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Abstract

During the last century many researchers investigated the way individuals form their

opinions. The rapid growth of social networks in the recent years (Facebook,Twitter e.t.c)

has further intensified this interest. To this day, a lot of models, on how our opinions

evolve, have been proposed. In the huge majority of these models, each agent has to learn

a large amount of opinions of other agents in order to update her opinion. In this thesis,

we investigate the well studied Hegelsmann-Krause and Freidkin-Johson Model, under

the constraint that each agent can learn a small amount of opinions of other agents. We

propose three vatiations of these models, namely Network Hegelsmann-Krause, Random

Hegelsmann-Krause and Limited Information Friedkin-Johson Model and we investigate

their convergence properties.
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Chapter 1

Introduction

The unterstanding of human behavior was always a major study held in various sciences.

Psychologists, Sociologists and Political Scientists were always interested in how humans

form their opinions and consequently their behaviour. Although biology has taught us that

human characteristics such as height or colour are imprinted on us by our genes, opinions

or beliefs have nothing to do with genes. So a major question arises: Where do the opinions

come from?

Today we are quite confident that the way that we form our beliefs depends on the

experiences that we get from our birth to our death. Apparently, different individuals

have very different experiences, something that explains why there exist such vast dif-

ferences in human’s behavior around the world. The causes that lead a certain individual

to adopt a certain opinion on a specific subject are various and very complicated. For ex-

ample economic welfare, education, religion and cultural backround play a major role in

someone’s beliefs. All these factors are very heteregenous, but they all something in com-

mon: They are all trasmitted by the interaction of people with other people. Thus, society
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plays an very important role in the opinion formation process. Having the principle that

our opinions are similar to the opinion of our friends in mind many models concern-

ing how we form opinion have been proposed. This is where Theoritical Computer Science

comes in. All the algorithmic and mathematical toolbox developped all these years can be

used to study all these models in a very productive and modern way. Studying the proper-

ties of a specific model can be a way to verify how realistic and meaningful a model is and

at the same time a lot of novel sociological results can be produced.

More precisely, we may translate the above thoughts to the language of Game Theory.

We may imagine that each individual participating in a social network is a selflish agent

playing a game. Each agent i has an opinion xi ∈ [0, 1] and her cost is defined by a cost

function fi : [0, 1]n 7→ R>0, where n is the number of agents. Inuitively, fi denotes the

cost that agent i has for disagreeing with the other individuals. The precise definition of

fi depends on the model. Now, each agent i tries to minimize her personal cost and thus

updates her opinion to the opinion that minimizes fi(~x), assuming that the opinions of

all the other agents will stay the same. Since all the agents update simultaniously their

opinions, each agent i won’t have the cost that she expected to have at the end of the update

step. As a result, another update step may take place and we can understand why opinions

evolve in time. We can represent the opinion vector at time step t as x(t) and studying the

orbit of x(t) in [0, 1]n is the major purpose of Opinion Dynamics.

Previous Work

In 1965 American statistician Morris H. DeGroot proposed a model according to which

the opinions in a social network are formed [12]. This model is known as DeGroot model

and it is one of the most influential and well studied models in Opinion Dynamics [19, 16].

DeGoot has represented the social network as a graph G(V, E) at which the nodes stand for
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the members of the social network and the edges stand for the trust between them. Initially,

each agent i has an initial opinion xi(0) ∈ [0, 1] and at each time step each agent averages

her opinion with the opinions of her neighbors. Using standard Markov Theory, it can

be proven that all the nodes converge to a stable state, meaning that finally all the nodes

adopt a specific opinion [19]. Observe that if this was not the case, it would mean that all

the agents change opinion over time, something that apparently doesn’t hold in human’s

societies. As a result, each model in opinions dynamics should answer positively to the

following two questions, in order to be meaningful. Do equilibrium points exists? Does

the system converges to an equilibria?

After DeGroot Model many other models have been proposed [3, 13, 14, 15, 18, 27],

each of them has a different motivation and tries to capture different sociological phenom-

ena that are observed. Here we have to mention the Friedkin-Johnson Model, which is gen-

ralization of DeGroot Model and tries to capture the fact that in social networks consesus is

rarely acheived. In the most recent years, a series of more complex models were proposed,

in which the cost function of each agent i changes over time. More formally for each agents

i there exists a time series of cost functions {f ti }t∈N measuring the cost of disagreement of

each agent a time step t. In this class of models belong the Hegelsmann-Krause Model, the

K-NN Asymmetric and Generalized Asymmetric Games [3, 18]. The motivation behind

these is the very common knowledge that the bonds and the trust between the individuals

doesn’t stay constant of over time, but evolves as the opinions change.

As we have already mentioned, for each one of these models we need a proof con-

cerning the existence of equilibrium points and the convergence to equilibrium. In the last

years, there exists a vast amount of both theoretical and experimental work answering the

above questions for various models [4, 5, 7, 8, 14, 25]. Interestingly, the cases where the

3



cost functions change over time ({f ti }t∈N ) are very difficult to be handeled by analytical

methods such as Markov Chain Theory. Suprisingly, the algorithmic toolbox seems ev-

ery promising in proving the above properties in many of the above cases. Many of the

algorithmic based ideas can prove convergence in very complicated cases in which the ana-

lytical techniqeus fail, but they also provide bounds in the convergence time of the systems

[8, 9, 17, 23]. As a result, many of the works inspired for the opinions dynamics provide

a very refreshing point of view concerning the way we study all the dynamical systems

[10, 11].

Our Work

We have already discussed that in order to consider a model suitable to simulate the

natural opinion process, the convergence to equilibrium is necessary. In this thesis, we add

another requirement that is motivated by the simple observation conserning the way we

form opinions. Observe that at each time step, agent i has a disagreement cost f ti (~x(t)),

at time step t. At the next time step, each agent will update her opinion to minimize her

personal cost. As a result, each agent i must learn the opinions of the agents that she

trusts at time step t. Now, the problem is that this number can be very large in many

of the already proposed models. For example in Hegelsmann-Krause Model, each agent

i needs to learn the opinions of the all the other agents to update her opinion. Today’s

social network (e.g. Facebook,Twitter) tend to be huge, so how realistic a model can be if

it requires for each agent to learn some hundrends of opinions at each time step? Instead,

it is far more reasonable to assume that agents act within a social network and update their

opinions by consulting the opinions of a small (possibly random) subset of their neighbors.

Motivated by this natural observation and by experimental work on opinion dynamics with

communication regions, we introduce variants of the Hegelsmann-Krause and the Freidkin-
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Johson Model, where information exchange in each round is limited (for both models) and

local (for the Hegelsmann-Krause Model). We thoroughly investigate to which extent the

convergence properties of the above models are affected by such practical considerations

in the opinion exchange between the agents.
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Chapter 2

Local Interaction in

Hegelsmann-Krause Model

2.1 Hegelsmann-Krause Model

A natural assumption about the way that opinions evolve in a social network is that in-

dividuals with similar opinions are more likely to interact. Through this assumption it is

easy to reason why polarization exists in many subjects in society(e.g. Political Beliefs,

Religion, etc). The Hegelsmann-Krause Model [18], tries to capture this phenomena with

a very straight forward way. Up next we give the definition of HK-Model.

Let V a set of agent s.t. |V | = n, each agent i ∈ V has an initial opinion xi(0) ∈ [0, 1].

At each time step, agent i updates her opinion as follows:

xi(t) =

∑
j∈Si(t)

xj(t) + xi(t)

|Si(t)|+ 1

, where Si(t) = {j ∈ V : |xi(t) − xj(t)| ≤ ε}. The parameter ε > 0 is fixed for

each instance of the HK-Model and quantifies how open minded the agents are. Now,
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let x∗1, x
∗
2 ∈ [0, 1] s.t. |x∗1 − x∗2| > ε and assign the opinion x∗1 in some agents and x∗2 in

the rest. It is easy to see that this is an equilibrium point for the HK-Model. Working in

the same way, one may see that each instance of the HK-Model admits an infinite number

of equilibrium points [5]. Each equilibrium point consists of some opinion clusters in

the [0, 1] line and any two clusters have distance greater than ε. As always, the existence

of equilibrium point is not enough. We want the agents to converge to some equilibrium

point using the update rule defined by the HK-Model. This question has be extensively

studied [2, 5, 23] and it is answered positively. Any instance (~x(0), ε) of the HK-Model

will certainly converge to an equilibrium point. We also know that HK-Model needs at

most O(n3) time steps to converge to equilibrium and that there exist instances that need

Ω(n2) time steps to converge [2, 26]. Interestingly, closing the gap between O(n3) and

Ω(n2) is still an open problem.

Before procceding to the next session, we present some thoughts concerning the above

model. As we have already mentioned HK-Model captures the fact of polarization in the

society very efficiently. However, there are some things in the model that don’t seem very

“natural′′. For example, it is implicitly assumed in the HK-Model, that any agent knows

all the other agents, what is how she can learn whether agent j has an opinion similar to hers

at time step t. Apparently, this is not the case in large social networks in which each agent

knows a small fraction of the agents of the network. We can also understand that even each

agent knows all the other agents, it is very time consuming to learn all of their opinions

at each time step in order to update her opinion. Towards, this direction we propose two

variations of the HK-Model that capture the above thoughts. We prove the convergence of

these models to equilibrium points. Although we don’t provide bounds on the convergence

time, we believe that the proofs have mathematical interest.
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2.2 Network HK-Model

In this section we present the Network Hegelsmann-Krause Model, which is a variation of

the original Hegelsmann-Krause Model. As mentioned in the previous section, the purpose

of this variation is to capture the fact that in large social networks each agent knows only

a small fraction of the other agents. The agents that agent i knows are independent of the

opinions at each time step and remain the same during the whole process. As in the HK-

Model, at each time step each agents learns the opinions of the agents that she knows and

then averages her opinion with the similar opinions. In a more formal way, there exists

an undirected graph G = (V,E) where V represents the agents and E the friendship

between the agents. Let xi(0) ∈ [0, 1] the initial opinion of agent i. At each time step,

agent i update her opinion as follows:

xi(t+ 1) =

∑
j∈Si(t)

xj(t) + xi(t)

|Si(t)|+ 1

where Si(t) = {j ∈ V : {i, j} ∈ E and |xi(t)− xj(t)| ≤ ε} and ε > 0 is a fixed constant

capturing how open minded the agents are.

As in the previous section, we can easily prove the existence of equilibrium points. We

just need to take x∗1, x
∗
2 s.t. |x∗1−x∗2| > ε and assign arbitrarily at each agent either x∗1 or x∗2.

Again, the major question is whether the previous update rule leads the system to a stable

state. In the rest of this session we prove that any instance (G,~x(0), ε) of the Network

HK-Model converges to equilibria. Before procceding to the proof, observe that if we set

G the complete graph Kn then we get the original HK-Model. Thus, the convergence of

Network HK-Model directly implies the convergence of the HK-Model.

At first we may write the above proccess in more convenient form:

~x(t) = At~x(t− 1) = At · · ·A1~x(0)
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where ~x(0) is the initial opinion vector andAt is the matrix produced by the update rule. At

is a stochastic matrix, with positive diagonal elements which are greater than 1/n. Matrix

At can also be descrided as an multigraph with self loops and the some edges from E

activated at time step t. We say that an edge {i, j} ∈ E is activated at time step t if and

only if |xi(t)−xj(t)| ≤ ε. For simplicity, for now on we may refer to At as matrix or graph

giving matrix or graph properties respectively.

Let (S, V \S) a cut of G and assume that there exists a t0 ∈ N s.t. for all t ≥ t0

δt(S, V \S) = ∅ ,where δt(S, V \S) = {{i, j} ∈ E : {i, j} ∈ At}. This means that after

time step t0 there is no interaction between any agent in S and V \S, which means that the

system breaks into the independent subsystems S and V \S. This is a simple but useful

observation that leads us to the following definition.

Definition 1. A set of agents S ⊆ V is weakly connected if and only if for any non-empty

S ′ ⊂ S and any t0 ∈ N, there is a round t ≥ t0 so that At includes at least one edge

connecting an agent in S ′ to some agent in S\S ′.

Lemma 1. Let (G,~x(0), ε) an instance of the Network HK-Model in which V is not weakly

connected. Then there exists (S, V \S) and t0 ∈ N s.t. for all t ≥ t0 : δt(S, V \S) = ∅.

Proof. By definition of weakly connected.

Using induction and the above Lemma we may reduce the question of convergence of

Network HK-Model to the the convergence of Network HK-Model in cases where V is

weakly connected. Up next, we present the main Theorem of this section that ensures the

convergence of the Network HK-Model.

Theorem 1. Let (G(V,E), ε, ~x(0)) be an instance of network-HK, where the opinion dy-

namics keep V weakly connected. Then, all agents converge to a single opinion x∗.
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The intuition behind the previous Theorem is that all agents in a weakly connected

set influence each other with their opinions. In the rest of this section we prove that this

influence is enough to lead the agents to the same opinion. For simplicity, from now on we

consider V as weakly connected without mentioning it.

As we have already seen the above process can be descrided as a the matrix product

~x(t + 1) = At · At−1 · · ·A0~x(0). In order to prove that all agents adopt the same opinion,

we just need to prove that limt→∞At · At−1 · · ·A0 = A∗ and rank(A∗) = 1. A very useful

tool to study products of stochastic matrices is the coefficient of ergodicity [24].

Definition 2. Let A be a stochastic matrix then the coefficient of ergodicity of matrix A,

τ(A) = 1
2
· maxi,j

∑n
k=1 |Aik − Ajk| and has the following properties:

• τ(A ·B) ≤ τ(A) · τ(B)

• if A has positive elements then τ(A) < 1

• τ(A) = 0 if and only if rank(A)=1

To complete the proof, it suffices to show that there is a round t0 so that the coefficient

of ergodicity of the matrix C = At0−1 · · ·A0 is τ(C) ≤ ε/2. Given this, we have that

~x(t0) = C~x(0) and that for all agents i and j:

|xi(t0)− xj(t0)| = |(Ci − Cj)~x(0)| (2.1)

≤ ‖Ci − Cj‖1 (2.2)

≤ 2τ(C) ≤ ε (2.3)

where Ci is the i-th row of matrix C. Since at t0 all opinions are within distance ε, in

any round t > t0, all agents take the average of all opinions in their social neighborhood
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(including their opinion). Hence, after round t0, we have essentially an instance of De-

Groot’s model on the undirected connected network G (enhanced with self-loops). Since

G (with self-loops) defines an irreducible and aperiodic process, all agents converge to a

single opinion [19]. Thus, in order to prove the convergence of the Network HK-Model,

we just need to prove that limt→∞ τ(At · · ·A0) = 0.

Lemma 2. Let (G,~x(0), ε) an instance of the Network HK-Model s.t. V is weakly con-

nected. Then there exists `(t) ∈ N s.t. τ(A`(t) · · ·A0) ≤ 1− (1/n)n
2
.

Proof. At first, we may prove that there exists `(t) ∈ N s.t. τ(A`(t) · · ·A0) < 1. To this

end, we first show that since V remains weakly connected, for any round t, there is a round

`(t), such that the matrix C`(t) = A`(t)A`(t)−1 · · ·A0 has all its elements positive, and thus,

by the properties of coefficient of ergodicity τ(C`(t)) < 1.

An element Ct(i, j) is positive iff there is a (time-respecting) walk (i, u1, . . . , ut−1, j)

from agent i to agent j such that (i) the first edge {i, u1} exists in A0, (ii) the edge

{uk−1, uk} exists in Ak, (iii) the last edge {ut−1, j} exists in At. Recall that any matrix

At has positive diagonal elements. Thus, if Ct−1(i, j) > 0 then Ct(i, j) > 0, since the walk

can use the self loop of At. Let Posi(t) the positive elements of at the i-th row of Ct (equiv-

alently, the agents reachable from i in t steps). Since V is weakly connected there exists

a time step t′ > t s.t. At′ contains an edge traversing {j,m} the cut (Posi(t), V \Posi(t)).

Since j is reachable form i in t steps, j is reachable form i in t′ − 1 steps (using the

self loops) and using the edge {j,m} of At′ , m is reachable from i in t′ steps. Finally,

Posi(t) + 1 ≤ Posi(t′) and repeating the same argument for all the rows of Ct proves that

there exits l(t) s.t. all the elements of the product C`(t) = A`(t) · · ·A0 become positive.

Up next, we prove that τ(C`(t)) ≤ 1 − (1/n)n
2 . Observe that in tha matrix product
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A`(t) · · ·A0, there are some expanding martices, that augment the number of positive ele-

ments of the product. Let B1 · · ·Bk these matrices. Observe that k ≤ n2 since the number

of positive elements in the final matrix product is n2. We may rewrite C`(t) as follows:

C`(t) = Bk · A`(t)−1 · · ·Aik ·Bk−1Aik−2
· · ·A1B0

Clearly, τ(Bk ·Bk−1 · · ·B0) < 1, since all the elements of this product are positive.

Let’s study the product B1 · Am · · ·A1 · B0 (A0 is always an expanding matrix, so

B0 = A0). Let Pos(A) is the set of positive elements of matrix A. Then, Pos(Aq) ⊆

Pos(Aq−1 · · ·B0). Otherwise, Ai would be an expanding matrix. Using the last property

we prove that the minimum positive element of the matrix B0 doesn’t decrease during the

non− expanding steps.

For simplicity we denote A = Aq and B = Aq−1 · · ·B0. We prove that the minimum

positive element of A ·B ≥ the minimum positive element of B. Let Bij > 0 then

(AB)ij =
n∑
l=1

AilBlj =
∑

l:Blj>0

AilBlj

In order to prove our claim, we just need to show that
∑

l:Blj>0Ail = 1. Let us assume that∑
l:Blj>0Ail < 1. This means that there exists k s.t. Aik > 0 and Bkj = 0. Since A is

non − expanding matrix if Bkj = 0 then (AB)kj = 0 (otherwise A would add a positive

element). Observe that (AB)kj ≥ Aki · Bij . Since (AB)kj = 0 and Bij > 0 then Aki = 0.

We have concluded that Aki = 0 and Aik > 0, something that can not be true because

Aik > 0 implies that {i, k} ∈ E and |xi(q)− xj(q)| ≤ ε, which implies that Aki > 0.

Inductively, we may prove that the minimum positive element of the matrix product

At · · ·A0 decreases only during the expanding steps [5, 23]. Since there are at most n2

expanding steps and the minimum positive element of each expanding matrix is at least
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1/n then the minimum positive element of C`(t) = A`(t) · · ·A0, is greater than (1/n)n
2 .

Combining this with the faxt that τ(C`(t)) < 1 then τ(C`(t)) ≤ 1− (1/n)n
2
.

Using Lemma 2 and the following simple algorithm, we can establish the fact that

limt→∞ τ(At · · ·A0) = 0. Observe that Lemma 2 ensures that the algorithm always gets

out of the While Loop in step 6, something that ensures the termination of the algorithm

and that τ(Ci) ≤ (1− (1/n)n
2
). Once the algorithm is terminated we get:

τ(At · · ·A0) = τ(Ck · · ·C1) ≤ τ(Ck) · · · τ(C1) ≤ (1− (1/n)n
2

)k

Since integer k can be arbitrarily large then limt→∞At · · ·A0 = 0, which completes the

proof of convergence of Network HK-Model.

Algorithm 1
1: Input: An instance of the Network HK-Model and an integer k

2: t← 0

3: i← 1

4: while i ≤ k do

5: Ci ← I

6: while Pos(Ci) < n2 do

7: Ci ← At · Ci

8: t← t+ 1

9: i← i+ 1

10: Output: (C1, · · · , Ck), t

Before procceding to the next section, we mention that this proof can be generalized

to prove convergence of the d-dimensional HK-Model on a Social Network. In this model
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each agent i maintains a d-dimensional opinion vector ~xi(t) ∈ [0, 1]d and the update rule is

defined respectively by the d-dimensional HK model (see e.g.) and a social networkG. The

proof is essentially identical, with the only difference that we need to prove the existence

of a time step t0 such that τ(C) ≤ ε/(2
√
d), where C = At0 · · ·A0. But, we have already

proven that limt→∞At · · ·A0 = 0.

2.3 Random HK-Model

In this section we present our second variation of the Hegelsmann-Krause Model called

Random Hegelsmann-Krause Model. Before procceding to the definion of our current

model, we give a small motivation. We may imagine a small town in which each resident

knows all the other resident. We may also imagine that at each day each of the residents

meets some others residents each day and learns their opinions concerning a specific sub-

ject. At the end of the day, each resident is influenced by the opinion that he learned under

HK-assumption. In other words, he takes account only the opinions that are similar to his.

Now, we define the model in a more formal way: Let ~x(0) ∈ [0, 1]n the initial opinion

vector, ε > 0 and K ∈ N . At t ≥ 1, agent i:

1. picks K other agents uniformly at random. Let Ri(t) be this random set.

2. finds all the agents j ∈ Ri(t) s.t. |xi(t)− xj(t)| ≤ ε. Let Si(t) be this random set.

3. xi(t+ 1) =
∑

j∈Si(t)
xj(t)+xi(t)

|Si(t)|+1

where ε > 0 again denotes how open minded the agents are and K denotes how many

other agents each agent meets. As in the previous section, we want to prove that each
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instance (~x(0), ε,K) of the Random HK model converges to equilibrium. The ideas of the

proof are quite similar with the proof in the previous section, however there are some major

differences. At first, Random HK-model is a non-deterministic system and thus, we have

to prove convergence in a probabilistic framework. Apart from that, in the Network HK-

Model interaction between the agents at each time step was symmetric. On the contrary,

in this model interaction is asymmetric and as we will see, this causes some difficulties in

proving the convergence.

Let (~x(0), ε,K) be an instance of the Random HK-Model. Again we use the matrix

description of the above procedure to prove the convergence of the system.

~x(t+ 1) = At · · ·A0 · ~x(0)

Each of the matrices Ai is produced by the update rule defined in the beginning of this

section. We again refer toAi either as matrix or graph, giving it the respective properties. It

is easy to observe that Ai is a random directed graph, with vertices the agents and acres the

interaction between them at time step i. Note that again Ai has positive diagonal elements

no matter what the random choice of each agent is.

Firstly, let’s assume that there exists a partition (S, V \S) and a time step t0 such that

for all i ∈ S and j ∈ V \S, |xi(t0)− xj(t0)| > ε. Clearly, after time t0 the agents in S are

not influenced by the agents in V \S, thus the system can be divided into two independent

sub-systems. This simple observation lead us to the following definitions.

Definition 3. Let S1, S2 two disjoint sets of agents, we denote their distance at round t as

dt(S1, S2) = mini∈S1,j∈S2 |xi(t)− xj(t)|.

Definition 4. A set of agents S is ε-connected at round t, if and only if for any non-empty

set S ′ ⊂ S, dt(S ′, S \ S ′) ≤ ε.
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Definition 5. A set of agents S breaks at round t if and only if S is ε-connected at round

t− 1 and is not ε-connected at round t.

With the last definition, we introduce the notion of the break. As we have already

discussed, once S ′ and S \ S ′ break, they behave as independent subinstances in the future

and that’s why this is a key notion to our proof. Notice that independently, of what the

random choices of each agent at each time step may are, at most n − 1 breaks can occur.

The latter means that when a break occurs at specific time step, this event automatically

reduces the number of the probable future breaks. Intuitively, if we run the system for

all long period all the possible breaks will occur at the end of this period and after that

it will be certain that no break occurs. As a first step, to check whether this intuition is

true, we present an instance in which no break occurs for all the possible random choices.

For example, take the instance (~x(0), ε,K) such that for all i, j, |xi(0) − xj(t)| ≤ ε. It is

obvious that in this instance no break ever occurs. Following the intuition presented above,

we prove that in instances in which no break is possible, all agents converge with high

probability to a single opinion. To simplify notation we provide the following definitions.

Definition 6. We denote as Γl the set of all opinion vectors ~y such that for all rounds t ≥ 0,

Pr[at most l breaks occur in {0, t} | ~x(0) = ~y] = 1.

Namely, Γl consists of all vectors ~y such that if the initial opinions are ~y, then no matter

the random choices, at most l breaks occur.

Definition 7. We say that agents i and j are (ε, t)-connected if there is a “path” (i, i1, . . . , ik−1, j)

so that for each “step” q, |xq(t)− xq+1(t)| ≤ ε.

Definition 8. The diameter at some time step t, denotedDiam(t), is the maximum distance

|xi(t)− xj(t)| overall (ε, t)-connected pairs of agents i, j.
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Up next, we present our first major Lemma of this section. By the following Lemma it

is ensured that if no break occurs then all agents converge to a single opinion.

Lemma 3. Let (k, ε, ~x(0)) be an instance of the random-HK model with ~x(0) ∈ Γ0. For

any γ, δ > 0, there is a round t0 such that,

Pr[Diam(t) ≤ γ] ≥ 1− δ

Proof. Without loss of generality, we assume that there exists a single ε-connected com-

ponent (otherwise, the lemma applies to each ε-connected component separately). Since

~x(0) ∈ Γ0 no break occurs and the agents are (ε, t)-connected for all t and all random

choices.

Let p = 1−(1−1/n)k be the probability that an agent j is not in the sample set of agent

i in a round t. For any round `, we denote C` = A`+2n2/p · · ·A` and D` = A`−1 · · ·A1. The

important step is to show that there is some fixed η > 0 such that for any fixed value of D`,

E[τ(C`)|D`] ≤ 1− η/2.

For any round t′ ≥ `, pos(t′) (resp. posi(t
′)) denotes the number of positive entries in

(resp. the i-th row of) matrix At′ · · ·A`. We have 0 ≤ pos(t′) ≤ n2 and pos(t′ + 1) ≥

pos(t′). As long as pos(t′) < n2, there is some agent i with posi(t
′) < n. As in the proof

of Lemma 2, posi(t
′) is the number of agents reachable from i, between rounds ` and t′,

by time-respecting walks. Since V is ε-connected and no break occurs, if posi(t
′) < n,

there is at least one new agent reachable from i in round t′ + 1, with probability at least p.

Hence, for any round t′ with pos(t′) < n2, pos(t′ + 1) > pos(t′) with probability at least

p, and the expected number of rounds before it becomes pos(t′) = n2 for the first time is at

most n2/p. By Markov’s inequality, Pr[pos(`+ 2n2/p) < n2 |D`] ≤ 1/2. Moreover, since
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pos(`+ 2n2/p) = n2 implies that τ(C`) < 1,

Pr[τ(C`) < 1 |D`] ≥ 1/2

As in the proof of Lemma 2, since C` is the product of 2n2/p matrices, there exists a

fixed fractional η > 0 such that if τ(C`) < 1, then τ(C`) ≤ 1− η. Thus, we obtain that for

any fixed value of D`, E[τ(C`)|D`] ≤ 1− η/2.

Now, we can work as in the proof of Lemma 2. Taking an appropriatelly large number

of rounds, we obtain a t0 and a matrix C = At0 · · ·A1 such that τ(C) ≤ γ/2 with prob-

ability at least 1 − δ. Then, the Lemma follows from the properties of the coefficient of

ergodicity.

We proceed to show that the random-HK model converges asymptotically, with prob-

ability that tends to 1. We recall that if there exists a round t∗ with Diam(t∗) ≤ ε, then

~x(t∗) ∈ Γ0 and Lemma 3 again implies convergence in each ε-connected component sep-

arately. The following lemma establishes the existence of such a round t∗ with probability

that tends to 1.

Theorem 2. 3.2 Let (k, ε, ~x(0)) be any instance of the random-HK model. For any δ > 0

there is a round t∗ such that

Pr[Diam(t∗) ≤ ε] ≥ 1− δ

Proof. Intuitively, if ~x(0) ∈ Γl, there are constants p and t0 such that Pr[~x(t0) ∈ Γl−1] ≥

p. Moreover, there is a constant m such that Pr[~x(mt0) ∈ Γ0] ≈ 1, i.e., with almost

certainty, all possible breaks have occurred by round mt0. Then, the proof follows easily

from Lemma 3.
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In the following, we let t0 be the number of rounds in Lemma 3 for γ = ε. Namely, t0

is such that if ~x(0) ∈ Γ0 then Pr[Diam(t0) ≤ ε] ≥ 1− δ. For brevity, we let p = 1/nknt0

and let P (~y,m) = Pr[Diam((m + 1)t0) ≤ ε | ~x(0) = ~y]. In other words, P (~y,m) is

the probability that the diameter is at most ε after (m + 1)t0 rounds, given that the initial

opinion vector is ~y. At first, we consider the case where ~x(0) ∈ Γ1 and prove that:

P (~x(0),m) ≥ (1− δ)(1− (1− p)m) (2.4)

We can verify (2.4) is true for m = 1. We inductively assume that m satisfies (2.4) and

consider the following cases for m+ 1.

Pr[~x(t0) ∈ Γ0] = 0 : Therefore, since ~x(0) ∈ Γ1, no break occurs in {0, t0} for all random

choices. Thus, ~x(0) satisfies the hypothesis of Lemma 3 and P (~x(0), 0) ≥ 1− δ. As

a result, P (~x(0),m+ 1) ≥ 1− δ.

Pr[~x(t0) ∈ Γ0] > 0 : There is an opinion vector ~y ∈ Γ0 such that Pr[~x(t0) = ~y] ≥ p. Since

~x(0) ∈ Γ1, if ~x(t0) 6= ~y, then ~x(t0) ∈ Γ1. Hence, we obtain that:

P (~x(0),m+ 1) =

Pr[~x(t0) = ~y]P (~y,m) +
∑
~a∈Γ1

Pr[~x(t0) = ~a]P (~a,m)

≥ (1− δ)[p+ (1− p)(1− (1− p)m)]

≥ (1− δ)(1− (1− p)m+1)

Figure 3.2 provides a graphical representation of this induction. Now we extend the

proof to the case where ~x(0) ∈ Γl, for any 2 ≤ l ≤ n − 1. We recursively define the

functions fl(m) = pfl−1(m − 1) + (1 − p)fl(m − 1), for all m, l ≥ 2, with f1(m) =

(1 − δ)(1 − (1 − p)m). Using induction and the same arguments as above, we can show
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that if ~x(0) ∈ Γl, then P (~x(0),m) ≥ (1 − δ)fl(m). We observe that limm→∞ f1(m) =

1. Then, by the definition of fl, we can show inductively that limm→∞ fn−1(m) = 1.

Since at most n − 1 breaks can occur, we conclude that P (~x(0),m) ≥ (1 − δ)fn−1(m).

Finally, limm→∞ P (~x(0),m) = 1 and as a result for all δ > 0 there exists t∗ such that

Pr[Diam(t∗) ≤ ε] ≥ 1− δ.

Before finishing with this section, we summarize the proof of convergence of the Ran-

dom Hegelsmann-Krause Model. At first, Theorem 3.2 ensures that with high probability

there exists t∗ ∈ N such that Diam(t∗) ≤ ε, which means that the maximum distance at

time step t∗ in each ε-connected component is at most ε. The latter implies that after t∗

no break occurs and by Lemma 3 convergence to a single opinion in each ε-component is

ensured.
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Chapter 3

The Friendkin-Johnson with Limited

Information

3.1 The Friendkin-Johnson Model

In this section we present one of the most influential and well studied models in Opinion

Dynamics, the Friendkin-Johnson Model [15]. There are many important works concerning

the study of FJ Model [3, 4, 16], in this section we present some of these results. At first,

we provide the definition of the model. We are given a weighted network G(V,E) and

the agents’ initial opinions ~x(0). Each agent i corresponds to vertex i ∈ V , has weight

wii ∈ (0, 1] for her initial opinion and weight wij ∈ [0, 1) for the current opinion of each

other agent j. At any round t ≥ 1, each agent i updates her opinion to:

xi(t) =
∑
j 6=i

wijxj(t− 1) + wiixi(0) (3.1)

As always we are interested in the existence of equilibrium points and in the conver-

gence of the sytem to them. Let A denote the adjacency matrix of G with 0 on its main
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diagonal and let B be the diagonal matrix with Bii = wii, for all i. Then, (3.1) can be

written in matrix form as:

~x(t) = A~x(t− 1) +B~x(0) (3.2)

Apparently, an equilibrium point x∗ ∈ [0, 1]n must satisfy the following equation.

x∗ = A · x∗ +B · ~x(0)

Since wii > 0, A is a substochastic matrix and ρ(A) = |A|∞ < 1, then all the eigenvalues

of matrix I − A are not zero. Consequently, the matrix I − A is reversible and x∗ =

(I − A)−1B · x(0) something that ensures both the existence and the uniqueness of the

equilibrium point. For more details, you may see [4, 16]. The fact that A is a substochastic

matrix also ensures the convergence to x∗.

Theorem 3. Let an instance of the FJ Model and x∗ its equilibrium point. Then, for all

γ > 0 there exists t such that ||x(t)− x∗||∞ ≤ γ and t = O( ln(n/γ)
1−ρ(A)

).

Proof. Let e(t) = ||x(t) − x∗||∞ we prove that e(t) = ρ(A)t · e(0). By definition of x(t)

we have that x(t) = A · x(t− 1) +B~x(0) and x∗ = A · x∗ +B · x(0), thus:

e(t) = ||x(t)− x∗||∞

= ||A(x(t− 1)− x∗)||∞

≤ ρ(A)||x(t− 1)− x∗||∞

≤ ρ(A)te(0)

As a result, we can bound the convergence time by finding the smallest t s.t. ρ(A)te(0) ≤ γ.

Using the above inequality, we get t ≤ ln(e(0)/γ)
ln(1/ρ(A))

≤ ln(n/γ)
1−ρ(A)

. The last bound follows from the

fact that e(0) ≤ 1 since xi(0) ∈ [0, 1] and that e−x + x− 1 ≥ 0, if x ≥ 0. This bound can
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be impoved with a similar but more rigorous analysis, using as ρ(A) the spectral radious of

A instead of ||A||∞ [16].

3.2 The Friendkin-Johnson Model with Limited Informa-

tion

A natural question about the FJ model is whether we can simulate the opinion formation

process by simple protocols where agents consult the opinions of a small subset of their

neighbors in each round. In this section, we present the Limited Information Protocol, or

LIP-FJ, in brief, and discuss its convergence properties. Let (G(V,E), ~x(0)) be an instance

of the FJ model. At any round t ≥ 1, each agent i randomly selects one index j ∈ V . Let

si(t) be a random variable, denoting the random choice of agent i at time step t, with

distribution:

Pr[si(t) = y] =

 wij if y = xj(t− 1)

wii if y = xi(0)

Then, agent i updates her opinion as follows:

xi(t) = λ(t)xi(t− 1) + (1− λ(t))si(t)

where λ : N 7→ (0, 1] is a decreasing function. As we see in the LIP-FJ Model the infor-

mation exchange between the agents is vastly reduced, since at each time step each agents

needs to learn only one opinion of her neighbors. In the original FJ Model each agent

learns the opinions of all of her neighbors. In the rest of the section, we will try to appro-

priately selects the function λ(t) such that the LIP-FJ Model converges with high proba-

bility to the equilibrium point x∗ of the original FJ Model. A very interesting question is
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the following. Is there a function λ : N 7→ (0, 1] such that LIM-FJ Model converges

with high probability to the equilibrium point of FJ Model? Although, we don’t pro-

vide an answer to the above question, in the rest of the section we present theoretical and

experimental results that provide strong evidence about the form of the λ(t).

Lemma 4. E[~x(t)] = λ(t)E[~x(t− 1)] + (1− λ(t))(AE[~x(t− 1)] +B~x(0))

Proof. We observe that (i) for any fixed instance and any fixed round t, the set Ωt of pos-

sible values of the random variable ~x(t) is finite; and that (ii) for any possible value ~y of

~x(t− 1),

E[~x(t)|~x(t− 1) = ~y] = λ(t)~y + (1− λ(t))(A~y +B~x(0))

For brevity, let pt−1(~y) ≡ Pr[~x(t − 1) = ~y] be the probability that the opinions at round

t− 1 are as in ~y. Then, using (i) and (ii), we obtain that for any fixed t ≥ 1,

E[~x(t)] =
∑

~y∈Ωt−1

pt−1(~y)E[~x(t)|~x(t− 1) = ~y]

= λ(t)
∑

~y∈Ωt−1

pt−1(~y) ~y +

+ (1− λ(t))
∑

~y∈Ωt−1

pt−1(~y) (A~y +B~x(0)))

Using linearity of expectation, we conclude that any t ≥ 1,

E[~x(t)] = λ(t)E[~x(t− 1)] + (1− λ(t))(AE[~x(t− 1)] +B~x(0))

Then, using induction on t and standard properties of the matrix infinity norm ν(A) ≡

‖A‖∞ ∈ (0, 1), we show that for an appropriate choice of λ(t), LIP-FJ converges in expec-

tation to the stable state ~x∗ = (I − A)−1B~x(0) of the FJ model.
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Theorem 4. For any instance (G(V,E), ~x(0)) and any round t ≥ 1, the opinions main-

tained by LIP-FJ satisfy

‖E[~x(t)]− ~x∗‖∞ ≤ e−(1−ν(A))
∑t

q=1(1−λ(q))‖~x(0)− ~x∗‖∞

where ~x∗ is the stable state of the FJ model.

Proof. From Lemma 4 we know that

E[~x(t)] = λ(t)E[~x(t− 1)] + (1− λ(t))(AE[~x(t− 1)] +B~x(0))

and since x∗ is the equilibrium point of the FJ-Model we have:

x∗ = λ(t)x∗ + (1− λ(t))(A · x∗ +Bx(0))

Using the above equation, we get:

||E[~x(t)]− x∗||∞ = ||[λ(t) · I + (1− λ(t)) · A](E[~x(t− 1)]− x∗)||∞ (3.3)

≤ ||Πt
i=1[λ(i) · I + (1− λ(i)) · A])||∞ · ||~x(0)− x∗||∞ (3.4)

≤ Πt
i=1[1− (1− λ(i))(1− ν(A))] · ||~x(0)− x∗||∞ (3.5)

≤ e−(1−ν(A))
∑t

q=1(1−λ(q))‖~x(0)− ~x∗‖∞ (3.6)

Inequalities (3.4),(3.5) are directly implied by standard properties of the matrix norm. Us-

ing the inequality 1− x ≤ e−x if x ∈ [0, 1] we get inequality (3.6).

Using the Theorem 3, we are ready to derive some intuition about the form of λ(t).

At first, we may observe that if λ(t) = t
t+1

, then ‖E[~x(t)]− ~x∗‖∞ ≤ e1−ν(A)/t1−ν(A),

by Theorem 4, and LIP-FJ converges in expectation in time exponential in 1/(1 − ν(A)).
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Figure 3.1

The experiments indicate that for such values of λ(t), LIP-FJ indeed converges with high

probability to ~x at a very slow rate. For larger values of λ(t), e.g., for λ(t) = 1 − 1
t2

,∑t
q=1(1 − λ(q)) converges to a constant value. Therefore, the expected distance to ~x∗

stops decreasing after a finite number of rounds. If we set λ(t) to some constant, aiming at

improving the convergence time, LIP-FJ does not converge asymptotically to ~x∗, due to the

high variance of the stochastic process. Finally, we present our experimental work showing

that in case that λ(t) = 1− 1/t the LIM-FJ Model converges with high probability to the

equilibrium point at a very slow rate.
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Figure 3.2
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