
Semantic Approaches

to Logic Programming

by

Thanos Tsouanas

A Thesis Presented in Partial Fulfillment of
the Requirements for the Degree of Master of Science.

Supervised by

Panos Rondogiannis

Thesis committee

Panos Rondogiannis
Costas D. Koutras

Nikolaos S. Papaspyrou

“MPLA” Graduate Program in Logic, Algorithms and Computation

September 27th, 2010

Dedicated to the rocking memory of my dear friend Iasonas Tzoufras,
a fellow musician and mathematician.

Preface

Prerequisites. The reader is assumed to be familiar with the basic notions

of logic, including first-order theories and their semantics (interpretations and

models). Also, some facts and tools from set theory are needed (especially the

basic facts about ordinals). The appendix sketches over some of them, and

gives pointers to the literature for further study.

Familiarity with logic programming is not required, but will certainly make

some parts of the text clearer. The reader who is interested in actual imple-

mentations and applications of logic programming, is advised to study [SS94].

Notational & typographical conventions. Following common practice, I

use the abbreviations: “iff” for “if and only if”, “wrt” for “with respect to”,

and “wff” for “well-formed formula”.∗ A halmos (viz. “ ”) is used instead of

the more traditional “q.e.d.” to mark the end of a proof; examples die by “J”. N
N and R are the sets of natural and real numbers respectively. 0 is happy R

to be a natural number. The powerset of A is identified with the set 2A and 2A

denoted also by ℘A, while the set of its finite subsets is ℘finA. |A| is the ℘A

℘finA

|A|
cardinal number of A. I also use the expression “S ⊆κ A” where κ is a cardinal

⊆κ
number, as an abbreviation for “S ⊆ A with |S| = κ”. In a similar fashion, “F

is a finite subset of A” shortens to “F ⊆fin A”. When using “ ·∪” in place of
⊆fin

·∪“∪”, it is implied that the union is disjoint.

I write “=df” for “is defined as”, and “:=” (or simply “=”) for assigning =df

:=values to metavariables. Ofttimes I contract “= · · · =” into a single “
···
=”.

···
=

Speaking of dots, an expression like “−i. . .” excludes the item indexed by i from
−i. . .

∗For some reason, the abbreviation “wrt” tends to cause trouble: using Google Books,
a search for "wrt to" returns approximately 7,760 results! Maybe this is because “with
respect” is a 3-syllable phrase, but this is probably a matter for cognitive psychology.

iii

iv PREFACE

the dots, e.g., “p1∨
−i· · ·∨pn” stands for “p1∨· · ·∨pi−1∨pi+1∨· · ·∨pn”. When

writing mathematical relations I favor “∴” over “therefore”. In a chain of∴

equations, the symbol “∴
=” is to be read as “[and] therefore equals”, hinting that∴

=

this equality holds thanks to something more than just the previous equality.

Following not-so-common practice, when reasoning by reductio ad absurdum,

“�” signifies a contradiction. I first encountered this in [DP02], and liked it.�
As this is a mathematical logic text, the symbols “∀” and “∃” are reserved

for use in object languages, like the language of first-order logic. Instead, I

use the symbols “∀∀” and “∃∃” in the metalanguage, for “for all” and “there∀∀
∃∃ exist(s)” respectively.

Language symbols in program rules are typeset according to their kind: fun

is a function symbol, rel is a relation symbol, and X is a variable. Constant

symbols like a are typeset in the same way as function symbols, since they can

be considered to be nullary function symbols themselves. Usually I adopt a

more functional notation, dropping parentheses where possible. Syntactic sugar

terms (e.g. numerals) always wear a “̂”; e.g., 3̂, sss0, s3(0), and s(s(s(0))) arê
all different names for the same term. This notation is extended respectfully

to sets, e.g., N̂ is the set of all numerals. Families of models or sets usually

appear in “script” typeface: A , B, C , etc.

Regarding variables of the metalanguage—P, Q, and R usually range over

programs; u and v over some (Herbrand) universe of terms; s and t also denote

terms; a, b, and c constants; n, m, and k natural numbers (while n̂, “m, and k̂

the corresponding numeral terms); f , g, and h functions or function symbols if

typeset accordingly; similarly, p, q, and r denote relations or relation symbols,

and also propositional variables; atomic formulæ usually dwell in {A,B,C},
wffs in {F,G,H}, and arbitrary expressions in {D,E}; x, y, z and w stand for

variables of the object language. Lowercase greek letters like ϑ, σ and τ tend to

be substitutions, of which the identity is always ε. None of these conventionsε

is strictly followed: I freely deviate from them as I see fit.

Acknowledgements

It is hard to acknowledge everyone that deserves to be credited, but I’ll give it a

try. There’s plenty of space to write your name if I forgot to include you while I

should.

I should first mention Yiannis Moschovakis whose Set Theory and Recursion

Theory courses were so influential and inspiring that turned my interest into

mathematical logic in general. Costas Dimitracopoulos who (thankfully) thinks

in a logical way, and gets things done instead of just planned and arranged!

Panos Rondogiannis, Nikolaos Papaspyrou, Costas Koutras, and Dimitrios Thi-

likos, for believing in me, for giving unforgettable courses, and for coping with

various “peculiarities” of mine, including my night-owl sleeping patterns. Ari-

stides Katavolos, who gives the most vivid and exciting Mathematical Analysis

courses and Evangelos Raptis whose Algebra courses were the first I attended.

I would also like to thank Mike Pozantzis, my English teacher to whom I owe

a lot. The secretariats of MPLA deserve special mention, as they are the most

effective, hard-working, efficient, and kind administration I’ve known: a huge

thanks to Anna Vassilaki and Chrisafina Hondrou.

Of course I owe a lot to my family: my mother who’s one of the smartest

and kindest persons I know, my beloved sister for being supportive since I was

born, and my father, who introduced me to computers when I could barely

speak.

All my friends that I can rely upon, especially Yiannis “tzi” Tselekounis for

his tremendous help with the most unusual and irrational requests that I might

have had while working on my thesis; and also Giorgos “zoulou” Kapetanakis,

Matoula Petrolia, Harris Hanialidis, for their help and love. Michail “pshlos”

v

vi ACKNOWLEDGEMENTS

Dimakos for uncountably-many helping hands during my undergraduate stud-

ies; things would certainly be much harder without him. Irini Kalliamvakou for

being a solid rock by my side, and for so many things that cannot be expressed

in any language I know. Panos Tsaknias and Alexandros “enecon” Batsis for

many edifying conversations, and also Aristotelis Misios (whose poor formal

grammar failed miserably to compete with mine—sorry). Mary Chlouveraki

deserves to be singled out, as I feel I owe it to her, my sudden realization of

interest in pure mathematics. A brilliant person and dearest friend, probably

the only one whose advice I do not automatically ignore—for good reason. I’m

happy to thank Ramile Carvalho, who’s been a most pleasant and surprising

addition to my life during the last month of the compilation of this thesis, and

made the boring parts, fun.

I am also indebted to Spyros Liberis who introduced me to the world of

Unıx over a decade ago, instantly changing my relationship with computers. I

have become dependant on all those computer tools that make my life so much

easier, and so I feel that I should give credit to the vim text editor, Donald

Knuth for TEX, Theo de Raadt for OpenBSD, the entire Haskell community,

darcs, xmonad and of course Wikipedia.

I would be unfair not to mention the musicians who kept me great com-

pany while studying, researching, and typesetting this thesis, especially Dying

Fetus, Rotting Christ, Burzum, Cave, Origin, Crooked Still, Nikos

Xylouris, Tori Amos and myself.

It is hard to be productive without good food, and so I’d like to mention

Christos Barkas and his �Paradosiako� kebab tavern in Ano Ilissia, �Santé�

bougatsæ on Thisseos Ave., �Agapizza� in Hymettos and the �Submarine�

crêperie in Goudi. I’m also indebted to the breweries of Leffe, Fraoch, and

Alba and of course Marilou who provided fair amounts of bottles.

Finally, I hail Crete—I was on decks of Cretan ferries when I began devel-

oping my own ideas on denotational semantics for logic programming.

Thank you!

Short contents

Preface iii

Acknowledgements v

1 Introduction 1

2 Logic programs (LP) 5

3 Logic programs with negation (LPN) 17

4 Disjunctive logic programs (DLP & DLPN) 23

5 Game semantics 27

A Further considerations 35

B Mathematical preliminaries 41

Bibliography 43

Index of symbols 47

Index of names 49

General index 51

vii

Contents

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Logic programming . 1
1.2 Semantics . 2
1.3 Using games to define semantics 3

2 Logic programs (LP) 5
2.1 Introducing programs . 5
2.2 Herbrand models . 6
2.3 The rôle of fixpoints . 9
2.4 Examples . 11
2.5 Infinite programs . 13
2.6 Historical remarks . 14

3 Logic programs with negation (LPN) 17
3.1 Introducing negation . 17
3.2 Assumptions related with negation 18
3.3 LPN programs . 18
3.4 Restricting programs . 19
3.5 Stable model semantics . 21
3.6 Well-founded semantics . 21
3.7 Infinite-valued minimum model semantics 21
3.8 Program completions . 21
3.9 Four-valued semantics . 22

4 Disjunctive logic programs (DLP & DLPN) 23
4.1 Introducing disjunction . 23
4.2 DLP programs . 23

ix

x CONTENTS

4.3 Answer set programming . 25
4.4 DLPN programs . 25

5 Game semantics 27
5.1 Playing with definite programs 27
5.2 Playing with negations . 28
5.3 Playing with disjunctions . 29
5.4 Playing with negations and disjunctions 30
5.5 Future work . 31

A Further considerations 35
A.1 Probabilistic semantics . 35
A.2 Symbolic semantics for disjunctive programs 38
A.3 Gossip programming . 39

B Mathematical preliminaries 41
B.1 Set & order theory . 41
B.2 Mathematical analysis . 42

Bibliography 43

Index of symbols 47

Index of names 49

General index 51

Chapter 1

Introduction

This chapter constitutes a very sketchy and informal overview of the ideas and
concepts that follow.

1.1 Logic programming

Robinson in [Rob65] introduced the resolution inference rule, which proved
to be specially useful for the birth of logic programming. A few years later,
Kowalski and van Emden showed in [vEK76] that logic has a procedural inter-
pretation, which allows us to treat it rigorously as an effective programming
language. In this landmark paper, logic programming was born.

A really vague definition of a logic program is the following:

A logic program is a set of rules.

But what is a rule? Depending on what kind of formulæ we allow as rules, we
get a different notion of a logic program. In this text the following kinds of
rules are considered: program rule

a ← b1, . . . , bn (LP)

a ← b1, . . . , bn,∼c1, . . . ,∼cm (LPN)

a1 ∨ · · · ∨ ak ← b1, . . . , bn (DLP)

a1 ∨ · · · ∨ ak ← b1, . . . , bn,∼c1, . . . ,∼cm. (DLPN)

Given a logic program, we want to be able to ask certain queries. The
implemented system then gives answers according to the rules of the program,
in a way that an affirmative answer is given only if there is enough evidence
to support it. If some question can be answered consistently in more than one
ways, we always prefer the least true one.

1

2 CHAPTER 1. INTRODUCTION

I Example 1.1. Consider the following program

P :=

dangerous(X)← cat(X),∼sleeping(X)

cat(prokopis).

cat(oliver).

sleeping(oliver).

 .

Despite the fact that it is consistent to consider both cats to be both dangerous
and sleeping, since we have no reason to believe that prokopis is sleeping, we
consider him awake, and therefore (by the first rule) dangerous. On the other
hand, we know for a fact that oliver is sleeping, so the premise of the first
rule fails to hold, and (preferring falsehood again) we do not consider him
dangerous. J

1.2 Semantics

The idea is that the logic programmer uses a set of rules in order to describe a
certain model that she has in mind; we usually refer to it as the intended model.
Denotational semantics define a precise mathematical object to each program,
which we hope to reflect the intended model as well as possible. When giving
semantics to a program, it’s best to think of a model as a way to consistently
assign truth values to possible queries—and this is what we seek to define.

LP If we restrict our rules to (LP), we speak of definite logic programs.
Semantically speaking, this is the best scenario. We have the so-called least
Herbrand model, which provides well-established semantics that everyone finds
convenient. But programming in LP is very restrictive, and therefore we have
to allow more general rules if we aim to arrive at applications that can actually
be applied.

LPN Once we allow negation in the bodies of our rules, we lose certain
comforts. Programming in LPN is more convenient, but it’s harder to define
satisfying semantics. Nevertheless, after a lot of effort, we have arrived at the
well-founded model, which is widely approved as the “correct” one by the Logic
Programming community. Another important class of semantics is based on the
stable model semantics. But this school of thought assigns zero, one, or many
models to each program, and therefore it deviates from common practices.

DLP If instead of negations in bodies, we allow disjunctions in heads, we
have what is called “disjunctive logic programming”. Here the task of defining
semantics is puzzling, as we no longer have a least model. Even the simplest
disjunctive program, {a ∨ b}, possesses three models, {a}, {b} and {a, b},
none of which is least! If we wish to stick with a single model, and also answer
affirmatively only when we are certain that something is true, we should some-
how capture the idea that {a ∨ b} is the correct “model”. And this is not a
model to begin with!

1.3. USING GAMES TO DEFINE SEMANTICS 3

DLPN This is the best of both worlds for the programmers, which unfortu-
nately means the worst of both worlds in terms of the difficulties one has to face
to define semantics. Recently, an infinite-valued minimal model semantics was
proposed which seems to generalize both the infinite-valued well-founded model
approach of LPN and the minimal model semantics of DLP to the general case
of DLPN.

? Remark 1.1. Consider the following formulæ:

p← ¬q q ← ¬p.

From a classical logic point of view, these sentences are equivalent, and one
would expect them to yield equivalent programs. But, using negation-as-
failure, this isn’t so: in the first program p is true, while q is false, while in
the second one the opposite happens.a

Abandoning negation-as-failure, we can get rid of negations altogether,
by “switching sides”, and “changing signs”, just like we do with elementary
algebraic equations. For example,

a ∨ b ∨ ¬c← d ∧ ¬e ∧ ¬f ⇐⇒ a ∨ b ∨ e ∨ f ← d ∧ c.

This would reduce the problem of dealing with negations to the problem of
dealing with disjunctions, and vice versa. But this is not how we think of
rules in logic programming.

aIn disjunctive databases, the rules have no particular order. These two different
“programs” are seen as equivalent to p ∨ q.

1.3 Using games to define semantics

LP In [DCLN98], a game was defined to provide semantics for LP. This was
done in a much satisfactory way: not only did this approach reflect a new and
exciting way to deal with logic programs, it was also shown to be equivalent
with the least Herbrand model semantics.

LPN Some years later, in [RW05a], another game was defined by Rondo-
giannis and Wadge, that was able to deal with LPN successfully: it yields the
(infinite-valued) well-founded model!

DLP & DLPN The main contribution of this thesis is the definition of two
new games, one for DLP and one for DLPN, in order to complete this picture
of the game-theoretic view of logic programming semantics.

>

�Facts are meaningless. You could use
facts to prove anything that’s even
remotely true!�

Homer J. Simpson

Chapter 2

Logic programs

I proceed with a quick pace in this chapter, as it contains well-established facts.
More details than you will probably care to know can be found in standard texts
like [Llo93, Apt90].

2.1 Introducing programs

Definition 2.1. A clause is a formula of the form ∀(L1∨· · ·∨Ln), where each clause

Li is a literal. A Horn clause is a clause with at most one positive literal. If it Horn clause

has exactly one, we speak of a definite clause or rule and refer to that unique definite clause
LP!rulepositive literal as the head of the rule; the remaining literals (if any) constitute

headits body . Given a rule r, we write head(r) for its head and body(r) for its body.
body

head(r)

body(r)

It is common to write the rule

A ∨ ¬B1 ∨ · · · ∨ ¬Bm as A← B1, . . . , Bn;

in case n = 0, we call the rule a fact , and write it as either “A.”, “A← .”, or fact

“A←”.a)

I Example 2.1. Consider the following formulæ:

(i) p ∨ q
(ii) p(f(x,w), y) ∨ r(y, x) ∨ ¬q(x)
(iii) p ∨ ¬q ∨ ¬r
(iv) p(x, y) ∨ ¬q(x) ∨ ¬q(y)

(v) p(x, y, z)
(vi) ¬p ∨ ¬q

(vii) ∃xp(x) ∨ ¬q
(viii) p ∨ (q ∧ r).

Here (i)–(vi) are clauses, out of which (iii)–(vi) are definite, (iii)–(v) are Horn
and (v) is a fact. J

Definition 2.2. A set of LP rules is called an LP program or a definite program. LP program

Definition 2.3. In a program P, the set of all rules that share a common
relation symbol r in their heads constitutes the definition of r . It is denoted definition

a)Some authors call facts “unit clauses”, but facts will be facts here.

5

6 CHAPTER 2. LP

by defP(r).defP(r)

I Example 2.2. The following is a definite program:®
odd(s(0))

odd(s(s(X)))← odd(X)

´
.

It is meant to describe the odd numbers, and we shall call it Podd . In this case,
the whole program is the definition of odd . J

Since each program has infinitely many logical consequences, we need a way
to query a program by asking it specific questions. This brings us to the notion
of goal.

Definition 2.4. A definite goal , is any formula of the formgoal

∀(¬(A1 ∧ · · · ∧An)),

which we, following common practice, write as

← A1, . . . , An.

Each Ai is called a subgoal . The empty goal is denoted by �; it always fails _̈.subgoal

empty goal

�
To see how such a formula corresponds to a query at a logic programming

system, consider the universal closure

∀X1 · · · ∀Xk¬(A1 ∧ · · · ∧An),

which is equivalent to the formula

¬∃X1 · · · ∃Xk(A1 ∧ · · · ∧An).

In other words, instead of asking

�For which Xi’s is {A1, . . . , An} a consequence of P?�,

we claim that

�There are no Xi’s such that {A1, . . . , An} is a consequence of P!�

instead, and the system tries to disprove our claim. It does so constructively,
returning a suitable substitution if possible. If it fails, it is because our claim
was indeed true.

2.2 Herbrand models

Definition 2.5. For any clause r, the set of its ground instances is denoted by
ground(r). For any program P, we define Ground(P) byground(r)

Ground(P)
Ground(P) =df

⋃
r∈P

ground(r).

2.2. HERBRAND MODELS 7

Definition 2.6. The Herbrand universe UL of a first-order language L is the Herbrand universe (HU)

ULset of all ground terms which can be formed by using the constants and function
symbols of L.b)

With a slight abuse of notation, when using a program P in place of a
language L, we mean the language LP associated with P, i.e., the language associated language

LPthat consists of all the symbols that appear in P.

I Example 2.3. The Herbrand universe UP of the program

P :=

®
p(X)← q(f(X), g(X))

r(a)←

´
looks like

UP = {a, f(a), g(a), f(f(a)), f(g(a)), g(f(a)), g(g(a)), f(f(f(a))), . . . }. J

Definition 2.7. The Herbrand base HBL of a language L is the set HBL of Herbrand base (HB)

HBLall ground atoms which can be formed by using relation symbols of L with
arguments from UL.

I Example 2.4. Consider the program Podd we met earlier in Example 2.2.
Since this program contains just one constant 0 and one function symbol s, its
Herbrand universe is

UPodd
= {0, s(0), s(s(0)), s(s(s(0))), . . . },

and since there is just one relation symbol, odd , its Herbrand base is

HBPodd
= {odd(0), odd(s(0)), odd(s(s(0))), . . . }. J

I Example 2.5. Let P be the program

owns(owner(hyundai), hyundai)←
happy(X)← owns(X, hyundai).

Then

UP = {hyundai, owner(hyundai), owner(owner(hyundai)), . . . }
HBP = {owns(u, v) | u, v ∈ UP} ∪ {happy(w) | w ∈ UP}. J

? Remark 2.1. Unless a program P contains no function symbols, both
UP and HBP will be infinite.

Definition 2.8. Let P be a definite program. A Herbrand interpretation of P Herbrand interpretation

is an interpretation I with domain UP such that:

b)One could either restrict this definition to languages that indeed contain at least one
constant, or allow the addition of a single constant to form ground terms, in case the language
contains none.

8 CHAPTER 2. LP

(i) cI = c for each constant symbol c, and

(ii) fI(t1, . . . , tn) = f(t1, . . . , tn) for each function symbol f .

This means that to completely define a Herbrand interpretation all we need to
do is to specify how it behaves on the relation symbols. A Herbrand interpre-
tation which satisfies a set P of (closed) formulæ is called a Herbrand model ofHerbrand model

P. We denote by HP the set of all Herbrand models of P.HP

? Remark 2.2. We usually identify an interpretation of P with the subset
of the elements of HBP that it satisfies. Thus we write 2HBP for the set of
Herbrand interpretations of P, which becomes a complete lattice, ordered
by set inclusion.

? Remark 2.3. The Herbrand base of a definite program P is always a
Herbrand model of the program, although not a particularly interesting
one.

Theorem 2A (Model intersection property). Let M be a non-empty family of
Herbrand models of a definite program P. Then I =df

⋂
M is also a Herbrand

model of P.

Proof. Suppose not. Then there exists in P a ground instance of a clause

A← B1, . . . , Bn

which is not true under I, so that

I |= {B1, . . . , Bn},
but I 6|= A.

Therefore, for every I ∈ M , I |= {B1, . . . , Bn}, and there must also be some
interpretation I0 ∈M , such that I0 6|= A. But this means that A← B1, . . . , Bn
is not true under I0, and therefore I0 is not a model of P, �.

? Remark 2.4. Consider the program P = {p(a)∨ q(b)}. Both {p(a)} and
{q(b)} are Herbrand models of P, but their intersection {p(a)}∩{q(b)} = ∅
is not! What went wrong? The formula p(a) ∨ q(b) is not a definite clause,
and consequently P is not a definite program. We investigate disjunctive
clauses in Chapter 4.

Theorem 2B (van Emden & Kowalski). The ⊆-least Herbrand model MP ofleast Herbrand model (LHM)

MP a definite program P satisfies

MP = {A ∈ HBP | P |= A}.

Proof. Both directions are easy. See [vEK76].

2.3. THE RÔLE OF FIXPOINTS 9

Denotational semantics

We now take MP as the meaning of P; in symbols,

JPK =df MP .

2.3 The rôle of fixpoints

It should seem natural by now that it is a good idea to consider the least
Herbrand model MP of a definite program P as the intended one, i.e., as the
semantic meaning of P. By definition and Theorem 2A, we know that

MP =
⋂
{M ⊆ HBP |M is a Herbrand model of P},

but this doesn’t help much: how can we construct MP?
We describe a way to successively approximate MP , using the so-called

“immediate consequence operator” TP .

Definition 2.9. Then the immediate consequence operator is a unary operator immediate consequence operator

TP on 2HBP , defined by TP

TP(I) =df {A | A← B1, . . . , Bn ∈ Ground(P) and I |= {B1, . . . , Bn}} .

Let’s see how the immediate consequence operator of a program acts on
various inputs.

I Example 2.6. We examine the TP of the program

P :=

®
p(f(X))← p(X)

q(a)← p(X)

´
.

Note that this is a pretty clueless program: it contains no facts. This doesn’t clueless program

bother us, however, and so we compute:

UP = {a, f(a), f(f(a)), f(f(f(a))), . . . }
HBP = {p(a), p(f(a)), p(f(f(a))), . . . }.

Consider the interpretations

I1 = HBP
I2 = {q(a)} ∪ {p(f(u) | u ∈ UP}
I3 = ∅,

and how TP acts on each one of them:

TP(I1) = {q(a)} ∪ {p(f(u) | u ∈ UP} = I2

TP(I2) = {q(a)} ∪ {p(f(f(u))) | u ∈ UP}
TP(I3) = ∅ = I3.

Thus TP maps I1 to I2, I2 to some other (unnamed) interpretation, and I3 to
itself: it is a fixpoint. J

10 CHAPTER 2. LP

? Remark 2.5. It is constructive∗ to keep this point of view in mind: in
a world 2HBP of interpretations, TP determines a specific way to “move
around”. Starting from any I, a sequence of iterations is formed:

{I, TP(I), TP(TP(I)), TP(TP(TP(I))), . . . }

Furthermore, with the help of ordinals, this becomes even more useful, as
we are about to see.

∗Some pun intended.

Let P be a definite program. Then there is a ⊆-least interpretation I which
is a fixpoint of TP , i.e., TP(I) = I and equals the least Herbrand model MP .
Moreover,

MP = limn T nP (∅).

Now is a good time to introduce the convenient “up-arrow” notation:c)↑-notation

TP ↑ 0 =df ∅
TP ↑ (n+ 1) =df TP(TP ↑ n)

TP ↑ ω =df

⋃
n∈ω
TP ↑ n.

Theorem 2C. Let P be a definite program and MP its least Herbrand model.

(i) MP is the least Herbrand interpretation such that TP(MP) = MP , i.e., it
is the least fixpoint of TP .

(ii) MP = TP ↑ ω.

Proof. [Apt90] or [Llo93].

I Example 2.7. Here is how MPodd
can be constructed using this method:

TPodd
↑ 0 = ∅

TPodd
↑ 1 = {odd(s(0))}

TPodd
↑ 2 = {odd(s(0)), odd(odd(s(0))), . . . }

...

TPodd
↑ ω = {odd(sn(0)) | n ∈ {1, 3, 5, 7, . . . }}. J

Theorem 2D (Continuity of TP). For any definite program P, the mapping
TP is continuous.

Proof. See [Llo93].

Theorem 2E (Monotonicity of TP). The immediate consequence operator en-
joys monotonicity in two levels:

c)This is only a special case; for the full apparatus of ↑, see Definition B.4 in p. 41.

2.4. EXAMPLES 11

(i) Let P be a definite program and I, J ∈ 2HBP . Then

I ⊆ J =⇒ TP(I) ⊆ TP(J).

(ii) Let P1 and P2 be definite programs and I a Herbrand interpretation of
P1. Then

P1 ⊆ P2 =⇒ TP1
(I) ⊆ TP2

(I).

Proof. [Llo93] again.

Theorem 2F. Let P be a definite program and I a Herbrand interpretation.
Then

I |= P ⇐⇒ TP(I) ⊆ I.

Proof. See [Apt90].

2.4 Examples

In this section we examine and give semantics to various definite programs.

I Example 2.8. We begin with three very simple ground programs:

P :=
{

p ← q
}
, Q :=

®
p ← q

p ←

´
, and R :=

®
p ← q

q ←

´
.

Since there are neither constant nor function symbols, looking for the Herbrand
universe is meaningless here. All three programs share the same Herbrand base

HB = {p, q}.

Notice that HB indeed models each one of them. Their least Herbrand models
are given by

MP = ∅, MQ = {p}, and MR = {q , p}.

respectively. It is instructive to verify this using their immediate consequence
operators:

TP(∅) = ∅ TQ(∅) = {p}
TQ({p}) = {p}

TR(∅) = {q}
TR({q}) = {q , p}

TR({q , p}) = {q , p}.

Notice that once we have reached a fixpoint, there is no need to iterate any
further: this least fixpoint is the least Herbrand model. J

12 CHAPTER 2. LP

I Example 2.9. Let P be the program

P :=

p(f(X))← q(X, g(X))

q(a, g(b))←
q(b, g(b))←

 .

We compute

UP = {a, b, f(a), f(b), g(a), g(b), f(f(a)), f(f(b)), f(g(a)), f(g(b)), g(f(a)), . . . }

=
⋃

n
Un, where

®
U0 = {a, b}

Un+1 = {f(u) | u ∈ Un} ∪ {g(u) | u ∈ Un}
HBP = {p(u) | u ∈ UP} ∪ {q(u, v) | u, v ∈ UP}.

Iterating TP a few times fixes a point:

TP ↑ 0 = ∅
TP ↑ 1 = {q(a, g(b)), q(b, g(b))}
TP ↑ 2 = {q(a, g(b)), q(b, g(b)), p(f(b))}
TP ↑ 3 = {q(a, g(b)), q(b, g(b)), p(f(b))}
∴ MP = {q(a, g(b)), q(b, g(b)), p(f(b))}. J

So far, least Herbrand models have all been finite; but not anymore—in the
following example, a program consisting of just two rules and yet manages to
have an infinite least Herbrand model.

I Example 2.10. Let Pplus be the following program:

plus(s(X), Y, s(Z))← plus(X,Y, Z)

plus(0, X,X)← .

Logic programmers will at once recognize that this program recursively defines
addition, and will hope that our denotational semantics assigns the function
of addition as the meaning of plus. No experience with logic programming is
needed to verify this; one can readily compute the Herbrand universe and base:

UPplus
= {0, s0, ss0, sss0, . . . } = {0̂, 1̂, 2̂, 3̂, . . . } = N̂

HBPplus
= {p(u, v, w) | u, v, w ∈ UP}.

We are now ready to start iterating TPplus
:

TPplus
↑ 0 = ∅

TPplus
↑ 1 = {plus(0, u, u) | u ∈ UP}

TPplus
↑ 2 = {plus(0, u, u) | u ∈ UP} ∪ {plus(s0, u, su) | u ∈ UP}.

2.5. INFINITE PROGRAMS 13

It is more insightful to rewrite this last equation as

TPplus
↑ 2 = {plus(0̂,“m,“m) | m ∈ N} ∪ {plus(1̂,“m,÷m+ 1) | m ∈ N}

= {plus(n̂,“m,÷n+m) | n ∈ {0, 1}, m ∈ N}.

Similarly,

TPplus
↑ 3
···
= {plus(n̂,“m,÷n+m) | n ∈ {0, 1, 2}, m ∈ N}
...

TPplus
↑ ω = {plus(n̂,“m,÷n+m) | n,m ∈ N}

TPplus
↑ (ω + 1) = {plus(n̂,“m,÷n+m) | n,m ∈ N},

and thus we have reached a fixpoint in no more than ω steps. We therefore set

MPplus
= {plus(n̂,“m,÷n+m) | n,m ∈ N}

= {plus(n̂,“m, k̂) | k = n+m, n,m, k ∈ N},

which is indeed the intended model of Pplus . J

2.5 Infinite programs

There are two obvious ways that we can generalize the notion of a definite
program with respect to cardinality:

• Drop the restriction that a definite program is a finite set of definite rules.
Such a program is called an infinite program. infinite program

• Generalize the notion of a rule to include infinitely long formulæ.

Occasionally I may call infinite programs tall , and programs with infinitely tall program

long rules wide, even though this is not standard terminology. wide program

I Example 2.11. The following two programs are infinite, definite programs:

P1 :=

p0 ←
p1 ← p0

p2 ← p1

p3 ← p2

...

, P2 :=

nat(0)←
nat(s(0))← nat(0)

nat(s2(0))← nat(s(0))

nat(s3(0))← nat(s2(0))

...

.

Note that the underlying language of the first program includes an infinite
number of relational symbols, while the second one is finite. J

14 CHAPTER 2. LP

I Example 2.12. Let P3 be the following program:

P3 := {q ← p0, p1, p2, p3, . . . } .

It is a finite program that consists of a single infinite rule. It is immediately
clear that HBP3

= {q , p0, p1, p2, . . . } and MP3
= ∅. J

Usually we tend to ignore variables, functions and constants of finite pro-
grams and choose to work with infinite versions that more or less capture the
same rules. This is done for our convenience in working formally with seman-
tics.

We may as well choose to drop both restrictions and consider programs that
are both tall and wide. But hold your excitement—such totally unrestricted
and untamed programs are beyond the scope of this text. Still, how could we
construct their intended model? Once some obvious concept generalizations
are agreed upon, we can work in similar ways, as the next example illustrates.

I Example 2.13. Let’s put the tall program P1 and the wide program P3 of
the previous examples together:

P := P1 ∪ P3 =

q ← p0, p1, p2, p3, . . .

p0 ←
p1 ← p0

p2 ← p1

p3 ← p2

...

.

We can even use the (generalized) TP to yield the intended model:

TP ↑ 0 = ∅
TP ↑ 1 = {p0}
TP ↑ 2 = {p0, p1}

...

TP ↑ ω = {p0, p1, p2, . . . }
TP ↑ (ω + 1) = {q , p0, p1, p2, . . . }
TP ↑ (ω + 2) = {q , p0, p1, p2, . . . }

∴
= MP .

Notice, however, that it takes ω + 1 steps to reach this fixpoint. J

2.6 Historical remarks

Why does every definite program have a unique minimal Herbrand model?
It was proved in van Emden and Kowalski’s landmark paper [vEK76]. They

2.6. HISTORICAL REMARKS 15

showed that the least fixed point of TP coincides with the model-theoretic
meaning of definite programs. Apt and van Emden in [AvE82] showed a similar
result, relating the greatest fixed point of TP to the subset of the Herbrand
base whose members finitely fail (i.e., they have a finite SLD-tree without
any refutations). The name “immediate consequence operator” was coined by
Clark, in [Cla79].

Summary

In this chapter we dealt with definite programs and their denotational semantics
using Herbrand models, and by singling out the ⊆-least one as the meaning of
a program. We saw that by using TP we are able to construct, for any such
program P, its least Herbrand model MP as the least fixed point of TP .

It is important to note that by restricting our programming language to
definite clauses, we enjoy monotonicity : if we are able to infer p from a program
P, then we will still be able to infer it no matter what extra rules may be
added to P. Also, the exact same restriction guarantees that each program
will definitely have a model, and specifically a least Herbrand model.

Next we consider negation, the issues that are brought along with it, as well
as various alternative solutions for dealing with them.

>

�I’ve done everything the Bible
says—even the stuff that contradicts the
other stuff!�

Ned Flanders

Chapter 3

Logic programs with negation

So far so good. As we have seen, for definite programs everything is well-established
and quite unquestionable. Once we allow negations in bodies, things become
spooky. We lose monotonicity, in the sense that the addition of a rule may forbid
us to infer a formula that we were able to infer before this addition.

In this chapter we investigate various different approaches to giving semantics
to logic programs with negation. There is no such thing as a best approach,
although there certainly is a great amount of bias in favor of the well-founded
semantics. Its main rival, the stable models semantics, is also satisfactory, though
not as close to the logic programming paradigm; fruitful as it was, it also gave rise
to answer set programming, which lies beyond the scope of this text.

3.1 Introducing negation

Consider the program P := {p ← ¬q}. It has three models, viz. {p}, {q}
and {p, q}, none of which is least (however, the first two are minimal). It
is therefore immediately clear that we cannot hope for the methods that we
investigated in the previous chapter to automagically work in programs with
negation. For even such a simple program as this, TP fails to be monotone:

∅ ⊆ {q}, but {p} = TP(∅) * TP({q}) = ∅.

A non-monotone T : D → D can’t be continuous and therefore we can no
longer apply the Knaster–Tarski theorem—so long, fixpoints!a)

The road so far. . .

Up to now, Herbrand interpretations mapped elements of the Herbrand base to
the truth-value set {T,F}, and so it made sense to identify them with the sets

a)This example program P happens to behave well: TP fixes a point in just 1 step. Think
of the program {p ← ¬p} if you are not yet convinced.

17

18 CHAPTER 3. LPN

of the ground atoms that they satisfy. It is time to remember that Herbrand
interpretations really are functions, which we call valuations. Their codomainvaluations

is essentially the truth-value space of the semantics.
It is beneficial to impose some kind of ordering on this truth-value set and

on the set of valuations, transforming them into richer algebraic structures. As
we have seen on LP programs, the set of Herbrand interpretations was ordered
under set-inclusion to become a complete lattice, which granted us machinery
such as the Knaster–Tarski fixpoint theorem, enabling us to construct using
TP the very meaning of P as JPK := lfp TP .

3.2 Assumptions related with negation

It becomes apparent that there are various different notions of negation that
are worthy of our concern. Negation from the classical logic point-of-view (viz.
“¬”), is well-known. The negation that appears on programs as “∼”, can be
interpreted in many different ways. For instance, ∼A may mean that we are
not able to infer A. If our inference algorithm is complete (as is the case for
definite programs with SLD-Resolution) these two nots will coincide—but this
is not always the case.

In this text, we focus on negation as failure (NAF), which states that onenegation as failure

can derive ∼p if deriving p fails. A closely related notion, is the closed worldclosed world assumption
assumption (CWA), which one would also call “negation as infinite failure”.

? Remark 3.1. Even in simple cases, the set of consequences wrt to CWA
may be inconsistent;∗ e.g.,

{p ∨ q}
CWA

{p ∨ q,¬p,¬q}︸ ︷︷ ︸
inconsistent

.

∗7,761!

One of the main limitations of negation as failure is that we cannot make
a query like �Is there an X such that ¬p(X)?�. This shortcoming is attacked
by constructive negation, about which the interested reader should consult
[Dra95].

Closed world assumption is due to Reiter (see [Rei78]). Clark suggested
the “negation as finite failure” rule in [Cla78] and proved its soundness. A few
years later, in [JlLL83], it was also shown to be complete.

3.3 LPN programs

Definition 3.1. An LPN rule is a formula of the formLPN rule

A← L1, . . . , Ln,

where A is atomic and each Li is a literal; or equivalently, of the form

A← B1, . . . , Bn,∼C1, . . . ,∼Cm, (LPN)

3.4. RESTRICTING PROGRAMS 19

where A and all the Bi’s and the Cj ’s are atomic. An LPN program is a finite LPN program

set of LPN rules.b)

Definition 3.2. Let r be a rule of the form (LPN). Then we define head(r)

body(r)

B+(r)

B−(r)

B(r)

Neg(P)

head(r) =df A (the head atom)

body(r) =df {B1, . . . , Bn,∼C1, . . . ,∼Cm} (the body literals)

B+(r) =df {B1, . . . , Bn} (the positive body atoms)

B−(r) =df {C1, . . . , Cm} (the negative body atoms)

B(r) =df B+(r) ∪B−(r) (the body atoms)

Neg(P) =df

⋃
r∈P

B−(r) (the negative atoms).

3.4 Restricting programs

We start by the obvious generalization of TP to LPN programs. The concept
is so similar that we continue to use the same symbol.

Definition 3.3. The immediate consequence operator of a LPN program P is immediate consequence operator

the operator TP defined by

TP(I) =df {A | (∃∃φ ∈ P)[A = head(φ) & I |= body(φ)]}.

In [ABW88], Apt, Blair, and Walker introduced stratified programs. Work-
ing independently, Van Gelder defined the same class of programs in 1989.

Definition 3.4. Let P be an LPN program. Then A positively refers to B if positively refers to

A
+−→ B, and A negatively refers to B if A

−−→ B, where +−→
negatively refers to

−−→
A

+−→ B
df⇐⇒ (∃∃φ ∈ Ground(P))[A = head(φ) & B ∈ body(φ)]

A
−−→ B

df⇐⇒ (∃∃φ ∈ Ground(P))[A = head(φ) & ∼B ∈ body(φ)].

We also define −→ as their union
+−→∪ −−→, i.e.,

A −→ B
df⇐⇒ A

+−→ B or A
−−→ B,

and say that A refers to B in that case. If the transitive closure A −→∗ B refers to

−→∗holds, we say that A depends on B.
depends on

I Example 3.1. Here are some LPN programs:

P :=

p(X)← ∼q(X)

q(Y)← ∼r(Y), q(s(Y))

r(b)←

 , Q :=

®
even(0)←

even(s(X))← ∼even(X)

´
.

b)LPN programs are usually called general, and sometimes even normal, though the latter
is also used for “disjunctionless” in the literature.

20 CHAPTER 3. LPN

Some example dependencies, then, are:

p(b)
−−→ q(b)

q(b)
−−→ r(b)

q(sb)
+−→ q(ssb) even(’n+ 1)

−−→ even(n̂) (n ∈ N)

q(ssb) −→ q(sssb) even(n̂) −→∗ even(k̂) (k, n ∈ N, k ≤ n).

p(b) −→∗ r(b)

p(b) −→∗ q(sb) J

Definition 3.5. The digraph DP =df 〈HBP ;−→〉, is called the dependencyDP

dependency graph graph of P.

Definition 3.6. An LPN program P is stratified if DP does not contain astratified program

cycle with a negative arc.

Definition 3.7. We call a partition P = P1 ·∪ · · · ·∪ Pn a stratification of P, ifstratification

for every i ∈ {1, . . . , n},

(i) r ∈ Literals(Pi) =⇒ defP(r) ⊆
⋃
j≤i Pj ,

(ii) ∼r ∈ Literals(Ground(Pi)) =⇒ defP(r) ⊆
⋃
j<i Pj .

I Example 3.2. Let P be the LPN program

P :=

®
p(X)← ∼q(X)

q(Y)← ∼r(Y), q(s(Y))

´
.

The following partition of the relations of P is a stratification

P0 = {r}
P1 = {q}
P2 = {p}. J

Once we have restricted ourselves to only consider stratified programs, we
can give semantics to them using standard models. Similar but more general
restrictions have been investigated, and fancy names have been given to the
corresponding models that provide the semantics.

Przymusinski and Przymusinska defined the perfect models for locally strat-
ified programs in [PP90]. They can be further extended to

• stable model semantics,

• weakly perfect model semantics for weakly stratified programs,

• well-founded semantics.

Bidoit and Froidevaux in [BF91]: General logical databases and programs:
Default logic semantics and stratification, define the notion of effective strati-
fication, extending even more the weakly stratified semantics. This is close to
the well-founded semantics.

3.5. STABLE MODEL SEMANTICS 21

3.5 Stable model semantics

Proposed by Gelfond and Lifschitz in [GL88], stable model semantics coincide
with the perfect ones when restricted to locally stratified programs. The models
are 2-valued, but each program might have none, one, or many stable models.

3.6 Well-founded semantics

This is the widely accepted approach to semantics for LPN programs. The
well-founded model coincides with the standard model of stratified programs,
and with the perfect model of locally stratified ones. It is three-valued, and
thus it applies to arbitrary LPN programs.

Przymusinski introduced stationary models by generalizing two-valued sta- stationary model

ble models to three-valued ones. He singled out a minimal model, which is now
called the well-founded model , for which various alternative characterizations well-founded model

and constructions are known, also thanks to Van Gelder, Ross and Schlipf in
[VGRS91].

? Remark 3.2. If a ground atom is true in the well-founded model of P,
then it is true under every stable model of P . One may be tempted to think
that the converse holds as well, so here is a counterexample that proves
otherwise. Let

P :=

p ← ∼q

q ← ∼p

r ← p

r ← q

 .

This program has two stable models: {r , p} and {r , q}. Even though r
belongs to both of them, its value is “unknown” in the well-founded model.

? Remark 3.3. If P happens to have a two-valued, well-founded model,
then P will possess a unique stable model, and those two models coincide.

3.7 Infinite-valued minimum model semantics

The well-founded semantics are not purely model theoretic. To ameliorate
this situation, Rondogiannis and Wadge suggested a shift in the underlying
logic. In [RW05b] introduced a new, infinite-valued logic and built on it purely
model-theoretic semantics which refined the well-founded semantics.

3.8 Program completions

Clark’s program completion, defined in [Cla78], essentially transforms a pro-
gram by considering← to mean↔, and grouping all rules with a common head
in a single rule, where the corresponding bodies are joined disjunctively. The

22 CHAPTER 3. LPN

program is also extended to include certain free equality axioms to enable the
correct reasoning to take place. This yields a two-valued model semantics.

With negation, Clark’s model can behave rather irrationally. For example,
the consistent LPN program {p ← ∼p}, has an inconsistent completion, and
so everything may be derived from it.

Fitting and Kunen extended Clark’s two-valued completion to three valued
models, amending this problematic behaviour. Fitting called this approach the
Kripke–Kleene semantics. In [Kun89], it is shown that 2- and 3-valued models
coincide for programs that are strict.

Comparing this 3-valued approach to the well-founded one, the essential
difference boils down to the underlying logic. While the well-founded model
considers F < 0 < T, here Kleene’s strong three valued logic is used instead.
This makes ⊥ the preferred truth value. For instance, consider the following
simple LP program: {

p ← p
}
.

According to the well-founded semantics, p is F, while in the three-valued
completion models, p is ⊥.

3.9 Four-valued semantics

Fitting used Belnap’s logic and machinery from bilattices to provide 4-valued,
stable model semantics to LPN programs. The fourth value represents an
“overdefined” element for which we have reasons to consider it both true and
false. This, this truth value can be seen as a representation of inconsistencies.
The motivation behind this approach to semantics is that even though our
program may contain contradictory facts regarding a subject, it may still be
well-behaved in other parts. For more information regarding this approach, see
[Fit90, Fit99].

Summary

We have seen various approaches to deal with LPN programs. If we wish
to remain in 2-valued classical logic, we must either sacrifice the uniqueness of
semantic models or narrow-down the notion of programs that we give semantics
to. If we wish to deal with all programs in a unified way, a third value is
needed. The well-founded model, especially as constructed by the infinite-
valued model semantics, is the standard semantics that we will keep in mind
for LPN programs. Suggested reading: [Fit99], [NM00], [RW05b].

>

�In re mathematica ars proponendi pluris
facienda est quam solvendi.�

Georg Cantor

Chapter 4

Disjunctive logic programs

If we allow disjunctions in a program, we no longer have a least Herbrand model.
There may be more than one minimal models, and one approach to denotational
semantics is exactly this: it is proved that each program P has a nonempty set of
minimal models, and this very set may be dubbed “the meaning of P”.

Another approach involves extending the concept of a Herbrand base, so that
we are able to assign a unique, least model state as the semantics of a DLP
program.

The definitions and results that follow are mainly due to Lobo, Minker and
Rajasekar, and can be collectively found in [LMR92].

4.1 Introducing disjunction

As we certainly know by now, a definite clause is a disjunction of literals, in
which exactly one is positive. When seen from a logic programming aspect,
we speak of a definite (LP) rule, and think of it as “a ← b1, . . . , bn”. Since
there is only one positive literal, there is only one way to bring a definite clause
into that form. On the other hand, an LPN rule essentially is a disjunction
of literals in which at least one must be positive. But this is not enough to
uniquely determine a corresponding form like (LPN): a positive literal must
be designated as the head. It is essentially this last restriction that we drop
when dealing with disjunctive programs.

4.2 DLP programs

Definition 4.1. A DLP rule is a rule of the form DLP rule

a1 ∨ · · · ∨ ak ← b1, . . . , bn. (DLP)

It is probably already apparent by now, that if we hope to pinpoint a
unique “model” as the meaning of a disjunctive program P, we should choose

23

24 CHAPTER 4. DLP & DLPN

its elements from a set that’s more general than HBP . For this reason, we
introduce the following set.

Definition 4.2. Let P be a DLP program. Its disjunctive Herbrand base is thedisjunctive Herbrand base

set DHBP of all positive disjunctive ground clauses which can be formed byDHBP
using distinct ground atoms from HBP , such that no two logically equivalent
clauses belong to it.

? Remark 4.1. Is the set DHBP well-defined? No, it isn’t. In fact, the last
restriction in the above definition does not uniquely determine which of the
logically equivalent clauses belongs to it. We can either impose an ordering
on the underlying language and always pick the least, or allow ourselves the
luxury of abusing the notation “C ∈ DHBP” to stand for the claim “either
C or some syntactic variant of C belongs to DHBP”.

Definition 4.3. Let P be a DLP program and S a set of positive ground
clauses in P . The expansion of S is the set exp(S) defined byexpansion

exp(S)
exp(S) = {C ∈ DHBP | C ∈ S or ∃∃C ′ ∈ S such that C ′ is a subclause of C}.

Definition 4.4. A set S ⊆ DHBP is called a Herbrand state for P. If addi-Herbrand state

tionally S = exp(S), we call it an expanded Herbrand state.expanded Herbrand state

Definition 4.5. A model-state for a set S of closed formulæ S of LP is anmodel-state

expanded state St such that

(i) every Herbrand model of St is a Herbrand model of S; and

(ii) every minimal Herbrand model of S is contained in some minimal Her-
brand model of St .

Minimal models semantics

Theorem 4A. Let P be a DLP program. A positive ground clause C is a
logical consequence of P iff C is true in every minimal Herbrand model of P.

Proof. See [LMR92].

I Example 4.1. Let P be the disjunctive program

P :=

®
a ∨ b ←

c ←

´
.

Then Mmin
P = {{a, c}, {b, c}}, and the clause a ∨ b is a consequence of P,

since it is true wrt both minimal models of P. On the other hand, b isn’t. J

4.3. ANSWER SET PROGRAMMING 25

Model state semantics

The idea here is that a model-state for a DLP program P must already contain
every minimal model of P. By considering model-states instead of sets of
minimal models, we regain an intersection property, perhaps at the cost of
elegance.

Theorem 4B (Model-state intersection property). Let P be a DLP program
and {Wi}i∈N a non-empty family of model-states of P. Then

⋂
i∈NWi is also

model-state of P.

Proof. See [LMR92].

Observing that DHBP is always a model-state of P, we arrive at the fol-
lowing pleasant conclusion:

Corollary 4C. Every DLP program P has a unique, least model-state M`
P .

Theorem 4D. Let P be a DLP program. Then,

M`
P = {C ∈ DHBP | P |= C}.

Proof. Also in [LMR92].

The two different points of view are hereby connected: a clause is in the
least model-state iff it is true in every minimal model. Formally:

Theorem 4E. Let P be a DLP program, and C ∈ DHBP . Then,

C ∈M`
P ⇐⇒ (∀∀M ∈Mmin

P)M |= C.

Proof. Immediate from Theorem 4D and Theorem 4A.

4.3 Answer set programming

Bonatti, Calimeri, Leone and Ricca in [BCLR10] present denotational seman-
tics for disjunctive logic programming under the stable model semantics. But
this deviates enough from the practices of logic programming to be considered
as a different programming paradigm!

4.4 DLPN programs—the best (worst) of two worlds

Definition 4.6. A DLPN rule is a rule of the form DLPN rule

a1 ∨ · · · ∨ ak ← b1, . . . , bn,∼c1, . . . ,∼cm. (DLPN)

26 CHAPTER 4. DLP & DLPN

Sets of infinite-valued, minimal models

Cabalar, Pearce, Rondogiannis and Wadge in [CPRW07] present a model-
theoretic semantics for disjunctive logic programs with negation, they call Lmin

∞ .Lmin
∞

They show that every finite, propositional DLPN program has a nonempty, fi-
nite set of minimal infinite-valued models. Furthermore, a bound in this set’s
size is calculated, which leads to a brute-force algorithm that computes all
those infinite-valued minimal models in finite time.

This approach combines the infinite-valued semantics that we’ve dealt with
for LPN and the minimal model semantics for DLP. In fact, it generalizes both
methods, in the sense that if we restrict it to either LPN or DLP, we obtain
the desired semantics.

Summary

Disjunctions allow uncertainty to be naturally expressed in logic programs,
and is therefore a useful language feature to have available. Of course, this
complicates the semantics involved, which once we also allow negations in the
programs seem abysmal.

Luckily, for the case of DLP we have the minimal model semantics, while
for DLPN (and therefore for every logic programming language considered in
this text!) the infinite-valued minimal model semantics.

>

�I’m tired of hearing about money,
money, money, money, money. I just want
to play the game, drink Pepsi, wear
Reebok.�

Shaquille O’Neal
Chapter 5

Game semantics

The idea of using game-theoretic concepts for the study of Logic and its semantics,
goes back to Hintikka, Lorenzen and Lorenz. Games have also been used extensively
to provide semantics for (functional) programming languages and the reader is
referred to [Abr97] for more information regarding this subject.

It therefore seems natural to investigate what kind of games we can define and
play for logic programming.

5.1 Playing with definite programs

Our story begins with van Emden in [vE86], who uses games to give semantics
to a fuzzy version of logic programming, using fuzzy logic and sets.

It was Di Cosmo, Loddo and Nicolet who studied definite programs exten-
sively, in their [DCLN98]. Their approach is outlined in this section.

The idea behind game semantics is that once we are given a program P
and a ground atom p, a game will tell us p’s truth value. Each of the four
games presented here has its own set of rules, and its own game-theoretic way
to answer queries. However, they all share the following:

• Two players: Player I (who plays first) and Player II.

• The game has perfect information: at any moment, both players know perfect information

all moves that have taken place.

• One of them is the Believer, the other one is the Doubter.

• A player who can’t make a legal move, loses.

• Doubter has the “benefit of the doubt”, i.e., a Doubter who can always
doubt, wins.

Rules of the LP game

LP1. Player I is the Believer, and begins the game by playing the goal clause
“← p”.

27

28 CHAPTER 5. GAME SEMANTICS

LP2. If the previous move was a clause, the next move must be one of the
conjuncts in the clause’s body.

LP3. If the previous move was an atom, the next move must be a rule with
that atom as head.

Defining semantics from the LP game

Defining semantics out of this game is done in a quite natural way.

• The goal ← p succeeds, if Player I (the Believer) has a winning strategy.

• Otherwise, it fails.

Since we are using a two-valued classical logic, these possibilities correspond
to the two truth values of our underlying logic.

5.2 Playing with negations

In [RW05a], Rondogiannis and Wadge define a new game that is capable of
dealing with LPN programs. Its semantics are equivalent to the well-founded
model. The key idea behind this game is that one can believe ∼p by doubting
p. This way, the rôles of the players switch.

Rules of the LPN game

For a program P and a goal clause G =← p, the rules of the game are the
following:

LPN1. Player I starts as the Believer, by playing “← p”.

LPN2. If the previous move was a clause, the next move is one of the literals
in the body of that clause.

LPN3. If the previous move was a positive literal p, the next move is a rule
with head p.

LPN4. If the previous move was a negative literal ∼p, the next move has to
be p (rôle-switch move).

Defining semantics from the LPN game

As we have seen in the LP game, the Doubter has the “benefit of the doubt”;
therefore, an infinite LP game will always have a winner. On the other hand,
an infinite LPN game might involve infinitely many rôle changes between the
players; and this is exactly what the 0 truth value represents. The truth
assignment is the following:

• p is T, if Player I (the initial Believer) has a winning strategy.

• p is F, if Player II (the initial Doubter) has a winning strategy.

5.3. PLAYING WITH DISJUNCTIONS 29

• p is 0, if each player has a strategy, which, when played against any
strategy of the opponent, it can at least ensure a tie.

It was proved in [GRW08] that the semantics provided by the LPN game
coincide with the infinite-valued model semantics of §3.7.a)

5.3 Playing with disjunctions

To deal with disjunctions, one should adjust the rules of the game accordingly.
Here we allow a disjunction of atomic formulæ to be a single goal.

Rules of the DLP game

DLP1: Player I is the Believer, and starts the game with the goal clause

← p1 ∨ · · · ∨ pn.

DLP2: If the previous move was a clause, the next move must be one of the
conjuncts of this clause’s body.

DLP3: If the previous move was a disjunction, the next move must be a set
of rules, whose union of heads is a subset of the disjuncts just played
(combo move).

This set of rules, is played as a single rule, with the disjunction union
of heads as a head, and with the disjunction of the bodies, reformatted
into CNF.

To clarify with an example, suppose that the previous move was a ∨ b ∨ c.
Since {a, b} ⊆ {a, b, c}, the current move can be®

a← p, r

b← q

´
,

which becomes the single rule a ∨ b ← (p, r) ∨ q . Reformatting its body into
CNF, the move is finally played as:

a ∨ b← (q ∨ p), (r ∨ q).

? Remark 5.1. Note that DLP2 forces the player to choose one of the
conjuncts of the previously played rule’s body. There is nothing bogus if
this body is a disjunction, as in this case this whole disjunction can be seen
as a single conjunct of a (rather trivial) conjunction. For example, if the
last move was p← q ∨ r, the following move must necessarily be q ∨ r.

a)Actually, a slightly different mechanism is used in their game, that also involves pay-off,
and where the score determines the exact “subscript” ordinal of the exact value.

30 CHAPTER 5. GAME SEMANTICS

I Example 5.1. Given the program

P :=

p ← a

p ← b

p ← c

a ∨ c ← t

t ← .

and the goal clause ← p, the following is an example game between the two
players:

Player I Player II

← p p
p ← a ∨ c a ∨ c
a ∨ c ← t t

t ← . Loser!

Note the second move of Player I, which is a combo move which resulted from
the two rules “p ← a” and “p ← c”.

A bad Player I could have played the combo “p ← a ∨ b” (using which
rules?) instead. Player II would then respond with “a ∨ b”, a move that
would grand him victory, since there are no rules whose heads form a subset
of {a, b}. J

Defining semantics out of the DLP game

Having defined a way to obtain semantics out of the LP game, it is straightfor-
ward to extend it to DLP games: we define exactly the same semantics!

5.4 Playing with negations and disjunctions

Rules of the DLPN game

DLPN1: Player I starts as the Believer, by playing “← p”.

DLPN2: If the previous move was a clause, the next move must be one of the
conjuncts of this clause’s body.

DLPN3: If the previous move was a disjunction

p1 ∨ · · · ∨ pn ∨ ∼q1 ∨ · · · ∨ ∼qm,

the next move may be one of the following:

(i) a set of rules with heads in {p1, . . . , pn} (combo),

(ii) one of the literals qi (rôle-switch).

As in the case of the DLP game, the combo move is played as a single rule,
whose body is transformed into CNF by considering ∼ to be ¬.

5.5. FUTURE WORK 31

Defining semantics out of the DLPN game

This time we use the same way to define semantics as we did for the LPN game.
Again, the model we end up with is a three-valued one, as was the case with
the well-founded model.

5.5 Future work

In lack of something as evident as the least Herbrand model for LP, and the well-
founded model for LPN, it is hard to establish the correctness of the semantics
provided by the DLP and the DLPN games. Nevertheless, there are a couple of
conjectures that I currently investigate:

Conjecture 1 (DLP). Given a DLP program P, if Player I has a winning
strategy in the DLP game with the goal “← q1 ∨ · · · ∨ qn” then p is true in
every minimal model of P ′, where

P ′ := P ∪ {p ← q1 ∨ · · · ∨ qn},

and p is some fresh relation symbol, not occuring in P.
Conversely, if there exists a minimal model of P ′ in which p is false, there

is no winning strategy for Player I with that goal.

Conjecture 2 (DLPN). Given a DLPN program P, if Player I has a winning
strategy in the DLP game for the goal “← q1 ∨ · · · ∨ qn ∨ ∼r1 · · · ∨ ∼rm” then
p is true according to the infinite-valued minimal model semantics, where

P ′ := P ∪ {p ← q1 ∨ · · · ∨ qn ∨ ∼r1 · · · ∨ ∼rm},

and p is some fresh relation symbol, not occuring in P.
Conversely, if there exists a minimal model of P ′ in which p is false, there

is no winning strategy for Player I with that goal.

Summary

In this chapter, four games were investigated. Regarding the first two (LP and
LPN), it was proved that they correspond to the semantics that we hoped: the
least Herbrand model and the well-founded model respectively.

On the other hand, there is nothing as well-established as those semantics
for the cases of DLP and DLPN. Instead, I have tried to define them in such
a way so that they fit in harmony with the existing games and complete the
picture, and therefore convince the reader of their “correctness”.

Finally, two conjectures currently under investigation by the author were
stated to conclude this chapter.

<

Appendices

33

�. . . en les appliquant aux questions les
plus importantes de la vie, qui ne sont en
effet, pour la plupart, que des problèmes
de probabilité.�

Pierre Simon de Laplace
Appendix A

Further considerations

In this appendix, several different approaches to denotational semantics of logic
programming are outlined along with some brief, relevant ideas. I had been working
on this material until the point I met the LP and LPN games and focused on
defining new ones that would be able to deal with disjunctive programs. However,
it seemed unfair to leave these parts completely out of my thesis, so I include some
of my notes, mostly as a reminder that I owe them further investigation.

A.1 Probabilistic semantics

Some probability theory comes into play here: the truth-value space is the unit
interval [0, 1], where each value represents the probability that a formula is true.

Extensions of the programming language

We allow numeric values in [0, 1] as constants, and so a rule like

a← 0.5

is now valid. The intended meaning of this rule is to claim that formula a is
true with a 0.5 probability.

Customizing the semantics

The end-user is given the flexibility to customize the semantics to her taste, by
providing answers to two questions.

Näıveness. The first deals with lack of information: it is the truth value
of an atom in case we have no information about it. Setting this to 0 should
correspond to negation as failure, while setting it at 1 represents the näıve
stance where we believe anything unless we have some evidence against it.
Note that 1/2 seems to be a fair value for this.

35

36 APPENDIX A. FURTHER CONSIDERATIONS

Acceptance. The second question represents the truth threshold, and is used
when we collapse the various truth values to either 2- or 3-valued models. All
we need is to divide the unit interval [0, 1] into three, consecutive, disjoint
subintervals. The first one will represent falsehood, the last one truth, and the
middle one will stand for “unknown”. If the middle one is non-empty we obtain
a 3-valued model, otherwise a 2-valued one. There seems to be no benefit in
allowing either the first or the last interval to be empty.

? Remark A.1. Note that since we have allowed constants as part of our
syntax, the user can further fine-tune the näıveness by assigning truth values
to specific atoms, like so:

a← 0.5.

This in effect gives a the value of 1/2, so that, for example, even if we
have chosen to use negation as failure in general (by setting näıveness to
0), we can make an exception for the case of a, where we interpret lack of
information as 1/2 instead of 0.

Probably dealing with negation and disjunction

Influenced by the way negation works in the infinite-valued semantics, we arrive
at the following definition.

Definition A.1. Let x ∈ [0, 1]. Then we define its probabilistic complement xprobabilistic complement

x and its doubted complement x̃ by
doubted complement

x̃ x =df 1− x

x̃ =df

(1− x) + 1/2

2
.

Here is an example of how to use the probabilistic semantics on a program
which we have met in [RW05b].

I Example A.1. Consider the program

P :=

p ← ∼q

q ← ∼r

s ← p

s ← ∼s

r ← false

.

Our first task is to unite common-headed rules:

P ′ :=

p ← ∼q

q ← ∼r

s ← p ∨ ∼s

r ← false

 .

A.1. PROBABILISTIC SEMANTICS 37

We are now ready to calculate the semantics. We set näıveness to 1/2, so that

P0(p) = P0(q) = P0(s) = P0(r) = 1/2.

We now compute the values of P1 and P2:

P1(p) = P0(∼q) = flP0(q) = ›1/2 = 1/2

P1(q) = P0(∼r) = flP0(r) = ›1/2 = 1/2

P1(s) = P0(p) ·P0(∼s)

= 1−P0(p) ·P0(∼s)

= 1− (1−P0(p)) · (1−P0(∼s))

= 1− (1−P0(p)) ·
Ä

1−flP0(s)
ä

= 1− (1− 1/2) ·
Ä

1−›1/2
ä

= 1− (1− 1/2) · (1− 1/2)
···
= 3/4

P1(r) = 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P2(p) = P1(∼q) = flP1(q) = ›1/2 = 1/2

P2(q) = P1(∼r) = flP1(r) = 0̃ = 3/4

P2(s) = P1(p) ·P1(∼s)

= 1−P1(p) ·P1(∼s)

= 1− (1−P1(p)) · (1−P1(∼s))

= 1− (1−P1(p)) ·
Ä

1−flP1(s)
ä

= 1− (1− 1/2) ·
Ä

1−›3/4
ä

= 1− (1− 1/2) · (1− 3/8)
···
= 11/16

P2(r) = 0.

Proceeding in this way, we arrive at the table

P0(·) P1(·) P2(·) P3(·) P4(·) P5(·) P6(·) · · ·
p 0.5 0.5 0.75 0.75 0.75 0.75 0.75 · · ·
q 0.5 0.5 0.5 0.375 0.375 0.375 0.375 · · ·
s 0.5 0.75 0.6875 0.70313 0.62402 0.64874 0.64102 · · ·
r 0.5 0 0 0 0 0 0 · · ·

which we use to assign truth values to the relational symbols p, q , s, and r. J

Future work

Continuing the above example, the following things are desired and seem easy
to prove for an arbitrary logic program.

The sequence (Pn(s))n∈ω tends to a limit ξs as n→∞, which is the value
assigned to s. Thanks to Banach’s fixpoint theorem (see p. 42), all the limits
whose existence is implied by a table like the one above can be characterized
as the unique fixpoint of the contraction TP : [0, 1]k → [0, 1]k which assigns
new probabilistic truth values to every predicate of P (here k = 4), given a set
of old ones.

(Pn(·))n∈ω behaves better for the rest of the symbols, as it obtains a con-
stant value in a finite number of steps. We now collect all those values we
obtained as limits for the “bad-behaving” sequences into a set U . Collapsing
all truth values below inf U to F, those above supU to T and those in U to 0,
we get the well-founded model.

Another “desired fact” is that there is a partition of [0, inf U) into consec-
utive intervals such that collapsing the αth interval to Fα, will agree with the

38 APPENDIX A. FURTHER CONSIDERATIONS

infinite-valued semantics, and similarly for the values above supU . In that
way, we can consider this approach a refinement of the infinite-valued model,
as it allows us to further distinguish between otherwise incomparable 0-valued
predicates.

A.2 Symbolic semantics for disjunctive programs

This method lies in between denotational and operational semantics. Each DLP
program P is iteratively transformed into a disjunction-free program P̈, in which
disjunctions are “hidden” behind a convenient symbolic notation. This way, the
program becomes disjunctionless and the problem of assigning semantics is reduced
to what we have already solved (or not) so far for LP and LPN.

I present a way to reduce a disjunctive program to a general program, so
that the reduced program will have the intended semantics. The transformation
of P is done in two steps, the first resembling Clark’s completion:

(i) make each head appear exactly once, by joining bodies disjunctively; and
(ii) replace each disjunction by a fresh, representative “atom-set”, adding all

possible instances of the two rule-schemata:

{p1 ∨ · · · ∨ pn}← p1 ∨
−i· · · ∨ pn, (A.1)

p1 ∨
−i· · · ∨ pn ← {p1 ∨ · · · ∨ pn},∼pi, (A.2)

where i ranges over the set {1, . . . , n}.

Definition A.2. Let P be a logic program, possibly involving disjunctions.
Then define its short version Ṗ by the equationshort version

Ṗ
Ṗ =df {H ← C1 ∨ · · · ∨ Cn | defP(H) = {C1, . . . , Cn}} .

Definition A.3. Let D = {D1, . . . , Dn} be a finite set of atomic formulæ.
Then,

ESA(D) =df

⋃
i

¶
{D1 ∨ · · · ∨ Dn}← D1 ∨

−i· · · ∨ Dn

©
ESB(D) =df

⋃
i

¶
D1 ∨

−i· · · ∨ Dn ← {D1 ∨ · · · ∨ Dn},∼Di

©
ES(D) =df ESA(D) ∪ ESB(D).

? Remark A.2. Note that there is always a way to order the atoms of a
language. Hence, to avoid commutativity woes, we always sort the disjuncts
of a disjunction before encoding it into an atom-set.

? Remark A.3. Once a disjunction is encoded into an atom-set, we are no
longer able to “look inside” it. This is very important, and guarantees that
there is no cheating involved in the semantics proposed.

A.3. GOSSIP PROGRAMMING 39

Future work

It remains to verify the claim that the symbolic semantics assign a true/false
value to an atom p iff the all the models of the minimal model semantics agree
with that value.

A.3 Gossip programming

This alternate view of programming is too far from logic programming to be con-
sidered a part of it. The motivation behind it seems clearer if instead of rules, one
thinks each program consist of rumours; hence the name.

In the following example, a party of three friends is deciding on where to
go to on vacations. They have the following demands:

�I’ll be happy if the hotel has a swimming pool, or if there is a beach nearby.�
�I’ll be happy if the hotel has a swimming pool, or if there is a mountain nearby.�
�I’ll be happy if the hotel has a swimming pool, or if there are good taverns nearby.�

Breaking down these demands, let

a = the hotel must have a swimming pool

b = there must be a beach nearby

c = there must be a mountain nearby

d = there must be good taverns nearby.

Now, we have a set of rules to satisfy, namely
a ∨ b
a ∨ c
a ∨ d

 .

Provided that each demand is of equal difficulty, it is obvious that the easier
way to satisfy all of these demands is to satisfy a.a) Looking at these as
programming rules, it seems reasonable to say that a is in some sense truer
than b, c, or d. But just how much truer?

Semantics for gossip programming

Looking at just the first rule, we can assign the truth value 2/3 to a, and
another 2/3 to b. But if we look at the bigger picture, it seems reasonable to
ask: “what is the probability that a fails to be true?” This is obviously equal
to the probability that all of b, c and d are satisfied (and not a) which boils
down to (1/3)3 = 1/27.

>
a)This wouldn’t be as obvious if a stood for the demand “there must be an alien spaceship

nearby” instead. In this case it would have been easier to simultaneously satisfy all other
three demands: just go to Crete.

�Ne pleure pas, Alfred! J’ai besoin de
tout mon courage pour mourir à vingt
ans!�

Evariste Galois

Appendix B

Mathematical preliminaries

B.1 Set & order theory

Excellent sources for the basic notions of set theory are [Hal60, Mos05], while for
lattices and order, [DP02].

Definition B.1. A partial order on a set S is a reflexive, antisymmetric and partial order

transitive relation R ⊆ S × S, i.e.,

(i) x R x,

(ii) x R y & y R x =⇒ x = y,

(iii) x R y & y R z =⇒ x R z.

Definition B.2. A poset (partially ordered set) is a structured set 〈P ;≤〉 such poset

that ≤ is a partial order on P . If there is an element a such that a ≤ x for
every x ∈ P , we call it the bottom element and denote it by ⊥. The top element bottom element

⊥
top element

is defined analogously and denoted by >.

>Definition B.3. A poset L is a lattice if x ∨ y and x ∧ y exist for any x and

latticey in L. A lattice L is complete if both lubX and glbX exist for any X ⊆ L.

complete latticeA side-effect of this definition is the existence of a bottom element ⊥ = lub ∅
and a top element > = glb ∅.

Definition B.4. Let L be a complete lattice and T : L→ L be monotone. We
define ↑ by ↑-notation

T ↑ 0 = ⊥

T ↑ α =

®
T (T ↑ (α− 1)) if α is a successor ordinal,

lub{T ↑ β | β < α} if α is a limit ordinal,

and mutatis mutandis for ↓, ↓-notation

41

42 APPENDIX B. MATHEMATICAL PRELIMINARIES

T ↓ 0 = >

T ↓ α =

®
T (T ↓ (α− 1)) if α is a successor ordinal,

glb{T ↓ β | β < α} if α is a limit ordinal.

The least ordinal α such that T ↑ α = lfp(T) is the closure ordinal of T .closure ordinal

B.2 Mathematical analysis

Definition B.5. Let 〈R; d〉 be metric space. A mapping F : R → R is called
a contraction if there exists a number α < 1 such thatcontraction

d(Fx, Fy) ≤ αd(x, y), (∀∀x, y ∈ R). (B.1)

Note that every contraction is continuous. In fact, by virtue of (B.1),
xn → x implies Fxn → Fx. The following theorem is due to Banach, and was
first stated in 1920.

Banach Fixpoint Theorem. Every contraction mapping F defined on a
complete metric space R has one and only one fixed point. Moreover, this
fixpoint is the limit of the sequence Fn(x0), where x0 is any point of R.

Proof. See [KF57].

� �)

Bibliography

[Abr97] Samson Abramsky. Game semantics for programming languages.
In Igor Pŕıvara and Peter Ruzicka, editors, Mathematical Foun-
dations of Computer Science 1997, volume 1295 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1997.
10.1007/BFb0029944.

[ABW88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declar-
ative knowledge. pages 89–148, 1988.

[Apt90] Krzysztof R. Apt. Logic programming. pages 493–574, 1990.

[AvE82] Krzysztof R. Apt and M. H. van Emden. Contributions to the
theory of logic programming. J. ACM, 29(3):841–862, 1982.

[BCLR10] Piero Bonatti, Francesco Calimeri, Nicola Leone, and Francesco
Ricca. Answer set programming. In Agostino Dovier and Enrico
Pontelli, editors, A 25-Year Perspective on Logic Programming, vol-
ume 6125 of Lecture Notes in Computer Science, pages 159–182.
Springer Berlin / Heidelberg, 2010.

[BF91] Nicole Bidoit and Christine Froidevaux. General logical databases
and programs: Default logic semantics and stratification. Informa-
tion and Computation, 91(1):15 – 54, 1991.

[Cla78] Keith Clark. Negation as failure. Logic and Databases, pages 293–
322, 1978.

[Cla79] Keith Clark. Predicate logic as a computational formalism. 1979.

[CPRW07] Pedro Cabalar, David Pearce, Panos Rondogiannis, and William
Wadge. A purely model-theoretic semantics for disjunctive logic
programs with negation. In Chitta Baral, Gerhard Brewka, and
John Schlipf, editors, Logic Programming and Nonmonotonic Rea-
soning, volume 4483 of Lecture Notes in Computer Science, pages
44–57. Springer Berlin / Heidelberg, 2007.

43

44 BIBLIOGRAPHY

[DCLN98] Roberto Di Cosmo, Jean-Vincent Loddo, and Stephane Nicolet.
A game semantics foundation for logic programming. In Catuscia
Palamidessi, Hugh Glaser, and Karl Meinke, editors, Principles of
Declarative Programming, volume 1490 of Lecture Notes in Com-
puter Science, pages 355–373. Springer Berlin / Heidelberg, 1998.
10.1007/BFb0056626.

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order
(2nd ed.). Cambridge University Press, 2002.

[Dra95] Wlodzimierz Drabent. What is failure? an approach to constructive
negation. Acta Informatica, 32:27–59, 1995. 10.1007/BF01185404.

[Fit90] Melvin Fitting. Bilattices in logic programming, 1990.

[Fit99] Melvin Fitting. Fixpoint semantics for logic programming - a sur-
vey. Theoretical Computer Science, 278:25–51, 1999.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model seman-
tics for logic programming. pages 1070–1080. MIT Press, 1988.

[GRW08] Chrysida Galanaki, Panos Rondogiannis, and William W. Wadge.
An infinite-game semantics for well-founded negation in logic pro-
gramming. Annals of Pure and Applied Logic, 151(2-3):70 – 88,
2008. First Games for Logic and Programming Languages Work-
shop.

[Hal60] Paul R. Halmos. Naive set theory. Litton Educational Publishing,
Inc., 1960.

[JlLL83] Joxan Jaffar, Jean louis Lassez, and John Lloyd. Completeness of
the negation as failure rule. In In Proceedings of the 8th Interna-
tional Joint Conference on Artificial Intelligence IJCAI-83, pages
500–506, 1983.

[KF57] A. N. Kolmogorov and S. V. Fomin. Elements of the Theory of
Functions and Functional Analysis, volume 1. Graylock Press,
Rochester, New York, 1957.

[Kun89] Kenneth Kunen. Signed data dependencies in logic programs. J.
Log. Program., 7(3):231–245, 1989.

[Llo93] John Wylie Lloyd. Foundations of Logic Programming. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1993.

[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of
disjunctive logic programming. MIT Press, Cambridge, MA, USA,
1992.

[Mos05] Yiannis N. Moschovakis. Notes on set theory (2nd ed.). Springer-
Verlag New York, Inc., New York, NY, USA, 2005.

BIBLIOGRAPHY 45

[NM00] Ulf Nilsson and Jan Ma luszyński. Logic, Programming, and Prolog
(2nd ed.). Nilsson & Ma luszyński, 2000.

[PP90] Halina Przymusinska and Teodor Przymusinski. Semantic issues in
deductive databases and logic programs. In Formal Techniques in
Artificial Intelligence, pages 321–367. North-Holland, 1990.

[Rei78] R Reiter. On closed world data bases. Logic and Databases, pages
55–76, 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965.

[RW05a] Panos Rondogiannis and William W. Wadge. An infinite-game
semantics for negation in logic programming. In In Proceedings
of Games for Logic and Programming Languages (GaLoP), pages
77–91, 2005.

[RW05b] Panos Rondogiannis and William W. Wadge. Minimum model se-
mantics for logic programs with negation-as-failure. ACM Trans.
Comput. Logic, 6(2):441–467, 2005.

[SS94] Leon Sterling and Ehud Shapiro. The art of Prolog (2nd ed.):
advanced programming techniques. MIT Press, Cambridge, MA,
USA, 1994.

[vE86] M. H. van Emden. Quantitative deduction and its fixpoint theory.
Journal of Logic Programming, 3:37–53, 1986.

[vEK76] M. H. van Emden and R. A. Kowalski. The semantics of predicate
logic as a programming language. Journal of the ACM, 23:569–574,
1976.

[VGRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. J. ACM, 38(3):619–
649, 1991.

Index of symbols

Lmin
∞ , 26

B(r), 19
TP , 9
defP(r), 6
DP , 20
−→∗, 19
DHBP , 24
↓, 41
�, 6
ε, iv
:=, iii
=df, iii
···
=, iii
∴
=, iv
−i. . ., iii
∃∃, iv
exp(S), 24
∀∀, iv
HBP , 7
HP , 8
UP , 7
LP , 7
|A|, iii
MP , 8“�, iv
x̃, 36
N, iii
R, iii
2A, iii
·∪, iii
⊥, 41
c:, vi

⊆κ, iii
⊆fin, iii
B−(r), 19
−−→, 19
x, 36
B+(r), 19
+−→, 19
Ground(P), 6
Neg(r), 19
body(r), 5, 19
ground(r), 6
head(r), 5, 19
Ṗ, 38
∴, iv
>, 41
↑, 10, 41
℘finA, iii
℘A, iii
�, iv

47

Index of names

Apt, Krzysztof R., 15, 19

Banach, Stefan, 37, 42
Belnap, Nuel D., Jr., 22
Bidoit, Nicole, 20
Blair, H. A., 19
Bonatti, Piero, 25

Cabalar, Pedro, 26
Calimeri, Francesco, 25
Clark, Keith, 15, 18, 21

Di Cosmo, Roberto, 27

Fitting, Melvin, 22
Froidevaux, Christine, 20

Gelfond, Michael, 21

Hintikka, Jaakko, 27

Kleene, Stephen Cole, 22
Kowalski, Robert Anthony, 1, 14
Kunen, Kenneth, 22

Leone, Nicola, 25
Lifschitz, Vladimir, 21
Lobo, Jorge, 23
Loddo, Jean-Vincent, 27
Lorenz, Kuno, 27
Lorenzen, Paul, 27

Minker, Jack, 23

Nicolet, Stephane, 27

Pearce, David, 26
Przymusinska, Halina, 20
Przymusinski, Teodor, 20, 21

Rajasekar, Arcot, 23
Reiter, R., 18
Ricca, Francesco, 25
Robinson, John, 1
Rondogiannis, Panos, 3, 21, 26, 28
Ross, Kenneth A., 21

Schlipf, John S., 21

van Emden, Maarten H., 1, 14, 15,
27

Van Gelder, Allen, 19, 21

Wadge, William W., 3, 21, 26, 28
Walker, A., 19

49

General index

answer set programming, 17, 25
associated language, 7

Belnap logic, 22
bilattice, 22
body of a rule, 5
bottom element, 41

Clark’s completion, 21
clause, 5

definite, 5
general, 18
Horn, 5
unit, see fact

closed world assumption, 18
closure ordinal, 42
clueless program, 9
complement

doubted, 36
probabilistic, 36

complete lattice, 41
completion

Clark’s, 21
constructive

negation, 18
contraction, 37, 42
CWA, 18

definite
clause, 5
goal, 6
program, see LP program
rule, see LP rule

definition, 5
dependency graph, 20
depends on, 19
DHB, see disjunctive HB
digraph, 20
directed

graph, see digraph
disjunctive

Herbrand base, 24
DLP

game, 29
rule, 23
semantics, see semantics DLP

DLPN
game, 30
rule, 25
semantics, see semantics DLPN

doubted complement, 36

empty
goal, 6

expanded
Herbrand state, 24

expansion, 24

fact, 5
fixpoint, 37

game
DLP, 29
DLPN, 30
LP, 27
LPN, 28

51

52 GENERAL INDEX

semantics, 27
goal

definite, 6
empty, 6

gossip programming, 39
graph

dependency, 20

HB, see Herbrand base
head of a rule, 5
Herbrand

base, 7
interpretation, 7
model, 8

least, 8
state, 24

expanded, 24
universe, 7

Herbrand base
disjunctive, 24

Horn clause, 5
HU, see Herbrand universe

iff, iii
immediate consequence operator, 9

for LPN programs, 19
infinite

program, 13
interpretation

Herbrand, 7

Knaster–Tarski theorem, 17

language
associated with a program, 7

lattice, 41
complete, 41

least Herbrand model, 8
LHM, see least Herbrand model
logic

3-valued
Kleene’s strong, 22

4-valued
Belnap, 22

infinite-valued, 21
LP

game, 27
program, 5
rule, 5
semantics, see semantics LP

LPN, 19
game, 28
program, 19
rule, 18
semantics, see semantics LPN

mip, see model intersection prop-
erty

model
Herbrand, 8

least, 8
intersection property, 8
perfect, 20
standard, 20
stationary, 21
weakly perfect, 20
well-founded, 21

model-state, 24
intersection property, 25

msip, see model intersection prop-
erty

NAF, 18
negation

as failure, 18
negatively refers to, 19

order
partial, 41

ordinal
closure, 42

partial order, 41
perfect information, 27
PI, see perfect information
poset, 41
positively refers to, 19
probabilistic

complement, 36
probabilistic semantics, 35
program

clueless, 9

GENERAL INDEX 53

completion
Clark’s, 21

definite, see LP program
general, see LPN program
infinite, 13
LP, 5
LPN, 19, 19
normal, see LPN program
stratified, 19, 20

effectively, 20
locally, 20
weakly, 20

tall, 13
wide, 13

program rule, 1
programming

answer set, 25
functional, 27
gossip, 39

property
mip, 8
msip, 25

refers to, 19
resolution, 1
rule

DLP, 23
DLPN, 25
LPN, 18

semantics
DLP

game, 30
minimal model, 24
model-state, 25

DLPN
game, 31
minimal ∞-models, 26

LP
game, 28
LHB, 9

LPN
4-valued, 22
Fitting, 22
game, 28
Kripke–Kleene, 22

Kunen, 22
stable models, 17, 21
well-founded, 17, 21

probabilistic, 35
short version, 38
stable models

semantics, 17
stationary model, 21
stratification, 20
stratified

program, 19, 20
subgoal, 6

tall program, 13
theorem

Knaster–Tarski, 17
top element, 41
transitive closure, 19

unit clause, see fact

valuations, 18

well-founded
model, 21
semantics, 17

wff, iii
wide program, 13
wrt, iii

Written with love, in vim.

:wq

