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Abstract

Profit Maximization in Mechanism Design

by

George Pierrakos

Master of Science

in

Graduate Program in Logic, Algorithms and Computation

The present thesis focuses on a specific area of game theory, known as mechanism design. We review

some of the most important results related to revenue maximization in auctions and mechanism

design, i.e. we are interested in the case where the mechanism designer aims at maximizing his

own profit –defined as the sum of the received payments– rather than the social welfare.

There are two lines of work related to profit maximization in mechanism design. The first and

more traditional one, originating by economists and by Myerson’s seminal paper, studies the prob-

lem when there is some prior knowledge of the distributions from which the bidders’ valuations

are drawn; it bears the name Bayesian Optimal Mechansim Design. The second one makes no

assumption about the distribution of the bids, but rather adopts worst-case analysis –the dominat-

ing paradigm in computer science– and employs notions from online algorithms and competitive

analysis to approach the problem; this line of work is much more recent and is –in its large part–

due to computer scientists.

The structure of this thesis is as follows: in the first chapter we introduce some basic no-

tions about game theory and mechanism design and we rigorously formulate the problem of profit

maximization. In chapters two and three we review some of the results related to Bayesian and

Worst-Case Optimal Mechanism Design respectively. Finally, in the last chapter we focus our

attention to a specific auction that is conjectured to have a good worst-case performance. The

problem of finding an elegant (combinatorial) proof of this conjecture remained open by the time

this thesis was completed.
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Chapter 1

Introduction

1.1 Structure of this thesis

The focus of the present thesis is on mechanism design. Mechanism design is one of the

traditional fields of game theory and economists have been studying mechanisms and auctions for

the last half century. Only recently though -after the seminal paper of Nisan and Ronen [1] - has

the field of mechanism design attracted much attention from the computer science community

(along with other fields related to algorithmic game theory, such as computation of equilibria,

quantifying the inefficiency of selfish behavior etc). Mechanism design can be viewed as re-

verse engineering: given a desirable outcome, what is the right way to design a game, so as to

reach this outcome. The challenge here is to take into account the selfish behavior of the agents

(the players who take part in this game) and try to align their incentives with the desirable outcome.

But what is a desirable outcome? Ideally we would want to be able to design mechanisms for

any desirable outcome. Unfortunately very strong impossibility results by Arrow suggest that this

is not in general possible, if one is aiming for truthful mechanisms, i.e. for mechanisms where

each agent is playing honestly; in fact the whole field of Mechanism Design is an attempt to escape
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from this impossibility result.

Indeed there are some goals one can achieve with truthful mechanisms, by charging the agents

for their actions, i.e. by introducing payments as a way to force agents to say the truth. The

present thesis aims at presenting some results related to the design of mechanisms (auctions) when

the goal is to maximize the profit of the mechanism designer (auctioneer), i.e. to maximize the

sum of the agents’ payments; this is often referred to as Optimal Mechanism Design. Although this

may seem as a very natural objective, actually most of the work in the field aims at mechanisms

that achieve the maximum “social surplus”; the idea here is that the mechanism designer is not

interested in making a profit, rather than achieving some socially desirable outcome. The payments

in this model are only a mean to extract the truth out of each agent; in the next section we will

briefly discuss the general paradigm in this area, namely the VCG mechanism.

The general outline of this thesis is as follows:

• in the remaining of the introduction we will introduce some basic notions and definitions

related to game theory and mechanism design. We will mention some impossibility results

for mechanism design and the VCG mechanism.

• in Chapter 2 we will present Myerson’s approach to optimal mechanism design. This approach

assumes some prior knowledge of the market, in the form of distributions from which the

agents’ valuations are drawn (hence the name Bayesian Optimal Mechanism Design). The

chapter is mostly based on Myerson’s seminal paper [2] which dates back in 1981.

• in Chapter 3 we present a much more CS-like approach to the problem of optimal mechanism

design, namely worst-case analysis. This is a much more recent line of work, with many

results during the last decade (see results by J. Hartline, A. Karlin, A. Goldberg et. al. ).

• in Chapter 4 we focus our attention to a specific worst-case competitive auction and we present

a proof that it actually achieves a constant fraction of the maximum achievable profit.
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Disclaimer: This thesis is not in any way a self contained article for mechanism design and

game theory. Most notions are introduced when they are needed, with the exceptions of some

fundamental notions which are introduced in the rest of this chapter. For readers without any

game-theoretic background a good reference is [3].

1.2 Mechanism Design Basics

We start off by motivating the whole Mechanism Design concept with the simple example of

auctioning off a single good.

Assume that we have n bidders (also called players or agents), each of whom desires a single,

indivisible good. Each of the bidders has his own private valuation vi for the good, which is private

in the sense that the auctioneer and the other players have no information about it. Each bidder

submits a sealed bid bi to the auctioneer (or mechanism designer), who decides who gets the item

and at what price p. Notice that the submitted bid bi needs not be the same as the bidder’s

valuation vi. However our goal is to design truthful mechanisms, i.e. mechanisms such that bi = vi

for all bidders i. Our only assumption about the bidders is that they are rational and selfish and

bid in order to maximize their utility, defined as vi−p if they get the good and 0 otherwise. Finally

our goal is to design a social optimal mechanism, i.e. a mechanism that allocates the good to the

person who values it the most.

A first approach would be to give the good to the person who values it the most, i.e. to the

highest bidder, and charge him his bid. This would result in 0 utility for all players. Notice now

that the highest bidder has an incentive to lie: instead of bidding his true value, he needs only bid

slightly more than the second highest bidder. This would result in him still getting the object and

paying much less, i.e. having a bigger utility. Since we assume that players bid with the sole goal

of maximizing their utility we immediately get that this auction is not truthful.
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There is however a very simple way to get past this problem. Allocate the item to the person

who values it most but only charge him the second largest bid. This auction does not only achieve

the optimal social outcome, but is also truthful since no agent has an incentive to lie about his bid:

the highest bidder does not want to raise his bid since he is winning anyway and he also does not

want to lower his bid, since this does not affect his payment and may only result into him losing

the item (i.e. having zero instead of positive utility). The rest of the bidders on the other hand

will always lose the item, as long as they bid below the highest bid, and, if one of them decides to

lie and bid more than the highest bidder, then he is going win the item but nonetheless receive

negative utility.

What we just saw was Vickrey’s second price auction. We can formalize all the above in the

following simple protocol:

1. Each bidder i submits his sealed bid to the auctioneer.

2. The auctioneer gives the item to the highest bidder.

3. The winner pays the second highest bid.

Notice that the above protocol implements essentially the traditional English (or ascending)

auction: the auctioneer announces a price and the bidders declare their willingness to pay this price

for the good. The auctioneer then raises the price and some bidders withdraw from the auction

until, eventually, only one bidder is left: the highest bidder. So the highest bidder gets the good

and has to pay the price at which everyone else dropped out, i.e. the bid of the second-highest

bidder (we assume that the increments in the price are relatively small).

We are now ready to give a definition of a mechanism. Since in the present thesis the only

mechanisms we will study are auctions we will not use the fully general definition (as it appears

in [3] for example) but rather a tailored definition that matches our needs for this thesis. Let us

introduce some notation first.
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Notation. We shall denote by A the set of possible outcomes of the game; for example, in the

case of a single-item auction, A is the set of all bidders, i.e. all possible winners of the item. In

the case of a multi-unit auction, A is the set of all possible allocations of items to bidders. Each

bidder i has a preference over outcomes in A which is modeled through his valuation vi : A → R.

We denote the set of possible valuations of bidder i by Vi ⊆ RA.

Definition 1.1. A (direct revelation) mechanism is a social choice function f : V1 × . . .× Vn → A

and a vector of payment functions p1, . . . , pn, where pi : V1× . . .×Vn → R is the amount that player

i pays.

The term “direct revelation” in the above definition means that we assume that the bidders

reveal their true valuations directly to the auctioneer, i.e. they do not lie. This assumption is

without loss of generality since it can be shown that for any arbitrary mechanism that implements

some social function f in dominant strategies, there exists a truthful one that implements f , where

by truthful we mean the following.

Definition 1.2. A mechanism (f, p1, . . . , pn) is called incentive compatible or truthful if for every

player i, every v1 ∈ V1, . . . , vn ∈ Vn and every v′i ∈ Vi, we have

vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v′i, v−i))− pi(v′i, v−i)

One may naturally wonder why truthfulness is so important. After all, in the example we

presented above, we had a sealed-bid auction, which means that the bidders do not know what is

the profitable deviation, i.e. the right bid (other than their true valuation) that will maximize their

profit since this depends on the (private) valuations of the other players. However, one can invoke

some game-theoretic jargon to argue for the opposite: thinking in terms of mixed strategies, a

player that takes part in a non-trutfful mechanism may have better expected payoff by randomizing

over his strategies, rather than declaring his true valuation.

There are however more obvious reasons, why one needs to consider truthful mechanisms. Here

are two good ones:
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1. In a non-truthful mechanism, knowledge of other players’ bids can be very useful. Hence

agents are motivated to expend resources to gain information about other players’ bids and

then more (probably computational) resources to compute their optimal strategy. Truthful-

ness takes away such considerations: all bidders have to do is submit their true valuation and

they will get the best they can out of the mechanism. In some sense truthful mechanisms

are a form of guarantee for the agents that no one is going to take away from them what is

rightfully theirs; and all they have to do for that is be honest.

2. From the auctioneer’s point of view, running an untruthful mechanism is like trying to solve

an optimization problem without knowing the inputs. In fact, in some sense this is the biggest

challenge in mechanism design and one may as well be surprised by the mere fact that there

exist truthful mechanisms: these mechanisms can be seen as functions that compute the right

output, without having a priori any guarantees on the quality of the input. It is part of the

mechanism to enforce truthful behavior and extract the right input out of all possible ones.

Having pinned down the importance of truthful mechanisms, we end this section by giving an

impossibility result.

Theorem 1.3. [Gibbard-Satterthwaite] Let f be an incentive compatible social choice function

onto A, where |A| ≥ 3; then f is a dictatorship. By dictatorship we mean that there exists some

agent i such that the outcome is always the one maximizing his own valuation, for any combination

of other agents’ valuations.

The interested reader may find a proof of the above theorem in [3].

The above result is devastating: it looks like it eliminates all hopes of designing truthful mech-

anisms since it is really universal. Nonetheless its generality is also its main weakness. One may

hope to design truthful mechanisms for some specific social choice functions; this is indeed the case

for -perhaps- the most natural social choice function: optimizing the social welfare.
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Definition 1.4. The social welfare of an alternative a ∈ A is the sum of the valuations of all

players for this alternative
∑

i vi(a).

In the next section we present the VCG-mechanism which manages to accomplish the goal of

maximum social welfare.

1.3 Vickrey-Clarke-Groves Mechanisms

The VCG-mechanism is the classical mechanism used for combinatorial auctions, i.e. auctions

where there are many items and each user may have arbitrarily complex preferences over all possible

subsets of items. Nonetheless one can define the VCG-mechanism to apply to the more general

mechanism design setting discussed above as follows:

Definition 1.5. A mechanism (f, p1, . . . , pn) is called a VCG-mechanism if:

• f(v1, . . . , vn) ∈ arg maxa∈A
∑

i vi(a), i.e. f maximizes the social welfare

• there exist functions h1, . . . , hn, where hi : V−i → R such that for all v1 ∈ V1, . . . , vn ∈ Vn :

pi(v1, . . . , vn) = hi(v−i)−
∑

i 6=j vi(f(v1, . . . , vn))

It is obvious that VCG-mechanisms indeed reach the outcome of maximum social welfare. It is

also easy to prove that they are incentive compatible. The intuition is as follows: consider the utility

ui(v1, . . . , vn) of player i. This is vi(v1, . . . , vn) − pi(v1, . . . , vn) = −hi(v−i) +
∑

i vi(f(v1, . . . , vn)).

Notice how the social welfare appears in the utility of every player; this has the direct implication

that a player’s own profit is aligned with the socially optimal outcome. The additional term hi

does not depend on an agent’s own valuation and has no strategic implications; it could thus be set

to zero and we would have a valid VCG-mechanism. Nonetheless, usually we want our mechanisms

to have the following additional two properties.

Definition 1.6. We say that
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• a mechanism is individually rational if players always receive non-negative utilities, namely

if pi(v1, . . . , vn) ≤ vi(v1, . . . , vn) for all v1, . . . , vn. These mechanisms are also said to have

voluntary participation, since in some sense the players are not charged for taking part in the

mechanism.

• a mechanism has no positive transfers if no player is ever paid money, namely if

pi(v1, . . . , vn) ≥ 0 for all v1, . . . , vn.

Imposing the above two natural constraints to our mechanisms we get that a good choice of hi

is hi(v−i) = maxb∈A
∑

j 6=i vj(b). The reader may verify that the above two properties hold for this

choice of hi.

Notice finally that the payment of agent i in the VCG-mechanism is maxb∈A
∑

j 6=i vj(b) −∑
j 6=i vj(f(v1, . . . , vn)), which is like charging the i-th player according to the marginal cost of his

presence to the happiness of the rest of the players.

1.4 What other social choice functions can we implement?

So far in this section we described a mechanism that implements the social function that wants

to maximize social welfare; we also saw an impossibility result. The next natural question is, what

else can we implement?

Maybe the next most natural candidate for a social choice function, would be the allocation that

maximizes the revenue of the auctioneer. In the mechanisms we have seen so far, the payments were

only a way to elicit the truth out of the bidders. On the contrary, in this thesis we are interested in

mechanisms that maximize the profit of the auctioneer, i.e. the sum of the payments of all agents.
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Definition 1.7. The profit of an alternative a ∈ A is the sum of the payments of all players for

this alternative
∑

i pi(a).

We refer to the design of such profit-maximizing mechanisms as optimal mechanism design

and to the corresponding mechanisms as optimal mechanisms. Chapters 2-4 cover this kind of

mechanisms.

Another natural objective for example is maximizing the sum of the players’ utilities or, as it

is called, the residual surplus.

Definition 1.8. The residual surplus of an alternative a ∈ A is the sum of the valuations of all

players for this alternative minus the payments
∑

i vi(a)− pi(a).

The motivation for such an objective is the following: again we consider payments as a way to

enforce truthfulness but, instead of having the money transfered to the auctioneer (and thus in some

sense remain in the system) we consider this money to be “burnt”. For example, the payments in

the context of networks could be some sort of service degradation, or some computational payment.

The interested reader may refer to [4] for more information regarding this objective.

9



Chapter 2

Bayesian Optimal Mechanism Design

In the present chapter we review Myerson’s optimal auction. We first give a characterization

of truthful mechanisms for single parameter agents, we describe Myerson’s optimal mechanism and

then give a couple of examples that clarify the form of this mechanism for some particular settings.

Let us start off by a motivating example. Assume we want to maximize profit in the simple

setting where we have one good for sale and two bidders. One approach is to use VCG, which for

this case is simply Vickrey’s second price auction. The first thing to notice is that if we assume

nothing about the bids then this mechanism can be arbitrarily bad, in the sense that it guarantees

a profit equal to min(b1, b2), which can be arbitrarily smaller than max(b1, b2).

This leads us to the conclusion that we need to have some sort of assumption about the

distribution of the bids. So for the rest of this section we will assume that the bids are drawn

independently at random from some distribution each. We let Fi(z) be the cumulative distribution

function and fi(z) be the probability density function for each bid bi. Our goal now is to de-

sign a mechanism that gets the maximum expected profit, given the prior (distribution) of the bids.

Example 2.1. Consider the setting where we have one item to sell and two bidders. The bidders’
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valuations are drawn independently and uniformly at random from [0, 1]. It is easy to see that

if we run VCG then our expected profit is E[min(b1, b2)]. This can be easily computed to be

E[min(b1, b2)] =
∫∞
0 Pr[min(b1, b2) > x]dx =

∫ 1
0 (1 − x)2dx = 1/3, where I used the fact that

E[X] =
∫∞
0 Pr[X ≥ z]dz and the independence of the bids.

It turns out that running the VCG auction does not yield the maximum expected profit, even for

this simple example. Indeed let us define a new auction, called the Vickrey auction with reservation

price, and see how this outperforms VCG. We shall see later that this is in fact the optimal auction

for this setting.

Definition 2.2. [Vickrey auction with reservation price r] The Vickrey auction with reser-

vation price V Ar sells the item if any bidder bids above r. It charges the winner the maximum of

the second highest bid and r.

Intuitively V Ar is like Vikcrey’s second price auction, only with one extra bid submitted on

behalf of the auctioneer. If no one bids higher than the auctioneer then he gets to keep the item.

Consider now again the case of two bidders and a single item, where the bids are i.i.d. random

variables with a uniform distribution in [0, 1]. Then we claim that the optimal auction is V A1/2,

i.e. the Vickrey auction with reservation price 1/2. Indeed, one can verify -by analyzing separately

the cases where both bids are below or above 1/2 and the case where 1/2 is the second largest bid-

that this auction yields an expected profit of 5/12 and thus outperforms VCG. The reason why

this is the optimal auction will become clear later.

2.1 Characterizing Truthful Mechanisms for Single Parameter

Agents

In the present section we shall prove a theorem that allows us to fully characterize truthful

mechanisms for single parameter agents. By single parameter agents we refer to settings where

each agent’s preferences can be summarized into a single parameter, say the valuation of each

11



bidder for the item being auctioned. Again we will denote the bidders’ valuations by vi and

their bids by bi; in truthful mechanisms we expect to have bi = vi. Our mechanisms compute an

outcome which consists of an allocation vector x = (x1, . . . , xn) with xi ∈ {0, 1}and a price vector

p = (p1, . . . , pn). As a result each bidder receives a utility of ui = vixi − pi. We will also consider

randomized mechanisms where xi ∈ [0, 1] is the probability of bidder i being allocated the good

and the pi and ui are expected prices and utilities respectively.

In order to be able to model more general settings than just a single item auction we intro-

duce an additional cost term c(x) which must be paid by the mechanism. Thus the quantities of

social welfare and profit that we introduced before, become now
∑

i vixi − c(x) and
∑

i pi − c(x)

respectively.

Example 2.3. In a single item auction we have

c(x) =

 0 :
∑

i xi ≤ 1

∞ : otherwise

whereas in a single-minded combinatorial auction, i.e. an auction where we have m items for

sale but each bidder is interested in only one specific bundle of them, we have

c(x) =

 0 : ∀i, j, Si ∩ Sj 6= 0→ xixj = 0

∞ : otherwise

We now state and prove the main theorem of this section which consists of an exact character-

ization of all truthful mechanisms for single parameter agents. Recall that in our current notation

a mechanism is truthful if and only if for all i, vi, bi and b−i we have

ui(vi,b−i) ≥ ui(bi,b−i),

i.e. all bidders are better off by bidding their true valuation vi.

Theorem 2.4. A mechanism is truthful if and only if, for any agent i and bids of other agents

b−i fixed,

12



1. xi(bi) is monotone non-decreasing.

2. pi(bi) = bixi(bi)−
∫ bi
0 xi(z)dz.

Proof. First notice that what the above theorem tells us is that for a fixed allocation rule x(·) the

prices are uniquely determined. So in order to specify a truthful mechanism all we have to do is

give a monotone allocation rule.

Let us first prove that if a mechanism satisfies the properties of the theorem then it is truthful.

The best way to do that is by picture (see Figure 2.1). Let z1 and z2, with z1 < z2 be two possible

bids. Without loss of generality assume that bi = z1 and vi = z2. The proof for the other case

is similar. The top diagram shows the graph of the allocation probability xi(·) which is indeed

monotone non-decreasing. Recall that the utility of player i is ui(bi) = vixi(bi)−pi(bi) as a function

of his own bid. The three diagrams on the left analyze each term of the utility and the overall

sum for the case where the bidder reports his true value vi = z2, while the three right diagrams

analyze the same terms for the case where the bidder reports the false value bi = z1. These terms

can be seen as the shaded areas in the diagrams, thanks to our second condition that determines

payments to be pi(bi) = bixi(bi)−
∫ bi
0 xi(z)dz; it is easy to verify now that the area for bidding vi

is larger than for bidding bi, because of the monotonicity of xi, which proves the claim (see bottom

figure too).

To prove the inverse statement we start from the definition of truthfulness: a mechanism is

truthful if a bidder maximizes his utility by bidding his true valuation, namely if for all i, vi, bi and

b−i we have ui(vi,b−i) ≥ ui(bi,b−i), which means that:

∀vi, bi : vixi(vi)− pi(vi) ≥ vixi(bi)− pi(bi)

Consider now again z1, z2 with z1 < z2 and do the following: first set vi = z1 and bi = z2 and then

vi = z2 and bi = z1. We then get the following two inequalities:

13



Figure 2.1. Graphical representation of payments and utilities.
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vi = z1, bi = z2 : z1xi(z1)− pi(z1) ≥ z1xi(z2)− pi(z2)

vi = z2, bi = z1 : z2xi(z2)− pi(z2) ≥ z2xi(z1)− pi(z1)

Adding these inequalities and doing some canceling and rearranging, we get that (z2 −

z1)(xi(z2)−xi(z1)) ≥ 0, which implies that the allocation rule has to be monotone non-decreasing.

For the second condition, consider the utility as a function of the bid bi: ui(bi) = vixi(bi)−pi(bi).

Having the utility being maximized bi = vi means that the derivative u′i(z) becomes zero for

bi = vi, i.e. that vix′i(vi) − p′i(vi) = 0; to simplify the expression, we replace vi with z and we get

zx′i(z) = p′i(z). Integrating both sides from 0 to bi and doing some rearranging we get:

pi(bi) = bixi(bi)−
∫ bi

0
xi(z)dz + pi(0)

Remember now that we want our mechanisms to have the individual-rationality and the non-

positive transfers property (see Chapter 1); the first implies that pi(bi) ≤ bi ⇒ pi(0) ≤ 0 and the

second one implies pi(0) ≥ 0; together they yield that pi(0) = 0 and the proof is complete.

The above theorem has a very interesting interpretation for deterministic mechanisms. In

deterministic mechanisms, the allocation vector takes values in {0, 1}, so any monotone non-

decreasing function has to look like the one in Figure 2.2. It is easy to see now that the second part

of the characterization can be rephrased to say that, “in any deterministic, truthful mechanism,

any winning agent has to pay his minimum winning bid, i.e. infz{z : xi(z) = 1}”.

The above theorem has another interesting consequence: in order to define a truthful mecha-

nism, all we have to do is define a monotone non-decreasing allocation rule and the payments are

immediately dictated by the second part of the theorem.

Example 2.5. Consider the goal of maximizing the social surplus. We already saw a mechanism

that achieves that, namely VCG. It is easy to see that the surplus maximizing allocation rule is

15



Figure 2.2. The allocation function of any deterministic truthful mechanism.

indeed monotone, since it is linear in all valuations, and so it is truthful. Furthermore the payments

are exactly the ones dictated by Theorem 2.4.

2.2 Myerson’s Optimal Mechanism

Having Theorem 2.4 in mind, we are ready to describe Myerson’s (simple) Optimal Mechanism.

Let ’s start by introducing the notion of virtual valuations and virtual surplus.

Definition 2.6. The virtual valuation of agent i with valuation vi is

φi(vi) = vi −
1− Fi(vi)
fi(vi)

where Fi(z) is the cumulative distribution function and fi(z) is the probability density function.

The virtual surplus is defined to be
∑

i φi(vi)xi − c(x).

The basic theorem here is the following:

Theorem 2.7. The expected profit of a mechanism is equal to its expected virtual surplus.

which follows easily from the following lemma, using linearity of expectation and the indepen-

dence of the agents’ valuations.
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Lemma 2.8. The expected payment of a bidder satisfies:

Ebi [pi(bi)] = Ebi [φi(bi)xi(bi)]

Proof. The proof of this Lemma exploits Theorem 2.4 in a critical way and leads to the expressions

defined as virtual valuations above.

First notice that the bid b (we dropped subscript i) is a random variable drawn from the

distribution with cumulative distribution function F and density function f . So, using the result

of Theorem 2.4 we have:

Eb[p(b)] =
∫ h

b=0
p(b)f(b)db

=
∫ h

b=0
bx(b)f(b)db−

∫ h

b=0

∫ b

z=0
x(z)f(b)dzdb

=
∫ h

b=0
bx(b)f(b)db−

∫ h

z=0
x(z)

∫ h

b=z
f(b)dbdz

=
∫ h

b=0
bx(b)f(b)db−

∫ h

z=0
x(z)[1− F (z)]dz

=
∫ h

b=0
bx(b)f(b)db−

∫ h

b=0
x(b)[1− F (b)]db

=
∫ h

b=0

[
b− 1− F (b)

f(b)

]
x(b)f(b)db

= E[φ(b)x(b)]

Having defined all that, we simply need to notice that we already know a mechanism that

maximizes social surplus (namely VCG); and since maximizing profit amounts to maximizing a

quantity very similar to social surplus, the natural mechanism is the following:

1. Given the bids b, compute “virtual bids”: b′i = φi(bi).

2. Run VCG on the virtual bids b′ to get x′ and p′.

3. Output x = x′ and pi = φ−1
i (p′i).
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One thing that is not obvious is why this mechanism is truthful: VCG is truthful because

the allocation rule is monotone in the valuations of the bidders (see Example 2.5). Obviously in

the above mechanism the allocation rule is monotone in the virtual valuations. Hence it is easy

to show that the above mechanism is truthful if and only if virtual valuations are monotone in

real valuations. This depends on the kind of distribution assumed by the bids and it amounts

to the monotone hazard rate assumption, i.e. that f(z)/(1 − F (z)) is monotone non-decreasing;

in his original paper [2], Myerson describes an optimal mechanism for the general case where

f(z)/(1− F (z)) does not satisfy the monotone hazard rate assumption. His technique is known as

“ironing” and is beyond the scope of this thesis.

We end up this section by giving some specific examples for the use of Myerson’s optimal

mechanism.

Example 2.9.

single item auction: 1 item, n bidders, i.i.d. valuations from [0, 1]

In the case where there are n bidders and a single item for sale, we have that

c(x) =

 0 :
∑

i xi ≤ 1

∞ : otherwise

In the single item auction, the allocation that maximizes social surplus (which is also the

one resulting from a run of VCG) has to allocate the item to the bidder who values it the most,

unless this bidder has a negative valuation, in which case the social surplus is maximized by not

allocating the item and getting a surplus of 0. However in normal auctions bidders are assumed to

have positive valuations, so the issue of not allocating the item does not arise. In our case though,

virtual valuations can be negative and therefore the optimal auction has to allocate the item to

the bidder with the largest positive virtual valuation.

So agent i gets allocated the item precisely when φ(bi) ≥ max{maxj{φ(bj)}, 0}, where we took
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into account that φi = φj , ∀i, j because of the i.i.d. assumption. The payment is the minimum

winning bid, i.e. p = φ−1(inf{b : ∀i : φ(b) > φ(bi) ∧ φ(b) > 0}) = inf{b : ∀i : b > bi ∧ b > φ−1(0)}.

Hence the resulting auction is the Vickrey auction with reservation price φ−1(0). If the bids are

drawn uniformly from [0, 1] then the reservation price is 1
2 , which is exactly what we claimed in the

beginning of this chapter.

Example 2.10.

1 item, n bidders, i.i.d. valuations from [0, 1], auctioneer has value v0 for item

In the case where there are n bidders and a single item for sale, we have that

c(x) =

 v0 :
∑

i xi ≤ 1

∞ : otherwise

Then the optimal Bayesian auction, i.e. the virtual-surplus maximizing auction, sells the item

to bidder i if he has the highest virtual valuation among all other agents; in addition to that his

virtual valuation has to be bigger than v0, otherwise we get a higher social surplus by having the

auctioneer retaining the item and getting happiness v0. Hence agent i gets allocated the item

precisely when φ(bi) ≥ max{maxj{φ(bj)}, v0}, where we took into account that φi = φj , ∀i, j

because of the i.i.d. assumption. The payment is the minimum winning bid, i.e. p = φ−1(inf{b :

∀i : φ(b) > φ(bi) ∧ φ(b) > v0}) = inf{b : ∀i : b > bi ∧ b > φ−1(v0)}. Hence the resulting auction

is the Vickrey auction with reservation price φ−1(v0). If the bids are drawn uniformly from [0, 1]

then the reservation price is v0+1
2 .

Example 2.11.

digital goods auction: n identical items, n bidders, i.i.d. valuations from F

We assume that we are dealing with bidders with i.i.d. valuations drawn from a distribution F .

Myerson suggests we do the following:
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1. Replace each valuation v with the virtual valuation φ(v) = v − 1−F (v)
f(v) (where F and f are

the cumulative distribution function and the probability density function respectively).

2. In order to maximize the expected profit, we simply maximize the expected virtual surplus∑
i φi(vi)xi. This can be achieved by allocating the good to any bidder with a positive virtual

valuation, i.e. to any bidder with vi − 1−F (vi)
f(vi)

≥ 0.

3. Charge each bidder his minimum winning bid; under the assumption that the bids are i.i.d.

random variables with distribution F , every bidder is charged φ−1(0) which is the solution to

v − 1−F (v)
f(v) = 0.

Having defined the optimal Bayesian mechanism a-la Myerson, let us try to give an ex-post

interpretation of it (more about this approach can be found in [4]). It is easy to verify that

the solution to v − 1−F (v)
f(v) = 0 is the same as arg maxp p(1 − F (p)) (just differentiate the second

expression). This leads us to the following conclusion:

Proposition 2.12. The optimal Bayesian digital good auction for n bidders with valuations drawn

i.i.d. from some distribution F is to make each bidder a take-it-or-leave-it offer for a price of

arg maxp p(1− F (p)).

Note how intuitive the above auction is: the offered price is simply the price that maximizes our

expected profit. Indeed p(1− F (p)) is our expected profit, in the sense that we expect (1− F (p))

of the bidders to have a valuation that is more than the offered price of p and accept our offer,

thus giving us a profit of p each.

Example 2.13.

k identical items, n > k bidders, i.i.d. valuations from [0, 1]

In this case we have that

c(x) =

 0 :
∑

i xi ≤ k

∞ : otherwise
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We remember from the single-item auction for bidders with i.i.d valuations drawn uniformly

from [0, 1] with seller’s value 0, that the optimal Bayesian auction is the Vickrey auction with

reservation price 1/2. It is easy to verify that for this case as well the social surplus is maximized by

allocating the k-items to the k-highest bidders, provided that they have positive virtual valuations,

which corresponds to real valuations greater than 1/2. The price charged is again the minimum

winning bid at each case.

More formally: if there are m ≥ k + 1 bidders with valuations ≥ 1/2 we allocate the k items

to the k highest bidders and charge them the value of the k + 1 highest bidder, whereas if there

are m ≤ k bidders with valuations ≥ 1/2 we allocate the item only to these m bidders and charge

them 1/2.
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Chapter 3

Worst Case Optimal Mechanism

Design

Our goal in this chapter is to design a truthful mechanism that achieves the optimal profit for

any input bid sequence. Namely, we will henceforth be making no assumptions about the bids

coming from a specific (known) distribution, as was the case in the Bayesian setting; rather we will

assume that some (cruel) adversary, who knows how our mechanism is working, is picking the bids

with the sole objective to keep our profit as low as possible. We aim at designing auctions that

achieve a decent profit, no matter how bad the input bid sequence is. We shall allow our auctions

to use randomness (which enables us in some way to conceal information from the omniscient

adversary) and we will try to analyze the worst-case behavior of our mechanisms, a ubiquitous

approach in computer science; in the context of auctions, worst-case analysis is usually referred to

as worst case or prior-free optimal mechanism design.
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3.1 Another (?) characterization of truthful mechanisms

We already saw in the previous chapter a very crisp characterization of truthful mechanisms

for single parameter settings. The punchline was that any truthful mechanism has to be equivalent

to a bid-independent mechanism defined as follows:

Definition 3.1. (Bid-independent Mechanism, Af (b))

Given a function f : Rn−1 → R, henceforth called the threshold function, do, for each bidder i:

1. ti ← f(b−i)

2. If ti ≤ bi, set xi ← 1 and pi ← ti (bidder i wins)

3. Otherwise, set xi = pi = 0 (bidder i is rejected)

This auction can be summarized in the following sentence: “the auctioneer makes a take-it-or-

leave-it offer to bidder i for the price fi(b−i)”. The above definition can be easily generalized to

randomized mechanisms as well.

The characterization of truthful auctions for single parameter agents of the previous chapter

makes the equivalence of truthful and bid-independent auctions quite obvious. For the sake of

completeness we also provide a proof of this fact below.

Theorem 3.2. A deterministic auction is truthful if and only if it is equivalent to a deterministic

bid-independent auction.

Proof. We first prove that any bid-independent auction is truthful. Let i be a bidder and vi his

true valuation. If vi < ti and bidder i declares bi = vi then he loses the item and has profit 0. If

he lies, he can either bid some other value below ti, in which case he would still not win the item

and have a profit of 0, or he can choose to bid higher than ti, in which case his profit would be

negative. In either case, bidder i wins nothing by lying, hence bidding vi maximizes his profit. In

the case where vi ≥ ti, bidder i pays ti and wins the item, having a positive profit. If he chooses

to bid below ti he would lose the item and have a profit of 0, and if he chooses some other value
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greater than ti he would win the item but his profit would remain the same (as the price paid does

not depend on his own bid). Hence, once again truth telling is the best strategy.

We now show the inverse statement: any truthful auction is equivalent to a bid-independent

auction. Recall the characterization of truthful auctions of Theorem 2.4 and for simplicity let

us focus on the deterministic case; we saw that in any truthful auction there exists a threshold

price for each bidder i, which is independent of his own valuation and corresponds to his minimum

winning bid, i.e. the smallest bid he could announce and still win the item. In the language of

bid-independent auctions, this would be ti = f(b−i). The payment –in the case where bidder i

wins the item– was also set to be ti, so what we have is exactly a bid-independent mechanism.

The above theorem is a very useful tool: it allows us to limit our attention only on auctions

that can be formulated as bid-independent auctions. In the rest of this chapter we shall try to

design optimal truthful (aka bid-independent) auctions for the specific setting of “digital goods”,

which we already saw in Example 2.11.

3.2 Digital Good Auctions and Profit Benchmarks

We start off by giving the definition of the auction setting which we will study in the rest of

this chapter and in the next one.

Definition 3.3. (Digital Good Auction) In the digital good auction there are,

• n bidders with valuations v1 ≥ . . . ≥ vn.

• n identical copies of an item for sale (for example copies of an MP3 file).

Let us now try to design the optimal, prior-free mechanism for the above setting. By optimal

mechanism we have in mind something similar to what we did in Chapter 2: there, we designed

mechanisms that have the highest (optimal) possible expected profit. Now we do not make any

statistical assumptions about the distribution of the bids, so we do not aim at maximizing expected
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profit, but rather achieving the optimal profit for any input bid sequence, a globally optimal auction

in some sense.

However, having the above characterization of truthful auctions in hand it is easy to see that the

goal of designing a globally-optimal prior-free mechanism is over-ambitious: indeed, consider the

scenario where we have a single bidder in the auction and consider the two cases where this bidder

values the good for 1 and 2 respectively. Since any truthful auction has to be a bid-independent

auction, the offer made to the bidder has to be independent of his own valuation and, since there

are no other bidders, it cannot be but a constant. Obviously though, the optimal take-it-or-leave-it

offer is 1 in the first case and 2 in the second, so no auction can be globally optimal, even for this

simple case.

To get past this obstacle we shift our focus from absolute to relative optimality. This is a

common approach in computer science. For example, to cope with limited computational resources

we introduce the notion of approximation algorithms, where the goal is to compare (favorably)

against a computationally unbounded algorithm (adversary). Likewise, when we study online

algorithms, what we lack is a knowledge of the future; in this case we want to compete (hence

the name competitive analysis) against an omniscient adversary who knows all the input in advance.

The situation here has a lot in common with competitive analysis: the obstacle in our case are

the incentives of the agents. We need to design a truthful mechanism, i.e. we need to compete

against an omniscient adversary who has more information than we do, namely the true valuations

of the agents. Our goal will be to achieve a good profit compared to the profit achieved by an

omniscient algorithm and we shall use the framework of competitive analysis to formalize this idea.

Definition 3.4. A profit benchmark is a function G : Rn → R which maps a vector of valuations

to a target profit
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Intuitively this is the omniscient algorithm-mechanism we need to compare against. Let us see

a couple of potential adversaries.

Benchmark 1. Sell to all bidders at their valuation.

Profit = T (v) =
∑
i

vi

Benchmark 2. Sell at optimal single sale price.

Profit = F(v) = max
i
i · vi

Though the first candidate seems much more promising (in fact it is the best one can hope for)

the next proposition shows that these two algorithms yield profits that are at most log n apart,

where n is the number of the bidders. Formally we have the following theorem:

Theorem 3.5. There exist bid vectors b for which

F(b) = Θ(T (b)/ lnn).

Moreover, for all bid vectors b

F(b) ≥ (T (b)/ lnn).

Proof. For the first part we just need to consider the bid b with bi = n/i. We can easily check that

F(b) = n and T (b) = n(lnn+ Θ(1)) (from a standard approximation of the harmonic mean).

For the second part, let F(b)= maxi izi = kzk. Then for all i, izi ≤ kzk, hence

T (b) =
n∑
i=1

zi =
n∑
i=1

izi
i
≤

n∑
i=1

kzk
i

= F(b)
n∑
i=1

1
i

= F(b)(lnn+ Θ(1))

By keeping our expectations down to a minimal level we shall try to design auctions that are

constant competitive against F(v); by constant competitive we mean that the competitive ratio of

the designed auction A, defined as β = maxv
F(v)
A(v) , is constant.
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Nonetheless such an auction does not exist; in fact no (truthful) auction is o(log h) competitive

with F(v) for bids vi ∈ [1, h]. The reason for that is that if h gets arbitrarily large (i.e. if we have

one very high bidder) then the profit of the benchmark is dictated by this bidder’s price. However,

when we try to define a truthful auction, we have to make a take-it-or-leave-it offer to the highest

bidder and the price offered to him will only depend on the rest (probably much lower) bids. Hence

our profit from the high bidder will be negligible, whereas our profit from the rest of the bidders

will also be low if not zero, since we will probably make them an offer for a price that is com-

parable to h, which most bidders will probably turn down. Formally we have the following theorem:

Proposition 3.6. For any truthful auction Af and any β ≥ 1, there exists some bid vector b such

that the expected profit of A on b is less than F(b)/β.

Proof. The key idea is to use a bid vector where the largest bid is a lot bigger than all the rest, thus

determining the profit of the optimal single price omniscient auction. When this bid is used as input

to any truthful (i.e. bid independent) auction, the threshold function f charges to the high bidder

a relatively small amount, since it does not take into account his own bid. Since the contribution

of the rest of the bidders is negligible the total profit may be quite far from the optimum.

Formally, consider a bid-independent randomized auction on two bids, 1 and x ≥ 1. Let h be

the smallest value greater or equal to 1 such that Pr[f(1) ≥ h] ≤ 1
2β . Then the profit on input

vector b = (1, H) with H = 4βh is at most

H

2β
+ h(1− 1

2β
) + 1 < 4h =

H

β
=
F(b)
β

The above lemma implies that we cannot expect a close matching to the performance of F

by any truthful auction. Hence we have to set our goals even lower: instead of comparing the
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performance of an auction to the performance of F , we compare it to the performance of F (2) -the

optimal single price omniscient auction that sells at least two units1.

Benchmark 3. Sell at optimal single sale price to at least two bidders.

Profit = F (2)(v) = max
i≥2

i · vi

To clarify things let us see an example.

Example 3.7. Consider the simple setting consisting of 10 high bidders with values $10 and 90

low bidders with values of $1. We have two options: either sell at price $1, in which case all 100

bidders will get the items and we will get a profit of $100, or sell at price $10, in which case only

the 10 highest bidders will get the items and we will get a profit of $100 again. So, in this example

the optimal single sale price can be either $1 or $100.

Consider now having 10 high bidders with values $5 and 90 low bidders with values of $1. It is

easy to verify that in this case the optimal single sale price is $1, yielding a profit of $100.

In the next section we shall see that we can design auctions that compare favorably to F (2).

3.3 The Competitive Framework and Deterministic Auctions

Having formalized what we need by the term “adversary” we now need to make the notion

of optimality rigorous. Our metric of quality for a mechanism A will be the worst-case (over all

input bid sequences) ratio of its profit to the profit of some carefully chosen benchmark G (in fact

from now on we will limit our attention to the benchmark F (2)). This ratio is commonly known as

competitive ratio; formally:

Definition 3.8. We say that a (possibly randomized) auction A is β-competitive against F (2) if
1an alternate strategy would be to consider F as a metric, but limit our attention to input bids where the highest

bidder is not much larger than the rest
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for all bid vectors b, the expected profit of A on b satisfies

E[A(b)] ≥ F
(2)

β
.

We say that an auction is competitive against F (2) if the auction is β-competitive, where β is a

constant. We refer to β as the competitive ratio of A.

From now on “A is competitive” stands for “competitive against F (2)”, unless otherwise stated.

We first try to design a deterministic, truthful and competitive auction. Bearing in mind

Theorem 3.2, perhaps the most natural candidate is the following:

Definition 3.9. (Deterministic Optimal Price (DOP)) The Deterministic Optimal Price

auction is a bid independent auction defined by the function

f(b−i) = opt(b−i) = arg max
p

(p× number of bidders j 6= i with bj ≥ p)

Hence DOP makes each bidder a take-it-or-leave-it-offer for the optimal sale price that is computed

for the rest of the bids.

DOP is clearly truthful, because it is bid-independent; however Example 3.7 shows that its

performance is not that good: consider again the auction consisting of 10 high bidders (with value

$10) and 90 low bidders (with value $1). It is easy to verify that DOP will make an offer of

$1 to all bids at 10 and accept them, and will make an offer of $10 to all bids at 1 and reject

them; thus its total profit is $10, while the optimal single-price mechanism will get a profit of

$100. This example can be made arbitrarily bad and in fact we can generalize it to prove that no

deterministic, symmetric and truthful auction is competitive; an auction is symmetric if its outcome

is not a function of the order of the bids, but only of their values.

Theorem 3.10. No symmetric, deterministic, truthful auction is constant-competitive against F (2).

Proof. Let Af be any symmetric deterministic auction, where the threshold prices are given by the

function f . We will show that Af is not competitive: in fact, we will show that there exists a bid

vector b of arbitrary size n, such that the profit of Af on b is at most F (2)/n.
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Consider the set of bid vectors whose bids are all n or 1. For 0 ≤ j ≤ n− 1 write f(j) for the

price the auction assigns to a vector with exactly j bids at n and n − 1 − j bids at 1 (f is well

defined since Af is symmetric). We will make the assumption that f takes one of the values in

{1, n} as this restriction cannot hurt the auction profit.

Note first that we must have f(0) = 1; indeed, if f(0) = n then for the bid vector that has all

bids equal to 1 Af would yield a profit of 0 and the theorem would hold trivially.

Also it has to be that f(n − 1) = n otherwise, for the bid vector with all bids equal to n, Af

will yield a profit of n while the optimal profit is n2.

Let k now be the largest integer in {0, . . . , n− 1} such that f(k) = 1; because of the previous

discussion we know that k ∈ {0, . . . , n − 1}. Let b now be the vector with k + 1 bids at n and

n − k − 1 bids at 1. Since f(k + 1) = n all bids at 1 are rejected and all high bids win at price

f(k) = 1 so the total profit of Af is k + 1. If k = 0 then F (2) has profit n, by accepting all bids at

price 1 and Af has profit 1, so the conclusion holds. If k ≥ 1 then F (2) has profit at least (k+ 1)n

by accepting all k + 1 high bids at price n and Af has profit k + 1, so the theorem holds in this

case as well.

There exist asymmetric deterministic auctions that are truthful and competitive. However

these auctions result from derandomization of randomized auctions, so we will focus our attention

on randomized auctions for the rest of this chapter.

3.4 Randomized Auctions

In this section we will describe two very natural randomized auctions, based on the method

of random sampling. Before moving on to the details we should mention that even randomized

auctions have limits in their performance, i.e. they cannot match the performance of F (2). A lower

bound on the performance of any auction (including randomized ones) is F
(2)

2.42 . The proof of this
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bound can be found in [5].

The main idea behind the design of both randomized auctions we shall present here is the

following: we partition the set of bids in two sets. The partitioning is performed at random, by

flipping a fair coin for each bid, in order to decide which side to assign it to. We then use one

partition for market analysis and plug what we learn to the other side of the partition. At this

point it is instructive to think about Example 2.11 again; we saw there that the optimal Bayesian

auction makes a take-it-or-leave-it offer to all bidders at an “appropriate” price, namely at the

price that maximizes the expected revenue. Since in prior-free mechanism design we have no

statistical information about the distribution of the bids, the best we can hope for is to try to elicit

some sort of information, by performing some sort of market analysis. Intuitively we try to build

an empirical distribution for the bids which we will use to pick the optimal single sale price offer

we will make to the bidders.

Our first auction example, the Random Sampling Optimal Price Auction (RSOP), defined in [5],

is arguably the most natural randomized auction. RSOP basically runs DOP in each side of the

partition and uses the resulting threshold for the other side of the partition; this is essentially a

dual-priced auction. Nonetheless we can easily modify RSOP so as to reject all bids of one partition

(by skipping step 4 below), hence making it single-priced. Nonetheless, as we shall see in the next

Chapter, RSOP practically (i.e. in the worst case) only gets profit from one side of the partition.

Definition 3.11. (RSOP)

1. Randomly partition the bids b into two parts b′ and b′′ by flipping a fair coin for each bidder.

2. Compute t′ = opt(b′) and t′′ = opt(b′′), the optimal sale prices for each part.

3. Make a take-it-or-leave-it offer of t′ to all bidders in b′′ and a take-it-or-leave-it offer of t′′

to all bidders in b′.
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Since the offered price to each bidder is not a function of his own bid the auction is truthful

(bid-independent). It is also competitive as the following theorem suggests.

Theorem 3.12. RSOP is 15-competitive.

We defer the proof of this theorem until the next section, which will be entirely devoted to the

study of RSOP.

The best lower bound we have for RSOP is 4 and it comes from the following example: consider

a bid vector b consisting of only two very high bids h+ ε and h and all other bids negligibly small.

The profit of RSOP in this example is not zero only if both of the high bids fall on different sides

of the partition (which happens with probability 1/2); if this is indeed the case, then RSOP has

non zero profit only from the side of the partition where h + ε lies – since the price offered to

bidder h is h+ ε and is rejected. Hence the expected profit of RSOP in this example is h/2, while

F (2) ≈ 2h, so we get a competitive ratio of 4.

Another auction considered in [5] is the Sampling Cost-Sharing Auction, which makes use

of a well known approach for the design of cost sharing mechanisms, called the Shapley Value

mechanism (due to Moulin and Shenker). For our purposes we define the following profit extractor:

ProfitExtractC : Given bids b, find the largest k such that the highest k bidders’ values are at

least C/k. Charge each C/k.

ProfitExtractC can be implemented by the following algorithm which is given n,C and b:

1. Offer C/n to all bidders.

2. If bi ≤ C/n reject bidder i.

3. Let b (resp. n) be the bidders (resp. number of bidders) remaining.
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4. Repeat until nobody is rejected in Step 2.

Example 3.13. Consider b = {1, 2, 3, 4, 5}, R = $9 and n = 5 bidders. The first iteration offers

9/5 to all bidders and bidder 1 is rejected. In the second iteration every bidder is offered 9/4 and

bidder 2 is rejected. In the third iteration every bidder is offered 9/3 and everybody accepts the

offer and pays $3.

It is easy to verify that ProfitExactC is truthful; in fact it is group strategyproof (truthful),

meaning that no coalition of deviating players can achieve an outcome that is at least as good for all

deviating agents and strictly better for at least one. Furthermore, if C ≤ F(b) then ProfitExtractC

has revenue C, otherwise it has no profit; it is hence a proper profit extractor.

It is obvious that if we knew the right value for C, which is F(b) in our case, we could run

ProfitExtractC for this C and get the desired profit. However, as usual we are limited by the

incentives of the players and we do not know a priori their true valuations and F .

To get past this difficulty, we once again employ random partitioning of the bids: we split the

bidders in half at random and –based on the assumption that the two partitions must look quite

similar– we try to extract the optimal profit of each side of the partition from the other side. Using

ProfitExtractC we can write down the Sampling Cost-Sharing Auction as follows:

Definition 3.14. (SCS)

1. Partition bids b uniformly at random into two sets: for each bid with probability 1/2 put the

bid in b′ and otherwise in b′′.

2. Compute F ′ = F(b′) and F ′′ = F(b′′).

3. Compute the auction results by running ProfitExtractF ′ on b′′ and ProfitExtractF ′′ on b′.

SCS is a bid-independent auction and as such it is truthful. Furthermore it is 4-competitive

and this is tight; in fact SCS is tight for the exact same bid sequence as RSOP. We end this chapter
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with a proof of 4-competitiveness for SCS. We first state (without proof) a probabilistic lemma

that will be useful.

Lemma 3.15. If we flip k ≥ 2 fair coins, then

E[min(#heads,#tails)] ≥ k/4

Theorem 3.16. SCS is 4-competitive

Proof. To gain some useful intuition to SCS notice that ProfitExtracC allows us to treat a set of

bidders b as one bidder with bid value F(b). Recall also from Theorem 3.2 that a truthful auction

must just make a take-it-or-leave-it offer at price ti to bidder i who accepts it if his value is at

least ti; similarly ProfitExtracC extracts profit C when F(b) ≥ C. The SCS auction can then be

viewed as randomly partitioning the bidders into two parts, treating each part as a single bidder

and performing the second-price Vickrey auction on these two “bids”.

With this intuition it is obvious that the profit of SCS is min(F ′,F ′′), for F ′,F ′′ as in Definition

3.14. Hence, it suffices to analyze E[min(F ′,F ′′)].

Assume that F (2)(b) = kp has k ≥ 2 winners at price p. Of those k winners, let k′ be the

number of winners that are in b′ and k′′ the number that are in b′′. Since there are k′ bidders in

b′ at price p, then F ′ ≥ k′p. Likewise, F ′ ≥ k′′p. We now have:

E[SCS(b)]
F (2)(b)

=
E[min(F ′,F ′′)]

kp

≥ E[min(k′p, k′′p)]
kp

=
E[min(k′, k′′)]

k

≥ 1
4

where in the last inequality we employed Lemma 3.15.
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Chapter 4

Analysis of the Random Sampling

Optimal Price Auction

The subject of this chapter is the Random Sampling Optimal Price Auction. We already

briefly discussed the auction in Chapter 3 in the context of randomized, competitive auctions (see

Definition 3.11). We then stated Theorem 3.12 claiming that RSOP is constant-competitive with a

competitive ratio of 15. It is in fact conjectured that the competitive ratio of RSOP is 4 and that

the lower bound example of the previous chapter is the worst possible.

Conjecture 4.1. RSOP is 4-competitive.

In the next section we provide a sketch of the proof of Theorem 3.12 and we conclude with a

section containing some results aiming to prove Conjecture 4.1; these results are mostly meant to

be kept as a log of various attempts to prove Conjecture 4.1. I hope people who try to read them

do not keep any hard feelings...
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4.1 Proof of Theorem 3.12

The first proof of RSOP having a constant competitive ratio was given in [5], where they

proved a competitive ratio of 7600. Nonetheless this result was far from being tight. Indeed in [6]

a tighter analysis led to an upper bound of 15 on the competitive ratio of RSOP. Their proof is

based on a lemma about random walks. Moreover, in this paper they provide further support to

the conjecture that RSOP is 4-competitive, by exhibiting a family of inputs for which RSOP has

expected profit at least F (2)/4; this is the equal revenue input vector b with bi = 1/i, for which

random sampling at first glance does not seem to be an appropriate technique. In this section we

sketch the proof technique of [6] for the upper bound of 15.

Notation 4.2. Let us first introduce some terminology and notation; we shall not be using the one

of [6], mostly because we want to use the same notation as in the next section.

• Let B = {b1, . . . , bn} be the set of all bids and let B2 = {b2, . . . , bn}. We henceforth assume

that b1 ≥ . . . ≥ bn. We refer to subsets S ⊆ B as sequences of bids and we consider them to

be sorted in descending order as well.

• Given a specific partition of bids b1, . . . , bn in two, we use bj1 , . . . , bjk to denote the side of

the partition that does not contain the highest bid b1, i.e. by writing bj1 , . . . , bjk we assume

implicitly that j1 ≥ 2. As in [6] we call this the “good” side of the partition and the other

side the “bad” side.

• We define y(bj1 , . . . , bjk) = max{bj1 , 2bj2 , . . . , kbjk), where bj1 ≥ . . . ≥ bjk .

• We denote by z(bj1 , . . . , bjk) the resulting profit from offering the optimal price of the “good”

side (bj1 , . . . , bjk) to the “bad” side. This can be formally written as

z(bj1 , . . . , bjk) = max
t=1...k

{t · bjt} ·
(

number of bids ≥ arg max
t=1...k

{t · bjt} on the “bad” side
)
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= y(bj1 , . . . , bjk) ·
(

number of bids ≥ arg max
t=1...k

{t · bjt} on the “bad” side
)

The first observation made in [6] is that in our analysis we can ignore the profit from the

“good” side; this is because, in the worst case, the highest bid will be so large that the profit from

the “good” side of the partition will be zero. In fact, we can assume without loss of generality that

the highest bid is larger than F (2).

The goal now is to prove the following two things:

• First we want to prove that the best single-price profit from the good side of the partition

will be at least half of the single-price profit for the whole set of bids with probability 1/2.

More formally, we want to argue that y(bj1 , . . . , bjk) ≥ F (2)/2 with probability at least 1/2.

• Then we want to show that the profit we get by offering the optimal price for the “good” side

of the partition to the “bad” side, is at least 1
3y(bj1 , . . . , bjk), with probability at least 0.9.

By combining the above we can easily prove an upper bound of 15 on the competitive ratio of

RSOP. Let us briefly explain how the above conclusions can be drawn.

For the first one we merely need to prove that there are “enough” “high” bidders in the good

side; by “high” bidders we mean bidders who have valuations larger than the optimal sale price for

the full set of bids, i.e. if the optimal price for the full set of bids is bi′ with i′ = arg max ibi, we

mean all bidders with bj ≥ bi′ ; by “enough” we demand at least half of them. It is straightforward

then that indeed, at least half of the “high” bidders will lie on the same side of the partition as the

highest bidder, with probability 1/2; then with probability at least 1/2,

y(bj1 , . . . , bjk) ≥ bi′ · [ number of bids ≥ bi′ on good side of the partition] ≥ bi′ ·
i′

2
= F (2)/2

For the second observation things are slightly more complicated. Intuitively, what we need

to show is that the two sides of the partition are not very different in the following sense: a
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price that is good for one side should not be too bad for the other side either. Let bjt be the

optimal price for the “good” side (bj1 , . . . , bjk), i.e. t · bjt = max{bj1 , 2bj2 , . . . , kbjk); obviously then

z(bj1 , . . . , bjk) = (jt− t)bjt . We already know that tbjt = y(bj1 , . . . , bjk) is ≥ F (2)/2 with probability

1/2. So it suffices to show that (jt− t)bjt ≥ αtbjt , for some constant α. This boils down to proving

that –with some probability– (jt − t) ≥ αt for some constant α.

To show that consider a discrete random walk on a line such that in each time step the walk

takes one step forward or stays put independently with probability 1/2. Notice that the partition

of the bids in two sides is very much like this random walk: at time 1 we are at the origin (the

“bad” side in our case). Then, when we consider a bid bji of the good side, it is like looking at the

ji-th step of this walk; the index i of this bid is exactly the number of bids that have picked the

good side of the partition so far or equivalently the distance of the random walk from the origin

at time ji (one would expect the notation to be the other way here, but I kept this notation as I

will need it for the next section). Hence, for a given time ji we would like to know what is the

maximum distance i of the random walk from the origin. All we need now is the following lemma,

which is proved in [6].

Lemma 4.3. Consider a discrete random walk on a line such that in each time step the walk takes

one step forward or stays put, independently with probability 1/2. If we start at the origin at time

t = 1, then let Eα be the event that at no time t ≥ 1 is the random walk further than αt from the

origin. It holds that Pr[E3/4] ≥ 0.9.

In terms of our bids, this lemma tells us that Pr[∀i : i ≤ 3
4ji] ≥ 0.9 which implies that

Pr[∀i : ji − i ≥ 1
3 i] ≥ 0.9.

To prove Theorem 3.12 just note that the probability of the two events described above hap-

pening together is at least 0.4, so

RSOP = (jt − t)bjt ≥
tbjt
3

=
1
3
y(bj1 , . . . , bjk) ≥ F (2)/6
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with probability at least 0.4, so E[RSOP ] ≥ 0.4 · F (2)/6 = F (2)/15.

4.2 Aiming for a competitive ratio of 4

This section is based on joint work with Elias Koutsoupias.

We first note that we can easily express RSOP ’s expected profit as an expression involving

only the z values:

RSOP =
∑
S⊆B2

z(S)2−n+1

To be more precise, the above expression gives us the worst case expected profit of RSOP in

the following sense: the adversary will always pick a bids’ sequence b1, . . . , bn with sufficiently large

b1, so that RSOP gets no profit from the “good” side (see the proof in Section 2 too). So it suffices

to examine the profit collected from the “bad” side which is exactly the above expression.

It is easy to see now that the following two claims prove Conjecture 4.1.

Claim 4.4. ∑
S⊆B2

z(S) ≥
∑

S⊆B2: b2∈S
y(S)

Proof. We do not have the proof for this Claim. We discuss some ideas at the end of this section.

Claim 4.5. ∑
S⊆B2: b2∈S

y(S) ≥ 2n−3 ibi

Proof. Let bi be the optimum single sale price for the whole set of bids, i.e. F (2) = ibi (although

our result holds for any bid bi).

We will introduce a mapping between the set of sequences X = {S ⊆ B2| b2 ∈ S & bi /∈ S} and

the set Y = {S ⊆ B2| b2 /∈ S & bi ∈ S}. Given a sequence of bids S ∈ X let t = max{j : j < i, bj ∈

S}. We then define the following mapping for each bid bj ∈ S:
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f(bj) =

 bj+i−t : if j < i

bj : if j > i

It is easy to see that the mapping g : X −→ Y defined as g(bj1 , . . . , bjk) = (f(bj1), . . . , f(bjk))

is in fact a bijection. For example, if the optimal price is b5 then i = 5 and we have

g(b2, b3, b8) = (b4, b5, b8), g(b2, b4, b8) = (b3, b5, b8) and so on. Moreover, it is easy to see that

b1 ≥ . . . ≥ bn implies that y(S) ≥ y(g(S)).

Hence we have that:

∑
S⊆B2: b2∈S

y(S) =
∑

S⊆B2: b2∈S,bi∈S
y(S) +

∑
S⊆B2: b2∈S,bi /∈S

y(S)

≥
∑

S⊆B2: b2∈S,bi∈S
y(S) +

∑
S⊆B2: b2∈S,bi /∈S

y(g(S))

=
∑

S⊆B2: b2∈S,bi∈S
y(S) +

∑
S⊆B2: b2 /∈S,bi∈S

y(S)

=
∑

S⊆B2: bi∈S
y(S)

= 2n−i
i−2∑
j=0

(
i− 2
j

)
(j + 1) · bi

where the last equality follows from the following simple counting argument: consider all pos-

sible positions of bi in a sequence of B2. There can be j bids larger than bi where j ranges from

0 to i− 2; there are
(
i−2
j

)
ways to pick these bids and 2n−i ways to pick the bids that are smaller

than bi and for this specific position the coefficient of bi is (j + 1).

A straightforward calculation shows that
∑i−2

j=0

(
i−2
j

)
(j + 1) = i2i−3, and the claim follows.

In order to prove Claim 1 we need the following simple Lemma:
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Lemma 4.6.

z(bj1 , . . . , bjk) ≥ y(bj1 , . . . , bjk)−max
(

0, max
t=2,...,k

{
2t− jt
t− 1

})
· y(bj2 , . . . , bjk)

Proof. Let bjt be the optimal price for (bj1 , . . . , bjk), i.e. t · bjt = max{bj1 , 2bj2 , . . . , kbjk). Then

z(bj1 , . . . , bjk) = (jt − t)bjt

= tbjt − (2t− jt)bjt

= tbjt −
2t− jt
t− 1

(t− 1)bjt

= y(bj1 , . . . , bjk)− 2t− jt
t− 1

(t− 1)bjt

≥ y(bj1 , . . . , bjk)−max
(

0, max
t=2,...,k

{
2t− jt
t− 1

})
· y(bj2 , . . . , bjk)

where we need 2t−jt
t−1 to be positive for the inequalities to work correctly, which is why we take

max
(

0,maxt=2,...,k

{
2t−jt
t−1

})
.

Ideally we would like to sum all the inequalities resulting from Lemma 2 for all S ⊆ B2 and

get Claim 1 right away –the inequalities are clearly of the right form. However such a result is not

that straightforward. For example, for n = 7 bids if we sum the above inequality for all S ⊆ B2 we

are left with the following expression:

b2 + b4 + b5 + b6 + b7 + max (b2, 2 b3) + max (b2, 2 b4) + max (b2, 2 b5) + max (b2, 2 b6) +

max (b2, 2 b7) + max (b4, 2 b6) + max (b4, 2 b7) + max (b5, 2 b6) + max (b5, 2 b7) + max (b6, 2 b7) +

max (b2, 2 b3, 3 b4)+max (b2, 2 b3, 3 b5)+max (b2, 2 b3, 3 b6)+max (b2, 2 b3, 3 b7)+max (b2, 2 b4, 3 b5)+

max (b2, 2 b4, 3 b6)+max (b2, 2 b4, 3 b7)+max (b2, 2 b5, 3 b6)+max (b2, 2 b5, 3 b7)+max (b2, 2 b6, 3 b7)−

1/3 max (b4, 2 b5, 3 b6) + 1/3 max (b4, 2 b6, 3 b7) + max (b2, 2 b3, 3 b4, 4 b5) + max (b2, 2 b3, 3 b4, 4 b6) +

max (b2, 2 b3, 3 b4, 4 b7) + max (b2, 2 b3, 3 b5, 4 b6) + max (b2, 2 b3, 3 b5, 4 b7) + max (b2, 2 b3, 3 b6, 4 b7) +

max (b2, 2 b4, 3 b5, 4 b6) + max (b2, 2 b4, 3 b5, 4 b7) + max (b2, 2 b4, 3 b6, 4 b7) + max (b2, 2 b5, 3 b6, 4 b7)−

1/2 max (b4, 2 b5, 3 b6, 4 b7) + max (b2, 2 b3, 3 b4, 4 b5, 5 b6) + max (b2, 2 b3, 3 b4, 4 b5, 5 b7) +

max (b2, 2 b3, 3 b4, 4 b6, 5 b7) + max (b2, 2 b3, 3 b5, 4 b6, 5 b7) + max (b2, 2 b4, 3 b5, 4 b6, 5 b7) +
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max (b2, 2 b3, 3 b4, 4 b5, 5 b6, 6 b7)

Although this expression includes all y(S) for S that contain b2 (since these terms cannot be

canceled in the telescoping summation) it contains some negative terms. The number of these

terms increases for larger n but so do the remaining positive terms like max(b4, 2b6) etc. In fact

it can be verified -by exhaustively trying all combinations- that the sum of the positive terms is

large enough to cover the negative terms, for n ≤ 12, for all possible orderings of b2, 2b3, 3b4....

In addition to that, numerical simulations suggest that the total number of −bi, i = 4, . . .

approximately doubles as we go from n to n+ 1 bids; indeed, if the coefficient µ = maxt=2,...,k
2t−jt
t−1

were to stay the same, then we would expect this number to double. However, the addition of

another bid leads to a small increase on µ (which gets smaller and smaller as we move to higher

bids). Nonetheless the rate of increase seems to go down as n grows and to approach 2.

Moreover, as we said, by moving to larger n’s we have more remaining positive terms as well.

In fact the number of positive terms with coefficient 1, i.e. the sequences for which µ = 0 has a

nice property, that is very easy to prove: the number of positive terms with coefficient 1, starting

with bi when we have n bids is at least Fn−i+1, the n− i+ 1 Fibonacci number. To see that look

at the numerator of µ; this is 2t − jt and it suggests that, in order to have µ ≤ 0 (so that we end

up with 0 · y(bj2 , . . . , bjk)) it must be that ∀t : 2t ≤ jt. Consider now the following example: say

we start with b4 and we have 4 bids, then the only appropriate sequence is (b4); for 5 bids we

still have only (b4); for 6 bids we get (b4) and (b4, b6); for 7 bids (b4), (b4, b6), (b4, b7) and so on.

It is easy to see that the allowable sequences at step t include all the allowable sequences at step

t− 1 (which end with bt−1) and all the sequences that result from the allowable sequences at step

t− 2 (ending with bt−2) if we add a bt at the end. A straightforward induction shows that indeed

the number of allowable sequences increases at least as fast as the Fibonacci sequence (in fact

faster, since there are even more allowable sequences which we did not take into account here).
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This observation suggests that it is quite realistic to expect the number of positive terms to be

approximately doubling each time we increase n by 1: we have an increase of almost φ even when

we ignore the additional terms. This in turn suggests that we may be able to match the increase

in the negative terms, which -as we said- also seem to double each time we increase n by 1.

One may notice that there are no sequences starting with b3. This is due to the fact that µ

is exactly 1 for sequences b3, . . . and there is exactly one way we can get a −y(b3, . . .), namely

by a z(b2, b3, . . .), so these terms all cancel out. As we move to higher bids, there are j2 − 2

ways of getting a −µy(bj2 , . . . , bjk), while there is only one appearance of +y(bj2 , . . . , bjk). So one

may lay his hopes on µ that is strictly less than 1 and gets smaller as j2 increases, to make all

j2 − 2 appearances of −µy(bj2 , . . . , bjk) sum up to 1. As the previous example suggests, this is

not the case and we are left with some negative terms. So, the next hope is -as we said- to have

these terms canceled out with the remaining positive terms. However, even if we manage to pin

down the exact rate of increase of both the positive and the negative terms, we are left with one

more problem. The problem is that though the remaining terms are not identical, there may be

significant canceling out, e.g. max(b2, 2b4) may cancel out with max(b2, 2b5, 3b6), depending on

the values of the bids. Capturing this in an elegant combinatorial proof is not trivial, but seems

necessary.

Another issue is the behavior of µ for growing values of n and for different sequences. Notice

that µ does not depend on the values of the bids but only on the current partition. One may

also notice that µ is very closely connected to the behavior of the random walk defined in the

proof of Theorem 3.12. However, we are not sure to what extent a probabilistic argument is useful

when trying to prove 4-competitiveness; it seems that there is a subtle balance of the positive

and negative terms that needs careful handling. The goal is to bound µ in a way that allows to

argue that the sum of the negative terms does not exceed the sum of the corresponding positive ones.
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One final observation is that Claim 2 and Lemma 2, become tight for the case of input bids

(h+ ε, h, 0, . . . , 0) as they ought to.

4.2.1 The fight against the remaining negative terms: May 2009

We started trying to find a way to handle the negative coefficients. As mentioned above,

maybe the first problem we must handle is the heterogeneity of the various negative terms; what

we we need is to find an expression that bounds the total number of negative terms from above,

i.e. for the example with n = 7 bids above, to find a function of the bids f(b4, . . . , b7) such that

f(b4, . . . , b7) ≥ −1/3 max (b4, 2 b5, 3 b6) − 1/2 max (b4, 2 b5, 3 b6, 4 b7), for all values of b4, . . . , bn.

One obvious choice for f is to pick

f(b4, . . . , bn) =
∑

neg. terms r

µr ·max{b4, 2b5, . . . , (n− 3)bn} , (4.1)

where µr is the ratio maxt=2,...,k
2t−jt
t−1 for the specific sequence of bids r.

However this bound is too crude: we tried to see if the positive terms are enough to cancel out

(i− 3)bi
∑
µr for all i = 3 . . . n and this seemed to be the case for up to n = 16 bids. By positive

terms we mean all terms that appear with a positive sign and do not contain a b2 in the max(·);

i.e. we even included terms with fractional coefficients (whose exact contribution is much harder

to compute than for the ones with coefficient 1). Furthermore, in our computation we also use the

fact that b4 ≥ . . . ≥ bn, to bound bi with bj-terms, j < i, if needed.

In the next figure we show the difference between the total positive and the negative coefficients

of each bi for n = 14, . . . , 17 bids. This difference is increasing for larger bids; however for n = 17

bids, for the first time, the negative coefficient for b5 is larger than the corresponding positive one.

In the next figures we show the behavior of the actual total positive vs negative coefficients for

all bids, for the case of n = 14 and 17 bids.
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Figure 4.1. Difference between positive and negative coefficients, for n = 14, 15, 16, 17 bids

Figure 4.2. Total number of positive vs negative coefficients for n = 14

These simulations suggest that the upper bound of 4.1 should not work. However it gives us

some good information on the behavior of the negative coefficients. Currently we are trying to

exploit this information and use some recursive argument (some sort of induction on the number of

bids n) to bound the negative coefficients; we want to base this on the observation that by increasing
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Figure 4.3. Total number of positive vs negative coefficients for n = 17

the number of bids by 1, we get new negative terms of two kinds: one that results by just adding the

new bid bn to the end of all previous negative sequences and another that corresponds to sequences

with consecutive terms in the end (eg for n = 9 we get (b4, b6, b7, b8, b9), while for n = 8 there was

no (b4, b6, b7, b8)).

4.2.2 A more involved bound - the “lambdamu” bound: June 2009

As trying to bound the total number of negative sequences was a much harder task than

expected, we started thinking of ways to improve our bound in a way that would not yield

any negative sequences at all in the end. Here is a motivating example: consider the case

of n = 7 bids of the previous section; notice that we have a −1/3 max(b4, 2b5, 3b6) term.

This term could well be bounded with a better (?) use of z(b4, b5, b6): what we get now

is z(b4, b5, b6) ≥ y(b4, b5, b6); we could also get z(b4, b5, b6) ≥ 4
3y(b4, b5, b6) − 1

2y(b5, b6), with

−1
2y(b5, b6) canceling out with the remaining y(b5, b6). In general the idea would be to use a bound

of the form z(bj1 , . . . , bjk) ≥ λy(bj1 , . . . , bjk) + µy(bj2 , . . . , bjk), with λ chosen carefully, so as to

cancel out all existing negative terms of the form −cy(bj1 , . . . , bjk) that will occur (these are in fact
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easy to be counted).

The problem with this approach is that we cannot have an arbitrarily large λ; it holds that

λ ≤ j1− 1 for any sequence (bj1 , . . . , bjk). The following lemma gives a “lambdamu” type of bound

that is as close to optimal as possible (or so we think).

Lemma 4.7. Let (bj1 , . . . , bjk) be a set of at least 2 bids and λ a real in [0, j1 − 1]. We can bound

z(bj1 , . . . , bjk) with

z(bj1 , . . . , bjk) ≥ λy(bj1 , . . . , bjk) + µy(bj2 , . . . , bjk), (4.2)

where µ is defined by

µ =


k
k−1 mint=1,...,k{ jt−t−λtt }}, when mint=2,...,k{jt − t− λt} ≥ 0

mint=2,...,k{ jt−t−λtt−1 }, otherwise

Proof. Assume that

y(bj1 , . . . , bjk) = t · bjt

y(bj2 , . . . , bjk) = (s− 1) · bjs

From these we get that tbjt ≥ sbjs and (s − 1)bjs ≥ (t − 1)bjt . Notice that the latter holds even

when t = 1.

Assume that minr=2,...,k{jr − r − λr} ≥ 0. We will show that inequality (4.2) is satisfied for

µ = k
k−1 minr=1,...,k{ jr−r−λrr }}. We will use the fact that µ is nonnegative and the inequality

tbjt ≥ sbjs . Indeed we have,

λy(bj1 , . . . , bjk) + µy(bj2 , . . . , bjk) = λtbjt + µ(s− 1)bjs

≤ λtbjt + µ(s− 1)
t

s
bjt

≤ λtbjt + µ(k − 1)
t

k
bjt

≤ λtbjt +
k

k − 1
jt − t− λt

t
(k − 1)

t

k
bjt
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= (jt − t)bjt

= z(bj1 , . . . , bjk)

Now we consider the case of minr=2,...,k{jr − r−λr} < 0. Assume first that t ≥ 2. We will now

show that inequality (4.2) is satisfied for µ = minr=2,...,k{ jr−r−λrr−1 }}. We will use the fact that µ is

now negative and the inequality (t− 1)bjt ≤ (s− 1)bjs . Indeed we have,

λy(bj1 , . . . , bjk) + µy(bj2 , . . . , bjk) = λtbjt + µ(s− 1)bjs

≤ λtbjt + µ(t− 1)bjt

≤ λtbjt +
jt − t− λt
t− 1

(t− 1)bjt

= (jt − t)bjt

= z(bj1 , . . . , bjk)

The case t = 1 must be handled separately because t − 1 appears in the denominator in the

above. When t = 1 we have that

z(bj1 , . . . , bjk) = (j1 − 1)bj1

≥ λbj1 + (j1 − 1− λ)bj1

≥ λy(bj1 , . . . , bjk)

≥ λy(bj1 , . . . , bjk) + µy(bj2 , . . . , bjk).

Notice that we used the fact that λ ≤ j1 − 1 and that µ ≤ 0.

By using this bound for n = 15 bids we get the following (scary) bound:

y ([5]) + 9/2 y ([6]) + 17/2 y ([7]) + 13 y ([8]) + 18 y ([9]) + 24 y ([10]) + 61
2 y ([11]) + 38 y ([12]) +

2/3 y ([5, 7]) + y ([5, 8]) + y ([5, 9]) + y ([5, 10]) + y ([5, 11]) + y ([5, 12]) + 1/2 y ([6, 7]) +

7/2 y ([6, 8]) + 9/2 y ([6, 9]) + 9/2 y ([6, 10]) + 9/2 y ([6, 11]) + 9/2 y ([6, 12]) + 4 y ([7, 8]) + 7 y ([7, 9]) +

8 y ([7, 10]) + 17/2 y ([7, 11]) + 17/2 y ([7, 12]) + 91
12 y ([8, 9]) + 31

3 y ([8, 10]) + 35
3 y ([8, 11]) +

13 y ([8, 12]) + 38
3 y ([9, 10]) + 43

3 y ([9, 11]) + 16 y ([9, 12]) + 17 y ([10, 11]) + 19 y ([10, 12]) +
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22 y ([11, 12])+1/2 y ([5, 7, 9])+2/3 y ([5, 7, 10])+2/3 y ([5, 7, 11])+2/3 y ([5, 7, 12])+1/2 y ([5, 8, 9])+

y ([5, 8, 10]) + y ([5, 8, 11]) + y ([5, 8, 12]) + y ([5, 9, 10]) + y ([5, 9, 11]) + y ([5, 9, 12]) + y ([5, 10, 11]) +

y ([5, 10, 12]) + y ([5, 11, 12]) + 5
18 y ([6, 7, 9]) + 1/2 y ([6, 7, 10]) + 1/2 y ([6, 7, 11]) + 1/2 y ([6, 7, 12]) +

13
12 y ([6, 8, 9]) + 3 y ([6, 8, 10]) + 7/2 y ([6, 8, 11]) + 7/2 y ([6, 8, 12]) + 3 y ([6, 9, 10]) + 15

4 y ([6, 9, 11]) +

9/2 y ([6, 9, 12]) + 15
4 y ([6, 10, 11]) + 9/2 y ([6, 10, 12]) + 9/2 y ([6, 11, 12]) + 59

18 y ([7, 8, 10]) +

4 y ([7, 8, 11]) + 4 y ([7, 8, 12]) + 21
5 y ([7, 9, 10]) + 6 y ([7, 9, 11]) + 7 y ([7, 9, 12]) + 6 y ([7, 10, 11]) +

7 y ([7, 10, 12])+7 y ([7, 11, 12])+ 23
60 y ([8, 9, 10])+ 371

60 y ([8, 9, 11])+ 91
12 y ([8, 9, 12])+ 31

4 y ([8, 10, 11])+

9 y ([8, 10, 12]) + 9 y ([8, 11, 12]) + 173
60 y ([9, 10, 11]) + 659

60 y ([9, 10, 12]) + 11 y ([9, 11, 12]) +

398
45 y ([10, 11, 12])+2/5 y ([5, 7, 9, 11])+1/2 y ([5, 7, 9, 12])+2/5 y ([5, 7, 10, 11])+2/3 y ([5, 7, 10, 12])+

2/3 y ([5, 7, 11, 12])+2/5 y ([5, 8, 9, 11])+1/2 y ([5, 8, 9, 12])+2/5 y ([5, 8, 10, 11])+4/5 y ([5, 8, 10, 12])+

4/5 y ([5, 8, 11, 12])+2/5 y ([5, 9, 10, 11])+4/5 y ([5, 9, 10, 12])+4/5 y ([5, 9, 11, 12])+4/5 y ([5, 10, 11, 12])+

3
20 y ([6, 7, 9, 11]) + 5

18 y ([6, 7, 9, 12]) + 3
20 y ([6, 7, 10, 11]) + 1/2 y ([6, 7, 10, 12]) + 1/2 y ([6, 7, 11, 12]) +

14
15 y ([6, 8, 9, 11]) + 13

12 y ([6, 8, 9, 12]) + 6/5 y ([6, 8, 10, 11]) + 27
10 y ([6, 8, 10, 12]) + 27

10 y ([6, 8, 11, 12]) +

6/5 y ([6, 9, 10, 11])+ 27
10 y ([6, 9, 10, 12])+ 27

10 y ([6, 9, 11, 12])+ 27
10 y ([6, 10, 11, 12])+ 9

40 y ([7, 8, 10, 11])+

43
15 y ([7, 8, 10, 12]) + 43

15 y ([7, 8, 11, 12]) + 19
40 y ([7, 9, 10, 11]) + 19

5 y ([7, 9, 10, 12]) + 62
15 y ([7, 9, 11, 12]) +

62
15 y ([7, 10, 11, 12]) + 307

120 y ([8, 9, 11, 12]) + 191
60 y ([8, 10, 11, 12]) − 4/5 y ([7, 8, 9, 10, 11]) −

19
15 y ([8, 9, 10, 11, 12])− 2 y ([7, 8, 9, 10, 11, 12])− 2/7 y ([6, 7, 8, 9, 10, 11, 12])

Just notice that there are only 4 negative terms and their coefficients are not very large and

they can certainly be bounded by some of the resulting positive terms. Further experiments for

larger values of n suggested that the negative terms do not grow too fast, and that they could in

fact be bounded by the remaining positive ones for all values of n (and all values of bids). However

proving something like that did not seem any easier than what we had in the previous section

(rather more involved).

4.3 Getting beaten to the result: end of June 2009

At the time of the completion of this thesis, a paper appeared in EC 2009 that partially settled

Conjecture 4.1. The paper [7] by Alaei, Malekian and Srinivasan proves that if the optimal single
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sale price for the full set of bids is at least the sixth largest bid then RSOP is indeed 4-competitive,

while in the remaining cases it is 4.68-competitive. This paper thus leaves a very small gap between

the lower and the upper bounds.

Their proof is based on the following idea: we need some lower bounding function on the profit

of RSOP from each side of the partition (A,B). Wlog of generality we can assume that the profit

from side A (where b1 falls) is zero, that we have an infinite number of bids, with all bids larger

than bn being zero and that the optimal single sale price is OPT = 1. A very important parameter

is the index of the winning bid in the full set of bids, denoted by λ.

Let us use Si to denote the number of bidders larger than bi on side A of the partition, i.e.

Si = ]{j|j ≤ i, bj ∈ A}. The authors make two main observations:

1. The optimal profit from side A of the partition is SλAbλA which is at least Sλbλ. Since we

assumed that OPT = 1, λbλ = 1, so bλ = 1
λ , so the profit from side A, when offered its

optimal single sale price bλA , denoted by Profit(A, bλA), is at least Sλ
λ :

Profit(A, bλA) ≥ Sλ
λ

2. The profit extracted from side B of the partition when offered the optimal single sale price

for side A is Profit(B, bλA) and we have

Profit(B, bλA) =
λA − SλA
SλA

Profit(A, bλA)

It is hence obvious that the quantity of interest is zi = i−Si
Si

. Since λA is a quantity that

depends on the actual values of the bids, the authors, instead of working with zλA they work

with the quantity z = mini zi which is a lower bound for zλA and only depends on the partition

of the bids and not their actual values. Hence we have:

Profit(B, bλA)
Profit(A, bλA)

≥ z
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Using the above two observations, a lower bounding function on the expected profit of RSOP

is straightforward:

E[RSOP ] ≥ E[Profit(B, bλA)]

= E
[
Profit(A, bλA)

Profit(B, bλA)
Profit(A, bλA)

]
≥ E[

Sλ
λ
z]

What is really important about the expression E[Sλλ z] is that it depends on the actual values

of the bids in only one way: the value of λ; other than that it is a function of the partition of

the bids only. To achieve that we had to do two things: first, in observation 1 we had to bound

Profit(A, bλA) with Sλbλ rather than SλAbλA and in observation 2 we had to take the mini zi to

get rid of the dependance on λA. Both these assumptions do not seem to hurt the tightness of the

analysis by a large factor.

The proof then proceeds as follows: ideally we would like to split E[Sλλ z] in E[Sλλ ]E[z] and bound

the two terms separately (which is much easier to do). However the two terms are clearly correlated

and we cannot do that; the key observation is that the correlation decreases for larger values of λ:

remember from Section 4.1 that we have an implicit random walk on a line and we are interested

on its relative offset at some time t; as this time grows we expect this ratio to come arbitrarily close

to 1/2. Now, if this is the case, say for λ > 5000, then they can decompose E[Sλλ z] in E[Sλλ ]E[z]

minus some correlation terms, and show that the competitive ratio is bounded by 4. For the case

10 ≤ λ ≤ 5000 they employ a combination of probabilistic techniques and dynamic programming to

show that for this case too the competitive ratio is 4. Their proof is highly technical and is omitted.

The authors finally address the case where λ < 10. A similar –but even more technical–

approach that involves exhaustive search over all possible values of the bids for these values of λ

yields a competitive ratio of 4 for 6 ≤ λ ≤ 10 and 4.68 for 2 ≤ λ ≤ 5.
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Let us conclude this section by trying to briefly compare this proof with the approach in [6]

and our approach. The common feature of [6] and [7] is that they both try to bound the profit

extracted by one side of the partition when offered the optimal price of the other partition, with

the profit extracted from the other side when offered the same price. Moreover, they both bound

this profit by some fraction of the optimal profit (Sλλ in [7] and 1/2 in [6]) – note that the simplicity

of the [6]-bound is largely due to the fact that the authors there just use the simple fact that

with probability 1/2 profit Profit(A, bλA) is at least OPT/2, while in [7] the authors use the most

general –and much harder to analyze– Sλ
λ bound. The second observation is also common: the

ratio zi = i−Si
Si

is the exact same quantity bounded in [6] for the random walk defined there. In fact

in both papers, in the end of the day, the authors need a lower bound on E
[
mini i−SiSi

]
. However

in [6] they first prove a bound on the probability of i−Si
Si

getting too large (see Lemma 4.3) and

use it to bound the expectation, while in [7] they shoot for a direct bound on E[mini zi], which is a

much harder task. One could say that the ideas behind [7] follow very closely those at [6], with the

difference of a much more tight and elaborate analysis of the bounds, which differs at the points

mentioned above.

Our approach bares a lot in common with both approaches; as we mentioned already we make

an implicit use of the i−Si
Si

-quantity, and in fact of mini i−SiSi
. We believe that taking the min over all

i should not hurt us too much. Our main goal is to derive a lower bound on Profit(B, bλA) (which

we call z(S)), as in [7]; the main difference is that we make no assumption whatsoever about the

actual values of the bids (while in [7] they have λ to address this issue). This is also the reason

why our analysis is heavily affected by the total number of bids n. We believe –at this point– that

taking into account some property of the winning bid in the full set of bids (such as λ) could be

unavoidable. Our final –when this thesis was filed– attempt to address the problem allows for some

experimentation towards this direction as well; we briefly discuss that in the next section.
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4.4 Future attempts: July 2009-...

We conclude the thesis with yet another bounding approach; this approach is based on the

following observation (which in some sense gets us back to the beginning: all we assume for now

is that Claim 4.4 holds and we try to prove it).

Ideally what we would like is to have z(bj1 , . . . , bjk) ≥ y(bj1 , . . . , bjk) for all sequences with

bj1 = b2. Unfortunately this does not hold, and what we get is

∑
S⊆B2: b2∈S

z(S) ≥
∑

S⊆B2: b2∈S
y(S)−

∑
i=2...k

ribji

where ri ≥ 0 are some resulting negative coefficients which we want to keep at a minimum. Our

goal then is to bound these coefficients using the remaining

∑
S⊆B2: b2 /∈S

z(S)

In order to do that we also need some appropriate bound on z(S) for any S not containing b2; by

appropriate we mean some bound that is linear in the bids, i.e. it does not contain any max(·), etc

terms.

For the z(S), with b2 ∈ S we use the following bound:

∑
S⊆B2: b2∈S

z(S) ≥
∑

S⊆B2: b2∈S
y(S)−

∑
i=2...k

(2i− ji − φi−1)bji

where φ1 = 0 and φi = max(φi−1, 2i− ji).

For example we get that z(b2, b3, b4, b5) ≥ y(b2, b3, b4, b5)− b3 − b4 − b5.

It is easy to see that this bound is “good”, in the sense that it does not subtract a bid unless it

really has to; the way of achieving that is to take into account all previous (larger) bids that have

already been subtracted; this is exactly what φi is taking into account.
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For the case of S with b2 /∈ S we believe that we somehow need to take into account the index

of the winning bid in the full set of bids in order to derive a good bound. The exact way of doing

that is something we still have to think about.
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