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ABSTRACT

Supervised and unsupervised learning are two fundamental learning schemes whose

difference lies in the presence and absence of a supervisor (i.e. entity which provides

examples) respectively. On the other hand, transfer learning aims at improving the

learning of a task by using auxiliary knowledge. The goal of this thesis was

to investigate how the two fundamental paradigms, supervised and unsupervised

learning, can collaborate in the setting of transfer learning. As a result, we developed

transfer-𝐾means, a transfer learning variant of the popular 𝐾means heuristic.

The proposed method enhances the unsupervised nature of 𝐾means, using su-

pervision from a different but related context as a seeding technique, in order to

improve the heuristic’s performance towards more meaningful results. We provide

approximation guarantees based on the nature of the input and we experimentally

validate the benefits of the proposed method using documents as a real-world

example.

SUBJECT AREA: Machine Learning

KEYWORDS: clustering, transfer learning, domain adaptation, density ratio estima-

tion, natural language processing



ΠΕΡΙΛΗΨΗ

Η επιτηρούμενη και η μη-επιτηρούμενη μάθηση είναι δύο θεμελιώδη σχήματα

μάθησης, των οποίων η διαφορά έγγυται στην παρουσία και απουσία ενός

καθηγητή (δηλαδή μιας οντότητας που παρέχει παραδείγματα) αντίστοιχα.

Από την άλλη πλευρά, η μεταφορά μάθησης είναι μια ιδέα που στοχεύει

να βελτιώσει την μάθηση ενός έργου χρησιμοποιώντας βοηθητική γνώση. Ο

στόχος της παρούσας διπλωματικής είναι να διερευνήσει πως αυτά τα δύο

θεμελιώδη παραδείγματα μάθησης, επιτηρούμενη και μη-επιτηρούμενη μάθηση,

μπορούν να συνεργαστούν στο πλαίσιο της μεταφοράς μάθησης. Ως αποτέλεσμα,

αναπτύξαμε τη μέθοδο transfer-𝐾means, μια παραλλαγή της δημοφιλής ευριστικής

μεθόδου 𝐾means, που βασίζεται στην μεταφορά μάθησης.

Η προτεινόμενη μέθοδος εμπλουτίζει την μη-επιτηρούμενη φύση του 𝐾means

χρησιμοποιώντας επιτήρηση από ένα διαφορετικό αλλά σχετικό χώρο ως

τεχνική αρχικοποίησης των συστάδων, με σκοπό να βελτιώσει την απόδοση

της ευριστικής αυτής μεθόδου. Παρέχουμε προσεγγιστικές εγγυήσεις σύμφωνα

με την φύση της εισόδου και επαληθεύουμε πειραματικά τα οφέλη του transfer-

𝐾means χρησιμοποιώντας κείμενα σε φυσική γλώσσα ως ρεαλιστική εφαρμογή.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μάθηση

ΛΕΞΕΙΣ - ΚΛΕΙΔΙΑ: συσταδοποίηση, μηχανική μάθηση, προσαρμογή τομέα,

εκτίμηση λόγου κατανομών, επεξεργασία φυσικής γλώσσας
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1 Introduction

alter techno is more reliable than alter ego
— Pascal Chabot

“Rotwang, give the Machine-Man the likeness of that girl.” This is the moment

where, in the 1927 film Metropolis by Fritz Lang, the powerful ruler of the city Joh

Fredersen instructs the mad scientist Rotwang to give his evil robot the appearance

of Maria, an influential peace-preaching proletariat woman, in order to use her

reputation to spread corruption among the suffering workers. This movie is an

emblematic instance of what Isaac Asimov called “the Frankenstein complex”, the

belief that science could produce something that it could not control. Asimov, one

of the fathers of the science fiction genre, envisioned an era where humanity would

be served by robots. After all, the word “robot”, coined around 1920 from the

Czech author Karel Capek or his brother Josef, comes from the Czech word robota,
which means “forced labour, compulsory service, drudgery”. However Asimov, as a

talented dramaturgist, involved in his narrative the robots’ attempt to destroy their

creators.

This plot archetype was and still is very popular, since it captures the audience’s

imagination and deepest fears. However, it has not remained just a fictional

construction. With the publicised achievements of Artificial Intelligence (AI) research,

the Frankenstein complex has infiltrated into the real life, having a widespread

scientific and social impact. Many scientists have raised concerns about the risks

posed by future AI technology and the majority of the general public feel more

and more alienated from this technological progress.

The negative opinion about AI exhibits three important characteristics: it is justifiable,

useful but also misguided. For the first characteristic, we can easily consider two

reasons. To begin with, AI’s scandalous goal is to simulate one of the attributes

that presumably place humans at the top of the species’ pyramid: human cognition.

It is very difficult for us to conceive other entities sharing our place in this pyramid.

However, the notion of difficulty here does not relate with that of impossibility; it
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simply means that such a conception is outside of our imaginative reach, the same

way we cannot imagine a fourth dimension. Another reason why this negative

opinion is justifiable can be the existence of an emotional and cultural trauma:

humanity has a long history of science abuse, for instance with the advent of

nuclear energy. For the second characteristic, proponents of the Frankenstein

complex actually offer themselves as an example of the scientific morality debate:

how human values resonate in science? Such a debate must remain open and active

in order to question the purpose of the ongoing technological progress and redefine

frequently the relation of science with the rest of human endeavours. However,

the negative view of AI runs the risk of becoming a parochialism since such a

quest, to simulate the human mind, entails one of the most daunting and existential

questions: what is the human mind?

Reflection on this question can be traced back to antiquity and it has been one of

the meeting points of philosophical and scientific approaches. Many mind theories

were created, yet none of them radically changed our lives. It was only in the early

1930s that a variant of this question prepared the ground for a jump to universality¹:

is the human mind a machine? That variant was not something new. In the 16th

century, during the Scientific Revolution, the philosophical doctrine of Mechanism

came to prevalence, manifesting itself in the works of Isaac Newton and René

Descartes and holding the anti-teleological view that all physical bodies (including

humans) can be completely described by mechanistic laws of motion or in a later

modification, that all “vital” phenomena can be explained as physical and chemical

facts. This doctrine inevitably gave birth to a sub-field called Anthropic Mechanism
where everything about human beings can be explained in mechanical terms, as

can everything about e.g. a clockwork. For the body, most mechanist theories

could hold their claim, but what about the mind? Is the mind a machine, yet

that complex that we are still unable to describe? Or is there something more, a

so-called spirit that cannot be reduced to a quantitative reality? This sub-field is

still active, having proponents in both sides and their fruitful debate mostly focus

on the abstract notions of consciousness and free will. Taking a brief look into this

debate and with a dangerous oversimplification, the argument of anti-mechanists

is that a mechanistic mind view is incompatible with commonsense intuitions. On

the other side, the answer of mechanists is that commonsense intuitions are simply

wrong or such an incompatibility is a paralogism and does not exist.

Although the mechanical aspect of the mind had been contemplated for so long,

what changed in the 1930s? It was the launch of the Computability theory,

the glue that unified all the necessary elements for the birth of the discipline

that we now know as computer science and paved the way towards the Digital

Era we live in. The pioneers of this theory was a group of mathematicians and

¹The jump to universality as described in [Deu11] is a concept that describes the situation where a solution for a

specific problem becomes useful for its own sake and can customize itself as a solution to other problems.

2



logicians, among them the predominant figures of Kurt Gödel, Alonzo Church

and Alan Turing, who tried to explain the human experience of computation and

suggested how artificial computing devices should be built. They formalized the

notion of effective computability as a fixed finite procedure, assuming that only a

finite number of states of mind is “taken into account” at each stage [CPS13].

The existence of a device simulating this notion was proven constructively by Turing

and it was called the Universal Turing machine, an automaton that operated on

logical principles. The debate whether the mind is a machine was still ongoing,

but there was a consensus that the mind is more powerful than any given Turing

machine and Gödel’s incompleteness results², although not applicable to human

reason, established limitations of such a mathematical formalism.

What is in the human mind that could not be expressed as a Turing machine?

Focusing only on human reasoning, Turing thought that it was the notion of

intuition. The human mind (at least that of an idealized mathematician), although

at every stage is identical to some Turing machine, when it searches around to find

new solutions and methods of proof, it transforms itself from one Turing machine to

some other Turing machine. Intuition was regarded as the non-mechanical process

of choosing this other Turing machine. According to Turing, a machine that can

transform itself is in effect a machine with the ability to learn, yet he provided

no precise ways on how to accomplish such a transformation. Therefore after

computability, learning was the next step along the path of exploring the human

mind. From the 1980s, several mathematical models have attempted to explain

this phenomenon, such as the PAC learning theory [Val84] which formalized the

concept of an efficient learner. But unlike Turing machines and computability, none

of them succeeded a jump to universality yet.

Learning is an experience that is not fully understood in order to be properly defined.

Precisely because of its abstract flavour, many philosophical attempts exist such as

this by Ellen Fridland in [MnSDB15] where she defines learning as a process,
where as a result of experience or reasoning, the behaviour, mental processing or
representations of subjects change in some way that contributes to the satisfaction
of their goal(s). The terms in this definition stay unqualified to preserve a broad

range of interpretations, yet remaining informative in the sense that learning can

be described by two conditions: flexibility and success. The flexibility condition is

expressed through a change and the success condition through the satisfaction of a

goal. A particular kind of flexibility is transferability: a change that is not bound

to a specific context but it can be applied in various settings and circumstances.

For example, in order to learn the concept BLUE one needs to be able to think

various blue things: a blue sky, a blue dress or a blue chair. Transfer learning,

²Informally, Gödel showed that there exist true mathematical statements that are not provable (a proof cannot be

computed). In Turing’s view, these results also showed that there is no formal system of logic that can contain all

possible methods of proof.
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albeit in its infant mechanistic variant, will be the main focus in this work.

Due to such a definitional challenge, it is no surprise that mathematicians have

not yet unanimously agreed on a formulation about learning. However, they are

starting to get influenced by another rapidly developing field: neuroscience. Why

just talking about the human mind, when we can have a look at how the human

brain works ? The study of the human neocortex - with its complex networks

of neurons, how they generate and interact with each other and their large-scale

behaviour by integrating inputs from thousands of synapses - has inspired new

inventions and is considered to be the most promising way towards a formation of

AI [HA16].

Despite all the ongoing research so far, little progress has been made towards

machines that think. There exist ways to create programs that detect spam e-mails,

recommend related items or perform face recognition, but in fact, we don’t even

have a test that could validate that it is a program that generates the knowledge and

not the programmer. Although AI has not reach its goal, it’s getting closer. And

this goal no longer seems scandalous but as it has been discussed so far, it reflects

our efforts to understand us better. As a counter-point of the Frankenstein complex,

it is important to observe that even in the present stage of technological evolution,

the relation between humans and machines is no longer the master-slave bipolar but

it can be described as a collaboration. Gilbert Simondon demonstrated this by using

memory as an example: human memory is selective and stores only emotionally-

trigerring details whereas machine’s memory can retain every detail but is incapable

of selectivity [Cha13]. Accepting us humans as “translators of information between

machines” will be a successful manifestation of the non-alienating positivity and

productivity of a technical mentality [Sim06], a mode of knowledge that has and

will enhance our ability to find explanations even further. Such an endeavour will be

full of errors but as David Deutsch mentions in [Deu11] “Without error-correction all
information processing, and hence all knowledge-creation, is necessarily bounded.
Error-correction is the beginning of infinity.”

1.1 Thesis goal

Computational learning theory is the field that deals with the notion of learning from

a theoretical computer science perspective. Its two main branches are: statistical and

algorithmic learning theory. In statistical learning theory, as mentioned in [Han00],

learning is considered as the stochastic process of generalizing from a random finite

sample of data. In algorithmic learning theory, the sample of data is not assumed

to be random. Its main focus is learning in the limit: the bigger the sample, the

better the learning. In this thesis, we will implicitly follow the statistical approach.

Standard problems in computational learning theory can be classified into two
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fundamental learning paradigms: supervised and unsupervised learning. Their core

difference can be understood by the existence of an entity called teacher: in

supervised learning, there exists a teacher which provides examples of some concept

to a learner and the learner’s goal is to learn the concept. For example, let’s

assume that we want to learn a function 𝑓 ∶ 𝐴 → 𝐵 so that for any input 𝑥 ∈ 𝐴
we would like to predict the output 𝑓(𝑥) ∈ 𝐵. In supervised learning, the teacher

will provide us a finite set of labeled examples {𝑥𝑖, 𝑓(𝑥𝑖)}𝑚
𝑖=1 ⊂ 𝐴 × 𝐵, which is

a set of desired input-output pairs. Our goal is to predict the value of 𝑓 on an

unseen instance 𝑥𝑚+1 ∈ 𝐴. In unsupervised learning, the teacher does not exist.

Therefore the learner is given as input a finite set of unlabeled examples where

the learning source is the intrinsic structure of inputs and the goal of the learner is

to find hidden patterns in this structure, for instance by clustering or dimensionality

reduction of the inputs. Let us refer to the input provided to the learner as train
set and the instances on which the learner makes predictions as test set.

The combination of the above paradigms has given rise to interesting learning

methods such as semi-supervised and transductive learning. What these methods

have in common is that some part of the input is provided with a teacher while

the other part is not. The input consists of labeled and unlabeled examples.

However they differ in their goal: in semi-supervised learning the goal, as in

supervised learning, is given the input to learn a general rule on unseen instances.

In transductive learning, the goal is to predict the labels of the unlabeled part of

the input. Therefore in transductive learning, the test set is available during training

time.

So far it has been implied that train and test sets are drawn from the same set

𝐴 × 𝐵, or more generally from the same fixed but unknown distribution (in this

way, we can model uncertainty in the examples, e.g. a teacher can make mistakes).

By removing this assumption and allowing train and test sets to come from different

distributions, we enter the field of transfer learning. Introduced in 1996 by Thrun

[Thr96], transfer learning aims to apply the knowledge learned in one context to

enhance the learning in a different but somewhat related context. For instance,

if we already know a way to separate documents about football and documents

about cars, can we use this knowledge to separate documents about hockey and

motorcycles?

As a sub-field of machine learning, transfer learning has gained significant attention in

recent years. To begin with, it is a new learning paradigm that allows the formulation

of many problems as well as enhancing the capabilities of already existing machine

learning approaches. In addition, it has a particular practical importance: in classical

machine learning implementations, the work of the teacher is done by humans.

For instance, a set of documents have been manually annotated as hockey and

motorcycles, which are then provided as input to a program in order to learn to
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separate between these two concepts. However, the amount of available data in

our days is so big or become outdated so fast that annotating all of them manually

is a slow, expensive and error-prone process. To address such constraints, we could

re-use already annotated data, although from a somewhat different context, e.g.

the football-cars domain.

The goal of this thesis was to investigate how the two fundamental paradigms,

supervised and unsupervised learning, can collaborate in the setting of transfer

learning. As a result, we developed tr-𝐾means, a transfer learning variant of the

popular 𝐾means heuristic, also called Lloyd’s method [Llo82]. This heuristic is

a typical example of unsupervised learning. With supervision from a different but

related context, we attempted to improve the heuristic’s performance towards more

meaningful results.

1.2 Thesis structure

The rest of thesis is organized as follows. In chapter 2 we offer a short survey of

the existing work on transfer learning. Section 2.1 provides some useful notations

alongside a high-level definition on transfer learning and sections 2.2-2.3 review

the basic problem settings and learning strategies for transfer learning and based

on this categorization some known transfer learning algorithms are discussed.

In chapter 3, we provide some background notations and definitions that will be used

in this thesis. In section 3.1 we formally define the problem under investigation,

namely the Domain Adaptation problem and we review some known theoretical

results on the generalization capabilities of a learner. In section 3.2 we provide

the notion of context-similarity that we will adopt in this work and discuss on

existing approaches to compute this measure. Finally in section 3.3 we elaborate

on the pre-processing step of human-created data, a crucial step in our experimental

analysis provided in chapter 5.

In chapter 4 we discuss in detail our proposed approach, the tr-𝐾means heuristic.

In sections 4.1 and 4.2 we argue how and where it would be valuable to transfer

knowledge and in section 4.3 we provide some approximation guarantees of the

method.

In chapter 5 we conduct some experiments to illustrate the value of our method,

both on synthetic 5.2 and real 5.3 datasets. Finally in chapter 6 we summarize

the observed conclusions and we propose directions of future research.
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2 Related Work

This chapter offers a survey of the existent work related to transfer learning. In

section 2.1 we provide some useful notations and a high-level definition on transfer

learning. In section 2.2 we review the basic problem settings and learning strategies

for transfer learning and based on this categorization we discuss some well known

transfer learning algorithms. Finally in section 2.3 we focus on our setting, namely

transductive transfer learning, and present a by-no-means-complete literature review

on this subdomain.

2.1 Useful Notation and Definitions

Following the notation in [PY10], let us define a domain to be the tuple 𝐷 =
{𝐼, 𝑃 (𝐼)} where 𝐼 is an input space (namely a feature set¹) and 𝑃(𝐼) is a marginal
probability distribution on this set. A domain can be considered as a generator of

inputs. Given a specific domain 𝐷, a task is a tuple 𝑇 = {𝑂, 𝑃(𝑂|𝐼)} where

𝑂 is the set of all possible outputs (often called labels or information classes)

and 𝑃(𝑂|𝐼) is a conditional probability distribution which models what needs to

be learned. It is worth mentioning that 𝑃(𝑂|𝐼) can contain 𝑓(𝑥) = 𝑦, 𝑥 ∈ 𝐼
and 𝑦 ∈ 𝑂 as a special case (i.e. 𝑃(𝑓(𝑥)|𝑥) = 1). Finally let us define a

context to be the tuple 𝐶 = {𝐷, 𝑇 } which is governed by the joint distribution

𝑃(𝐼, 𝑂) = 𝑃 (𝐼) ⋅ 𝑃 (𝑂|𝐼). We are now ready to give an informal definition on

transfer learning:

Definition 2.1.1. [Transfer Learning - informal] Given a source context 𝐶𝑠 and a
target context 𝐶𝑡, where 𝐶𝑠 ≠ 𝐶𝑡, transfer learning aims to improve the learning
of the target conditional distribution 𝑃𝑡(𝑂𝑡|𝐼𝑡) using the knowledge obtained
from 𝐶𝑠.

¹In literature, the input or instance space is often intertwined with the feature space. In this thesis, we also follow this

simplification. However, in [BDBCP07] they separate the actual input from its feature representation via a representation

function, effectively formalizing the pre-processing in typical machine learning applications.
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Figure 2.1.1: The four subsettings of transfer learning: green circles denote the target context and

pink circles the source context. The superscript 𝑇 denotes the existence of labels (teacher) in each

context.

So a learner, given inputs from the target domain 𝐷𝑡 and knowledge learned from

at least one source context 𝐶𝑠, will produce a so-called hypothesis function ℎ ∶
𝐼𝑡 → 𝑂𝑡 which will best approximate the target conditional distribution 𝑃𝑡(𝑂𝑡|𝐼𝑡).
A more inclusive discussion of learning is postponed until chapter 3, but for the

moment let’s observe the following: what the learner actually does is based on

the input, it searches a function space 𝐻 = {𝑓|𝑓 ∶ 𝐼𝑡 → 𝑂𝑡} to find the best

candidate function ℎ ∈ 𝐻 for 𝑇𝑡. Given that |𝐻| = |𝑂𝑡||𝐼𝑡|, learning can be

impossible in practice. Therefore, we restrict the search space to be 𝐻𝐴 ⊂ 𝐻 ,

where 𝐴 is a set of parameters and 𝐻𝐴 = {𝑓𝑎|𝑎 ∈ 𝐴 and 𝑓𝑎 ∈ 𝐻}. Intuitively

𝐴 can be thought of as the inductive bias or the assumptions of the learner about

the true distribution of the training set, e.g. the (unknown) function to be learned

is a polynomial. As explained in [Mit80], a learner without bias cannot generalize

and will only memorize the given inputs. We will refer to the restricted search

space 𝐻𝐴 as the hypothesis space of the learner. It is worth mentioning that there

is no guarantee that the target function 𝑓 will be a member of 𝐻𝐴. Transfer

learning aims to improve the search inside 𝐻𝐴.

2.2 Transfer Learning

Whether labeled examples (i.e. a teacher) are given in each context, transfer

learning can be categorized into four main subsettings: inductive, transductive,
semi-supervised and unsupervised transfer learning. Inductive transfer learning

(ITL) requires a teacher in the target context: a few labeled examples are required

in the target context in order to induce a target predictive function, but in addition

labeled or unlabeled examples from the source context are available to boost the

learning performance. Semi-supervised (STL) and transductive transfer learning

(TTL) require a teacher only in the source context: the learner’s input consists of

labeled examples from the source context and unlabeled examples from the target

domain. As mentioned earlier, in semi-supervised transfer learning the test set is

not available during training time, in contrast with transductive transfer learning. It

is natural to claim that the setting of inductive transfer learning serves as a rough

upper-bound to the performance of a learner based on transductive transfer learning
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or semi-supervised learning. One final note for these two last settings is about the

labels: it is required that either the labels in both contexts are the same or there

is a learnable correspondence between the label spaces (e.g. see [KP13] for a

treatment of different label spaces). Finally, unsupervised transfer learning (UTL) is

the setting where no teacher exists in any context: unlabeled examples from both

contexts are available to the learner and the goal is to estimate the underlying

distribution (often called density estimation) or find hidden patterns in this structure,

for instance by clustering or dimensionality reduction of the inputs.

As mentioned in the Definition 2.1.1, the core idea of transfer learning is that

knowledge from one context can potentially improve the learning performance in

a related, but different context. One useful question is where we can apply this

knowledge. By taking a careful look into the basic components of a learner, the

answer to this question can reveal some of the frequently used strategies in the

transfer learning literature.

A learner or learning algorithm receives inputs along with a feature representa-

tion, potentially with the presence of labels and has a set of assumptions, i.e.

model parameters. Based on these, we can identify four major transfer learning

strategies: input-based or re-weighting methods, feature-based or projection meth-

ods, parameter-based and label-based methods. Although this taxonomy is by no

means complete², it demonstrates the current trends in the TL literature.

2.2.1 Inductive Transfer Learning

In Inductive Transfer Learning, the train set consists of some labeled target-domain

instances and source-domain instances (labeled or not). We will denote the train

set as 𝑋, its target part 𝑋𝑡 which will always be labeled and its source part as 𝑋𝑠.

In [DYXY] they propose trAdaBoost, an ITL meta-algorithm based on the

assumption that feature and label spaces are the same. They iteratively improve

(boost) a learner by checking its performance on 𝑋𝑡. Both source and target

train data are labeled and they are re-weighted in each iteration, however with a

different goal: for 𝑋𝑠 the goal of the re-weighting mechanism is to reduce or

increase its impact in the next iterations, where impact here is translated as the

data’s contribution to the average empirical error ( the empirical error 𝑅̂ is measured

on the train set, see 3). For 𝑋𝑡 the goal of the re-weighting mechanism is to

make the incorrectly-classified target train instances receive more attention in the next

iterations. After a fixed number of iterations, the algorithm outputs the improved

learner for which they provide convergence and generalization guarantees.

In [KHA09] they propose trBagg, also an ITL meta-algorithm which combines

²For more information, we refer the interesting reader to [PY10]. In this thesis, only statistical methods will be

discussed, since geometrical methods don’t rely on the distribution of the input, therefore the domain difference is of

no importance to them (however, an interesting approach can be seen in [DJX+09]).

9



multiple weak-learners into an aggregated one. At first, they generate from 𝑋 a

fixed number of sampled-train sets via bootstrap sampling (i.e. sampling uniformly

with replacement). We can assume that for each sample-train set, each train

instance (either from the source or the target domain) is assigned a weight which

corresponds to its number of appearances in this set. Weak learners are trained

on these sample-sets, a process which can be done in parallel. After this learning

phase, the method iteratively find a subset of these learners whose majority voting

on the 𝑋𝑡 has smaller empirical error (on 𝑋𝑡) than a fallback learner trained only

on 𝑋𝑡. This filtered subset will be the aggregated learner which the method gives

as an output. It is argued that this instance-weighting method affects the variance³

factor of the aggregated learner, a factor which highly influences its generalization

error.

In [HMT05] they are given a lot of labeled source train data 𝑋𝑠 and a limited

number of target train data 𝑋𝑡. Their goal is roughly to adapt a grammar-driven

parser trained on newspaper text to a biomedical domain. Under the constraints

imposed by 𝑋𝑡 they try to estimate the conditional distribution 𝑃𝑡(𝑦|𝑥) using the

maximum entropy principle: from all the probability distributions that satisfy these

constraints, chose the one with the maximum entropy. In this approach, often called

minimum divergence modelling, there is a reference distribution 𝑃𝑟(𝑦|𝑥) which is

used to incorporate prior knowledge into the model. Usually this is the uniform

distribution over all the possible labels an instance can take, so the model measures

the divergence of 𝑃𝑡(𝑦|𝑥) from the uniform distribution (which is the distribution

with the maximal entropy). Their idea is to take advantage of the plentiful labeled

source data to model 𝑃𝑠(𝑦|𝑥) which they incorporate as a prior in their model to

estimate 𝑃𝑡(𝑦|𝑥). Therefore they apply transfer learning in the parameters of the

model.

In [DI07] they propose EA: a method that tries to alleviate the difference between

the domains so that standard supervised methods can be employed. Given labeled

train data from both domains and under the assumption that the feature space is

shared, they replicate each feature with domain-specific versions of it. So given

there are only two domains, source and target, let 𝑥 ∈ ℝ𝑚 be an instance in the

source domain where the input space is the set of 𝑚-dimensional real numbers.

Then it is transformed to the vector ⟨𝑥, 𝑥, 𝟎⟩ in ℝ3𝑚 where 𝟎 ∈ ℝ𝑚. Accordingly,

if 𝑥 belongs to the target domain then it is transformed to the vector ⟨𝑥, 𝟎, 𝑥⟩.
The first 𝑚-block of features is common for all instances whereas the second and

the third are activated only for source and target instances respectively. So features

that are shared in both domains will be given more attention by the learner in the

new augmented feature space.

³If a learner is sensitive to small changes in the train set, then we say that it is a high-variance learner. Therefore

reducing its variance factor, we make the learner less sensitive to changes in the train set and therefore we can argue

that it has better generalization capabilities.
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In [RBL+07] they are given labeled target data 𝑋𝑡 and many unlabeled source

data 𝑋𝑠. Roughly they use the unlabeled 𝑋𝑠 to learn a higher-level representation

which in effect will be more succinct and will capture commonalities among the

instances in the source domain. For instance, if the instances are images given in

pixels, a higher-level representation might detect certain strong correlations between

rows of pixels, and therefore learn that most images have many edges. Then they

apply this new representation to the labeled 𝑋𝑡 and employ a standard supervised

method on this new labeled train set. It is argued that given that the domains

are of the same type or modality (e.g. images, text, audio), the new feature

representation learned in the source domain can boost the performance of a learner

in the target domain.

2.2.2 Semi-supervised Transfer Learning

In Semi-supervised Transfer Learning, the train set consists of unlabeled target-

domain instances and labeled source-domain instances. We will denote the train

set as 𝑋, its target part 𝑋𝑡 which will always be unlabeled and its source part as

𝑋𝑠 which will always be labeled. The goal is to predict the label of a new target

instance.

In [KP13] they propose TL-PLSA, a generative STL method under the assumptions

the feature space is shared but the label spaces are different, although there is a

shared subset of them between the domains. They assume two different kinds of

higher-level representation (which in the context of text domain is usually referred

as a set of topics): one set of topics for instances and one for features. In

particular, the method assumes that an instance 𝑥 is generated as follows: pick

an instance-topic with probability 𝑃(𝑧) and select an instance conditioned on the

given instance-topic with probability 𝑃(𝑥|𝑧). For each feature 𝑓 of the instance 𝑥:
select a feature-topic conditioned on the instance-topic with probability 𝑃(𝑘|𝑧) and

select the feature conditioned on the given feature-topic with probability 𝑃(𝑓|𝑘).
So overall 𝑃 (𝑥, 𝑓) = ∑𝑧,𝑘 𝑃(𝑘, 𝑧) ⋅ 𝑃 (𝑥|𝑧) ⋅ 𝑃 (𝑓|𝑘) since it is assumed that

instances and features are conditionally independent from the respective topics. All

the parameters in the summation are estimated so as to maximize the predictive

probability of the observed features. By letting instance-topics 𝑧 correspond to the

label spaces, we can observe that instance-topics are separated to source 𝑧𝑠 and

target 𝑧𝑡 with a subset of them being shared 𝑧𝑠𝑡. For the source instance-topics,

the parameters can be initialized based on the labeled source domain, therefore

applying transfer learning in the model’s parameters. In addition, given the number

of source, target and shared classes, they can identify which instance-topics are

shared, in order to transfer knowledge only where it is appropriate.

Another example of parameter-based STL is presented in [HLCN+15], where

they assume that the feature and label space is common. In particular, they
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deploy the simplifying Naive Bayes assumption which states that for an instance

𝑥 = {𝑥1, … , 𝑥𝑛}, its features are independently chosen, meaning that for a label

𝑦 and for 𝑖 = 1, … , 𝑛 it holds that 𝑃(𝑥|𝑦) = ∏𝑖 𝑃(𝑥𝑖|𝑦). If we had an

estimate of the label-priors 𝑃(𝑦) and the conditionals 𝑃(𝑥𝑖|𝑦) for every feature

and every label, then we could label a new instance 𝑦∗ = argmax𝑦 𝑃(𝑦|𝑥𝑛𝑒𝑤) ∝
argmax𝑦 𝑃(𝑦) ⋅ ∏𝑖 𝑃(𝑥𝑖|𝑦). They initialize the required parameters with the

labeled source data and they iteratively improve the estimation on the unlabeled

target data so as to maximize the predictive probability of the observed features in

the target domain.

In [HPS13] they propose SLDAB, an iterative non-probabilistic method which can

be categorized as a label-based method. They iteratively build a learner which

simultaneously optimizes the source classification error and preserves a low discrep-

ancy distance between the source and the target distribution. The latter condition

ensures the generalization capabilities of the learned hypothesis. In each iteration,

target data are iteratively self labeled and distributions over both datasets are main-

tained, in order to measure their divergence. They employ as divergence a measure

computed by a maximum graph matching procedure and they provide convergence

and generalization guarantees for their method.

In [SS07] they provide a feature-based TTL method where they try to transform

instances so that the distributions become more similar and therefore standard

supervised methods can be employed under this transformation. In particular, they

attempt to minimize efficiently the source classification error by identifying a subset

of good features where the distributions exhibit low discrepancy distance. Since

no labels are provided for 𝑋𝑡, they use the poor estimation from a shift-unaware

learner. The result learner, since it will be trained on generalizable features, it is

argued to exhibit good generalization capabilities in the target domain.

2.2.3 Unsupervised Transfer Learning

In Unsupervised Transfer Learning, the train set consists of unlabeled instances from

both domains.

In [BHLS13] they try to find a new feature space where the source and target

distributions, estimated by the unlabeled samples, are as similar as possible. Although

they demonstrate the power of their method in the presence of source labels, it

is evident that it could be used for unsupervised tasks as well. In this way, target

patterns can be found using structural information from the source domain as well.

Another feature-based UTL method is proposed in [DYXY08]. Their objective

is to find a good clustering for the given unlabeled target data with the help of

a clustering on the unlabeled source data as well as a clustering of the shared

feature space. A feature-clustering in effect groups together features that exhibit

12



similar behaviour among instances. In effect they provide a transfer learning variant

of the co-clustering algorithm proposed in [DMM03], which tries to minimize the

loss in mutual information⁴ between instances and features before and after the

co-clustering. Their idea is to simultaneously perform two co-clustering operations in

the source and target instances, where both operations will share the same feature

clustering. They experimentally tune a trade-off parameter which balances the

influence between the domains and they prove that their iterative method exhibits

convergence guarantees.

2.3 Transductive Transfer Learning

In Transductive Transfer Learning, the train set consists of unlabeled target-domain

instances and labeled source-domain instances. We will denote the train set as 𝑋,

its target part 𝑋𝑡 which will always be unlabeled and its source part as 𝑋𝑠 which

will always be labeled. The goal is to predict the labels of the 𝑋𝑡. So unlike the

Semi-supervised Transfer Learning, the test set is available at training time.

In [TCWX09] they propose ANB, a weighted transfer version of the famous Naive

Bayes Classifier (see [Lew98] for a detailed reference). Their core idea is to

identify a set of domain-independent features so when a learner is trained on the

source instances, it will not be biased by source-specific features. They pick the

generalizable features if two criteria are met: they occur frequently in both domains

and they have similar occurring probability. Furthermore, they deploy the simplifying

Naive Bayes assumption that all features are conditionally independent. So they

initiate a learner with the labeled restricted source data and they iteratively improve

the estimation using also the unlabeled target data so as to maximize the predictive

probability of the observed features in the target domain. In each iteration, they

use only the generalizable features for the source instances and all the features on

the target instances in order to enhance the learner’s generalization capabilities.

In [BGJV09] they propose CGC, an iterative method that uses source information

in order to supervise a clustering on the target domain. Since the source data are

already labeled, we can assume that an optimal clustering for them is provided. In

each iteration, the criterion of homogeneity between clusters in the target domain is

therefore extended to incorporate the alignment between the domains. In particular

the cross-domain alignment is found by constructing a complete bipartite graph

that has one set of vertices corresponding to the source centroids and another

set corresponding to the target centroids. The edges of the graph are assigned a

user-defined similarity measure and therefore to find the best alignment is equivalent

to find the maximum weighted bipartite match in the graph. Since feature spaces

⁴Mutual Information between two random variables 𝑋, 𝑌 is a measure of how much one random variable tells us

about another. It is defined as 𝐼(𝑋,𝑌 ) = ∑𝑥∈𝑋 ∑𝑦∈𝑌 𝑝(𝑥,𝑦) ⋅ log 𝑝(𝑥,𝑦)
𝑝(𝑥)⋅𝑝(𝑦) . Higher mutual information values

indicate more certainty that one random variable depends on another.
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might be different, they identify a shared set of features on which they project the

rest of the features and incorporate this knowledge inside the cross-domain similarity

measure (resulting in a parameter-based TL method).

In [DrXYY07] they propose NBTC, another weighted transfer version of the Naive

Bayes Classifier. Label and feature spaces are considered shared and they assume

all features are conditionally independent (Naive Bayes Assumption). As in previous

works, they initiate a learner on the labeled source data and iteratively improve

this poor estimation using also the unlabeled target data so as to maximize the

predictive probability of the observed features in the target domain. Although

similar methods have already been mentioned, they all had an experimentally-tuned

trade-off parameter to balance the influence of the source and target data in each

iteration. However, this method attempts to automate the choice of this parameter

by setting it as a function of a divergence measure between the estimated probability

distributions of the observed data. Therefore, if the distributions are very similar,

then source and target data equally influence the learning method, otherwise the

method will be biased towards one domain and the improvement will be lessened.

In [XDXY07] they propose bridged refinement, a TTL method which aims

at refining the target labels of 𝑋𝑡. Label and feature spaces are assumed to be the

same as well as the conditional distributions 𝑃𝑠(𝑂|𝐼) , 𝑃𝑡(𝑂|𝐼) among domains.

Inspired by the Page Rank [PBMW99], they assume a mutual reinforcement

principle among instances: if the neighbours of an instance 𝑥 have high confidence

of belonging to a label 𝑦, then 𝑥 may receive also high score to 𝑦. This confidence

can be regarded as an estimation of 𝑃(𝑥|𝑦). The method consists of 2 iterations:

the first (pre-processing phase) is applied to the whole dataset 𝑋 and the second

(refinement phase) to 𝑋𝑡. In each iteration, a confidence score is updated for each

instance and for each label based on the confidence of the 𝐾 (tunable parameter)

closest neighbours (under some measure). The initial confidences for the first

iteration are set from a domain-unaware classifier trained on 𝑋𝑠 and applied to

𝑋𝑡, whereas the initial confidences for the second iteration are the output of the

first iteration (projected on 𝑋𝑡). At the end of the second iteration, we label each

instance in 𝑋𝑡 with the label that has the highest confidence.

In [DXYY07] they propose CoCC, a TTL iterative method where they use co-

clustering as a bridge to propagate source information in the target domain. Label

and feature spaces are assumed to be the same as well as the conditional distributions

𝑃𝑠(𝑂|𝐼) , 𝑃𝑡(𝑂|𝐼) among domains. Their core idea is to use the labels provided in

𝑋𝑠 in order to constrain the feature clusters which are shared among the domains.

Since in the target domain, instance and feature clusters are identified simultaneously,

their idea is argued to allow the clusters of 𝑋𝑡 to be mapped to a corresponding

source label. In effect, given that 𝐼 is the feature set and 𝑂 the label space, they

develop a co-clustering method that simultaneously minimizes a loss function in the
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mutual information between the instance-feature target co-clustering (𝑋𝑡 , 𝐼) and

between the label-feature co-clustering (𝐼 , 𝑂) before and after the co-clustering.

They experimentally tune the number of feature clusters and a trade-off parameter

which balances the influence of (𝐼 , 𝑂) to (𝑋𝑡 , 𝐼) and they prove that their iterative

method exhibits convergence guarantees.
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3 Background

In this chapter, we introduce some notations and definitions that will be used in

this thesis. In section 3.1 we formally define the problem under investigation,

namely the Domain Adaptation problem and we review some known results on

generalization bounds. In section 3.2 we provide the notion of context-similarity we

will adopt in this work and discuss on existing approaches to compute this measure.

Finally in section 3.3 we elaborate on the pre-processing step of human-created

data, a crucial step in our experimental analysis provided in chapter 5.

3.1 Learning under Domain Adaptation

In this thesis, we focus on transductive transfer learning and we restrict to the case

where only the source and target domains differ. This problem is often called

Domain Adaptation. In particular, we consider two contexts, a source context

𝐶𝑠 = {𝐷𝑠, 𝑇𝑠} and a target context 𝐶𝑡 = {𝐷𝑡, 𝑇𝑡} where source and target

input spaces are the same 𝐼𝑠 = 𝐼𝑡 = 𝐼 and tasks are considered the same 𝑇𝑠 = 𝑇𝑡.
Therefore the set of all possible outputs (namely the label space) is the same for

both contexts 𝑂𝑠 = 𝑂𝑡 = 𝑂 as well as the conditional probability distributions

𝑃𝑠(𝑦|𝑥) = 𝑃𝑡(𝑦|𝑥), for 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝑂. Furthermore, we make the assumption

that only the marginal distributions differ, that is: 𝑃𝑠(𝑥) ≠ 𝑃𝑡(𝑥). This situation

is often termed covariate shift.

Although the assumptions may seem restrictive, they are quite natural in many real-

world problems such as document classification. As a motivation for this setting, let

us imagine we have been given documents in English coming from two contexts:

movie-reviews and book-reviews. Movie-reviews have already been annotated as

positive-negative but book-reviews are still left to be determined. In both cases the

task is to automatically recognize if the review is positive or negative, so labels are

the same. Since all documents are in the same language, then input spaces are

also the same. Finally, we can conclude that if two documents are very similar
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(for instance they contain synonym words), it would be natural to categorize them

in the same class, therefore conditional probability distributions should also be the

same. A toy example is shown in Figure 2: squares are coloured as purple, and a

triangle seams more similar to a square then a circle, so we might chose to color

the triangles as purple as well.

Figure 3.1.1: What color would you paint triangles and polygons?

In this setting, let us consider two sets 𝑋𝑠 = {𝑥𝑠
𝑙 }𝑁𝑠

𝑙=1 and 𝑋𝑡 = {𝑥𝑡
𝑢}𝑁𝑡

𝑢=1
composed of 𝑁𝑠 source-domain and 𝑁𝑡 target-domain instances, sampled from the

unknown marginal distributions 𝑃𝑠(𝑥) and 𝑃𝑡(𝑥) respectively. Let us further assume
that 𝑥𝑠 , 𝑥𝑡 ∈ ℝ𝑚, that is each instance is a 𝑚-dimensional real vector, where 𝑚
represents the dimensionality of the common input space 𝐼 = ℝ𝑚. The same set

of 𝐾 classes 𝑂 = {𝑜𝑘}𝐾
𝑘=1 characterizes both domains 𝐷𝑠 and 𝐷𝑡. A set of true

labels 𝑌𝑠 = {𝑦𝑠
𝑙 }𝑁𝑠

𝑙=1 for 𝑋𝑠 is available, where 𝑦𝑠 ∈ 𝑂, thus it is possible to define

a source labeled set 𝑇 𝑟𝑠 = {𝑋𝑠, 𝑌𝑠} = {(𝑥𝑠
𝑙 , 𝑦𝑠

𝑙 )}𝑁𝑠
𝑙=1 for 𝐷𝑠 drawn from the

probability distribution 𝑃𝑠(𝑥, 𝑦) = 𝑃𝑠(𝑥)⋅𝑃𝑠(𝑦|𝑥). Given 𝑇 𝑟𝑠 and 𝑋𝑡, our goal is
to find a set of labels 𝑌𝑡 = {𝑦𝑡

𝑢}𝑁𝑡
𝑢=1 for 𝑋𝑡 such that {𝑋𝑡, 𝑌𝑡} best approximates

the unknown distribution 𝑃𝑡(𝑥, 𝑦) = 𝑃𝑡(𝑥) ⋅ 𝑃𝑡(𝑦|𝑥) = 𝑃𝑡(𝑥) ⋅ 𝑃𝑠(𝑦|𝑥).
In order to provide a formal definition of the problem, let us review some terminology

from Learning Theory in [Vap98]: let 𝐺 be a generator of random vectors 𝑥 ∈ 𝐼
chosen independently from a fixed but unknown distribution 𝑃(𝑥), where 𝐼 is an

input space. Let 𝑇 be a teacher which returns for every input 𝑥 an answer 𝑦 ∈ 𝑂
according to some fixed but unknown function 𝑓 ∶ 𝐼 → 𝑂, where 𝑂 is the set

of all possible information classes. Therefore we consider the existence of a target

function 𝑓 and a labeled train set 𝑇 𝑟 = {(𝑥𝑖, 𝑦𝑖)}𝑛
𝑖=1.

So a learning machine 𝑀 , given the train set 𝑇 𝑟 will produce a so-called hypothesis

function ℎ ∶ 𝐼 → 𝑂 which will best approximate the target function 𝑓 . We have

already mentioned in 2.1 that a learning machine needs to be associated with a

set of parameters 𝐴 that will in effect characterize its bias or its hypothesis space
𝐻𝐴. Therefore let 𝑀𝐴 be a learning machine capable of computing a set of

functions 𝐻𝐴 = {ℎ𝑎(𝑥)|ℎ ∶ 𝐼 → 𝑂 and 𝑎 ∈ 𝐴} where 𝐴 a set of parameters.

Then the learning problem is: Given generator 𝐺, teacher 𝑇 , a train set 𝑇 𝑟 and
a learner 𝑀𝐴, the goal of 𝑀𝐴 is to choose from 𝐻𝐴 a function (hypothesis)
that bests approximates the answers of 𝑇 . An optimal prediction depends on

how much an error can cost. This concept can be quantified with the use of a
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loss function 𝐿( ̂𝑦, 𝑦) ∶ 𝑂 × 𝑂 → ℝ which measures how much the prediction

̂𝑦 = ℎ𝑎(𝑥) of the hypothesis function differs from the real answer 𝑦 = 𝑓(𝑥).
Therefore we can define the risk or expected error of choosing a hypothesis to

be 𝑅(𝑎) = 𝐸
(𝑥,𝑦)←𝑃(𝑥,𝑦)

[𝐿(ℎ𝑎(𝑥), 𝑦)] (we will often omit the subscript 𝑎 unless

otherwise stated). Therefore the learning problem can be formulated as follows:

Definition 3.1.1. [Learning problem] Given a generator 𝐺, a teacher 𝑇 , a train
set 𝑇 𝑟, a learner 𝑀𝐴 and a loss function 𝐿, the goal of 𝑀𝐴 is to find a
function 𝑀𝐴(𝑇 𝑟) = ℎ𝑎∗(𝑥) ∈ 𝐻𝐴 such that 𝑎∗ =argmin

𝑎∈𝐴
𝑅(𝑎).

Unfortunately, since 𝑃(𝑥, 𝑦) is unknown, the expected error cannot be computed.

However, we can define the empirical error to be 𝑅̂(𝑎) = 1𝑛 ∑𝑛
𝑖=1 𝐿(ℎ𝑎(𝑥𝑖), 𝑦𝑖)

which is the average cost of the hypothesis ℎ𝑎 on the train set. We say that a

hypothesis is consistent with 𝑇 𝑟 if the empirical error is zero, meaning that the

chosen hypothesis made no mistakes on the train set. Although we can measure

this quantity, how close will it be to the expected error? Before showing this,

let us mention a useful notion related with the hypothesis space. Given an input

space 𝑋 and a hypothesis space 𝐻 defined over 𝑋, let us call dichotomy a

partition of the sample set 𝑋 into two disjoint subsets. We say that 𝑋 is shattered
by 𝐻 if for every dichotomy of 𝑋 there exists a hypothesis ℎ ∈ 𝐻 which is

consistent with this dichotomy. Therefore, the size of the largest finite subset of 𝑋
shattered by 𝐻 is called the Vapnik-Chervonenkis dimension of 𝐻 and is denoted

as 𝑉 𝐶(𝐻). If arbitrarily large finite subsets of 𝑋 can be shattered by 𝐻 then

𝑉 𝐶(𝐻) = ∞. Intuitively, 𝑉 𝐶 dimension is a quantitative way to measure the

capacity (or complexity or richness) of a learner. It has been shown in [Vap98]:

Theorem 3.1.1. Let 𝑆 ⊆ 𝑋 be a train set of size 𝑁 over an input space 𝑋
identically and independently drawn from a distribution 𝑃(𝑥, 𝑦), let 𝑀𝐴 be a
learner characterized by a hypothesis space 𝐻𝐴 such that 𝑉 𝐶(𝐻𝐴) = 𝑣 and
let 𝑅(𝑎), 𝑅̂(𝑎) the expected and empirical errors respectively. Then for any
0 ≤ 𝛿 ≤ 1 it holds that with probability 1 − 𝛿

𝑅(𝑎) ≤ 𝑅̂(𝑎) + √ 1
𝑁 [𝑣(log 2𝑁

𝑣 + 1) − log 𝛿
4]

The result above holds for finite 𝑣 ≪ 𝑁 and for binary functions ℎ ∈ 𝐻𝐴. There

are many proposed theories to extend this result that are out of scope for this

thesis but the useful point here is that under some conditions, we can bound the

generalization error with the empirical error and the capacity of the learner.

Going back to our setting, the train set consists of a labeled part 𝑇 𝑟𝑠 and an

unlabeled part 𝑋𝑡 coming from different distributions and our goal is to predict
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on the unlabeled part on the input. Therefore we can adapt Definition 3.1.1 as

follows:

Definition 3.1.2. [Domain Adaptation problem] Given a generator 𝐺, a teacher 𝑇 ,
a source labeled train set 𝑇 𝑟𝑠, a target unlabeled train set 𝑋𝑡, a learner 𝑀𝐴 and
a loss function 𝐿, the goal of 𝑀𝐴 is to find a function 𝑀𝐴(𝑇 𝑟𝑠, 𝑋𝑡) = ℎ𝑎∗(𝑥) ∈
𝐻𝐴 such that 𝑎∗ =argmin

𝑎∈𝐴
𝑅𝑡(𝑎) =argmin

𝑎∈𝐴
𝐸

(𝑥,𝑦)←𝑃𝑡(𝑥,𝑦)
[𝐿(ℎ𝑎(𝑥), 𝑦)].

In the Domain Adaptation scenario, there is no known similar bound with 3.1.1 (to

the best of our knowledge). However, this is an active area of research in Transfer

Learning that has already produced some partial results. For instance, in [BCK+08]
they show generalization bounds in the case of Unsupervised and Inductive Transfer

Learning, where in the latter they specialize on learners that try to minimize a convex

combination of empirical source and target errors. In both cases, apart from the VC-

dimension, another measure that is used in the bounds is the similarity between the

contexts and in particular of the probability distributions governing them. For their

case, they define similarity based on a hypothesis space-specific distance measure.

To stress the significance of the notion of context-similarity, we can observe that

the core idea of all the discussed methods in chapter 2 is based on how they

define (implicitly or explicitly) and exploit context-similarity. Therefore, it is of no

surprise that this notion will also play a crucial role in our method. For reasons

that will be elaborated in section 4.3 and based on our assumption that only

the marginal distributions differ, we will base the notion of similarity on the ratio

𝑤(𝑥) = 𝑃𝑡(𝑥)/𝑃𝑠(𝑥). Since the marginal probability densities are unknown, we

cannot compute exactly 𝑤(𝑥). So the question now is how to accurately estimate

it. In the following section we review some existing approaches on the Density¹

Ratio Estimation.

3.2 Density Ratio Estimation

It has been argued that directly estimating the ratio is much more effective (both in

time and accuracy) than estimating the densities separately and then computing the

ratio (see [HMSW04] where they discuss on the hardness of density estimation

for high-dimensional data). In literature there exist several methods that allow us to

directly estimate this ratio. Despite not having theoretical approximation guarantees,

they are experimentally tested and mostly focus on scalability (both in the sample

size and the dimensionality of the input space). In principle, they provide a specific

model for the ratio and they determine its parameters so that a specific function

is minimized, resulting in a convex optimization problem. Below we briefly review

¹In this thesis, probability distribution and probability density function are used interchangeably.
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some of these methods but we refer the interesting reader to [SSK12] for more

details. In Table 3.1 a succinct summary of these characteristics is presented.

In KLIEP [SNK+08] they model the ratio with a linear model 𝑤̂(𝑥) = ∑𝑏
𝑙=1 𝑎𝑙 ⋅

𝜙𝑙(𝑥) = ⟨𝑎 ⋅ 𝜙(𝑥)⟩ and they estimate its parameters 𝑎𝑙 by maximizing the log-loss

function 𝐽 = ∫ log 𝑤̂(𝑥)𝑝𝑡(𝑥)𝑑𝑥 which in effect minimizes the Kullback-Leibler
divergence between 𝑃𝑡(𝑥) and ̂𝑃𝑡(𝑥) = 𝑤̂(𝑥)⋅𝑃𝑠(𝑥). Kullback-Leibler divergence,

also known as relative entropy, is defined as defined as:

𝐾𝐿(𝑝, 𝑞) =∑
𝑥

𝑝(𝑥) log 𝑝(𝑥)
𝑞(𝑥)

where 𝑝 , 𝑞 are probability densities. The method also deals with the automated

selection of the basis functions 𝜙𝑙 in order to maximize 𝐽 and it is suggested

to use spherical Gaussian kernels as the search space of them. The Gaussian

centers are set at the test samples in order to allocate many kernels at high test

input density regions where it is expected that the density ratio tends to take large

values. However, this method needs to solve a convex optimization problem which

is non-linear, making it computationally rather expensive and with scalability issues.

To solve the non-linearity, in LSIF [KHS09], they study KLIEP by minimizing the

squared-loss function 𝐽 = 1
2 ∫(𝑤̂(𝑥)−𝑤(𝑥))2𝑝𝑡(𝑥)𝑑𝑥. The resulting optimization

problem is quadratic and a convergence analysis is provided. Again they suggest

as promising model candidates the spherical Gaussian kernels for 𝜙𝑙. Due to

accumulation of numerical errors, they further propose an approximation version of

LSIF called unconstrained LSIF (uLSIF) which is experimentally argued to perform

better computationally. They also provide convergence as well as approximation

bounds for uLSIF, the latter being dependable on tunable parameters. Again here

there is no focus on scalability issues.

To deal with scalability, in LL-KLIEP [TKH+09] they argue that KLIEP idea

can be naturally applied to log-linear models, so they use the normalized model

𝑤̂(𝑥) = 𝑒𝑥𝑝(⟨𝑎⋅𝜙(𝑥)⟩)
1

𝑁𝑠 ∑𝑥′∈𝑋𝑠
𝑒𝑥𝑝(⟨𝑎⋅𝜙(𝑥′)⟩) . Their motivation comes from the observation

that in KLIEP, in each step of the gradient ascent (an algorithm that solves the

optimization problem) the summation over all test samples needs to be computed,

which is prohibitively slow in large-scale problems. They make KLIEP feasible in

the setting of large-scale test dataset, yet dimensionality issues was not the focus.

The main advantage is computational efficiency since the computation time of LL-

KLIEP is nearly independent of the amount of test data (under some pre-processing

assumptions). Also they experimentally confirmed that the accuracy of the proposed

method is good enough.

In GM-KLIEP [YS09] they argue that KLIEP idea can be naturally applied to

Gaussian mixture models. Their motivation comes from the following observation:

in a typical implementation of KLIEP a spherical Gaussian kernel model is employed
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and the Gaussian width is shared by all the basis functions 𝜙𝑙. This means that

when the true importance function is correlated, the performance of KLIEP could be

degraded. To cope with this problem, they propose to use a Gaussian mixture model

𝑤̂(𝑥) = ∑𝑏
𝑙=1 𝜋𝑙𝒩(𝑥|𝑚𝑙, Σ𝑙) and learn the covariance matrix of the Gaussian

components at the same time (through an iterative estimation procedure). So,

they learn the importance function more adaptively even when the true importance

function contains high correlation. Since the optimization function is the same

as in KLIEP, this method inherits scalability issues and may suffer from numerical

instability in certain data samples.

In order to deal with high-dimensional input spaces, in D3-HSA [YS11] they employ

the idea of performing density ratio estimation only in a subspace where the two

distributions are significantly different and in particular where they are are maximally

different under the Pearson divergence. Pearson divergence is a squared-loss variant

of the Kullback-Leibler divergence and it is defined as

𝑃𝐸(𝑝, 𝑞) = 1
2 ∫ 𝑞(𝑥) (𝑝(𝑥)

𝑞(𝑥) − 1)
2

𝑑𝑥

where 𝑝 , 𝑞 are probability densities. They refer to this subspace as hetero-
distributional subspace (HDS). Intuitively, in such a subspace the train and test

samples will be maximally separated. After finding such an HDS, they perform the

aforementioned uLSIF in this low-dimensional subspace.

Density ratios have two natural limitations: they can be unbounded even for simple

cases (see [CMM10]) and they are asymmetric and thus the ”direction” needs to

be determined by a user. In our case, the direction will be set in section 4.3 so

the only thing to tackle is that they can be unbounded. For that reason, we chose

to use the RuLSIF method [YSK+11]. In this method, they introduce the notion

of the 𝛼-relative density ratio as

𝑤𝑎(𝑥) = 𝑝(𝑥)
𝛼 ⋅ 𝑝(𝑥) + (1 − 𝑎) ⋅ 𝑞(𝑥) = 𝑝(𝑥)

𝑞𝑎(𝑥)
where it is easy to observe that for 𝛼 = 0 it reduces to the usual definition of the

ratio. They model this relative ratio with a linear model 𝑤̂(𝑥) = ∑𝑏
𝑙=1 𝜃𝑙 ⋅𝜙𝑙(𝑥) =

⟨𝜃 ⋅ 𝜙(𝑥)⟩ where 𝑏 = 𝑛𝑠 the number of source samples and they estimate its

parameters 𝜃𝑙 by maximizing the function 𝐽 = 1
2 ∫ 𝑞𝛼(𝑥) (𝑟𝑎(𝑥) − 1)2 𝑑𝑥 which

in effect minimizes the relative analogue of the Pearson divergence. Pearson

divergence is argued to be more efficient than the Kullback-Leibler, due to the

absence of the non-linear log function. This method is regarded as an extension of

uLSIF to the 𝛼-relative density ratio and they also provide extensive convergence

analysis. As before, it is suggested to use the family of spherical Gaussian kernels

as the basis functions.
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Since none of the above methods is equipped with theoretical approximation guar-

antees, we performed experiments in chapter 5 and focused our attention to a

comparison between uLSIF and RuLSIF. Despite being simple and readily available

in [Lab], our two candidates were chosen based on their unique properties: uLSIF

is arguably the fastest proposed method whereas RuLSIF handles unbounded ratios

smoothly and in a tunable way.

Experiments usually supplement the theoretical study, allow the investigation of

tunable parameters but they also indicate practical limitations and technicalities of

the proposed methods. As it is typical in the machine learning literature we

conducted experiments on synthetic as well as on real data. Synthetic data are

crafted input instances generated from known distributions and are usually employed

to justify the predictive power of a learner on good instances as well as its limitations

in bad instances. In this thesis, we created 3 synthetic experiments that allowed us

to investigate further the behaviour of our method as well as the selection of the

most suitable density ratio estimator. The generation and discussion on them can

be found in chapter 5.

On the other hand, real data are input instances generated by unknown distributions.

They are employed as an application of the proposed method in a realistic scenario

in order to investigate accuracy and scalability issues, since real data typically come

in large amounts from a high-dimensional space. Despite being arbitrary input

instances, their modality is usually known, e.g. the data are documents, images

or audio. In this thesis we chose to experiment with documents. Such human-

created instances, usually require a pre-processing step that transforms them in a

computer-friendly representation.

3.3 Document Pre-processing

Earlier we mentioned that the input consists of data which are 𝑚-dimensional

feature vectors. However, this is just a theoretical formulation and it fails to

describe the nature of all available data, especially the ones generated by humans.

In order to conduct experiments, a transformation needs to take place so that

real data can be represented by explicit feature vectors and in effect the learning

systems can be operational. Such a pre-processing phase can be considered as

data-compression: we try to transform data from a highly-expressive, complex and

unstructured representation, such as natural language in the case of documents, to

a more restrictive and structured one, that is easier for a computer to manipulate.

The goal in this phase is to minimize the loss of information by preserving the

semantic richness of the data, yet efficiently resulting in a more manageable form.

This phase is actually one of the main active research topics in the Information Re-

trieval field. For documents, many models have been proposed such as the Boolean
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model (set-theoretic approach), the Vector Space model (algebraic approach) and

the Probabilistic model (probabilistic approach). We refer the interesting reader

to [RM11] (chapter 6) for a detailed overview and focus our attention to the

Vector Space model. Although it is quite simple and inevitably results in loss of

information, yet we select it because of its popularity and because it is equipped

with a natural mechanism for distance and similarity. Since our proposed method

in chapter 4 involves a clustering phase, this mechanism will prove to be very useful

when we will experimentally validate the method in chapter 5.

The Vector Space model [SWY75] is based on the idea that the meaning of a

document is conveyed by the words used in it. This model does not take into

account the order of the words, it simply considers documents as bags of words.

In particular, a document 𝐱 is represented as a feature vector 𝐱 = {𝑥1, … , 𝑥𝑚}
where each feature 𝑥𝑖 is a weight representing the importance of the word 𝑖 in

the document. Therefore 𝑚 denotes the cardinality of a set 𝑉 containing all the

possible words and often referred to as vocabulary. Typically, the weight 𝑤𝑖 is the

number of appearances of word 𝑖 in the document 𝑥, denoted as 𝑤𝑖 = 𝑛𝑥,𝑖. If

the word 𝑖 does not appear in the document 𝑥, then 𝑤𝑖 = 0, so we guarantee

that all documents have the same dimensionality 𝑚.

Since 𝑉 was defined as a set containing all the possible words, its cardinality will

not provide the manageability we aim for. Therefore we can initially restrict the

vocabulary to contain only words that appear in the documents provided as input.

In the case of Domain Adaptation, this includes the documents of the source and

the target domain. Since in this setting, our goal is to predict the labels on the

given target documents, with this simplification no document will be left without

a valid representation. In addition, the universality of vocabulary 𝑉 realizes our

assumption that the feature space is shared among domains. In addition, very

frequent words such as the, is, at, which, and on (often referred to as stopwords)
usually provide no useful information to discriminate between documents, so they

could also be removed. Finally some other common heuristics that seem to work

well in practice for document classification and reduce the dimensionality of the

feature space (i.e. the size of the vocabulary) are : remove rare words, for example

words that appear less then 3 times in the whole corpus of documents and instead

of using the words, use their respective word stems².

Previously, we defined as word-importance the number of the word’s appearances

in a document. However, this definition may seem a bit inadequate. If a word

appears frequent in one document but is absent in another document generated

from the same domain, how well can we argue that this feature characterizes the

²A stem is a portion of a word that is left after the removal of its affixes (prefixes and suffixes), e.g. hetero is the

word stem from which we can derive words like heterogeneous, heterogamy, heterodox. Many stemming approaches

exist like brute-force look up, stripping the affixes, using word 𝑛-grams etc. In this thesis, we chose to use the popular

Porter stemmer [Por80] that utilizes suffix stripping.
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domain? Following this line of thought, some other ways have been proposed

to better capture the importance of a word by taking into account not only the

document under examination but the whole corpus of documents. One of the

most popular candidates is the tf-idf weighting. Tf-idf stands for term frequency-

inverse document frequency and it is a two-fold statistical measure: if a word

appears frequently in a document (term frequency 𝑡𝑓 ), it must be important but

if it appears in many documents (document frequency 𝑑𝑓 ), then it must not be a

unique identifier of the domain. So for every word 𝑖 ∈ 𝑉 :

𝑤𝑥,𝑖 = 𝑡𝑓𝑖 ⋅ 𝑖𝑑𝑓𝑖 = 𝑛𝑥,𝑖
𝑛𝑥

⋅ log (|𝐷|
𝑛𝑖

)

where 𝑛𝑥 is the total number of words in document 𝑥, 𝑛𝑖 is the number of

documents where word 𝑖 appears and |𝐷| is the size of the corpus, i.e. the

total number of documents. The logarithm used here is merely to smooth out

the presence of rare words, since if a word appears in very few documents, then

|𝐷|/𝑛𝑖 would be boosted too much.

In Domain Adaptation, we inevitably reach the following dilemma: shall we compute

the document frequency on both target and source domains, or for each domain

separately? In other words, what happens if a word appears often in many source

documents but not so often in target documents?

In this case, we can either use a local tf-idf weighting for each domain respectively or

we can use a global tf-idf weighting where both domains are combined. We argue

that a local tf-idf weighting is more suitable for two reasons. First, the pre-processing

of the domains can be done independently reducing the computational cost and

allowing for adaptability on various source and target domains. Secondly, a local

tf-idf weighting encapsulates the domain-difference in the feature-representation of

the data. To illustrate this better, let us consider the extreme case of a one-

dimensional feature space. In the case of global tf-idf, this single feature/word

has the same document frequency on every document therefore its importance is

solely determined by its term frequency. Let us assume the word appears the same

number of times in a target and a source document. Then in the global case,

these documents will look identical. However, in the case of local tf-idf, the feature

might appear less important in the source document but more important in the

target document if it is observed often in the source but not so often in the target

domain. Therefore the documents will not look identical, effectively capturing the

domain-difference. This argument is further validated experimentally in in chapter

5.
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4 Proposed Approach

In this chapter, we present the proposed method of this work. In Section 1. we

introduce the clustering problem and review the current literature. In Section 2. we

motivate and present a Domain Adaptation method and in Section 3. we offer an

analysis of this method under certain assumptions.

4.1 Introduction

“Clustering is the grouping of similar objects” [Har75, p.1], therefore given a set of

objects, the problem is to find subsets or clusters which are homogeneous and/or

well separated. There exists a vast literature around this problem and its applications

can be found in almost any scientific discipline, such as psychology, data mining,

bioinformatics and computer graphics. Depending on the application, research has

studied different types of clusterings: hierarchical (where nested sub-clusters inside

a cluster are allowed), partitional (where no sub-clusters are allowed), hard (where

each object belongs only in one cluster), soft (where each object can belong to one

or more clusters), complete (where all objects are assigned to some cluster), partial

(where some objects might not be assigned to some cluster) etc. In this work, we

focus on complete hard partitional clusterings.

In addition, depending on the nature of objects, there exists different types of

clusters: prototype-based (where a cluster is defined as a set of objects closer to

the prototype or center that defines the cluster than to the center of any other

cluster), density-based (where a cluster is defined as a dense region of objects

surrounded by a region of low density), graph-based (where objects are represented

as a graph and a cluster is defined as a connected component of the graph, i.e. a

group of objects that are connected with each other and have no other connection

outside the group) etc. In this work, we focus on prototype-based clusters, where

every cluster can be succinctly represented by a center, such that objects belonging

to this cluster will be more similar to its center than to any other center. The notion

of center effectively captures a common application of clustering: to approximate
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a large set of objects by a small set of representatives. Yet, how shall we define

similarity?

In literature, there exist many notions of similarity and a standard way of expressing

it is through a set of distances between pairs of objects. The selection of a

suitable distance function is highly correlated with the nature of the objects, since

“a serious difficulty in choosing a distance lies in the fact that a clustering structure

is more primitive than a distance function and that knowledge of clusters changes

the choice of distance function” [Har75, p.58]. For two 𝑚-dimensional vectors

𝑎, 𝑏, some examples of similarity measures are the cosine similarity 𝑐𝑜𝑠(𝑎, 𝑏) =
(∑𝑚

𝑖=1 𝑎𝑖 ∗𝑏𝑖)∗ (|𝑎||𝑏|)−1, the manhattan distance 𝑚(𝑎, 𝑏) = ∑𝑚
𝑖=1 |𝑎𝑖 −𝑏𝑖| and

the chebychev distance 𝑐(𝑎, 𝑏) = max𝑖∈[𝑚] |𝑎𝑖 −𝑏𝑖| but perhaps the most popular

one, is the euclidean distance 𝑑(𝑎, 𝑏) = (∑𝑚
𝑖=1(𝑎𝑖 − 𝑏𝑖)2)1/2 which some argue

that mostly corresponds to our everyday experience and perceptions.

Given a set of centers, let’s assume we assign each object to its closest center with

respect to the euclidean distance. Therefore a set of clusters is created and there

are different ways to evaluate the cost of such a clustering. The choice of the cost

allows us to create useful clustering problems, such as the 𝐾means, the 𝐾medians

and the 𝐾 center problems. For the 𝐾means problem, which will be the focus of

this work, the cost is defined as the sum of the squared Euclidean distances from

every object to its nearest center. Formally

Definition 4.1.1. [𝐾means problem] Given a set of 𝑛 points 𝑋 = {𝑥1, … , 𝑥𝑛}
in ℝ𝑚 find a set of 𝐾 > 1 points 𝐵 = {𝑏1, … , 𝑏𝐾} ⊂ ℝ𝑚 such that

∑
𝑥∈𝑋

𝑑2(𝑥, 𝐵)

is minimized. The minimum value, also called potential function, is denoted as
𝜙𝑂𝑃𝑇 (𝑋, 𝐾) and 𝑑2(𝑥, 𝐵) is the squared Euclidean distance from 𝑥 to the
nearest point in 𝐵 i.e. 𝑑2(𝑥, 𝐵) = min

1≤𝑘≤𝐾
𝑑2(𝑥, 𝑏𝑘).

To provide some intuition for this problem, let us assume that we have some

data generated by an equally weighted combination of Gaussian distributions, all

with unit variance. The real parameters of the Gaussian distributions (namely the

mean values) are unknown. By minimizing the sum of the squared euclidean

distances of each point to its closest center is like estimating the parameters that

most likely generated the given data, namely the mean values (for more detail, see

[BBM02]). Furthermore it was shown in [DH04] that such a cost function tries to

minimize the intra-cluster distance while maximizing the inter-cluster distance, two

desired properties of any intuitively good clustering. Despite its simple definition,

this clustering problem is a rather hard one. In fact, when the dimension 𝑚 is

not fixed, then the 𝐾means problem has been shown to be NP-hard even for

𝐾 = 2 (many reductions exist, e.g. [Das08]). In addition, if 𝑚 = 2 and 𝐾 is
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part of the input, then the so-called planar-𝐾means has also been shown to be

NP-hard [MNV09]. When both 𝐾 and the dimension 𝑚 of the input are fixed,

the problem can be solved exactly in polynomial time [IKI94]. If only 𝐾 is fixed,

then the problem admits polynomial-time approximation schemes (PTAS), e.g. see

[SSK04].

The 𝐾medians problem is similar to the 𝐾means with the only difference that the

cost function is the sum of the distances (not squared) from every object to its

nearest center. Kariv and Hakimi in [KH79b] showed that the general 𝐾medians

problem is NP-complete even in the plane 𝑚 = 2. Furthermore, if 𝑚 = 2 and the

euclidean distance is used, then it was shown in [MS84] that 𝐾medians remains

NP-complete. To make things worse, in [JMS02] it was shown that it is even

hard to approximate 𝐾medians within a factor 1 + 2/𝑒. However if we restrict

to the Euclidean space, 𝐾medians was shown to admit a PTAS (first in [ARR98]

and later improved by [KR99] and [HPM04]). The best result so far is a (3 + 𝜖)
approximation algorithm by [AGK+01].

The 𝐾center problem requires that the maximum distance of any object to its nearest

center is minimized, i.e. 𝜙𝑂𝑃𝑇 (𝑋, 𝐾) = min max𝑥∈𝑋 𝑑(𝑥, 𝐵). Intuitively, this

problem attempts to minimize the maximum radius of any cluster and therefore is

highly sensitive to outliers. Even under the metric restriction of a metric space ¹,

when 𝐾 and 𝑚 are part of the input, 𝐾center is NP-hard [KH79a], as well as

its discrete variant (where centers are allowed to be only objects of 𝑋). It remains

NP-hard even if 𝑚 = 2 but 𝐾 still part of the input [MS84] (also the discrete

version). The news don’t get any better if we want to find good approximation

solutions. In [FG88] it was shown that it is NP-hard to approximate within a

factor < 2 even under the 𝐿∞ metric². It is of no surprise that if the space is not

metric, then it is NP-hard to approximate within any factor (see [Hoc97, p.378]

if the triangle inequality is left out and [CGH+04] if the symmetry property is left

out). Despite these pessimistic results, there exist 2-approximation algorithms (e.g.

see [HS86], [Gon85] and [FG88]).

4.2 Proposed Approach

As stated in 2.1.1 the goal of Transfer Learning is to improve the efficiency and

accuracy of learning in a target context 𝐶𝑡 using knowledge obtained from a source

context 𝐶𝑠. In our setting, the goal is to discover a good clustering of the target

dataset 𝑋𝑡 given an optimal clustering in a different but similar dataset 𝑋𝑠. The

underlying cluster problem will follow the definition of the 𝐾means problem 4.1.1.

¹A metric space (𝒳, 𝜌) consists of a set 𝒳 and a distance function 𝜌 ∶ 𝒳 × 𝒳 → ℝ that satisfies the three

properties of a metric: reflexivity 𝜌(𝑥, 𝑦) ≥ 0 with equality iff 𝑥 = 𝑦, symmetry 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥) and triangle

inequality 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦).
²Given two vectors 𝑎, 𝑏 ∈ ℝ𝑚, their infinity norm is defined as 𝐿∞(𝑎, 𝑏) = max𝑖 ∈ [𝑚]|𝑎𝑖 − 𝑏𝑖|.
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The proposed method of this work is a transfer learning variant of the widely-known

Lloyd’s method, therefore we motivate our result by first reviewing this algorithm.

4.2.1 Lloyd’s method

As stated in [ORSS13], there is a wide unsatisfactory gap between the practical and

the theoretical clustering literatures. Popular heuristics such as the Lloyd’s method,
although lacking in theoretical guarantees, they are still widely used because they

outperform (in terms of time complexity) the implementations of theoretically-

guaranteed alternatives. In particular, Lloyd’s method is a simple algorithm that

attempts to locally improve an arbitrary 𝐾means clustering. Initially, 𝐾 centers

𝐵 = {𝑏1, … , 𝑏𝐾} are chosen independently and uniformly at random from the

input dataset 𝑋. Therefore, an initial clustering 𝐶 = {𝑆1, … , 𝑆𝐾} is formed,

where each cluster 𝑆𝑖 is assigned the set of points in 𝑋 that are closer to the

center 𝑏𝑖 than to any other center. After the assignment, the centers are updated

to be the center of mass of all the points in the respective cluster. The whole

process iterates until the clustering 𝐶 no longer changes. The pseudocode of

Lloyd’s method is provided in Figure 4.2.1.

..

Algorithm: Lloyd's method
Input:

𝑋: data set in ℝ𝑚

𝐾: the number of clusters

Output:

𝐶: a local minimum clustering

Method:

1.Initialization 𝐵 = {𝑏𝑖}𝐾
𝑖=1 where 𝑏𝑖

𝑟⟵ 𝑋
2.Assignment 𝐶 = {𝑆𝑖 ∶ ∀𝑖 ∈ 𝐾} where

𝑆𝑖 = {𝑥 ∈ 𝑋 ∶ 𝑏𝑖 =argmin
𝑏∈𝐵

𝑑(𝑥, 𝑏)} for 𝑖 = 1, … , 𝑘

3.Update 𝑏𝑖 = |𝑆𝑖|−1 ∑𝑥∈𝑆𝑖
𝑥 for 𝑖 = 1, … , 𝑘

4.Convergence Repeat 2-3 until 𝐶 no longer changes

5.Output 𝐶

Figure 4.2.1: Pseudocode of Lloyd’s method

By taking a closer look, we can observe that during the Assignment (step 2.) the

algorithm makes a locally optimal decision ( that is, each point is assigned to its

nearest center). Each point moves to another cluster if and only if its distance from

the new center is smaller then the distance from its current center. Therefore we

can argue that this greedy criterion guarantees to decrease the potential function

𝜙. In fact, if 𝜙 does not decrease then the current clustering 𝐶 did not change,
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therefore the algorithm terminates. We can also provide a similar argument for the

Update phase (step 3.), yet we first need to state the following useful property (a

review of its proof can be found in Lemma B.0.1):

Lemma 4.2.1. [centroid property] Let 𝑆 ⊆ ℝ𝑚 be a set of points with center of
mass 𝑠∗ = |𝑆|−1 ∑𝑠∈𝑆 𝑠 , 𝑑(𝑎, 𝑏) the euclidean distance of 𝑎, 𝑏 ∈ ℝ𝑚 and let
𝑥 ∈ ℝ𝑚 be an arbitrary point. Then, it holds that

∑
𝑠∈𝑆

𝑑2(𝑠, 𝑥) = ∑
𝑠∈𝑆

𝑑2(𝑠, 𝑠∗) + |𝑆| ⋅ 𝑑2(𝑠∗, 𝑥)

For any set 𝑆 , lemma 4.2.1 states that if we select as representative its center

of mass 𝑠∗ then that would be the best choice in order to minimize its 𝐾means

potential function 𝜙(𝑆). If any other point 𝑥 of the input space is selected as

representative, then 𝜙(𝑆) will increase by a quantifiable factor which depends both

on the distance of 𝑥 from the best choice and the size of the set. Going back to

the Update phase of Lloyd’s method, we observe that for every current cluster 𝑆𝑖
the algorithm updates its center with the best possible representative with respect

to 𝜙, guaranteeing again that 𝜙 will decrease.

Since the potential function decreases in every iteration, the algorithm will converge

to a local optimum. However, in the Initialization phase (step 1.) the centers are

chosen uniformly at random from 𝑋, therefore this local optimum can be quite

poor and in fact, to the best of author’s knowledge, there are no approximation

guarantees of how poor can it be. In practice, multiple repetitions of the algorithm

help to smooth out this effect (at the expense of computational time). Also,

there exist better initialization schemas that allow to estimate how poor the resulted

local optimum can be, as for example the famous work by Arthur and Vassilvitskii

[AV07]. Their variation of Lloyd’s method, called 𝐾means++ employs a different

Initialization phase and guarantees that, even from the first iteration, it will result in

a local optimum at most 𝑂(log 𝑘) times worse than the optimal solution.

4.2.2 tr-𝐾means

As mentioned earlier, the method provided in this thesis is a variation of the

Initialization phase of Lloyd’s method. In the setting of Domain Adaptation,

we integrate in this phase the knowledge of some auxiliary data. To introduce

some helpful notation, let us assume the existence of a source and a target

context 𝐶𝑠 = {𝐷𝑠, 𝑇𝑠}, 𝐶𝑡 = {𝐷𝑡, 𝑇𝑡} governed by the unknown but fixed

joint distributions 𝑃𝑠(𝑥, 𝑦) , 𝑃𝑡(𝑥, 𝑦) respectively. Let us consider two sample sets

𝑋𝑠 = {𝑥𝑠
𝑙 }𝑁𝑠

𝑙=1 and 𝑋𝑡 = {𝑥𝑡
𝑢}𝑁𝑡

𝑢=1 composed of 𝑁𝑠 source-domain and 𝑁𝑡
target-domain instances, sampled from the unknown marginal distributions 𝑃𝑠(𝑥)
and 𝑃𝑡(𝑥) respectively. It holds that 𝑥𝑠 , 𝑥𝑡 ∈ ℝ𝑚, that is each instance is a

𝑚-dimensional real vector, where 𝑚 represents the dimensionality of the common
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input space 𝐼 = ℝ𝑚. The same set of 𝐾 classes 𝑂 = {𝑜𝑘}𝐾
𝑘=1 characterizes

both domains 𝐷𝑠 and 𝐷𝑡. A set of true labels 𝑌𝑠 = {𝑦𝑠
𝑙 }𝑁𝑠

𝑙=1 for 𝑋𝑠 is available,

where 𝑦𝑠 ∈ 𝑂. Thus the input consists of a labeled source set 𝑇 𝑟𝑠 = {𝑋𝑠, 𝑌𝑠} =
{(𝑥𝑠

𝑙 , 𝑦𝑠
𝑙 )}𝑁𝑠

𝑙=1 and an unlabeled target set 𝑋𝑡 with total size 𝑂(𝑚 ⋅ (𝑁𝑠 + 𝑁𝑡)).
Considering that labeling is a costly process, we may assume that 𝑁𝑡 ≫ 𝑁𝑠
therefore the size of the input is 𝑂(𝑚 ⋅ 𝑁𝑡).
Based on the definition of Domain Adaptation in 3.1.2, one natural limitation

that can appear in the form of two extreme cases is: a) if 𝑃𝑠(𝑥, 𝑦) ≡ 𝑃𝑡(𝑥, 𝑦)
then adaptation is not necessary and b) if 𝑃𝑠(𝑥, 𝑦) and 𝑃𝑡(𝑥, 𝑦) are uncorrelated

then adaptation is useless and can be misleading, a situation often referred to

as negative transfer. Therefore, it is of great importance to identify when the

transfer of knowledge can be useful or not. In particular, if a) is the case, then

standard classification methods under the transductive learning framework can be

employed whereas if b) is the case, then 𝑇𝑠 should be ignored resulting in a typical

unsupervised learning problem where standard clustering methods can be used.

This observation motivated our study and as a result, we have developed a transfer

learning algorithm that intertwines these two learning paradigms to achieve higher

efficiency and accuracy than its building components. Our basic idea is to discover

target instances similar to the source domain in order to transfer knowledge and

guide a centroid-based clustering algorithm. We call such good target instances as

friends 𝐹 , i.e. a subset of the target dataset 𝑋𝑡 that is believed to contain the

most similar target instances with the source dataset 𝑋𝑠. Once we have discovered

friends, a source-trained classifier is naively applied to the set 𝐹 in order to reveal

a small portion of the desired clustering in the target domain. In essence, the

classifier provides an initial seeded clustering of 𝐹 (a labeling that partitions 𝐹 into

𝐾 subsets). The centers are then initialized at the mass centres of the seeded

clustering. In detail, the proposed Initialization phase consists of the following two

steps:

1. Friends identification: this step partitions the target set 𝑋𝑡 into two subsets:

friends 𝐹 and non-friends 𝑋𝑡 −𝐹 with respect to the source domain. Friends
are target instances that appear to be similar to 𝐷𝑠 (under some specific notion

of similarity which we will soon define) whereas non-friends are target instances
that are not friends of 𝐷𝑠. Intuitively, friends are target instances where transfer

of knowledge is most likely to be valuable.

2. Centers generation: in this step, we pseudo-label friends 𝐹 by applying a

classifier trained on the source domain. Since friends are the target instances

most similar to the source domain, we expect the naive classifier will give us

results with high confidence. This labeling in effect partitions friends in 𝐾
subsets. The centroids of 𝐾means are then initialized at the mass centres of
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these subsets.

After the initialization phase, our method proceeds just like the Lloyd’s method, i.e.

by assigning all target instances (friends and non-friends) to their closest centroid

and adjusting the centroids to be the center of mass of each resulted cluster, with

the goal to minimize the sum of the squared distances from every target instance

to its closest center. The only thing left to conclude our method description is

the notion of similarity between source and target instances. For reasons that will

become clear during the analysis of the method in section 4.3 we chose to use

the ratio between the source and target distributions as similarity measure. That is

Definition 4.2.1. [Friends set] Given 0 ≤ 𝑒𝐹 < 1, we define friends as a set 𝐹
such that

𝑥 ∈ 𝐹 ⟺ 𝑥 ∈ 𝑋𝑡 and 1 − 𝜖𝐹 ≤ 𝑃𝑡(𝑥)
𝑃𝑠(𝑥) ≤ 1 + 𝜖𝐹

It is straightforward to observe, that the closer the ratio gets to one, the more similar

the distributions. Furthermore, the user-defined parameter 𝜖𝐹 allows to control the

bias induced by the source-trained learner. The more tolerance we allow in the ratio

of the distributions, the worse will be our friends selection. We call the proposed

method tr-𝐾means and the pseudocode is available in figure 4.2.2.

Such an initialization phase achieves two important things: the first is to alleviate

randomness from the algorithm itself and place it to the external environment

(i.e. randomness becomes part of the input) and the second is to establish a

correspondence between source and target label spaces. The seeded clustering

of 𝐹 is in accordance with the source domain, therefore it can be used as prior

information to find a good global clustering in the target domain. In effect, our

initialization step is a transfer learning variation of the Seeded-𝐾Means proposed

in [BBM02]. We observe that since the seeded clustering can be noisy due to

the learner’s generalization error, we pose no restrictions to the following iterations

of the algorithm, which proceeds as the Lloyd’s method.

We can expect that the gains of this method will be bi-directional: clustering helps

the classification and classification helps the clustering. For the first direction, as

it will be apparent in more detail in section 4.3, during the initialization step the

pseudo-labeled friends hold labels from a source-trained classifier. This labeling

might be noisy due to the inherent generalization error of the chosen classifier

but also due to the domain-difference. Clustering phase will smooth out the noise

induced by the domain-difference by applying its homogeneity criterion in the target

domain. For the second direction, classification can be considered as a teacher on
friends, giving a prior knowledge to an unsupervised method and transforming it

to a semi-supervised one. By removing the randomness from the algorithm itself,
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..

Algorithm: tr-𝐾means

Input:

𝖳𝗋𝗌 = (𝖷𝗌, 𝖸𝗌): labelled source data

𝖪: the cardinality of label space 𝑂
𝖷𝗍: unlabelled target data

𝖠: a supervised learner

𝜖𝖥: parameter describing the friends set

Output:

𝖸𝗍: target labels on 𝖷𝗍
Method:
1.Initialization

1a. Friends Selection

𝐹 ← {𝑥 ∈ 𝑋𝑡 ∶ 1 − 𝜖𝐹 ≤ 𝑃𝑡(𝑥)
𝑃𝑠(𝑥) ≤ 1 + 𝜖𝐹 }

1b. Centers generation

ℎ𝐴 ← 𝐴(𝑋𝑠)
𝑌𝐹 ← ℎ𝐴(𝐹)
𝑏𝑖 = 𝜇({𝑥 ∈ 𝐹 ∶ 𝑌𝐹 (𝑥) = 𝑖}) for 𝑖 = 1, … , 𝑘

2.Assignment 𝐶 = {𝑆𝑖 ∶ ∀𝑖 ∈ 𝐾} where

𝑆𝑖 = {𝑥 ∈ 𝑋𝑡 ∶ 𝑏𝑖 =argmin
𝑏∈𝐵

𝑑(𝑥, 𝑏)} for 𝑖 = 1, … , 𝑘
3.Update 𝑏𝑖 = |𝑆𝑖|−1 ∑𝑥∈𝑆𝑖

𝑥
4.Convergence Repeat 2-3 until 𝐶 no longer changes

5.Output 𝑌𝑡 = {𝑖 ∈ 𝐾 ∶ 𝑥 ∈ 𝑆𝑖 , ∀𝑥 ∈ 𝑋𝑡}

Figure 4.2.2: Pseudocode of tr-𝐾means

not only we avoid the error-prone initialization but we expect that it will reduce

its computational cost. As a final note, 𝐾means was chosen because the number

of clusters 𝐾 is considered given (as we have access to the label space) and it is

considerably one of the most famous and efficient clustering algorithms. However, it

is evident that our idea is plug-and-play: any classifier can be used to pseudo-label

friends and any semi-supervised clustering can be applied after.

4.3 Analysis

In this section we provide some insights on the capabilities of tr-𝐾means. As it

is typical in the clustering literature (see [Ben15] for a nice overview), we start

by defining a notion of clusterability over the optimal clusters of any dataset: the

bounded-scattering. In particular, we consider

Definition 4.3.1. [𝜆-scattered set] For 𝜆 ∈ ℝ+, a cluster 𝑆 is 𝜆-scattered iff for
any 𝑥 ∈ 𝑆 and the centroid 𝑠 = 𝜇(𝑆) it holds that

𝑑2(𝑥, 𝑠) ≤ 𝜆𝜌 where 𝜌 =
∑

𝑥,𝑦∈𝑆
𝑑2(𝑥, 𝑦)

|𝑆|2
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In the above definition, 𝜌 is the average pairwise 𝐾means distance between the

points of the cluster 𝑆 and intuitively the more scattered 𝑆 is, the bigger the

value of 𝜌 will get. The choice of the squared euclidean distance reflects that this

notion is in alignment with the cost function of the problem under investigation.

We can extend the above definition by observing that for an integer 𝐾 > 1 and

a set 𝑋 that admits an optimal clustering 𝐶𝑂𝑃𝑇 = {𝑆1, … , 𝑆𝐾}, it holds that

∃Λ ∈ ℝ+ s.t. every optimal cluster 𝑆𝑖 is Λ-scattered (simply Λ = max{𝜆𝑖 ∶
𝑆𝑖 is 𝜆𝑖-scattered, ∀𝑖 = 1, … , 𝐾}). Therefore we will define 𝑋 as a Λ-scattered
set.

This definition indicates that an optimal clustering can be described by its most

scattered cluster. The more homogeneous the optimal clusters are, the smaller their

scattering will be and the easier it will be to discover them.

Having defined our well-clusterability notion, let us assume that 𝑋 admits an

optimal clustering 𝐶𝑂𝑃𝑇 = {𝑆1, … , 𝑆𝐾} for an integer 𝐾 > 1, where none of

the clusters is empty (non-degenerate case). To simplify the analysis, we consider

the idealized case where the seeding clustering is given without noise. To formalize

this ideal scenario, we consider the existence of an oracle 𝒪, which given a set

𝑋 and an integer 𝐾 , the oracle knows an optimal 𝐾means clustering for 𝑋 and

reveals a part of it. That is, given 𝑋 and 𝐾 , 𝒪 returns a seeding clustering i.e.

𝒪(𝑋, 𝐾) = 𝒜 where 𝒜 = {𝐴1, … , 𝐴𝐾} and for all 𝑖 = 1, … , 𝐾 it holds that

𝐴𝑖 ⊆ 𝑆𝑖 and |𝐴𝑖| ≥ 1. The lower bound on the seeding clusters is a reasonable

restriction, which guarantees that every 𝐴𝑖 is a non-empty set, that is 𝒪 reveals a

non-trivial part of the 𝐾means solution. Under these assumptions, we prove the

following lemma:

Lemma 4.3.1. Given a Λ-scattered set 𝑋 and a seeding clustering 𝒜, let 𝜙𝒜(𝑋)
denote the idealized tr-𝐾means potential on this set. Then it holds that ∃Λ ∈ ℝ+

such that 𝜙𝒜(𝑋) ≤ (1 + 2Λ)𝜙𝑂𝑃𝑇 (𝑋).

To prove this lemma, let us first consider the case of only one optimal cluster

𝑆 ∈ 𝐶𝑂𝑃𝑇 where 𝑆 ⊆ 𝑋. To choose an initial center for this cluster, the idealized

version of tr-𝐾means requests from an oracle 𝒪 to reveal a seeding clustering

for 𝑋, that is we get 𝒜 = 𝒪(𝑋, 𝐾) and we pick as center the center of mass

of the set 𝐴 i.e. 𝑎 = 𝑐(𝐴) = ∑𝑥∈𝐴 𝑥
|𝐴| where 𝐴 ∈ 𝒜 and 𝐴 ⊆ 𝑆 , resulting

in a potential 𝜙𝐴(𝑆) for this cluster, i.e. 𝜙𝐴(𝑆) = ∑𝑥∈𝑆 𝑑2(𝑥, 𝑐(𝐴)). The

following lemma establishes a relation between the optimal 𝐾means potential and

the idealized tr-𝐾means cost.

Lemma 4.3.2. Let 𝑆 ∈ 𝐶𝑂𝑃𝑇 be an arbitrary optimal 𝜆-scattered cluster for
some 𝜆 ∈ ℝ+ and 𝜙𝐴(𝑆) the idealized tr-𝐾means potential on this cluster.
Then it holds that 𝜙𝐴(𝑆) ≤ (1 + 2𝜆)𝜙𝑂𝑃𝑇 (𝑆).
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Proof. In the idealized version of tr-𝐾means, the seeding oracle 𝒪 reveals a part 𝐴
of the cluster 𝑆. Since, during the first iteration, the center picked by the algorithm

for this cluster is 𝑎 = 𝑐(𝐴) and 𝑠 = 𝑐(𝑆) is the optimal center for this cluster,

then from the centroid property 4.2.1 it holds that

𝜙𝐴(𝑆) = 𝜙(𝑆, 𝑎) = 𝜙𝑂𝑃𝑇 (𝑆) + |𝑆|𝑑2(𝑎, 𝑠) (4.1)

Let 𝑜 = argmax𝑥∈𝑆 𝑑(𝑥, 𝑠) denote the most extreme point of the set. We can

bound the distance 𝑑(𝑜, 𝑠) using the following two observations about the bounded

scattering of the cluster 𝑆:

|𝑆|
∑
𝑖=1

|𝑆|
∑
𝑗=1

𝑑2(𝑥𝑖, 𝑥𝑗) =
|𝑆|
∑
𝑖=1

𝑑2(𝑥𝑖, 𝑆) (1)=
|𝑆|
∑
𝑖=1

(𝑑2(𝑠, 𝑆) + |𝑆|𝑑2(𝑥𝑖, 𝑠)) = 2|𝑆|𝜙𝑂𝑃𝑇 (𝑆)

(4.2)

𝜌 =

|𝑆|
∑
𝑖=1

|𝑆|
∑
𝑗=1

𝑑2(𝑥𝑖, 𝑥𝑗)

|𝑆|2
4.2= 2 ⋅ 𝜙𝑂𝑃𝑇 (𝑆)

|𝑆|
(4.3)

Since the cluster 𝑆 is 𝜆-scattered then for all 𝑥 ∈ 𝑆 it holds that 𝑑2(𝑥, 𝑠) ≤ 𝜆 ⋅ 𝜌.
Therefore using 4.3 we can conclude that for all 𝑥 ∈ 𝑆 it holds that 𝑑2(𝑥, 𝑠) ≤
2𝜆|𝑆|−1 ⋅ 𝜙𝑂𝑃𝑇 (𝑆). The existence of the oracle 𝒪 guarantees that 𝑎 lies inside

the convex hull of 𝑆 therefore 𝑑(𝑎, 𝑠) ≤ 𝑑(𝑜, 𝑠). Therefore from 4.1 it holds that

𝜙𝐴(𝑆) ≤ (1 + 2𝜆)𝜙𝑂𝑃𝑇 (𝑆) which concludes our proof.

■

To motivate this result, we present two tight cases of the above approximation

result as depicted in Figure 4.3.1. For the first example, we consider 𝑆 as a

chain of five equidistant points, i.e. 𝑆 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)} as

shown in Figure 4.3.1a. We can observe that 𝜙𝑂𝑃𝑇 (𝑆) = 10 and 𝜌 = 4
according to equation 4.3. The worst selection is to choose any of the corner

points. Since 𝑑2(𝑜, 𝑠) = 4, then 𝜆 = 1 and the result in lemma 4.3.2 states

that the cost of tr-𝐾means would be at most 3 times worst than the optimal.

In fact, for 𝐴 = {𝑜} where 𝑜 a corner point of the chain, we can easily see

that 𝜙𝐴(𝑆) = 30 = 3𝜙𝑂𝑃𝑇 (𝑆). Another case is to consider 𝑆 as a circle of

equidistant points with radius 𝑟 as depicted in Figure 4.3.1b. We can observe that

𝜙𝑂𝑃𝑇 (𝑆) = |𝑆|𝑟2 and 𝜌 = 2 ⋅ 𝑟2 according to equation 4.3. The worst selection

is to choose only one point from the circle, since for a bigger number of selected

points the tr-𝐾means center will lie inside the convex hull of the circle, therefore it
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will be closer to the optimal center 𝑠. Since 𝑑2(𝑜, 𝑠) = 𝑟2, then 𝜆 = 0.5 and the

result in lemma 4.3.2 states that the cost of tr-𝐾means would be at most 2 times

worst than the optimal. In fact, for 𝐴 = {𝑜} where 𝑜 is any 𝑥 ∈ 𝑆 we can easily

see that 𝜙𝐴(𝑆) = ∑𝑥∈𝑆 𝑑2(𝑜, 𝑥) = |𝑆|−1 ∑𝑦∈𝑆 ∑𝑥∈𝑆 𝑑2(𝑦, 𝑥) = 2𝜙𝑂𝑃𝑇 (𝑆),
where the last equality holds from equation 4.2.

(a) Chain example (b) Circle example

Figure 4.3.1: Approximation Examples - in every figure, the points of the cluster 𝑆 are depicted

in black and the red point is the optimal center 𝑠. A polygone shape indicates a center that does

not belong to the cluster. With 𝑜 we denote the most extreme point of the set.

So far we showed what happens if the center of 𝑆 was the first center produced by

the idealized version of tr-𝐾means. Our next step is to show what happens to 𝑆
if the center set 𝐵 selected by idealized tr-𝐾means method is already non-empty,

that is |𝐵| > 0.

Lemma 4.3.3. Let 𝐶 be the clustering produced so far from the idealized tr-
𝐾means method and let 𝑆 ∈ 𝐶𝑂𝑃𝑇 be an arbitrary optimal 𝜆-scattered cluster
for some 𝜆 ∈ ℝ+ that has not been visited yet and 𝜙𝐴(𝑆) the idealized tr-
𝐾means potential on this cluster. If we add to 𝐶 a center chosen according to
tr-𝐾means then 𝜙𝐴(𝑆) ≤ (1 + 2𝜆)𝜙𝑂𝑃𝑇 (𝑆).

Proof. As before, in the first iteration of the idealized version of tr-𝐾means, the

seeding oracle 𝒪 reveals a part 𝐴 of the cluster 𝑆. Let 𝑎 = 𝑐(𝐴) denote the

center picked by the algorithm for this cluster and 𝑠 = 𝑐(𝑆) denote the optimal

center for this cluster. If we denote as 𝐷(𝑥) the shortest distance from a data

point 𝑥 ∈ 𝑋 to the closest center so far, then

𝜙𝐴(𝑆) =∑
𝑥∈𝑆

min(𝐷(𝑥), 𝑑(𝑥, 𝑎))2 ≤∑
𝑥∈𝑆

𝑑2(𝑥, 𝑎) ≤ (1 + 2𝜆)𝜙𝑂𝑃𝑇 (𝑆)

where the last inequality follows from Lemma 4.3.2. ■

Therefore, with lemmata 4.3.2 and 4.3.3 we guarantee that in the first iteration

of the idealized tr-𝐾means, the cost for a single optimal 𝜆-scattered cluster 𝑆
will be at most (1 + 2𝜆) times worse than its optimal cost. Therefore, under the
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bounded-scattering notion for the set 𝑋, it is straightforward to see that

𝜙𝒜(𝑋) =
𝐾

∑
𝑘=1

𝜙𝐴𝑘
(𝑆𝑘) ≤

𝐾
∑
𝑘=1

(1 + 2𝜆𝑘)𝜙𝑂𝑃𝑇 (𝑆𝑘) ≤ (1 + 2Λ)𝜙𝑂𝑃𝑇 (𝑋)

(4.4)

where Λ = max{𝜆1, … , 𝜆𝐾} and which concludes the proof of lemma 4.3.1.

So far, it has been assumed that the seeding clustering is noise free. However,

in the actual tr-𝐾means the seeding clustering is provided by a learner and that

may introduce errors. To find the probability of an error, let us review how

the seeding clustering is actually derived. A learner is given a set of labelled

examples from a different yet similar source context 𝐶𝑠 and picks a hypothesis ℎ
that best approximates the underlying target function in that context. As described

in definition 3.1.1, this hypothesis is selected because it minimizes a specified loss

function 𝐿 (that is, 𝐿 is part of the learning model). Therefore the expected error

of the learner is defined as 𝑅𝑠(ℎ) = 𝐸[𝐿(ℎ(𝑥), 𝑦)] where the expected value is

computed over the joint distribution 𝑃𝑠(𝑥, 𝑦) that governs 𝐶𝑠. By choosing the loss

function 𝐿 to be the indicator function we can see that the source expected error

of the learner is 𝑅𝑠(ℎ) = 𝑃𝑟[ℎ(𝑥) ≠ 𝑦] = 𝜖𝑠. That would be the probability of

an error if ℎ was applied on new instances generated from the marginal distribution

𝑃𝑠(𝑥). However, in our case ℎ is applied on instances generated from a different

target distribution 𝑃𝑡(𝑥), therefore we have no concrete idea of what would be the

expected error of the learner in such a setting.

The good news is that we do not apply ℎ to any kind of target instances, but we

select the ones that are very similar to 𝑃𝑠, the friends. Reviewing the definition

4.2.1, as similarity measure we chose the ratio 𝑃𝑡/𝑃𝑠 and friends 𝐹 are the target

instances whose ratio is within a user-defined radius 𝜖𝐹 around 1. The reason why

this similarity was selected is because it allows us to assess the expected error of

the learner in the target context as follows:

𝑅𝑡(ℎ) = 𝐸
(𝑥,𝑦)←𝑃𝑡(𝑥,𝑦)

[𝐿(ℎ(𝑥), 𝑦)]

= ∑
(𝑥,𝑦)

𝐿(ℎ(𝑥), 𝑦)𝑃𝑡(𝑥, 𝑦)

= ∑
(𝑥,𝑦)

𝐿(ℎ(𝑥), 𝑦) 𝑃𝑠(𝑥, 𝑦)
𝑃𝑠(𝑥, 𝑦)𝑃𝑡(𝑥, 𝑦)

= ∑
(𝑥,𝑦)

𝐿(ℎ(𝑥), 𝑦) 𝑃𝑡(𝑥) ⋅ 𝑃𝑡(𝑦|𝑥)
𝑃𝑠(𝑥) ⋅ 𝑃𝑠(𝑦|𝑥)𝑃𝑠(𝑥, 𝑦)

= ∑
(𝑥,𝑦)

𝑃𝑡(𝑥)
𝑃𝑠(𝑥) 𝐿(ℎ(𝑥), 𝑦) 𝑃𝑠(𝑥, 𝑦)

(4.5)
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Therefore we can observe that

1−𝜖𝐹 ≤ 𝑃𝑡(𝑥)
𝑃𝑠(𝑥) ≤ 1+𝜖𝐹

4.5⟹ (1−𝜖𝐹 )𝑅𝑠(ℎ) ≤ 𝑅𝐹
𝑡 (ℎ) ≤ (1+𝜖𝐹 )𝑅𝑠(ℎ) (4.6)

In fact, based on Theorem 3.1.1 we can even measure this target error from the

empirical source error provided the capacity of the learner (for example, binary

linear classifiers have 𝑉 𝐶-dimension equal to 𝑚 + 1 where 𝑚 is the dimension

of the input space). Therefore, using again the indicator as a loss function, we

can conclude that the probability of the learner making a wrong prediction in the

target domain is 𝑅𝑡(ℎ) ≤ (1 + 𝜖𝐹 )𝜖𝑠. At this stage, we can observe two potential

sources of noise being introduced in the seeding clustering: the first source is the

intrinsic expected error of the learner 𝜖𝑠 and the smaller it gets, the more accurate

our seeding clustering will be. The second source of noise is the difference 𝜖𝐹
between the source and target contexts as measured by the ratio. Since this is a

user-defined parameter, it can be as small as it gets up until the point where it

still produces a reasonably sized seeding clustering (|𝐹 | must be at least 𝐾 , the

number of clusters). In the case of negative transfer, namely when the source

and target domain are unrelated, this pseudo-labeling of friends might give very

noisy results, but for tr-𝐾means the initialization step will just seem as any random

initialization, falling back to the traditional 𝐾means heuristic. This is expected, since

in the absence of any prior information, unsupervised learning is the only paradigm

to follow.

Going back to the lemma 4.3.1, we could argue that the probability that the result

holds (i.e. the probability that the learner gives a noise-free seeding clustering) is

the union bound over the misclassified friends, that is |𝐹 |(1 + 𝜖𝐹 )𝜖𝑠. However,

such a statement looks meaningless for a probability measure and in fact it is rather

pessimistic since it has been experimentally observed (see chapter 5) that friends are

located in high-density areas and not on the margins between clusters. Therefore

it is highly likely that the seeding clustering will be very noisy and we leave the

investigation on this matter for further research.

As a final note, the time complexity of tr-𝐾means cannot be asserted in a rigid

way, since the supervised learner in the initialization phase of the clustering, as well

as the estimation of the density ratios, are defined by the user. Given that the input

size is 𝑂(𝑚 ⋅ (𝑁𝑠 + 𝑁𝑡)) where 𝑚 is the dimension of the input and 𝑁𝑠, 𝑁𝑡
the size of the source and target data respectively, we observed experimentally that

in the presence of a linear supervised learner (such as the Naive Bayes classifier),

the computation was dominated by the standard 𝐾means which is known to have

worst case time complexity exponential to the input size. Interestingly enough, it

has been shown in [RW16] that Lloyd’s method is actually trying to solve much

harder problems, i.e. PSPACE-complete problems, providing an explanation for its

worst-case running time. In practice, assuming that 𝑡 are the iteration steps until
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Lloyd’s method converges to a local minimum, the time complexity of this heuristic

is 𝑂(𝑡 ⋅ 𝑚 ⋅ 𝑁𝑡). In the experiments performed in Chapter 5, we observed that

𝑡 < 20, making the practical performance of tr-𝐾means linear with respect to the

input.
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5 Experimental Results

In order to assess the quality of the proposed tr-𝐾means method, in this chapter

we carry out experiments on several datasets. In Section 5.2 we consider a set of

two-dimensional toy problems on domain adaptation with different topologies. In

Section 5.3 we consider a real domain adaptation problem in the framework of

topic classification on documents. Before presenting the results, in section 5.1 we

mention the tools we will use to conduct the experiments.

5.1 Useful Tools

5.1.1 Evaluation Strategy

For all the experiments, the shared label space 𝑂 between the domains is binary, so

it can take only two values: 1 (Positive) and 0 (Negative). True labels are available

for both the source and the target-domain instances but the target labels are used

only for a quantitative assessment of the effectiveness of the proposed method and

they are not taken into account in the training phase. But how shall we define the

term effectiveness? As described in chapter 3, a domain adaptation algorithm will

try to predict the target labels. Given the set of predictions, what can we say about

the quality of the algorithm? Effectiveness or performance measure or evaluation

strategy is precisely the way that we assess the learning efficiency. In our scenario,

we could for example consider as a performance measure the misclassification rate,

i.e. the ratio of the labels that were wrongly predicted. Recall that the expected

error of choosing a hypothesis ℎ𝑎 ∈ 𝐻𝐴 was defined as

𝑅(𝑎) = 𝐸
(𝑥,𝑦)←𝑃(𝑥,𝑦)

[𝐿(ℎ𝑎(𝑥), 𝑦)]

where 𝐿 is a loss function that intuitively quantifies how much an error can cost.

Since the joint distribution 𝑃(𝑥, 𝑦) is unknown, we also defined the empirical error
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as

𝑅̂(𝑎) = 1
𝑛

𝑛
∑
𝑖=1

𝐿(ℎ𝑎(𝑥𝑖), 𝑦𝑖)

Let us define the loss function 𝐿 as the 0-1 loss function, i.e. 𝐿(ℎ𝑎(𝑥), 𝑦) =
𝐼(ℎ𝑎(𝑥) ≠ 𝑦) so that 𝐿(ℎ𝑎(𝑥), 𝑦) = 1 iff ℎ𝑎(𝑥) ≠ 𝑦 otherwise 𝐿(ℎ𝑎(𝑥), 𝑦) = 0.
We can observe that the misclassification rate corresponds to the empirical error

with the 0-1 loss function and intuitively measures how often the algorithm was

wrong. Alternatively, we can check how often the algorithm is right, which is

another performance measure often called accuracy. It is straightforward to see

that accuracy = 1 − misclassification rate. Although accuracy is a widely used

performance measure, there is a small trap when it is practically used.

Considering a binary label space as in our case, what happens if the true target

classes are imbalanced? For instance, most of the data belong to the Positive class

(therefore their true label is 1) and very few belong to the Negative class (therefore

their true label is 0). A simple classifier that just assigns everything to the Positive

class, will actually exhibit high learning efficiency based on the above definitions. To

solve this, many different performance measures have been proposed (see [FK15]

for a nice overview). However, these measures are label-dependent, meaning that

if we interchange the labels on the data the learning algorithm will exhibit different

learning efficiency. In order to avoid the label-dependency, we chose to use accuracy

as our performance measure. For the results to be meaningful, we make sure that

our experiments contain balanced classes.

5.1.2 Density Ratio Estimators

As presented in Chapter 4, our algorithm is plug-and-play, meaning that it can

adjust to the needs of every dataset. So for every experiment, there are three

choices to be made: a density ratio estimator, a classifier and a semi-supervised

clustering method. The selection of the density ratio estimator will prepare the way

to identify the friends in the target domain. From the discussion in Section 3.2, we

will showcase the results of the uLSIF and RuLSIF estimators available in [Lab].

The parameters for these estimators are set to the default suggestions provided

in the code. Although in [YSK+11] they comment that the higher the relative

parameter 𝑎 gets the better is the estimation quality of the RuLSIF, the parameter

𝑎 should be carefully tuned so as to smooth out but not to reduce significantly

the complexity of the true density-ratio function. To balance the tradeoff between

these observations, it was experimentally chosen to set 𝑎 = 0.5, estimating in effect

the 0.5-relative density ratio

𝑤0.5(𝑥) = 2 ⋅ 𝑝𝑡(𝑥)
𝑝𝑡(𝑥) + 𝑝𝑠(𝑥)
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where we recall that 𝑝𝑡(𝑥), 𝑝𝑠(𝑥) are the unknown marginal distributions that

generated the target and source instances respectively. We will denote the ratio

estimation as 𝑤̂0.5(𝑥).

5.1.3 Friends Selection

Given the density ratio estimations, we have to select the parameter 𝜖𝐹 that

characterizes the friends set, as described in Definition 4.2.1. An important aspect

for choosing this parameter is the cardinality of the resulted friends set |𝐹 |: it should
not be too small, because we want to initialize the cluster centroids to high-density

regions of the target domain, but it should also not be too big, because we want

to avoid the source domain bias. With this line of thought, we decided to fix the

friends cardinality |𝐹 | = 𝛽 ⋅ 𝑁𝑡 where 𝑁𝑡 is the cardinality of the total target set

𝑋𝑡 and 𝛽 was manually set to 0.2. Now we can compute the parameter 𝜖𝐹 that

provides us with this careful abundance of friends. Therefore our goal is

find 𝜖𝐹 s.t. |{𝑥 ∈ 𝑋𝑡 ∶ |𝑤̂(𝑥) − 1| ≤ 𝜖𝐹 }| = 𝛽 ⋅ 𝑁𝑡

In practice, it has been observed that the ratio estimators do not always return

values in the [0, 1] range. After investigation, we observed that this fact is related

with the data representation as well as the method itself, i.e. different estimators

produce different value range. Moreover, let us assume that for some 𝑥 ∈ 𝑋𝑡 an

estimator 𝐸 returns 𝑤̂(𝑥) = 23. Since the estimated ratio has such a large value,

can we conclude that 𝑥 has a large similarity with the source domain or that it is

very dissimilar precisely because it is far away from the value 1?
In order to bypass this issue, we created the following heuristic: given an instance

𝑥, if the estimator 𝐸 can distinguish well between the two source classes, then

this instance is a friend. To explain this heuristic in more detail, recall that so far

the input to the selected estimator is the target set 𝑋𝑡 and the source set 𝑋𝑠
: 𝐸0 = 𝐸(𝑋𝑠, 𝑋𝑡). Since the source labels can be used during training, we

deploy two versions of 𝐸: the first contains only the source data that belong to

the Positive class 𝐸1 = 𝐸(𝑋𝑠1, 𝑋𝑡) and the second contains only the source data

that belong to the Negative class 𝐸2 = 𝐸(𝑋𝑠2, 𝑋𝑡). Intuitively, the estimator 𝐸1
estimates the target similarity with the source Positive class and 𝐸2 estimates the

target similarity with the source Negative class. We argue that given an instance

𝑥 ∈ 𝑋𝑡, if 𝑤̂1(𝑥) ≃ 𝑤̂2(𝑥) then the estimator 𝐸 cannot distinguish between the

source classes so the instance 𝑥 is not similar with the source domain. So we alter

the previous goal as follows

find 𝜖𝐹 s.t. |{𝑥 ∈ 𝑋𝑡 ∶ |𝑤̂1(𝑥) − 𝑤̂2(𝑥)| ≥ 𝜖𝐹 }| = 𝛽 ⋅ 𝑁𝑡

This goal is very easily implemented since we only need to sort in a descending

order the differences among the ratio estimations. Furthermore, before calculating
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the differences we normalized separately the estimations 𝑤̂1, 𝑤̂2 in the range [0, 1]
to smooth out the effect of range-value imbalances. For example, let us assume

that 𝑤̂1(𝑥) = 0.7 and 𝑤̂2(𝑥) = 1.3. If we consider a radius 0.3 around the

value 1, these estimations translate to the same case: the ratio for the instance

𝑥 is 0.3 units away from 1, so the estimator could not distinguish between the

source classes. The difference calculation however will not reflect this intuition. By

normalizing appropriately¹ the values that are greater than 1, we expect to derive a

more meaningful friends’ selection.

5.1.4 Classifiers

In order to initialize tr-𝐾means, we train a classifier on the source domain and

apply it to the friends of the target domain. After that, the initial centers will be

the centroids of this pseudo-labeling. It is therefore crucial to select a classifier

appropriate for the data under investigation. For instance, in the case of documents

it is widely argued that the simple Naive Bayes classifier (see [Ng] for a nice

overview) performs remarkably well.

Despite the big variety, for our experiments we only required two simple classifiers:

the Naive Bayes and the 𝐾-Nearest Neighbour classifier (see [Sut12] for a nice

overview). Naive Bayes is a simple yet core technique for building algorithms for

classification, quite popular in the text retrieval community since the ’60s. The main

idea behind this technique is the use of Bayes’ theorem in the classifier’s decision

rule

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴) ⋅ 𝑃 (𝐴)
𝑃(𝐵)

Intuitively, the Naive Bayes classifier tries to learn the joint distribution that generated

the labeled train instances (in our case, this is the source set 𝑋𝑠 along with their

labels). Although in [Ng] a more detailed overview is available, we mention one

important aspect of this classifier: it makes the assumption that all the features

that represent our data are independent from each other. Such an assumption

might seem restrictive, but it works remarkably well in practice on specific data such

as documents and reduces significantly the time complexity of learning. In the

case some feature has value 0, it is typical to introduce a small value indicating

the lowest value a feature can get. This is often called Laplacian smoothing and

through the experiments we will set it to be 1.
The 𝐾-Nearest Neighbour classifier is a lazy classifier which given a labelled train

and an unlabeled test set, assigns for every instance in the test set the majority

vote of its 𝐾 closest neighbours from the train set. The definition of closeness

depends on the nature of the data and we will specify it along with the value 𝐾
in every experiment.

¹The further they are from the value 1, the closer they will be to the value 0 after normalization.
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5.1.5 Variations of 𝐾means

The traditional version of 𝐾means heuristic uses the squared Euclidean distance

as the cluster homogeneity’s criterion. Depending on the nature of the data, this

criterion might need to be modified. In the following experiments, we either use the

traditional criterion or another really popular distance measure: the cosine similarity.

Given two vectors 𝑣, 𝑢 ∈ ℝ𝑚, the cosine similarity between them is defined as

𝑐𝑜𝑠(𝑣, 𝑢) = 𝑣 ⋅ 𝑢
‖𝑣‖‖𝑢‖ =

𝑚
∑
𝑖=1

𝑣𝑖 ⋅ 𝑢𝑖

‖𝑣‖‖𝑢‖
where as usual the notation ‖⋅‖ denotes the Euclidean norm. This is a measure

that actually calculates the cosine of the angle between the vectors so it intuitively

expresses how much the two vectors are pointing in the same direction. If we

make sure that the vectors are normalized such that ‖𝑣‖ = ‖𝑢‖ = 1 then we can

define the cosine distance to be 1 − 𝑐𝑜𝑠(𝑣, 𝑢) = 1 − 𝑣 ⋅ 𝑢. If we use this distance

modification in 𝐾means then we result to the often called spherical-𝐾means and

in every experiment we will explicitly state which variation is being used and we will

try to justify our choice.

5.2 Synthetic Data

In this Section we present 3 different synthetic experiments: S1, S2, S3. Each of

these experiments has been constructed in order to study the effectiveness of our

method in every stage.

5.2.1 Experiment S1

For the experiment S1 we generate two-dimensional data from similar multivariate

normal distributions, a generalization of the normal distribution

𝒩(𝜇, 𝜎2) = 1
𝜎

√
2𝜋

𝑒− (𝑥−𝜇)2
2𝜎2

to higher dimensions. We consider the covariance matrix Σ to be Σ = 𝜎2𝐼 where

𝐼 is the identity matrix. Since Σ is diagonal, the instances generated bellow will be

simply a collection of independent Gaussian random two-dimensional variables with

mean 𝜇 and variance 𝜎2 respectively. In particular, the source instances 𝑋𝑠 consist

of 150 instances randomly drawn from 𝒩((1, 1), 1) for the Positive class (black

color) and 150 instances randomly drawn from 𝒩((1, 1), 1
8) for the Negative class

(blue color). The target instances 𝑋𝑡 consist of 500 instances randomly drawn

from 𝒩((1, 1), 1) for the Positive class (red color) and 500 instances randomly

drawn from 𝒩((4, 4), 1
8) for the Negative class (green color).
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Figure 5.2.1: Synthetic experiment S1

As we can observe in Figure 5.2.1 Positive class in both domains is drawn from the

same distribution. The target Negative class is related (mean-value modification)

but not the same with the source Negative class. So during phase 1 (separation

phase), we expect that the density ratio estimator will identify many friends located

in the target Positive class. As discussed in the previous Section, we use the uLSIF

and RuLSIF estimators for friends identification.
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Figure 5.2.2: Friends Pseudolabeling for S1

Both estimators, as we can observe in Figure 5.2.2 (for the moment let us ignore

the color assignment), located friends mostly at the boundaries of the Positive

target class. This was due to the ratio normalization that we discussed in Section

5.1, because they produced many values out of the [0, 1] range. One interesting

difference is that the RuLSIF estimator not only located friends at the boundaries

of the Positive target class but also to its center. Based on the topology of the

source domain, this is a clear indication that this estimator made a harder work to

detect friends, not only from the Positive class which is the same for both domains,

but also for the source Negative class, which although different yet it is closely

related as a slightly modified Gaussian distribution. This result is strongly linked

with the fact that the RuLSIF estimated the 𝑎-relative ratio where 𝑎 was tuned to

0.5: the more the 𝑎 increases, the more is smoothed out the true density ratio.

The next step is to train a classifier on the source domain and directly apply it

on the selected friends. For this experiment, we utilized the 𝐾-Nearest Neighbour
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with 𝐾 = √𝑁𝑡 as it is typically used and we applied the euclidean distance to

define the closeness between the data, mostly due to the low dimensionality and

the linear separability of the target classes. Giving more focus now to the color

assignment in Figure 5.2.2, the overlapping of the source classes challenges not

only the density ratio estimators but also the classifier. It is of no surprise that the

distance-based classifier we used did not succeed to classify all friends correctly. A

correct classification would label all friends solely to the Positive class, therefore an

initial centroid for the Negative class would have to be chosen at random. However

we can avoid randomness either by selecting the instance that is furthest from the

already specified centroid or by selecting an instance with the seeding technique

proposed in [AV07]. We keep the noisy classifier to showcase that such an error

is acceptable from our method.
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Figure 5.2.3: Final result of tr-𝐾means for S1

The final result of tr-𝐾means succeeded to classify the target documents with high

accuracy. It is interesting to observe in Figure 5.2.3 that both estimators led to

the same result. In every clustering iteration we preserved a class correspondence

between the source and the target domain by checking the closeness of each target

centroid with the source centroids induced by the labelled source data. Here as well,

closeness was defined in terms of euclidean distance. Despite the fact that source

centroids are really close to each other due to the homocentricity of the source

domain, the class correspondence has been successful for this experiment due to

the friends pseudolabeling result. A naive clustering with no class correspondence

between the domains, although it would succeed to identify the “well-separable”

clusters, it might revert the target predictions since no information is available of

what is negative and what is positive. Furthermore, a naive 𝐾-Nearest Neighbour

classifier would suffer from the overlapping of the source classes. In Figure 5.2.4 we

present the result obtained from naive versions of a supervised and an unsupervised

approach. As a general practice, we selected the components that were employed by

the tr-𝐾means in order to investigate whereas our method outperforms its building

blocks and the Figure 5.2.13 shows in more detail that this is the case. In particular,

we employ 𝐾-Nearest Neighbour with 𝐾 = √𝑁𝑡 and euclidean distance for the
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supervised case and standard 𝐾means with random centroid selection from the target

data with euclidean distance as the homogeneity criterion for the unsupervised case.

In order to overcome a bad random initialization, we repeated 𝐾means 30 times.

As we can see, each naive method suffers from luck of additional information.

In Domain Adaptation, additional related information is available and the way our

method intertwines these two paradigms indicates the bi-directional gain mentioned

in Chapter 4: clustering helps the classification and classification helps the clustering.
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Figure 5.2.4: Final result of naive supervised and unsupervised methods for S1

5.2.2 Experiment S2

In the previous experiment, all data were generated from four similar Gaussian

Distributions. In the following S2 experiment we make our setup a little bit more

difficult and alter one distribution to something unrelated to a Gaussian. In particular,

the target instances 𝑋𝑡, similar as before, consist of 150 instances randomly drawn

from 𝒩((0, −3), 1
4) for the Positive class (red color) and 150 instances randomly

drawn from 𝒩((2, −1), 1) for the Negative class (green color). The source

instances 𝑋𝑠 consist of 500 instances randomly drawn from 𝒩((1, 1), 1
4) for the

Positive class (black color) and 500 instances for the Negative class (blue color)

were randomly and uniformly sampled from an ellipse as depicted in Figure 5.2.5.
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Figure 5.2.5: Synthetic experiment S2

Due to the unrelatedness between the source and target Negative classes, we expect

that the density ratio estimator will identify most of the friends located in the target
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Positive class, since the data in this class are generated from the most related

distributions. Surprisingly enough, as we can observe in Figure 5.2.6, the uLSIF

estimator failed our intuition and located most of the friends in the target Negative

class. This may occurred because of the high variance in the data: as we briefly

mentioned in Section 3.2, the uLSIF method randomly chooses centers for the

kernel functions whose combination approximates the real density ratio. Since the

spread of the target Negative data is very high, most of the centers will be chosen

in this class. On the opposite, the RuLSIF estimated a more smoothed version of

the density ratio (as discussed in the previous experiment), therefore it successfully

identified many friends also in the target Positive class as expected.
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Figure 5.2.6: Friends Pseudolabeling for S2

Again, we utilized the 𝐾-Nearest Neighbour with 𝐾 = √𝑁𝑡 and we applied the

euclidean distance to define the closeness between the data, mostly due to the low

dimensionality and the linear separability of the target classes. Since there is no

overlapping of the source classes for the part that concerns the target data (observe

that the closest part of the source data to the target ones resides in the bottom

left corner of the source domain as depicted in the combination section of Figure

5.2.5), the classifier was not confused, however since it is a distance-based learner,

it was misguided for the friends of the Positive class as we can observe from Figure

5.2.6. In particular for the result of the uLSIF estimator, where no friends were

located in the target Positive class, there is no initialization for the Positive centroid.

As discussed before, we applied the simple heuristic to choose the target instance

that is the furthest one (in terms of euclidean distance) from the already chosen

Negative centroid.

Given our initialization and the easiness of class correspondence, the final result

of tr-𝐾means powered with euclidean distance, succeeded to classify the target

documents with high accuracy. As we can observe in Figure 5.2.7 both estimators

led to the same result. To investigate the gains of our method, in Figure 5.2.8 we

present the result obtained from naive versions of a supervised and an unsupervised

approach. In particular, we employ 𝐾-Nearest Neighbour with 𝐾 = √𝑁𝑡 and

euclidean distance for the supervised case and standard 𝐾means with random
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Figure 5.2.7: Final result of tr-𝐾means for S2

centroid initialization and euclidean distance for the unsupervised case. In order to

overcome a bad random initialization, we repeated 𝐾means 30 times. As we can

see, the unsupervised naive method converged to a bad local minimum for our

needs and even if it could identify the clusters properly, there is no guarantee of

class correspondence with the source domain. Also, the supervised method was

distant-misguided by the topology of the source domain and gave poor results.

Again the Figure 5.2.13 shows in more detail the comparison of our method with

its building components.
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Figure 5.2.8: Final result of naive supervised and unsupervised methods for S2

5.2.3 Experiment S3

In the following S3 experiment we make our setup again a little bit more difficult and

alter the whole target domain to something unrelated to a Gaussian distribution.

In particular, the source instances 𝑋𝑠 consist of 150 instances randomly drawn

from 𝒩((1, 1), 1
8) for the Positive class (black color) and 150 instances randomly

drawn from 𝒩((1, 4), 1) for the Negative class (blue color). The target instances

𝑋𝑡, consist of 500 instances randomly drawn from a noisy sinusoidal function

for the Positive class (red color) and 500 instances randomly drawn from a noisy

cosinusoidal function for the Negative class (green color), as depicted in Figure

5.2.9.
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Figure 5.2.9: Synthetic experiment S3

It is difficult to make any assumptions of what to expect from a density ratio

estimator but Figure 5.2.10 shows again that the RuLSIF estimator smoothed out

the true density ratio and as a result it located equally many friends to target areas

that were closer to both source classes, as opposed to the uLSIF estimator that

made a more unintuitive friends identification, yet located in high density areas of

the target domain. In this experiment, we employ a different classifier since the

euclidean version of the 𝐾 Nearest Neighbour will be again misguided and assign

most of the target data to the Positive class due to scale limitations. We therefore

choose the Naive Bayes classifier with Laplacian smoothing set to 1.
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Figure 5.2.10: Friends Pseudolabeling for S3

Despite the low quality of the classifier’s result, the final result of tr-𝐾means powered

with euclidean distance, classified the target documents with optimal accuracy in

both cases, as we can observe in Figure 5.2.11.

To investigate the gains of our method, in Figure 5.2.12 we present the result

obtained from naive versions of a supervised and an unsupervised approach. In

particular, we used Naive Bayes for the supervised case and standard 𝐾means

with random centroid selection from the target data with euclidean distance for the

unsupervised case. Again to avoid bad random initialization, we repeated 𝐾means

30 times. As we can see, the unsupervised naive method is sensitive to random

initialization and had no information to make the class correspondence with the

source domain. Also the supervised method, did not succeed to transfer well the
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Figure 5.2.11: Final result of tr-𝐾means for S3

learned generative model of the source domain. Again the Figure 5.2.13 shows in

more detail the comparison of our method with its building components. For the

naive 𝐾means, we included the accuracy as if the class correspondence has been

correct.
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Figure 5.2.12: Final result of naive supervised and unsupervised methods for S3

S1 S2 S3
classifier 34.9 49.9 82

Kmeans 41.9 87.8 87.5

tr-Kmeans 99.4 94.5 100
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Figure 5.2.13: Accuracy Comparison on Synthetic Experiments
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5.3 Real Data

In this Section we present a real domain adaptation experiment on the framework

of documents. We will see that the result of tr-𝐾means is comparable with

state-of-the-art domain adaptation methods, yet remaining simple and efficient.

For this experiment, we chose the widely used 20 Newsgroup dataset, which is

a collection of UseNet posts from 1993. It was originally collected by Ken Lang

and contained 20.017 articles divided almost evenly among 20 different discussion

topics. Articles are related by topic and date but also, some of the topics are close

to each other so they are further categorized into six super-topics: recreation (rec),

computers (comp), science (sci), politics (talk.politics), religion (talk.religion) and for-

sale (misc.forsale). We used Jason Rennie’s “bydate” version from [Ren] where

documents are sorted by date, duplicates are removed and no topic-identifying

headers are included. This version contains 18.846 documents in total.

Following the usual transfer learning bibliography, we created six different exper-

iments with different source and target distributions by mixing several topics as

described in Table 5.1. As in the synthetic case, for each experiment we construct

a source domain (blue colour) and a target domain (red colour), each one having

two classes: Positive and Negative. Similar classes in both domains are generated

by the same super-topic but from different sub-topics within it. This effectively

creates the difference but also the relatedness between the domains: e.g. a docu-

ment from the source Positive class and a document from the target Positive class

belong to different sub-topics of the same super-topic. We restrict our experiments

to problems in which each document belongs to exactly one class.

DataSet Train/Test data Positive Negative Number of Samples

ds1
train rec.{autos, motorcycles} talk.politics{guns, misc} 3660

test rec.sport.{baseball, hockey} talk.{politics.mideast, religion.misc} 3554

ds2
train rec.{autos, sport.baseball} sci.{med, space} 3949

test rec.{motorcycles, sport.hockey} sci.{crypt, electronics} 3961

ds3
train comp.{graphics, sys.mac.hardware, windows.x} talk.{politics.mideast, religion.misc} 4475

test comp.{os.ms-windows.misc, sys.ibm.pc.hardware} talk.politics.{guns, misc} 3623

ds4
train comp.{graphics, os.ms-windows.misc} sci.{crypt, electronics} 3906

test comp.{ sys.ibm.pc.hardware, sys.mac.hardware, windows.x} sci.{med, space} 4888

ds5
train comp.{graphics, sys.ibm.pc.hardware, sys.mac.hardware} rec.{motorcycles, sport.hockey} 4894

test comp.{ os.ms-windows.misc, windows.x} rec.{autos, sport.baseball} 3924

ds6
train sci.{electronics, med} talk.{politics.misc, religion.misc} 3369

test sci.{crypt, space} talk.politics.{guns, mideast} 3821

Table 5.1: 20Newsgroup - Data Sets Composition

Before we apply any learning system, we need to transform these human generated

documents into something more manageable as discussed in Section 3.3. For every

experiment, since documents from both domains are available during training time,

we remove stopwords and rare words (i.e. words that appear less then 4 times

in the whole corpus) and replace words by their respective word stem. Based on

this pre-process, a vocabulary is being created containing a list of all the possible

words/features for this experiment. Each document is therefore transformed into a
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feature vector 𝑥 = {𝑥1, … , 𝑥𝑚} where 𝑥𝑖 = 𝑤𝑥,𝑖 is the importance of word 𝑖 for

this document in terms of tf-idf weighting.

As argued in Section 3.3, we can either choose local or global tf-idf, i.e. the

document frequency is computed for each domain separately or on both domains. In

Figure 5.3.1 we present the accuracy obtained by tr-𝐾means for every experiment

with these two different weighting schemes. In particular, we experimented with the

two proposed density ratio estimators uLSIF and RuLSIF with the relative factor

𝑎 set to 0.5. To initialize the centroids, we used the Naive Bayes classifier on

the identified friends. It is widely accepted that the Naive Bayes classifier performs

remarkably well on documents, despite the feature independence assumption. For

documents, due to the high dimensionality of the feature space, it is preferred to

use the spherical 𝐾means where the homogeneity criterion is based on the cosine

distance of normalized vectors.

It can be observed in Figure 5.3.1 that in most experiments both weighting

schemes were comparable, except in the dataset 5 where clearly the local tf-idf was

better. For this reason, we can argue that the use of local tf-idf is a promising

alternative weighting scheme for domain adaptation problems on documents, not

only for accuracy reasons but also in terms of memory and time optimization: each

domain is pre-processed independently on its own. It is important to note that

the density ratio estimators were highly influenced by the data representation: a

different weighting scheme may result for the same estimator to identify a different

set of friends. Furthermore, we observe that both estimators gave similar results for

most of the experiments but RuLSIF was slightly better, especially for dataset 5.

As we saw with the synthetic experiments, since RuLSIF is more biased towards the

source domain than the uLSIF method, we can argue that the dataset 5 exhibits

bigger domain difference than the rest of the datasets. So despite the fact that

the uLSIF method is more fast for high-dimensional data, we prefer the use of

the RuLSIF estimator to better capture in a balanced way the domain divergence.

Since the density ratio estimation can be included in the pre-processing step, we

can refrain from taking it into account when calculating the time complexity of

tr-𝐾means.

To investigate the usefulness of our method, in Figure 5.3.2 we compare tr-

𝐾means with the result obtained by its domain unaware components: the Naive

Bayes classifier with Laplacian smoothing set to 1 for the supervised case and

the spherical-𝐾means with random centroid initialization for the unsupervised case.

Again, in order to overcome bad initialization, we repeat spherical-𝐾means 30

times. In addition, the results of tr-𝐾means are also compared with the Multistep

Fuzzy Bridged Refinement Domain Adaptation (MFBRDA) algorithm [BLZP15].

This algorithm is a fuzzy variant of the bridge refinement algorithm that was
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Figure 5.3.1: Tf-idf Comparison

Figure 5.3.2: Overall Comparison

mentioned in Section 2.3. Through the use of fuzzy sets², a soft class assignment

is assumed, which informally means that in a binary class problem, an instance

can belong to both classes with some probability. Such a scenario is assumed

when there is data uncertainty or it is more convenient to have a more probabilistic

flavour in the predictions of the learner (instead of binary responses). We select

this method for benchmarking since it has been already compared in [BLZP15]

with many advanced domain adaptation methods and exhibited comparable accuracy

performance.

As we can observe from Figure 5.3.2, in all experiments the method outperformed

the shift-unaware Naive Bayes classifier. It also outperformed in most cases the naive

spherical-𝐾means, which sometimes failed to guess the correct class correspondence

²A fuzzy set is a set that contains not only the elements but a number associated with each element indicating

membership-strength, meaning how likely is it for the element to belong to this set.
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between the domains. So far there is a strong evidence that tr-𝐾means is more

accurate than its building components. Furthermore, our method outperformed in

half of the experiments the MFBRDA algorithm and for the rest experiments, the

accuracy difference was no higher than 3.5%. Therefore despite its simplicity, we

can argue that tr-𝐾means is comparable with state-of-the-art domain adaptation

methods.
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6 Conclusions

This work set out to investigate the combination of the supervised and unsupervised

learning paradigm in the setting of Domain Adaptation. As a result, a new transfer

learning algorithm tr-𝐾means is proposed. In this final chapter, we argue on the

research contributions of this thesis. Analytically, in Section 6.1 we discuss on

the usefulness of the proposed method. In Section 6.2 we report experimental

observations for density ratio estimators (as introduced in Section 3.2) and in Section

6.3 we review some experimental findings on document pre-processing. Finally in

Section 6.4 we discuss possible directions for future research.

6.1 tr-𝐾means

The main contribution of this thesis is a transfer learning variant of the popular

Lloyd’s method. Powered with some prior information in the form of a different but

similar domain (source domain), the algorithm tries to initiate the cluster centroids

in order to obtain a good and meaningful clustering result in the target domain.

Given the prior knowledge, supervised learning is used in order to transfer this

information to the target domain. By estimating the distribution ratio of the two

domains, we can identify the target instances where such a transfer is more valuable,

namely the target instances whose distribution appears to be more alike with the

source distribution (referred to as friends). A classifier trained on the source domain,

provides initial labels (pseudo-labels) on the friends, representing in this way the

transferred knowledge. By initializing the centroids of the clustering to the mass

centers of this transferred information, we theoretically guarantee that with high

probability the unsupervised method will converge to a near-optimal solution.

As demonstrated experimentally the gains are bi-directional: clustering helps the

classification and the other way around. For the first direction, in the initialization

step, the pseudo-labeling of friends might be noisy due to the inherent generaliza-

tion error of the chosen classifier but also due to the domain-difference. Clustering
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phase will smooth out the noise induced by the domain-difference by applying its

homogeneity criterion in the target domain. For the second direction, classification

can be considered as a teacher on friends, giving a prior knowledge to an unsu-

pervised method and transforming it to a semi-supervised task. The unsupervised

method does no longer depend only on the inherent structure of the data but is

powered with extra information to bias the search of the implicitly defined hypothesis

space of the target task.

By removing the randomness of 𝐾means, not only we avoid the error-prone

initialization but we reduce its computational cost. In addition, after training the

classifier, the source dataset is no longer used, resulting in an important memory

reduction. Furthermore, it is evident that our idea is plug-and-play: any classifier can
be used to pseudo-label friends and any semi-supervised clustering can be applied

after. This allows the method to adapt to data-dependent needs accordingly. In the

case of negative transfer, namely when the source and target domain are unrelated,

the pseudo-labeling of friends might give very noisy results, but for tr-𝐾means

the initialization step will just seem as any random initialization, falling back to the

traditional 𝐾means heuristic. This is expected, since in the absence of any prior

information, unsupervised learning is the only viable paradigm to follow.

It has been experimentally observed that tr-𝐾means outperforms its domain-unaware

building components and it has been compared with the MFBRDA algorithm which

has been shown to compete with state-of-the-art domain adaptation methods. For

half of the experiments, our method outperformed MFBRDA and for the rest,

the accuracy difference was quite small. This result not only demonstrates that

our method is competing with advanced domain adaptation methods but also it

showcases an interesting tradeoff: in MFBRDA, for creating the bridge between

the domains, it is required that source data are available for the most part of

the algorithm. This approach to transfer the label structure, might suffer from

high memory demands. Observing the little accuracy improvement of their method

as opposed to ours, it is worth investigating for which instances such a memory

overhead is actually necessary.

6.2 Density Ratio Estimators

A crucial step in tr-𝐾means is to identify where to transfer the source knowledge,

i.e. find target instances that are similar with the source domain (friends set). In the

proposed method, this notion of similarity is assumed to be probabilistic: a target

instance whose distribution appears to be really close with the source distribution

will be included in the friends set. Since all distributions are unknown, this measure

is computed with the use of density ratio estimators: algorithms that given samples

from two distributions 𝐴 and 𝐵, will output estimations of the ratio 𝐴/𝐵 on
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the samples provided from 𝐴. In our case, 𝐴 and 𝐵 are the target and source

distributions respectively.

Although we could choose as friends the target instances whose estimated density

ratio appears to be close to 1, we observed in binary-class experiments that higher

accuracy can be obtained if we employ class-specific density ratio estimators, that is

estimators that try to separate between the two different classes that compose the

source domain. Since the samples from the source domain are categorized into

positive and negative instances, we can use this information to estimate the positive

and the negative density ratios on the target instances, feeding the positive (resp.

negative) estimator with all the target instances but only the positive (resp. negative)

source instances. A target instance that is close to the source domain will belong

to one of these classes, so we expect that the class-specific estimators will disagree

(have high difference on the output values for this instance) since the instance is

more similar with one class than the other. On the opposite, for a target instance

that is not close to the source domain, the class-specific estimators will not be able

to disagree since both source classes will look unrelated with the instance. So

friends are considered the target instances with the highest value-difference between

these class-specific density ratios.

In our experiments, we considered two density ratio estimators: the uLSIF and

the RuLSIF. Our two candidates were chosen based on the following properties:

uLSIF is arguably one of the fastest proposed methods whereas RuLSIF handles

unbounded ratios smoothly and in a tunable way. Both estimators almost always

resulted in similar prediction accuracy, indicating that the computationally efficiency

of uLSIF is more useful than the slight accuracy gain from RuLSIF. However, for

experiments with high domain divergence, the RuLSIF method gave better results,

arguably due to the smoothness introduced to the density ratio through the relative

parameter 𝑎. Although in [YSK+11] they comment that the higher the 𝑎 gets

the better the estimation quality of the RuLSIF estimator, the parameter 𝑎 should

be carefully tuned so as not to reduce significantly the complexity of the true

density-ratio function. To balance the tradeoff between these observations, it was

experimentally chosen to set 𝑎 = 0.5. As a final observation, the data representation

heavily influences the result of any density ratio estimator. Therefore, the selection

of an estimator and the pre-processing phase must be seen as correlated processes.

6.3 Document Pre-processing

In any machine learning task, human generated data such as documents require

a pre-processing phase in order to transform into a manageable and succinct

form. In this thesis, we selected the popular Vector space model where each

document is considered as a bag of words, the order of which is not taken into
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consideration. Documents are therefore transformed into feature vectors, where

each feature captures the importance of the respective word it represents. For the

notion of importance, in this work we experimented with two different weighting

schemes: the local tf-idf where the document frequency is calculated in each domain

separately and the global tf-idf where document frequency takes into consideration

the whole input of documents from both domains. We experimentally observed

that the local tf-idf did not deteriorate the accuracy of the proposed method and

was particularly useful for experiments that exhibit high domain divergence. This

weighting scheme also exhibited memory and time optimization: each domain is

pre-processed independently on its own. For all these reasons, we consider the local

tf-idf a promising alternative weighting scheme for Domain Adaptation problems in

the framework of documents.

Once the documents are transformed into feature vectors, one other popular pre-

processing technique is to normalize this vector in the [0, 1] range. This technique

however is argued to smooth out the effect of outliers, which in some cases are

required to track the domain divergence. In initial experiments, both in local and

global flavour (i.e. normalizing each domain separately or the whole corpus), it

was observed that normalization heavily influenced the density ratio estimators and

the overall accuracy of tr-𝐾means. In fact, the global version of normalization was

experimentally less accurate and introduced slower convergence to the clustering

phase. This technique was therefore overruled from the pre-processing phase.

6.4 Future Work

In this final section, we will discuss some possible directions for future research of

this work. To begin with, it has already been mentioned that the core idea of

this thesis can be seen as a meta-algorithm: in a domain adaptation problem, we

identify in the target domain the instances that are friends with the source domain,

use the labeled examples of the source to train a supervised learner which will later

be applied to the target friends and finally we use this pseudo-labeling to initiate

a semi-supervised learner in the target domain. Any supervised learner can be

plugged in for the initialization phase and such a selection depends on the nature

of data for a given experiment. It would be interesting to investigate if such a

selection can be automated and a suitable supervised learner can be found via data

statistics.

Furthermore, in our case we modified the traditional 𝐾means heuristic into a semi-

supervised variant to incorporate the friends’ pseudo-labeling. We followed the semi-

supervised clustering direction in order to investigate the combination of classification

and clustering in the domain adaptation realm. We can observe however, that once

some target instances have been initially labeled, any transductive learner can be
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used to complete the domain adaptation task, since friends and strangers belong

to the same domain and are available during the training phase. Since the source

domain is no longer involved, standard machine learning techniques for transductive

learning can be employed and it would be of interest to go into this direction. This

might also allow to see the behaviour of the proposed method in the extreme case

where there is no domain divergence, namely the source and the target domains

are the same. As a final note, given a rigid formulation of the noise introduced

in the pseudo-labeling of friends, it could be the case that new generalization

bounds for the Domain Adaptation problem might emerge. In fact, the notion of

negative transfer can smoothly integrate itself in this line of thought, observing that

the higher the noise in the pseudo-labeling, the higher the occurrence of negative

transfer.

Focusing more on the separation phase of our method, two density ratio estimators

were used: uLSIF and RuLSIF. In particular, for RuLSIF we experimentally tuned

the relative parameter 𝑎 to 0.5. However further study would be required in order

to select and possibly automate this tuning in order to improve friends’ selection.

There is an indication that such an automation might be a data-dependent task.

In addition, it easy to see that density ratios are asymmetric and as an alternative

we could experiment with density-difference estimators (such as [SKS+12]) which
are symmetric and always bounded as long as both densities are bounded.

Finally, documents form good instances for clustering as it can be observed from the

visualization presented in Appendix A. We would be further interested to investigate

the gains as well as the limitations of our method not only to documents but also

to real data of different modalities, such as images and audio.
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A Document Visualization

In this thesis, we experimented with documents as a real case scenario for the

application of a domain adaptation method such as tr-𝐾means. We employed

the Vector space model to transform them into feature vectors, yet this representation

gives a high dimensional flavour to our data, making it impossible to visualize them

in order to extract meaningful observations. Such a visualization task might be

useful to check the inherent structure of the data and the meaning of the clustering

result in an informal level. In addition, visualization might help us investigate the

limitations of the pre-processing phase and perhaps dictate us the need for a feature

selection so that the clusters are likely to be compact and isolated, making them an

easy instance for a simple clustering algorithm. Several methods exist in literature

that try to reduce the feature space to a two dimensional plane while trying to

preserve as much as possible the information carried by the data (see Hendrik

Strobelt’s lecture [Str15] for a nice overview) and we chose the method described

in [FGM05].

Informally, their method is composed by three basic building blocks: text documents

are pre-processed using the Vector Space model and the tf-idf weighting. These

high dimensional vectors are fed to Latent Semantic Indexing (LSI) in order to extract

main concepts, followed by multidimensional scaling (MDS) to gracefully descend

to two dimensions. LSI is an automatic statistical technique (data-independent),

that takes the matrix of the high-dimensional vectors 𝑋 = {𝑥1, … , 𝑥𝑛} where

𝑥𝑖 ∈ ℝ𝑚 and performs a Singular Value Decomposition 𝑋 = 𝑈𝑆𝑉 𝑇 , where

matrices 𝑈 and 𝑉 are orthogonal, called left and right singular vectors respectively
for 𝑋 and 𝑆 is a diagonal matrix which can be arranged to be no negative and in

order of decreasing magnitude. The positive entries of 𝑆 are called singular values
of 𝑋. SVD arises from finding an orthogonal basis for 𝑋’s row space that gets

transformed into an orthogonal basis for its column space: 𝑋𝑣𝑖 = 𝑠𝑖𝑢𝑖. Intuitively,

the factorization from SVD tells us how to choose orthogonal bases so that the

linear transformation imposed by 𝑋 is represented by a matrix with the simplest

possible form, that is, the diagonal 𝑆. After that decomposition, LSI keeps the 𝑘
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largest singular values of 𝑋 and then projects 𝑋 to this reduced 𝑘-dimensional
space. The choice of 𝑘 is selected in their proposed method so that it holds

Σ𝑘
Σ𝑛

≥ 𝜖

where Σ𝑖𝑖 = 𝑆2
11 + … + 𝑆2

𝑖𝑖 for 𝑖 = 1, … , 𝑛 and 𝜖 was experimentally set to 0.5.
It is guaranteed by the principles of linear algebra that the reduced vector matrix

is a good approximation of the original one, therefore we expect that there is no

big loss of information in this reduction. MDS is a family of scaling methods for

discovering structures in multidimensional data in order to reduce the data in two

dimensions, yet preserve as possible the relations between them. Typically points

representing the data are positioned into two dimensions so they minimize some

energy function. The implicit optimization problem that MDS solves is: find points

in the plane so the better the distances between points on the plane approximate

real similarity between the original data, the lower the value of the energy function.

Many energy functions exist with the most basic being the

𝐸 =∑
𝑖≠𝑗

(𝛿𝑖𝑗 − 𝑑(𝑥𝑖, 𝑥𝑗))2

where 𝑥𝑖, 𝑥𝑗 are the points in the plane, 𝑑 is their euclidean distance and 𝛿 is the

similarity (or the dissimilarity) between the original data.

In order to get a better insight in the nature of documents and the validity of

devised transfer learning experiments, we applied this method to 3 datasets created

from the 20 Newsgroup corpus:

1. RA: this dataset consists of 300 train and 700 test documents from re-

lated subcategories of Religion and Autos (alt.atheism/rec.motorcycles and

soc.religion.christian/rec.autos) - Figure A.0.1

2. HP: this dataset consists of 248 train and 800 test documents from related sub-

categories of Hardware and Politics (comp.sys.ibm.pc.hardware/talk.politics.mideast

and sci.electronics/talk.politics.misc) - Figure A.0.2

3. GS: this dataset consists of 200 train and 500 test documents from re-

lated subcategories of Graphics and Sport (comp.graphics/rec.sport.baseball

and comp.windows.x/rec.sport.hockey) - Figure A.0.3

In particular, we applied the method separately for each domain, both for efficiency

and in order to investigate the relation of the main concepts that LSI extracted from

each domain. As an energy function, we chose the Sammon’s criterion [Sam69]

𝐸 = 1
∑
𝑙<𝑘

𝛿𝑙𝑘
∑
𝑖<𝑗

(𝑑(𝑥𝑖, 𝑥𝑗) − 𝛿𝑖𝑗)2

𝛿𝑖𝑗
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Figure A.0.1: Visualization of RA dataset
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Figure A.0.2: Visualization of HP dataset
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Figure A.0.3: Visualization of GS dataset

For similarity in the original vectors, we selected the cosine similarity as it is

appropriate for documents. This weighting scheme normalizes the squared-errors in

pairwise distances by using the dissimilarities 𝛿 in the original space. As a result,

Sammon’s criterion preserves the small 𝛿𝑖𝑗 values, giving them more importance in

this fitting procedure than the larger 𝛿𝑖𝑗 values. In the case of documents with the

tf-idf weighting, this energy function gave the most meaningful results, since we can

observe in Figures A.0.1, A.0.2 and A.0.3 that related classes of both domains

overlap, indicating a well-formed transfer learning experiment.
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B Useful Proofs

In this Appendix, we gather proofs of Lemmata used through this thesis.

Lemma B.0.1. [centroid property] Let 𝑆 ⊆ ℝ𝑚 be a set of points with center of
mass 𝑠∗ = 1

|𝑆| ∑𝑠∈𝑆 𝑠 and let 𝑥 ∈ ℝ𝑚 be an arbitrary point. Then, for the
squared euclidean distance 𝑑(𝑎, 𝑏) = (𝑎 − 𝑏) ⋅ (𝑎 − 𝑏) = ∑𝑚

𝑖=1(𝑎𝑖 − 𝑏𝑖)2 it holds
that

∑
𝑠∈𝑆

𝑑(𝑠, 𝑥) = ∑
𝑠∈𝑆

𝑑(𝑠, 𝑠∗) + |𝑆| ⋅ 𝑑(𝑠∗, 𝑥)

Proof. By the definition of the mass center 𝑠∗, let us observe that

∑
𝑠∈𝑆

(𝑠 − 𝑠∗) = 1
|𝑆| ∑

𝑠∈𝑆
(𝑠 − ∑

𝑠′∈𝑆
𝑠′) = 1

|𝑆|(∑𝑠∈𝑆
𝑠 − ∑

𝑠′∈𝑆
𝑠′) = 0 (B.1)

Then:

∑
𝑠∈𝑆

𝑑(𝑠, 𝑥) = ∑
𝑠∈𝑆

(𝑠 − 𝑥) ⋅ (𝑠 − 𝑥)

= ∑
𝑠∈𝑆

(((𝑠 − 𝑠∗) + (𝑠∗ − 𝑥)) ⋅ ((𝑠 − 𝑠∗) + (𝑠∗ − 𝑥)))

= ∑
𝑠∈𝑆

(((𝑠 − 𝑠∗) ⋅ (𝑠 − 𝑠∗)) + 2(𝑠 − 𝑠∗)(𝑠∗ − 𝑥) + ((𝑠∗ − 𝑥) ⋅ (𝑠∗ − 𝑥)))

= ∑
𝑠∈𝑆

𝑑(𝑠, 𝑠∗) + 2(𝑠∗ − 𝑥) ∑
𝑠∈𝑆

(𝑠 − 𝑠∗) + |𝑆| ⋅ 𝑑(𝑠∗, 𝑥)

𝐵.1= ∑
𝑠∈𝑆

𝑑(𝑠, 𝑠∗) + |𝑆| ⋅ 𝑑(𝑠∗, 𝑥)

(B.2)

■

Lemma B.0.2. Let 𝑑 denote the squared euclidean distance. Then for 𝑎, 𝑏, 𝑐 ∈
ℝ𝑚 it holds that

𝑑(𝑎, 𝑐) ≤ 2 ⋅ (𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐))
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Proof. Using the triangle inequality of the Euclidean distance we obtain

𝑑(𝑎, 𝑐) =‖𝑎 − 𝑐‖2
2 = (𝑎 − 𝑐)2

≤ ((𝑎 − 𝑏) + (𝑏 − 𝑐))2

= 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) + 2(𝑎 − 𝑏)(𝑏 − 𝑐)
(B.3)

We can observe that

((𝑎 − 𝑏) − (𝑏 − 𝑐))2 ≥ 0 ⇒
⇒ (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 − 2(𝑎 − 𝑏)(𝑏 − 𝑐) ≥ 0 ⇒

⇒ 2(𝑎 − 𝑏)(𝑏 − 𝑐) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐)
(B.4)

From B.3, B.4 the result follows. ■
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