
µ∏λ∀

Graduate Program in Logic, Algorithms and
Computation

Normalisation in
Deep Inference

Panos Tsatsanis

Supervisors:
Yiorgos Stavrinos George Koletsos

October 2011

ii

Abstract

In this thesis we present the calculus of structures, a proof-theoretic forma-
lism using deep inference. This means that inference rules apply arbitrarily
deep inside formulas. It follows that derivations are now symmetric instead
of tree-shape objects. A system for classical predicate logic is introduced
and compared with the corresponding sequent calculus system. They both
have an admissible Cut rule. However, locality can be obtained with deep
inference, meaning that the effort of applying a rule is always bounded. Then
we investigate what normal forms of deductions have been defined. Besides
cut elimination, we can adopt two other notions of normalisation that allow
cuts inside a derivation, under some constraints. We will try to remark
common things and differences between normalisation in deep and shallow
inference.

iii

iv

Acknowledgements

I would like to thank the S.I.C. of MPLA for giving me the opportunity to
become a student of this program. I want to express my deepest gratitude
to everyone involved in MPLA for the great amount of knowledge that was
offered to me.

In particular, I want to thank my thesis advisor Yiorgos Stavrinos, for
his patient guidance and advice throughout our systematic work. He has
been a great teacher for me, both with his lectures in the courses and during
the writing of this thesis.

I should then mention Costas Dimitracopoulos, who keeps logic in
very high level in MPLA. He has taught me a lot more than he had
to. I certainly have to thank George Koletsos, as the current chair-
man of MPLA but mainly as the person who introduced me to logic
during my undergraduate studies in NTUA. I would also like to thank
Panos Rondogiannis for his inspiring course on logic programming semantics.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Calculus of Structures 9
2.1 System SKSgq . 11
2.2 Correspondence to the Sequent Calculus 23
2.3 Cut Admissibility . 34

3 Locality 37
3.1 Atomic Forms . 39
3.2 Atomic Contraction . 44
3.3 System SKSq . 47

4 Normalisation 53
4.1 Normalisation in the Traditional Formalisms 53
4.2 Cut Elimination With Splitting 64
4.3 Normalisation With Decomposition 72
4.4 Normalisation Without Cut Elimination 86

Conclusion 93

Bibliography 95

vii

viii

List of Figures

1.1 System G1c . 4
1.2 Structural Connectives . 5

2.1 System GS1 . 10
2.2 System SKSgq . 13
2.3 Syntactic Equivalence . 16
2.4 System Hc . 20
2.5 System KSgq . 34
2.6 Cut Elimination Through Translation 35

3.1 The Medials . 44
3.2 System SKSq . 48
3.3 Locality of the Switch . 49
3.4 Locality of the Medials . 50
3.5 Locality of the Universal . 51

4.1 System Nc . 55
4.2 Curry-Howard Correspondence 58
4.3 Cut Elimination for SKS . 69
4.4 System LK . 74
4.5 Dualities . 83
4.6 Normalisation Through Translation 83
4.7 System FKS . 89

ix

x

Chapter 1

Introduction

A logic in a given formal language consists of a class of valid sentences.
These will be the formulas of the language considered always true in
that logic, according to some kind of semantics. Mathematics is usually
performed in first-order classical logic. Classical logic is based on the
standard language of logic where ⊺,� denote the truth values, ∨,∧,→,¬
stand for disjunction, conjunction, implication and negation, and ∃,∀ are
the existential and the universal quantifier. Classical logic contains all the
sentences considered as tautologies in usual mathematics. By first-order
we mean that we use quantifiers only on elements of the universe and not
on subsets of it. Sometimes we use weaker logics, such as intuitionistic
logic. These are logics in the same language but their class of theorems is a
subset of classical logic. For example, in intuitionistic logic the law of the
excluded middle A ∨ ¬A does not hold. Logics contained in classical logic
and containing intuitionistic logic are called intermediate. There are also
many logics far apart from classical logic, like modal logics. They extend
the language of classical logic with special connectives, operators etc.

A proof system for a given logic is a set of syntactic inference rules
such that: a sentence is true in that logic if and only if there is a sequence
of rules, i.e. a formal proof, that ends with that sentence as conclusion.
Constructing a formal proof is a mechanical procedure. Computers can be
employed for checking and discovering proofs.

1

2 CHAPTER 1. INTRODUCTION

Proof systems can be classified according to the style they adhere to.
Those styles are called formalisms. One of the main formalisms in proof
theory is the sequent calculus, introduced by Gerhard Gentzen in 1934. It
is based on a syntactic expression called sequent, which is of the following
shape:

B1, ...,Bm ⊢ A1, ...,An

where A1, ...,An,B1, ...,Bm are formulas. The formulas on the left-hand side
of the turnstile ⊢ are called the antecedent, and the formulas on the right-
hand side are called the succedent. The sequent above is interpreted as:

(B1 and ... and Bm) implies (A1 or ... or An)

The sequent system G1c for classical logic can be seen in Figure 1.1. The
letter G stands of course for “Gentzen” and c for “classical”. G1c is a variant
of the original Gentzen’s system LK. The rules are devided into left and right
introduction rules. Rules ∧L,∧R,∨L,∨R,→L,→R are the logical rules of the
system, they introduce a logical connective. Rules wL,wR,cL,cR, along with
commutativity:

A ∨B ↔ B ∨A

A ∧B ↔ B ∧A

and associativity:

(A ∨B) ∨C ↔ A ∨ (B ∨C)

(A ∧B) ∧C ↔ A ∧ (B ∧C)

are the structural rules. The w stands for weakening and c for contra-
ction. There are logics that are characterised by the absence of some of those
rules. They are called substructural logics. As an example we can mention
non-commutative logics or linear logic, which does not allow weakening
and contraction. The greek capitals, such as Φ and Ψ, denote multisets of
formulas. In the rules they play the role of the context, i.e. formulas that
do not participate in the inference. The formulas in the premisses that do
not belong to the context are the active formulas. Negation ¬A is defined
as A → �. The propositional system G1cp consists of the same rules except
∀I ,∀E ,∃I ,∃E .

3

Deductions, also called derivations, are trees of the following form:

Γ1 ⊢∆1 ⋯ Γn ⊢∆n

▽
Γ ⊢∆

where Γ1 ⊢ ∆1, ...,Γn ⊢ ∆n are the premisses and Γ ⊢ ∆ the conclusion.
If all leaves are axioms or ⊺ instances, instead of arbitrary sequents, we call
it a proof. For example, what follows below is the proof of the sequent
A→ (A→ B) ⊢ (A→ B):

Ax
B ⊢ BwL
A,B ⊢ B

Ax
A ⊢ A

→L
A,A → B ⊢ B

Ax
A ⊢ A

→L
A,A→ (A→ B) ⊢ B

→R
A → (A→ B) ⊢ (A → B)

G1c is sound with respect to classical logic, i.e. provable formulas are valid.
It is also complete with respect to classical logic, which means that if a
formula is valid then it is provable. Thus valid sentences are exactly those
formulas A where ⊢ A is a provable sequent. A valid formula is proved under
no hypotheses.

The system comes with the Cut rule:

Φ ⊢ Ψ,A A,Φ′ ⊢ Ψ′
Cut

Φ,Φ′ ⊢ Ψ,Ψ′

An application of the rule is called a cut. The formula that instantiates
A is the cut formula. The Cut rule is admissible. This means that for
every proof of Φ ⊢ Ψ in G1c + Cut there is a proof of the same sequent in
G1c, that is without cuts. Gentzen showed the admissibility by describing
a syntactic algorithmic procedure which eliminates the cuts from any given
proof. We will see it in Chapter 4.

Proofs in the sequent calculus are top-down asymmetric objects. They
are trees with a single root and many leaves. Their tree-shape is due to the
presence of two-premise inference rules. For example, in the ∧R rule:

Φ ⊢ A,Ψ Φ′ ⊢ B,Ψ′
∧R

Φ,Φ′ ⊢ A ∧B,Ψ,Ψ′

4 CHAPTER 1. INTRODUCTION

Ax
A ⊢ A

� � ⊢

Φ,A,A ⊢ Ψ
cL

Φ,A ⊢ Ψ
Φ ⊢ A,A,Ψ

cR
Φ ⊢ A,Ψ

Φ ⊢ ΨwL
Φ,A ⊢ Ψ

Φ ⊢ ΨwR
Φ ⊢ A,Ψ

Φ,A,B ⊢ Ψ
∧L

Φ,A ∧B ⊢ Ψ
Φ ⊢ A,Ψ Φ′ ⊢ B,Ψ′

∧R
Φ,Φ′ ⊢ A ∧B,Ψ,Ψ′

A,Φ ⊢ Ψ B,Φ′ ⊢ Ψ′
∨L

Φ,Φ′,A ∨B ⊢ Ψ,Ψ′
Φ ⊢ A,B,Ψ

∨R
Φ ⊢ A ∨B,Ψ

A,Φ ⊢ A,Ψ Φ′,B ⊢ Ψ′
→L

Φ,Φ′,A→ B ⊢ Ψ,Ψ′
A,Φ ⊢ Ψ,B

→R
Φ ⊢ Ψ,A→ B

Φ,A[x/t] ⊢ Ψ
∀L Φ,∀xA ⊢ Ψ

Φ ⊢ A[x/y],Ψ
∀R y ∉ FV {Φ,Ψ,∀xA}

Φ ⊢ ∀xA,Ψ

Φ,A[x/y] ⊢ Ψ
∃L y ∉ FV {Φ,Ψ,∃xA}

Φ,∃xA ⊢ Ψ

Φ ⊢ A[x/τ],Ψ
∃R Φ ⊢ ∃xA,Ψ

Figure 1.1: System G1c

5

there is an asymmetry between premise and conclusion. We have two pre-
misses, but one conclusion. Suppose that we want somehow to fix this and
obtain top-down symmetric proofs. One could think that a two-premise rule
can be written equivalently with only one premise. For example, consider
the ∨L rule:

A,Φ ⊢ Ψ B,Φ′ ⊢ Ψ′
∨L

Φ,Φ′,A ∨B ⊢ Ψ,Ψ′

If we identify the logical level with the structural level of the sequent calculus
(Figure 1.2), the rule can be written:

(A ∧Φ→ Ψ) ∧ (B ∧Φ′ → Ψ′)
∨L (A ∨B) ∧Φ ∧Φ′ → Ψ ∨Ψ′

However, dropping the structural connectives of the sequent calculus would
render the system incomplete because the tree-shape of the rules is nece-
ssary in order to access subformulas. Consider the following derivation as an
example:

B ⊢ C→R
⊢ B → C ⊢ A∧R
⊢ A ∧ (B → C)

Seen bottom-up, the reason why the →R rule can eventually be applied to
B → C is that the ∧R rule below decomposes the conclusion and distributes
its contents among the leaves of the derivation. If ∧R was written in
one-premise form this wouldn’t happen.

Stuctural Level Logical Level

Comma in the Antecedent ∧

Comma in the Succedent ∨

Branching ∧

Turnstile (⊢) →

Figure 1.2: Structural Connectives

6 CHAPTER 1. INTRODUCTION

Therefore, if we drop the tree-shape and the distinction between logical
and structural level, we need to restore the ability of accessing subformulas.
This is where deep inference comes into the picture. By this we mean
that we will allow inference rules to apply anywhere deep inside a formula,
not only at the main connective. Most of traditional proof theory adopts
a methodology that we call shallow inference. Shallow inference rules
operate on connectives that appear in close proximity to the root of formulas.
For example, consider the →R rule of G1c:

A,Φ ⊢ Ψ,B
→R

Φ ⊢ Ψ,A→ B

Even if A had an internal structure, e.g. A = B∧C, we would not have access
to it before removing the root connective →. If we adopt deep inference there
is equal access to every subformula of a formula, regardless its root. Then
we can drop the structural connectives and observe symmetry. Inference
rules are top-down symmetric objects, one premise and one conclusion. This
symmetry of inference rules extends of course to derivations. All this effort
is not motivated only by aesthetic considerations. Symmetry makes clear
the duality between axioms and cuts. Furthermore, it allows dualising a
derivation by negating everything and flipping it upside-down.

There are various formalisms using deep inference. In this thesis we will
present the calculus of structures, a formalism which employs deep inference
and symmetry. We will see a proof theory for classical logic much in the
same way as in the sequent calculus, and also some new proof-theoretical
properties. We will focus on the normalisation techniques.

7

Summary

Chapter 2 is an introduction to the calculus of structures. We will give
the basic definitions for this formalism and study a deep inference system
for classical logic. We will show that it is equivalent with a sequent system.
It occurs that the cut rule of the calculus of structures is admissible as well.

In Chapter 3 we will see the notion of locality. The application of a local
rule only affects a bounded portion of the formula it is applied to. Several
rules will be replaced by their local versions. A local propositional system is
presented and we show that this is impossible in sequent systems.

Chapter 4 deals with normalisation. In the sequent calculus a normal
proof is a cut-free proof. We present three approaches of normalisation in
the calculus of structures. In the first, a normal proof is a cut-free proof,
as in sequent systems. Then we define what a normal derivation is. It is
characterised by a certain decomposition of inference rules. At last, we give
an alternative characterisation of a normal proof which does not demand
cut elimination.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Calculus of Structures

In this chapter we will study the properties of a deep inference formalism
that we call the calculus of structures (CoS). This is the simplest but
the most central formalism in deep inference. Then we will present system
SKSgq, a deductive system for classical predicate logic.

Our basis will be the sequent system GS1, shown in Figure 2.1. This is
an one-sided system, since it uses sequents ⊢ A1, ...,An instead of the more
general, two-sided version B1, ...,Bm ⊢ A1, ...,An. Such systems are called
Gentzen-Schütte systems, this is what GS stands for. They do not exist
for weaker logics. We are able to formulate them because of the symmetry
of classical logic. By this we mean the tautology:

¬¬A ↔ A

also referred to as law of double negation. The implication from right to
left holds intuitionistically but the other direction ¬¬A → A is valid only in
classical logic. An immediate consequence is the equivalence:

A→ B ↔ ¬A ∨B

This allows us to translate every sequent A ⊢ B to its one-sided version
⊢ ¬A,B. It also explains why there is no rule for implication. It can
be expressed by disjunction. Keep in mind that the law of the excluded
middle, the symmetry of negation and other theorems that are valid only
clasically are equivalent with the scheme of proof by contradiction:
say that we wish to prove proposition p. We can proceed by assuming
¬p, and showing that it leads to a logical contradiction. Thus, ¬p must
be false, and p is true. In intuitionistic logic we can’t use this technique,
only straight proofs are allowed. Logics of that kind are called constructive.

9

10 CHAPTER 2. CALCULUS OF STRUCTURES

⊺ ⊢ ⊺
Ax

⊢ A, Ā

⊢ Φ,A ⊢ Ψ,B
∧R

⊢ Φ,Ψ,A ∧B
⊢ Φ,A,B

∨R
⊢ Φ,A ∨B

⊢ Φ,A,A
cR

⊢ Φ,A
⊢ ΦwR
⊢ Φ,A

⊢ Φ,A[x/τ]
∃R ⊢ Φ,∃xA

⊢ Φ,A[x/y]
∀R y ∉ FV {Φ,∀xA}

⊢ Φ,∀xA

Figure 2.1: System GS1

The use of one-sided sequents halves the number of rules, since we just
have to use the right rules. As in two-sided systems, ∧R and ∨R are the
logical rules and cR and wR are the structural rules. The admissible Cut rule
has the following shape:

⊢ Φ,A ⊢ Ψ, Ā
Cut

⊢ Φ,Ψ

In GS systems we assume formulas to be in negation normal form. A
formula is in negation normal form if negation occurs only on atoms. For
each formula in classical logic there is an equivalent one in negation normal
form because we can use the De Morgan laws:

¬(p ∨ q) ↔ (¬p) ∧ (¬q)
¬(p ∧ q) ↔ (¬p) ∨ (¬q)

¬(∀xP (x)) ↔ ∃x(¬P (x))
¬(∃xP (x)) ↔ ∀x(¬P (x))

Using the direction from left to right we can push negation to the atoms.
These equalities are valid because of the involutive negation of classical
logic. Therefore, we will assume formulas to contain negation only on atoms.
We will denote this negation with Ā to distinguish from the general ¬A.

In the following I will present the calculus of structures and the system
SKSgq. Its soundness and completeness with respect to classical logic are
proved by translation to GS1. Cut admissibility comes as a corollary.

2.1. SYSTEM SKSgq 11

2.1 System SKSgq

The framework of the calculus of structures is the language KSq. Formulas
of KSq are generated by the following grammar:

A ∶∶= f ∣ t ∣ α ∣ [A,A] ∣ (A,A) ∣ Ā ∣ ∃xA ∣ ∀xA

where f and t are the units false and true, [A,B] is a disjunction and
(A,B) is a conjunction. Ā is the negation of the formula A. In first-order
logic there are non-logical symbols too: constants, function symbols and
predicate symbols. Let us first define terms:

• Variables and constants are terms.

• If t1,⋯, tn are terms and f a n-ary function symbol then f(t1,⋯, tn) is
a term.

Terms are interpreted as elements of the underlying field. Predicate symbols
denote relations among those elements. The letter α stands for an atom,
which is a predicate symbol applied to some terms, possibly negated. Atoms
are the smallest formulas. Bigger formulas are built by atoms using the
logical connectives.

A formula context, denoted by S{ }, is a formula with one occurrence
of { }, a hole, that does not appear in the scope of a negation. For example,
S{ } = (Ā, [{ },B]). Consider { } as a placeholder. S{R} denotes the
formula obtained by filling the hole in S{ } with R. For the same example,
S{R} = (Ā, [R,B]). We drop the curly braces when they are redundant:
for example, S[R,T] is short for S{[R,T]}. We call R a subformula of a
formula T if there is a context S{ } such that S{R} is T . A deep inference
rule ρ is of the shape:

S{R}
ρ
S{T}

Seen from top to bottom, or from premise to conclusion, it says that
whenever the subformula R occurs inside a formula, it can be replaced by
the formula T . Thus, in deep inference the active formulas can be arbitrarily
deep inside the context. The sequent calculus allows only contexts of the
form ⊢ Φ,{ } where Φ is a multiset of formulas. If neither the premise nor
the conclusion are inside a context, then the inference rule is called shallow.

12 CHAPTER 2. CALCULUS OF STRUCTURES

We know what an inference rule in CoS looks like. Let us now introduce
the notion of duality:

Definition 2.1.1. The dual of an inference rule is obtained by exchanging
premise and conclusion and replacing each connective by its De Morgan dual:

S{R}
ρ ↓

S{T} is dual to
S{T̄}

ρ ↑
S{R̄}

A system of inference rules is called symmetric if for each of its rules it also
contains the dual rule.

In Figure 2.2 we can see the system SKSgq. The first S stands for
“symmetric”, which means that for every rule we also have its dual. The
K stands for “klassisch”, as in Gentzen’s LK, which indicates that we refer
to classical logic. The second S says that it is a system in the calculus of
structures. The g is for “general”, as opposed to atomic. By this we mean
that rules can be applied to arbitrary formulas, not only to atoms. More
about atomicity in the next chapter. The q denotes first-order quantifiers.
Rules with a name that contains an arrow pointing downward are called
down-rules and those with the arrow pointing upwards are the up-rules.
The up-rules are the duals of the down-rules and, except for i↑, they carry
the same name prefixed with a “co-”.

Rules i↓ and i↑ are the identity and the cut rule. The identity intro-
duces a pair of dual formulas, as the corresponding rule Ax in the sequent
calculus. Of course, i↓ can appear anywhere in a proof, not only at the top.
The cut rule eliminates a dual pair, as the Cut rule of GS1. The Axiom and
the Cut rule of the sequent calculus are obviously related. The first, when
seen top-down, introduces an arbitrary formula A together with its negation
Ā. The other does the same thing, but this time when seen bottom-up.
Furthermore, during Gentzen’s cut elimination, cuts are pushed to the top
of the proof where they interact with the axioms and vanish. However, their
duality is obscured by the top-down asymmetry of the sequent calculus: the
Axiom rule has just one premise but the Cut rule is a two-premise inference
rule. In deep inference we restore the symmetry so the duality between the
two rules is precise: i↑ and ↓ are dual, which means that one can be obtained
from the other by exchanging premise and conclusion and negating them.

The structural rules of weakening and contraction are represented by
w↓ and c↓. They are straightforward translations of the structural rules in
sequent systems. Co-weakening w↑ and co-contraction c↑ are their duals.

2.1. SYSTEM SKSgq 13

S{t}
i↓

S[R, R̄]
S(R, R̄)

i↑
S{f}

S([R,U], T)
s
S[(R,T), U]

S{∀x[R,T]}
u↓

S[∀xR,∃xT]
S(∃xR,∀xT)

u↑
S{∃x(R,T)}

S{f}
w↓

S{R}
S{R}

w↑
S{t}

S[R,R]
c↓

S{R}
S{R}

c↑
S(R,R)

S{R[x/τ]}
n↓

S{∃xR}
S{∀xR}

n↑
S{R[x/τ]}

Figure 2.2: System SKSgq

14 CHAPTER 2. CALCULUS OF STRUCTURES

The rule s is called switch. It corresponds to the conjunction rule:

⊢ Φ,A ⊢ Ψ,B
∧R

⊢ Φ,Ψ,A ∧B

To see this just consider one of the contexts Φ and Ψ to be empty. Check
that the dual of the switch rule is the switch rule itself. It is self-dual.

Rules u↓ and n↓ are called universal and instantiation and correspond
to the quantifying rules ∀R and ∃R respectively. The ∀R rule of system GS1:

⊢ Φ,A[x/y]
∀R y ∉ FV {Φ,∀xA}

⊢ Φ,∀xA

if seen bottom-up, removes the universal quantifier from a formula to allow
other rules to access this formula. This is why we have to introduce the
proper variable y. A proper variable implies a universal quantifier. In
system SKSgq inference rules apply deep inside formulas, so there is no
need to remove the quantifier. It suffices to be moved out of the way using
the rule u↓, which does not carry any proviso for any proper variable. In
addition, the premise of the u↓ rule implies its conclusion, which is not true
for the ∀R rule of the sequent calculus.

In the ∃R rule of GS1:

⊢ Φ,A[x/τ]
∃R ⊢ Φ,∃xA

the substitution operation requires quantifiers in A not to capture variables
in τ . In n↓, free variables of the term τ should not be captured by quantifiers
in R. However, quantifiers in S{ } may capture variables in τ .

Formulas are considered syntactically equivalent modulo the smallest
equivalence relation induced by the equations in Figure 2.3. A structure is
an equivalence class of formulas. In general, we do not distinguish between
equivalent formulas so we are actually handling structures, not formulas.
But inside a deduction we prefer to think of formulas, so we use an explicit
equivalence rule:

T=
R

2.1. SYSTEM SKSgq 15

Equivalence rules do not alter the sense of a proof. They only blow
polynomially the size of proofs, without destroying any good property. We
will omit obvious instances of the equivalence rule from derivations. We
will insist mostly on instances of unit equivalence, variable renaming and
vacuous quantifier. The negation equivalences are the symmetry of negation
and the laws of De Morgan. Therefore, we can assume formulas to be in
negation normal form. For example, instead of the formula ([Q,R], T) we
use the equivalent ((Q̄, R̄), T). Thanks to associativity, this can be written
(Q̄, R̄, T).

If we want to restrict our system to propositional logic we should omit
the rules u↓, u↑, n↓ and n↑ and obtain the system SKSg. In that case of
course atoms are not possibly negated atomic types but possibly negated
propositional variables, which are usually called literals. The equivalence
relation for SKSg will not contain the variable renaming equation, the
vacuous quantifier and the instances of negation that refer to predicate logic.

A derivation in a system S is a finite sequence of instances of inference
rules in the system:

T
π
V

π′
⋮

ρ′

U
ρ
R

It is a deduction from T to R. The topmost structure is called the
premise and the structure at the bottom is called its conclusion. We

denote a derivation by
T

∥S
R

. Note that the notion of derivation here is

top-down symmetric, contrary to the corresponding notion in the sequent
calculus. A proof is a derivation whose premise is the unit t. Deep
inference allows putting derivations into a context in order to obtain a new
derivation. Given a derivation ∆, the derivation S{∆} is obtained as follows:

16 CHAPTER 2. CALCULUS OF STRUCTURES

• Associativity

[[R,T], U] = [R, [T,U]]
((R,T), U) = (R, (T,U))

• Commutativity

[R,T] = [T,R]
(R,T) = (T,R)

• Units

(f, f) = f [f,R] = R
[t, t] = t (t,R) = R

• Context

if R = T then S{R} = S{T}
and R̄ = T̄

• Negation

f̄ = t

t̄ = f

[R,T] = (R̄, T̄)
(R,T) = [R̄, T̄]

¯̄R = R

∃xR = ∀xR̄

∀xR = ∃xR̄

• Variable Renaming

∀xR = ∀yR[x/y], if y is not free in R.

∃xR = ∃yR[x/y], if y is not free in R.

• Vacuous Quantifier

∀yR = ∃yR = R, if y is not free in R.

Figure 2.3: Syntactic Equivalence

2.1. SYSTEM SKSgq 17

∆ =

T
π
V

π′
⋮

ρ′

U
ρ
R

↝ S{∆} =

S{T}
π
S{V }

π′
⋮

ρ′

S{U}
ρ
S{R}

This corresponds to adding formulas to the context of every rule instance
in a sequent calculus derivation. For example, if we have an instance of
contraction:

⊢ Γ,A ∧B,A ∧B
cR

⊢ Γ,A ∧B

with context Γ we can obtain another instance by adding the formula C to
the context:

⊢ Γ,C,A ∧B,A ∧B
cR

⊢ Γ,C,A ∧B

The difference is of course that in the calculus of structures there are no
constraints on the context that we will put a derivation into.

The dualisation of inference rules extends to derivations:

Definition 2.1.2. The dual of a derivation is obtained by turning it upside-
down and replacing each rule, each connective and each atom by its dual.

For example:

[(α, b̄), α]
w↑ [α,α]

c↓ α

is dual to
ᾱc↑ (ᾱ, ᾱ)

w↓ ([ᾱ, b], ᾱ)
The dual of a proof is not a proof. It is a derivation whose conclusion is
the unit f . Such a derivation is called refutation. Dualising a derivation
from T to R, yields a derivation from R̄ to T̄ . This duality is known as
contraposition. In classical logic the two implications T → R and R̄ → T̄

are equivalent, because they both correspond to the disjunction T̄ ∨ R.
Therefore, one could say that the symmetry of CoS extends the symmetry
of classical logic from formulas to inference rules and derivations.

18 CHAPTER 2. CALCULUS OF STRUCTURES

Sometimes we use explicitly rules although they can be expressed inside
the system:

Definition 2.1.3. A rule ρ is derivable for a system S if for every instance

of Tρ
R

there is a derivation

T

∥S
R

.

We now see that one can easily move back and forth between a derivation
and a proof via the following theorem:

Theorem 2.1.1 (Deduction Theorem). There is a derivation

T

∥SKSgq

R

iff

there is a proof

t

∥SKSgq

[T̄ ,R]
.

Proof. A proof can be obtained from a given derivation as follows:

T

∆ ∥SKSgq

R

↝

ti↓ [T̄ , T]
[T̄ ,∆]∥SKSgq

[T̄ ,R]
If we have the proof, the corresponding derivation is given as follows:

t

Π∥SKSgq

[T̄ ,R]
↝

T= (T , t)
(T̄ ,Π)∥SKSgq

(T, [T̄ ,R])
s [R, (T̄ , T)]
i↑ [R,f]
=

R

2.1. SYSTEM SKSgq 19

The same theorem holds for the propositional part of GS1:

Theorem 2.1.2. In system GS1p + Cut there is a derivation

⊢ T

▽GS1p+Cut

⊢ R

if and only if there is a proof ▽GS1p+Cut

⊢ T̄ ,R

.

Proof. From left to right, it will be enough to put the given derivation into
the context ⊢ T̄ ,{ }:

Ax
⊢ T̄ , T

▽GS1p+Cut

⊢ T̄ ,R

This is a proof of ⊢ T̄ ,R.
From right to left, we can build the following derivation:

▽GS1p+Cut

⊢ T̄ ,R ⊢ T
Cut

⊢ R

The proof is completely analogue to that for CoS: from left to right we
add the negated premise throughout the proof, and from right to left we
just use a cut. However, this method does not work for system GS1. The
direction from left to right fails because of the ∀R rule: adding formulas
to the context of a derivation can violate its proviso. In SKSgq there was
no problem because the provisos for the equations of variable renaming
and vacuous quantifier only require checking the subformula that is being
changed, while the proviso of the ∀R rule requires checking the entire context.

The proof of the deduction theorem for CoS is also reminiscent of the proof
of the same theorem for the Hilbert proof systems. This is historically
the first method for formal reasoning, attributed to Gottlob Frege and David
Hilbert. As a formalism, it is characterised by the choice of a large number
of logical axiom schemes and a small set of rules of inference. We can see a
Hilbert system for classical propositional logic in Figure 2.1. There are three
axiom schemes and the only inference rule is modus ponens. Note that the

20 CHAPTER 2. CALCULUS OF STRUCTURES

only connectives that appear are → and ¬. We can do this because {→,¬}
is an adequate set of connectives, that is every logical connective can be
expressed in terms of implication and negation:

A ∨B ↔ ¬A → B

A ∧B ↔ ¬(A → ¬B)
These equivalences are of course due to the symmetry of classical logic.

A formal proof is a finite sequence of formulas in which each formula is
either an axiom or is obtained from previous formulas by MP. For example,
this is a proof of the (quite obvious) sentence ϕ→ ϕ:

1.[ϕ→ ((ϕ→ ϕ)→ ϕ)] → [(ϕ→ (ϕ→ ϕ))→ (ϕ → ϕ)] Ax2

2. ϕ→ ((ϕ→ ϕ)→ ϕ) Ax1

3.(ϕ→ (ϕ → ϕ))→ (ϕ→ ϕ) MP:1,2

4.(ϕ→ (ϕ → ϕ)) Ax1

5. ϕ→ ϕ MP:3,4

The existence of this proof is denoted as ⊢Hc ϕ → ϕ. If in a proof of a
sentence ψ we use a set T of non-logical axioms, axioms that do not occur
from the axiom schemes of Hc, we write T ⊢Hc ψ. Classically valid are those
sentences that can be proved using only the logical axioms of the system.

Ax1: ϕ→ (ψ → ϕ)

Ax2: (ϕ→ (ψ → χ))→ ((ϕ → ψ)→ (ϕ→ χ))

Ax3: (¬ϕ → ¬ψ)→ ((¬ϕ → ψ)→ ϕ)

ϕ→ ψ ϕ
MP

ψ

Figure 2.4: System Hc

2.1. SYSTEM SKSgq 21

Let us see now the deduction theorem for the Hilbert formalism:

Theorem 2.1.3. If T ∪ {ϕ} ⊢Hc ψ then T ⊢Hc ϕ→ ψ.

Proof. Consider a set T of non-logical axioms and suppose that T∪{ϕ} ⊢Hc ψ.
Thus there is a formal proof ψ1,⋯, ψn (= ψ) with axioms T ∪ {ϕ}. We will
prove by induction on the length of the given proof that for all i = 1,⋯, n ∶
T ⊢Hc ϕ→ ψi.

• For i = 1: If ψ1 is a logical or non-logical axiom then T ⊢Hc ϕ→ ψ1 as
seen in the following proof:

1.ψ1 → (ϕ → ψ1) Ax1

2.ψ1 Ax or T

3.ϕ→ ψ1 MP:1,2

If ψ1 = ϕ then ⊢Hc ϕ→ ψ1 because ⊢Hc ϕ→ ϕ (see the example proof).
So we can write T ⊢Hc ϕ→ ψ1.

• Now suppose that for every k < i we have T ⊢Hc ϕ → ψk (induction
hypothesis). If ψi is an axiom or ψi = ϕ then we prove T ⊢Hc ϕ→ ψi as
before. If ψi is the conclusion of an MP instance using the premisses
ψj , ψl = ψj → ψi (j, l < i) then, by induction hypothesis, we know that
T ⊢Hc ϕ → ψj and T ⊢Hc ϕ → (ψj → ψi). So we can built a proof of
ϕ→ ψi as follows:

1. ⋯

⋯ ⋯

m. ϕ→ ψj

⋯ ⋯

⋯ ⋯

n. ϕ→ (ψj → ψi)
n + 1.(ϕ→ (ψj → ψi))→ ((ϕ→ ψj)→ (ϕ→ ψi)) Ax2

n + 2.(ϕ→ ψj)→ (ϕ→ ψi) MP:n,n + 1

n + 3. ϕ→ ψi MP:m,n + 2

Thus T ⊢Hc ϕ→ ψi.

We proved inductively that for all i = 1,⋯, n ∶ T ⊢Hc ϕ → ψi. Therefore,
T ⊢Hc ϕ→ ψ and the proof is complete.

22 CHAPTER 2. CALCULUS OF STRUCTURES

What we did above is similar to what happens in CoS. We took the formal
proof:

ψ1

⋮

ψn

from axioms T ∪ {ϕ} and showed the existence of the proofs:

T ⊢Hc ϕ→ ψ1

⋮

T ⊢Hc ϕ→ ψn

This could be seen as putting the given proof into the context ϕ → { } and
dropping ϕ from the hypotheses. The same as we did in the case of SKSgq,

where we put a given derivation

Q

∥SKSgq

R

into the context [Q̄,{ }] and

obtained a proof of [Q̄,R]. Of course, [Q̄,{ }] is semantically equivalent to
Q→ { }. This theorem can be proved the same way for the predicate calculus.

2.2. CORRESPONDENCE TO THE SEQUENT CALCULUS 23

2.2 Correspondence to the Sequent Calculus

We will translate derivations of GS1 + Cut to derivations in SKSgq and
vice versa. But the system GS1 is equivalent to G1c and thus sound and
complete with respect to classical logic. This will mean that system SKSgq
is sound and complete for classical predicate logic as well.

Soundness

When we translate between different formal languages we use a transla-
tion mapping:

Definition 2.2.1. The function ⋅ G maps formulas and sequents of KSq to
formulas of GS1:

αG = α

tG = ⊺

f
G
= �

[R,T]
G
= RG ∨ TG

(R,T)
G
= RG ∧ TG

∃xAG = ∃xAG

∀xAG = ∀xAG

Before the soundness theorem we need to prove the following lemma:

Lemma 2.2.1. For every two formulas A,B and every formula context C{ }
there is a derivation:

⊢ A, B̄

▽
⊢ C{A},C{B}

in GS1.

24 CHAPTER 2. CALCULUS OF STRUCTURES

Proof. By structural induction on the context C{ }:
• Base case: C{ } = { }. Sometimes we call that the empty context. Of
course there is such a derivation since the premise and the conclusion
of the derivation are the same.

• Now suppose that C{ } = C1 ∧ C2{ }, and the induction hypothesis
holds for C2{ }. Then we have:

Ax

⊢ C1,C1

⊢ A, B̄

▽ ∆

⊢ C2{A},C2{B}
∧R

⊢ C1 ∧C2{A},C1,C2{B}
∨R

⊢ C1 ∧C2{A},C1 ∨C2{B}

where ∆ exists by induction hypothesis.

• If C{ } = C1 ∨C2{ }:

Ax

⊢ C1,C1

⊢ A, B̄

▽ ∆

⊢ C2{A},C2{B}
∧R

⊢ C1,C2{A},C1 ∧C2{B}
∨R

⊢ C1 ∨C2{A},C1 ∧C2{B}

where ∆ exists by induction hypothesis.

• If C{ } = ∃xC ′{ }:

⊢ A, B̄

▽ ∆

⊢ C ′{A},C ′{B}
∃R

⊢ ∃xC ′{A},C ′{B}
∀R

⊢ ∃xC ′{A},∀xC ′{B}

where ∆ exists by induction hypothesis.

2.2. CORRESPONDENCE TO THE SEQUENT CALCULUS 25

• If C{ } = ∀xC ′{ }:

⊢ A, B̄

▽ ∆

⊢ C ′{A},C ′{B}
∃R

⊢ C ′{A},∃xC ′{B}
∀R

⊢ ∀xC ′{A},∃xC ′{B}

where ∆ exists by induction hypothesis.

Now we will see how we can imitate deep inference in the sequent calculus:

Theorem 2.2.2 (Soundness). For every derivation in SKSgq there exists

a corresponding derivation in GS1 + Cut:

Q

∆ ∥SKSgq

P

↝

⊢ Q
G

▽GS1+Cut

⊢ PG

Proof. We will prove the theorem by induction on the length of the given
derivation ∆ in SKSgq. In proofs we will usually drop the subscript of the
translation to improve readability.

• If the derivation ∆ consists of just one formula P then the correspo-
nding derivation in GS1 consists of just one sequent ⊢ P .

• We single out the topmost rule instance in ∆:

Q

∆ ∥SKSgq

P

=

S{T}
ρ
S{R}
∆′ ∥SKSgq

P

26 CHAPTER 2. CALCULUS OF STRUCTURES

The corresponding derivation in GS1 will be as follows:

▽Π

⊢ R, T̄

▽∆1

⊢ S{R}, S{T} ⊢S{T}
Cut

⊢S{R}

▽∆2

⊢ P

where ∆1 exists by Lemma 2.2.1 and ∆2 exists by induction hypothesis.
The proof Π depends on the rule ρ. Thus it will be enough to show

that for every rule
S{T}

ρ
S{R} of SKSgq there exists a proof ▽Π

⊢R, T̄
in

GS1:

S{t}
i↓

S[R, R̄]
↝

Ax
⊢ R, R̄

∨R
⊢ R ∨ R̄wR
⊢ R ∨ R̄,�

S(R, R̄)
i↑

S{f}
↝

Ax
⊢ R, R̄

∨R
⊢ R ∨ R̄wR
⊢ R ∨ R̄,�

S([R,U], T)
s
S[(R,T), U] ↝

Ax
⊢ R, R̄

Ax
⊢ U, Ū

∧R
⊢ R,U, R̄ ∧ Ū

Ax
⊢ T, T̄

∧R
⊢ R ∧ T, R̄ ∧ Ū ,U, T̄

∨R
⊢ (R ∧ T) ∨U, R̄ ∧ Ū , T̄

∨R
⊢ (R ∧ T) ∨U, (R̄ ∧ Ū) ∨ T̄

2.2. CORRESPONDENCE TO THE SEQUENT CALCULUS 27

S{f}
w↓

S{R} ↝
⊺ ⊢ ⊺wR
⊢ R,⊺

S{R}
w↑

S{t} ↝
⊺ ⊢ ⊺wR
⊢ R̄,⊺

S[R,R]
c↓

S{R} ↝

Ax
⊢ R, R̄

Ax
⊢ R, R̄

∧R
⊢ R,R, R̄ ∧ R̄

cR
⊢ R, R̄ ∧ R̄

S{R}
c↑

S(R,R) ↝

Ax
⊢ R, R̄

Ax
⊢ R, R̄

∧R
⊢ R̄, R̄,R ∧R

cR
⊢ R̄,R ∧R

S{∀x[R,T]}
u↓

S[∀xR,∃xT] ↝

Ax
⊢ R, R̄

Ax
⊢ T, T̄

∧
⊢ R,T, R̄ ∧ T̄

∃R
⊢ R,∃xT, R̄ ∧ T̄

∃R
⊢ R,∃xT,∃x(R̄ ∧ T̄)

∀R
⊢ ∀xR,∃xT,∃x(R̄ ∧ T̄)

∨R
⊢ ∀xR ∨ ∃xT,∃x(R̄ ∧ T̄)

28 CHAPTER 2. CALCULUS OF STRUCTURES

S(∃xR,∀xT)
u↑

S{∃x(R,T)} ↝

Ax
⊢ R, R̄

Ax
⊢ T, T̄

∧
⊢ R ∧ T, R̄, T̄

∃R
⊢ R ∧ T, R̄,∃xT̄

∃R
⊢ ∃x(R ∧ T), R̄,∃xT̄

∀R
⊢ ∃x(R ∧ T),∀xR̄,∃xT̄

∨R
⊢ ∃x(R ∧ T),∀xR̄ ∨ ∃xT̄

S{R[x/τ]}
n↓

S{∃xR} ↝

Ax

⊢ R[x/τ],R[x/τ]
∃R

⊢ ∃xR,R[x/τ]

S{∀xR}
n↑

S{R[x/τ]} ↝

Ax

⊢ R[x/τ],R[x/τ]
∃R

⊢ R[x/τ],∃xR[x/τ]

Notice that the simulation of deep inference in the sequent calculus is
done by using the Cut rule. Also observe that for each dual pair of rules
the two sequent proofs are identical. This is not surprising. If a rule of
CoS describes an implication A → B then its dual rule gives the implication
B̄ → Ā, which is equivalent in classical logic. Both implications correspond
to the one-sided sequent ⊢ B, Ā. Therefore, the translations of the up-rules
occur from the translations of the down-rules but with all atoms negated.

Another remark is that in the induction on the length of a given
derivation in SKSgq we took cases according to the topmost rule and not the
last one, as usual. We can do that because derivations in CoS are top-down
symmetric. In other words, there is only one premise. So we are able to
isolate it and apply the induction hypothesis on the derivation below it.

2.2. CORRESPONDENCE TO THE SEQUENT CALCULUS 29

We couldn’t have done that in the sequent calculus, where each derivation
has many leaves (premisses). Another way to think of this is the following:
applying an induction considering the topmost rule is equivalent to applying
an induction on the dual derivation considering the bottom rule.

The following result comes very easily since proofs are special derivations:

Corollary 2.2.3. If a formula S has a proof in SKSgq then SG has a proof

in GS1.

Therefore, SKSgq is sound with respect to classical logic.

Completeness

For this, we need to translate expressions of GS1 to their equivalent in
the language of CoS:
Definition 2.2.2. The function ⋅ S maps formulas and sequents of GS1 to
formulas of KSq:

αS = α

⊺
S
= t

�
S
= f

A ∨BS = [AS,BS]
A ∧BS = (AS,BS)
∃xAS = ∃xAS

∀xAS = ∀xAS

A1, ...,An
S
= [A1S

, ...,AnS
]

∅S = f

Theorem 2.2.4 (Completeness). For every derivation in GS1 + Cut

there exists a derivation in SKSgq/{c↑,w↑,u↑,n↑} with the same number of

cuts:

⊢ Σ1 ⋯ ⊢ Σk

▽GS1+Cut

⊢ Σ

↝

∀x1⋯∀xn(Σ1S
,⋯,ΣkS

)
∥SKSgq∖{w↑,c↑,u↑,n↑}

ΣS

where x1, ..., xn are the free variables in the premisses Σ1, ...,Σk that have

been introduced by ∀R instances.

30 CHAPTER 2. CALCULUS OF STRUCTURES

Proof. By structural induction on the given derivation ∆. As we did with
the ⋅ G translation, we will omit the subscript for simplicity.

• The base cases are the following:

⊢ Σ ↝ Σ

⊺ ⊢ ⊺ ↝ t

Ax
⊢ A, Ā ↝

ti↓ [A, Ā]

• Now we will take cases depending on which rule is the last of the
derivation. The derivation above the last rule will be considered
translated to SKSgq (induction hypothesis):

⊢ Σ1 ⋯ ⊢ Σk

▽
⊢Φ,A,A

cR
⊢ Φ,A

↝

∀x1⋯∀xn(Σ1,⋯,Σk)
∥SKSgq∖{w↑,c↑,u↑,n↑}

[Φ,A,A]
c↓ [Φ,A]

⊢ Σ1 ⋯ ⊢ Σk

▽
⊢ ΦwR
⊢ Φ,A

↝

∀x1⋯∀xn(Σ1,⋯,Σk)
∥SKSgq∖{w↑,c↑,u↑,n↑}

Φ= [Φ, f]
w↓ [Φ,A]

2.2. CORRESPONDENCE TO THE SEQUENT CALCULUS 31

⊢ Σ1 ⋯ ⊢ Σl

▽
⊢ Φ,A

⊢ Σl+1 ⋯ ⊢ Σk

▽
⊢ Ψ,B

∧R
⊢ Φ,Ψ,A ∧B

«

∀x1⋯∀xn((Σ1,⋯,Σl) , (Σl+1,⋯,Σk))
∥SKSgq∖{w↑,c↑,u↑,n↑}∥SKSgq∖{w↑,c↑,u↑,n↑}

([Φ,A] , [Ψ,B])
s [Φ, (A, [Ψ,B])]

s [Φ,Ψ, (A,B)]

⊢ Σ1 ⋯ ⊢ Σk

▽
⊢Φ,A,B

∨R
⊢ Φ,A ∨B

↝

∀x1⋯∀xn(Σ1,⋯,Σk)
∥SKSgq∖{w↑,c↑,u↑,n↑}

[Φ,A,B]
= [Φ, [A,B]]

For the ∀R case, we will have to bound the proper variable. Consider
the given derivation in GS1 + Cut:

⊢ Σ1 ⋯ ⊢ Σk

▽
⊢ Φ,A[x/y]

∀R ⊢ Φ,∀xA

By induction hypothesis there is a derivation:

32 CHAPTER 2. CALCULUS OF STRUCTURES

∀x1⋯∀xn(Σ1,⋯,Σk)
∆∥SKSgq∖{w↑,c↑,u↑,n↑}

[Φ,A[x/y]]

If we bound y we build the derivation:

∀y∀x1⋯∀xn(Σ1,⋯,Σk)
∀y{∆}∥SKSgq∖{w↑,c↑,u↑,n↑}

∀y[Φ,A[x/y]]
u↓ [∃yΦ,∀yA[x/y]]
= [Φ,∀yA[x/y]]
= [Φ,∀xA]

This is what we wanted. In the upper instance of the equivalence rule
y is not free in Φ and in the lower instance y is not free in ∀xA. We
know both because of the proviso of the R∀ rule.

There two more cases remaining:

⊢ Σ1 ⋯ ⊢ Σl

▽
⊢ Φ,A

⊢ Σl+1 ⋯ ⊢ Σk

▽
⊢ Ψ, Ā

Cut
⊢Φ,Ψ

«

∀x1⋯∀xn((Σ1,⋯,Σl) , (Σl+1,⋯,Σk))
∥SKSgq∖{w↑,c↑,u↑,n↑}∥SKSgq∖{w↑,c↑,u↑,n↑}

([Φ,A] , [Ψ, Ā])
s [Φ, (A, [Ψ, Ā])]

s [Φ,Ψ, (A, Ā)]
i↑ [Φ,Ψ, f]
= [Φ,Ψ]

2.2. CORRESPONDENCE TO THE SEQUENT CALCULUS 33

⊢ Σ1 ⋯ ⊢ Σk

▽
⊢ Φ,A[x/τ]

∃R ⊢Φ,∃xA

↝

∀x1⋯∀xn(Σ1,⋯,Σk)
∥SKSgq∖{w↑,c↑,u↑,n↑}

[Φ,A[x/τ]]
n↓ [Φ,∃xA]

Observe that the only rule that requires the i↑ rule in its translation is
the Cut rule. Therefore, a cut-free derivation in GS1 will be translated into
a cut-free derivation in SKSgq.

The following corollary establishes completeness:

Corollary 2.2.5. If a sequent Σ has a proof in GS1 + Cut then ΣS has a

proof in SKSgq/{c↑,w↑,u↑,n↑} with the same number of cuts.

Thus, SKSgq is complete with respect to classical predicate logic.

34 CHAPTER 2. CALCULUS OF STRUCTURES

2.3 Cut Admissibility

In this section we see that if we care only for proofs, the up-fragment of
SKSgq is superfluous. Let us remove all the up-rules from SKSgq. Then
we obtain the asymmetric, cut-free system KSgq shown in Figure 2.5. The
propositional fragment KSg occurs if we omit u↓ and n↓.

S{t}
i↓

S[R, R̄]
S{f}

w↓
S{R}

S[R,R]
c↓

S{R}

S([R,U], T)
s
S[(R,T), U]

S{∀x[R,T]}
u↓

S[∀xR,∃xT]
S{R[x/τ]}

n↓
S{∃xR}

Figure 2.5: System KSgq

Definition 2.3.1. A rule ρ is admissible for a system S if for every proof
t

∥S∪{ρ}
A

there is a proof

t

∥S
A

.

It follows that a derivable rule is admissible but an admissible rule is not
necessarily derivable.

From Theorem 2.2.4 we already know that c↑, w↑, u↑ and n↑ are admissi-
ble for KSgq because we can translate every derivation, and therefore every
proof, of GS1 without using them. This is not surprising since the up-rules
are the contrapositive versions of the corresponding down-rules. Thus they
do not offer any new information. We can show that the cut rule i↑ is also
admissible if we rely on the cut elimination for GS1:

Theorem 2.3.1 (Cut Admissibility). The cut rule i↑ is admissible for

system KSgq.

2.3. CUT ADMISSIBILITY 35

Proof. 1. Consider a given proof

t

∥SKSgq

A

.

2. By Theorem 2.2.2 we can translate it and obtain a proof of ⊢ A in the
GS1 + Cut.

3. The Cut rule of sequent systems can be eliminated from any proof.
After that procedure we have a proof of ⊢ A in GS1.

4. We translate it back to SKSgq. By Theorem 2.2.4 we know that no
cuts are added so we obtain a proof without any instances of i↑.

The procedure is shown in Figure 2.6.

t

∥SKSgq

A

Ô⇒ ▽GS1+Cut

⊢ AG

Ô⇒ ▽GS1

⊢ AG

Ô⇒

t

∥KSgq

A

Figure 2.6: Cut Elimination Through Translation

Let us now introduce some notions of equivalence between proof systems:

Definition 2.3.2. Two systems S1 and S2 are (weakly) equivalent if for

every proof

t

∥S1
R

there is a proof

t

∥S2
R

and vice versa.

We showed above that the up-fragment of SKSgq is admissible. This
means that systems SKSgq and KSgq are equivalent.

Definition 2.3.3. Two systems S1 and S2 are strongly equivalent if for

every derivation

Q

∥S1
R

there is a derivation

Q

∥S2
R

and vice versa.

When a formula R implies a formula T then there is not necessarily a
derivation from R to T in KSgq, while there is one in SKSgq. For example,
the cut rule i↑ can not be derived in system KSgq. Therefore, systems
SKSgq and KSgq are not strongly equivalent.

36 CHAPTER 2. CALCULUS OF STRUCTURES

We have proved that the down-fragment is complete, in the sense that it
has a proof for each valid formula. The up-fragment is also complete, because
it has a refutation for each unsatisfiable formula. A formula is unsatisfiable
if it is unprovable under any premise, unless equivalent to f . This is the
opposite of validity, if R is unsatisfiable then R̄ is valid and vice versa. To
see the completeness of the up-fragment, assume that R is unsatisfiable.
Then R̄ is valid:

t

∥↓
R̄

The dual derivation is the refutation:

R

∥↑
f

So for each unsatisfiable formula there is a refutation in the up-fragment.
Now, suppose that we want to prove a valid formula in it. The formula’s
negation will be of course an unsatisfiable formula and all we have to do is to
build its refutation. If we generalise this argument to arbitrary derivations
we can conclude that the up-fragment and the down-fragment are strongly
equivalent:

P

∥↓
Q

↭

Q̄

∥↑
P̄

Every deduction derivable in the one fragment is also derivable in the other
in its contrapositive version.

Chapter 3

Locality

Inference rules that deal with an unbounded quantity of information are
problematic from the points of view of complexity and implementation. Let’s
see an example of such a rule in the sequent calculus:

⊢ Φ,A,A
cR

⊢ Φ,A

Here, going from bottom to top, a formula A of unbounded size is duplicated.
Alternatively, if we see the rule top-down, we have to check if two formulas
of arbitrary size are identical in order to apply contraction. We will call
local those inference rules that do not require a global view on formulas of
unbounded size, and non-local those rules that do. Rule cR is obviously a
non-local rule.

Another case of non-locality are the context-sharing rules in various se-
quent systems. Observe the ∧R rule of GS1:

⊢ Φ,A ⊢ Ψ,B
∧R

⊢ Φ,Ψ,A ∧B

The contexts of the premisses are independent and in the conclusion they are
simply joined together. Rules with such a treatment of contexts are called
context-free or multiplicative. Now consider the following variant of ∧R:

⊢ Φ,A ⊢ Φ,B
∧R

⊢ Φ,A ∧B

Here the contexts in both premisses are the same. These rules are called
context-sharing or additive. The two versions are equivalent. Generally,
every logical rule in the sequent calculus has two equivalent forms, one

37

38 CHAPTER 3. LOCALITY

additive and one multiplicative. Their equivalence is shown using the
structural rules of weakening and contraction. Let us mention that in linear
logic, where these rules are not sound, we have two discrete versions for
each classical connective, one additive and one multiplicative. It is clear
that additive rules are non-local because, going bottom-up, a context of
unbounded size has to be duplicated.

There are two reasons why such a global behaviour is undesirable.
First, say that we want to measure the computational effort required for
proof-checking. The effort required for checking the correctness of a given
instance of the contraction rule depends on the size of the formula that
is duplicated. Thus, the usual measures on proofs, like the depth or the
number of instances of inference rules, are not suitable for the complexity
of proof-checking. A good measure would be more complicated, as it
would have to look inside the rule instances. Locality implies a bounded
computational cost of applying an inference rule. Second, say that we want
to implement contraction on a distributed system, where each processor
has a limited amount of local memory. The formula A could be spread
over a number of processors. In that case, no single processor has a global
view on it. Given a suitable implementation, both of these objections
become irrelevant. It is possible to represent sequents in such a way that
the contraction rule can be proof-checked in constant time just as it is
possible to let several processors duplicate a formula which is distributed
among them. However, all the problems of a proof-theoretic system that
are solved in its implementation widen the gap between the original system
and its implementation. Here we try to solve these problems inside the
proof-theoretic system by avoiding global rules.

In this chapter we will present a system for first-order predicate logic in
the calculus of structures which is local except for the treatment of variables.
The propositional fragment is a fully local system.

3.1. ATOMIC FORMS 39

3.1 Atomic Forms

The atomic form of an inference rule is the rule that occurs if we restrict
the active formulas to atoms. For example, consider the wR rule of GS1:

⊢ ΦwR
⊢ Φ,A

Its atomic form would be:

⊢ ΦwR
⊢ Φ, P

In the general form of the rule A denotes an arbitrary formula. In the
atomic form A is replaced by P , which usually denotes an atomic formula.

Locality is mostly achieved by reducing the problematic rules to their
atomic forms. We say that a rule can be reduced to atomic if it can
be replaced by its atomic form without losing anything in provability. For
example, the Axiom rule of GS1 can be reduced to atomic form:

Ax
⊢ A, Ā is equivalent to Ax

⊢ P, P̄

where P is an atomic formula. This is proved by showing that any general
instance of Ax can be derived for the atomic version of Ax. The atomic
forms are of course local rules since they only need to duplicate, erase or
compare atoms.

In the following we will show that identity, cut and weakening in
SKSgq are equivalent to their atomic forms. Contraction requires a special
treatment which will be presented in the next section.

Identity and Cut

The identity rule
S{t}

i↓
S[R, R̄]

can be reduced to its atomic form, the

atomic identity rule
S{t}

ai↓
S[α, ᾱ] . We will prove this by induction on the

complexity of the active formulas:

40 CHAPTER 3. LOCALITY

• The base case is when R is an atom or a unit. In the first case the
instance of the general rule is also an instance of its atomic form. For
the second case, assume R = t. Then R̄ = f and the given identity
instance is an instance of equivalence:

t= [t, f]

• Now assume R = [P,Q] and the induction hypothesis holds for P,Q.
This means that instances of identity that introduce P or Q can be
derived for atomic identity. Then we have:

S{t}
i↓

S[P,Q, (P̄ , Q̄)]
↝

S{t}
i↓

S[Q, Q̄]
=
S([Q, Q̄], t)

i↓
S([Q, Q̄], [P, P̄])

s
S[Q, ([P, P̄], Q̄)]

s
S[P,Q, (P̄ , Q̄)]

If R is a conjunction we use the same derivation. Just assume that
R = (P̄ , Q̄).

• If R = ∃xT and the induction hypothesis holds for T then:

S{t}
i↓

S[∃xT,∀xT̄]
↝

S{t}
=
S{∀xt}

i↓
S{∀x[T, T̄]}

u↓
S[∃xT,∀xT̄]

The same derivation works in the case that R = ∀xT̄ .

As we already mentioned, the same is true for the Axiom rule of the

sequent calculus. What is new here is that the cut rule
S(R, R̄)

i↑
S{f}

can also

be reduced to the atomic cut rule
S(α, ᾱ)

ai↑
S{f} because of the duality to

i↓. We prove it inductively considering the dual derivations:

3.1. ATOMIC FORMS 41

• If R is an atom then the instance of the general rule is also an instance
of its atomic form. If R is a unit, let’s say R = t, then R̄ = f and the
given cut instance is an instance of equivalence:

[t, f]
=

f

• If R = [P,Q] and the induction hypothesis holds for P,Q then:

S(P̄ , Q̄, [P,Q])
i↑

S{f}
↝

S(P̄ , Q̄, [P,Q])
s
S(Q̄, [(P̄ , P),Q])

s
S[(Q, Q̄), (P, P̄)]

i↑
S[(Q, Q̄), f]

=
S(Q, Q̄)

i↑
S{f}

If R is a conjunction we use the same derivation.

• If ∃xT then:

S(∃xT,∀xT̄)
i↑

S{f}
↝

S(∃xT,∀xT̄)
u↑

S{∃x(T, T̄)}
i↑

S{∃xf}
=

S{f}

The same derivation works in the case that R is of the shape ∀xQ.
Just consider Q = T̄ .

The Cut rule of GS1 can not be replaced by its atomic form. Of course
Cut is admissible for the sequent calculus. This means that cuts in a proof
can trivially be reduced to atomic by eliminating them. However, this works
only for proofs, i.e. derivations with axioms as premisses. Cut elimination
does not work for arbitrary deductions. In the calculus of structures, the
reduction works for any derivation. This is due to the perfect duality
between identity and cut, which allows us to dualise the reduction of i↓ and
get a reduction of i↑. The fact that we can reduce cuts to atomic is a very
important feature of CoS. It allows for a much simpler analysis during cut
elimination.

42 CHAPTER 3. LOCALITY

Weakening

The weakening
S{f}

w↓
S{R} can also be reduced to atomic weakening

S{f}
aw↓

S{α} . This is again done by inductively replacing a general instance

of weakening by instances on smaller formulas:

• The base cases are when R is an atom or a unit. In the first case
we have an atomic instance of w↓, thus an instance of aw↓. In the
second case we have two subcases. If R = f then the premise and the
conclusion of w↓ are the same so we can unify them. If R = t then we
replace the instance with the following derivation:

S{f}
w↓

S{t} ↝

S{f}
=
S(t, f)

=
S([t, t], f)

s
S[t, (t, f)]

=
S{t}

• Assume that R = [P,Q] and the induction hypothesis holds for P,Q. So
we can apply w↓ for them taking for granted that this general instance
can be derived for the atomic:

S{f}
w↓

S[P,Q] ↝

S{f}
=
S[f, f]

w↓
S[f,Q]

w↓
S[P,Q]

• If R = (P,Q) then:

S{f}
w↓

S(P,Q) ↝

S{f}
=
S(f, f)

w↓
S(f,Q)

w↓
S(P,Q)

• If R = ∃xP then:

S{f}
w↓

S{∃xP} ↝
S{f}

=
S{∃xf}

w↓
S{∃xP}

3.1. ATOMIC FORMS 43

• If R = ∀xP then:

S{f}
w↓

S{∀xP} ↝
S{f}

=
S{∀xf}

w↓
S{∀xP}

The reduction of
S{R}

w↑
S{t} to the atomic form

S{α}
aw↑

S{t} can be

easily taken from the dual derivations.

44 CHAPTER 3. LOCALITY

3.2 Atomic Contraction

Unfortunately, we can not do the same thing with contraction. It can
not be reduced to atomic form in SKSgq. By this we mean that if we

just replace
S[R,R]

c↓
S{R} by its atomic version

S[α,α]
ac↓

S{α} , called

atomic contraction, we will not be able to derive any general instance of
contraction.

S[∃xR,∃xT]
I1 ↓

S{∃x[R,T]}
S{∀x(R,T)}

I1 ↑
S(∀xR,∀xT)

S[(R,U), (T,V)]
m

S([R,T], [U,V])

S[∀xR,∀xT]
I2 ↓

S{∀x[R,T]}
S{∃x(R,T)}

I2 ↑
S(∃xR,∃xT)

Figure 3.1: The Medials

For this we will need the medials (Figure 3.1). These rules are sound.
We can easily derive them for c↓ and w↓:

S[(R,U), (T,V)]
m

S([R,T], [U,V]) ↝

S[(R,U), (T,V)]
w↓

S[(R,U), (T, [U,V])]
w↓

S[(R,U), ([R,T], [U,V])]
w↓

S[(R, [U,V]), ([R,T], [U,V])]
w↓

S[([R,T], [U,V]), ([R,T], [U,V])]
c↓

S([R,T], [U,V])

S[∃xR,∃xT]
I1 ↓

S{∃x[R,T]} ↝

S[∃xR,∃xT]
w↓

S[∃xR,∃x[R,T]]
w↓

S[∃x[R,T],∃x[R,T]]
c↓

S{∃x[R,T]}

3.2. ATOMIC CONTRACTION 45

S[∀xR,∀xT]
I2 ↓

S{∀x[R,T]} ↝

S[∀xR,∀xT]
w↓

S[∀xR,∀x[R,T]]
w↓

S[∀x[R,T],∀x[R,T]]
c↓

S{∀x[R,T]}
Their duals I1 ↑ and I2 ↑ are of course given by the dual derivations. The
rule m is a self-dual rule. In the next section we will show that these rules
are local. This will be achieved through a graph-theoretic approach.

Now, if we admit the medials, we are able to reduce contraction
S[R,R]

c↓
S{R} to atomic form:

• The base cases first. If R is an atom then the instance of the general
rule is also an instance of its atomic form. If R is a unit, let’s say R = f ,
then the given instance is an instance of equivalence:

S[f, f]
=

S{f}
The same holds if R = t.

• If R = [P,Q] and the induction hypothesis holds for P,Q then:

S[[P,Q], [P,Q]]
c↓

S[P,Q] ↝

S[[P,Q], [P,Q]]
=

S[P,P,Q,Q]
c↓

S[P,P,Q]
c↓

S[P,Q]
• If R = (P,Q) then:

S[(P,Q), (P,Q)]
c↓

S(P,Q) ↝

S[(P,Q), (P,Q)]
m

S([P,P], [Q,Q])
c↓

S([P,P],Q)
c↓

S(P,Q)
• If R = ∀xP then:

S[∀xP,∀xP]
c↓

S{∀xP} ↝
S[∀xP,∀xP]

I2 ↓
S{∀x[P,P]}

c↓
S{∀xP}

46 CHAPTER 3. LOCALITY

• If R = ∃xP then:

S[∃xP,∃xP]
c↓

S{∃xP} ↝
S[∃xP,∃xP]

I1 ↓
S{∃x[P,P]}

c↓
S{∃xP}

The reduction of co-contraction
S{R}

c↑
S(R,R) to the atomic form

S{α}
ac↑

S(α,α) is taken by dualising the reduction above.

Contraction in the Sequent Calculus

In the sequent calculus we can reduce the axioms to atomic and eliminate
all instances of cut. However, contraction can not be treated locally. In
Gentzen’s sequent system G3c contraction is admissible, in the sense that it
not explicit but comes as a property of the system. Unfortunately, G3c has
a context-sharing ∧R rule, which is non-local.

It mains to see if we can reduce contraction in GS1 to atomic form
without losing completeness. The answer is negative, as Brünnler showed
with his counter-example in [2]. It works for various sequent systems, as
long as they have a multiplicative ∧R rule:

Theorem 3.2.1. The following sequent:

⊢ α ∧ b, (ᾱ ∨ b̄) ∧ (ᾱ ∨ b̄)

is valid but it has no proof in multiplicative GS1 in which all contractions are

atomic.

Proof. The sequent is obviously valid. This can be easily shown with a truth
table. It contains no atoms, so atomic contraction cannot be applied. Each
applicable rule leads to a premise that is not valid. So there is no proof of
it.

Thus, deep inference is necessary for reducing contraction to atomic
and obtaining locality. We can not construct a local system in the sequent
calculus, not even for the propositional logic.

3.3. SYSTEM SKSq 47

3.3 System SKSq

We now obtain system SKSq, shown in Figure 3.2. It occurs from SKSgq
by restricting identity, cut, weakening and contraction to atomic form and
adding the medials. The up-fragment is admissible, as in SKSgq. The
asymmetric system KSq consists of the down-fragment. The propositional
fragment SKS does not contain u↓,n↓,I1 ↓,I2 ↓ and their duals. The De
Morgan laws now become useless. Observe that the rules in SKSq introduce
negation only on atoms. Thus, it is possible to restrict negation to atoms
from the beginning, considering formulas in negation normal form, and
drop the equations for negation entirely. This is customary in the one-sided
sequent calculus.

From the equivalences between general and atomic inference rules shown
in Sections 3.1 and 3.2 we obtain the following theorem:

Theorem 3.3.1. System SKSq and system SKSgq are strongly equivalent.

Thus, the correspondence with the sequent calculus holds for SKSq. It
is a sound and complete deductive system for classical logic. The same of
course holds for the asymmetric systems:

Theorem 3.3.2. System KS and system KSg are strongly equivalent.

We often use the general versions of the rules, instead of the atomic, inside
a derivation in SKS. For example, we write:

S[(α,β), (α,β)]
c↓

S(α,β)
and we mean:

S[(α,β), (α,β)]
m

S([α,α], [β,β])
ac↓

S([α,α], β)
ac↓

S(α,β)
We do that for simplicity and shorter proofs.

48 CHAPTER 3. LOCALITY

S{t}
ai↓

S[α, ᾱ]
S(α, ᾱ)

ai↑
S{f}

S([R,U], T)
s
S[(R,T), U]

S{∀x[R,T]}
u↓

S[∀xR,∃xT]
S(∃xR,∀xT)

u↑
S{∃x(R,T)}

S[∃xR,∃xT]
I1 ↓

S{∃x[R,T]}
S{∀x(R,T)}

I1 ↑
S(∀xR,∀xT)

S[(R,U), (T,V)]
m

S([R,T], [U,V])

S[∀xR,∀xT]
I2 ↓

S{∀x[R,T]}
S{∃x(R,T)}

I2 ↑
S(∃xR,∃xT)

S{f}
aw↓

S{α}
S{α}

aw↑
S{t}

S[α,α]
ac↓

S{α}
S{α}

ac↑
S(α,α)

S{R[x/τ]}
n↓

S{∃xR}
S{∀xR}

n↑
S{R[x/τ]}

Figure 3.2: System SKSq

3.3. SYSTEM SKSq 49

We have not said anything yet about the locality of the switch, the me-
dials, the equivalence rules and the rules for the quantifiers. The switch rule
involves formulas of unbounded size, but it does not require inspecting them.
To see this, consider formulas represented as trees. For example, the formula
[A, (B, [C,D])] is represented as follows:

[]

()

[]

A B C D

The switch rule:

S([R,U], T)
s
S[(R,T), U]

can be implemented by changing the marking of two nodes and exchanging
two pointers (Figure 3.3). The same technique works for the medials (Figure
3.4). We see that the concept of locality depends on the representation of
formulas. Some rules are local when formulas are represented as trees, but
they are not when formulas are represented as strings.

()

[]

R U T

↝

[]

()

R U T

Figure 3.3: Locality of the Switch

50 CHAPTER 3. LOCALITY

[]

() ()

R U T V

↝

()

[] []

R U T V

[]

∃x ∃x

R T

↝

∃x

[]

R T

[]

∀x ∀x

R T

↝

∀x

[]

R T

Figure 3.4: Locality of the Medials

3.3. SYSTEM SKSq 51

The equivalence relations that have to do with the propositional part are
local as well. However, the proviso in the following equivalence rule makes it
non-local:

∀yR = ∃yR = R, where y is not free in R.

To add or remove a quantifier, a formula of unbounded size has to be
checked for occurrences of the variable y. The same holds for the variable
renaming equation.

The second source of non-locality hides in the predicate rules. While
u↓ is local (Figure 3.5), the n↓ rule demands unbounded inspection of the
formula R. A term τ of unbounded size has to be copied into an unbounded
number of occurrences of x in R. The unbounded size of τ can be dealt with
by introducing only one function symbol at every instance. However, the
unbounded number of the occurences of the variable makes SKSq non-local.

∀x

[]

R T

↝

[]

∀x ∃x

R T

Figure 3.5: Locality of the Universal

Therefore, the propositional fragment SKS, with the corresponding
equivalence rules, is a local system. No rule needs to inspect formulas of
unbounded size. System SKSq is not fully local because of the treatment of
variables and the n↓ rule.

52 CHAPTER 3. LOCALITY

Chapter 4

Normalisation

Formalisms entail some notion of normalisation inside their proof systems.
By this we mean a transformation of deductions into ones with desirable
properties. Usually, a normal proof is considered as a representative of a
class of equivalent proofs. Natural deduction systems possess a notion of
normalisation that removes all redundancies from a proof. This procedure is
stongly connected with computation. In the sequent calculus, normalisation
means cut elimination. The existence of cut-free proofs makes the proof
search finite. In this chapter we will present several notions of normalisation
for the calculus of structures.

4.1 Normalisation in the Traditional For-

malisms

Before we see normalisation techniques for CoS it would be useful to give a
brief description of normalisation in natural deduction and sequent calculus,
two widely used shallow formalisms.

Normalisation in the Natural Deduction

The Hilbert-style axiomatization of deductive reasoning caused great dis-
satisfaction to many logicians, who would prefer a more natural treatment
of logic. The result of their attempts was natural deduction. It is a proof
calculus in which logical reasoning is expressed by inference rules that come
as close as possible to actual reasoning. In Figure 4.1 we see a system for
classical first-order logic. For every connective and quantifier there is an

53

54 CHAPTER 4. NORMALISATION

introduction and an elimination rule. The rule �c is the classical absur-
dity rule. It is an explicit form of the scheme of proof by contradiction. The
→E rule is same with the modus ponens of Hc. Derivations have the form of
deduction trees, as in sequent calculus. Formulas appearing at the top nodes,
the leaves, are the premisses. They can be either closed (in []) or open.
When you start building a derivation your assumptions are open. But after
the application of some certain rules, a set of premisses may become closed.
This happens in rules ∨E ,→I , ∃E and �c. For example, in the →I case, we
have a derivation:

A
⋮

B

It corresponds to the implication A → B. If we apply →I we will have as
conclusion A → B. So it is quite natural to close the open assumption A

since it is going to appear as a premise in the conclusion:

[A]
⋮

B→I
A→ B

By the way, this inference rule is the analogue of the deduction theorem that
we saw for other formalisms. The other cases of closed premisses happen for
similar reasons. A formula A is valid if there is a proof of A, a deduction of
A with all premisses closed. For example, here is a proof of the classically
valid formula ¬∀x¬A(x) → ∃xA(x):

[¬∀x¬A(x)]w

[¬∃xA(x)]u
[A(x)]v

∃I
∃xA(x)

→E
�→I , v

¬A(x)
∀I

∀x¬A(x)
→E

�
�c, u

∃xA(x)
→I ,w

¬∀x¬A(x) → ∃xA(x)

The variable y appearing in ∀I and ∃E is called a proper variable. It
has not to be free in A, unless y ≡ x, not to be free in the open assumptions,
except of course A[x/y], and not to be free in C (for ∃E).

4.1. NORMALISATION IN THE TRADITIONAL FORMALISMS 55

A B∧I
A ∧B

A ∧B∧E
A

A∨I
A ∨B A ∨B

[A]
⋮

C

[B]
⋮

C∨E
C

[A]
⋮

B→I
A→ B

A→ B A→E
B

[¬A]
⋮

�
�c

A

A[x/y]
∀I

∀xA

∀xA
∀E

A[x/τ]

A[x/τ]
∃I

∃xA ∃xA

[A[x/y]]
⋮

C
∃E C

Figure 4.1: System Nc

56 CHAPTER 4. NORMALISATION

A succession of the introduction and the elimination rule of a certain
connective in a derivation is called a redex. Normalisation aims at removing
those detours. Let us see the possible cases and their contractums, i.e. their
normalisations:

D1

A1

D2

A2∧I
A ∧B∧E
Ai

↝
Di

Ai

D
Ai∨I

A1 ∨A2

[A1]u
D1

C

[A2]v
D2

C
∨E , u, v

C

↝

D
Ai

Di

C

[A]u
D1

B→I , u
A→ B

D2

A→E
B

↝

D2

A
D1

B

D
A

∀I
∀yA[x/y]

∀E
A[x/t]

↝
D[x/t]
A[x/t]

D

A[y/t]
∃I

∃xA[y/x]

[A]u
D′

C
∃E , u

C

↝

D

A[y/t]
D′[y/t]
C

Each redex consists of the introduction and elimination of a logical symbol.
These are short redexes and easily eliminated, as we can see above. However,
an introduced formula may be used as a minor premise of an application
of ∨E or ∃E, then stay the same throughout a sequence of applications of
these rules, being eliminated at the end. This is also a redex and we have
to use permutations of rules in order to reduce it to the simple cases. For a

4.1. NORMALISATION IN THE TRADITIONAL FORMALISMS 57

detailed analysis look at [1]. For every derivation there is a derivation with
the same premisses and conclusion and without redexes, called a normal
form. An interesting point is that in a normal derivation all eliminations
happen above introductions. The rate of growth of a derivation under
normalisation is hyperexponential. This means that, if a derivation consists
of n rule instances, its normal form could have length equal to c ⋅ en.

The most interesting aspect of natural deduction is its close correspo-
ndence to the simply typed λ-calculus. This is a model of computation
introduced by Alonzo Church in the 1930s. The syntax of λ-terms is the
following:

• A variable x is a λ-term.

• If t is a λ-term, and x is a variable, then λx.t is a λ-term, called a
λ-abstraction. The λ is said to bind x in t.

• If t and s are λ-terms, then (t)s is a λ-term, called the application of
t on s.

The free variables of a term are those variables not bound by a lambda
abstraction. We also use metavariables for terms, like t, u, v. Intuitively,
a λ-term corresponds to a function or a program. A λ-abstraction λx.t

represents a function that takes a single input and an application (t)s
represents the application of function t to some input s. For example, λx.x
represents the identity function and λx.y represents the constant function
that always returns y, no matter the input.

So far we have defined the untyped λ-calculus. Now we can define the
types. We begin by fixing a set of primitive types B. These are called
atomic types. We can imagine them as ordinary data types, such as NAT

or BOOL. The syntax of types is:

• An atomic type is a type.

• If τ and σ are types then τ → σ is a type.

Types are assigned to λ-terms by induction on the compexity of their con-
struction:

58 CHAPTER 4. NORMALISATION

• A variable xA is a λ-term of type A.

• If t is a λ-term of type B, under the hypothesis that the free variable
xA is of type A, then λxA.t is a term of type A→ B and the condition
for xA vanishes. This can be written as an inference rule:

[xA ∶ A]u
⋮

t ∶ B→I , u
λxA.t ∶ A→ B

• If t and s are λ-terms of types A → B and A respectively, then (t)s is
a lambda term of type B. This can be written:

t ∶ A→ B s ∶ A→E (t)s ∶ B

Thus, a typed λ-term can be represented by a deduction having as conclusion
the term with its type. Closed hypotheses correspond to the arguments of
the program and open hypotheses just denote free variables inside it.

Logic Programming

Formulas Types

Proofs Programs

Normalisation Computation

Figure 4.2: Curry-Howard Correspondence

If we consider types as formulas and ignore the terms, the typing rules
→I and →E introduced above are identical to the rules for → of natural de-
duction. We can observe a syntactic analogy between derivations and terms
(programs) of the typed lambda calculus, since they are both built from the
same inference rules. A typed term can be seen as the proof of its type (seen
as a formula). A proof is a program and the formula it proves is the return
type of the program. Thus, the given computation model is equivalent to
→Nm, the fragment of Nc containing only →I and →E. We can define more
type constructors, besides →, that will correspond to the connectives ∨ and ∧.

4.1. NORMALISATION IN THE TRADITIONAL FORMALISMS 59

Furthermore, it can be shown that the normalisation of proofs in →Nm
corresponds to computing in the simply typed λ-calculus. Computation is
expressed by β-reduction:

(λx.t)s Ð→ t[x/s]

An expression of the form (λx.t)s is called a redex and t[x/s] is its co-
ntractum. Beta reduction says the obvious: if a function t with argument
x is applied to s then every occurence of x in t will be replaced by s. Check
that this rewriting rule is exactly the analogue of:

[A]u
D1

B→I , u
A→ B

D2

A→E
B

↝

D2

A
D1

B

In other words, the correspondence described above respects the redex -
contractum relation. It is interesting that plugging a proof on the premisses
of a derivation corresponds to substitution, which can express computa-
tion. The close connection between deductive systems and computational
machines is known as the Curry-Howard correspondence (Figure 4.2).
Designers of functional programming languages prefer natural deduction
because of that close correspondence with term calculi.

Cut Elimination in the Sequent Calculus

We are going to prove that the Cut rule is admissible. This means that if
there is a proof of Γ ⊢∆ in GS1 + Cut then there is a proof of it in GS1. A
normal proof in the sequent calculus is a proof without cuts. Let us recall
the rule:

⊢ Φ,A ⊢ Ψ, Ā
Cut

⊢ Φ,Ψ

So we have to show that if there is a cut-free proof of ⊢ Φ,A and a cut-free
proof of ⊢ Ψ, Ā then there is a cut-free proof of ⊢ Φ,Ψ (closure under Cut).

First we need to give the following definitions:

Definition 4.1.1. The level of a cut is the sum of the depths of the dedu-
ctions of its premisses.

60 CHAPTER 4. NORMALISATION

The level is a measure of how deep a cut is inside a proof.

Definition 4.1.2. The rank of a cut is defined as ∣A∣ + 1, where ∣A∣ is the
depth of the tree representation of the formula.
The cutrank of a deduction is the maximum of the ranks of the cut formulas
occuring in it.

The rank of a cut is a measure of the complexity of the cut formula A.

We will give a brief description of Gentzen’s algorithm for eliminating
cuts from a given proof. The method proceeds by a main induction on
the cutrank with a subinduction on the level of the cut. In other words,
the order in which cuts are removed is not random. Each time we choose
the topmost cut among all cuts with rank equal to the rank of the whole
deduction. Then the cut is pushed upwards to the top of the proof using
permutations of rules. When it meets the axioms it gets eliminated. Then
we choose the next cut etc.

Let’s give a more detailed description. In the conclusion of each rule, the
formula not in the context is called the principal formula. In addition, we
will consider axioms of the form:

Ax
⊢ Γ, P, P̄

where P is an atomic formula. This is an equivalent approach, since the Ax
rule can be reduced to atomic and putting a context Γ in it just makes the
weakening rule implicit (admissible). This happens in systems G2c and G3c
(see [1]). Consider a topmost maximal-rank cut inside a proof:

∆1

⊢ Φ,A

∆2

⊢ Ψ, Ā
Cut

⊢ Φ,Ψ

where ∆1,∆2 are cut-free proofs. We have to examine the following cases:

1. One of the premisses is an axiom instance. We have to examine several
subcases. Let’s see the main two:

• The premise on the left is an application of Ax and the cutformula
is not principal:

Ax
⊢ Γ, P, P̄ ,A

D1

⊢ Γ′, Ā
Cut

⊢ Γ,Γ′, P, P̄

4.1. NORMALISATION IN THE TRADITIONAL FORMALISMS 61

In this case the conclusion is an axiom, so we can take it as the
cut-free proof.

• The premise on the left is an application of Ax and the principal
formula is also a cutformula. In that case we could just apply all
the weakenings needed to D1:

Ax
⊢ Γ, P, P̄

D1

⊢ Γ′, P̄
Cut

⊢ Γ,Γ′, P̄

⇓

D1

⊢ Γ′, P̄
wR

⊢ Γ,Γ′, P̄

When the cut meets the axiom they both vanish. This phenomenon is
often referred to as interaction. It exhibits the symmetry between
Ax and Cut.

2. The premisses are not axioms but in at least one of them the cut formula
is not principal. In that case we can permute the cut upwards, passing
it over the rules that do not act on the cut formula.

3. The cut formula is principal on both sides. In this case, on one branch
a logical rule applies to the main connective of the cut formula and on
the other branch the corresponding rule applies to the dual connective
of the dual cut formula. If the cut formula is a conjunction (or a
disjunction) we make the following transformation:

D1

⊢ Γ,A

D2

⊢ Γ′,B
∧R

⊢ Γ,Γ′,A ∧B

D3

⊢∆, Ā, B̄
∨R

⊢∆, Ā ∨ B̄
Cut

⊢ Γ,Γ′,∆

⇓

D1

⊢ Γ,A

D2

⊢ Γ′,B

D3

⊢∆, Ā, B̄
Cut

⊢ Γ′,∆, Ā
Cut

⊢ Γ,Γ′,∆

62 CHAPTER 4. NORMALISATION

We see that we traded the cut for two cuts of lower rank and lower
level. About the same happens in the case where the cut formula is
existentially (or universally) quantified:

D1

⊢ Γ,A[x/y]
∀R ⊢ Γ,∀xA

D2

⊢ Γ′,A[x/t]
∃R

⊢ Γ′,∃xĀ
Cut

⊢ Γ,Γ′

⇓

D1[y/t]
⊢ Γ,A[x/t]

D2

⊢ Γ′,A[x/t]
Cut

⊢ Γ,Γ′

So in every step the cut is either permuted upwards or becomes less
complex. This inevitably pushes the cuts to the top, where they are
eliminated. Therefore, every proof can be rewritten without cuts, and this
means that Cut is admissible. Recall that in SKSq we just have to consider
atomic cuts. Therefore one induction measure, the cut-rank, disappears.
There are also semantical proofs for closure under Cut but they are not more
efficient. For linear logic there is no semantical proof but the syntactical
proof above scales to it.

The main purpose of cut elimination in the sequent calculus is to obtain
the following property:

Definition 4.1.3. An inference rule obeys the subformula property if
every subformula of its premisses occurs in the conclusion. A proof system
obeys the property if every rule does.

The subformula property is also called analyticity. An immediate con-
sequence is that, when applying an analytic rule bottom-up, there is only a
finite number of premisses to choose from. We will call such an inference rule
finitely generating. This property is desirable from the viewpoint of proof
search, since it implies that the search tree is finitely branching. This brings
us very close to decidability, i.e. all sentences can be proved, or shown
non-provable, mechanically.

4.1. NORMALISATION IN THE TRADITIONAL FORMALISMS 63

This is the property we are after when prove the admissibility of Cut,
since all the other rules of sequent calculus are analytic. The Cut rule
in a sequent system is infinitely generating. Given its conclusion, there
is an infinite choice of premisses, corresponding to an infinite choice of
cut formulas. Cut-free sequent systems are analytic and thus suitable
for theorem proving. In logic programming, proof search corresponds to
computation and a proof thus corresponds to a successful execution of a
program. Designers of logic programming languages prefer the sequent
calculus, because infinite choice and much of the unwanted nondeterminism
is limited to the Cut rule, which is admissible.

64 CHAPTER 4. NORMALISATION

4.2 Cut Elimination With Splitting

We saw that a normal proof in the sequent calculus is a proof without cuts.
In CoS, a normal proof is a proof in the down-fragment:

Definition 4.2.1. A proof in the calculus of structures is normal if it does
not contain any up-rules.

We have seen that the up-fragment is admissible by the translation to
the sequent calculus in Section 2.3. This means that for every proof in
CoS there is a proof of the same formula in the down-fragment. Now we
will present a method for eliminating the up-fragment purely based on the
calculus of structures.

First, we show that all we need is to eliminate the cuts i↑, since the
up-fragment can be derived for i↑ and the down-fragment:

Theorem 4.2.1. Each rule in SKSq is derivable for identity, cut, switch and

its dual rule.

Proof. We replace every instance of
S{T}

ρ ↑
S{R} with the following derivation:

S{T}
=
S(T, t)

i↓
S(T, [R, R̄])

s
S[R, (T, R̄)]

ρ ↓
S[R, (T, T̄)]

i↑
S[R,f]

=
S{R}

So the rules c↑,w↑,u↑ and n↑ are derivable in KSq∪{i↑}. We will not lose
anything in provability, even for derivations, if we throw them away. These
rules just ensure that the system is symmetric. This is why the up-rules
are also called “cuts” and a proof in the down-fragment “cut-free”. When
we want to normalise a proof we have first to replace any up-rule with the
derivation above. Then the only up-rule remaining is the cut rule.

During cut elimination in the sequent calculus, we get into the crucial
situation where on one branch a logical rule applies to the main connective
of the cut formula and on the other branch the corresponding rule applies to

4.2. CUT ELIMINATION WITH SPLITTING 65

the dual connective of the dual cut formula. In CoS, rules apply deep inside
a context, they are not restricted to main connectives. The methodology
of the sequent calculus thus does not apply to the calculus of structures.
Instead, we will adopt the technique of splitting, which covers the broadest
range of systems in CoS. We will see a cut elimination algorithm for the
propositional system SKS, for reasons of simplicity. The method for SKSq
will be just sketched, since it follows the same idea.

The first step of the procedure will be the reduction of all cuts to atomic.
We are working in SKS so we take that for granted. Before moving on we
will need the following definition:

Definition 4.2.2. The following rule is called super switch:

S{T{R}}
ss↓

S[R,T{f}]
Observe that the rule ss↓ takes the formula R from deep inside the context

T{ } to a more shallow position. The rule is derivable in SKS:

Lemma 4.2.2. The rule ss↓ is derivable for {s}.

Proof. We will show this by structural induction on T{ }. Consider an in-
stance of ss↓:

S{T{R}}
ss↓

S[R,T{f}]

• If T{ } is the empty context we can replace the given instance by an
equivalence rule:

S{R}
=
S[R,f]

• If T{ } = [U,V { }] then, by induction hypothesis, we can apply ss↓ on
the context V { }. So we have:

S[U,V {R}]
ss↓

S[U,R,V {f}]
=
S[R, [U,V {f}]]

66 CHAPTER 4. NORMALISATION

• If T{ } = (U,V { }) the instance of the rule is derived as follows:

S(U,V {R})
ss↓

S(U, [R,V {f}])
s
S[R, (U,V {f})]

We can apply ss↓ on V { } by induction hypothesis.

The atomic cut rule can be replaced by a more restricted version of it. It
will then suffice to eliminate this restricted version in order to eliminate all
cuts:

Definition 4.2.3. An instance of atomic cut in SKS is called shallow
atomic cut if it is of the following form:

[S, (α, ᾱ)]
sai↑

S

In other words, the dual pair of atoms is not inside a context. It is quite
simple to reduce all instances of atomic cut to shallow atomic cuts. This will
be the second step of the procedure:

Lemma 4.2.3. The rule ai↑ is derivable for {sai↑,s}.

Proof. An instance of ai↑ can be replaced by the following derivation:

S(α, ᾱ)
ai↑

S{f} ↝

S(α, ᾱ)
ss↓ [(α, ᾱ), S{f}]
sai↑ [f,S{f}]

=
S{f}

The rule ss↓ can in turn be replaced by a derivation of switches.

In the sequent calculus there are two proofs above a cut instance. The
cut formula is in the conclusion of one proof and the dual of the cut formula
is in the conclusion of the other proof. In the calculus of structures we just
have one proof above the cut which contains both, the cut formula and its
dual. To gain access to two proofs, as in the sequent calculus, we have to use
the following lemma:

Lemma 4.2.4. Each proof

t

∥KS

T{α}
can be transformed into a proof

t

∥KS

T{t}
.

4.2. CUT ELIMINATION WITH SPLITTING 67

Proof. We replace all occurrences of α by the unit t. Replacements inside
the context of any rule instance leave this rule instance intact. Instances
of the rules m and s remain intact, also in the case that atom occurrences
are replaced inside redex and contractum. Instances of the other rules are
replaced by the following derivations:

S{t}
ai↓

S[α, ᾱ] ↝
S{t}

=
S[t, f]

aw↓
S[t, ᾱ]

S{f}
aw↓

S{α} ↝

S{f}
=
S([t, t], f)

s
S[t, (t, f)]

=
S{t}

S[α,α]
ac↓

S{α} ↝
S[t, t]

=
S{t}

Therefore, in the third step of the procedure we choose the topmost cut
instance:

t

Π∥KS

[R, (α, ᾱ)]
sai↑

R

∥KS∪{sai↑}

T

and we apply the previous lemma twice on the proof Π above it, once for α
and once for ᾱ. This way we obtain two different proofs:

t

Π1∥KS

[R,α]

t

Π2∥KS

[R, ᾱ]
This is what we call splitting.

68 CHAPTER 4. NORMALISATION

It remains one last step. Pick one of the two proofs, let’s say Π1. Replace
all occurrences of α by the formula R. Replacements inside the context of
any rule instance leave this rule instance intact. Instances of the rules m and
s remain intact, also in the case that atom occurrences are replaced inside
redex and contractum. Instances of ac↓ and aw↓ are replaced by their general
versions:

S{f}
aw↓

S{α} ↝
S{f}

w↓
S{R}

S[α,α]
ac↓

S{α} ↝
S[R,R]

c↓
S{R}

These general instances can be easily reduced to atomic instances. The
interesting case is the identity. We can’t just replace α by R because the
inference will not be valid. This is where Π2 is needed. We will put it in the
place of every identity instance that introduces α:

S{t}
ai↓

S[α, ᾱ] ↝

S{t}
S{Π2}∥KS

S[R, ᾱ]
This is reminding of the plugging in natural deduction. There we plugged
a proof with conlusion A to a premise A of a derivation. Here we have the

proof Π2, which corresponds to the derivation

α

∥
R

, and we plug it to the

identity instances of Π1 that introduce α. This situation becomes available
due to the atomicity of i↑.

After the substitution of Π2 into Π1 we build the following proof:

t

∥KS

[R,R]
c↓

R

∥KS∪{sai↑}

T

The cut instance has been eliminated. We next choose the new topmost cut
and proceed the same way. The procedure described above, also displayed
in Figure 4.3, proves the following theorem:

4.2. CUT ELIMINATION WITH SPLITTING 69

Theorem 4.2.5 (Cut Elimination). Each proof

t

∥SKS

T

can be transformed

into a proof

t

∥KS

T

.

CUTS
⇓

ATOMIC CUTS
⇓

SHALLOW ATOMIC CUTS
⇓

SPLITTING
⇓

PLUGGING

Figure 4.3: Cut Elimination for SKS

Splitting for Predicate Logic

The main difficulty in scaling this procedure to predicate logic is the
presence of existential quantifiers in the context of a cut which bind variables
in α and ᾱ. This situation prevents the splitting of the proof above the cut
because the following equivalence does not hold:

∃x(α(x), α(x)) ⇎ ∃xα(x) and ∃xα(x)

The direction from right to left is of course not valid. We will call a cut
splittable if it is not in the scope of an existential quantifier. The method
described above has to be modified in order to deal only with splittable
cuts. We will examine in short what changes at each step. The procedure
in full detail is in [4].

1. The first thing that we have to do is to turn all cuts to splittable cuts.
The following transformation allows us to replace up-rules by splittable
cuts:

70 CHAPTER 4. NORMALISATION

S{T}
ρ ↑

S{R} ↝

S{T}
= (S{T}, t)

i↓
(S{T}, [S{R}, S{R}])

s
[S{R}, (S{T}, S{R})]

ρ ↓
[S{R}, (S{T}, S{T})]

i↑ [S{R}, f]
=

S{R}

If we consider a context with existential quantifiers as S{ } and ρ ↑=i↑
we see that we can trade an unsplittable cut for a splittable cut with
a bigger cut formula. Indeed, think of T as (R, R̄). The cut formula
is at first R but if we use the derivation above we get a splittable cut
with cut formula S(R, R̄). Note that we can use this transformation
for the reducing of all up-rules instead of that in Theorem 4.2.1. The
cuts that will occur will all be splittable.

2. Now, following the method given for SKS, we have to reduce these
cuts to atomic, without of course losing splittability. We have seen the
reduction of i↑ to atomic in section 3.1. It is performed recursively
on the complexity of the cut formula. In the cases when the main
connective is a conjunction or a disjunction, the procedure reduces the
rank of the cut formula replacing a splittable cut by splittable cuts.
Let’s now remember the following case:

S(∃xT,∀xT̄)
i↑

S{f}
↝

S(∃xT,∀xT̄)
u↑

S{∃x(T, T̄)}
i↑

S{∃xf}
=

S{f}

Here, the i↑ instance on the left may be splittable but the reduced cut on
the right is inside a context S{∃x{ }}, and x is free in T (otherwise the
given cut would trivially reduce using the vacuous quantifier equation).
We can’t use this transformation because it destroys splittability. What
we do is splitting the cut on the left although it is not atomic. This of
course makes its plugging a more complex issue.

3. Next we should replace the atomic cuts by shallow atomic cuts and
split the topmost among them. But the sai↑ for predicate calculus is
the following:

4.2. CUT ELIMINATION WITH SPLITTING 71

[S,∃x(α, ᾱ)]
sai↑

S

where ∃x denotes a sequence of quantifiers that existentially close (a, ā).
This is not a splittable cut since it is in the scope of those existential
quantifiers. We can not reduce cuts to shallow and keep them splittable
at the same time. We will have to do the splitting first, and then we
obtain shallowness by applying ss↓ to each part separately.

4. The plugging of the two proofs happens as in the propositional case.
Then we proceed to the next instance of ai↑.

One could ask why to bother and try for internal methods when we can
eliminate cuts through translations to the sequent calculus. That is an al-
gorithmic procedure as well. After all, we usually just need a proof of cut
admissibility in order to have analyticity. However, there are several rea-
sons to study techniques for normalisation purely based on the calculus of
structures:

• Calculus of structures is no more depended on sequent calculus and
becomes an autonomous formalism for logical reasoning.

• We could get a simpler algorithm for eliminating cuts compared to
that of sequent calculus and thus take some interesting results about
the complexity of cut elimination procedures.

• There are several kinds of logic, such as intermediate, substructural and
modal logics, that there is not a cut-free sequent calculus for them.
This explains why some of these logics are usually formalised using
hypersequents:

Γ1 ⊢∆1 ∣ Γ2 ⊢∆2 ∣ ⋯ ∣ Γn ⊢∆n

The structural connective ∣ is interpreted as a disjunction. So a hyperse-
quent is a disjunction of ordinary sequents. In this extended formalism
a cut-free system may exist for a logic that does not have a cut-free
sequent system. A syntactic cut elimination for SKS could be useful in
order to obtain cut-free systems for these logics in CoS without having
to translate the complicated structure of hypersequents.

• SKS admits a cut elimination procedure which is similar to normalisa-
tion in natural deduction, i.e. plugging proofs to the premisses. This
could lead to a computational interpretation of the proof system. Re-
call that the plugging corresponds to passing an input to a function in
the λ-calculus.

72 CHAPTER 4. NORMALISATION

4.3 Normalisation With Decomposition

In this section we are going to generalise the notion of normalisation for
arbitrary derivations. As we have seen, the normal form of a proof of R in
SKSgq is a proof ofR in KSgq, that is the proof obtained after the elimination
of the up-fragment. But KSgq is not strongly equivalent to SKSgq. In other
words, we can not eliminate the up-rules from an arbitrary derivation. So
we have to define what is a normal form for a derivation. The following
definition is not characterised by the absence of certain inference rules, but
by the the way in which the inference rules are composed:

Definition 4.3.1. We will call a derivation

A

∥SKSgq

B

normal if there is no

up-rule below a down-rule.

So in a normal derivation the up-rules are applied first and then follows
a part with only down-rules. We will call this separation decomposition.
A normal derivation has the following shape:

A

∥↑
C

∥↓
B

This is similar to what happens in the sequent calculus. During cut
elimination, instances of Cut are pushed to the top of the proof. There, the
cuts interact with the Axiom instances and vanish. But if we have to do
with derivations instead of proofs this can not happen. The cuts do not
interact with arbitrary non-logical axioms. So we obtain a derivation where
cuts are not eliminated but are moved to the top, right below the axioms.
There is also a similarity with natural deduction. A normal proof in Nc
consists of an upper part with elimination rules and a down part with only
introduction rules.

The definition subsumes the definition of a normal proof (Definition
4.2.1). A normal proof is of course a normal derivation, just without the
up-fragment part. For the opposite consider a proof, which is a derivation
with premise syntactically equivalent to t. Suppose that we get its normal
form, if seen as a derivation:

4.3. NORMALISATION WITH DECOMPOSITION 73

t

∥↑
P

∥↓
R

Since the conclusion of all rules in the up-fragment is equivalent to t if their
premise is equivalent to t, then P has to be equivalent to t. We thus have a
proof of R in the down-fragment, a normal proof.

The question is if, given a derivation, there is always a derivation in
normal form with the same premise and conclusion. Brünnler showed this
by a translation to sequent calculus in [5]. The system he used is a variant
of G1c, which is restricted to formulas in negation normal form (Figure 4.4).
This explains the two additional axiom rules (⊢ A, Ā , A, Ā ⊢) and the
absence of the rules for implication →L and →R. Let us call this system LK,
as the original Gentzen’s system, although there are slight differences. The
proof is resembling of that of equivalence between GS1 and SKSgq. We will
use again the translations ⋅ G and ⋅ S.

Let us first examine the direction from CoS to sequent calculus:

Lemma 4.3.1. For each derivation from A to B in SKSgq there is a proof

of AG ⊢ BG in LK + Cut.

Proof. We will prove the theorem by induction on the length of the given
derivation in SKSgq. In proofs we will drop the subscript of the translation
to improve readability:

• If the derivation consists of just one formula B then the corresponding
derivation in GS1 consists of just one sequent B ⊢ B.

• We single out the topmost rule instance of the derivation ∆ in CoS:

A

∆ ∥SKSgq

B

=

S{T}
ρ
S{R}
∆′ ∥SKSgq

B

74 CHAPTER 4. NORMALISATION

Ax
A ⊢ A

⊺ ⊢ ⊺

Ax
⊢ A, Ā

Ax
A, Ā ⊢

Φ,A,A ⊢ Ψ
cL

Φ,A ⊢ Ψ
Φ ⊢ A,A,Ψ

cR
Φ ⊢ A,Ψ

Φ ⊢ ΨwL
Φ,A ⊢ Ψ

Φ ⊢ ΨwR
Φ ⊢ A,Ψ

Φ,A,B ⊢ Ψ
∧L

Φ,A ∧B ⊢ Ψ
Φ ⊢ A,Ψ Φ′ ⊢ B,Ψ′

∧R
Φ,Φ′ ⊢ A ∧B,Ψ,Ψ′

A,Φ ⊢ Ψ B,Φ′ ⊢ Ψ′
∨L

Φ,Φ′,A ∨B ⊢ Ψ,Ψ′
Φ ⊢ A,B,Ψ

∨R
Φ ⊢ A ∨B,Ψ

Φ,A[x/t] ⊢ Ψ
∀L Φ,∀xA ⊢ Ψ

Φ ⊢ A[x/y],Ψ
∀R y ∉ FV {Φ,∀xA,Ψ}

Φ ⊢ ∀xA,Ψ

Φ,A[x/y] ⊢ Ψ
∃L y ∉ FV {Φ,∃xA,Ψ}

Φ,∃xA ⊢ Ψ

Φ ⊢ A[x/τ],Ψ
∃R Φ ⊢ ∃xA,Ψ

Figure 4.4: System LK

4.3. NORMALISATION WITH DECOMPOSITION 75

The corresponding derivation in GS1 will be as follows:

▽Π

T ⊢ R

▽∆1

S{T} ⊢ S{R}
▽∆2

S{R} ⊢ B
Cut

S{T} ⊢B

where ∆1 exists by a slight modification of Lemma 2.2.1 and ∆2 exists
by induction hypothesis. The proof Π depends on the rule ρ. Thus it

will be enough to show that for every rule
S{T}

ρ
S{R} of SKSgq there

exists a proof Π▽
T ⊢ R

in GS1:

S{t}
i↓

S[R, R̄]
↝ Ax

⊢ R, R̄

S(R, R̄)
i↑

S{f}
↝ Ax

R, R̄ ⊢

S([R,U], T)
s
S[(R,T), U] ↝

Ax
R ⊢ R

Ax
U ⊢ U∨L

R ∨U ⊢ R,U
Ax

T ⊢ T
∧R

T,R ∨U ⊢ R ∧ T,U
∧L

T ∧ (R ∨U) ⊢ R ∧ T,U
∨R

T ∧ (R ∨U) ⊢ (R ∧ T) ∨U

S{f}
w↓

S{R} ↝
⊺ ⊢ ⊺wR
⊢ R,⊺

76 CHAPTER 4. NORMALISATION

S{R}
w↑

S{t} ↝
⊺ ⊢ ⊺wL
R ⊢ ⊺

S[R,R]
c↓

S{R} ↝

Ax
R ⊢ R

Ax
R ⊢ R∨L

R ∨R ⊢ R,R
cR

R ∨R ⊢ R

S{R}
c↑

S(R,R) ↝

Ax
R ⊢ R

Ax
R ⊢ R∧R

R,R ⊢ R ∧R
cL

R ⊢ R ∧R

S{∀x[R,T]}
u↓

S[∀xR,∃xT] ↝

Ax
R ⊢ R

Ax
T ⊢ T∨L

R ∨ T ⊢ R,T
∃R R ∨ T ⊢ R,∃xT

∀L
∀x(R ∨ T) ⊢ R,∃xT

∀R
∀x(R ∨ T) ⊢ ∀xR,∃xT

∨R
∀x(R ∨ T) ⊢ ∀xR ∨ ∃xT

S(∃xR,∀xT)
u↑

S{∃x(R,T)} ↝

Ax
R ⊢ R

Ax
T ⊢ T∧R

R,T ⊢ R ∧ T
∃R

R,T ⊢ ∃x(R ∧ T)
∀L

R,∀T ⊢ ∃x(R ∧ T)
∃L

∃xR,∀xT ⊢ ∃x(R ∧ T)
∧L

∃xR ∧ ∀xT ⊢ ∃x(R ∧ T)

4.3. NORMALISATION WITH DECOMPOSITION 77

S{R[x/τ]}
n↓

S{∃xR} ↝
Ax

R[x/τ] ⊢ R[x/τ]
∃R

R[x/τ] ⊢ ∃xR

S{∀xR}
n↑

S{R[x/τ]} ↝
Ax

R[x/τ] ⊢ R[x/τ]
∀L

∀xR ⊢ R[x/τ]

For the direction from LK to SKSgq we can show the following:

Lemma 4.3.2. For each proof of Φ ⊢ Ψ in LK there is a derivation in normal

form from ΦS to ΨS in SKSgq.

Proof. By induction on the depth of the proof tree:

• The base cases are:

Ax
⊢ A, Ā ↝

ti↓ [A, Ā]

Ax
A, Ā ⊢ ↝ (A, Ā)

i↑
f

Ax
A ⊢ A ↝ A

• Now we will consider proofs in LK assuming that the part above the
last rule can be translated in normal form (induction hypothesis). We
have to check all the possible last rule instances:

78 CHAPTER 4. NORMALISATION

Φ,A,A ⊢ Ψ
cL

Φ,A ⊢ Ψ
↝

(Φ,A)
c↑ (Φ,A,A)

∥↑
C

∥↓
Ψ

Φ ⊢ A,A,Ψ
cR

Φ ⊢ A,Ψ
↝

Φ

∥↑
C

∥↓
[A,A,Ψ]

c↓ [A,Ψ]

Φ ⊢ ΨwL
Φ,A ⊢ Ψ

↝

(Φ,A)
w↑

Φ

∥↑
C

∥↓
Ψ

Φ ⊢ ΨwR
Φ ⊢ A,Ψ

↝

Φ

∥↑
C

∥↓
Ψw↓ [A,Ψ]

4.3. NORMALISATION WITH DECOMPOSITION 79

Φ,A,B ⊢ Ψ
∧L

Φ,A ∧B ⊢ Ψ
↝

(Φ, (A,B))
= (Φ,A,B)

∥↑
C

∥↓
Ψ

In the two following cases we get two normal derivations by induction
hypothesis, and they have to be taken apart and composed in the right
way to yield the normal derivation:

Φ ⊢ A,Ψ Φ′ ⊢ B,Ψ′
∧R

Φ,Φ′ ⊢ A ∧B,Ψ,Ψ′
↝

(Φ , Φ′)
∥↑ ∥↑
(C , C ′)
∥↓ ∥↓

([A,Ψ], [B,Ψ′])
s [([A,Ψ],B),Ψ′]
s [(A,B),Ψ,Ψ′]

A,Φ ⊢ Ψ B,Φ′ ⊢ Ψ′
∨L

Φ,Φ′,A ∨B ⊢ Ψ,Ψ′
↝

([A,B],Φ,Φ′)
s ([(A,Φ),B],Φ′)
s [(A,Φ),(B,Φ′)]

∥↑ ∥↑
[C , C ′]
∥↓ ∥↓
[Ψ , Ψ′]

80 CHAPTER 4. NORMALISATION

Φ ⊢ A,B,Ψ
∨R

Φ ⊢ A ∨B,Ψ
↝

Φ

∥↑
C

∥↓
[A,B,Ψ]

= [[A,B],Ψ]

Φ,A[x/t] ⊢ Ψ
∀L Φ,∀xA ⊢ Ψ

↝

(Φ,∀xA)
n↑ (Φ,A[x/t])

∥↑
C

∥↓
Ψ

Φ ⊢ A[x/y],Ψ
∀R y ∉ FV {Φ,∀xA,Ψ}

Φ ⊢ ∀xA,Ψ
↝

Φ=
∀yΦ

∥↑
∀yC

∥↓
∀y[A[x/y],Ψ]

u↓ [∀yA[x/y],∀yΨ]
= [∀xA,∀yΨ]
= [∀xA,Ψ]

4.3. NORMALISATION WITH DECOMPOSITION 81

In the derivation above we used three times the equivalence relation,
once for variable renaming and twice for vacuous quantifier. Those
equivalences carry a proviso. In the instances above, y should not be
free in Φ,Ψ or A. The proviso on the eigenvariable of ∀R is exactly
what is needed to ensure those conditions. The same situation occurs
in the following case:

Φ,A[x/y] ⊢ Ψ
∃L y ∉ FV {Φ,∃xA,Ψ}

Φ,∃xA ⊢ Ψ
↝

(Φ,∃xA)
= (Φ,∃yA[x/y])
= (∀yΦ,∃yA[x/y])
u↑

∃y(Φ,A[x/y])
∥↑
C

∥↓
∃yΨ

=
Ψ

Φ ⊢ A[x/τ],Ψ
∃R Φ ⊢ ∃xA,Ψ

↝

Φ

∥↑
C

∥↓
[A[x/t],Ψ]

n↓ [∃xA,Ψ]

Observe that in all cases we added either an up-rule to the top or
a down-rule to the bottom so that the derivation remains in normal
form.

82 CHAPTER 4. NORMALISATION

Note that the translation of Cut does not yield a normal derivation:

Φ ⊢ A,Ψ Φ′,A ⊢ Ψ′
Cut

Φ,Φ′ ⊢ Ψ,Ψ′
↝

(Φ′ , Φ)
∥↑

(Φ′ , C)
∥↓

(Φ′, [A,Ψ])
s [Ψ, (Φ′,A)]

∥↑
[Ψ , C ′]

∥↓
[Ψ , Ψ′]

This is natural since translations between different formalisms should always
respect the notion of normal form. We also saw that in the translation of
Section 2.2, where only proofs are involved, Cut translates to the corre-
sponding redex i↑ and vice versa. For another example, when we translate
from natural deduction to sequent calculus, normal derivations correspond
to cut-free proofs.

In the translation above we can notice a connection between the rules
of the sequent calculus and those of the calculus of structures. Each left
rule is translated by adding an up-rule to the top of the derivation. The
right rules correspond to down-rules added to the bottom. If we look
at the proof of the equivalence between natural deduction and sequent
systems (see [1]) we will notice an interesting similarity. Suppose that
we translate inductively the proof of a sequent Φ ⊢ A into a deduction
with conclusion A and open assumptions a subset of Φ. If the last rule
is a right rule then we translate it by adding an introduction rule to
the bottom of the deduction. Left rules correspond to elimination rules
added to the top. So we could say that in all three formalisms rules come
in dual pairs, and there is a connection between those kinds of duality
(Figure 4.5). We could also make a straightforward connection between
CoS and Nc by recalling that a normal derivation in natural deduction has
an upper part with elimination rules and a down part with introduction rules.

4.3. NORMALISATION WITH DECOMPOSITION 83

Natural Deduction Sequent Calculus Calculus of Structures

Introduction Rules Right Rules Down-Rules

Elimination Rules Left Rules Up-Rules

Figure 4.5: Dualities

The two lemmas above lead us to the following theorem:

Theorem 4.3.3 (Normalisation). For every derivation

A

∥↑↓
B

there is a

derivation

A

∥↑
C

∥↓
B

.

Proof. We just follow the steps (Figure 4.6):

1. We translate the given derivation into a proof of the sequent A ⊢ B

(Lemma 4.3.1).

2. We eliminate cuts and obtain a cut-free proof.

3. We translate the cut-free proof of A ⊢ B into a derivation from A to
B (Lemma 4.3.2). The translation guarantees that the derivation is in
normal form.

The reason for cut elimination (step 2) is that the Cut rule can not be
translated into a normal derivation. Therefore, Lemma 4.3.2 does not hold
for GS1 + Cut.

A

∥↑↓
B

Ô⇒ ▽LK+Cut

AG ⊢ BG

Ô⇒ ▽LK

AG ⊢ BG

Ô⇒

A

∥↑
C

∥↓
B

Figure 4.6: Normalisation Through Translation

84 CHAPTER 4. NORMALISATION

This decomposition theorem can be seen as the symmetric closure of cut
elimination. The normal form of a derivation is a generalisation of the normal
form of a proof. Therefore, we obtain as a corollary what we have already
proved by translation (Theorem 2.3.1) and syntactically (Theorem 4.2.5):

Corollary 4.3.4. For every proof

t

∥↑↓
A

there is a proof

t

∥↓
A

.

It is an interesting question whether we can prove the normalisation the-
orem without the detour via the sequent calculus. The point of proving
internally the same theorem is that the method could be applied to logics
which do not have a cut-free sequent calculus. An independent procedure
of normalisation could even lead to an approach to computation. A nor-

mal derivation

Q

∥
R

could be seen as a function f ∶ Q → R and a possible

input u of type Q could be represented by the normal derivation
P

∥
Q

. Their

composition:

P

∥↑
C

∥↓
Q

∥↑
C ′

∥↓
R

is not of course in normal form. This normalisation would correspond to the
computation of f(u).

An internal method should be based on permutations of rules:

Definition 4.3.2. We say that a rule ρ permutes over rule π, or rule π

permutes under ρ, if for every derivation
Tπ
Uρ
R

there is a derivation
Tρ
Vπ
R

for some formula V .

4.3. NORMALISATION WITH DECOMPOSITION 85

Permuting an instance of a rule over an instance of another rule in a
derivation means exchanging the two rules without breaking the derivation.
While it is easy to come up with local proof transformations that normalise
a derivation if they terminate, the presence of contraction makes termination
hard to show. This has been achieved for some systems related to linear
logic, by essential use of the fact that contraction is restricted. However, a
syntactic normalisation procedure for derivations in SKSgq remains an open
problem.

Interpolation

In system SKSgq there are rules that, when going up in a derivation,
introduce new predicate symbols: the cut rule and the co-weakening rule.
Dually, the identity and the weakening rule are the only rules that introduce
new predicate symbols when going down. Using the normalisation theorem
4.3.3, a derivation is separated into two phases. In the top one, we have
rules that do not introduce new atoms going down, since there are only up-
rules and therefore no identity or weakening. In the bottom phase, rules do
not introduce new atoms going up because there is no cut or co-weakening
instance. Consequently, the formula in between contains only atoms that
occur both in the premise and in the conclusion of the derivation. This
proves the following theorem:

Theorem 4.3.5 (Craig Interpolation). For all formulas P and Q, if P

implies Q then there is a formula V such that P implies V , V implies Q and

all the predicate symbols that occur in V occur in both P and Q.

The formula V is called an interpolant. William Craig proved this
theorem in 1957 by model theoretic means. Thus, the formula that connects
the up-fragment with the down-fragment of a derivation is an interpolant.

In sequent calculus, interpolation can be proved via cut elimination. The
subformula property holds, which makes Craig interpolation provable by an
induction over the derivations. In CoS we have a similar situation: both cut
elimination and interpolation are immediate consequences of a derivation’s
normal form.

86 CHAPTER 4. NORMALISATION

4.4 Normalisation Without Cut Elimination

We have already mentioned that the motivation for cut elimination in the
sequent calculus is to obtain the subformula property (analyticity). A
cut-free system is a finitely generating system, which means that when we
apply a rule bottom-up there is only a finite number of premisses to choose
from. Here we will present a finitely generating system in the calculus of
structures that does not presuppose the elimination of all cuts. We will
describe the system for the propositional logic. So, from now on, α is a
propositional variable and not an atomic type. However, everything that
follows scales to predicate logic as well.

There are two infinitely generating rules in system SKS: the atomic co-

weakening and the atomic cut rule. The rule
S{α}

aw↑
S{t} is clearly infinitely

generating since there is an infinite choice of atoms α, but it can be eliminated
by deriving it for cut, switch and weakening (see Theorem 4.2.1):

S{α}
aw↑

S{t} ↝

S{α}
=
S(α, t)

=
S(α, [f, t])

s
S[t, (α, f)]

aw↓
S[t, (α, ᾱ)]

ai↑
S[t, f]

=
S{t}

Thus the infinity of aw↑ can be reduced to the infinity of ai↑.

There are two sources of infinite choice in the Cut rule of sequent
calculus: an infinite choice of atoms and an infinite choice in how these
atoms can be combined for making the cut formula. But in the calculus of
structures one can reduce the cut rule i↑ to its atomic form ai↑. Therefore,
the second source of infinity can be ignored. The only factor of infinity is
the choice of the atom that ai↑ will introduce bottom-up.

Let us now introduce a variant of ai↑:

Definition 4.4.1. The following rule is called finitely generating atomic
cut:

S(α, ᾱ)
fai↑ where α or ᾱ appears in the conclusion

S{f}

4.4. NORMALISATION WITHOUT CUT ELIMINATION 87

This is an analytic cut rule. It only introduces atoms that occur in the
conclusion, which implies a choice over a finite set.

So we can discriminate between two kinds of cut when they are atomic:
those that introduce new atoms going up and those that they don’t. If we
are interested just in analyticity, all we need to do is to eliminate the first
kind. Let’s see how we can do this. Take a proof of R in the propositional
system SKS:

1. First, replace every instance of aw↑ with the equivalent derivation shown
above. Thus we obtain a proof of R in SKS∖{aw ↑}.

2. Single out the bottommost instance of ai↑ that violates the proviso of
fai↑:

t

∥SKS∖{aw ↑}

S(α, ᾱ)
ai↑

S{f}
∥(SKS∖{ai ↑,aw ↑}) ∪ {fai ↑}

R

3. Replace all instances of α and ᾱ in the proof above the cut with t and
f respectively. We will check that all rule instances still hold or become
instances of the equivalence rule:

S{t}
ai↓

S[α, ᾱ] ↝
S{t}

=
S[t, f]

S(α, ᾱ)
ai↑

S{f} ↝
S(t, f)

=
S{f}

S[α,α]
ac↓

S{α} ↝
S[t, t]

=
S{t}

S{α}
ac↑

S(α,α) ↝
S{t}

=
S(t, t)

S{f}
aw↓

S{α} ↝
S{f}

aw↓
S{t}

88 CHAPTER 4. NORMALISATION

Instances of m and s remain of course intact.

4. Proceeding inductively upwards, remove all infinitary atomic cuts.

This is a weak form of cut elimination. Restricting the generic cut rule
to fai↑ will only entail a linear cost for the size of proofs. The full cut
elimination returns exponentially bigger proofs. Thus, if we want a finitely
generating system without increasing too much the size of the proofs, we
should just restrict the use of ai↑ to atoms appearing in the conclusion. Note
that we can’t extend the method described above to a full cut elimination.
If we apply the method to a cut instance such that α or ᾱ appears in S{ },
this could destroy the derivation from S{f} to R.

We now define the finitely generating system FKS to be:

(SKS ∖ {ai ↑,aw ↑}) ∪ {fai ↑}

We can see the system in Figure 4.7. The following theorem has been already
justified:

Theorem 4.4.1. Each formula is provable in system SKS if and only if it

is provable in system FKS.

Proof. Given a proof in SKS, we can derive aw↑ for ai↓,ai↑,aw↓ and s. Then
we can eliminate every instance of ai↑ that is not an instance of fai↑ using
the algorithm described above.

In system FKS no rule, seen bottom-up, introduces new atoms. It
thus satisfies the main aspect of the subformula property: when given a
conclusion of a rule there is only a finite number of premisses to choose
from. All its rules can only be applied in a finite number of different ways.
Therefore, in proof search the branching of the search tree is finite. The
only infinity that remains is in the unboundedness of the proofs themselves.
All this can be also achieved in SKS and in sequent calculus through cut
elimination. The point here is that it is possible to eliminate infinite choice
without having to deal with exponentially bigger proofs.

As far as predicate logic is concerned, there is another source of infinite
choice added to aw↑ and atomic cut. We refer to the choice in instantiating
an existentially quantified variable. Recall the rule:

S{R[x/τ]}
n↓

S{∃xR}

4.4. NORMALISATION WITHOUT CUT ELIMINATION 89

S{t}
ai↓

S[α, ᾱ]
S(α, ᾱ)

fai↑ α or ᾱ in the conclusion
S{f}

S([R,U], T)
s
S[(R,T), U]

S[(R,U), (T,V)]
m

S([R,T], [U,V])

S{f}
aw↓

S{α}

S[α,α]
ac↓

S{α}
S{α}

ac↑
S(α,α)

Figure 4.7: System FKS

If you look at the rule bottom-up there is an infinite choice for the term t,
it could be any term of the language. Remember that terms are defined
recursively from constants, variables and functions. Rule n↓ can be reduced
to an instantiation rule which introduces one variable and an instantiation
rule that introduces one function symbol or a fixed constant, all chosen
among those that occur in the conclusion. These of course will be finitely
generating instantiation rules. Details in [3].

In the sequent calculus the Cut rule is considered as the use of a lemma in
a proof. Indeed, if we look carefully at the following instance of the two-sided
version:

⊢ A A ⊢ B
Cut

⊢ B

we can imagine the left premise as the proof of a lemma A and the right
as the proof of B given A. So when we eliminate cuts we create a direct,
analytic proof with no lemmas. In CoS the i↑ rule can be seen the same way.
The rate of growth of a proof under cut elimination is hyperexponential.
This shows the importance of indirect reasoning in mathematics. Without
the use of lemmas we cannot present proofs of manageable size.

90 CHAPTER 4. NORMALISATION

Alessio Guglielmi suggests in [6] that when the cut formula appears in
the conclusion then the cut rule corresponds not to the use of a lemma but to
a case analysis. If we eliminate it then the proof will be essentially different.
Let’s see an example. Consider the following valid formula:

F = ∃x∀y(p(x)→ p(y))

It is known as the drinker property. We can prove it by knowing the two
lemmas:

L1 ∶ If ∀z p(z) then F is true, because the conclusion p(y) is always true. In
sequent terms this is written ∀z p(z) ⊢ F . Its equivalent one-sided form
is ⊢ ¬∀z p(z), F .

L2 ∶ If ¬∀z p(z) then F is true, because the premise p(x) can be falsified. In
sequent style this is written ¬∀z p(z) ⊢ F .

Assume that Π1 and Π2 are the formal proofs of L1 and L2 respectively. Then
we can build the following proof in the sequent calculus:

Π1

⊢ ¬∀z p(z), F
Π2

¬∀z p(z) ⊢ F
Cut

⊢ F,F
cR

⊢ F

The two lemmas are no more than the case analysis about the truth of
∀z p(z). If we eliminate the cut from the proof above we get:

Ax
p(x), p(z) ⊢ p(z), p(y)

→R
p(z) ⊢ p(x)→ p(z), p(y)

→R
⊢ p(x)→ p(z), p(z) → p(y)

∀R
⊢ p(x)→ p(z),∀y(p(z) → p(y))

∃R
⊢ p(x) → p(z),∃x∀y(p(x) → p(y))

∀R
⊢ ∀y(p(x)→ p(y)),∃x∀y(p(x)→ p(y))

∃R
⊢ ∃x∀y(p(x)→ p(y)),∃x∀y(p(x) → p(y))

cR
⊢ ∃x∀y(p(x)→ p(y))

According to Guglielmi, this proof is intuitively different than the other one
corresponding to the case analysis. It is not just the direct version. Thus,
if we want the normal form of a proof to contain its essence, maybe we
shouldn’t eliminate all cuts.

4.4. NORMALISATION WITHOUT CUT ELIMINATION 91

Consistency

An application of the finitely generating system FKS is the proof of the
syntactical consistency of SKS without going through cut elimination. As we
mentioned before, the main advantage of finite choice is that we can show
that a formula is non-provable:
Theorem 4.4.2. The unit f is not provable in system FKS.

Proof. We have to show that there is no proof:

t

∥FKS

f

In FKS there is no rule introducing new atoms bottom-up. The conclusion
f is a unit and does not of course contain any atoms. So, if there is such a
proof, it has to contain only units. But no rule in FKS can have a premise
equivalent to t and a conclusion equivalent to f .

The following corollary is an immediate consequence of Theorem 4.4.1
and the previous theorem:

Corollary 4.4.3. The unit f is not provable in system SKS.

That was consistency in a weak form. The stronger form is the following:

Theorem 4.4.4 (Consistency). If a formula is provable in system SKS

then its negation is not provable.

Proof. Assume that we have a proof of R and a proof of R̄. We dualise the
first proof and we get the refutation:

R̄

∥
f

If we compose this derivation with the proof of R̄ we will get a proof of f :

t

∥
R̄

∥
f

But this is absurd because of the previous theorem.

92 CHAPTER 4. NORMALISATION

Conclusion

In this thesis we presented the treatment of classical logic in a deep inference
formalism, the calculus of structures. We observed similarities with sequent
calculus, like the admissibility of certain rules, and new properties, like
symmetry of derivations and locality. Then we introduced the notions
of normal proof and normal derivation and compared them with their
analogues in the traditional proof-theoretic formalisms.

One of the main advantages of deep inference is the property of locality.
This could be extended to other logics as well. For example, CoS was used
to solve the problem of the non-locality of the promotion rule in linear logic
and gave a local system for full linear logic.

For systems without involutive negation, like intuitionistic logic, we can
not define implication through disjunction. Thus, we can only use two-sided
sequent systems to represent them. In the calculus of structures this means
introducing polarities: a context is positive if its hole corresponds to the
right side of the sequent, otherwise it is negative. Tiu gives a local system
for intuitionistic logic in [7].

With deep inference, we can also express in an elegant way logics that
elude the traditional methods of proof theory. Many variations of modal
logic, like B and K5, which are easily expressible in Frege-Hilbert systems,
only find awkward presentations in sequent systems. Most of the times those
systems are not analytic. Deep inference provides elegant and cut-free proof
systems for modal theories. The same holds for several intermediate logics.

93

It is equally difficult or impossible to express proof systems for some
logics involving non-commutativity and other features typical of computer
science concurrency languages. After all, the original purpose of CoS was to
express a logical system with a self-dual non-commutative connective rese-
mbling sequential composition in process algebras. Deep inference is really
effective in this area. For example, mixed commutative/non-commutative
linear logics BV and NEL are expressed in simple analytic systems. It
was proved that these logics can not be expressed analytically in shallow
inference.

Calculus of structures is not the only formalism employing deep inference.
Another case are the nested sequents, especially targeting modal logics.
The cirquent calculus, a formalism developed by Giorgi Japaridze for his
computability logic, benefits from a deep inference presentation.

94

Bibliography

[1] A.S.Troelstra and H.Scwichtenberg. Basic Proof Theory. Cambridge
University Press, second edition, 2000.

[2] Kai Brünnler. Two restrictions on contraction.
Logic Journal of the IGPL, 11(5):525–529, 2003.
http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf.

[3] Kai Brünnler. Deep Inference and Symmetry in

Classical Proofs. Logos Verlag, Berlin, 2004.
http://www.iam.unibe.ch/~kai/Papers/phd.pdf.

[4] Kai Brünnler. Cut elimination inside a deep inference system
for classical predicate logic. Studia Logica, 82(1):51–71, 2006.
http://www.iam.unibe.ch/~kai/Papers/q.pdf.

[5] Kai Brünnler. Deep inference and its normal form of derivations. 3988:65–
74, 2006. http://www.iam.unibe.ch/~kai/Papers/n.pdf.

[6] Alessio Guglielmi. Normalisation without cut elimination.
http://cs.bath.ac.uk/ag/p/AG6.pdf, 2003.

[7] Alwen Tiu. A local system for intuitionistic logic. 4246:242–256, 2006.
http://users.cecs.anu.edu.au/~tiu/localint.pdf.

95

http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf
http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/q.pdf
http://www.iam.unibe.ch/~kai/Papers/n.pdf
http://cs.bath.ac.uk/ag/p/AG6.pdf
http://users.cecs.anu.edu.au/~tiu/localint.pdf

	Abstract
	Acknowledgements
	Introduction
	Calculus of Structures
	System SKSgq
	Correspondence to the Sequent Calculus
	Cut Admissibility

	Locality
	Atomic Forms
	Atomic Contraction
	System SKSq

	Normalisation
	Normalisation in the Traditional Formalisms
	Cut Elimination With Splitting
	Normalisation With Decomposition
	Normalisation Without Cut Elimination

	Conclusion
	Bibliography

