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Chapter 1

Introduction

This thesis presents the logical systems “Intersection Logic” and “Intersection
Synchronous Logic”, abbreviated IL and ISL, respectively. The former was proposed
by Simona Ronchi Della Rocca and Luca Roversi [RR01, Ro02] and the latter by
Elaine Pimentel, Ronchi and Roversi [PR05]. They both aim to establish a logical
foundation for the intersection types assignment system, a deductive system which
assigns formulas built from the intuitionistic implication and the intersection as types
to terms of the untyped A-calculus.

The intersection types assignment system, denoted IT by [RR01, PR05] and D
by [Kr93], was introduced in the early ’80s by Mario Coppo and Mariangiola Dezani
[CD78, CD&0] to enhance the typability power of Curry’s types assignment system A_,
that assigns formulas built from the implication as types to the untyped A-calculus.
It is very useful as a tool for investigating pure A-calculus, since it has nice syntactical
properties. In particular, we can prove that I'T assigns types to all and only the strong
normalizing terms [Kr93]. Moreover, if the set of types of IT is extended to include
a universal type Q that can be given to all Ad-terms (system D extended to D2 in
[Kr93]), we can prove that an untyped A-term is typable in the extended system with
a non-trivial type if and only if its head reduction is finite [Kr93].

Due to the peculiar nature of the intersection, IT cannot be used as a model for a
programming language; however, intersection types have been particularly useful in
studying the semantics of various kinds of A-calculi. This can be done by extending
the system with suitable sub-typing relations, so that the types assignment acts as
a finitary tool to reason about the interpretation of A-terms in topological models of
A-calculus, like Scott domains, DI-domains and coherence spaces [Ab91, BC83, HR90,
HR92].

Some types assignment systems a la Curry correspond to a logic or, even better,
have been designed starting from a logic. The bridge relating a logic to a A-calculus
assignment system a la Curry is a decoration of the logic’s deductions with untyped
A-terms. For example, the implicative fragment of intuitionistic logic decorated with
untyped A-terms that encode the implication delivers Curry’s types assignment sys-
tem A_,, while the implicative and conjunctive fragment of intuitionistic logic (LJ)
decorated with untyped A-terms that encode the implication and the conjunction
generates the simple types assignment system A” . These decorations embody all the
connectives of the logic in question and are called standard.

Unlike the systems mentioned above, IT does not originate from a logic; it is a
somewhat ad hoc system. The first attempt to give a logical foundation to intersection
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types was by Betti Venneri [Ve94]. The cloudy relation of LJ to IT was first pointed
out by Roger Hindley [Hi84]. To unravel this relation, it suffices to explore the
relation of conjunction to intersection. The intersection rules of IT, in which premise
and conclusion terms are identical,

I'-M:o I'-M:r1 (NIi7) I'-M:onrt (ﬂEéT)
I'EM:onT I'-M:o

naturally pose the question whether IT-deductions could be obtained through a non-

standard decoration of LJ-deductions that ignores conjunction and encodes the im-

plication only. This way, the conjunction rules of LJ

I'Fo '~ (AI1y) I'FoAT
I'FoAT I'to

(AEL;)

would transform to intersection rules of IT. But for this argument to work, the
premises I' - o and I' + 7 of a (AILs) rule would always have to be encoded by
the same up to a-equivalence A-term, i.e. they would have to be isomorphic. Ob-
viously, this is not always the case. In general, different A-terms M and N encode
the two premises, so the non-standard decoration (ns) cannot proceed. On the other
hand, the standard decoration (s) places the pair (M, N) before the conjunction®.

T'E¥M:o PE®™N:7 ' M:o T N:r
[ pns :0/\7_ ' (M,N):o0AT

Nevertheless, some LJ-deductions include solely (AI) rules combining isomorphic
subdeductions. These can certainly be decorated in the non-standard way to give
IT-deductions. Conjunction is converted to intersection. Thus, only a proper subset

TF"M:0o I'E"M:1 - I'bir M :o 'ty M1
TF"M:oNT I'bir M:onT

of LJ corresponds to IT through a decoration with untyped A-terms. We would like
to define a logic expressing this very subset of LJ; introducing IL (and ISL) succeeds
in this task.

The standard and non-standard decorations of LJ reveal the asynchronous and
synchronous aspects of intuitionistic conjunction, respectively. The former is
conjunction as already known, denoted A, and the latter is intersection, denoted
N. For the logical foundation of IT, it is important to separate between the two and
define a logic on the connectives of implication and intersection.

Intersection Logic works with full binary trees called kits, whose leaves are for-
mulas generated by the implication and the intersection. It is a natural deduction
system which proves judgements in sequent style. Judgements include kits of the
same structure (overlapping kits). Since IL aims to realize the part of LJ where (AI)
is applied on isomorphic premises, the rule introducing the intersection should be
such that the “sameness” of premises is explicitly shown. This is achieved by binary
trees; the premises become leaves originating from the same parent-node in a kit, so

IEven if M = N, the standard decoration would still place the pair (M, M) before the conjunction.
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that the rule introducing the intersection in IL has only one premise. Its conclusion
gives a kit where the intersection of the two leaves is a leaf on the parent-node. A
non-standard decoration of kits, encoding the implication only, is now free to proceed
in any IL-deduction.

Ly FM:o FM:T _ FM: o]
’ FM:oAT IL: FM:oNT

A similar method is employed in Intersection Synchronous Logic. Its main syntac-
tical structures are sequences of formulas called atoms. In [PRO5], the formulas are
generated by the implication and both synchronous and asynchronous conjunction;
however, ISL is restricted to implication and intersection to provide a logical founda-
tion for IT. It is a natural deduction system proving multisets called molecules, whose
members are atoms. Isomorphic LJ-premises become atoms of the same molecule, so
that the rule introducing the intersection has again a single premise. Its conclusion
gives a molecule where the two atoms have merged in one that contains the intersec-
tion of the formulas. A non-standard decoration of molecules can run through any
ISL-deduction.

FM:o FM:r M:[( ;0),( ;7))
LJ: EM o AT ISL: M:[( sonT)

Conclusively, as far as LJ is concerned, IT corresponds to this proper subset
obtained by imposing the metatheoretical condition of isomorphic premises on the
use of conjunction. In the logical systems IL and ISL, there is no longer need for
such a condition, since (NI) rules involve a single premise. In other words, these two
systems capture the synchronous aspect of conjunction only and for this reason can
each be considered as a logic behind IT. The relation between them is reminiscent of
the relation between sequent calculus and natural deduction in predicate logic.

In Chapter 2, we present the implicative and conjunctive fragment of intuitionistic
logic (LJ) and state its properties (strong normalization theorem for LJ). We then
introduce the simple types assignment system A" and the types assignment system
LJr—which is A" supplied with intersection rules—and use them to distinguish be-
tween synchronous and asynchronous conjunction. By restricting LJr to implication
and intersection, we derive the intersection types assignment system IT and explore
by examples its typability power compared to Curry’s types assignment system A_.
We also investigate the relation of LJ to each of the A-calculus assignment systems
A%, LJr and IT.

In Chapter 3, we start by defining the basic structures of Intersection Logic (kits)
and the tools for manipulating them (overlapping of kits, substitution of subkits by
new kits, pruning, implication of overlapping kits etc.). We then present the deductive
system “pre Intersection Logic” (pIL), whose judgements are in sequent style and
comprise of overlapping kits. Equivalence classes of pIL lead to the definition of IL.
We continue by showing the transition from a pIL-deduction to a set of LJ-deductions
that share some structural properties, namely they are all decoratable non-standardly
by the same A-term, which is also the term that decorates non-standardly the pIL-
deduction. These LJ-deductions are called L.J-projections and we describe a projection
algorithm for constructing them, given the pIL-deduction. We use the transition from
pIL to LJ to prove the strong normalization property of IL and argue on the relation
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of IL to the subset of LJ that can be decorated non-standardly. On the latter, we
offer new contributions by:

1. proving the transition from a set of LJ-deductions that are all decoratable non-
standardly by the same A-term to a plL-deduction that is decoratable non-
standardly by this very A-term (section 3.6, theorem 3.6.4),

2. describing a simulation algorithm for constructing the pIL-deduction, given the
LJ-deductions (section 3.6, example 3.6.6) and

3. proving a one-to-one correspondence between P-normal, proper IL-deductions
and LJ-deductions decoratable non-standardly (section 3.6, theorem 3.6.11).

We end by giving the relation of IL to IT through a non-standard decoration of IL,
from which we derive a proof that any term typable in IT is strongly normalizable.
This relation of IL to IT establishes the appropriatness of IL as a logical foundation
for IT.

In Chapter 4, we present ISL including the connectives of implication, intersection
and conjunction. We define its main building blocks (atoms, molecules) and exhibit
its deductive rules, which derive molecules. We then restrict ISL to implication and
intersection and explore its relation to the part of LJ decoratable non-standardly. In
particular, we show the transition from an ISL-deduction to a set of LJ-deductions
that are all decoratable non-standardly by the same A-term—which also decorates
non-standardly the ISL-deduction—and contribute a proof on the transition from a
set of LJ-deductions all decoratable non-standardly by the same A-term to an ISL-
deduction decoratable non-standardly by this very A-term. We continue to work with
ISL restricted and give its relation to IT through a non-standard decoration of its
deductions. We finally prove the strong normalization property of ISL (considered
with all three connectives) by reduction to the strong normalization of LJ. The results
of this chapter are to a great extent similar to the ones shown in chapter 3 for IL.

In Chapter 5, we make a new contribution by proving the equivalence of IL and ISL.
We first enrich IL with conjunction and then show the transition from a pIL-deduction
to an ISL-deduction and vice versa. These transitions reduce to eliminating the binary
structure from a kit-judgement to form a molecule on one hand and representing a
molecule by a sequence of overlapping kits on the other.

Throughout the thesis, we focus on the analogy of IL and ISL, trying to highlight
the similarities of methods despite the differences of structures.



Chapter 2

Intuitionistic Logic and Types
Assignment Systems

2.1 Implicative and Conjunctive Fragment of
Intuitionistic Logic (LJ)

We start by recalling the natural deduction of the implicative and conjunctive fragment
of Intuitionistic Logic (LJ). This logical system proves judgements in sequent style.

Definition 2.1.1 (LJ) (i) The set Fr; of formulas of L] is generated by the gram-
mar: 0 :==a |o — o | o Ao, where a belongs to a denumerable set of propositional
variables. The implication is right associative, while the conjunction is left associative
and the latter takes precedence over the former. Lowercase greek letters a, 3,y will
denote propositional variables, while o, 7, p will denote any formula.

(ii) A LJ-context is a finite multiset {o1,...,0,} of formulas of LJ. We will
denote LJ-contexts by T, A.

(i5i) LJ proves statements of the form T bry o, where T is a LJ-context and o is
a formula. Its rules are shown in Figure 2.1.

(iv) Writing 11 : T b1y o means that the LJ-deduction I1 concludes by proving
T |—LJ g.

ocecl I'kFrro NS

——— (ALJy) (A1)
I'trso I'tryoANT
I'+ A 'k A
#(/\EQJ) #(/\E}:J)
I'btrsjo T'brsr
Iy [ '+ 'k
RACE GO 2 G L1277 L19 ()
Tbryjo—rT1 I

Figure 2.1: The rules of LlJ.
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Example 2.1.2 Let o denote the formula ((a — a) — a — a) A (¢ — «). Deduc-
tions II; and IIs combine under (— E) to give II.

{o}bFrso l {o}Frs0o
(AEY ———  (AE")
{o} s (@—a) = a—a {o}Frja—a o
{o}trrsa—a o
i tbpjo—a—a
= =
{a walbFrra—a —n {a} Frsa -
Frs(a—a) ma—a Frja— « D)
AN
iy ((a—a) ma—a)AN(la—a)=0
IIi:Frjo—a—a Me:Fryo )

H:l_LJOz—>Oé

An equivalent version of LJ can be obtained by considering contexts as sequences
of formulas instead of multisets, changing the axiom and adding rules for context
weakening and exchange. The rules of this version of LJ are shown in Figure 2.2.

Tk o Iyo,r, Aty
———(A)  — T ) 22DEP (xy)
okFrso I'rhrso Lm0 Abrsp
Tkiso F}—LJT(/\ILJ) M(/\EzJ,se{l,r})
I'FryjoAT T'kryos
I'ok
e T I e )
'trgo—r Frerr

Figure 2.2: The rules of LJ, when contexts are sequences.

It is worth noting that the system, as presented in Definition 2.1.1, has the weak-
ening property.

Proposition 2.1.3 (Weakening property for LJ) If II : T' by, o, then, for
every formula 7, there exists I, : T U{r} Fp; 0.

Proof: By easy induction on II. -

We continue to define implicative and conjunctive redexes of a LJ-deduction and

to show how to eliminate them. We aim to state the strong normalization property
of LJ.
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Definition 2.1.4 Let II be a LJ-deduction and s € {l,r}.

(i) A —-redex of II is a sequence (— Irs),(— Ers) in II of consecutive rules
introducing and eliminating the implication.

(i) A A-redex of II is a sequence (AILs), (AE3;) in 11 of consecutive rules intro-
ducing and eliminating the conjunction.

FU{T}}—LJU (%1) F}—L;T_'l I'btryon (/\I)
I'btrygm—0 I (—>E) Ly Ol N\ oy (/\ES)
I'kryjo I'brsos

(iii) We say that II is normal, if it is free of redexes.

Definition 2.1.5 Let {m,...,7,} Frs o be a statement in position = of a LJ-
deduction that consists of k steps (0 < = < k). The context-formula 7; is said to
be open, if it doesn’t move to the right of Frj by a (—1I) rule in steps x+1,... k.

The following lemma is used for the elimination of —-redexes from LJ-deductions.

Lemma 2.1.6 (Substitution lemma) Let Ilp : TU {7} Fpy o, II; : T Fpy 7
be LJ-deductions and S(I11,11y) be the deductive structure obtained from Ily by sub-
stituting all azioms TV U {r} bry 7 (T CTV) with 7 open by 11} : IV bry 7. Then,
S(Hl,Ho) : T FLJ ag.

Proof: Use double induction, see [Pr65]. The method is also given in [Gi89] for
A-calculus normalization. —

The next definition describes single normalization steps.

Definition 2.1.7 Let II be a LJ-deduction and s € {l,r}.
(i) A —-rewriting step on 11 is a normalization step that eliminates a —-redex of
the deduction.

HO:FU{T}FLJO'( I)

N

Thyr—o0 I, : kg 7 (= E) —_ S(II1,Io):Tkrso
I'trso

(1) A A-rewriting step on 11 is a normalization step that eliminates a N-redex of
the deduction.
II; : T Fpy ooy II,: T kg or
I'kry o Aoy
I'krsos

(AI)
(/\ES) —n Is:T'kryos

Theorem 2.1.8 LJ is strongly mormalizable, i.e. every LJ-deduction is strongly nor-
malizable.

Proof: See [Pr65, Gi89). —

We close this section by mentioning the sub-formula property for LJ.

Definition 2.1.9 Let o be a LJ-formula. Then:
(i) o is a sub-formula of o and
(ii) if Top is a sub-formula of o, where o € {—, A}, then T and p are sub-formulas

of o.
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Theorem 2.1.10 If 11 : ' 1y 0 is a normal LJ-deduction, every formula appearing
in II is a sub-formula of one of the formulas occuring in the judgement I' ;0.

Proof: By induction on II. -

2.2 The simple types assignment system \"

By decorating LJ with untyped A-terms that encode the introduction and elimination
of logical connectives, we derive the simple types assignment system A", a deductive
system which attributes formulas—built from the implication and the conjunction—
as types to the untyped A-calculus with pairs. Let us call this kind of decoration
of LJ standard and denote it by d” . In this section, we present A" and uncoil its
correspondence with LJ.

Definition 2.2.1 (") (i) The terms of the untyped \-calculus with pairs A, are
defined by the grammar: M == x | Ae.M | (MM | (M, M) | 71 (M) | m(M),
where = belongs to a countable set of variables. Instead of w1 (M), m2(M), we can
equivalently use m (M), n.(M), respectively. Application' is left associative. Letters
M, N will range over terms in A,.

(ii) The types of X", or simple types are generated by the grammar:

ocui=alo—o|loAo

i-e. they coincide with LJ-formulas.

(113) A X\ -context, denoted by T' or A, is a finite set of simple types assignments
to distinct variables®. If T is the \" -context {x1 : 01,...,Ty : 0, }, we define dom(T)
to be the set {x1,...,2,}.

(iv) The system X" derives judgements of the form I' -xn M : o, read “M is of
type o in the context T'” or “M may be given type o in the context I'”. Its rules
are ezhibited in Figure 2.3. The expression 11 : I' Fan M : o acquires the expected
meaning.

z:o€el (4) Chxa Mo Phxa N:oT

(A
Pk 2o Chxn (M,N):o AT

Lhkxa M:oNT Phxa M:oAT

(AEY) (AE")
Chxa m(M):o I'bxa ma(M) -7
Tu{z:o}ban M: T T'basrn M:o— T T'kar N:o
A T = ———(=B)
Chan Xz M:0—T Cbxa MN T

Figure 2.3: The rules of A\”..

I'We follow the Krivine notation on application.
2Note that we can assign a simple type o to more than one variables in a A’ -context.
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If we decorate the sequence version of LJ by d”, we obtain a sequence version
of A", whose rules are shown in Figure 2.4. Contexts are now sequences of variable
assignments, the variables still being distinct. If I is the context =1 : 01,..., 2, : op,
then dom(T") = {z1,...,zp}. In the rule (W), BV (M) denotes the set of bound

variables of the term M.

(4)

1ok Tio

I'kaxa Mo, ¢ dom(I') U BV (M)

w)
Dyx:irhbasn M:o
Ii,z:01,y:02,T2ban M:o x
Fl,y:ag,xzal,FQFkgM:U
I'bxrn Mo I'byan N7 I'kxa Moy Aoy
— — NI) — (NE*,s € {l,r})
F'kxa (M,N):0 AT I'bxa ws(M) : 05
Tx:obxn M: T I'bxyrn M:o— T I'baan N:o
- (—1) = = (—E)
Fkyxn XM :0o—T Lkxa (M)N:7

Figure 2.4: The rules of A\?, when contexts are sequences.

Conclusively, we can say that LJ is the logic behind the simple types assignment
system A" or, in other words, that LJ offers a logical foundation for \*, through d” .

2.3 Synchronous and asynchronous conjunction

In the simple types assignment system A" , the rule

I'-M:o I'EN:T (A
'(M,N):oAT

concludes that the pair (M, N) is of type o A T from the premises “M of type ¢” and
“N of type 77, no matter if M and N are identical® or not. Thus, the conclusion term
(M, N) captures in its syntax the introduction of conjunction between the premise
types o and 7. A similar remark holds for (AE*®): the conclusion term mirrors the elim-
ination of conjunction from the premise type. This sort of typing reflects the general
aspect of conjunction: the asynchronous conjunction or conjunction, denoted A.

Suppose, though, that, when introducing the conjunction, we distinguish the case
where premise terms are identical, say denoted by M, and choose to assign the con-
junction of the premise types to this term M.

3We identify A-terms modulo a-conversion.
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I'-M:o 'EM:1
I'FM:oANT

(AT)

Similarly, when eliminating the conjunction, suppose we choose to assign the premise
and conclusion types to the same term. This way, the conclusion term gets syntacti-
cally disconnected from its type and a special aspect of conjunction is revealed: the
synchronous conjunction or intersection, denoted N. In what follows, we consider N
to be a logical connective, standing for conjunction with synchronous behaviour.

2.3.1 The types assignment system LJr

Adding rules to A", for the introduction and elimination of intersection, we get a more
elaborate types assignment system for terms in A,, denoted LJr in [PRO5].

Definition 2.3.1 (LJr) (i) The set Frj, of types of LJr is defined by the grammar:
ou=al|o—o|oANo|oNao, where a belongs to a countable set of propositional
variables, implication is right associative and both conjunction and intersection are
left associative. The connectives N and N are equivalent with respect to order of
application, but they both precede —.

(i) A LJr-context, denoted by I' or A, is a finite set of LJr-types assignments to
distinct variables. If T'={x1 : 01,...,2y : on}, then dom(T) = {z1,...,z,}.

(11i) The system LJr derives statements of the form T Fry. M : o, where T is a
LJr-context, M € A, and o is a LJr-type. Its rules are gathered in Figure 2.5. The
expression 11 : T' Fp 7. M : o is interpreted as usual.

r:o0€l (A)

FI—LJTIL'IO'

I'trgr Mo I'btrjr N7
Fbrgr (MyN):0 AT

(A)

I'trjge Mo I'btrge M 7T
I'btrygr M :onT

(NI)

Tu{z:o}brpsr M:1

F}_LJTM:JI/\UT

(ANE®,s € {l,r})
T l_LJr WS(M) L0

FI—LJTM:UlmUr

Fl_LJTMZO'—>T

(NE*®, se€{l,r})
I'trgr M :os

I'trjr N:o

(—=1)
I'trgr XdaM:0—T1

(—E)
I'trsyr MN : 7T

Figure 2.5: The rules of LJr.

As in the case of A", a sequence version of LJr can be formed.

2.4 Relation of LJ to LJr

As already mentioned in section 2.2, if we decorate any LJ-deduction by d” , we obtain
a A -deduction, which is also a LJr-deduction, since A" is a subsystem of LJr. In
this section, we follow [RRO1] in defining a non-standard decoration of LJ, denoted
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d_ in this thesis, which encodes the implicative rules only. We show that some LJ-
deductions can be decorated by d_, and have A altered to N to give LJr-deductions.
On the other hand, any LJr-deduction gives uniquely a LJ-deduction, when fired by
an erasing function E that converts LJr-contexts to LJ-contexts, LJr-types to LJ-
formulas and erases the typable terms. The picture is this: some LJ-deductions can
be decorated by both d* and d_. to give two distinct LJr-deductions, which will both
return the initial LJ-deduction, when fired by E. Which LJ-deductions are these?
The ones that can be decorated by d_,, since all can be decorated by d”. And which
are these? We examine this crucial question in what follows.

Definition 2.4.1 (d_: non-standard decoration of LJ) (i) Consider a LJ-
contert A = {o1,...,0,}. A decoration A* of A is a set {1 :01,...,Zn : On},
where the x;’s are distinct A-variables. Then, dom(A*) is the sequence x1,...,2,.

(i) Every II : A Frj o can be associated through an inductive algorithm to a
decorated deduction

T : A* l_*LJ Tdom(A*)(H) o

where A* is a decoration of A, &} ; denotes the decoration of Fry and Tyoma-) (1)
is in A.

. N SIAN 4) = r:0€ A* (4%)
II:AbFpjo0 I :A*Fj;z:0
and Tyoma~ (1) = .

o HliAFLJU HQSAFLJT (/\I)é
II:AbFpjoANT

HT : A* FEJ Tdom(A*)(Hl) Lo H; VAN FEJ Tdom(A*)(HQ) T
I 0 A* ) Taomiany(ID) c o AT

(AT7)

where Tdom(A*)(H) o Tdom(A*)(H1)7 Zf Tdom(A*)(Hl) ~a Tdom(A*)(HQ)
and is undefined otherwise.

I, : A+
. 1 LJ Ol N\Oy (/\ES) -
HSAFLJO'S

I}« A* F g Taomeas)(Ih) : 01 Aoy
I : A* FEJ Tdom(A*)(H) o

(NE*)"

where Taom(a+)(I1) = Taom(a=)(I11).

II, : AU [
o« ! {o} LT ) =
H:Abrpjo—r

7 A*U{z : 0} 1 Taom(ar),o (1) o 7
I A* Fz,] Tdom(A*)(H) 0 =T

(=17)
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where x is not in dom(A*) and Tyoma+)(I1) = Az Tgom(a+), ().

II :Abpjo—r1 Il :Abpjo
HZAFLJT

5 A" F7 g Tgomary (1) o — 7 05 : A F7; Tyomasy(I2) : o
IT* 2 A* 5 Tioman (D) : 7

(—E7)

where Tdom(A*)(H) = Tdom(A*)(Hl)Tdom(A*)(HQ)'

(i5i) If I1: Aty o is decoratable by d_, then

U(1) def {Taom(a=(IT) | dom(A™) is a sequence of |A| distinct variables}

The set U(II) is called the form of II.

Remark 2.4.2 (i) The set F'V (Tyom(a~)(IT)) of free variables of o (a=)(I) is a sub-
set of {dom(A*)}. (ii) The set BV (Tyom(a~)(IT)) of bound variables of Tgopm,a+)(II)
is disjoint from {dom(A*)}. (iii) If BV (Tqom(a~)(II)) is non-empty and z,y belong to
it, then = # y. (iv) For every sequence dom(A*), Tyom(a~)(II) is actually a set of a-
equivalent terms, since every possible choice of bound variables should be considered;
hence, it is actually
U(H) = U Tdom(A*) (H)
dom(A*)

(v) If M # N and M, N € U(II), then M and N have the same term-structure, since
they both trace the implicative rules of II, but there is at least one variable position
(free or bound) on which they differ.

Definition 2.4.3 (Erasing function e) (i) Let e : Frj, — Frj be defined as:
e(e) =a, e(c =>1)=e(o) —e(r) and e(c AT) =e(cNT)=e(o) Ne(T).

(1) The function e can be extended to contexts to convert LJr-contexts to L.J-
contexts in the obvious way: e({x1 : 01,...,2, : 0,}) = {e(01),...,e(on)}.

A theorem relating LJ and LJr is now in order.

Theorem 2.4.4 Let E be a function from LJr-deductions to LJ-deductions that
erases all term information and collapses N to A.

(i) If NI:Tkry M : o, then E(IT) : e(T") Fry e(o).

(i) If 11 : T Fry o, then there is a LJr-deduction TU' : T b1, M : o', such that
EM) =11, e(I") =T and e(o’) = 0.

Proof: (i) By induction on II.
Inductive step: The case of (NI) is shown.

II1:Tkpyr M : 0o o : T bkpyr M . 7T
° (NI)
II:Tkryr M:onNTt

By the Ind. Hyp., we have E(II;) : e(T") by e(o) and E(Ilz) : e(T) Fry e(r).
Applying (AIrs) on E(I1;) and E(Il), we get E(IT) : e(T") Fry e(o) Ae(r) =e(oNT).
(ii) Decorate II by d” to take IT'. =
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It is obvious that if IT is decoratable by d_,, we can find two distinct LJr-deductions
with the property stated in Theorem 2.4.4(ii). One formed by decorating II by d”
and another one by decorating it by d_, and changing A to N. This point is illustrated

in the following example.

Example 2.4.5 We present two LJr-deductions II; and II,. Let

c=(la—a)ma—a)ANla—a), T=(a—a)—ma—a)N(a—a)

Deduction II; consists of subdeductions IT} and II{, while I, includes II, and II7.

{r:o}ttrsrz:o {r:o}trryrz:o
(nEY) (AET)
{r:o}ttrrmrm@): (a—a)—>a—a {z:0}brsr m(z) ia—a e
{z:0}bryr m(z)m(z) :a— a _n
M :kpye demi(z)ma(z) i0 - a —
{r:a—-altrrprr:a—a n {r:a}brirz:
Frir Xzz:(a—a) s a—a Frir AZ.x i — « D)
A
MY :Frgr Az.x,A2.2) @ O
M :kpye Aemi(z)ma(z) i0 - a — Iy : ks Az, A2.T) 1 00 .
I i Fogr (Azmi(z)me(z))(Az.2, A2.28) t 0 — @

: = : : = :
{z:7}brgrax:7 - {e:7}brrsrax:T 5"
{z:7}brprz:(@a—a)ma—a {$IT}|_LJT$ZQ—>Q( )

{z:7}bFrirzz:a—a -
I :Frgr Azzz T — a — «
{z:a—altrrprr:a—a “n {r:a}brirz:a
Fror dzz: (a—a) - a—« Frir Ao i — «
Y :brpge Az T
I ko Az T — a — « 05 :Frje Az @ T

o :krsr Azzz)zx:a— «

(—E)

The erasing function E applied on both II; and IIs returns the LJ-deduction II
of example 2.1.2. In fact, decorating IT by d” gives II;, while decorating it by d_
and having A converted to N gives Ils. So, II belongs to the class of LJ-deductions
that can be decorated by d—; let us call it D7’;. For a LJ-deduction to belong to
D75, the following must hold: wherever A is introduced, it must be done between
two subdeductions which belong to D7, and are encoded by the same A-term, i.e. by
subdeductions isomorphic with respect to d_,. We clarify this point with yet another

example of a LJ-deduction in D7;.
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Example 2.4.6 Let 0 = (a = SAY) A (B = aAvy)A(y — «a), with a,8 and v
propositional variables. The LJ-deductions

My:{o}tbrya—p, Ua:{o}trrya—y, Us:{o}t s B —a, My:{o}brsy—«a

combine to create HSQ)S € D75 in the following way:

{a,0}Frso

(AEY) %2
{a,o}Frsa— B Ay {a,0}Frs B
{ayotbes BAy
(ABY)
{a,otbrs B )
I : {o} Frsa— B
{a,0}Frso
(AEYYx2
{a,o}Frsa— B Ay {a,0}Frs _
'_
{ayo} bra BAY BT
a,o}t
{a,0} Frry —n
I : {o} Frsa—v
{Botrrso
(AEY,(AET)
{B8,0} Frs B—any {B,0} Frs B o
{80} Frsany
(ABY)
{80} Frsa n
Hg:{U}}—L‘]ﬁHa
}_
{770} Lo (AE™)
{votbrsy—a {votbrsy .
o}t Ly«
{v. o} Frs —n

H4:{O’}|_LJ’Y*>CI

II : {o}Frsa—p I : {o}Frrsa—v o~
5 : {o} Frs (@ — B) A (a— ) Ms3:{o}trsB—a
I3 : {o} Frs (@ = B A (@ =N A (B —a)

(NI

5% : {o} Frs (e = B) A (@ =) A (B—a) Ma:{o}Frsy—a
HEIIQ)S:{O'}’_LJ (a=B)A(a—=YAB—=a)A(y—a)

(AI)
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We shall briefly explain how Him)?’ is decorated by d_,, showing the isomorphism

with respect to d_ of (IIy,Il3), (I13,13) and (II32,114). Suppose we decorate {o}
of the judgement proved by Him)?’ by x. The decoration moves contextwise up-
wards and then to the right in axiom level. Thus, we get the decorated axioms
{y:a,z:0}bi 20 {y:a,e:0}bFj;y:a ofllyand Iy, {y:B,z:0} b} ;20
and {y: B,z:0} i ;y:fofllsand {y:v,z:0}Fj 20, {y:v,2:0} iy
of II4. Applying the non-standard decoration rules of definition 2.4.1 to Iy, 113, I3
and I1y, we get the decorated deductions

I :{z:o} ki ey :a— B, I {x:0}Fi; Ayay 1o — vy
I :{z:o}FisAyzy: f—a, I} :{z:0}F1; Ayzy:v—a

Deductions I} and II5 give (II3)* : {z : o} F}; Ay.zy : (& — B) A (o — ) and then
(I13)* and I} give (II3%)* : {z: 0} Fi ; Ay.zy : (@ — B) A (e — y)A(B — «). Finally,
(I13?)* and 1T} give

W22y {z o}y Ayay : (a— B) Ala— ) A(B— a)A(y — a)

2.5 The intersection types assignment system IT

So far, we have presented the logical system LJ and the types assignment systems A"
and LJr. LJ corresponds to A", in the following manner: any LJ-deduction can be
decorated by d”, to produce a A\* -deduction which, when fired by the erasing function
E gives back the LJ-deduction and any A" -deduction can decompose through E
to a LJ-deduction which, when decorated by d” , returns the A” -deduction modulo
sequences of distinct variables decorating contexts. In other words, for every LJ-
deduction there is a unique—modulo sequences of variables—A” -deduction which
collapses to it, if fired by E and for every A" -deduction there is a unique LJ-deduction
which produces it, if decorated by d”. Since the decoration involved encodes all
the connectives of the logic, the correspondence described follows the manner of the
Curry-Howard isomorphism?*.

The intersection types assignment system IT is the subsystem of LJr where only
synchronous conjunction is used. Which logical system, if any, corresponds to IT
and which is the mode of correspondence in this case? These are the main issues
this thesis attempts to examine. In this section, we present IT and state its main
properties.

Definition 2.5.1 (IT) (i) Terms of the untyped \-calculus A are defined by the gram-
mar: M == | AXx.M | MM . We have that A G A,,.

(ii) The set Frr of types of IT or intersection types is generated by the grammar:
ou=alo—o|onNo. We have that Frr & Frjpr-

(iii) An IT-context is a finite set {x1 : 01,...,Z, : on} of intersection types
assignments to distinct variables. IT-contexts will be denoted by I', A and context
domains are defined as usual.

4 According to the Curry-Howard isomorphism, a logical proof is related to a typed A-term M¢
that captures in its syntax the structure of the proof. This is done by decorating the proof with
typed A-terms encoding all logical connectives and thus obtaining a deduction of a Church assignment
system concluding by assigning o to M?. The assignment system A", is a Curry system, i.e. it involves
typable A-terms, not typed ones. For this reason, we cite a manner of Curry-Howard isomorphism
instead of Curry-Howard isomorphism itself between LJ and A%,.
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: 'k M Tk M
%(AIT) T o T T (NIi7)
I'birx:o I'bir M:onNT

Tk M:on Tk M:on -

T (NE}r) LT (NEjr)
I'bir M:o ki M1
ru : Frr M : 'k M I'kir N:
{5’3 ‘7} T T (—>11T) T og—T T o (— Err)
'tirXeM:0— 71 't MN : 1

Figure 2.6: The rules of IT.

(iv) The system IT proves statements of the form T b M : o, where T' is an
IT-context, M € A and o is an intersection type. Its rules are shown in Figure 2.6.
The expression I1 : T' by M : o carries the usual meaning.

Note that in a typing deduction of IT the A-term to the right of ;7 undergoes
syntactical change by the implicative rules only.

Example 2.5.2 Let 0 = p — a and 7 = p — (. Deduction II includes IIs and Il
as subdeductions, which in turn include IT; and Il3, respectively.

x:oy:oNT,z:ptrre:o y:oNT,z:pthry:onNT
{ y p}bir - { )i (Bl

{y:onNmz:ptbir dex:0—o {y:onNmz:pttmry:o
I :{y:onmz:ptbir Az.z)y:o

(—=Err)

Hli{yZGQT,Zip} Frr ()\l‘iv)ytf {y:aﬂr,z:p} l_ITZIP
Oo:{y:on7,2:p}Fir Azr)yz: a

(—=Err)

r:T,y:0NT,2: Frrx:T toNT, 2 = coNT
{z:1y s 20 p} T e {y p}hiry P

{y:onNmz:pttirAez:7—1 {y:onmrz:ptrry:r

(—=Err)

s :{y:onNmrz:pttr Qzz)y: 7

Os:{y:onNmz:ptbr Azz)y: 7 {y:onmz:iptbrz:p
y:{y:onNrz:pttir Az.z)yz: B

(—=Err)

My :{y:onmrz:pttr Az.z)yz: a My :{y:onmrz:p}tir Az.z)yz: 6
M:{y:oNn7,z:p}trr Az.2)yz:anp

(NIrr)

Proposition 2.5.3 (Weakening property for IT) If II: T b;p M : o, then, for
every variable x ¢ dom(I') U BV (M) and every T € Frr, there exists

I, :TU{z:7}kr M:o

Proof: By induction on II. -
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An equivalent version of IT can be obtained by considering contexts as sequences
of variable assignments, changing the axiom and adding rules for context weakening
and exchange. If T is the context =1 : 01,...,2, : oy, then dom(T") = {z1,...,z,}.
The rules for this version are shown in Figure 2.7.

(4) I'birs Mo, z ¢ dom(I") U BV (M) )

rz:obirsz:o Tx:rhkmrs M: o

T,z:01,y:02,2kFrs M : 0o I'birs M o I'birs M T

(X (NI)
T,y:o0,x:01,l2bFirs M : 0o I'birs Mo
I'bips M:onT (ﬂE‘l) I'bips M:onT (NE")
I'bips M 2o Ibyps M 2 7
Tx:obmrs M . 7 (—>I) 'birs M:o— 1 I'tirs N:o (—E)
I'bips de.M o0 — 1 I'bips MN : T

Figure 2.7: The rules of IT, when contexts are sequences.

For the rest of this section, consider IT as presented in Figure 2.6. Putting aside

the intersection rules, we retrieve Curry’s types assignment system A_, for terms in
A. For both IT and A_, the following theorem holds.

Theorem 2.5.4 Let x € {IT,A\_}, M € A and Fv(M) denote the set of free vari-
ables of M. Then:

(i) If T, M : 0, then Fv(M) C dom(T).

(i) If TH, M :0 and T C T, then I"H, M : 0.

(iii) If T M : 0 and TV C T is the set of those assignments in T' which concern
variables occuring free in M, then TV, M : o.

Proof: By induction on I' -, M : ¢ for all cases. —

IT possesses greater typability power than A_, which was the main reason for its
creation. The introduction of intersection types allows the typing in IT of terms which
are not typable in A_. In particular, IT assigns types to all and only the strongly
normalizable terms. As not every term is strongly normalizable, it is obvious that
there exist terms not typable in IT.

Example 2.5.5 The term Az.zx is typable in IT, but not in A_.

Proof: Suppose Az.zz is typable in A_,, i.e. I' Fy_ Az.zz : p, for some I' and p.
Then, by 2.5.5(iii), we have that ) _ Az.zz : p. By the Generation lemma for \_,
(see [Ba92], p. 40), there exist types o1 and o9, such that {z : 01} FA_ zz : 02 and
p = 01 — o2. By the Generation lemma again, {z : o1} Fx_ zx : o9 implies that
there is a type 7, such that {z : o1} Fx_ ¢ : 7 —> o2 and {2 : 01} FA_ x : 7. But
then, the Generation lemma gives that © : 7 — 02 € {2 : 01}, so that 01 =7 — 09
and z : 7 € {z : 01}, so that o1 = 7, which is absurd. On the other hand, Az.zxz is
typable in IT, as the following deduction shows. Context-braces are omitted.
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z:(c—=1)Nokirz:(c—7)No z:(c—=1)Nokrz:(c—71)No
(nEY (NE™)
z:(c—=1)Nokirz:0—T z:(c—T1)Nokirz:o

(—E)
z:(c—>1)Nokrzr:T

(—=1I)
Fir Azxzx:(c > 7)No— 1

Definition 2.5.6 (i) A type o in Fyp is prime, if it is not an intersection. So, a
prime type is either a type variable or an implication.

(i1) If o and T are prime, then o and T are prime factors of c NT. A type o is a
prime factor of a type p1 N po, if it is either a prime factor of p1 or a prime factor
of p2.

By inference, the main building blocks of any type ¢ in Frr are prime factors and
the connective N.

Example 2.5.7 The term (Az.zz)\z.zz is not typable in IT.

Proof : Suppose (Az.zx)Az.zx istypablein IT,ie. T bFip (Az.zz)\x.22 : 0, for some T’
and o. Then, by 2.5.5(iii), we have that F;r (Az.zz) \z.z2 : 0. If 0 is an intersection,
then bFrp (Az.zz)Az.xzx : p, for every prime factor p of o. If o is not an intersection,
it is prime. In any case, we have that Frr (Az.zz)Az.zz : p, where p is a prime type.
By the Generation lemma for IT (see [Kr93], p. 50), we have that brp Az.zz : 77 — p/
and by Az.zz : 7/, where p is a prime factor of p’. Since 7/ — p’ is prime, the
typing of example 2.5.6 reveals that 7/ is an intersection of the form (v3 — v2) Nwy.
But then, it should be F;r Az.zx : v1 — vy and by Az.xx : v1. Since vy — vy is
prime, the typing of example 2.5.6 reveals again that vy is an intersection of the form
(v3 = vg) Nws. Tt is Frp Az.xzx : v3 — vg and Frp Az.zx : v, type vs should be an
intersection and the argument is infinitely reproducted. This is a contradiction, since
7' is a finite chain of sub-types and connectives.

The extension of Curry’s types assignment system with intersection types enlarged
the class of typable terms and resulted to a very useful tool for investigating pure
A-calculus. Indeed, IT has such nice syntactical properties that a very important
characterization of the class of typable terms can be proved.

Theorem 2.5.8 (Strong normalization theorem) Let M € A. Then

M is typable in IT < M is strongly normalizable

Proof: See [Kr93]. =

We saw in example 2.5.6 that the normal term Az.xz is typable in IT, while
the non-normalizable (Az.zz)\z.zx is not. We also note that, in example 2.4.5, the
LJr-deduction II; uses only implication and intersection, thus being actually an I'T-
deduction. It shows a typing of the strongly normalizable term (Az.zz)Az.z. On the
other hand, the normalizable, but not strongly normalizable term

(Az.y)A\z.zx)\e.zx

is not typable in IT. For if it were, then (Az.zz)\z.za would be typable—a contra-
diction.
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2.6 Relation of LJ to IT

Not all LJ-deductions are decoratable by d_.. However, the part of LJ decoratable by
d_ corresponds to the intersection types assignment system IT via d_., as the whole
of LJ corresponds to the simple types assignment system \” via d". In particular,
any LJ-deduction in D}’ can be decorated® by d_. to produce an IT-deduction which,
when fired by E, returns the LJ-deduction and any IT-deduction can collapse through
E to a LJ-deduction in D7}’; which, when decorated by d_,, gives back the IT-deduction
modulo sequences of distinct variables decorating contexts. This is to say that for
every LJ-deduction in D7’; there is a unique—modulo sequences of variables—IT-
deduction which decomposes to it through E and for every IT-deduction there is
a unique LJ-deduction in D7’; which generates it through d_. In this section, we
formalize the relation just described.

Definition 2.6.1 Let f be a function from Frj to Frr defined as: f(a) = a

flo—=71) = flo) = f(r), flonT) = flo)Nf(r). Then (e | Frr)o f = idr,
and fo (e | Frr) = idz,,-

Theorem 2.6.2 (From Dij to IT) If II : {o1,...,0m} Frys 7T is in D7, then

{z1: flo1)s-- s xm : flom)} b1 Tay,..xnn (ID) = f(7), for every sequence x1, ..., &m
of distinct variables .

Proof: By induction on II. Suppose z1,...,x,, is fixed, but arbitrary.
Base: If 1 : {o1,...,0m} Frs o1 is an axiom, then

{z1: f(01)y s tm : f(om)} P17 Toy,ooon () = 21 : f(01)

is an axiom, as well.
Inductive step: We go through the LJ-rules one by one.

le{al,...,am} Fron HQZ{O'l,..-,O'm} Frs
. (AT)
m:{o1,....,0m}t o mMATR="T

Since ITisin D, both IIy and Il arein D7y and Ty, . 4. (I11) = Ty, o, (Ilo) =
Ten....wn, II) = M. By the Inductive Hypothesis (IH), we have that

{z1: f(o1),.--yxm : flom)} Frr M : f(71)
{z1: f(o1)y.. . Zm : flom)} Fir M : f(72)
By (NIrr), we get {z1: f(o1),---,@m : flom)} e M : f(11) N f(2) = f(m1 A2) = f(7).

I s, Om AT
. {o1 omtbrLs TAT (/\El)
IM:{o1,...,0m} LT

Since IT'is in Dy, Il" isin D7 and Ty, 4, (II) = Ty, ... (I') = M. By the
IH, we have that {z1 : f(o1),...,Zm : flom)} Frr M : f(r AT') = f(r)N f(r'). Applying
(NELr), we get {x1: f(o1),. .., Tm : flom)} Frr M : f(7).

The case of (AE") is similar.

5The decoration by d_, goes along with the conversion of conjunction to intersection.
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IU:{o1,...,0m, 71} FrJs
° (—1)
H:{0'1,...,0'm} |_LJ TT — T2 =T

Since ITis in Dy, II'is in Dy and Ty, ... o, (II) = AT, .4, 2 (IT'), for some 2
distinct from the z; (1 < i < m). By the IH, we have that

{z1: flo1),. s xm : flom),z: f(T1)} bir Ta,..., xm,z(H/) : f(r2)
Applying (—I;r), we get

{z1: f(o1), .y m s flom)} Frr A2 Toy a2 (1) 2 f(11) — f(72) = f(11 — 72) = f(7)

I : {o1,...,om}FLsp— T Iy : {o1,...,0m} FLsp
° (—E)

II:{o1,...,om} s 7

Since Il is in D77, both II; and II, are in D7, and

Tzl,...,zm (H) = Tzl,...,zm (Hl)Tzl,...,zm (H2)
By the IH, it is

{z1: f(o1),-- s @m: flom)t brr Toyom (Th) : f(p — 7) = f(p) — f(7T)

Theorem 2.6.3 (From IT to Dy}) Suppose that z1,...,%m is a fized, but arbi-
trary sequence of distinct variables. If 11 : {z1 : 01,...,&m : om} Fre M : 7, then
EI) : {e(o1),...,e(om)} Frse(r) isin Dy and Ty,,.. 5, (E(II)) = M.

Proof: By induction on II.
Base: If 1 : {z1 :01,...,%m : 0w} Fr7 21 : 01 i an axiom, then

E(II) : {e(o1),...,e(om)} Frs e(o1)

is an axiom—hence in Dy ;—and Ty, . (E(I)) = z4.
Inductive step: We examine all IT-rules.

M :{z1:01,...,Zm :om} e M7y Mo:{z1:01,...,Zm :om} e M : 12 (0
°
M:{z1:01,...,Zm i om}trir M :mmNT2 =7

By the IH, we have that
E(L) : {e(o1),...,e(om)} Frse(r)
E(IL) : {e(o1),...,e(om)} Frs e(rs)
are in D7y and Ty, . (B(IL)) = M =Ty, . (E(I)) (1). By (AILs), we get
E() : {e(01), ..., elom)} Frse(r) Ae(rs) = e(r NT2) = e(r)

M.

which is in Dy, since E(II;) and E(IIy) are and (1) holds. It is T, ... »,, (E(IL))
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/. . . .
. II':{z1:01,...,Zm :om}brr M :7Np (ﬂEl)
IM:{z1:01,...,&m :om}brr M : 7

By the IH, we have that E(IT') : {e(01),...,e(om)} Frs e(tNp) = e(r) Ae(p) is in
Dy and Ty, . o, (E(Il')) = M. By (AEL,), we get E(IT) : {e(01),...,e(om)} Frs e(r)
in D7y with Ty, ... 4., (E(I)) = M.

The case of (NE") is similar.

I:{z1:01,...,Tm :Om,x: 0} 7 N: o'
° (—1)
M:{x1:01,...,Tm :Om} FrT Ae.N : 0 — o’

By the IH, we have that E(II') : {e(c1),...,e(om),e(0)} Frs e(o’) is in D7’ and
Toy,...zm.z(E(I'")) = N. Applying (—ILs), we get

E(I) : {e(01),...,e(om)} Frse(o) — e(o’) = e(o — o)
in Dy with Ty, o (E(ID) = A2 Ty, .z« (E(IT')) = Az.N.

Mi:{z1:01,.. yZm:omtbir Ni:p—7 Io:{z1:01,...,Zm :om}brr N2 :p

M:{z1:01,...,Zm :Om} Frr N1Na: T

(—E)

By the IH, we have that
E(IL) :{e(01),...,e(om)} Frse(p— 1) = e(p) — e(r)
E(IL) : {e(01),...,e(om)} Frs elp)
are in D7y and Ty, o, (E(I)) = Ny, Ty, . 2. (E(Ily)) = Ny. By (— Ev), we get
E(L) : {e(or), ... elom)} Frse(r)

(
in D7y with Ty, 0, (E(IL)) = Ty, .0, (E()) Ty .o, (E(IT2)) = N1 No. =

The logical systems “Intersection Logic” and “Intersecrion Synchromous Logic”
introduced in chapters 3 and 4, respectively, aim to realize the part of LJ decoratable
by d_, in a logic of its own, so that IT relates to a logic—and not to part of a logic—
through a decoration encoding the implication only.
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Chapter 3

Intersection Logic (IL)

3.1 Preliminaries

We start with some preliminary notions. We define the main structure of Intersection
Logic—full binary trees, called kits—along with its characteristic parts—Ileaves, paths,
subtrees—as well as the tools for manipulating it—overlapping of kits, substitution
of subtrees by new kits, pruning of leaves. We give some basic properties of kits
resulting from the definitions.

Definition 3.1.1 (i) A kit is a full binary tree in the language generated by the
grammar: K = o | [K, K], where the leaves o, also called atoms, are generated
by the grammar: o ==« | 0 — o | 0 No, with « belonging to a denumerable set
of propositional variables. Kits are denoted by H, K, L and leaves by lowercase greek
letters.

(ii) Two kits H, K overlap, denoted H ~ K, if they have ezxactly the same tree
structure but may differ on the names of their leaves. For example,

[01, [[02, 03], 04]] = [7, [[02, p], 04]]

(iii) If H ~ K, then H — K denotes a kit that overlaps with H, K and is induc-
tively defined as follows: for H =0 and K = 7, H — K is defined to be 0 — T, while,
for H =[Hy,Hs] and K = [K1, K3], H — K is defined to be [Hy — K1, Hy — Ks).

(iv) A path is a finite string built over the alphabet {l,r}. Paths are denoted by
p,q and € denotes the empty path. The subtree of a kit H at path p, denoted HP,
is inductively defined as follows: H® = H, [Hy, H|'"P = HY, [Hy,Hs|"? = HY. For
p Z €, oP is undefined. A path p is defined in H if and only if HP is defined, so, for
p defined in H, HP is actually the subtree of H rooted at the end of p in H. If p is
defined in H, p is terminal in H if and only if H? is a leaf. The set of terminal paths
of a kit H is denoted by Pr(H). Two paths p and q of H are different, if they split
on a node of H.

(v) For any path p defined in H, H[p := K] denotes the kit resulting from the
substitution of K for HP in H and, if p1,...,pn € Pr(H), H[p; := K; | 1 <1i < n]
denotes the kit resulting from the substitution of K; for H? in H, for each i in the
set {1,...,n}.

(vi) Let ps be a path defined in H, where s € {l,7}. The pruning of H at path ps
is defined as H\P* dzefH[p := HP®|. For example, if

H= [017 [[[[057 06]7 03]7 [047 [077 08]]]7 02]]

23
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p=rl and s =r, then H\P® = [01, [[04, [07,08]], 02]]

It is obvious from the definition that, for any kits H and K, H ~ K < Pr(H) =
Pr(K). Also, if H ~ K, then for every p € Pr(H), (H — K)? = H? — KP?.

Proposition 3.1.2 (i) For any kits H and K and any path p, if H ~ K, p # € and
p is defined in H, then H\? — K\P = (H — K)\P.

(ii) For any kit H and non-empty paths p, q, if p and q are both defined in H and
also p is defined in H\? and q is defined in H\P, we have that (H\P)\? = (H\9)\P.

Proof: (i) By induction on the structure of H and K.

Base: For single-node kits H = ¢ and K = 7, the only path defined is the empty
path €, so (i) holds trivially.

Inductive step: Suppose H = [Hi, Hs] and K = [Ky, K3] are overlapping and
p Z € is defined in H. Then Hy ~ Ky, Hy ~ Ks, p = sq, for s € {l,r}, and ¢ is
defined in Hy, if s = [, while ¢ is defined in Hs, if s =r. We consider the cases:

1. g=e: If s =1, we have:

H\' — K\P = [Hy, H]\' - [K1, K2]\'
H1 — Kl

[Hl — Ky, Hy — KQ]\l
= ([Hy, Hy) — [Ky1, Ks)\!

= (H—=K)\

If s =r, we work similarly.
2. q# e If s=1, we have:

H\P — K\P

(ind. hyp.)

I
ESERE
!
=
&

!

Z

([Hy, Hy) — [Ky, Ko])\"
= (H—-K)\’

If s = r, we work similarly.

(ii) Since q # ¢, suppose, without loss of generality, that ¢ = g11. If g1 = ¢, it is not
always the case that p is defined in H\?: if ¢; = ¢, then ¢ = and, if, in addition, H?
is a leaf, then H\? is a single-node kit, namely the leaf H?; so then, the non-empty
path p is not defined in H\?, a contradiction. Thus, ¢1 # €. Suppose, wlog, that
q1 = ¢ir, so that ¢ = ¢jrl. We can’t have ¢ C p, because, if this is so, it is not always
the case that p is defined in H\?. Similarly, we cant’t have p C ¢. Also, p can’t have
the form q1rp’, because, if this is so, it is again not always the case that p is defined
in H\?. Combining the above, we conclude that p = p)sp!, with s € {l,r}, for some
Py Cqi. I pl =qf, s =1, while, if p} C ¢, say ¢} = pjlg{, then s =r. Also, p] Z e,

because, if p] = ¢, it is not always the case that ¢ is defined in H\P. Suppose, wlog,
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that p{ = p/’l. Consider the general case, where ¢ = p)l¢}rl and p = pirp/’l. Then,
using the fact that, if p and § are defined in H and different, we have

HIp := Ki][q := K] = H[q := K2][p := K]
we get that
(H\P)\* Hp\rp{" = H|[p\lqi'r := H]
Hplqir == HT|[pyrpy" := H"] (pirp’,pylgir different)
= (H\")\ a

Remark 3.1.3 Note that for two non-empty paths p and ¢, defined in a kit H, to be
such that one is defined in the pruning of H at the other, they must split on a node
of H, which has at least two descendants in each of them; it is not enough for p and
q to be different.

3.2 Pre Intersection Logic (pIL)

In this section, we give the definition of the deductive system “pre Intersection Logic”,
denoted pIL, on which we shall define Intersection Logic (see section 3.3). The key
feature of pIL is that its judgements exclusively contain overlapping kits. We also
present a decoration of pIL-deductions with untyped A-terms that encode the impli-
cation only.

Definition 3.2.1 (pIL) The deductive system pIL, that we call pre Intersection
Logic, derives judgements of the form I' -1, K, where the pIL-context I' is a multi-
set of kits and K is a kit. Its rules are shown in Figure 3.1. We denote pIL-contexts
by I')A. Writing I1: T' b1, K means that the pIL-deduction I1 concludes by proving
'z K.

Remark 3.2.2 (i) In the rule (Pyrz), the notation I'\P* stands for the distribution
of the pruning to the elements of I'. (ii) In (NI,rz), we say that the introduction of
intersection concerns path p or is applied on p; similarly, in (NE};.), s € {l,r}, the
elimination of intersection concerns or is applied on p. (iii) The rules (—I) and (— E)
are global rules, in the sense that they affect all the leaves of the kits to the right of
Fprr, while (NI) and (NE) are local rules, since they concern particular paths of the
kits.

Definition 3.2.3 (i) A judgement {Hi,...,H,} Fprr K is proper if and only if
Hy,...,H,, K are single-node kits, i.e. leaves.

(ii) A deduction 11 : {H.,...,Hp} Fprr K is proper, if its conclusive judgement
{H1,...,Hy} bprr K is proper.

The judgements of pIL enjoy an invariant, stated in the following lemma.

Lemma 3.2.4 If II : {Hy,...,H,} Fpr K, then the kits Hy,...,H, and K are
overlapping.

Proof: By induction on II. We remark thar the binary relation ~ C (K x K) on the
set, of all kits K is reflexive, symmetric and transitive, i.e. it is an equivalence relation
on K. —
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VHel:H~K, KeT
I'bpr K

(Aprr)

't K, s € {l,r}, ps defined in K
IV by K\

( pIL)

FU{H}"p]LK Fl—p[LH—)K F}—ijH

(= Iprr) (— Eprr)
Pbprr H— K Ibprn K
{Hl[p = [0'1;0'1”7 e -7Hn[p = [O'n,U'n”} l_I?IL K[p = [07 T]] (ﬂIpIL)
{Hi[p:=o01],...,Hu[p :=0n]} Fprz K[p:=0NT]
I'bprn Klp:=0onNr] (ﬁEzl,zL) Thprn Klp:=0N7] (NEZrr)
't Klp := 0] T hprr Kp = 1]

Figure 3.1: The rules of pIL.

An equivalent version of pIL can be formed, deriving judgements I' -7, K, where
T" is a sequence of kits and K is a kit. Its rules are demonstrated in Figure 3.2. In
this thesis, though, only the multiset version of pIL will concern us.

Before defining Intersection Logic, we follow [RR01] in introducing a non-standard
decoration of pIL-deductions, denoted pd— in this thesis. As the notation witnesses,
it encodes the implicative rules only, not the whole structure of the deduction. We
will use it to argue about deductions in IL and to establish a correspondence between
IL and IT.

Definition 3.2.5 (pd-: non-standard decoration of pIL) (i) Consider a pIL-
context A ={Hy,...,Hy}. A decoration A* of A is a set {x1: Hiy,...,zn: Hp},
where the x;’s are distinct M\-variables. Then, dom(A*) is the sequence x1,...,Ty.

(ii) Every 11 : A Fprp K can be associated through an inductive algorithm to a
decorated deduction

II* . A* F;IL Tdom(A*)(H) K

where A* is a decoration of A, 7, denotes the decoration of Fprr, and Tqom(a-(IT)
is in A.

KeA () — r: KeA (A1)

¢ —— ——
H:AI—I)ILK II* : A* l_;IL Tdom(A*)(H) K

where Tyopa+) (1) = .

: I Ay 5 T, «(II1) : K
. L : A Pyrr K (Porp) = — L~ eIl dom(ap) () (Pre)
II: Al\ps =A FpIL K\ps II* : A* F;IL Tdom(A*)(H) : K\ps

where s € {l,r}, ps is defined in K, dom(A}) = dom(A*) and
Tdom(A*)(H) = Tdom(AI)(Hl)'
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[, Hy,Ho,Abprr K
— (Ap1r) < (Xprr)
Kbprr K I,Hy, Hy,Abpir K

Hl,...,Hn l—p[L K, H/ZK
Hy,...,Hp,H bpir K

(WpIL)

T'bprr K, s € {l,r}, ps defined in K
C\P* bprp K\P?

(PprL)

FyHl_pILK Fl_p]LH—>K F}_p]LH
————— (=) (= EprL)
FFPILHHK Fl_pILK

Hilp :=[o1,01]],..., Hnp := [on, on]] Fprz Kp := [0, 7]]
(NIprr)
Hilp:=o01],...,Halp:=0on] bprr Klp:=0N7]
I'bpro Klp:=onr I'bpre Klp:=onr -
o KL Lpty,y oK L (B
I bprr Klp := 0] I'bprn Klp = 1]

Figure 3.2: The rules of pIL, when contexts are sequences.
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HliAU{H}Fp[LK
HSAFPILHHK

(—=IpiL) =

HT : A*U {l‘ : H} F;IL Tdom(A*),w(Hl) K
I : A* l_;[[, Tdom(A*)(H) H— K

(‘J;IL)

where x ¢ dom(A*) and Tyomax)(IT) = Az Tyomaxy,. (I11).

HliAFp[LHHK HQSAFPILH
° (—Epr) =
II: A l_pIL K

HTZ A* Fp*IL Tdom(A*)(Hl): H— K H; A* Fp*IL Tdom(A*)(HQ): H
IT*: A* Fp*IL Tdom(A*)(H): K

(*)E;IL)

where Tdom(A*)(H) = Tdom(A*)(Hl)Tdom(A*)(HQ)'

II; : A F Klp =
(] ! Lo ek [p [U’ T]] (NIprr) =
II:Abyp Klp:=0onr]

HT : AT F;;IL Tdom(Af)(Hl) : K[p = [U> TH
I A" 5 Taomas (D) : K[p:=o N7

(NI5rr)

where dom(AT) = dom(A*) and Tyom(a-) (1) = Taom(ary(Il1).

II; : A F Klp:=o0No,
° ! pIL [p ! ] (NEyrr) =
II: Abprn Klp = o05)

05 A" 5 Taomasy(Th) = K[p = o1 N oy

(NE )"
I A5y Tiom(as(II) : K[p := 04]

where s € {l,7} and Tyopa«y() = Tyomax)(I1).

(iti) If T1: A Fpr K, we define the form of II, denoted U(II), to be the set
{Taom(a=(I1) | dom(A*) is a sequence of |A| distinct variables}.

Remark 3.2.6 All points of remark 2.4.2 made for the non-standard decoration of
LJ hold for the non-standard decoration of pIL, as well.
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3.3 Definition of IL

A deduction in Intersection Logic, proving {Hy,...,H,} brp K, is defined as an
equivalence class of deductions in pIL, all proving {Hj, ..., H,} Fprr, K. The equiva-
lence relation between derivations of pIL is defined to eliminate unnecessary differen-
tiations resulting from differences in the order of application of consecutive local rules
concerning different paths. For convenience though, a deduction in IL is identified
with a deduction in pIL belonging to the specified equivalence class.

This section is devoted to the definition and further explanation of the equivalence
relation in question.

Definition 3.3.1 (Intersection Logic) (i) We define a binary relation, denoted ~,
on the set Dyprr, of all pIL-deductions, as follows: for all II,II' in Dprr, II ~ I if
and only if TII' results from II by interchanging two consecutive local rules concerning
different paths. The interchange cases' are shown in Figure 3.3. Somewhat abusing
the notation, we use the symbol ~ between deduction-parts, which are responsible for
the relation ~ between the corresponding pIL-deductions.

(ii) As the three displayed schemas make clear, the interchange of two consecutive
local rules applied on different paths leaves the resulting judgement unchanged. So, if
II ~ II', they both prove the same judgement.

(iii) We can then define an equivalence relation, denoted =, on Dprr, as the re-
flezive and transitive closure of the relation ~, defined in (i). Note that ~ is, by
definition, symmetric. It is easy to see that, if II ~II', they still both prove the same
Judgement.

(iv) The set Drr, of all IL-deductions is defined to be Dprr, quotiented by =~ . It is
D = [Dp]L /z] = { [H/z] | II € Dp[L }, where [H/z] = {HlerIL | II ~ H/}. An
equivalence class in Dyr,, whose deductions prove I' -y, K, is denoted T' i, K or
m:T ki K. So, m =[I1 /=], for some Il € Dyrr, . If II' =11, we write II' € 7. For
practical reasons though, we usually identify = with a I’ € .

Remark 3.3.2 (i) In the first interchange case, we have that (I'\P')\% = (I'\%)\,
meaning that (H\P)\? = (H\%)\P, for every H € T. This is because p and ¢ are
different, allowing for pl and ¢l to be such that the hypotheses of proposition 3.1.2(ii)
are satisfied. (ii) In the second and third cases, s and s’ belong to {l,r}. (iii) Since
local rules are not registered by pd-. and equivalent pIL-deductions differ solely in
the order of application of local rules, if IIy ~ Iy : {Hy,...,Hy} Fprr K, then
Toy,ozn () =Ty, o, (I2), for every z1,...,2,. That’s why we can identify an IL-
deduction 7 = [II /~] : {Ha,...,Hp} Frr K with any member IT' of the equivalence
class and have that Ty, . (7) = Ty, 2, (IT'), for every z1,...,2,. Consequently,
if IT; ~ Iy, then U(II;) = U(Ilz) and, if II' € 7, then U(w) = U(IT'). (iv) There are
finitely many plIL-deductions in an equivalence class [II /~].

Example 3.3.3 Let 0 = an B N+. Deductions Iy, 15 and II3, shown in Figure 3.4
on page 31, are equivalent. If we number the rules of IT; from 1 to 11, we swap pairs
(2,3),(5,6) and (7,8) of II; in three simple steps to produce IIo—in which the rules
appear in the order 1,3,2,4,6,5,8,7,9,10,11—and then we swap pairs (1,3),(2,4)
and (7,9) of II in three further steps to attain II3, in which the rules have been mixed
in the order 3,1,4,2,6,5,8,9,7,10, 11. Context-braces are omitted.

'In [RRO1], the case of consecutive intersection introduction rules on different paths is not men-
tioned. We consider its inclusion to the definition necessary.
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U bprn Klp == [o1,0:]] [q := [11, 77 ]]

(NIprr)

\" bprz Kp := 0y Nov] [q = [, 7] ~
(NIprr)
O\ bprr K[p=0o1Nov][g:==mN1)

Ubprn Klp == [o1,0:]] [q := [11, 77 ]]

(NIprr)
M\ bprr Kp := [o1,00]] [q := 7 O 7]
(NIprr)
M\ Fprr K[p =0y Nov[g =7 N1)
Thprr Klp:=[or,00]][g : =1 N7 (Lpre)
F\pl bpin Klp:=oa1Noylg:=n N1 (Bre)
F\pl Fprr Klp =01 Nor]|q:= 7s)
Ut Klp :=[o1,00]] [g:= 1 N7 (B2rp)
U bprr Klp := [o1,00]] [q := 76] (Tz)
M\ o Klp =0y Noy) [q = 7s]
Phprn Klp:=oiNoy]g:=n N7 (B21p)
F}_pIL K[p ZZO's] [q ::TlﬂTr] ’ ~
(NEprr)
I '_pIL K[p = U'S] [q = TSI]
Thprir Klp:=0o,Noy]lg: =1 N1 ,
(OE;IL)
It Klp:=o01Noy][q:= 7] (B211)

T bprr Klp := 05 [q := 7s/]

Figure 3.3: Related deduction-parts. Paths p and ¢ are different.
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lir,7) [, 71,21, [ll7, 01, 0, o, @ 1 8] Fyre [l 0 o, 0], 0 6]
lir, 7} [7, 71,2, [ll9, 01, o, o, @ 1 8] Py ([l 08, ] o, 01) a0 6]
llr, 71,7, 7121, [ll2, ).l ol @ 0 8] Fpr (118, o ol a1
lir, 7L, [r, 71}, 41, (o, o), ool 0 8] Fpr (118, 7)o ol 1 6]
lir, 7L, [r, 71}, 4], (o, oL, ool 1 8] Fpr [[18:4) [ 1B, o], 1 6]
lir, 7L, [, 71}, A), (o, oL, lov ol 1 8] Fpr (118,74 v )l a1
lir, 7L, [, 711,41, (o, oL, oo 1 81 Fpr (118, 9] sl e 1

[r, 7,711, lo fov ol a0 8] Fpre (B0 o lliannBl
(7,73, 7,02 01 8] Fpr (B0, 2], a0 B]

7, 7),4), llo,0) @0 B Fprr (180 v, 2017

0,01, N 8] Fprz [[r—=BN 7, T—an~)7—al
i [o,0 0 Bl Fpre (=B 07) N (r—a Ny, 7—a

(NEY on 1l

(NE™) on 111

(NE™) on lir

(NEY on Irl

(NEY on Irl

(NET™) on lrr

(NI)on il

(mE‘l) onr
(=1)

(nI)on!

[[l, 7], [, 7117, [lles o], o oll, e N B] Fpre ([lo o], [0, al], 0 5]
[[lr, 7], [, 1], [lloy o), [0, ol], N B] Fprz ([l 1 B, 0], [0, 0]}, 1 B
([l 7], [ )], [lloy o], [o, o], & N B Fpr ([l N 8,7, [0, 0]), 0N ]

([l 7], [ 7]}, [l o], (o, o), & 0 B] Fpr ([, 7], [0, o1], 1 B
([l 7], [ )], [lloy o], (o, o]}, a0 B] Fprz [[18,7], [« 0 B, )], a N B]
[[l, 7], [7, 71l 7, [lles o], [os o]l e B] Fpre [[18,7]; [N B, 7], N B]

([l 7], [7, 71l 7], [lle o], [, oll, e B] Fpre [[18,7]; [ 7], 1 B]

]’ I)onlr
[rmhrhal, (ol ahan Bl Fpre [Borhanalang] o

(NEY) on 1l

(NE™) on llr

(NE™) on 111

(nEY on Irl

(NE™) on Ilrr

(NEY) on Irl

(NI)on Il
[ 72l ol Bl P B vanshangl
[[Ta T]:'Y]: [[07 0’],aﬂ,3] }_PIL [[ﬂﬁ%aﬁ’Y]aa] (—1)
ool anBl o r=B07y, r=anyly=a]

Oz : [o,an Bl bprr [(T—=BN0Yy) N (T—=any),y—a]

lir, 71, [, 71141, [l o1, o, 0, 01 8] P [l o), [ ol @ 6]
lir, 71, 7, 721 [ll7, 0l o, ol @ 1 8] Fpr [l 1] o, 01) 2 1 6]
ltr. 7). br. 117 (ll7. ) ool @V Bl P (00 B o) 5
lir, 71,7, 7)151, (llo. ], 01l a 1 8] For [l N 8,3l a0 By all,an B
lir, 7). 7, 7,21, [llo, o) o, ol a 1 8] Fpre 8,3 [0 B, ol a1 B
lir,7), 7, 7,2 [l oL o, ol @ 0 8] Py (18,2 o 0 8,7l 0 B
lir, 71, 7,71}, 71, [l oL, o, ol @ 01 8] Py, 118, 9) sl @ 1

]’ Ionlr
[r bl (ol ahan B Fre [Brhanlang o

(NE™) on lir

(NE" on 111

NE™) on Il

(NE™) on lrr

(NEY) on Irl

[[[T’ T]vT]v'Y] ) [[[U’ U]’U]’a N /8] l_PIL [[[/8’7]’01 ﬂ’Y]’a] (mjr;fn)l:m T
(7712, lo ol an Bl bpre 8O @n )]
[[o,0),anplbprr [[r—=B8N7y, T=anq],y—qa] (NI)on

O3 : [o,an Bl bprr [(T—=B07y) N (T—=anNy),y—a]

Figure 3.4: Deductions II;, I, and II3 of example 3.3.3.
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It is T,(II) = T,(Ily) = T,(II3) = { Ay.x | y(Z =) a variable }, for every z. If
7= [ /~]: [o,anB] kL [(T—=B8NY) N (r—anNy),y—a], we can identify = with II;
(i € {1,2,3}). In any case, T,(w) = { \y.x | y(# =) a variable }, for every z.

3.4 From plIL to LJ

In this section, we examine the transition from pIL to LJ. We show that a deriva-
tion IT : {Hq,...,H,} Fprr K in pIL groups a set, denoted LJ(II), of derivations
in LJ, which are all decoratable by d— and have the same form?, namely the form
of II (projection theorem). Each derivation IT' : {o4,...,0,} Frs 7 in LJ(IT) can be
obtained from II by considering a certain terminal path of the kits in II’s conclusion,
taking the leaves to which it leads in the kits, changing the intersection to conjunc-
tion and thus reducing the kits Hy,..., H,, K to LJ-formulas o4,...,0,,7. We also
investigate the conditions that a LJ-deduction must satisfy to be decoratable by d—
and explain why LJ-deductions originating from a pIL-deduction, in the manner just
described, satisfy these conditions.

Theorem 3.4.1 (Projection theorem) Let II : {Hi,...,Hp} tprr K. For all
paths p in Pr(K), we have that 1P : {e(HYV),...,e(HE)} Fry e(K?) is a LJ-
deduction in Dy, such that Ty, . ., (IIP) = T, . .. (I), for every sequence
T1,...,T, of distinct variables.

Proof: By induction on II.
Base: For 1 : {Hy,...,H,_1,K} Fprz K an axiom of pIL and p € Pr(K), we
have that II” : {e(HY),...,e(HY_,),e(K?)} trs e(KP) is an axiom of LJ—hence in

Dry—with Ty, o (ITP) = {zp} = Ty, o, (II), for every z1,...,an.
Inductive step: We thoroughly examine all pIL-rules.
H1 . {Hl, .. .,Hn} l_pIL K

4 (Pprr)
IT: {H\P°,..., H,\P°} bpr, K\P°

Suppose ¢ € Pr(K\P®). Then there exists § € Pr(K), such that (H;\P*)? =
(H)? (1<i<n) and (K\?*)? = K9. By the IH, 117 : {e(HY),...,e(H%)} Frs e(K7) is in
Dy and Ty, o, (I17) = Ty, .0, (I11), for every a1, ..., z,. But e(HT) = e((H:\P*)9)
and e(K7) = e((K\P*)?), so I = 117 and Ty, ., (1Y) = Ty, .. (117), for every
T1,. . 20 Also, Ty, o, (II1) = Ty, .. 4. (I1), for every z1,...,2n, 50 Ty, 4, (II7) =
Ty, 2, (I), for every z1,...,xn.

H1 : {H1,. . .,Hn,K1} I_p]L KQ

. (= Iprr)
II:{H.,...,Hpy} bprr K1 — Ko

Suppose p € Pr(K;1— K2). Then p € Pr(K>), so, by the IH,
7 : {e(HY), ..., e(Hy),e(KY) } Frs e(K3)

is in Dpy and Ty, o, (1Y) = Ty, o «(ILy), for every zi,...,zn,z. Applying
(—1Ips) on IIY, we get

7 : {e(HY),...,e(HR) } Frse(KY)—e(KY) = e(KY — K?) = e((K1— K2)P)

We also have that II? is in Dy, since IT} is in Dy and II? results from I} by (—1I).

2We actually prove a stronger result, see theorem 3.4.1 and remark 3.4.2 for details.
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It remains to show that Ty, . o, (II?) = Ty, . 5, (IT), for every wz1,...,z,. It is

Torrozna(IB) = Ty . 2(I1y), for every zi1,...,zn,0 =
/\:U-Txh---,wn,w(ni)) = /\w-Txl,...mmx(Hl)sa for every 1,...,zn

and every z distinct from z; (1<i<n) =

U/\a:.Txh___,wn,w(H’f) = U/\a:.Txl,___7xn7x(H1), for every z1,...,z, <

T, (IT?) = Ty,....z, (IT), for every z1,...,2n

1yeensTn

Iy : {H,...,H,} Fprr H— K Oo: {Hy,...,Hy} Fpi H
" (— Eprr)
I:{H,...,H} bpir K

Suppose p € Pr(K). Then p € Pr(H— K) = Pr(H), so, by the IH,
I : {e(HY),...,e(HE) } Frs e((H—K)) = e(H) —e(K?)
15 : {e(HY),...,e(Hy) } Frse(H?)

Applying (— Ers) on I}, TIE, we get 1P : {e(H?),...,e(HE) } Frs e(K?). We have that
II? is in Dy, since IT} and I15 are in Dy, by the IH, and IIP follows from IT} and IT5
by (— E). It remains to show that Ty, .., (I") = Ty, .. ., (II), for every z1,...,2n.
By the IH7 we have Tzl,...,zn (Hll)) = Tzl,...,zn (Hl) and Tzl,...,zn (Hg) = Tzl,...,zn (HQ);
for every z1,...,xn. SO

Tmh...,mn(Hi))Tml,...7xn(Hg) = Tml,...7xn(H1)Tml,...7xn(H2)4a for every zi,...,rn —
Ta, .o, (I17)

Ten,....z, (IT), for every zi1,...,zxn

Iy : {Hi[p := [o1,01]],- - -, Hu[p := [on,00]]} Fprz Kp := [0, 7]]
II: {Hi[p:=o01],...,Hu[p :=on]} bpir K[p:=0nNrT]

(NIp1L)
Suppose ¢ € Pr(K[p := o N ]). We distinguish two cases. (1) If ¢ # p, then
q € Pr(K|p :=|o,7]]), so, by the TH,
0§ : {e(Hi[p = [o1,01]]7), ..., e(Hu[p = [on,0u]]") } FLs e(K[p :== [0, 7]]7)
T,

is in Dy and Ty, .. (1Y) = Ty .. (II}), for every =zi,...,zn. But
Hilp :=[0i,0:)]? = Hi[p :=03]? (1<i<n) and K[p:=[o,7]]? = K[p:= 0 N 1], SO

Y =0 : {e(Hilp:=01]?),...,e(Hplp :=0n]?) } Frse(K[p:=on7]?)

3Tf II’ belongs to D7’ U Dyrp and gives II under (— 1), it is

Tey,...y Tn (H) = Ty,

.....



34 Chapter 3: Intersection Logic (IL)

Hence, II is in Dz; and Ty, ..om (Hq) =Ty, 2n (H({) =Ta,.2n (Hl) =Tz,..zn (H),
for every z1,...,z,. (2) If ¢ = p, then pl and pr are in Pr(K|p := [o,7]]), so, by the
H,

I : {e(o1),...,e(0n) Y Frse(o) T :{e(o1),...,e(on) } Frse(r)
Applying (AIp;) on IT¥ IIP", we get

1" : {e(o1),...,e(on) } Frre(o) Ae(r) =e(oNT)

which is in D7, since, by the IH, IT¥" and II*" are in D;; and Ty, ... ., (II?")
Tpyyozn () = Ty o (IB7), for every zi,...,z,. Also, Ty, .. (IIF) =

Ty, Y = T, (I}) = Ty, ..., (I1), for every z1,...,x,.

1yesTn

I : {H1,...,Hp} bprr K[p:=0oNr7]
o - (ﬂE;l)IL)
H:{Hl,...,Hn} l—p[L K[p ::0']

Suppose g € Pr(K|[p := o]). Then g € Pr(K|[p := o N 7]). We distinguish two cases.

(1) If ¢ # p, then K[p:=onN7]?= K[p := 0]?. By the IH,
Y : {e(HY),...,e(H) } Frs e(K[p := o N 7]?)

is in D7y and Ty, o, (I1Y) = Ty, 2. (II1), for every zi,...,z,. It is easy to see
that I1¢ = 11, so that 119 is in Dy and Ty, .. (I17) = Ty, .. (II%), for every
T1,...,on. Thus, we have Ty, . (II9) = Ty, o (II1) = Ty, 2, (II), for every
z1,..,Tn. (2) If ¢ = p, then Kjp :=0nN7]? =0ont and K[p := o] = 0. By the
IH, 11} : {e(HP),...,e(HE)} Frs e(c N 7) = e(0) Ae(r) and, applying (AEL;), we get
7 : {e(H?),...,e(HE) } Frs e(o). We have that [1? is in Dz, since I} is in Dz, by the
IH, and II? follows from IT} by (AE). In addition, Ty, . (IIP) = Ty, .. (I}), for
every z1,...,o,. Since, by the IH, Ty, (IIY) =T, . (IIy), for every z1,...,zy,
we have Ty, o (IIP) =Ty, . . (II1) =Ty, .. 2, (II), for every z1,...,7n.

For (NE,;r.), we work similarly. —

Remark 3.4.2 The conclusion of theorem 3.4.1
Tprozn (IIP) =Ty, . (1), for every z1,...,2, and p € Pr(K)

implies that U(II?) = U(II), for every p € Pp(K). In general, for II' and II in
D73 U Dy, the following implication holds:

Toyrozn ) = Ty, o, (ID), for every zi,...,z, =
U(HI) = U Te,,...zn (Hl) = U Th,....z, (II) = U(II)
T1yyTn L1y Tn
It is not generally true, though, that
UvIy=UM) = T,,...,(II') =T, . (1), for every z1,...,2,

For example, consider the axioms IT' : {o, 8} brs o and IT: {a, B} Frs B in Dg;. We
have that U(Il') = Var = U(II), but, for © # y, Ty ,(II') = {z} # {y} = Ty, (D).
(The notation Var stands for the set of all A-variables.) Hence, “Ty, . ., (II') =
Tor,....z, (II), for every zq,...,2, " is stronger than “U(II') = U(II)”; let us call the
former claim “set (or term) equality” and the latter “form equality”.

Definition 3.4.3 Let II : {Hy,...,H,} bprr, K and LJ(II) = {II? | p € Pp(K)}.
Any LJ-deduction in LJ(II) shall be refered to as a LJ-projection of II.
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We continue with an example showing the LJ-projections generated by a plL-
deduction according to theorem 3.4.1.

Example 3.4.4 Let 0 = anN Ny with o, and « propositional variables. Then
e(c) =aApB Ay, e(a) =a, e(B) = and e(y) = . Deduction II : [0, 0] Fprr. [, ]
(on page 36) has two LJ-projections II' : e(o) Frs e(y) (on page 37) and
I" : e(o) 1y e(a) (on page 36).

We can roughly describe a projection algorithm for the construction of
LJ-projections, given a pIL-deduction. We construct II! bottom-up. As the theorem
states, its conclusion is e(o) Frs v, i.e. we follow path [ on the kits in IT’s conclusion
and apply e. Rule (NE"), in II applied on path [ transforms to (AE"); in II’, so that
the judgement e(o) Frs a A~ is formed right above e(o) Fry v. Rule (NI)2 in II
applied on path [ transforms to (AI)s in II! with premises e() 1  and e(a) . .
Then, we follow paths Il and Ir in II’s judgements to construct subdeductions IT}
and II}, respectively. Rule (— E)3 in II induces a (— E) rule in each of IT}, and IT!;
in particular, rule (— E)3, in I} and rule (— E)3, in IIY. Focusing on II}, premises
e(o) Frys B — 7 and e(o) Frs B are placed above the conclusion. Rule (NE)4 in II
brings about (AE)4, in ITi, so that e(co) 1s e(o) sits above e(o) Frs (3, while rule
(—1)s in II appears as (—1I)s, in IT{ and puts 3,e(c) s v above e(o) Fry B — 7.
Continuing this way, rules (— E)s, (NE)o, (— I)i0 and (NE):; in I appear in IIY as
(= E)s,, (AE)o,, (= )10, and (AE")11,, respectively. Rules (NE')s and (NI); in II ap-
plied on Il do not affect IT}, as the latter follows path Ir. They project to II} as
(AE")6 and (AI)7, respectively. Subdeduction IT} is constructed in a similar manner,
starting from premises e(o) by 8 — a and e(o) Fr; B8 placed above the conclusion
by (= E)s,.

Note that intersection elimination rules in IT applied on different terminal paths
of the form Ip project to conjunction elimination rules in different subdeductions of
II' and implication introduction (or elimination) rules in II applied on judgements
including kits with n terminal paths of the form Ip project to n implication introduc-
tion (or elimination) rules in II. On the other hand, if a pIL-deduction II contains
pruning rules, they do not project to LJ.

Both II! and II" are decoratable by d—. In particular, for s € {l,r} and every =,
T, (II%) = T,(IT) = {(A\y.(Az.z)x)z | y(Z z), 2(# x) a sequence of distinct variables}.

3.4.1 Characteristics of the set D}

At this point, we will investigate the conditions that a LJ-deduction must satisfy to be
decoratable by d— and we will examine why the LJ-deductions which are projections
of a pIL-deduction indeed satisfy these conditions.

Considering a LJ-deduction with, say, three (AI) rules and tracing it from top to
bottom, the following conditions must hold for it to be decoratable by d-..

(1) The first (AI) rule must conjunct two LJ-formulas that have been derived
from subdeductions which: (i) share both the number of instances and the order of
application of the rules (—I) and (— E), (ii) have the same number of axioms® and
(iii) have the same context cardinality in corresponding® axioms.

5An extra axiom in one of the two would imply the existence of an extra binary rule, but they
both have the same number of instances of (— E) and no instances of (AI).

6Tf we number the axioms of each subdeduction from left to right, the ones identically labelled
are corresponding.
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(2) Identifying the two subdeductions leading to the first (AI) rule with respect
to the sequence of implicative rules from top to bottom and the sequence of axioms”
from left to right (abbreviated “imax”), the second (AI) rule must conjunct two LJ-
formulas derived from subdeductions which satisfy (i), (ii) and (iii).

(3) Identifying, with respect to imax, the two subdeductions leading to the second
(AI) rule, which can be done given the identification, with respect to imax, of the two
subdeductions leading to the first (AI) rule, the third (AI) rule must conjunct two
LJ-formulas derived from subdeductions which satisfy (i), (ii) and (iii).

For LJ-deductions with more (AI) rules, the conditions adapt accordingly.

We can now ask why LJ-projections of a pIL-deduction indeed satisfy the condi-
tions. We resolve this question by examining projection II' of example 3.4.4.

The first (AI) combines subdeductions II, and II},, which are themselves LJ-
projections of a pIL-deduction II. In particular, IT), = (IT) and T, = (I1)".

[8,8], 18,8l [0,0] FprL [0, 0] “
18,8, (8.8l lo, o] Fprr v _ [8, B, loy o] 1t [0, 0] 5
[8,8],[0,0] Fpir [B—a,B—1] [8, B8], o, o] Fprr B, 5] o
II: 8, 8],[0,0] Fpr [, 7]

The fact that IT}, and II}; satisfy (i) derives from the fact that the rules (— I)
and (— E) in II are global, so they affect the left and right leaves of the kits in exactly
the same way.

Informally speaking, the “left part” of each axiom in I gives an axiom in IT},,
while the “right part” gives an axiom in II),. But, since the kits in II’s axioms—and
even more in any pIL-judgement—are full binary, left and right parts appear in pairs,
so every axiom in II), can be matched to a unique axiom in II5, and vice versa.
Hence, 11}, and II); satisfy (ii).

Corresponding axioms in IT); and II}; are those that have emanated from the
same axiom in II as left and right part, respectively. Since the kits in II’s axioms
are full binary, every left context-leaf has a pairing right one; hence, I1}, and II},
satisfy (iii).

The second (AT) combines subdeductions T, and IT%, which are LJ-projections of
a pIL-deduction II. It is I} = (1) and IT} = (II)".

[[ﬂ: B]: /8]7 [[/37 /8]7 B]: [[07 0]7 U] Fprr [[07 0]7 U]
(NE)
18,81, 81,118, B, 8], [l 0], 0] Fprs [l 2] (18, B1, 8], llo, ], 0] Fpr2 [[o, 0], 0] .
[[ﬂ: B]::BL [[07 U]7 U] Fpro [[ﬂ—)a,ﬁ—vy],ﬂ—vy] [[/87/3]7/3]7 [[07 U]7 U] Fpro [[ﬂ: B]::B] (B
[[/87 /3]7 /3]7 [[07 U]? U] '_pIL [[Oé, 7]7 ’Y]

(n1)
[/3713]7 [07 U] l_plL [a N7, 'Y] (')
[57/8]7 [07 U] }_PIL [av’Y] (—1) [U’ J] l_pIL [J’ U] (nE)
lo,0] Fprr [B—a,B—1] lo,0] Fpr [B, B] B

II: [o,0] Fprr [a,7]

"The “identification” of corresponding axioms concerns their context cardinality; they are not
identical. Even more, the two subdeductions are not identical; they just exhibit the same sequence
of implicative rules.
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The identification with respect to imax of I}, and IT}; translates in kit terminology
to the identification of terminal paths Il and Ir, in all judgements of II before the
application of (NI). This does not necessarily mean that the leaves at the end of Il
and [r are identical; it is an improper identification to explain in kit level why I} and
I} satisfy (i), (ii) and (iii). If paths Il and Ir coincide, we can think of all kits in II
as having a left and a right part.

The sequence of global rules (—I), (— E), (—I), (— E) in II equally affects the left
and right parts of the kits; thus, IT} and IT} satisfy (i).

The left part of each axiom in II gives an axiom in ITL, while the right part gives one
in IT!. Arguing as in the case of II, we conclude that II}, and II} satisfy (i) and (iii).

3.5 Strong normalization of IL

In this section, we define a ¢-redex of a pIL-deduction, where ¢ € {P, —,n}, and show
how to eliminate redexes. We prove that pIL is strongly normalizable by turning to
LJ-projections of a pIL-deduction and invoking the strong normalizability of LJ. We
then derive strong normalizability of IL.

We start by showing how the rule (P,;.) can be eliminated from a pIL-deduction.
The so-called P-commuting conversions or «— p-normalization steps, defined below,
shift an occurence of (P,rr) upwards in the deduction until it reaches an axiom. At
that point, its conclusion is by itself an axiom, so we can erase the initial axiom and
the rule and take its conclusion as a deduction leaf.

Definition 3.5.1 (i) The P-commuting conversions or — p-normalization steps on
pIL are the following rewriting rules.

1. The aziom (A).

A

FU{H} Fprr H
C\"U{H\"} Fprr H\P

(P) P T\PU{H\"} prz H\?

2. The introduction of implication (—1I).

FU{H} }—ijK ( I) FU{H} Fp]LK )
I'bprr H— K P —p  T\PU{H\"}Fpr K\P Ig)
F\p Fprr (H—)K)\pEH\p—)K\p F\p Fprr H\p—>K\p

3. The elimination of implication (— E).

F}—plLH—)K F}—ijH
(= E)
T }—ij K P) —p
D\P bFprn K\P

F":D]LH—>K P F}_pILH
D\P bpr H\P — K\” D\P Fprr H\?
P\? Fprn K\?

(P)
—)E)
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4. For the introduction of intersection (NI), we distinguish two cases. The contexts in-
clude kits fori € {1,...,n}.

Case 1: ¢S p

{Hilp := [04,0i]]} Fpr Kp = [0, 7]] (1)
{Hilp := 0i]} Fpr K[p =0 N ] P) —p
{H;[p:=0i\" = H{[p :==0i]} tpir K[p:=aoNT\' = K'[p) := 0N 7]

{Hilp := [04,0i]]} Fpr Kp = [0,7]]

(P)
{Hilp := [oi, 0i]]\" = H[p' :=[04,0i]]} Fprz Klp := [0, 7]]\" = K'[p" := [0, 7]] (NI)
{Hi[p" == 0oi]} bpre K'[p" := 0N 7]
Case 2: q,p different paths
{Hilp := [0, 0i]]} Fprr K[p := [0, 7]] (N
{H;[p := 0]} bprr K[p:=0oNT] P) —p
{H,[p = O'i]\q = Hl/} }—ij K[p =0 ﬂT]\q =K'
{Hilp := [oi, 0i]]} Fprr K[p := [0, 7] P)
{Hilp = [04,0:]]\? = H{} Fprz K[p:= [o,7]]\? = K’
5. For the elimination of intersection (NE), we consider two cases, as well.
Case 1: ¢S p
'k Klp:=0oNo,
prr Kp := o1 N o] (NE*)
'k Klp = o;
»iz K[p U]/ / (P) —p
N\ bprr Klp :=0s]\? = K'[p" := 0]
T'Fprr K[p:z Uzﬁo’r] (P)
M\ bprr K[p:=orNo ]\ = K'[p) :=01No] (NE*)
D\ Fprp K'[p’ = 03]
Case 2: q,p different paths
I'k+ Klp:=oNo,
piz K[p l ] (NE®) Tk Klp i= 01 N ov]
Ty Klp i= 0] P

—p
N Klpm o i = K P\ iz Klp = 01 N \* = K
pIL ‘= O =

(11) Every pair of rules to the left of —p is called a P-redex and the conversion
provides the corresponding P-reduct.

Remark 3.5.2 (i) In the cases of (NI) and (NE), for the pruning at path ¢ to have
meaning, ¢ has to be defined in H;[p := 0;], K[p := oN7] and K[p := 0], respectively,
i.e. in kits where p is terminal. For this reason, it can’t be that p C ¢, so we consider
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the cases ¢ € p and ¢ different from p. (i) In case 2 of (NI) and (NE), the —p-
normalization step eliminates the intersection rules. This is not a problem, since we
are only interested in shifting pruning one place up in the deduction—which is done—
and in concluding by the same judgement after the rules have been exchanged—which
is attained without applying intersection. Actually, intersection in the P-redexes is
applied to this part of the kits which is then pruned, so, if we first do the pruning,
there is no longer space for intersection.

Definition 3.5.3 (i) A pIL-deduction free of occurences of (Pyrr) is P-normal.
(i) A class © of IL reduces under —p to another class n' of IL (x —p @), if
IIen and 11 —p I’ imply that II' € 7’.

Using P-commuting conversions, it is easy to see that the following lemma holds.

Lemma 3.5.4 Every II : T’ bprr, H can be reduced to a P-normal II' : T' by, H
under any strategy.

Definition 3.5.5 Let II be a pIL-deduction and s € {l,r}.
(i) A —-redex of 11 is a sequence (— Iyr1), (— Eprr) in II of the rules introducing
and eliminating the implication.

FU{H} }—ij K
(= Iprz)
F}—I,]LH—>K F'_pILH
I'bprr K

(= Epir)

(i) A N-redex of II is a sequence (NIy:L), (NEy;.) in II of the rules introducing
and eliminating the intersection.

{Hilp := [01,01]],- .-, Hn[p = o0, 0w]l} Fprz Kp := [01,0+]]

{Hl[p = 01]7 . 7Hn[P = Un]} }_pIL K[p =01 ﬂar]
{Hilp:=o01],...,Hplp = on]} Fprz K[p := 0]

(NIprL)
(NEprL)

Definition 3.5.6 Let {Hi,...,H,} Fpir K be a judgement in position x of a
pIL-deduction 11 consisting of k steps (0 < = < k). If the context-kit H; (or a
pruned descendant of H;) doesn’t move to the right of Fprr by a (—1I) rule in steps
z+1,...,k, it is said to be open.

Remark 3.5.7 If I : {H,,...,Hyp} Fprr K is a pIL-deduction, all context-kits H;
are stable.

The following lemma is used for the elimination of —-redexes from a pIL-deduction.

Lemma 3.5.8 (Substitution lemma) Let IIo: TU{H} Fprp K, II1 : T Fprp H
be pIL-deductions and S(Il1,11y) be the deductive structure obtained from Iy by sub-
stituting all azioms I"U{H} Fprr, H (I CTV) with H open by 11} : IV Fprr, H. Then,
S(Hl,HQ) : T l—p]L K.

Proof: Use double induction, see [RRO1, Pr65, Gi89]. —

Remark 3.5.9 If Il and II; are P-normal, then so is S(IIy,IIy).
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The next definition shows the normalization procedures called up for eliminating
single implication and intersection redexes, i.e. describes single normalization steps.

Definition 3.5.10 Let II be a pIL-deduction and s € {l,r}.
(ia) A —-rewriting step on II is a normalization step that eliminates a —-redex
of the deduction.
IIg : FU{H} '_pIL K
(= Tprr)
F}—I,]LH—>K Hlir}—ijH —_
(— EprL)

I'bprr K

S(II1,1o) : T Fprr K

(iv) A class © of IL reduces to another class ©' of IL under a —-rewriting step
(m—>_ 7)), if Ienm and 1T —_, ' imply that TI' € 7’.

(ii.) A N-rewriting step on II is a normalization step that eliminates a N-redex of
the deduction.

{Hi[p = [o1,01]], ..., Hu[p := [on,00]]} Fprr Kp := [01,0+]]

(NIprz)
{Hi[p :=o01],...,Ho[p :=0n]} Fprr Klp:=0;Nov] (NEZL) n
{Hi[p :=o01),...,Holp := on]} Fprr Klp := 0]
{Hilp := [o1,01]],..., Hu[p := [on,0u]]} Fprz K[p := [0, 0v]] (Porr)

{(Hilp := [o1, 1]\, (Halp := [on, 0n])\™} Fprr (Kp := [o1, 0]\

It is (H;[p := [oi,0:])\P? = H;lp := oi] (1 < i < n) and (K[p := [o1,0.]))\P* =
Kp:= o]

(1ip) A class m of IL reduces to another class «' of IL under a N-rewriting step
(m = 7', if Hem and 1 —~ I imply that I € 7.

Remark 3.5.11 If II is P-normal and II —_, II’, then I’ is P-normal, too. On the
contrary, if I < II’, then II' is not P-normal, but it can be reduced to one using
P-commuting conversions.

Definition 3.5.12 (i) A pIL-deduction 11 is normal, if it is P-normal and free of
implication and intersection redexes.

(ii) An IL-deduction 7 is normal (strongly normalizable), if there exists a normal
(strongly normalizable) 11 in x.

Remark 3.5.13 We note that, for any IL-deduction =, if there is a normal (strongly
normalizable) II in 7, then every II in 7 is normal (strongly normalizable).

Theorem 3.5.14 plL is strongly normalizable, i.e. every pIL-deduction II is strongly
normalizable.

Proof: Suppose there exists a pIL-deduction II : {Hi,...,Hn} Fpr K which is not
strongly normalizable. Then, there is an infinite sequence s of ¢ -steps, where ¢ belongs
to {—p,—_,—n}, starting from II. If Pp(K) = {p1,...,pn}, then, by theorem 3.4.1,
I gives n LJ-projections IT', ..., 11" in D77, where II": {e(HY"),...,e(H%)} Frs e(KP?).
If I < p II', then, for everyi € {1,...,n}, II{ = (I')%. If I < _, II', then, for every i,
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" <}, ...<%, (II')" Finally, if Il <n IT, then there is an ig € {1,...,n}, such
that: (1) IT% < ; (II')% and (2) for every i € {1,...,n}\ {io}, it is II’ = (II')%.

Case 1: There are infinitely many < _,-steps in s. Then, since each such step
generates finitely many <7 _-steps in each II?, we meet infinitely many <77 -steps
in each IT?, which contradicts the strong normalization of LJ.

Case 2: There are infinitely many <—n-steps in s. In this case, since each such step
generates a <7, -step in one of the IT?, there are infinitely many < s -steps to be
mounted in n LJ-deductions. Consequently, there is an i € {1,...,n}, such that we
meet infinitely many < -steps in II¢, which contradicts the strong normalization
of LJ.

Case 3: There are infinitely many < p-steps in s. Then, there should be infinitely
many <—n-steps in s, since the (P) rules initially in I are eliminated in a finite number
of < p-steps and so is the (P) rule generated by a single <n-step. So, this case reduces
to case 2. —

Theorem 3.5.15 IL is strongly normalizable.

Proof: If there is an IL-deduction n which is not strongly normalizable, then, by
definition 3.5.12(ii), if IT € 7, then II is not strongly normalizable, which contradicts
theorem 3.5.14. —

3.6 IL and the part of LJ decoratable by d-

In section 3.4, we saw that any pIL-deduction II gives rise to a finite number of
LJ-deductions in D7, called its LJ-projections, that all share the implicative struc-
ture of II. In this section, we start by examining the special case of theorem 3.4.1
where II is proper and has a single LJ-projection II¢, which is uniquely determined
by the projection algorithm. Throughout the section, we concentrate on P-normal,
proper deductions. We observe that equivalent pIL-deductions project to the same
LJ-deduction, which is the unique LJ-projection of their equivalence class. Different
equivalence classes have different LJ-projections. We continue by showing the inverse
of theorem 3.4.1 (inverse projection theorem for pIL), i.e. how a finite number of
LJ-deductions in D7, with the same implicative structure merge to give a single pIL-
deduction with this very implicative structure. We describe an algorithmic procedure
for constructing this pIL-deduction (simulation algorithm) and note that it actually
uniquely determines an equivalence class of P-normal pIL-deductions, i.e. a P-normal
IL-deduction (inverse projection theorem for IL). We then restrict the inverse for IL to
a single LJ-deduction in D7’;, which gives through the simulation argorithm a unique
P-normal, proper IL-deduction called its IL-duplicate. The fact that projecting and
simulating are inverse procedures between P-normal, proper IL-deductions and LJ-
deductions in D7’; leads to the main theorem of this section which claims a one-to-one
correspondence between such deductions, corresponding deductions sharing the same
implicative structure.

If IT of theorem 3.4.1 concludes by a proper judgement {o1,...,0,} Fprr T,
there is just one terminal path € to be considered, so we get a single LJ-projection
¢ : {e(o1),...,e(on)} Frs e(r), which is decoratable by d- and such that
Toy,zn (1) = Ty, . (IT), for every z1,...,x,. Given II, II¢ is uniquely deter-
mined by the projection algorithm. If IT’ is the P-normal deduction to which IT can
be reduced, then (IT')¢ = II¢, since (P,rz) doesn’t have an image in LJ. We obtain
(IT")¢ from IT" by the projection algorithm, as usual.
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Let us now concentrate on P-normal, proper pIL-deductions. So far, we have that,
for every P-normal, proper pIL-deduction II : {o1,...,0,} Fprr 7, the projection
II° : {e(o1),...,e(on)} Frs e(T) is unique, belongs to Dy’ and has the same implica-
tive structure as IT, i.e. Ty, o, (II¢) = Ty, . (II), for every 1, ..., 2y,

We can make some observations on projecting. An axiom in II involving kits
with m terminal paths generates m axioms in II¢. In general, a judgement J =
{Hi,...,H,} Fprr K in II involving kits with m terminal paths pi,...,pn, gener-
ates m judgements Ji,...,J,, in II¢, where, for each k € {1,...,m}, it is J, =
{e(H*),...,e(HP*)} Fry e(KP*)8. The clockwise order of judgements in II¢ is the
anticlockwise order of appropriate leaves in II (see example 3.6.2). The sequence of
rules in II¢ copies the one in IT modulo the conversion of intersection to conjunction,
the splitting of judgements and the iteration of global rules in isomorphic with respect
to d—. subdeductions. Now suppose we draw a full binary tree 7€ on II¢ by putting an
imaginary node on the conclusion of each binary rule and then drawing two branches
from each node towards the two premises, so that each branch either meets another
node and the procedure is repeated or runs through a subdeduction with no binary
rules and ends up to a leaf. Suppose also that there are r axioms Aq,..., A, in II
involving kits with ny,...,n, terminal paths, respectively. Then, 7€ has n1+---+n,
terminal paths. Each (NI) rule in II generates one node in 7€, while each (— E) rule in
IT on judgements involving kits with [ terminal paths generates [ nodes in 7°¢. (Recall
that (NI) is a local rule, while (— E) is global.) If we consider the nodes generated by
(NI) rules in columns of II that have no column to their left and ignore the rest, we
make a full binary tree 7, on II*—in the same manner that we drew 7“—with the
structure of kits in the leftmost axiom of II inverted.

The following example on projecting proper plL-deductions illuminates some of
the points discussed above.

Example 3.6.1 Let 0 = anfBny with a, 8 and 7 propositional variables. Deduction
II:0bFprr an(yN(BNa)) projects to 11 : e(o) Fry aA(yA (B Aa)). The P-normal
deduction II' : ¢ Fprr, N (y N (B N a)) derived from IT projects to (II')¢ = IIc.
Deductions IT and II' are shown on page 45 and II¢ on page 46.

Note: Consider the judgement [y, [y, [v,7]], 71l o, [lo, [0, o], o) Fpr [e, ([, [, e]], B]]
of TI'. The anticlockwise order of leaves in [« [[v, [8, o]], 8]] is a, 7, 8, a, 3. As a result,
in II¢ we clockwise meet judgements Jy, Jo, J3, Jy, J5. Consider also the judgement
s 11 Y1, ), [o, (o, o), o] Fprz [ay [y, 8 N al, 8]] of II'. The anticlockwise order of leaves
in [a,[[y,8Nal,B]] is a,v,8Na,B. In II¢ we clockwise meet J1, J2, J3, J5. Similarly,
since the anticlockwise order of leaves in [« N7, [y,7]] in the judgement [o, [0, o] Fprr
[@n~,[v,7]] of I"is N ~,7,7, we clockwise meet the judgements Ji, J5, J; in II.
Likewise, the anticlockwise order «,yN(SNa), B of leaves in the kit [o, [yN(BNa), B]]
in [0, [o,0]] Fprr [a, [y N (BN a),B]] of II' results in the clockwise order Jg, J7, Jg of
judgements in II¢. Every judgement of II' is subject to such a comment.

Now let 7 : {o1,...,0n} Fr 7 be a P-normal, proper IL-deduction and II,II' be
different pIL-deductions in 7. Then, II¢ = (II')* = #x€ (1). This is because consecutive
intersection rules applied on different paths project to conjunction rules in different
subdeductions, so the concept of order disappears. We also have that, for any II € 7,

8If II is not P-normal, an axiom in II involving kits with m terminal paths generates m’ < m
axioms in II¢, where the inequality sign is needed to exclude paths that will be pruned. In general,
a judgement J = {Hi,...,Hn} Fprr, K in II involving kits with m terminal paths pi1,...,pm
generates m’ < m judgements J;,..., Jim' in II¢, where ¢1,...,%,, iS a subsequence of 1,...,m

and, for each k € {1,...,m'}, it is J;, = {e(H;™*),...,e(Hn*)} Fry e(KPix).
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II¢ is unique, belongs to D and Ty, o, (II9) = Ty, o, (II) = Ty, 4. (), for
every i,...,T, (2). From (1) and (2), we conclude that, for every P-normal, proper
IL-deduction 7 : {o1,...,0,} Frr, 7, the projection 7€ is unique, belongs to D;’; and
has the same implicative structure as m, i.e. Ty, 2 (7€) = Ty, . 4. (1), for every
Z1,...,Tn. Further on, suppose that 7 and 7’ are P-normal, proper IL-deductions,
such that m# Z n’ and II € w, II' € #’. Then, 7 =1I¢ £ (II')* = (7')".

Let DfL”’p denote the set of P-normal, proper IL-deductions. Resuming the
analysis so far, we can say that e : DfL"’p — Dy’ with e(m) = 7¢ is a one-to-one
function, such that every member of Dan ¥ has an image in Dj’; with the same
implicative structure.

We illustrate these points by examples.

Example 3.6.2 Let 0 = a N g N~ with «a,8 and v propositional variables. The
P-normal, proper plL-deductions IT and II' are different, but both in the class
m:obrpanyNB. tis I = (W) =7°:e(o) Frya Ay AB.

[[07 U]7 U] Fpro [[07 U]7 U]

(NEY on U1
[[07 U]7U] Fprr [[a ﬂIB7U]7U] !
(NE") on I
[[Ua 0—170—] }_PIL [[a,g],g] (NET) on Ir
[[07 0—170—] l_PIL [[av’YLJ]
(nI)on!
[Ua J] l_PIL [a N Y, U] 1
(NE') on r
[Ua J] l_PIL [a O'Yaa OIB]
(NE™)on r
-
ol Frn a8
H:obprranynpg
[[07 U]7U] Fprr [[07 U]7U] !
(NE*) on Il
[[07 U]7U] Fprr [[a ﬂIB7U]7U]
(NE™) on Ir
[[07 0]70] Fprr [[a ﬂﬂ,'y],ﬂ'] !
(NE")on Il
[[07 U]7U] Fprr [[ay')/]:‘f] !
(NE*)onr
[[Ua 0—170—] l_PIL [[av’ﬂ:a mﬁ]
(NnI)on!
[U,O’] l_PIL [am’y,amﬁ] »
(NE™)on r
lo,0] Fprz [N, B] -
II':0bkpranynpB
e(o) Frye(o) .
— L (AEYH
e(o)Frsanp e(o) Frse(o) e(o) Frs e(o)
f (AEY) f (AET) }_— (ABY)
e(o) Frs a e(o) oy D e(c)Frsanp B
6(0’) FrsaAy 6(0’) Frs B

m€e(o)Frsa Ay A

Example 3.6.3 Let 0 = a N N~y with a,8 and ~ propositional variables. The
P-normal, proper plL-deduction IT” differs from II of example 3.6.2 and is in
7" ot an(ynpg), which differs from II’s class 7. It is (7)€ = (II")€ #£ 11 = =°.
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[U’ [U’ J” l_PIL [U’ [U’ J”

(NE™) on rl
[0, [0, 0]] Fprz [0, [, 0]] ,
(NE*)on |
[07 [07 0” FprL [a na, [’Y: U” !
(NE") on rr

[07 [07 U” Fpre [a N g, [’Y:amﬂ]]
[0, [0, 0]] Fprz [a N B, [, B]]

(NE™)on rr

(nEY on i
[Ua [Ua U” }_PIL [a7 ['Ya /8”
(nI)onr
[070] }_PIL [a7’yﬂ/8] (nI)

M :obpran(yNp)

— 7 7 (AED
e(o) Frse(o) . e(o) Frye(o) e(o)Frsanp
_  (AE — " (AE") —  (AE")
e(c) FLoanp . e(o) Frys vy e(o) Frs B
—  (nEYH (AT)
e(o) Frs a e(c)FrsyAB D

(") e(o) Fra an(yAB)

The following theorem expresses the inverse of theorem 3.4.1. A finite number
of LJ-deductions decoratable non-standardly by the same A-term merge into a single
pIL-deduction decoratable non-standardly by this very A-term.

Theorem 3.6.4 (Inverse projection theorem for pIL) Let n >0, m > 1,
Hl . {0-117 .. 7Un1} '_LJ 7—17H2:{0-127 R U’N,Q} l_LJ T2, -- 7Hm:{0-1m7 ey Unm} l_LJ Tm

and Hy,...,H,, K be n+1 overlapping kits with m terminal paths p1,...,pm, such
that H = f(05), KPi = f(r;) (1 <i<n, 1<j<m). If Uy,...,1L, are all in
Diyoand Ty, 0, () = Ty, (Il2) = ... = Ty, 0, (L), for every x1,...,2,,
there exists I1 : {Hy,...,Hyp} Fprr K, such that Ty, .. (II) = Ty, o, (II1), for
every T1,...,Tn.

Proof: By induction on II;.

Base: Suppose, without loss of generality, that Ti: {o11,...,001} Frs 71 = o11.
Then, since Ty, o, (II;) = Ty, 2, (II1), for every z1,...,z, and 2 < j < m, the
judgement {oij,...,00;} Frs 7 proved by II; derives from axioms of the form

{o1j,...,00;} Frs o1; by a finite number of applications of the rules (AI), (AE). If
the number of (AI) instances in II; is k;—1, where k; > 1, then II; involves k; axioms

Iy : {o1j,.-.,0nj} Frso1j,-- -, My, {01j,---y0nj} Frs o1

Let Hy,...,H,,K be n+1 overlapping kits with m terminal paths pi,...,pm, such
that H? = f(0i;), KP = f(r;) (1<i<n, 1<j<m). Also, for each j € {2,...,m},
let Lyij, Laj, ..., Lnj, Lj be overlapping kits with k; terminal paths g;1,. .., g, , such
that (Li]‘)qjlj = f(aij), (Lj)qjlj = f(Ulj) (1 <e<n, 1< < k‘]‘). Then

Hilpj:=Ly; |2<j<m],..., Hulpj:=Ln; [2<j <m], K[pj:=L; [2< j < m]
are n+1 overlapping kits with 1 + ks + - - - + k,,, terminal paths p; and

P2g21 - - -5 P292k,

Pmdmi 5---5 PmQmk.,

such that, for 1 <i<n, 2<j<m, 1<; <kj:
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- (Hilpj == Li])"* = (o), (Klpj := L;])"* = f(on)
2. (Hilpj = L))" = f(oy), (Klpj = L))" = f(o1;)
So, we have (Hilp; := L))" = f(on) = (K[p; := L;])** and (Hi[p; := L))" =
flo1) = (Kpj := L;]))?%" , which imply that Hi[p; := L1;] = K[p; := L;]. Thus
I : {Hi[pj := Lyjl, ..., Halpj := Lnj1} bpre K[pj := L]

is an axiom with T, . . (I') = Ty, ... &, (II1), for every z1,...,zn. Applying (NIprz)
on a non-terminal path p; g for each (AIr;) in II; and (NE;;.) on a terminal path
pj q for each (AEj;) in II;, where s € {l,r}, we get Il : {H1,...,Hn} bprr K. It is
Toyozn (D) =Ty, g (I1) = Ty, 5, (II1), for every z1,...,an.

Inductive step: We show the most characteristic cases.

o1 : {o11,---,0n1} Fry 701 I : {o11,...,001} Frs T
° (ANILy)

II; : {Ull,---,Unl} FrLyTol ANT11 =71

Let Hy,...,H,, K be n+1 overlapping kits with m terminal paths pi,...,pm,
such that H? = f(0i;), K?" = f(r;) (1 <i<mn, 1<j<m). Then

Hilpy == [f(on1), flen)l],- .-, Halpr := [f(on1), f(on1)]], Klpr := [f(101), f(711)]]
are n—+1 overlapping kits with m+1 terminal paths pil, p17, p2, - - -, Pm, such that:

Hilpy := [f(on), fea)])"* = flon) (1 <i<n, se{l,r})

L (

2. (Hilpr := [f(on), f(o)])' = H” = f(oy;) (1<i<n, 2<j<m)
3. (
4. (

Klpr := [f(r01), f(r)])""' = f(ron), (K[p1 = [f(r01), f(r10)]])P*" = f(r11)
Klp1 := [f(101), f(m11)])PF = KPi = f(7;) (2< j < m)

Since II; is in Dy}, Ipy and II;; are in Dy and Ty, .. 2, (Ilo1) = Ty, 2, (I111) =
To....wn (II1), for every zi,...,zn. So, Io1,II41,1a,...,II, are all in D;; and
Tmh...,mn(HOl) = Tx17...7xn (Hll) = Txl,...7xn(H2) = ... = Tml,...7xn(Hm)a for every
z1,...,Tn; hence, by the IH, there exists

I {Hi[p1 == [f(on1), fo1)]], .-, Halpr := [f(on1), f(on)]]} borz Kp1 == [f(701), f(711)]]

such that Ty, .. (') = Ty, 2, (Il1), for every wz1,...,2zn. Applying (NIpL), we
get II: {Hl[p1 = f(au)] = Hl, .. .,Hn[pl = f(anl)] = Hn} '_pIL K[pl = f(TOl) n f(Tu)].
But K[pl = f(To1) mf(Tu)] = K[pl = f(To1 /\T11)] = K[pl = f(Tl)] = K, so we
get II : {Hl,...,Hn} l—p[L K. It is TEhm,In (H) = TIl,---Jn (H/) = TEl,---Jn (H()l) =
Ton....wn (II1), for every =1, ..., zn.

05 : {o11,..., 001} FLI I A T2
° vidon, o) (AELy)
I : {o11,...,0n1} FrLo T

Let Hy,...,H,, K be n+1 overlapping kits with m terminal paths pi,...,ppm,
such that H? = f(o4;), KP = f(r;) (1<i<n, 1<j<m). Then

Hi,...,H,, K[p1 = f(11 A72)]

are n+1 overlapping kits with m terminal paths p1,...,pm, such that H}? = f(oi;)
(1<i<n 1<j<m), (Klpu=f(rn Am))" = f(r Ar2) and (Klpyi= f(r A )" =
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K" = f(r;) (2 < j < m). Since Il is in D, II} is in D and Ty, ., (IT}) =
Ter,...z, (II1), for every zi,...,zn. So, II},Is,...,II,, are all in D;; and
Tov,ozon () = Toy g, (Ilz) = ... = Ty 5. (ILy,), for every z1,...,z,; hence, by
the TH, there exists

T : {Hl,. . .,Hn} Fprr K[pl = f(T1 /\TQ)] = K[pl = f(Tl) N f(Tg)]

such that Ty, . ., (II') = Ty, . 2. (I}), for every z1,...,z,. Applying (NE};.), we
get II {Hl,...,Hn} l—p[L K[pl = f(Tl)] = K with Tzh,,,,mn(H) = Tzl,...,zn(H/) =
Toy,.oen, (1) =Ty, ., (), for every z1, ..., zy.

The case of (AE},) is analogous to (AEL,).

M : {o11,...,0n1, 71} Fos 11
. (—1Iry)
II, {0’11,...,0’n1} }_L,] T{ — T{/ =T

We have that

Ta,,...;zn (1) = U A2Tey . zne (1)) = Ty, (M2) = .. = Ty, (T
for every z1,...,z,. Consequently, the judgement {o1;,...,0n;} Frzs 7 proved by II;

(2 < j < m) derives, by k; —1 (k; > 1) applications of (AI) and a finite number of
applications of (AE), from k; deductions

1 : {o1j, o y0nj} FLa T, .o ny My, : {o1j,-.-y0nj} FLJs Tik;

which, in turn, derive, by (—1I), from

H;-l Ao, ,Un]-,ijl} Frg Tjﬁl R H;-k]. Ao, ,Un]‘,‘l']{k.].} Fror T]{;c].
respectively. For each j, it is Ty, . 0, (1) = ... = Toy o, jn; ) = Ty e, (1) =
Ter,...n, (II1), for every z1,...,2n. So, the sets Ty, . . (II;) and

Loy (Mo1) 5oy Ty (Tagy)
Tmln..,zn (Hml) PR Tzl,---,zn (Hmkm)
are equal, for every z1,...,z,. For 2 < j < mand 1 <; < kj, the following implication

holds:

Tyy,.oow,(Ilh) = Toy,. 0, (jy, ), for every zi,... 2z, =9
Ty e(M7) = Ty, (), for every zi,... 20,2

So, the sets Ty, . 4..(II}) and

Tzhm,zn,z( /21) Yty Tzl,---,zmm(nékg)

Tzly"'yznyz( ;nl) sty Tzl,---,zmm( ;nkm)

9Let j = 2 and I = 1. Suppose N € Tey,oson,e(Il}). Then Az.N € XeTy, ... z,,=(I1]) C
UE(ACU-Tzl ..... zn,w(Ha)) = Toy,..pzn (Hl) = Ty, 2, (M21) = Uz()\l'Txl ..... xn,z(ngl))- So,
Ae.N € U, (A& T, ...z, ,=(I15;)), which implies that Az.N € Ay.T%,,....z,,,y (II5;), for some y dis-
tinct from z; (1 < ¢ < n). Hence, A\x.N = A\y.N’, for some N’ € Ty, . . zn,y(5) (), which
implies that * = y and N = N’, so that (x) becomes N € Ty, . z,,2(II5). This shows that
Tey,.oszn,e(M)) CTey,....en,2(I15;). The other inclusion is shown similarly.



3.6 IL and the part of LJ decoratable by d-. ol

are equal, for every z1,..., 2., .

Let Hy,...,H,, K be n+1 overlapping kits with m terminal paths pi,...,pm,
such that H? = f(oi), KP = f(rj) (1 < i < n, 1 < j < m). Also, for each
j €{2,...,m}, let Lij, Laj, ..., Lnj, Lj, L;, LY be overlapping kits with k; terminal
paths gj1,...,qjk;, such that (Li;)" = f(oy), (L))" = f(ry;), (L))" = f(r),,)
and (L})¥% = f(rj;,) (1 <i<n, 1<1; <kj). Then

Hilpj:= Lyj],..., Hulpj = Ln;], Klp1:= f(r1),p;:= L], K[pr:= f(r1'),pj := Lj]

are n+2 overlapping kits with 1+ k3 + - - - + k,,, terminal paths p; and

DP2q21 ... 5 P2Q2ks

Pmdm1 - -5 PmQmk.,,
such that, for 1 <i<n, 2<j<m, 1< <k;:
L. (Hilpj := Li;])"* = f(oi1)
2. (Kpy = f(r1),p; = L;])"* = f(r1), (K[p1 == f(r1),p; := Lj]))™ = f(r1)
3. (Hilpj = L))" = f(oi;)
4. (K[pu=f(rl),p; ==L "% = f(7),,), (Kpu=f(r{"),p;:=L{)" %" = f(r],)
The analysis so far implies that, by the IH, there exists
s {Hi[pj:= Lujl, ..., Hal[pj = Luj], Kpr:= f(11),p;:= Ljl} bprr K[p1:= f(r]'),p;:= Lf]

such that Ty, 4, 2(Il') = Ty, 4. o (II}), for every x1,...,2n, 2. Applying (— Iprz),
we get Il : {H1[p]‘ = Llj],...,Hn[pj = Lnj]} }—I,]L K[pj = Lj] with Txl,...7xn (HQ) =
Ton....wn, (I11), for every z1,...,z, (the details are as in the (—1I) case in the proof of
theorem 3.4.1). Then, applying (NI,;z) on a non-terminal path p; g for each (AILs)
in II; and (NE;;;) on a terminal path p; ¢ for each (AE7;) in II;, where s € {I,r},
we get IT: {Hy,...,Hp} bprp K. I6ds Ty o (1) =Ty, 0 (o) = Ty, (T11), for
every Ti,...,Tn-

In a similar manner, we tackle the case of (— Ers). The details are left to the
reader. —

Remark 3.6.5 The n+1 overlapping kits Hy, ..., H,, K of theorem 3.6.4 can be of
any kit-structure corresponding to m terminal paths (with leaves as required). For
example, there are 14 different kit-structures corresponding to 5 terminal paths.

[lloyol, 0,01, 0] [llo, [0, 0]],0],0] [llo,0],]0,0]],0]
llo,0],01,[0,0]] [0, [lo,0],0]],0] [lo,]0, [0, 0]]], 0]
([0 [0, 0]l [0y 0]] - lo, 0l [[0y 0], 0]] ([0, 0], [0, [0, o]
[0, ([0, 0], [0, 0] 0,0, ([0, 01, 0]]] 0,0, 0, [0, o]

[0, [llo,0l,0],01] [0, [0 [0, 0]], 7]
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Example 3.6.6 Let 0 = p; Avy Aw;y and 7 = pa A vg A ws. Deductions
Oy :{o}Frrsvr —p1 T {7} Frs (w2 — v2) A(p2 — w2)
(shown decorated!? by d—. on page 53) are such that
T.(II;) = T, (Ils) = { \y.(Az.2)y | y, z distinct variables # z }

for every z. Let 0’ = f(0) = f(p1) N f(v1) N f(w1) =piNuiNwi and 77 = f(1) =
flp2)Nf(v2)Nf(w2) = phNvyNwh. We will roughly describe an algorithmic procedure,
called the simulation algorithm, for the construction of

IL: [of,7'] Fprr [V] — P, (wy — vy) N (ph — wh)]

(on page 54), whose ezxistence is proved in theorem 3.6.4.

We construct IT bottom-up. As the theorem states, its conclusion is (J;) with kits
of the form [—, —]. The leaves at path [ (r) are generated by formulas in II;’s (IIy’s)
conclusion via the function f. Rule (AT)! imposes a wedge (A) at path r of the kits in
(J1), so that premise (.J2), which gives (J1) by application of a (NI) rule, includes kits
of the form [—,[—, —]]. The leaves at path 7l (rr) are generated by formulas in IIsy’s
(ITg;1’s) conclusion via the function f. Conjunction—in formulas and rules—is con-
verted to intersection. Rules (—1I)*, (—1I)? and (—I)? translate to a single (— I) rule
with premise the judgement (J3). Rule (AE)' induces a (NE) rule on path [, while
(AE)? induces a (NE) rule on path rl. These (NE) rules can appear in any order;
different orders correspond to equivalent pIL-deductions, but, since we are actually
trying to create a class of equivalent pIL-deductions, i.e. an IL-deduction, which can
be identified with any of its members, any order of the two (NE) rules is acceptable.
The doubleline (NE) with premise (.J4) summarizes the two (NE) rules brought about
by (AE)' and (AE)?. Rules (—E)', (— E)? and (— E)® condense to a single (— E) rule
with premises (J5) and (Jg). The fact that T, (II;) = T, (Il2), for every z, secures that
(Js) is a pIL-axiom. It joins together axioms {vi,0} Frs v1 of II1 and {r, w2} Frs wo,
{r,p2} Frs p2 of TIs. Rules (— I)*,(—I)® and (— I)® disguise in a single (— I) rule
with premise (.J7). Rules (AI)? and (AI)? impose wedges at paths [ and rl of the kits
in (J7), respectively, so that premise (.Jy), which gives (.J7) by application of two (NI)
rules (one on path [ and one on rl), involves kits of the form [[—, -], [[-, —],—]]. The
leaves at path Il (Ir,rll,rlr) are generated by formulas in II1¢’s (IT11’s, 200’s, [I201s)
conclusion using f. The two (NI) rules in question can be interchanged for rea-
sons already cited. Finally, the two (AE) rules denoted (AE)® induce two (NE) rules
on path I, rule (AE)* induces a (NE) rule on path Ir, the two (AE) rules denoted
(AE)® induce two (NE) rules on path 7il and rules (AE)S, (AE)” induce a (NE) rule
each on paths rlr and rr, respectively. The doubleline (NE) with premise (Jio)
sums up the seven (NE) rules brought about by (AE)® — (AE)”. The order in which
these seven (NE) rules can occur is not unique. Judgement (.Jip) is a pIL-axiom
for the same reason that (Jg) is; it groups together axioms {vi,vi,o} Frs o (1),
{vi,v1,0} Fry o (2) of 111, {w2,7yw2} Frs 7 (1), {we2,Tyw2} Frs 7 (2) of Iy and
{7, p2,p2} Frs 7 of Ila;. The construction of a member II of the equivalence class
o, ') Frr vl — ph, (wh — vh) N (ph — wh)] is now completed. It is T, (7)) = T, (II) =
T.(I1), for every z.

Deductions IT; and Il satisfy the set equality, i.e. T,(I11) = T,(Il), for every x.
This implies that:

10We start by decorating the conclusion context and move contextwise to the top. When we reach
axioms, the decoration passes to the right of - and then descends to the conclusion.
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(AE)? (AE)4
Mo :{y:vi,z:v1,z:0} by x:p1 i {y:vi,z:v1,2:0} Fry z:w )
(AI)

{y:vi,z:v,z:o0t={y:v,z:0}U{z:v1}brsz:pi Awr .
(—1)
{y:vi,z:0} Ly Az :v1 — p1 Aws {y:vi,z:0}bLyy:v .
—E
{y:vi,z:0}bFrs (A\z.x)y: p1 Awr .
AE
{y:vi,z:o0}={z:0}U{y:vi} s (Az.x)y: p1 !

I : {z : o} Frs Ay.(Az.x)y : v1 — p1

{z' two,x: 7y cwat by (1) (AB)S {Ztwo, 1y cwotbrsx:T (2) .
(AE)

Moo : {2t wo, @ : 7,y s wo} bry i ve Moot : {2" two,x 7y twol brg @ :ws Dy

AI)

{ztwo,z iy twel ={z:7y 1wt U{2 twa} by x:va Aws oy
I
{7,y twe} brg A 2 i wa — v2 Awe {z:my twel by we Comy?
—E
{71y two} by (N 2)y : va Awa
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{e:my cw={w:7}U{y twa} by N .x)y : vo

(—n?
Moo : {z: 7} brs Ay . (A 2)y w2 — v

{z:my" i p2, 2" ipay by T

(AB)”
{z:my" i p2, 2" ipa}={z: 1,y :p2} U{Z" 1 p2} by o :wo .
{1y i p2ybog A"z pa — wo {e:my" i p2y s y” : pa N
{z:my" ip2} ={z:7U{y" : p2} bFrs (A2".2)y" : wo .
(=1)
Moy : {x : 7} Frs Ay (A" 2)y" : pa — w2
Iz (N (A2 )y =a My (A" 2)y") Mo o
N

Mo : {z: 7} Frs Ay’ (A" 2)y : (w2 — v2) A (p2 — w2)
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(i) They bear the same sequence of implicative rules (— I,— E,— I) modulo rep-
etitions due to (AI) rules (see II3)!!, which is a necessary condition for their union
in a single pIL-deduction'?. Since implicative pIL-rules are global, in order for two
LJ-deductions IT; and Il in D7, to mate in kits of a pIL-deduction II, it is necessary
that they grow identically with respect to implication, i.e. that they bear the same
sequence (R, ..., R,) of implicative rules, repetitions put aside. If they do, then their
implicative rules can be gathered in n groups G1,...,G,, so that, for each i, group G;
contains rules of the same kind (introduction or elimination) which all correspond to
R;. The rules of each such group merge to a single implicative rule of the group’s kind
in I1, which then bears (Ry, ..., R,) without repetitions!®>. On the contrary, as far as
conjunctive rules are concerned, the two deductions are allowed to evolve separately;
this is because the image of conjunction in pIL, i.e. intersection, functions locally. If
II; is settled at path [ in II’s conclusion and Iy at path r and if conjunction C in
II; transforms to intersection I in II, then I is applied on a path lq. Consequently,
it doesn’t at all affect leaves originating from Ils, which occupy paths of the form rq.
A similar argument holds for a C5 in II; transforming to I in II.

(ii) Judgements of the two deductions in the same group, i.e. that are to be joined
together to form a single judgement of I1, have the same context cardinality, which is
also the context cardinality of the pIL-judgement formed.

(iii) Azioms of the two deductions in the same group are decorated by corresponding
variables, which secures that the algorithmic procedure adopted for the creation of IT
winds up to pIL-axioms. For example, axioms {v1,0} Fry v1 of 11y and {r,w2} Frs wa,
{r,p2} Frs p2 of Ily are decorated by y,y’,y”, respectively, i.e. by corresponding
variables, which is responsible for the fact that [vi,[w3,p5]] is one of the kits in
the set {[o’,[r, 7], [v], w3, p3]] }, so that (Js) is a plL-axiom. To make this point
more intelligible, consider I} : {¢} Fr; v1i — p1 (shown decorated by d— on page
54) in place of II;, where ¢ is as in II;, and suppose we try to construct a plL-
deduction II from IT; and II, following the simulation algorithm. It is 7, (I1}) =
{\y.(A\z.z)x | y,z distinct variables # z} # T,(Il2), for every z, so II} and IIy
do not satisfy the set equality, although they (i) bear the same (modulo repeti-
tions) sequence of implicative rules (— I,— E,— I) and (ii) have the same context
cardinality in judgements to be grouped together. Hence, conditions (i) and (ii)
are not sufficient for the set equality to hold; we also need to have condition (iii).
Indeed, the point where IIf and IIy differ, a difference which implies the inequal-
ity of T,,(I}) and T,(Il2), is the decoration of axiom {vi,¢} Frs o on one hand
and axioms {r,w2} trs w2 and {7, p2} Frs p2 on the other by non-corresponding
variables (z doesn’t correspond to y’ or y”). Consequently, we see (on page 54)
that the construction of II reaches rule (NE)* and stops, since (.J)—which is ex-
pected to gather the three LJ-axioms in one—is not a pIL-axiom. Nevertheless, since
axioms {Ul,vl,a} }—LJ o (1), {vl,vl,a} l_LJ o (2) Of Hll and {LL)Q,T,LL)Q} l_LJ T (1),
{wa, Tywa} Fry 7 (2), {7, p2,p2} Frs 7 of Ily are decorated by corresponding—in fact
by identical—variables (all by z), if we continued the algorithm to the direction of the
arrow, we would reach a pIL-axiom, namely (Jig9). So, one might argue that, since

1 Observing Il2, we see that the whole implicative sequence (— I, — E, — I) is repeated in IIzg and
TI21 due to rule (AI)', which has no implicative rules beneath it. It can also happen, though, that
parts of the implicative sequence are repeated due to (AI) rules in between implicative ones.

I2This condition is not sufficient, as we shall soon ascertain (see (iii) of this example).

L3For the particular IT; and TI2 of our example, it is n =3, (R1, Re,R3) = (—1,— E,—1I) (bot-
tom to top) and group G; contains (—I)*, (—1I)?,(—I)3, group G2 contains (— E)!, (— E)?, (— E)?,
group G3 contains (—I)*, (—1)%, (—I).
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judgement (J') is a pIL-axiom, the construction of II could stop at (.J') as far as the
right column before (— E) is concerned. This is not correct, though, as theorem 3.6.4
requires that T, (IT) = T, (I1}) = T,(Ily), for every x. The fact that T, (I1}) # T,(Il2),
for every x, zeroes the chances of constructing a II joining them according to 3.6.4.
Given II; and I, the simulation algorithm constructs a unique equivalence class
7, which is P-normal. Obviously, we can construct many different individual members
of 7, but the construction of any such member is actually seen as the construction of .

Theorem 3.6.4 can now be restated as follows:

Theorem 3.6.7 (Inverse projection theorem for IL) Let n >0, m > 1,

Iy :{o11,-..yon} Frg m,Hoc{owe, o cyonet bFog 7o, I i {01m, oo Onm } P T

and Hy,...,H,, K be n+1 overlapping kits with m terminal paths p1,...,pm, sSuch
that HY? = f(oi;), KPi = f(r;) 1 <i<n, 1<j<m). If Iy,...,1L,, are all in
Diy and Ty, 2, (1) = Tyy, 0, (Ile) = ... = Ty, 5, (L), for every x1,...,%y,
there exists a unique equivalence class w : {Hy,...,H,} b1, K, which is P-normal
and such that Ty, .. (%) =Ty, .. 2. (II1), for every xy,...,x,.

Corollary 3.6.8 For every Il : {o1,...,0,} Fry T in Dy, there exists a unique
equivalence class 11° : {f(01),..., f(on)} F1r f(7), which is P-normal and such that
Tev,..zn (%) = Toy,....zn (IT), for every x1,...,&p.

Proof: Apply theorem 3.6.7 for m = 1. —

Definition 3.6.9 Let I1: {o1,...,0,} Frj T belong to D; ;. The P-normal, proper
IL-deduction TI° : {f(01),..., f(on)} Frr f(T) which copies I1 in IL will be called the
IL-duplicate of II.

Given II, the class II° is obtained using the simulation algorithm. We give an
example of simulation in IL of a single LJ-deduction decoratable non-standardly.
Ccompare this to example 3.6.6 where we simulated in IL a pair of LJ-deductions
decoratable non-standardly by the same A-term.

Example 3.6.10 Let 0 = a A 8 Ay with a,8 and  propositional variables. De-
ductions II; : ¢ by a — B, Iy : 0 Fpg B — aand I3 : 0 Fry v — «
(on page 57) are isomorphic with respect to d— and combine under (AI) to give
M:obry(a@— B)A(B— a)A(y— a) (on page 58), which is decoratable by d— and
simulated in IL by II° : f(o) =7 Frr (@ — B)N (B — a) N (y — a) (on page 58). It
is T,(I) = T,(I1°) = { \y.(A\z.(\u.2)y) ((Aw.z)y) | y, 2z, u, w distinct variables # x },
for every z.

So far, we have that for every P-normal, proper IL-deduction 7, there is a unique
projection 7€ in D7, such that the set (term) equality holds. Given 7, we choose a
pIL-deduction II in 7 and apply the projection algorithm to obtain II¢ = €. Also,
for every LJ-deduction II in D77, there is a unique duplicate I1° in Df 17, such that
the set (term) equality holds. Given II, the class II° is attained using the simulation
algorithm.

From the examples described, it is easy to see that projecting and simulating are

inverse procedures between the sets Dan ? and D7’;. This means that for every « in

DEMP it is (7€)° = 7 and for every I in Dy, it is (I1%)¢ = I1.
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. . . P
We can now demonstrate the existence of a bijection between D;;"* and D7;.

Theorem 3.6.11 There exists a bijection between the sets D1/ and Dy;. The
corresponding deductions share the same implicative structure.

Proof sketch: As already discussed, € : Dj/"P — D7, defined as e(r) = 7¢ is a
function, such that argument and image share the same implicative structure. Since,
for any II in D7, there is a unique II° in DfL”’p, such that €(I1°) = (I1°)¢ =11, € is
one-to-one and onto, i.e. a bijection. —

By inference, we can say that IL expresses the part of LJ decoratable by d-.
That’s why it is indeed appropriate for the logical foundation of IT. Since this part
of LJ comprises a proper subset of LJ, we are addressing a proper embedding of IL
in LJ.

3.7 IL and IT

In this section, we show the relation betweem pIL and the intersection-types system
IT, namely the way to attain IT-deductions from pIL-deductions and vice versa.
Then, we derive the connection between IL and IT deductions, which establishes IL’s
appropriateness for the logical foundation of IT.

Theorem 3.7.1 (pIL and IT) (i) If I1: {H.,...,Hpy} Fprr K, the terminal paths

of K are p1,...,pn andHf"za;-, KPi=1(1<j<m, 1<i<n), then

{00, a2 Ufn} Frr Toq,.own, (1D = 7
for every i € {1,...,n} and every sequence x1,...,Ty of distinct variables. So, for
a proper deduction II: {o1,...,0m} Fprr T, we have that

{z1:01,. ., 2m i om} brr Toq,o, (1) o T
for every x1,...,xp,.

(i) Suppose that x1, ..., Ty is a fived, but arbitrary sequence of distinct variables.

If, for everyi € {1,...,n}, I : {xy : 0%, ..., & 0t} brr M i1 and Hy, ..., Hpy, K
are m + 1 overlapping kits with n terminal paths p1,...,pn, such that Hf = oj

and KPi=1; (1< j<m, 1<i<n), then there exists
11 : {Hl,...,Hm} Fp[L K

such that Ty, . ., (I1) = M. So, if Iy : {z1 : 0},...,2m : oL} Frr M : 71, then
there exists I1: {0}, ..., 0L} Fprr 71, such that Ty, . . (II) = M.

Proof: (i) By theorem 3.4.1, for every i € {1,...,n}, we have that
I < {e(o), . e(0h)} Frs e(m)

isin Dy’ and such that Ty, .. ., (II?") = Ty, ... 5, (II), for every z4,. .. ,Tm ™. So, for
every i € {1,...,n}, we have, by theorem 2.6.2, that

{w1: f(e(01)s s 2m : fe(0m)} Frr Toy oy (IF79) ¢ fle(m3))

MFor convenience, we identify a-equivalent M-terms, so we consider Tg,
zm (IT) to be A-terms, for every z1,...,Zm.

zm (ITP7) and

.....

.....



60 Chapter 3: Intersection Logic (IL)

for every x1,...,%y,. Hence, for every i € {1,...,n} and every zi,...,2p, it is
{z1:0%,...,2m :0b} Fir Ty (I1) 1 74, as Tequired.
(ii) By theorem 2.6.3, if we apply the erasing function E on II;, we get

E(IL) : {e(o}),...,e(0h)} Frre(r)

which is in Dy’ and such that T, . ., (E(Il;)) = M. So, we have n LJ-deductions
E(L),...,E(Il,) in Dy, such that T, . ., (E(IL)) = ... =Ty, ... 2, (E(Il,)), for
an arbitrary zi,...,2,,. We also have m + 1 overlapping kits Hy, ..., H,,, K with
n terminal paths pi,...,p,, such that Hf = U; = f(e(aj.)), K?i =1, = f(e(ry))
(1 <j<m,1<i<n). Then, by theorem 3.6.4, there exists I1: {H1,...,Hp} Fprr K,

such that Ty, .. », (1) =Ty, 2. (B(I1)) = M. —

Corollary 3.7.2 (IL and IT) (i) For every proper = : {01,...,0m} Fr11 T, there
exists I1: {x1 1 01, ..., &m o} brr Ty, (W) 0 T, for every xi,..., Tm,,.
(i) If z1,..., 2Ty is fized, but arbitrary, for every

O:{z1:01,..c,@m:omtbr M T
there exists m: {o1,...,0m} 1 T, such that Ty, . .. (7m) =M.

Proof: (i) By considering a II in the class 7 and applying theorem 3.7.1(i). Recall
that, for every Il in 7, it is Ty, ., () =Ty, . 4. (7).

(ii) By theorem 3.7.1(ii), there exists II' : {o1,...,0m} Fprz 7, such that
Tov,n, ') = M. But II' belongs to a class = : {o1,...,0m} Fprr 7 with
To,ooyp (1) = Ty .o (IT). =

The transition from IT to pIL-deductions, stated by theorem 3.7.1, allows to derive
for free the property of strong normalization of A-terms typable in IT (one direction
of theorem 2.5.7).

Theorem 3.7.3 Let M € A. If M is typable in IT, then M is strongly normalizable
with respect to B-reduction.

Proof: Suppose M is typable in IT, i.e. there exists
My : {z1:01,-. s Zm iom}FIr M : 0

By theorem 3.7.1(ii), IIp can be embedded in pIL to get IIj : {o1,...,0m} Fprr 0,
such that Ty, .. (II[) = M. Any redex of M corresponds to a —-redex in IIj,. If
M —p My, there exists II1 : {x1 : 01,...,Zm : o} Frr My @ 0 (see [Kr93], p. 50).
Deduction II; is embedded in II} : {o1,...,0m} Fprr o, which is such that
IT}, <, II}, where <, denotes a finite number of pIL normalization steps that include
exactly one —_,-step. Suppose now that M is not strongly normalizable, i.e. that
there exists an infinite sequence of S-reductions starting from M.

MEMOHBM1—>3M2—>B...

The IT-deductions IIg, 1,115, ..., which assign type o to My, M1, M, ..., respec-
tively, are embedded in the pIL-deductions Iy, IT},115,. .., respectively, which are
such that

Iy <, I} =, I <, ...

But then IIj is not strongly normalizable, which contradicts theorem 3.5.14. —
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Example 3.7.4 Deduction Il of example 2.4.5 is an IT-deduction typing the term
M = (Az.zz)\x.x. Let us call it IIy for the purpose of this example. It is
M —p5 My = (Az.z) \v.x —5 My = Az.z. We show 11§, IT;, T}, II; and II below.

ThprL T ThpriL T
(nEY) (NE™)
Thprr (@ —a) »a—« Tl—p1La—>a( . [a — a, a]bprr [ — a, q 0
Thpir @ — « Fprir [(@ @) > a— a, a— q]
—  (~D) (nI)
I—prTHaHoz l—p[LT
(—E)

Hé:}—ijOz—)a

{r:a—alttmrza—a n {r:a}tirz:a n
. T
Fir dzx: (e —a) > a—a Firdrx:a— « -
I : b (Azz) Mz — «
{a — a} bprr a — n {a} bprr a n
Fprz (@ — @) 5> a— « Fpr @ — a B
I} bprr o — «

r:atbmrr:a at by «

{ Y Fir n fa} (=1)
IL:Fr dex:a— « I : Fprr @ —

Note that II} derives from IIj by one —_,-step, two < n-steps and four — p-steps,
while IT derives from IIj by one —_.-step. The term Az.z is in normal form and II}
is normal. The procedure stops there.
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Chapter 4

Intersection Synchronous Logic

(ISL)

4.1 Definition of ISL

In this section, we present the logical system ISL as defined by E. Pimentel in [PRO05].
It is given including three connectives: implication, intersection and conjunction. We
define its basic building blocks (atoms, molecules) and exhibit its deductive rules.
We then restrict it to implication and intersection and display a decoration of its
deductions with untyped A-terms that encode the implication only.

Definition 4.1.1 (ISL) (i) The set of formulas Frsr, of ISL is generated by the
grammar: ¢ s==«a |0 — o |oNo | o Ao, where a belongs to a denumerable set of
propositional variables.

(ii) An atom is a pair (I';o), where the ISL-context I' is a finite sequence of
formulas and o is a formula.

(#4i) A molecule is a finite multiset of atoms, such that the contexts in all atoms
have the same cardinality; [Ai,..., A,] denotes a molecule consisting of the atoms
Ai, ..., An. Letters M, N will range over molecules.

(iv) The logical system ISL derives molecules. Its rules are shown in Figure 4.1.
Writing 11 : M means that the ISL-deduction II concludes by proving M. Writing
Frsp M denotes the existence of an ISL-deduction 11 : M.

Remark 4.1.2 (i) Formulas of ISL are formulas (types) of Llr, i.e. Frsr, = Frjp-
(ii) In the rule (Prsr), U is the multiset union. (iii) The rules (— I),(— E) and
(AI), (AE) are global rules, in the sense that they affect all the atoms of the involved
molecules, while (NI), (NE) are local, since they modify only particular atoms of the
premise.

Example 4.1.3 Let p = a — a, 0 = (p = p)Apand 7 = (p — p)Np. The

LJr-deductions II; and II; of example 2.4.4 can be developed inside ISL as IT; and
II,, respectively, without the need of A-terms.

63
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Arst —— (Prse
[(Ui§0'i)|1§i§n]( st) v (Prsr)

Fi;ai 1§i§n Fi,Ti, i,Fi;O'i 1§z§n
Cio) | 1ism (0 (e Tion) | L xren)
[(Ts,7i509) | L < i < n [(T{, pi,7i,T3500) | 1 <i < mj
Diyoun) | 1<i<n
[( ) | ] (= Irsp)
[(Tiy;06 — 1) | 1 <i<n]
[(Ti;0i — 1) | 1 <i<n] [(Ti;04) |1 <i<mn]
(—Erst)

(Tim) | 1<i<n]

MU [([s0), (T;7)] (rs) MU[(T;01N0)]

E? Ly S l,?"
MU0 N7)] MU [(T;04)] (NBise, = € {hr})

[(Ts;00) [1<i<n]  [(Tsm) [1<i<n]
[(Ti;00 AT) | 1 <i<n

[(CisoiAmi) [1<i<n] (AElgp) [(CisoiAmi) [1<i<n]
[(Ti;00) | 1 <i <] [(Ts;7) | 1<i<n]

(AEfsp)

Figure 4.1: The rules of ISL.
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1G3:0) E (CT.)) IS
[(o5p = p)] (ip)] (072) P (C712)) B
(CAT0) [(@;p — p)] (@0
[(0; 0 — p)] (@],
Iy : [(0; p)]
(Ga%0) I (G 5.0) B,
[(r:p = p)] (rip)l o p) (5]
(i)l [(@:p—p), @ip)]
[(0;7 — p)] (@
Iz : [(0; p)]

Let us now restrict ISL to — and Nn. We follow [PRO5] in presenting a non-
standard decoration of ISL-deductions, denoted sd— in this thesis, which encodes the

implicative rules only. This decoration will be used in the following sections to relate
ISL with LJ and IT.

Definition 4.1.4 (sd—: non-standard decoration of ISL) (i) Consider an ISL-

context I' = o01,...,0,. A decoration (I')® of T' with respect to a sequence s =
T1,---,Tm of distinct \-variables is a sequence of assignments T1 :01,...,Tm : Opm-
(i) Every II : M = [(0%,...,08;7) | 1 < i < n] can be associated through an

inductive algorithm to a decorated deduction
Fisn Mo,z (D) 0 (M)ay e, = [(71 Ui, sy Tt U'fn;Ti) |1<i<n]

assigning the decorated molecule (M)s = [((T';)%;7) | 1 < i < n] to the A-term M,(II)

in A, where T; = ot,... 0l and s = x1,...,Ty is a sequence of distinct variables.
° - (Arsn) = - (ATsz)

IT: [(o4500)|1<i<n Frer @ [(x:05504) |1 <i<n]

and M,(Il) =z

(Wrse) =

Fise Ms(Ily) < [(T9)%509) [1<i<n] x¢s
Fist Ms,m(H) = Ms(Hl) : [((Fi)s,iﬁ : Ti;a'i) | 1<i< n]

Wrst)

i < nj

I : FiaTi; iari;gi 1
1 (T pi; I5;04) | (Xrsp) =
1

II: [(Fﬁapza}rzaréﬂjl) |

VAN

<
<i<n

s My ye,s, () 2 (D)), y 0,20 s, (T5)%2509) |
FIsc M517I7y782(H) : [((Fé)hax PiY T, (Fé)sz;o—i) |

where MS1,z,y,52 (H) = MShy,z,Sz (Hl)'
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I : [(Ty,045m) | 1
II: [(Ti;0; — 1) | 1

1 <n
.\ ] (—=IrsL) =

<
<i<nj

]

n
<i<n

(=1Iisr)

Fist MS,I(HI) : [((F,)S,J; 105 ;Ti) | I<i<
FIsc MS(H) = )‘I-Ms,z(Hl) : [((Fi)s;gi - Ti) | 1

I : [Ti;0i — 1) | 1< i< n Iy : [(Ty504) |1 < i< nj
° (—Ersy) =
IL: [T ) [ 1< i< nf
Frse Mt [(T3)%5 00 = 1) [ 1< <n] kg, Mo [((T9)°%504) | 1 <d < B
—Lrst
Frsp Ms(IT) = My My - [((T3)%;m) | 1 < i <nj
where My = My(I11) and My = M(Ily).
: I Ms II : s
° 7111 M (Rrsr) = Mist ( 1) (Ml) (Risz)
IT: M2 Fist Ms(H) = MS(Hl) : (MQ)S

where R € {(P),(NI),(NE"), (NE")}.

4.2 1ISL and LJ

In this section, we work with ISL[{—,Nn}. We survey the relation between ISL-
deductions and LJ-deductions in D7’;. ISL, as IL, is defined to realize the part
of LJ decoratable by d-.

Remark 4.2.1 Let II : {01,...,0m} Frs 7 be a LJ-deduction in D;’;. Then II
can be decorated by d— to give IT* : {z1 : 01,...,Zm : Om} Fiy Toy, e (II) & T,
where, for every sequence z1,...,%, of distinct variables, T,, . .. (II) is a set of
a-equivalent A-terms. In what follows, though, we identify a-equivalent A-terms, so
that T, .. .. (I) is a A-term, for every x1,...,Zm.

Theorem 4.2.2 (From ISL to LJ) Let I1 : M = [(o},...,0l;7) |1 < i < nl.
For every i € {1,...,n}, we have that 1I* : {e(c}),... e(0,)} Frs e(r;) is a LJ-
deduction in D7y, such that Tm17___7xm(Hi) = My, 2. (I), for every sequence of
distinct variables x1,...,Tn,.

Proof: By induction on II.

Base: For IT: M = [(1;;73) | 1 <i < n] an ISL-axiom and i € {1,...,n}, we have
that I : {e(r;)} Frs e(r;) is an axiom of LJ—hence in Dy;—with T,(II') = z =
M, (IT), for every .

Inductive step: We examine all ISL-rules.

Oy : (o, 00 m) [1<i<n]U[(of,...,00;m) | n+1<i<ntk]
. ; : (Prst)
II: [(of,...,00m;7) | 1 <i<nj

By the IH, for every i € {1,...,n + k}, we have that

I} : {e(o}),...,e(oh)} Frse(m)
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is a LJ-deduction in Dr7, such that Ty, .. (II1) = M, .. (1), for every
z1,...,Tn. Hence, the same holds for every i € {1,...,n}. But then II} = II*
and Ty, .. o, (T1) = Ty, . (IT*). We also have that M,, . (II;)= M,, . (1)
and the required result follows.

e Tom, T

I : [(of,...,0l;m)|1<i<n
° 1 [( 1 ) l)l ] (WISL)

II: [(01770';17pla7-l)|1<1<n]

By the IH, for every i € {1,...,n}, we have that
I - {e(oi), ey e(afn)} Frye(m)

is a LJ-deduction in D77, such that Ty, .. (IIY) = M., .. (IL1), for every
z1,...,Zm. By the weakening property for LJ (see proposition 2.1.3), for every formula
e(pi), there exists IT' : {e(a?),...,e(0l,),e(pi)} Frs e(r:i). Since II¢ is in D77, II°
is in D7y and furthermore Torooeyy e (V) = Ty o (1), for every z1,...,2, and
every z ¢ x1,..., 2. Hence, it is Ty, 2 o (I10) = My, . e (L) = My, 4, (1),
for every z1,...,Zm,z.

II; : [(ai,...,oin,n,pi,vi',...,vli;wi) |1<i<n]
o . . - : (Xrsz)
IT: [(0%,. -, Om, Pis Ti, UL, .-, Vf;wi) | 1 <4 < nj

By the IH, for every i € {1,...,n}, we have that
I : {e(01),- -, e(om), e(ri), e(pi), e(v), - - e(vi)} Fra e(w:)

is a LJ-deduction in D7, 8.t. Toy,..om,p,2,01,0 0 (Hll) = Moy, vm,p,zy1,m (111, for
every (z1,... STy Yy Ty Y1, ,yl). But {g(ai), e e(aﬁn), e(ti),e(pi),e(vi),..., e(v,’)} =
{e(cl),...,e(om), e(pi)., e(ri),e(vl),...,e(v))}, 80 IIY =" and Ty, avn oy n,.. T =
Tzl,...,zm,y,z,yl,...,yl (Hﬁ) = le,...,zm,y,z,yl,...,yl (Hl) = Mﬂ”l,---vmm,z,y,yl,---,yz (H), fOI‘ every
(T1y ey Ty Ty Yy Y1y e -+, YI) -

Iy : [(01,...,00m,Ti;pi) | 1 <i < nj
°
<

W ((o, . o — pi) | 1

(—1Irst)
i < nj

By the IH, for every i € {1,...,n}, we have that

I} : {e(01), ... e(om), e(mi)} Frs e(p:)

is a LJ-deduction in D77, such that Tovioea(8) = My, o, (1), for every
T1,...,&m, . Applying (—1Ir;) on II}, we get

' : {e(01), .-, e(om)} Frae(s) — e(pi) = e(ri — pi)

which is in D77, since I1} is in D7 and II' results from II{ by (—I). We also have
that Ty, e (1) = X2 Ty, oo o (IE) = Ao My, o (L) = My, ., (I1), for
every &i,...,Zm.

Oy [(of,...,00m —p)|1<i<n] Ta:[(o},...,00:7)|1<i<n]
b - . (—ErsL)
Tt (ol ohip) 1< i <]

By the IH, for every i € {1,...,n}, we have that

I} : {e(o}),...,e(om)} Frye(ri — pi) = e(ri) — e(ps)
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I : {e(o1), ..., e(om)} Frse(ri)

are LJ-deductions in Dy, such that Toyoowe,, M) = M, .. (II1) and
Toy..oe, I5) = My, .. (Ily), for every zi1,...,2m. Applying (— Er;) on IIi, 113,
we get

' : {e(01),. .., e(om)} Frse(pi)

which is in D}, since I}, IT} are in D}, and II results from them by (— E). We also
have Toy, o, (I1) = Toy, o (1) Tay, 0, () = Moy, o, ()M, o, (T2) =

Mgy, ... 2. (I), for every z1,...,Tm.
s T l(oh o) [10 € ][0 i) o} oo )]
O:[(of,...,00;m) | 1<i<nU[(e?™, . . . ot Tngt N Toyo))

By the IH, for every i € {1,...,n}, we have that
I : {e(al),...,e(0h)} Frse(r:)

is a LJ-deduction in D77, such that Toy.ooe,, M) = My, ., (II}), for every
T1,...,Tm. We also have that

I {e(o?™), .. e(om™)} Frs e(tayr)
72 {e(o?™), . e(om™)) Frg e(tnyz)
are LJ-deductions in D%, such that T, .. (I} = M, .. () =
Ty, (II7T2), for every a, ... y Tm - , ) )
So, for every i € {1,...,n}, II' = IIj and Ty, ., (II') = T, (1) =
Moy ..., (II1) = My, ... ... (IT), for every zi1,...,Zm.

Applying (AIry) on I TI7H2 | we get
I {e(of ™), e(om™)} Frs e(tain) Ae(Tni2) = e(Tni1 N Tnia)

which is in Dy, since TI} ™ TI7 Y2 arein Dy and Ty, o, (T = Ty, (1_1171”2 ,
for every zi,...,%Zm. Furthermore, Ty, . (I""Y) = T, . (7T =
My, pn (1) = My, ., (II), for every z1,...,2m.

II; : [(Ji,...,afn;n) |[1<i<n]U [(U?Jrl, .. .,Jl‘n+1;T,lL+1 NTpi1)]

. : : (NEfsr,s € {l,r})
O:[(of,...,0bm) |1 <i<n]U(er™, .. onttimi )
For i € {1,...,n}, we work as in the case of (NI;sr).

By the IH, we have that
M e(of™), .. e(om™) Y Frse(thir NTaey) = e(mhsy) Ae(ray)
is a LJ-deduction in D77, such that Ty, .. (') = M., .. (1)), for every
Z1,...,%m. Applying (AE%;) on TITT we get

mrt {e(aihq), e e(a,’ffl)} Frse(mnil)

which is in D77, since TI7*! is in D7, and " follows from it by (AE). Tt
is Ty, o, (Y = T, (Y = My, (TL) = M,, . (ID), for every

T1,..., Tm- —

»Tm Tm Tm
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Theorem 4.2.3 (From LJ to ISL) Let m >0, n > 1 and

Oy:{o11, - omi} Frg Mo {one, oy oma} Frg 2, oo {010, -, Omn} Fra T

be LJ-deductions in Dy, such that Ty, .. (IL) = Ty, .. () = ... =
Toy,....zm (), for every x1,...,&m. Then, there exists

I [(f(o11), -5 fom1); f(11))s s (F(o1n)s - F(Omn); f(Tn))]

such that My, . &, (II) =Ty, 2. (1), for every x1,...,&m.

Proof: By induction on II;. For convenience, we prove the case with two LJ-
deductions II; and Il;. We note, though, that the proof should be formally given
for a n-tuple of LJ-deductions Ily,...,II,, since the inductive hypothesis is applied
to more than two deductions.

Base: Suppose that II; : {o11,...,0m1} Frs 71 = o1 is a LJ-axiom. Then, since
Tovowm 2) = Ty o, (I11), for every z1,...,zm, the judgement proved by Il de-
rives from axioms of the form {12,...,0m2} Frs 012 by a finite number of applications

of the rules (AI), (AE). If the number of (AI) instances in I is k — 1, where k£ > 1,
then Il involves k axioms

H21 : {0’12,...,0’m2} I_LJ 0'12,...,H2k : {0’12,...,0’m2} }_LJ g12

Let 02]- = f(oy) 1 <i<m, j=1,2). Then
n: [(011“711),(012§012),---,(012§012)]
with k& atoms (015;012) is an ISL-axiom from which we get
. [(Uil,...,afﬂl;ail), (012,...,0;2;012), R (012,...,0;12;012)]

by m — 1 applications of (Wrsr). It is My, 2., () =21 =Ty, ... 2, (II1), for every
T1,...,Tm. Applying (NI;sr) on appropriate atoms for each (AI) in IIy and (NEfsy)
for each (AE®), where s € {l,r}, we get

H : [(0317 .. aU:'nl;o-il = Tl/)y (0-127 .. ’U:’nQ;TQ,)]

with My, o, ) = My, o, (IU) = Ty, (I1), for every @q,..., T
Inductive step: We show the most characteristic cases.

o1 : {o11,.--y0mi} Frr o1 it :{o1,...,0mi} Fos 11
° (AMLy)

II; : {0’11,. . .,O'ml} Frg 01 ANT11 =71

Since II; isin Dy, Ipy and Iy are in Dy j and Ty, 2., Ho1) = Ty, (1) =
T,z (II1), for every z1,...,zn. Consequently, Iy, II;; and IIp are all in D}, and
Tovooiom Mo1) = Toy,.ow, (Ti1) = Ty ooz, (I2), for every zi,...,zm. Hence, by the
TH, there exists

Hl : [(0'117 sty 0'1/77,1; 7'(31); (0'117 sty U;nl; T{l)y (0'127 e 70'1l'n2; TQI)]
such that My, . .. (II') =T, ... 2., (Ho1), for every z1,...,2m. Applying (NI;s1), we
get
IT: [(011, cee 70—;n1;7'0/1 mT1/1 = T{), (032, ce 70—;n2;7'2/)]
with My, . o (II) = My, o, (I') =Ty, .. 5, (II1), for every zi1,...,Tm.
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. M : {11, yOm1} FLs 71 A p1
H1 : {0’117

(NEL;)
e ,O'ml} }_LJ T1

Since Iy is in Dy, IIf is in Dy and Ty, ... 0, (I1)

B = Tys,....w,, (II1), for every
z1,...,2m. S0, II} and Iy are in Dy and Ty, o, (1)) = Ty, .. (IL2), for every
Z1,...,Tm- Hence, by the ITH, there exists
H/ : [(Jily R} J:'nlv (Tl /\ pl), = T{ m pll)y (0-127 . ’U:’nQ; TQ’)]
such that My, . ., (') =Ty, ... 2, (I1}), for every z1,...,zm. Applying (NE}s;), we
get
I: (o4,

. 70'1l'n1;7-1/)7 (0'127 .. -70';112;7—2/)]

with My, o (II) = My, o, (IU') = Tyy .. o, (I11), for every z1,.
The case of (AET ;) is analogous to (AEL ;).

oy T

!
I : {o11,---yOm1,p1} FLs vt
°

(—1rs)
II; : {0'11,---,0'm1} Frg pP1 — V1 =T1

Itis Tyy,.on,, 1) = A2 Ty 2 (1T))

=T, 2., (Il2), for every z1,. .., zn. This
means that the judgement proved by Il derives, by k — 1 (k > 1) applications of (AI)
and a finite number of applications of (AF), from k deductions

Il {0’12, A ,O'mz} Frg T21, -

sy o {0’12, . ,O'mg} Frg Tk
which, in turn, derive, by (—1I), from
5 : {012, ..., Om2, p21} g va1, ..., Hop : {012, ..., Om2, p2x} s vak
respectively. For each j € {1,...,k}, it is
Torozm o) = Ty, g (o)), for every z1,...,2m =
/\x-Twh---,wm,w(H,l) = /\x-Tml,...7xm,m(Hl2j)a for every z1,...,xm
and every © & T1,...,%; =
Tzl,...,zm,z(]-_-[/l) = Tzl,...,zm,m(néj)a fOI' eVery T1, <3 Tm, T
Hence, by the IH, there exists
H// : [(Uila sy U:nl;p/l; vi)y (0'127 e 70'1l'n27pl21; vél)y sy (0-127 cry U:*n?:p/Qk; vék)]
such that My, 4. (II")

= Ty, zm,e(II7), for every z1,...,zm,z. Applying (—
Irst), we get

Hl : [(0'117 e 70'1l'n1;7-1/)7 (0'127 . -70';112;7-2/1)7 sty (0'127 . '70.1/'112;7-2/]{:)]

with My, ... (') = Ae. My, 20 (1) = ATy, g (1)) = Toy, e, (II1), for
every zi,...,Tm. Finally, applying (NIrsr) on appropriate atoms for each (AI) in Il
and (NEjgy) for each (AE®), where s € {l,r}, we get

H : [(0{17 .. aU:'nl; T{)a (U£2a RN J;nQ;TQ/)]
with My, 5, (1) = My, . (II") =Ty, 2. (II1), for every z1,...,2m.
The case of (— Ers) is tackled in a similar manner.
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Corollary 4.2.4 (i) If I1: M = [(01,-..,0m;7T)] is an ISL-deduction, there exists
mt: {e(o1),...,e(om)} Frye(r)
in D7y, such that Ty, ... () = Mgy, . o (I), for every x1,...,&m.
(it) If Iy : {o1,...,0m} Frs T is a LJ-deduction in D7’;, there exists
I: [(f(01),--s f(om); F(T))]
such that My, . o (II) =Ty, . 5. (II1), for every z1,...,Tm.

Proof: (i) Special case of theorem 4.2.2. For n = 1, M consists of a single atom.
(ii) Special case of theorem 4.2.3. For n = 1, we have a single LJ-deduction in D7’;.-

4.3 1ISL and IT

In this section, we continue to work with ISL[{—,Nn}. We prove a theorem relating
ISL to IT, thanks to which ISL can be proposed as the logic for IT. We also discuss
characteristic features of ISL, namely the importance of having explicit srtuctural
rules and contexts defined as sequences of formulas.

Theorem 4.3.1 (i) If I1: M =|[(o,...,0! ;1) |1<i<n], then
{1 : Ui, RO Ufn} Frr My, o, (II) : 7

for every i € {1,...,n} and every sequence x1,...,Ty, of distinct variables. So, for
a single-atom molecule M = [(01,...,0m;T)], we have that, if I1: M, then

{z1:01,...,Zm : Om} F17 M, (I) : 7

1y--Tm

for every x1,..., Ty,

(i) Suppose that x1,...,T,, is a fived, but arbitrary sequence of distinct vari-
ables. If, for every i € {1,...,n}, 1; : {1 : o%,...,2m : 08} Frr M : 7;, there
ezists 1! @ [(o%,...,08;m) |1 < i < n|, such that M, . (I') = M. So, if
II: {z1:01,...,%m : Om} Frr M : 7, there exists II' : M = [(01,...,0m;7)],
such that My, . .. (II')= M.

Proof: (i) By theorem 4.2.2, for every i € {1,...,n}, we have that
' : {e(o}),...,e(oh)} Frse(m)

is in D7 and such that Ty, .. (IIY) = M, .. (II), for every z1,...,zm. So, for
every i € {1,...,n} and every z1,...,z,, we have, by therem 2.6.2 , that

{z1: fe(01)- s mm : fle(om))} brr Toye, (I1) : f(e(T2))
i.e. that {z: cob L Zm :Ufn} Frr My, I) : =.
(ii) By theorem 2.6.3, if we apply the erasing function E on II;, we get
BE(IL) : {e(01),...,e(0m)} Frse(r)
which is in Dy’ and such that Ty, .. ., (E(Il;)) = M. So, we have n LJ-deductions
E(IL),...,E(Il,) in Dy, such that Ty, o (E(1)) = ... = Ty, 4. (E(IL,)), for
an arbitrary xi,...,2,,. Then, by theorem 4.2.3, there exists
2 [(f(e(01), -+, fle(om)); fle(r)) | 1 < i < ]
ie I : [(d%,...,0%;7)], such that My, g M) =Ty, 0 (E(1y)) = M. —
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4.3.1 The role of sequences and structural rules

All systems introduced in chapter 2 are given in two equivalent versions: the set and
sequence versions. The former defines contexts as sets and contains no structural
rules, while the latter considers contexts as sequences and includes rules for context
weakening and exchange. The logical system ISL[{—,N} involves atoms whose con-
texts are sequences of formulas and includes the structural rules (Wrsr) and (Xrsz).
Could we define equivalent set formulations of ISL? Could we exclude the structural
rules?
Consider ISL’ with contexts defined as sets, the axiom (Arsr) replaced by

(TiU{oi};00) | 1<i<n] (Alsr)

where, for every i, I'; is a set of formulas and the structural rules excluded. All other
rules are included changing contexts from sequences to sets. Weakening is implicit in
(A7s1), while exchange is no longer needed.

In ISL/, the molecules

Mi=[0;(anf—7v) = (a— B —7))]
Mo =[0;(a—= B —7)— (anf —7))]

can be proved, as shown below.

o, IanF =085 0),(ans = v.akB)
(2N B — v Byan g — )] (anf—yafkandl
[({anB —v,a,8};7)] s
MMy =[(0;(anB —7) = (a— B — 7))
(A"
v Ma=p=ranpransl "
(28— 70N B}ia 4 —7) (o —p—mansral
Iy : [({a = B = v,an B} B — )]
(a’
(fa—p—anphansl
Mo [(fo— § = 7anhf—=) _ T:la—p—nanphdl

[({a— B8 —=~,anp}y)]
My : Mo = [(0; (¢ = B—7) = (anB —7))]

(—=I")x2

Hence, in ISL’/, we have the equivalence of a N 3 —~ and a— 3 — -, which means
that N collapses to A, since a« — 8 —y is equivalent to a A —y (in both ISL and ISL’).
In ISL, on the other hand, the formulas « N f—+v and a— §—+ are not equivalent,
since we can prove My but not M;. Consequently, ISL’ cannot be proposed as an
equivalent formulation of ISL.

Now consider ISL” with contexts defined as sets, the axiom (A;sr) replaced by

[({oi}ioi) [1<i<n] (Afsi)

weakening explicitly included, exchange excluded and the rest of the rules as in ISL'.
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In ISL”, we can derive M = [({«, 8}; N B)], as shown below.

(4"

[({a}; @), ({8} 8)] .
[({a, B}; @), ({8, a}; B)]
" M= [({a,B};anp)]

(N1") ({a,8Y={B,a})

If ISL” is equivalent to ISL, then, by theorem 4.3.1, II” should correspond to an
IT-deduction {z : o,y : B} Fir My, (IT") : anB. But, if we try to apply a non-standard
decoration to II”, we get

e (z:oka), (= 810
iz oy Bhia)(z: By aki B
7 ({7, 7 B anB)]

(W//)*

(mlu)qr

The decoration cannot proceed to the introduction of the intersection, since the dec-
orated contexts {z : a,y : B} and {x : B,y : a} are not identical. Hence, M, ,(II")
is not defined and thus IT” does not correspond to any IT-deduction. Consequently,
ISL” cannot be introduced as an equivalent formulation of ISL, either.

ISL, as opposed to ISL’ and ISL”, captures correctly the behaviour of the inter-
section connective. To this end, it is necessary that we define contexts as sequences
and that we include explicit structural rules.

4.4 Properties of ISL

In this section, we consider ISL as defined in 4.1.1, i.e. including three connectives
{—,n,A}. We define a o-redex of an ISL-deduction, where ¢ € {—, N, A}, and show
how to eliminate redexes. We prove strong normalization of ISL by reduction to
strong normalization of LJ. We also state the sub-formula property of normal ISL-
deductions.

4.4.1 Strong normalization

We start by noting that the rule (Prsz) can be eliminated from an ISL-deduction by
a finite number of < p-normalization steps which exchange it with the rule above
it, thus moving it up in the deduction until it reaches an axiom. At that point, its
conclusion is by itself an axiom, so the initial axiom and the rule can be abolished.
The procedure is analogous to the one described for pIL in definition 3.5.1.

Definition 4.4.1 An ISL-deduction is said to be in pre-normal form, if it doesn’t
have any occurences of the rule (P).

Lemma 4.4.2 For every I1: M, there is a II' : M in pre-normal form.
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Definition 4.4.3 Let II be an ISL-deduction.
(i) A —-redex of 1l is a sequence (—I;sr),(— Ersr) in II of the rules introducing
and eliminating the implication.

[(Ti,0i5m) [1< i< n]
(—=1)
[(Ty;06 — 1) |1 < i< nj [(Ti;04) |1 <4< nl

[(Ti;m:) |1 < i < n

(ii) A N-redex of 11 is a sequence (NIrsr), (NEYsy) or (NIist), (NEjsy) in I1 of the
rules introducing and eliminating the intersection.

MU[(T;0), (I 7)] (1 MU[(T0), (T;7)]
MU[T;0NT)) (nEY) MU[T;0N71)]
MU[(T;0)] MU[(T;7)]

(NI)
(NE")

(iii) A A-redex of 11 is a sequence (AIrsi), (AEtsy) or (Mrsi), (AEjsy) in I1 of the
rules introducing and eliminating the conjunction.

[(Ti;04) |1 <4< nj [(Ti;m) |1 < i< n (AD)
[(Fi;ai/\Ti)|1<i<n] !
(AE")
[(Ti;00) |1 <i <)
(Cuoli<isnl (Msmli<i<al o,
[(Ti;00 ATi) |1 < i < n (AE)
[(FZ,T1)|1<1<H]

Remark 4.4.4 It is easy to see that the structural rules can be moved up when
between the rules of a redex, so that the redex in question is formed as definition
4.4.3 requires. In general, suitable arrangements can be made so that the structural
rules do not interfere with the normalization process.

Definition 4.4.5 Let M = [(o%,... 0% ;7)) |1 < i < n] be a molecule in position =
of an ISL-deduction 11 consisting of k steps (0 < z < k). The context-formula o;- 18
open, if, in steps x+1, ...,k which follow, its atom is not abolished by a (P) rule and
it doesn’t move to the right of ; by a (—1) rule.

Remark 4.4.6 If II: M is an ISL-deduction, all context-formulas of M are stable.

The following lemma is used for the elimination of —-redexes from an ISL-
deduction.

Lemma 4.4.7 (Substitution lemma) Suppose that Iy : [(T';,045;m) |1 < i < n]
and 11y : [(Ty;04) | 1 < i < n] are ISL-deductions and let S(II1,I1) be the deductive
structure obtained from Iy by substituting 11y for all azioms [(0;;0;)|1 < i < n] with
o; open and by eliminating all occurences of weakening over open o; and all occurences
of weakening over open members of T';. Then, S(II1, ) : [(Ti;7:) |1 < i < n).

Proof: Use double induction, see [PR05, Pr65, Gi89]. —
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Remark 4.4.8 If Tl and II; are both pre-normal, then S(IIy,IIj) is pre-nornal, as
well.

The definition of one-step normalization procedures eliminating ¢ -redexes of an
ISL-deduction, where ¢ € {—,N, A}, is now in order.

Definition 4.4.9 Let II be an ISL-deduction.
(i) A —-rewriting step on Il is a normalization step that eliminates a —-redex of
the deduction.

Ho : [(Fi,ai;n) | 1 < 7 g n]
(—1)
[(Ti;00 = 1) |1 < i< nj Iy : [(Ts;00) | 1 <@ < nj
[(Tism) [1 <i<n]

—_, S(Hl,no) : [(Fl,ﬂ) | 1<1< n]

(i) A N-rewriting step on 11 is a normalization step that eliminates a N-redex of
the deduction.

MU [T 0), (I 7)]
MU [(T;0N71)]
MU[(T;0)]

(NI) . MU[[T;0),(T;7)]
nEY T MU[Tso))

The case of (NE") is analogous.
(iii) A A-rewriting step on II is a normalization step that eliminates a A-redex of
the deduction.

Iy : [(Ti;04) |1 <4 < nf o : [(Ti;m) |1 < i <)
[(Ti;00 A) |1 < i < nf
[(Ti;00) [ 1 << n

(AT)

(AE")

A le[(l“i;ai)|1<i<n]

The case of (AE") is analogous.

Remark 4.4.10 If II is in pre-normal form and II’ derives from II by a —-rewriting
step (Il —_, II') or a A-rewriting step (II <, II'), then II' is in pre-normal form,
too. On the other hand, if TI’ derives from II by a N-rewriting step (IT <—n II'), it is
not in pre-normal form, since (P) has appeared. Nevertheless, (P) can be eliminated
again by a finite number of < p-steps.

Definition 4.4.11 An ISL-deduction is in normal form, if it is in pre-normal form
and contains no o -redexes, where o € {—,N,A}.

Theorem 4.4.12 ISL is strongly normalizable, i.e. every ISL-deduction II : M is
strongly normalizable.
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Proof: Suppose there exists an ISL-deduction IT : M = [(¢%,...,0%,;7) |1 < i < 7]
which is not strongly normalizable. Then, there is an infinite sequence s of ¢-steps,
where ¢ € {<—p,—_,,<n, .}, starting from II. By theorem 4.2.2, 1T gives n LJ-
deductions II', ..., II"” in Dy, where II' : {e(0}),...,e(0h)} Frse(ri). If Il —p I,
then, for every i € {1,...,n}, II' = (II')". If II <_ II’, then, for every i,
IF ey, ..., (IU)L If II <n IT, then there is an ig € {1,...,n}, such
that: (1) IT* <z, (II') and (2) for every i € {1,...,n} \ {io}, it is II' = (IT')".
Finally, if II <, II, then, for every 4, IT' <7, (II')%.

Case 1: There are infinitely many < _, -steps in s. Then, since each such step
generates finitely many <7 _-steps in each II?, we meet infinitely many <7 -steps
in each IT?, which contradicts the strong normalization of LJ.

Case 2: There are infinitely many < n-steps in s. In this case, since each such step
generates a <7, -step in one of the IT?, there are infinitely many < s, -steps to be
mounted in n LJ-deductions. Consequently, there is an i € {1,...,n}, such that we
meet infinitely many <7, -steps in II¢, which contradicts the strong normalization
of LJ.

Case 3: There are infinitely many < ,-steps in s. In this case, since each such
step generates a <7, -step in each IT?, we meet infinitely many < ;,-steps in each
IT?, which contradicts the strong normalization of LJ.

Case 4: There are infinitely many < p-steps in s. Then, there should be infinitely
many <—n-steps in s, since the (P) rules initially in IT are eliminated in a finite number
of — p-steps and so is the (P) rule generated by a single <—n~-step. So, this case reduces
to case 2. —

4.4.2 Sub-formula property
Sub-formulas in ISL are defined as follows.
Definition 4.4.13 Let o be an ISL-formula. Then:

(i) o is a sub-formula of o and
(ii) if T o p is a sub-formula of o, then so are T and p, for o € {—,N, A}.

Definition 4.4.14 Let II: M = [(T;;0;) | 1 < i < n] be an ISL-deduction. We say
that IT enjoys the sub-formula property, denoted sf(Il), if every formula appearing in
II is a sub-formula of one of the formulas occuring in M.

Theorem 4.4.15 Let II be an ISL-deduction in normal form. Then sf(II).

Proof: The proof is an easy extension of the same property for LJ, given theorem
4.2.2. =



Chapter 5

Equivalence of IL and ISL

5.1 Expansion of IL

We shall expand Intersection Logic to include three connectives —, N and A, as Inter-
section Synchronous Logic does. We remind the reader that we actually work with
pIL. The following definition provides the material needed to supplement definitions
3.1.1 and 3.2.1. We note that to expand pIL we only add information to the system;
we do not change any of the data given in chapter 3.

Definition 5.1.1 (i) A kit is a binary tree in the language generated by the grammar:
K =0 | [K, K], where the leaves o are now generated by the grammar:

cu=al|lo—o|ocNo|lo Ao

with a belonging to a denumerable set of propositional variables.

(i) If H ~ K, then H A K denotes a kit that overlaps with H, K and is such
that, for every p € Ppr(H), (H ANK)P = HP N KP.

(iii) The deductive system pIL includes all rules presented in Figure 3.1 and rules
for the introduction and elimination of conjunction.

T'bprn K 'ty K 'ty K0 AN K s
T T (Alprz) ’ (ABjre, s € {L,r})
I l—p[L Ki N Ko r '_pIL K,

Remark 5.1.2 The rules (AI), (AE) are global rules, as it is the case with (— I),
(— E). They act on all leaves of the kits to the right of 7.

5.2 From IL to ISL

In this section, we show the transition from pIL to ISL. Given a pIL-deduction which
concludes by a judgement involving kits with n terminal paths, there exists an ISL-
deduction proving a molecule such that each of its atoms includes formulas which are
all leaves at a certain terminal path of the kits, formulas in different positions in the
atom coming from different kits. We can roughly say that each terminal path of the
kits generates an atom in the molecule.

7
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Theorem 5.2.1 Let I1: {Ky,...,Kpn} Fprr H with Pr(H) = {p1,...,pn}. Then
Frsr [(Kfl,...,K%;le),...,(Kf",...,KﬁL";Hp")]

Proof: By induction on II.
Base: Suppose I1: {K1,...,Kn} Fprr K1 is a pIL-axiom. We have that

(KT KT, (K75 K7
is an ISL-axiom and, if we apply weakening repeatedly, we get
Frso [(KPY, ... KPL KPY) oo (K™, KBy KP)
Inductive step: We examine all rules of the expanded pIL.

W {Hi,...,Hn} borz K
o (Pprr)
IT: {H:\P*,. .., Hy\P*} bprr K\P°

Let H\P* = K; (1 <i<m)and K\P* = H. Suppose that
PT(K) = {qh ceeyQny s PSTL, - - 7pSr’rL27pslt17 S 7psltn3}

where s,s" € {l,r}, s #s', n1 +ny =n and g, p are different paths, for 1 < j < ny.
Then, we have:

1. PT(H):{qla'"7q’n1apr17"'7prn2}
2. H =K”, K =H% (1<i<m, 1<j<mn)
3. HI = K", KPi = HP'i (1<i<m, 1 <j<ny)

By the IH, we have that ;s M UN and, applying (Prsr.), we get Frsr M’, where

M = [(HI',... HZ; KD, .. (H", ... Hy';K'™),

(HP™ . HESM G KPS, (HY ™ Hy "2 KP2)]
N o= [P HD K (HY L H e K )]
M (K®, .. K9 HD), (K& Kt Him),

(K™ KB HP™), (K2 Ko "2 HP2)

and M = M’ by 2. and 3.

I :{Ki,...,Km,L1} bprr L2
° (= 1Iprr)
1T : {Kl,...,Km} '_pIL Ly —-Ly=H

It is H ~ Lo, so Pp(Ls) = Pr(H) = {p1,...,pn}.- By the IH, we have that
Frsp [(KPY, ... KB LYY LBY), ..., (KM, ..., KPr L™ LE5™)]. Applying (— Irsp), we
get bFrsr [(KPY, ..., KPL LR — LBY) ... (K¥, ..., KPr; L8 — L5™)]. Since, for every
ie{l,...,n}, L — L% = (L, — Lq)P" = HP%, we have the required result.

I {Ky,....Km}bFprz L—H I :{Ki,...,Km}bprz L
o (= Epi1)

HZ{K],...,Km} l_pILH

Itis L~H~1L— H,so Pp(L — H) = Pp(L) = Pr(H) = {p1,...,pn}. By
the TH, we have that Frsp [(KP',... K2 (L — H)P), ... (K", ... KBy (L — H)P)
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and Frsp [(KPY,..., KR LPY), .. (KD, ..., KPr; LP™)). Since, for every i € {1,...,n},
(L — H)Pi = LPi — HPi we can apply (— Ersz) on the two molecules to get the
required result.

, LidHp:=(on0ll,... Holp = lom, omll} Ferz Klp = [0, 7]] (\Iy11)

II: {Hi[p:=o01],-.., Hn[p := ow]} bprr K[p:=0cNT|

Let H;[p:=[o;,0:]| = K, Hi[p:=0;]=K; (1<i<m), K[p:=[o,7]] = H and
K[p:=onNt] = H. Suppose that Pr(H') = {q1,...,qx,pl,pr}, with g;,p different
paths, for 1 < j < k. Then, we have:

L. Pr(H) ={q,.--,q,p}

2. (K))¥ =K, (H)% =H% (1<i<m, 1<j<k)
(K))P*=K'=0; 1<i<m, se{l,r})

(HW =0, (H)" =7, HP=0NT

By the IH, we have that bt;sz M U [(o1,...,0m;0),(01,...,0m;7)] and, applying
(NIrsr), we get Frsp M U|(o1,...,0m;0NT)], where

Moo= [(ED" e (K5 (HD)™), e ((KD)™ s (BG) ™5 (HY) ™)
M = [(KP,. K8 HD), (KL Ko )

and M = M’ by 2.

IU:{Ki,...,Kn}tprr Klp:=01No,] = H' .
L (ﬂEpIL)
II:{K1,...,Kn}tpir Klp:=0]=H

Suppose that Pr(H') = {p1,...,Pn-1,p}. Then:
1. Pr(H) = Pr(H')

2. (H'Yi=HPi (1<j<n—1)

3. (H)Y =0 nNo,, H? =0,

By the IH, we have that Frsp MU[(K?,...,KE;0,No,)] and, applying (NEfsz), we
get Frsp M'U[(KY,...,KP;0s)], where

M = (KM, KPS (P, (KT KB (HY )P
M= (KM, KDL HPY, . (KP L Ko HPv)

and M = M’ by 2.

:{Ki,...,Kn}prr Ln " {Ki,...,Kn} Fprr Lo
L (AIprz)
H:{Kl,...,Km} }—ij L1/\L2 =H

Itis Ly ~ Ly~ H, so Pr(Ly) = Pr(Ly) = Pr(H) = {p1,.-.,pn}. The IH gives
Frsp [(KY', ..., KR LYY), .o (KT, KO L)

Frsp (KT Koty LY), oo (K™ K5 L5 )]
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Applylng (/\IISL), we get Frst [(Kfl,. . .,Kﬁj;L’l’l/\Lgl), Cey (Kf",. . .,K%";Lzlj" /\Lg")].
Since, for every i € {1,...,n}, LY ALY = (L1 A Ly)P' = HP:| we have the required
result.

:{Ki,...,Kn}tprr K ANK,

L] (/\E;S)IL)
II: {Kl,...,Km} }—ij KS =H

It is K ANK, ~ H, so Pr(K; ANK,) = Pr(H) = {p1,...,pn}. By the IH, we
have that bFrsr [((KT*, ..., KB (Ko AK)PY), .., (KT, ..., KB (K A K )P™)). Since, for
every i € {1,...,n}, (K; A K,)P" = K" N KPi, we can apply (AEjs;) to get

Frso (KT, KR K0, (K™ Ko K9

as required. -

5.3 From ISL to IL

This section describes the transition from ISL to pIL. We first show how to represent
a molecule of n atoms and context-cardinality m by a sequence of m + 1 overlapping
kits with n terminal paths each, so that the j-th kit in the sequence picks as leaves
all the j-th formulas in the atoms, the leaf at path i coming from the i-th atom. We
stress the fact that a molecule can have more that one kit-representations depending
on the structure we chose for the representing kits and on the path enumeration we
employ. Finally, we prove that, given an ISL-deduction which concludes by a certain
molecule, there exists a pIL-deduction which concludes by a judgement involving the
representing kit-sequence of the molecule, no matter which such sequence we consider.

Proposition 5.3.1 Let M = [(0},...,0%:71),..., (0}, ..., 0%;:7s)] be a molecule of
n > 1 atoms, each of context-cardinality m > 0. Then, there exists a sequence
Ky,...,K,H of m+1 overlapping kits with n terminal paths p1,...,pn, each, such
thatKj’.” Ea;- and HP' =7, (1<j<m, 1<i<n).

Proof: By induction on n with m fixed but arbitrary.
Base: Forn = 1, M = [(01,...,0m;71)]. The m + 1 overlapping kits with one

terminal path—the empty path e—are the single-node kits oi,..., 0L .

Inductive step: Let n>1, M = [(01,...,00;71),---,(0F,...,0%; )] and suppose
the proposition holds for any molecule of n — 1 atoms, each of context-cardinality m.
Consider M’ = [(01,...,00;71),..., (", ... 0% ' 7_1)], which includes all atoms of

M except (o7,...,0n; ™). By the IH, there exists a sequence Hy, ..., Hp, K of m+1
overlapping kits with n — 1 terminal paths ¢, ..., ¢,—1 each, such that HJq =o; and
K% =7 (1<j<m,1<i<n—1). Let us now consider the m + 1 kits

Hilgn1 = [0 00l s Hlgn1 = [og "ol Klgn—1 = [ra1, 7]l (%)
They are overlapping (since Hy, ..., Hy,,, K are), they have n terminal paths
PL=(qL, - Pn—2 = Qn-2,Pn—1 = Gn-1l,Ppn = Gn_17
and they are such that:

(Klgn-1:=[ma—1, W) =K% =m;
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2. (Hjlgn—1 = [Ugr'l_l’ggr‘L]])p%1 = U;L_la (Klgn—1:= [Ta—1, Ta]])’* = Tna
(1<j<m)
3. (Hilgn—1:= [0] " o7 ])P» = 07, (Klgn-1 = [Ta—1, Tl )P = 70
(1<j<m)
Consequently, () is the required kit-sequence for M. —

Definition 5.3.2 The sequence K1, ..., Ky, H of proposition 5.3.1 will be called a
kit-representation of M.

Remark 5.3.3 The kit-representation of a molecule M is not unique. Different kit-
representations of M may have different kit-structures or the same structure but
different path enumerations. For example, consider the molecule

M= [(U%aaéaaé;Tl)a (0%70370§;72)7 (U%,Ug,ag;ﬂg)]

The following kit-sequences are kit-representations of M.

[[0%7 U%]a U%]a [[057 U%]a 0’3], [[Uéa U%]a Ug]a [[Tla TQ]a T3] (a)

[[0?7 U%]v Uﬂv [[0’5’, U%]v U%]v [[0’;’, U%]v U?{]v [[Tg, 7—2]’ Tl] (b)

[U%v [0-%7 U:f]]v [0-%7 [0’3, US]L [0-?1)7 [0’3, Ug]]v [7_1’ [7_27 7_3]] (C)
Sequences (a) and (b) employ the same kit-structure but different path enumerations,
while sequence (c) displays a different kit-structure from that of (a) and (b).
Theorem 5.3.4 If I1: M = [(o],...,0L;71),...,(00,...,0%;T )] (n>=1, m=>0),

Y mo oY my'n

then, for every kit-representation K, .. Km,H of M, {Ky,....,Kn}tprp H.

Proof: By induction on II.

Base: Suppose 1T : M = [(o1;71),...,(c7;7)], where oi = 7;, for i € {1,...,n},
is an ISL axiom and let Ky, H be a klt—representation of M. Then, if Pp(H) =
{p1,---,pn}, we have K" = 0! = 7, = H? (1 < i < n), so K; = H. Hence,
{K1} bprr H is a plL-axiom.

Inductive step: We check all ISL-rules.

. 11 MUN (PISL)
I m
Take M = [(0%,...,00;m) |1 < i< n], N=[(0},...,00;m) | n+1<i<n+k
and let Ki,...,K,,,H be a Kkit-representation of M and Hy,...,H,,,K a kit-
representation of A'. Then, the sequence [Ki, Hil,...,[Km, Hy], [H, K] is a kit-
representation of M UN. By the TH, we have {[K1, H1],..., [Km, Hx]} Fprr [H, K].
Applying (Pprz), we get {[K1, Hi]\' = K1,..., [Km, Hn]\' = Ku} bpr [HK\' = H
o.M =[t,...,0,:m)|1<i<
. I obim) 1<)
O:M=|[(ol,...,08, 08 ;1) |1<i<n]

Let K1,..., Ky, Kymt1, H be a kit-representation of M. Then, Ki,..., Ky, H is
a kit-representation of M’. By the IH, we have {Ki,...,Kn} Fpr H and, since
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K41 overlaps with Kj,

., Km,H, by the weakening property for plIL, we get
{K],. . .,Km,Km+1} }_pIL H.
H, : M, = [(Uia "7o—inaviapiag7%n+17 "agal:n+l;7—i) | 1 < { < n]
® ; . - - (X1sr)
m: M= [(Ui; 70'}717pi7vi70':n+17 "70':n+l;7-i) | 1<i< Tl]
Let Kl,

oy Ky RY, K1,y - ., K1, H be a kit-representation of M. Then,

the sequence K1, ..., Kn,Y, R, Kpmt1, - -, Koy, H is a kit-representation of M’ and,

by the IH, we have {K1,...,Km,Y, R, Km+1,- .., Km+y:} bprr H. But this is the required

result, since {K1,...,Kn,Y, R, Km+1,..., Kmy1} ={K1,..., Km, R Y, Kiny1,..., Kmti}-
M =[(o},...,00,psv)|1<i<n

1
. = i [ . ; (4) ISL)
M: M=[(o1,...,00m;pi = vi)|1<i<n]

Let Ki,...,K, H be a kit-representation of M with Pp(H) = {p1,...,Pn}-
Then, the sequence Ky,..., K., Hlp; == p;i |1 <i<n],H[p; :=v;|1<i<n]isa
kit-representation of M’. By the TH, we have

{Kl,...,Km,H[pi ::p”lgign]} }—ij H[p, ::vi|1<i<n]
Applying (= Iprr), we get

{Kl,...,Km}l—p[LH[pi ::pi|1<i<n]—>H[pi'=vi|1<i<n]EH

M =[Tip—m)|1<i<n]
.

H”:M”E[(Fi;pi)|1<i<n
M- M=[Tsm)|1<i<n]

(—ErsL)

Suppose I'; = oi,...,0 and let Ki,...,K,,, H be a kit-representation of M
with Pr(H) = {p1,-..,pn}. If H = Hlp; := p; |1 < i < n], the sequence
Kiy,...,K,,H — H is a kit-representation of M’ and K,,...,K,,,H is a kit-
representation of M”. By the TH, we have

{Ki,...,Km}Fprr H — H,

{Ki,...,Kn} Fprr H
Applying (— Eprr), we get {K1,...,Kmn} Fprr H.
M =01, omm) [1<i<n=1U[(aF,...,om;p), (07, om;v)]
, . (NIrsz)
mI:M=|[(ol,...,om;7) |1 <i<n—-1UJ[(a],

s ohip )]

Let Ki,...,K, H be a kit-representation of M with Ppr(H) = {p1,
Then, the sequence Ki[p, := [o7,07]],..., Kn[pn :

kit-representation of M’. By the IH, we have

ey Dn}e
[Urrvlwa-rrwlz]]:H[pn = [p,U]] is a

{Kilpn = [o1,01]), -, Km[pn := o, o]} Fpro Hlpa := [p, ]
Applying (NI,rz), we get

{Ki[pn :

U?]EKL- =

s Kmpn = op] = K} bprn Hlpn :=pNv]|=H
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oM =[6t,...,o0;m) | 1<i<n—1U[(el,...,o%; p N p.)] ;
° , . (NEfsz)
M: M=[(ol,...,0m;7) |1 <i<n—1U](cT,...,00;ps)]

Let Ki,...,K,, H be a kit-representation of M with Pp(H) = {p1,...,pn}
Then, the sequence Ki,..., Ky, H[p, := p; N py] is a kit-representation of M’. By
the IH, we have {K1,...,Kmn} bprr H[pn := p N p,] and, by (NE;;7), we get

{Kl,...,Km} }—ij H[pn = ps] =H
I: M =[Ti;p) |1 <i < n . M'"=[Tiv)|1<i<n

° ] (AIrst)
H:ME[(Fi;pi/\Ui)|1<i<n]

v and let Ky,...,K,,H be a kit-representation of M
with Pr(H) = {p1,...,pn}. Then, Ki,....Kpn,H[p; :== p; | 1 < i < n] is a kit-
representation of M’ and K, ..., K,,, H[p; := v; | 1 <1 < n] a kit-representation of
M". By the TH, we have

Suppose I'; = at,..., 0l

{Kl,...,Km} }—ij H[p, ::pi|1<i<n], {Kl,...,Km} '_pIL H[p, ::U”léién]
Applying (A1), we get
{Kl,...,Km} }—ij H[pl ::pillgign]/\H[pi ::Ui|1<i§n]EH
oM =[(6t,...,00;mApi)|1<i<n)

. , ; (AEist)
M: M=|[(ol,...,00m;7) |1 <i<n]

Let K4,...,Km, H be a kit-representation of M with Pr(H) = {p1,...,pn}. If
H' = Hlp; .= p; |1 < i < n], then Ky,..., K, HA H' is a kit-representation of
M'. By the TH, we have {Ki,...,Kn} bpr HA H' and, applying (AEL;.), we get
(K1,...,Kn}prr H. -
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