption of the index of the favourite candidate.
A dummy candidate 'STOP' id included that marks the end of the user ranking. A complete ranking is
given by appending a random permutation of the remaining candidates.
The tallying is done in a lazy manner. First the heads of the candidate list are decrypted and the

first preferences are counted. If a candidate is eliminated then the head is appended at the end, an
anonymising mixnet is run and the heads are again decrypted. The process stops when a winner (a
candidate with more than half the votes) is found.

6.2.4.2 Condorcet Voting

In [39] the Prêt à Voter ballots are used to implement Condorcet voting. For c candidates we have
c(c−1)

2 99K O(c2) ballots. Each ballot is a yes/no choice for candidates i, j. A yes choice indicates
preference for candidate i over candidate j. Each yes/no ballot has its own onion < i, j > which is
contructed in a layered manner for use in decryption mixnet. Each voter submit c × c votes with the
preferences and the onions. The vote is run through a decryption mixnet for anonymisation. It must be
noted that there can be no correlation that all c2 votes belong to the same voter. A summation matrix
is used to declare the winner.
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6.3 Proof of Concept Implementations

To get an actual feel of the protocols discussed in 3 and 4 we implemented two of them. More specifi-
cally, we built a homomorphic voting system based on the Damgard Jurik cryptosystem (2.1.1.3,3.4),
that allows selecting for 1 out of C candidates. To be exact we implemented the system described in
[46]. Henceforth, this implementation will be referred to as 'DJN'. In addition, we implemented voting
with mixnets based on permutation networks (4.3.2), as a combination of [92] and [91]. Henceforth,
this implementation will be referred to as 'MixPerm'. Before we delve into the details of each system,
let's describe some common characteristics of both:

• Dynamic and multiple elections. Both systems allow for an administrator to create elections
with multiple answers of his choice. The voter selects the desired election-question from a list
and chooses the desired option.

• Bulletin Board as a database. Borrowing from Helios, we represent the bulletin board as a
relational database. The database contains the election options, the cryptographic parameters as
well as the encrypted votes and the proofs of shuffle and validity. For simplicity we chose the
SQLLite (http://sqlite.org/) database engine.

• ArchitectureWe follow a modular architecture for both implementations. The user interface is
split from the database handling code and from the protocol implementation. The cryptographic
functions and the voting protocols for both systems are implemented in a class library, named
CryptoLib which is compiled as a Dynamic Link Library. It is the only one that does not have
database access. Regarding the other components of the system, the Election Creator module
initiates the election procedure by creating the voter choices and the cryptographic keys and stores
everything in the database. Another component is the Voting Client, which allows the voter to
select an election, retrieve the options and cast the vote. The third executable component differs
per system and implements the main part of the protocol, which is the homomorphic tallying and
mixing functions respectively, along with the proof validation.

For the implementation we used a combination of .Net (http://www.microsoft.com/net) lan-
guages with Visual Studio 2013. This choice was made on grounds of familiarity. The user interface
was implemented in C#, while the protocol as well as the cryptographic details were implemented in F#.
We chose a functional programming language for the important part of the implementation, because of
the expressiveness, simplicity and composability properties.
The code for both projects is available on Github.

6.3.1 The 'DJN' implementation

Functionality The election is created by an administrator by supplying the election issue and the
election options. Each option is a label-value pair. The label can be any alphanumeric string, while the
values must be continuous positive integers starting from zero (due to the nature of the cryptosystem
and counters used). In addition the administrator selects the key size - which represents the bit length of
each of the primes p, q (not of the product n) - and the generalisation factor of the 2.1.1.3 cryptosystem.
Finally, the administrator selects the threshold of the cryptosystem, namely the total number of shares
and the required number for reconstruction.
As a result, the election options (name, labels, values), the public key and the cryptosystem parame-

ters are stored in the database. To illustrate the difference, the secret key shares are stored in text files.
In a real election, these might be stored in smart cards or other devices.

http://sqlite.org/
http://www.microsoft.com/net


Chapter 6. Case Studies 114

Fං඀ඎඋൾ 6.6: Election Creation Form in 'DJN' Project

Now voting can begin. To this end, the voting client will be used. The client initially retrieves all
the available elections from the database and presents them to the voter. The voter selects the desired
election, the program retrieves the corresponding choices and populates a dropdown list. The voter now
can select the desired option and cast the vote. The system retrieves the public key from the database
and encryptsMvalue. In particular, the value 103 has been used as the basisM of the Baudron counter.
Afterwards it generates proof of vote validity, namely that the ciphertext is an encryption of one of the
available choices. Of course the actual proof depends on the number of choices. For example if there
are 4 available choices, a 1 out of 4 proof is generated, and if there are five choices a 1 out of 5 proof
is generated. The ciphertext and all the proofs are inserted in the database.

Fං඀ඎඋൾ 6.7: Voting Client Form in 'DJN' Project

After everybody has voted, the result is computed. This is done, using the tallier program, which will
be operated by an administrator. The user initially selects the election and then follows the workflow
below:

• Validates the proofs for each vote.

• Aggregates the votes of valid proofs by usingmultiplication. The product is stored in the database.
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Fං඀ඎඋൾ 6.8: Tallier Form in 'DJN' Project

• For the specified threshold value, selects each key share and 'decrypts' the result. Each decrypted
share of the result is stored in the database.

• Combines the shares to create the result.

Architecture The general description of the previous section applies. Here we give more details.
The database consists of the tables depicted in the following diagram:

Fං඀ඎඋൾ 6.9: Database scheme for 'DJN' Project

Specifically, the table Elections contains the issue being voted for. Its primary key spans the com-
plete database and allows for multiple elections. The options are stored in the table ElectionOptions,
while the public key n, the public parameter s and the various values used for the threshold scheme
namely (D, ssp, numShares, numThreshold) are stored in the table PublicKeys. The actual votes
goto Votes. Initially only the Cipher field is populated, containing the encryption of the vote. For each
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vote, the proofs of validity are entered in the table VoteProofs linked with the field voteID. When the
votes are validated, the field isValid in the table Votes is completed. After aggregation the table Result
is populated. The field isShare indicates whether the data corresponds to a decrypted share or to the
result.

Code Due to space restrictions, we shall present as an example, the module that implements the
essence of the election protocol.

namespace CryptoLib

module DJN =

open CryptoLib.Common
open CryptoLib.Paillier

type DJN(numCands) =
let nc = numCands
let M=103I

let createWitnesses encVote n ns =
let ns1 = ns * n
let mutable arr = Array.init nc (fun _ -> 0I)
for c = 0 to nc-1 do

let b = modulo (bigint.Pow(M,c)) ns
arr.[c] <- modulo (encVote *invmod(powmod((n+1I),b

,ns1),ns1)) ns1
arr

let swap (arr:bigint[],a:int, b:int) =
let mutable t=arr.[b]
arr.[b]<-arr.[a]
arr.[a]<-t
let ls = arr|>Array.toList
ls

let extractRes res=
let max = int(System.Math.Log(float res,float M))+1
let mutable num = res
let mutable votes = Array.zeroCreate max
let mutable i = 0
while num > 0I do

let v = num%M
votes.[i]<-v
num<-num/M
i<-i+1

votes

member d.vote choice pk =
let enc = new Paillier()
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let n,s,_,_ = pk
let encVote = enc.Encrypt(choice,pk,s)
encVote

member d.aggregate votes pk =
let enc = new Paillier()
let n,s,_,_ = pk
let encRes = votes|>Seq.skip 1

|>Seq.fold (fun c1 c2 -> enc.Mult(c1
,c2,pk,s)) (votes|>Seq.head)

encRes

member d.mvote choice pk =
let enc = new Paillier()
let n,s,_,_ = pk
let ns = bigint.Pow(n,s)
let ns1 = ns*n

let ballot = modulo (bigint.Pow(M,choice)) ns
let r = randomGCD(n)
let encVote = enc.Encrypt(ballot,pk,s,r)
let mutable arr = createWitnesses encVote n ns

let ls = swap(arr,choice ,0)
let proof = enc.ProveNsPowerWID(ls,r,pk)

let (offers, challenge , zs, cs)=proof
let loffers = swap(offers ,0,choice)
let lzs = swap(zs,0,choice)
let lcs = swap(cs,0,choice)

encVote ,(loffers|>List.toArray, challenge , lzs|>List.
toArray, lcs|>List.toArray)

member d.checkProof encVote proof pk =
let enc = new Paillier()
let n,s,_,_ = pk
let ns = bigint.Pow(n,s)
let (offers, challenge , zs, cs)=proof
let ls = createWitnesses encVote n ns
enc.ValidateNsPowerWID(ls,offers, challenge , zs, cs,

pk)

member d.decrypt cres pk sk =
let dec = new Paillier()
let res = dec.Decrypt(cres,sk,pk)
extractRes res
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static member decryptShare cres pk sk =
ThresPaillier.DecryptShare(cres,sk,pk)

member d.combine dshares pk =
let tp = new ThresPaillier()
let x = tp.CombineShares(dshares,pk)
extractRes x

Upon instantiation the code is fed with the number of candidates, which is an essential piece of
information, as it affects the actual number of proofs that will be generated. The Baudron homomorphic
counter is instantiated to 103 (a demo value). During voting, the functionmvote is calledwith arguments
the public key of the cryptosystem and the voter choice. The function encrypts M choice and fills an
array with random values for the rest of the choices. To create the witnessess, it divides each ciphertext
(or random value) with the value that would be the choice (in function createWitnessess). Subsequently,
the proof of validity is generated and returned for database insertion along with the ciphertext. In the
proof generating function, it is assumed that the valid vote is contained in the first entry, and for the rest
a random value is contained. To achieve this, the generated values will be swapped. Decryption of the
result takes place using the functions decryptShare, combine, and extractRes. The first one decrypts
the ciphertext using the share of the key sk. The decrypted values are then combined and the result is
extracted using the algorithm of 2.1 implemented in the last of the above functions.
The complete and current code for this project can be obtained from the Github repository at: https:

//github.com/pgrontas/Homomorphic-Voting-DJN

6.3.2 The 'MixPerm' implementation

Functionality Again the election begins using the Election Creatormodule. This time the underlying
cryptosystem is ElGamal. The election options are inserted into the database as well as the public key.
Following [91] only yes/no voting is supported.

Fං඀ඎඋൾ 6.10: Election Creation Program For 'MixPerm' System

The voting client functionality is similar to the corresponding module in 'DJN'. The system retrieves
the available elections, the voter selects one and it s parameters are fetched. The ballot cast is an
ElGamal ciphertext. As the votes are to be fully decrypted, no proof of vote validity is needed.
Mixing, decryption and counting is done using theMixServer module. Initially the votes are retrieved

from the corresponding database table and placed in the tableMix, for processing. Since [91] supports

https://github.com/pgrontas/Homomorphic-Voting-DJN
https://github.com/pgrontas/Homomorphic-Voting-DJN
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Fං඀ඎඋൾ 6.11: Voting Client For 'MixPerm' System

number of ballots that is a power two, to realise the functionality we add enough 'dummy votes' to reach
the next such power. These votes are encryption of invalid choice and will not be counted during the
final tally. During each shuffle, the votes are retrieved from there, get reenecrypted and then shuffled
using a recursive sorting network. Before this processing the proofs of the previous mix are checked
and if they are found invalid the operation stops.

Fං඀ඎඋൾ 6.12: Vote Mixing in 'MixPerm' System

After each mix server has taken its turn, the votes are decrypted and the result is calculated.

Architecture The database of the system bares many similarities with that of 'DJN'. We shall focus
here on the differences, omitting the ones that are caused by the use of the ElGamal cryptosystem. The
Mix table is empty at first. When mixing begins all the encrypted votes are copied and retrieved by the
first mix server. After operation, the mix server increments the stage fields and reinserts the results.
The tableMixProofs contains links to the proofs that were generated during mixing. For each switching
gate in the permutation network 2 proofs are generated. They are stored in the table SchnorrProofs.

Code Due to space restrictions, we shall present as an example, the module that implements the
mixing part of the election protocol. The entry point of this module is the mix function which takes a
list of ciphertexts and an El Gamal public key and merely forwards them to the permnet function. The
latter is a recursive function that splits the list in half, calls itself and then merges the result. In the base
case, the switching gate of the permutation network is implemented, using a call to the switchingGate
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Fං඀ඎඋൾ 6.13: Vote Counting in 'MixPerm' System

Fං඀ඎඋൾ 6.14: Database scheme for 'MixPerm' Project

function. It takes two ciphertexts and the public key. At first it reencrypts them using the public key
and then using a random bit permutes them. It also generates a proof that each ciphertext is correctly
reencrypted DISPEProof and a proof that the product of the outputs is a reencryption of the product of
the inputs, according to [91]. The proofs are returned to the calling module and inserted to the database.

namespace CryptoLib

module PermNet =

open CryptoLib.Common
open CryptoLib.ElGamal
open CryptoLib.Schnorr
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let splitList list = List.foldBack (fun x (l,r) -> x::r, l)
list ([],[])

//Prove that ciphertexts c1 and c2 encrypt the same plaintext
under public key pk
//The prover must know the reencryption factor r
let genBlindedKey c1 c2 pk =

let ((g,p,q),y) = pk
let (g1,m1) = c1
let (g2,m2) = c2
let z1 = getRandom(q)
let z2 = getRandom(q)
let G = modulo (powmod(y,z2,p)*powmod(g,z1,p)) p
let Y = modulo (powmod(g2*invmod(g1,p),z1,p)*powmod(m2*

invmod(m1,p),z2,p)) p
(G,Y)

let PEProof c1 c2 pk r =
let ((g,p,q),y) = pk
let (G,Y) = genBlindedKey c1 c2 pk
let PK = ((G,p,q),Y)
let SK = ((G,p,q),r)
let sn = new Schnorr()
sn.prove(SK,PK)

//Disjunctive Plaintext Equivalence Proof
//Prove that c is reencrypted either as rc1 or as rc2 with

reencryption factor r
let DISPEProof c rc1 rc2 pk r =

let ((g,p,q),y) = pk
let snw = new SchnorrWID()
let (G1,Y1) = genBlindedKey c rc1 pk
let (G2,Y2) = genBlindedKey c rc2 pk
let PK1 = ((G1,p,q),Y1)
let PK2 = ((G2,p,q),Y2)
let SK = ((G1,p,q),r)
snw.prove(SK,[PK1;PK2])

let switchingGate c1 c2 pk =
let ((_,_,q),_) = pk
let eg = new ElGamal()
let r1 = getRandom(q)
let r2 = getRandom(q)
let rc1 = eg.ReEncrypt(c1,pk,r1)
let rc2 = eg.ReEncrypt(c2,pk,r2)
let dpep = DISPEProof c1 rc1 rc2 pk r1
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let c = eg.mult(c1,c2,pk)
let rc = eg.mult(rc1,rc2,pk)
let pep = PEProof c rc pk (r1+r2)

let b = getRandom(bigint (System.Int32.MaxValue))
if b%2I = 0I then

(rc1,rc2), (pep,dpep)
else

(rc2,rc1), (pep,dpep)

let rec permNet(ls, pk)=
let n = ls|>List.length
if n = 2 then

let (c1,c2),(p1,p2) = switchingGate ls.[0] ls.[1] pk
[c1;c2],[(p1,p2)]

else
let (ls1,ls2) = splitList ls
let ls1', proofs1 = permNet(ls1,pk)
let ls2', proofs2 = permNet(ls2,pk)
ls1'@ls2', proofs1@proofs2

let mix(ls,pk) =
let xs = List.ofSeq(ls)
let ls1,ls2 = permNet(xs, pk)
Seq.ofList(ls1),Seq.ofList(ls2)

let verify(xs) =
let proofs = List.ofSeq(xs)
let v1 = new Schnorr()
let v2 = new SchnorrWID()
proofs|>List.map (fun (p1,p2) -> v1.verify(p1) && v2.

verify(p2))
|>List.fold (fun a b -> a && b)true

The complete and current code for this project can be obtained from the Github repository at: https:
//github.com/pgrontas/PermNetMix

https://github.com/pgrontas/PermNetMix
https://github.com/pgrontas/PermNetMix


Chapter 7

Conclusions and Future Work

This thesis was built on the premise that voting as a generic decision making process will be eventually
computerised. Electronic voting is voting by proxy and as such there are serious issues that need to be
resolved, that are made worse by the volatile nature of software. However in our opinion, these diffi-
culties are not show stoppers. Many voting technologies that have been used for many centuries (and
are still around today), exhibit more important flaws, but are still preferred in various occasions. In our
opinion, the reason for this is twofold. Firstly some of them, such as vote by acclamation or show of
hands are very direct and intuitive despite their lack of privacy or integrity. Secondly the lack of trust
is compensated by the involvement of multiple trustworthy institutions that have conflicting interests.
This might seem as trading one problem for another, but trust in institutions is built in different ways
and is more comprehensible by the general public. What is important, though is that the approaches de-
scribed in this thesis provide another avenue for trust building. This avenue is cryptography. One could
think that cryptography would be used only for keeping the votes secret, but as we saw, cryptography
proves much more important in the verification of the process and as such is a trust builder.
The different approaches reviewed in this thesis fall into three categories. The first one aims to

compute the result without ever decrypting the votes. To this end the homomorphic properties of the
underlying cryptosystems are utilized to combine the secret votes. One problem with such systems is
that the result needs to be decrypted. Whoever performs this operation is going to get the capability of
decrypting individual votes for free. As a countermeasure we require the cooperation of many different
parties for the decryption capability, relying on their conflicting interests. A variation of this approach
splits, instead, the vote to the different parties. Now no authority possesses the complete vote in order
to be decrypted, but the voter has to perform more work. It is argued, that the first approach is more
applicable to large scale elections while the latter one is more suitable to smaller scale elections where
the voter is the tallier as well. Another drawback of the homomorphic approach, is that a hidden vote
provides an attack surface, as an attacker might use it to insert more votes to the system. As a result the
voter must provide a proof of validity. Only votes that are verified will be counted. This verification
however adds computational cost. The proof itself constrains the social choice functions that can be
implemented by the system. A consequence of this fact is that implementations based on homomorphic
cryptosystems, like Helios, do not implement the more complex voting methods such as STV, but stick
essentially to variations of yes-no voting (1 out of c, t out of c).
The second approach downscales secrecy to anonymity. In practice, this means that the votes will

be decrypted at some point, but they will be anonymous by then, meaning that the link between voter
and vote will be broken. This anonymity services will be provided by a set of shuffles implemented
by entities collectively referred to as a mixnet. Mixnets are a mature tool, that has been used beyond
voting. In our case, the fact that the contents will be eventually revealed, would, one might reckon, free
the protocol from expensive proofs and allow in theory for the incorporation of more advanced social
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choice functions. As we saw this is not the case. Attacks utilizing corrupt voters have proved that the
voter needs to prove knowledge of the proof, or else his vote could be used for tagging in order to break
the anonymity of the scheme. To make matters worse, the attack could originate from the mix server,
which is a more powerful agent in the protocol, as it handles all the votes and as a result could do more
harm than a mere voter. Consequently the mix server must also prove that it operated as specified by
the protocol. In this thesis, we examined various ways to generate these proofs from quite inefficient to
the most efficient ones. In addition, we reviewed approaches that trade anonymity and/or correctness
for efficiency. While these approaches have been used in practice, they remain vulnerable to variations
of the tagging attacks.
The third approach splits the registration and counting functions. With the use of the cryptographic

primitive of blind signatures, it allows the registration authorities to validate the origin of the ballot
without seeing its contents and the counting authorities to count the contents without seeing the origin.
This scheme requires an anonymous channel, but it is lightweight and simple and it comes as no surprise
that it is the one boasting the greatest number of implementations.
The systems reviewed so far defend against a basic adversary. Of course there are many different

ways to cheat in voting. A voter, herself might want to sell her vote. A complete system should try
to avert such attempts, providing a property that is referred to as receipt freeness. In this case the
randomization that was useful in hiding the votes, becomes the enemy as it can serve as a receipt. To
mend this, the encryption of votes is not prepared by the voter, but by the authorities and the information
is transferred in a deniable fashion.
Of course a stronger adversary still exists. His capabilities include trying to impersonate a voter,

trying to force the voter to abstain from voting or forcing the voter to nullify his and probably other
votes. He can be found in the one of the more interesting applications of electronic voting, namely
remote voting. A fairly recent success of the voting research is providing defense against such ad-
versaries in the form of coercion resistance. This property is achieved when the stronger adversary
cannot tell whether his attack succeeded or not and implemented by voting multiple times using fake
and anonymous credentials that are indistinguishable from the real ones. It is based on some reasonable
assumptions such as the provision of an untappable channel during registration and the existence of a
moment of privacy for the voter.
The properties of receipt freeness and coercion resistance are provided not as standalone protocols,

but are found as addons to the before mentioned paradigms. More over the blind signature scheme
requires the existence of an anonymous channel. Can these combinations be extended? For example
would it be reasonable to build a voting system that combines homomorphic systems andmix nets; Such
a system would eliminate all tagging attacks as the votes would never be decrypted. In addition it could
add the garbling feature of changing the number of ciphertexts in each mix stage by homomorphically
aggregating a part of the votes. Bridging these worlds would not however result in combining the
best, but also the worst of them. The resulting system would constrain the social choice functions and
would be quite expensive computationally. However, as research advances and more efficient proofs
are found such an approach could not be ruled out. Moreover, the application of general secure multi
party computation techniques could bear more fruits, under the above premise.
While the subject of electronic voting is quite mature, as it spans 30 years of literature, there remain

a lot to be done. We have touched on some of these issues that will be the subject of future research. To
begin with, there is the problem of the actual level of privacy provided by cryptographic techniques. By
this, we mean that if vote secrecy is based on computational assumptions, there might come a day that
these assumptions do not apply. We do not refer only to the solving the underlying number theoretic
problems, such as the discrete logarithm. Once an election ends, the votes cast remain as records. These
might be permanent records and if published on a web bulletin board could be available to anybody
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for an indeterminate period of time. We repeat here the well known quote of Adi Shamir, that all
cryptographic keys in use today will be useless in 30 years time. All the records captured will be able
subject to cracking with dire consequences. Two efforts provide solutions to this problem and are based
on commitment schemes and the idea that integrity is ephemeral (during the election and for a short time
thereafter), but privacy should be everlasting. The first approach utilizes the various methods for secret
sharing, while the second one is everlasting privacy with homomorphic commitments for the vote and
homomorphic encryption for the public, that can be easily added to existing protocols. This method
provides only everlasting privacy towards the vote, and not towards the opening values. It would be
an interesting idea to combine the latter method with protocols for secure erasure. Alternatively, there
could be entirely new avenues of research.
An open issue of great importance is the full integration of any social choice function in voting

systems. As we saw, most voting protocols proposed, are designed for yes or no, 1 out of c, or t out of c
voting. Our review, pointed the difficulties to embed such functions to homomorphic schemes. While
on the surface it might seem easier to incorporate them to mixnets or blind signature based schemes, the
reality is that as they encode more information, they broaden the attack surface to the systems. Recall
the Italian attack that uses the lower-ranked preferences of ranked ballot as an identifier. In our opinion,
how to make all social choice functions first class citizens of voting systems, remains an open problem.
Coercion resistance as the newest area added to the field of voting research, has, in our view the

most potential for future work. For example there is a complete subfield of cryptography, dealing with
anonymous credentials that could be combined with the results we reviewed. Interesting problems
would be the speedup of the duplicate and fake credential detection process combined with efficient
revocation. The latter is important as credentials are obtained during the untappable registration process
and are to be used during many elections. Another possible avenue for research will be the combination
of techniques reviewed in this thesis and the field of auctions. These two distinct fields share many
common characteristics such as the need for secrecy and integrity and the efforts to avoid coercion and
collusion. Of course we are not the first to notice this and many efforts are well underway.
Last but not least, one drawback of this thesis, brought by our trying to balance between theory

and practice is that less importance was given to the efforts for proving the properties of the protocols
described. We are not alone in this, however. It is a fact, that proposals without proofs dominate the
voting literature. Notable exceptions, are the works proving the security of mixnets and homomorphic
cryptosystems in the universal composability framework. This work could be extended to schemes
based on blind signatures and almost verifiable shuffles.
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