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elvon uTOYEAPNUA TOU BEVTEOL LG ATOCUVIESTC CPULELXMY TOUWY TOU YEAUPHUITOC,
omou to Yéyedog Tou elvon YeaUUIXd ©¢ TEog TO k.






Abstract

An important result in Graph Theory is the proof of Wagner’s Conjecture by Neil
Robertson and Paul D. Seymour in Graph Minor Series from 1983 until 2011. This
conjecture state that there is no infinite anti-chain in the class of graphs under
the minor relation. The theory that was built for the proof of this conjecture had,
and continues to have, an important impact not only in structural and algorithmic
Graph Theory, but also in other fields such as Parameterized Complexity.

In the context of this proof, the authors have introduced some new width
parameters. Within these were branchwidth and branch decompositions. This
parameter was used for algorithm design via the “divide and conquer” technique.
Moreover, the authors have introduced, similar to branch decompositions, concepts
such as sphere-cut decompositions which are a special type of branch decomposi-
tions in planar graphs that have some additional properties.

In the course of the research there was a lot of important results about branch-
width in the class of planar graphs. Fedor V. Fomin and Dimitrios M. Thilikos
proved that the branchwidth of a n-vertex planar graph is at most v/4.5 - n. Based
on this result Dimitrios M. Thilikos connected the branchwidth with r-radial dom-
inating set which is another parameter in plane graphs. He proved that if a plane
graph has an r-radial dominating set of size at most k, then the branchwidth of
the graph is at most r - V4.5 - k.

The purpose of this thesis is to provide a qualitative extension of this result.
What we show is that this upper bound is attained by a number of edges of a
sphere-cut decomposition, that is a linear function of .
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Chapter 1

Introduction

1.1 About graphs

One of the most common entertaining riddle is the following:

Can you draw a given figure (for example, the left-most figure in Figure )
without picking up your pen and overlapping lines?

or

Can you draw a given figure (for example, the right-most figure in Figure )
without picking up your pen, overlapping lines, and by beginning and ending at
the same point?

The solution of this riddle is the first result in the history of Graph Theory
and was given by L. Euler in 1736. This result is a theorem stating when a figure

Figure 1.1: The drawing riddle
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can de drawn without picking up your pen and overlapping lines (i.e. when it has
an Euler path) and when a figure can be drawn without picking up your pen or
overlapping lines and by beginning and ending at the same point (i.e. when it has
an Euler cycle.)

Science is developed and utilized in order to fulfill certain needs (real or fic-
titious). In Mathematics this connection is not apparent at all. Graph Theory
as a field of Mathematics, and more specifically of Discrete Mathematics, is no
exception. Let consider that a graph G is a pair (V, E) where V is a finite set of
elements, called vertices and F is a set of subsets of V' such that the cardinality
of each subset is two. The elements of E are called edges. If someone though
questioned where he could find Graph theory, the answer would be Facebook.
Facebook can be expressed as a graph, whose vertices are people that have signed
in. For every friend-connection of two people there is an edge between their ver-
tices. This example help us to understand some of the reasons that Graph Theory
developed. Using graphs can model a lot of problems from several areas of Discrete
Mathematics.

We focus our attention in Structural Graph Theory. This field of Graph Theory
deals with establishing results that characterize various properties of graphs. An
important result in this field is Kuratowski-Pontryagin Theorem (1930), stating
that a graph is planar iff has no K5 and K33 as minor [42]. The most well-known
open problem in Structural Graph Theory is Hadwinger Conjecture [37], stating
that for every k > 1, every graph with chromatic number at least k£ contains the
complete graph K} as a minor. For k = 1,2, 3, this is easy to prove, and for k = 4
Hadwiger [37] proved it. The conjecture also holds for £ = 5 [6,/7,/52,/61] and
k =6 [54]. So far, the conjecture is open for every k > 7.

There is no field of Mathematics, and generally of science, that is developed
without being influenced from others. The development of Graph Theory is di-
rectly connected with Algorithms, Complexity, and Logic. For example it is easy
to consider that a lot of Graph problems such as INDEPENDENT SET, VERTEX
CoVER and DOMINATING SET are NP-complete. Klaus Wagner conjectured that
for every infinite set of finite graphs, one of its members is a minor of another.
Graph Minor Series, that is a series of 23 papers of Neil Robertson and Paul D.
Seymour, was mainly dedicated to the proof of this conjecture (now Graph Minor
Theorem, [55]). Two interesting surveys that describe Graph Minor Theorem and
its consequences are in [46] and [39].

The theory that was developed in order to prove Wagner’s conjecture has a sig-
nificant impact in Algorithmic Graph Theory, Parameterized Complexity, Logic,
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and Computational Complexity and upgraded the importance of Graph Minor
Theory. A key issue to this connection is width-parameters. Width-parameters
express topological or geometrical properties of a graph. For example treewidth
express how a graph is “tree-like”. Typically, every width-parameter is related
to a respective graph decomposition. Graph decompositions are used for algo-
rithm design as a guide to apply the “divide and conquer” method. Moreover,
width-parameters have a particular importance for Parameterized Complexity. A
well-known theorem that connect width-parameters with Logic and Parameterized
Complexity is Courcelle’s theorem stating that every graph property definable in
the monadic second-order logic of graphs can be decided in linear time on graphs
of bounded treewidth [16].

At this thesis branchwidth is a width-parameter that has a central role in our
results. There are a lot of interesting results related to branchwidth. One of them
is that every n-vertex plane graph has branchwidth at most v/4.5-n [30]. This
result was extended in [59] where it was proven that if a plane graph has an 7-
radial dominating set of k vertices, then branchwidth of G is at most 7 - V4.5 - k.
The purpose of this thesis is to provide a qualitative extension of this result. What
we show is that the upper bound proved in [59] is attained by a number of edges

of the branch decomposition that is a linear function of k.

1.2 Main description of our result

We say that a tree is ternary if all its vertices that are non-leaves have degree 3.
Given a graph G we denote by V(G) and E(G) the set of its vertices and edges

respectively.

Carvings. Let S be a finite set and let 7 be a bijection mapping the leaves of T’
to the elements of S. Notice that each edge e of T" defines a partition P, = {51, S2}
of S as follows: if 77 and T3 are the connected components of T'\ e, then S; contains
the preimages, via 7, of the leaves of T" that are leaves of T3, for i = 1,2. We define
the carving of S generated by the pair (T, T) as the collection of partitions

carv(S,T,7) ={P. | e € E(T)}

A carving of V is any collection of partitions of S that is generated by some
pair (T, 7).
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Sphere-cut decompositions. Let GG be a planar graph and we consider it as
being embedded in the 2-dimensional sphere Sq = {(z,y) | 22 +%? = 1}. In that
way we denote by G not only the graph itself but also some particular embedding
of it. We refer to such an embedded graph as a plane graph. A sphere-cut of G is
a Jordan curve N of Sy that does not meet the edges of G and where each of the
two open disks that N defines (i.e., the connected components of Sy \ N) contains
some of the edges of G. We define the cost of N as the number of vertices that it
meets and denote as V(IV) the set of these vertices. Notice that each sphere-cut N
defines a partition Py of the edges of G into two sets: one contains the edges that
are subsets of one of the connected components of Sy \ NV and the other contains
the rest. A collection N of sphere-cuts of G is a sphere-cut decomposition of G if
the set

{Pn| N eN}

is a carving of E(G). This means that there exists a pair (7, 7) where T is a
ternary tree and 7 is a bijection from the leaves of T to E(G) such that

carv(S,T,7) ={Pn | N e N'}

The cost of a sphere-cut decomposition is the maximum cost of its sphere-cuts.
From now each sphere-cut decomposition will be denoted by the pair (7', 7) that
certifies it.

Example 1.1. A graph G and a sphere-cut decomposition of it in Figure[1.4 and
a noose of an edge in Figure[1.3.

A sphere-cut decomposition of a plane graph represents a way to recursively
decompose it by recursively cutting along the sphere where it is embedded without
touching its edges. If all of these cuts meet a small number of vertices, then the
cost of such a decomposition is also equally small. As each cut represents a way
to separate the graph, sphere-cut decompositions can be used in algorithm design
as a “guide” for a divide and conquer approach. In [22] algorithms based on
sphere-cut decomposition are used by Dorn et al. to solve PLANAR HAMILTONIAL
CycLE , PLANAR TSP and PLANAR k-CYCLE in subexponential time. Another
use of them is in [21] where a subexponential algorithm is given for HAMILTONIAL
CYCLE problem on graphs of bounded genus. Moreover, the concept of sphere-
cut decomposition was extended for graphs on surfaces and were introduced new
types of branch decompositions. These types were used for dynamic programming
[56457].
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(2 Vs

U3

U1 G )

Figure 1.2: A graph G and a sphere-cut decomposition of it. Given that N,
is the sphere-cut obtained by the edge e; of T, we denote by V; the set of ver-
tices that it meets and ¢; the cost of the corresponding sphere-cut. Therefore, we
have that Vi = {vi,v3},e1 = 2,Va = {v1,v2},c0 = 2,V53 = {v1,v2,03},c3 =
3, Vi = {vg,ust,cqs = 2,Vs = {v,v,u3t,c5 = 3, Vs = {v1,v3,04},c6 =
3, Vi = {vg,v3},e7 = 2,V = {v1,v4},c8 = 2,Vyg = {va,v3,v4},¢c9 = 3,Vip =
{va,v3,v5},c10 = 3,Vi1 = {vs,vs},en1 = 2,Vie = {vg,v5},c12 = 2,Vi3 =
{v4,v5}, c13 = 2. The cost of (T, 7) is 3.

In [30], it was proven that every n-vertex plane graph admits a sphere-cut
decomposition of cost at most v/4.5 - n. This result improves the bounds of subex-
ponential algorithms for a lot of problems in planar graphs. But why are those
algorithms subexponential? Recall that by making use of the well-known approach
of Lipton and Tarjan [44] based on the celebrated planar separator theorem [43] one
can obtain algorithms with time complexity ¢?(V?) for many problems on planar
graphs. Graph decompositions is a similar approach. One can use a decomposition
of a small width instead of graph separators and dynamic programming instead of
the “divide and conquer” technique. The main idea is very simple: Let a problem
that we are able to solve for every n-vertex graph G, which has a graph decom-
position of width at most [, in time 20UE)pOM) " Since the width in a class of
graphs, such as plane graphs in the aforementioned result, is O(y/n) the problem
is solvable is subexponential time.

However, the constants “hidden” in O(y/n) can be crucial for practical imple-
mentations. During the last few years, a lot of techniques have been developed to
compute and improve the “hidden” constants. Sphere-cut decompositions, that

5
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V4

N

Figure 1.3: N, is drawn with red.

we deal with, is one of them. Some other techniques are : Alber et al. use graph
separators theorems in combination with linear problem kernels [4], Deineko et al.
use cyclic separators of triangulations [18], Demaine and Hajiaghayi use layers of
k-outerplanar graphs [20]. Other similar work is in [2,/19}24,40L|41].

Radial dominating sets. Let G be a plane graph and let x,y be a vertex or
face of G. The radial distance between x and y is one less than the minimum
length of a sequence pi1,...,p, of alternating faces and vertices of G such that
each two consecutive elements are incident to each other (see Figure [1.4)).

A

Figure 1.4: The radial distance between z and y is 4. One of the respective

sequences is x, f1, z, fo,y.

Let G be a plane graph and let S C V(G) and r € Z,. We say that S is an
r-radial dominating set of G if every face or vertex of GG is in radial distance at
most r from some vertex in S (see Figure [L.5]).

The main result of [30] was extended in [59] where it was proven that if a
plane graph has an r-radial dominating set of k vertices, then G has a sphere-cut
decomposition of cost 7 - V4.5 - k. Notice that when r = 1, then this relation
yields the main result of [30]. The purpose of this thesis is to provide a qualitative
extension of this result. What we show is that the upper bound proved in [59)
is attained by a number of sphere-cuts that is a linear function of k. As in most

6
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Figure 1.5: The vertices « and y are a 3-radial dominating set in this graph.

applications k is typically much smaller than the size of the graph, this implies
that the “essential cost” of an optimal sphere-cut decomposition can be located
in a small (linear on k) part of the graph. Interestingly, this locality phenomenon
implies that the algorithmic complexity of many problems on planar graphs with
small dominating sets is concentrated to restricted (linear on k) parts of the input
graph [10427].

g-cores and their weight. To formalize the above landscape we need to in-
troduce first the notion of a g-core of a sphere-cut decomposition. Let (7',7) be
a sphere-cut decomposition and ¢ € Z>3. We say that a subgraph Y of 7" is a
g-core of (T,7) if every sphere-cut of G of cost greater than ¢ corresponds to an
edge of Y and none of the leaves of T is a vertex of Y. Notice that a ¢-core Y
is not necessarily a connected subgraph of 1. If Z is a connected component of
Y, then we define its weight as the number of edges of T that contain exactly one
endpoint in Z. Moreover, the weight of the g-core Y is the sum of the weights of
its connected components. Intuitively, the edges of a g-core represent sphere-cuts
that might correspond to hight-cost sphere-cuts and the weight of a g-core bounds

their number.
Example 1.2. The weight of the q-core in the Figure|[1.6 is 21.

Using this terminology, we can summarize the main result of this thesis with
the following result.

Theorem 1.3. Every plane graph with an r-radial dominating set of size at most
k has a sphere-cut decomposition of cost < r-+/4.5 -k that additionally contains
a 2r-core of weight at most 3k — 6.
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>q

>q
>q
>q > q
>q
>q

>q
> q >q

Figure 1.6: The edges with > ¢ correspond to sphere-cuts with cost > ¢. The edges
that have been drawn fat are the edges of the g-core that we have choose. This
g-core has 3 connected components with weight 10,4,7 respectively. The weight of
the g-core is 21.

1.3 Structure of the thesis

The rest of this thesis is dedicated to the proof of Theorem To this aim, we
need to introduce several combinatorial concepts. In Chapter 2 we give some basic
definitions and results about Graph Theory that are necessary for the proof of the
Theorem. We refer to concepts such as connectivity, planarity, duality, etc.

In Chapter 3 we deal with partially ordered sets. A lot of binary relations can
be defined in the class of graphs. Some of the most important that gather the
most interest of the researchers are subgraphs, topological minors, and minors.
These are the relations we need at this thesis. Graph parameters that are closed
under topological minors, is a key issue for the proof of Theorem

The subject of Chapter 4 is width-parameters and Decompositions. We intro-
duce the reader to the most well-known width-parameter, which is treewidth, but
we mainly deal with its “twin” parameter. This parameter is branchwidth and was
first defined by Robertson and Seymour in [53]. We also formulate the main re-
sults associated with branchwidth that are necessary for the proof of Theorem [I.3

8
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Moreover, we present sphere-cut decompositions, which were mentioned in the pre-
vious section, as a special type of branch decompositions in planar graphs.

In Chapter 5, we concentrate on radial dominating sets and properties of this
graph parameter. Particular reference is deserved for results linking radial domi-
nating sets with branchwidth.

In this thesis the most research interest is in Chapters 6 and 7. We define
formally the concepts of g-weight and (g, k)-capacity and prove the necessary lem-
mas (Chapter 6). Particularly Chapter 6 is dedicated to minor results of great
importance for the proof of the main theorem, which is presented in Chapter 7.
In conclusion we deal with the applications of our results.
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Chapter 2

Basic definitions and results

2.1 Basic definitions

Graphs. A graph G is a pair (V, E) where V is a finite set of elements, called
vertices and F is a set of subsets of V' such that the cardinality of each subset is two.
The elements of F are called edges. For a given graph G we use V(G) to denote
its vertex set and E(G) to denote its edge set. For an edge e = {z,y} € E(G),
the vertices x and y are called the endpoints of e. Two vertices x,y are called
adjacent if {x,y} € E(G). We use the notation G for the set of all graphs.

Neighbourhood and degree. The neighbourhood of a vertex v in a graph G
is the set Ng(v) = {u € V(G) | {u,v} € E(G)}. The Degree of a vertex v in G is
degq(v) = |Ng(v)|, the minimum degree of G is 6(G) = min{deg(v) | v € V(G)}
and maximum degree of G is A(G) = max{degs(v) | v € V(G)}. Similarly for
S CV(G), Ng(S) ={v e V(G)\ S| Ju € S such that {u,v} € E(G). For a
vertex v, (or a vertex set S C V(G)) Ng[v] = Ng(v) Uv (Ng[S] = Ng(S)U S
respectively). We say that a vertex v is isolated if dega(v) = 0.

Common graphs. We now give the definitions of some special graphs that are
used frequently:

e Path of length k is the graph Py = ({v1,v2,...,vk+1}, {{v1,v2}, ...,
{vk,vk+1}}). The vertices v; and viy; are the endpoints of P

e Cycle of size k is the graph Cy = ({vi,ve,..., vk}, {{vi,v2},. .., {vk—1, vk,
{vk,vit}).

11



2.1. BASIC DEFINITIONS

e Clique of size k is the graph Kj = ({vi,va,... v}, {{vi,v;} |1 <i < j <

o Ki;=(AUB,{{a,b} |a € A bec B}) where |A| =k, |B| =1.

See also Figure

Py Cy K, K,

Figure 2.1: Examples of graphs that are used frequently.

The graph G’ = (V',E’) is called subgraph of G = (V,E), if V! C V and
E’ C E. For a subset S C V(G), the graph that is induced by the vertices of S
is G[S] = (S, {{u,v} € E(G) | u,v € S}). Similarly for a subset D C E(G), the
graph that induced by the edges of D is

G[D] = ({z | z is an endpoint of an edge e such that e € D}, D).

Let S C V(G), the graph G\ S = (V(G)\ S,{{z,y} € E(G) | {z,y} NS =0})
is the subgraph of G that obtained by removing the vertices of S. For D C E(G),
the graph G\D = (V(G), E(G)\D) is the graph obtained by removing the edges
of D.

For two graphs G1 = (V1, E1) and Gy = (Va, E»), the disjoint union of these
graphs is the graph G; + G2 = (V1 U Vo, By U E»)

Connectivity. A graph G is connected if every two of its vertices are linked by
a path in G. A maximal connected subgraph of G is a connected component of
G. A graph G is k-connected (for £ € N) if V(G) > k and G \ S is connected
for every set S C V(G) with |S| < k. Similarly a graph G is k-edge connected if
G\ D is connected for every set D C E(G) with |D| < k.

A graph T is called tree if it is connected and contains no cycles as subgraph.
A leaf in a tree is a vertex that has degree one. Given a tree T, we denote by
L(T') the set of its leaves. Also, we denote by M (T') the set of all edges of T' that
have an endpoint in L(T). The set V(T') \ L(T) is the set of internal vertices of

12
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the tree. A rooted tree is a tree in which one vertex has been designated as the
root, otherwise the tree is unrooted.

Planarity. We use the term arc for any subset of the plane homomorphic to the
closed interval [0, 1]. A graph can be drawn in the plane by locating each vertex at
one point of the plane and an arc from one point to another is drawn between the
points corresponding to vertices connected by an edge. A graph is planar if it can
be drawn in the plane without crossings. A planar embedding of a planar graph is
the function that locates vertices to points and edges to curves. A graph that is
embedded in the plane without crossings is called plane graph. Whitney proved
that any two planar embeddings of a 3-connected graph are equivalent [62]. For
simplicity, we do not distinguish between a vertex of a plane graph and the point
of the plane used in the drawing to represent the vertex or between an edge and
the open line segment representing it.

The connected components of R? \ G, that are open subsets of the plane are
called faces. We denote by F(G) the set of the faces of G. We use the notation
A(G) for the set V(G) U F(G) and we say that A(G) contains the elements of G.
If a;,7 = 1,2 is an edge or an element of G, we say that a; is incident to ao if
a1 C @z or ag C a1, where T is the closure of the set x. For every face f € F(G),
we denote by bor(f) the boundary of f, i.e., the set f\ f where f is the closure
of f.

A graph G is called outerplanar if there exists a face f of G such that V/(G) C f.

Proposition 2.1. FEvery planar graph with n vertices has at most 3n — 6 edges.

Graph parameters. A graph parameter is a function mapping a plane graph
to N. There are a lot of parameters in graphs, some of them we have already seen

such as |V(G)|, |E(G)|, or A(G).

Multigraphs. A multigraph is a graph that can have multiple edges (i.e., more
than one edge between a pair of vertices) and loops, i.e., edges that connect a
vertex to itself (see Figure . We say that we simplify a multigraph when we
remove the loops and multiple edges and add an edge for every pair of vertices
that was connected with a multiple edge. If G is a multigraph, we denote the
graph obtained by the simplification as G.

13
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Figure 2.2: A multigraph with one loop and three multiple edges.

2.2 Basic concepts

Separators. A separator of a graph G is a set of vertices S C V(G), where
removing them from G, the number of the connected components of the remaining
graph is greater than the number of connected components of G. For two vertices
s,t which are in the same connected component of G, a subset S C V(G) is called
(s,t)-separator if S is a separator of G and s,t are not in the same connected
component of G\ S. An (s,t)-separator S is minimal if there is no other (s,t)-
separator S’ such that S’ is a proper subgraph of S. A separator S is a minimal
separator of G if it is a minimal (s, t)-separator for some s,t € V(G).

Clique Sum. We denote G € Gy ©p, Go,h € N if G can be obtained from the
disjoint union of G; and G2 by identifying pairs of vertices of a clique of size h
of G1 and G to form a single shared clique of size at most h, and then possibly
deleting some of the clique edges.

Triconnected components. Let G be a connected graph, let S C V(G), and
let Vi,...,V, be the vertex sets of the connected components of G\ S. We define
C(G,S) ={Gi,...,G,} where G} is the graph obtained from G[V; U S] if we add
all edges between vertices in S.

Given a graph G, the set Q(G) of its triconnected components is recursively
defined as follows:

e If GG is 3-connected or a clique of size < 3, then Q(G) = {G}.

e If G contains a minimal separator S where |S| < 2, then we define Q(G) =
Urrec(c,s) Q(H) (see Figure [2.3) for an example).

14



CHAPTER 2. BASIC DEFINITIONS AND RESULTS

A

Figure 2.3: A graph and its triconnected components.

A triangulation H of a plane graph G is a plane graph H where V(H) = V(G),
E(G) C E(H), and where H is triangulated, i.e., every face of H has exactly three
edges incident upon it (see Figure .

Two paths P and P’ with s,t as endpoints are vertex internally disjoint if
V(P)NV(P) ={s,t}.

Theorem 2.2 (Menger, |48]). Let G be a graph and let s,t € V(G) be distinct,
non-adjacent vertices. The maximum number of vertex internally disjoint paths
with s,t as endpoints equals to the minimum size of an (s,t)-separator.

As corollary of the theorem can be obtained the next proposition.

Corollary 2.3. A graph G is k-connected if and only if for every two non-adjacent
vertices s and t there are k vertex internally disjoint paths with endpoints s and t.

A subset I C V(G) is radially independent set of a plane graph G if for every
x,y € I, there is no face f of G such that x C f and y C f.

Lemma 2.4. If G is a 3-connected plane graph, and I C V(G) is a radially
independent set of G, then G\ I is a 2-connected graph.

Proof. Let s,t be two arbitrary non-adjacent vertices of G\ I and P, Py, P3 vertex
internally disjoint paths of G with endpoints s and ¢. Let v € I and suppose that
F, is a subset of V(G) such that

F,={ucV(G)|3f € F(G) such that u C f and v C f}.

15
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Figure 2.4: An example of a triangulated graph.

Because of 3-connectivity of G the graph G[F,] is a cycle. Of course if (V(P;) U
V(P2) UV (Py)) NI = ( the graph G \ I remains 3-connected. Suppose that
v € I belongs to the vertex set of Py, then there are two vertices vy, vs such that
V(P1)NNg(v) = {vi,v2} and P; is in form s...vjvve...t. Let Ry, Ry be the two
paths with endpoints v and vg in G[F,]. We observe that it may be true at most
one of V(P,))NV(Ry) # 0 and V(P;) N V(Rg) # 0 for i = 2,3. Assume that for
i = 2 both of them are true and x; € V(P) NV (R1),z2 € V(P2) NV (Rz). Let
also that P’ is the subpath of P with endpoints 1 and z9 and R’ the path of
G|F,] with endpoints z; and x that contains v;. The disjoint union of P’ and R’
is a cycle C. Let A1, As be the two open discs bounded by C' and assume that
v € Ay, If t € Ay, then P; and P, cannot be vertex internally disjoint paths.
Moreover, if t € A1, then it is contradiction both of the pairs P;, Ps and P», P53 to
be vertex internally disjoint paths . O

2.3 Duality

Given a plane graph G = (V, E), the dual graph of G denoted by G* = (V*, E¥)
is the graph that satisfies the following conditions:

e Every vertex of G* is a point of a face of G.
e For every face f of G, V* N f contains exactly one point of the plane

o If f1, fo € F(G) and vy,vy € V* such that v; = V*N f; for i = 1,2, for every
edge e € E(G) where e = f1 N fy there is an edge e* € E* with endpoints vy
and vy (see also Figure [2.5)).

We observe (as also shown in the example) that the dual graph of a simple
graph G can be a multigraph. Moreover, if G is a simple graph and A(G) > 2,
then its dual has no loops.

16
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Figure 2.5: A graph drawn with black and its dual with red.

Let G = (V, E) be a plane graph. The radial graph of G (we denote it as Rg)
is the graph Rg = (V(G)U F(G),{{v, f} |v € V(G), f € F(G) and v C f}). We
observe that G and its dual have the same radial graph (see Figure .

Figure 2.6: The radial graph of graphs in Figure The black vertices are the
vertices of G. The red verticesare the vertices of G*. Observe that all the edges
of Rg have one black and one red endpoint.

A graph parameter p on plane graphs is said to be self-dual if p(G) = p(G¥).

Example 2.5. The number of edges in a graph G is self-dual parameter, E(G) =
E(G*).
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Chapter 3

Partially Ordered Sets

Posets. A partially ordered set(poset) is a set P and a binary realtion < such
that for all z,y,z € P

1. z <z (reflexivity).
2. z <y and y < z implies that = < z (transitivity).
3. x <y and y < z implies that x = y (anti-symmetry).

A vpair of x,y € P are comparable if x < y or y < x. Otherwise they are
incomparble. We write x < y if ¢ < y and * # y. A chain is a sequence
1 < X9 < x3 < ...< Ty A set Ais anti-chain if every pair of elements in A are
incomparable.

Posets in graphs. In the set of G there are a lot of interesting partial orderings.
Some of them are subgraph, topological minor and minor.

As we have mentioned in the introduction, the graph H = (V'  E’) is called
subgraph of G = (V, E), if V! C V and E' C E. We denote it by H < G.

A subdivision of a graph H is any graph that can be obtained from H if we
apply a sequence of subdivisions to some (possibly none) of its edges (a subdivision
of an edge is the operation of replacing an edge e = {z,y} by a path with z and
y as endpoints of length two. We say that a graph H is topological minor of a
graph G (we denote it by H <; G) if some subdivision of H is subgraph of G.

A contraction of an edge e = {z,y} is the graph G’ = (V', E’) where V' =
V(G)\{z,y} Uvgy and E' = E(G) \ {Eg(z) U Ec(y)} U {{vay, v} [ v € (Na(z) U
Ne(y)) \ {z,y}}. A graph H obtained by a sequence of edge contractions is said
to be a contraction of G. A graph H is a minor of G (we denote it by H <,, G) if
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Figure 3.1: The graph in (d) is minor of the graph in (a) that is obtained by
deleting the blue vertices and edges in (b) and contracting the red edges in (c).

H is a subgraph of some contraction of G (see Figure [3.1)). A well-known result,
that Robertson and Seymour proved in the Graph Minors series, known as Graph
Minor Theorem is the following:

Theorem 3.1 (N. Robertson, P. D. Seymour [55]). There is no infinite anti-chain
in the class G under the minor relation.

Definition 3.2. Let < be a relation on graphs such as <s, < or <m. A graph
class C is closed under < if for every graph G € C, if H < G for a graph H, then
HecC.

Definition 3.3. The obstruction set of a graph class C which is closed under <,
obs(C) is the minimal set of graphs H satisfying the following property

GeC«s forevery He H,H £ G
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Example 3.4. The obstruction set in the class of trees T, for <€ {<s, <¢,<m},
is obs(T) = K3.

For the obstruction set in the class of planar graphs for <€ {<,,} the next
result that was proven by L. Pontryagin around 1927, however he never published
his proof. Independently K. Kuratowski published his proof in 1930 [42]. Now the
result is known as Kuratowski’s theorem or Kuratowski—Pontryagin theorem.

Theorem 3.5. A graph G is planar if and only if has none of K5 and K33 as

minor.

The following result which we will use later is a consequence of the previous
theorem.

Proposition 3.6. A graph G is outerplanar if and only if has none of K4 and
Ky 3 as minor.

Proof. 1t is easy to observe that K4 and K3 are not outerplanar graphs. Also,
the class of outerplanar graphs is closed under minors, so if a graph G has K,
or K3 as minor is not outerplanar. Now let GG is non-outerplanar graph and set
Gt = (V(G)Uv, B(G)U {v,z} | x € V(G)). We claim that G is a non-planar
graph. Assume that G is planar and is given to us with an embedding of it. Then
v belong to a face of G that its boundary contains all the vertices of G. This is a
contradiction. From Theorem G has no K5 and K. 3,3 as minor. We observe
that removing a vertex can affect either a vertex or an edge of a subdivision of a
graph. In any case that means that G has either K4 or K>3 as minor. 0

Figure 3.2: The obstruction set of outerplanar graphs, Ky and Ko 3.

A graph parameter p is said to be closed under a partial ordering of P if the
following holds: if H,G € P and H < G, then p(H) < p(G).

Example 3.7. If H <; G, then A(H) < A(G).
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At the next chapters we will mainly refer to graph parameters which are closed

under topological minors.
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Chapter 4

Width-parameters and
Decompositions

In this chapter we deal with width-parameters. Width-parameters have a lot of
applications in several areas such as graph searching, structural graph theory,
parameterized algorithms, and others. Moreover, it is easier to understand the
structure of a graph if we know a width-parameter of it. For example a well-
known parameter, which has a lot of applications is treewidth.

Treewidth. A tree decomposition of a graph G is a pair T = (T, {X;}+ € V(7))
where T is a tree whose every node t is assigned a vertex subset X; C V(G) called
a bag, such that the following three conditions hold:

L. Uev(r) Xt = V(G). In other words, every vertex of G is in at least one bag.

2. For every edge {u,v} € V(G) there exists a node ¢t of T such that bag X;
contains both u and v.

3. For every u € V(G), the set Tu =t € V(T) : u € Xy, i.e., the set of nodes
whose corresponding bags contain u, induces a connected subtree of T

The width of a tree decomposition 7 = (T, {X;};+ € V(7)) is equal to

max |X¢| — 1.
teV (T)

The treewidth of a graph G, denoted by tw(G), is the minimum possible width
of a tree decomposition of G. Intuitively treewidth shows how similar is a graph

with a tree.
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Example 4.1. The following propositions hold:
1. The trecwidth of trees is 1.
2. The treewidth of Ky is k — 1.

3. The treewidth of the graph in Figure is 2.

() on Vg U9 V10
U3 :
V11
——o
v vy Vg U7 G

Figure 4.1: A graph G with a tree decomposition of it. As easily can be seen from
the decomposition, every bag has at most 3 vertices, so tw(G) = 2.

By the definition of tree decomposition, if ¢1,¢s are connected vertices in T,
then X, N X3, is a separator of the graph. This property of tree decompositions is
very useful to deal with algorithmic problems on graphs [89]. In what follows, we
mainly deal with its “twin” parameter, which is a constant factor approximation
of treewidth. This parameter is branchwidth and was first defined by Robertson
and Seymour in [53]. There branchhwidth has been introduced as an alternative to
the parameter of treewidth, as it appeared to be easier to handle for the purposes
of their proofs. We stress, that especially for our study, branchwidth is much more
suitable for dealing and exposing the concepts related to our main result.
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4.1 Branchwidth

Let G be a graph on n vertices. A branch decomposition (T,7) of a graph G
consists of an unrooted ternary tree T (i.e., all internal vertices are of degree
three) and a bijection 7 : L — E(G) from the set L of leaves of T to the edge set
of G. We define for every edge e of T the middle set w(e) C V(G), as follows: Let
Ty and Ty be the two connected components of 7'\ e. Then, let G§ be the graph
induced by the edge set {7(f): f e LNV (If)} for i € {1,2}.

The middle set is the intersection of the vertex sets of G{ and G§, i.e., w(e) =
V(GS)NV(GS). We denote midg(e) = |w(e)|. The width of (T, 7) is the maximum
order of the middle sets over all edges of T' (in case T" has no edges, then the width
of (T, 7) is equal to 0).

The branchwidth, denoted by bw(G), of G is the minimum width over all
branch decompositions of G.

Example 4.2. The following propositions hold:

1. The branchwidth of a graph is at most 1 iff it does not contain a path on 4
vertices as a subgaph.

2. The branchwidth of cycles is 2.
3. The branchwidth of K}, is at most [2k/3].
4. The graph G of Figure[{.3 has bw(G) = 2.

We can observe that in a branch decomposition (7', 7), for every edge e € E(T)
the vertices of G that belongs to w(e) is a separator of G. The relation between
branchwidth and treewidth is given by the following result

Proposition 4.3 (P. D. Seymour and R. Thomas [53|). If G is a graph, then
bw(G) < tw(G) + 1 < 3bw(G)

Now let us see some other results related on branchwidth.

Proposition 4.4 (P. D. Seymour and R. Thomas [53]). A graph G has branch-
width < 2 if and only if has no K4 as minor.

Proposition 4.5 (F. V. Fomin, D. M. Thilikos [30]). If G is a n-vertex planar
graph, then bw(G) < 4.5 - n.

Proposition 4.6 (F. V. Fomin, D. M. Thilikos [28]). If G is a graph that contains
a cycle, then bw(G) = max{bw(H) | H € Q(G)}.
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Vg Uy Ug Vg V10
L ]
U3
V11
U1 Us Vg U7 G

Figure 4.2: A graph G and a branch decomposition of it.

Proposition 4.7 (P. D. Seymour and R. Thomas [53]). The parameter bw is
closed under topological minors, i.e., if H <; G, then bw(H) < bw(G).

Proposition 4.8 ([47,58]). If G is a plane graph with a cycle, then bw(G) =
bw*(G).

Lemma 4.9. If G is a multigraph and G is a graph with a cycle, then bw(G) =
bw(G).

Proof. Let D = (T, 7) be a branch decomposition of G that achieves the minimum
width. If x and y are vertices of G that are connected with [ > 2 edges, let E,, be
the set of these edges. Then suppose that T” is a rooted binary tree with [ leaves.
Let r be the root of the tree and f a function such as f : Eyy — L(T"). Let z be
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the only neighbour of 7({z,y}) in T, then we delete the edge {z,7({z,y}) from T
and add 7" in T by identifying z with r and extend 7 with f. Similarly for the
loops of a vertex x and {x,y} an arbitary edge of G, we divide the edge of T (let z
be the new vertex) that has 7({z,y}) as an endpoint and identify z with r where
r is the root of the binary tree with the loops of x. With this process for every
multiple edge and all the loops of G a branch decomposition of G that its width
is equal to the width of D is obtained. O

4.2 Sphere-cut decompositions.

In the introduction we defined sphere-cut decompositions using carvings. Now
we give another equivalent definition which is more suitable for our proofs. This
definition examine sphere-cut decompositions as a special type of branch decom-
positions in plane graphs.

Given a plane graph G, an arc I that does not intersect the edges of G (i.e.,
ING C V(G)) is called normal. The length |I| of a normal arc I is equal to
the number of elements of A(G) that it intersects minus one. If 2 and y are the
elements of A(G) intersected by the extreme points a normal arc I, then we also
call I normal (x,y)-arc. A noose of the plane, where G is embedded, is a Jordan
curve that does not intersect the edges of G. We also denote by V(N) the set of
vertices of G met by N, ie., V(N)=V(G)NN.

The length |N| of a noose N is |[V(N)]|, i.e., is the number of the vertices it
meets.

Let G be a plane graph. A branch decomposition (T, 7) of G is called a sphere-
cut decomposition if for every edge e of T' there exists a noose N, such that

(b) G¢ € A;UN, for i = 1,2, where A; is the open disc bounded by N, and

(c) for every face f of G, N. N f is either empty or connected (i.e., if the noose
traverses a face, then it traverses it once).

We denote by SC;(G) the set of all sphere-cut decompositions of G with width
at most k.

Proposition 4.10 (P. D. Seymour, R. Thomas [58]). Let G be a planar graph
where §(G) > 2 and with branchwidth at most k embedded on a sphere. Then

there exists a sphere-cut decomposition of G of width at most k.
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Chapter 5

Radial Dominating Set

Let G be a plane graph and let r be a non-negative integer. Given two elements
z,y € A(G), we say that they are within radial distance at most r if there is
a normal (z,y)-arc of the plane of length at most r. We denote this fact by
rdistg(z,y) <r

Given a vertex set S C V(G) and a non-negative integer r, we denote by
R{(S) the set of all elements of G that are within radial distance at most 7 from
some vertex in S. We say that a set S C V(G) is an r-radial dominating set of
G (or, alternatively we say that S r-radially dominates G) if R (S) = A(G). We
define

rds,(G) = min{k | G contains an r-radial dominating set of size at most k}.

Observation 5.1. The parameter rds is closed under topological minors. In other
words, if H,G are graphs, r € N, and H <; G, then rds,(H) < rds,(G).

Observation 5.2. If G is a multigraph, then rds,(G) = rds,(G).

Let G be a plane graph, y € N, and S C V(G). We say that S is y-radially
scattered if for any ay1,ae € S, rdistg(ai,az) > y. We say that S is r-radially
extremal in G if S is an r-radial dominating set of G and S is 2r-radially scattered
in G.

The relation between radial domination and radially extremal set is provided
by the following result.

Proposition 5.3 (D. M. Thilikos [59]). Let G be a 3-connected plane graph and
S be an r-radial dominating set of G. Then G is the topological minor of a trian-
gulated 3-connected plane graph H where S is r-radially extremal in H.
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The Proposition [5.3| served as the main tool of the proof of the main theorem
of [59] (combined with Proposition as induction basis) which is the following.

Proposition 5.4 (D. M. Thilikos [59]). Let r be a positive integer and let G be a

plane graph. Then bw(G) < r-/4.5-rds,(G).

Based on the same induction rule with the previous theorem, we prove the
following lemma.

Lemma 5.5. For every positive integer r, if G is a plane graph with rds,(G) < 2,
then bw(G) < 2r.

Proof. We use induction on r > 2. For r = 1 the result is trivial but cannot be used
as induction basis because there are no edges in the branch decomposition. For the
induction basis, if 7 = 2 we examine the cases where rdsy(G) = 1 or rdsz(G) = 2.
If rds2(G) = 1, that means that G is outerplanar graph. By Proposition G
has no K4 as minor and follows by Proposition that branchwidth of G is at
most 2. If rdsy(G) = 2 let s1, s2 be the 2-radial dominating set of G. If we remove
s1, s9 from G the remaining graph will be a cycle. The branchwidth of a cycle is
2, so by adding s1, so branchwidth of G will be at most 4. From these two cases
it is clear that if rdsz(G) < 2, then bw(G) < 4.

Assume now that the lemma holds for values smaller than r and we will prove
that it also holds for r where r > 2. Using Proposition we choose H € Q(G)
such that bw(H) = bw(G) (we may assume that G contains a cycle, otherwise the
result follows trivially). By Observation rds,(H) < rds,(G). Let S be a -
radial dominating set of H where |S| < 2. From Theorem [5.3| H is the topological
minor of a 3-connected plane graph H; where S is r-radially extremal.

Let Hs be the graph obtained if we remove from H; the vertices of S. Because
of 3-connectivity of H; for any v € S the graph H[Np, (v)] is a cycle and each
such cycle is the boundary of the face of Hy. We denote by F' the set of these faces
and observe that F* is a (r — 1)-radial dominating set of H; (we denote by F™*
the vertices of Hj that are duals of the faces of F' in Hy). Moreover, the fact that
S is a 2r-scattered dominating set in H; implies that F* is a 2(r — 1)-scattered
dominating set in Hj. From the induction hypothesis and the fact that |S| = [F*|,
we obtain that bw(H3) < 2(r — 1). This fact along with Proposition implies
that bw(Hz) < 2(r — 1).

In graph Hy, for any face f; € F, let (x,...,x¢ ) be the cyclic order of the
vertices in its boundary cycle. We also denote by x’ the vertex in H; that was
removed in order f; to appear in Hy. Let (T,7) be a branch decomposition of
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H; of width at most 2(r — 1). By Proposition we may assume that (T, 1)
is a sphere cut decomposition. We use (7),7) in order to construct a branch
decomposition of H; by adding new leaves in T" and mapping them to the edges
E(Hy)/E(H3) = Uiz, p{{a" 2} } | h=0,1,...m —1} in the following way: for
every i = 1,...,|F| and h = 0,1,...m — 1 we set tj, = 77 ({2}, 2}, mod m; J)
and let e} = {y;,t} } be the unique edge of T' that is incident to t;. We subdivide
e} and we call the subdivision vertex sﬁl. We also add a new vertex sz and make
it adjacent to sﬁb. Finally, we extend the mapping of 7 by mapping the vertex
2z} to the edge {z%,z}} and we use the notation (I”,7') for the resulting branch
decomposition of Hy. We claim that the width of (7”,7') is at most 2.

To prove this, we use the functions w and w’ to denote the middle sets of (7', 7)
and (T",7") respectively. Let e be an edge of 7. If e is not an edge of T', then
lw'(e)] < 3. If e is also an edge of T', let N, be the noose of Hy meeting the vertices
of w(e). Because |F| is at most 2, N, meets at most all the faces of F', then the
vertices in w’'(e) of a noose N/ of H; meeting all vertices of w(e) plus at most 2,
x', 22, Then |w'(e)] < |w(e)| +2 < 2(r — 1) + 2 = 2r. Therefore the width of
(T',7') is at most 2r.

We just proved that bw(H;) < 2r. As H is topological minor of Hj, from
Proposition bw(H) < 2r and also from Proposition bw(H) = bw(G) <
2r. O

At the next lemma we give a relation between rds of a graph G which is an
1- or 2-clique sum of two other graph with the rds of these graphs.

Lemma 5.6. Let G,G1, and G4 be plane connected graphs such that rds,(G) < k
and G € Gy ®p, Go for some h € {1,2}. Then rds,(G1) + rds,(G2) < k + 2.

Proof. Let S C V(G) be the vertices of G that are in G and also in Ga, ki
(ko respectively) is the number of vertices of rds,(G) that are in G \ S (G2 \ S
respectively). Let [ be the number of vertices of rds,(G) that are in S, so k1 +
ko +1 = k. If | = 0, it is clear that if a vertex or a face x in (G; is dominated
in G by a vertex of rds,(G), that is also in Ga, then if in rds,(G1) we add a
vertex s of S, x will be dominated by s. So if I = 0, rds,(G1) < k1 + 1 and
rds,(G2) < k1 + 1, then rds,(G1) + rds,(G3) < k+2. If [ =1 or [ = 2, then
there is no need to add any vertex to dominate vertices or faces of G; or G, so
rds,(G1) +rds,(G2) < k + 2. O
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Chapter 6

Weight and Capacity

6.1 g-weight

Let G be a graph and let D = (T, 7) be a branch decomposition of G. Given a
q > 2 and a subgraph Y of T', we say that Y is a g-core of D if

e L(T)NV(Y)=10

e Ve € E(T) if midg(e) > ¢, then e € E(Y).

e There are no isolated vertices in Y.

We denote by C(Y') the connected components of Y. For each Z € C(Y) we define
its extension Z as the subtree of T obtained if in Z we add all edges with one
endpoint in V(Z), we also call these edges boundary of Z and we denote it by 0Z.
The q-weight of Y in D is defined as the quantity

w(Y)= > |0Z]

ZeC(Y)

Given a graph G a ¢ > 2 and a k > 2, we define (g, k)-capacity of G as follows:

cap, ;(G) = min{s|3D € SC;(G), there exists a g-core YV’ (6.1)
of D such that w(Y) < s} U{0}.

6.2 Before the main proof

Observation 6.1. If G is a multigraph and G is a graph with a cycle, then

cap, i (G) = Capq,k(G)-
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D= (T,7) D' = (T',7)
Vg
*——©
pon P =)
Ve

Figure 6.1: D and D’ are branch decompositions of Gy and G respectively, where
G1=Ga\e If {pe,p} € E(Y) in D, then Y' =Y \ e{p., p}, otherwise Y’ =Y.

The proof does as in Lemma by choosing the same g-core for the branch
decomposition of G as the branch decomposition of G.

Lemma 6.2. Let g,k > 2 and let G1 and Go be graphs where G1 is a topological
minor of Ga. Then cap, ;(G1) < cap, ;(G2).

Proof. Let D = (T, 1) be the branch decomposition of Gy and let Y is a g-core
of D such that Y achieves the minimum g-weight ¢, ;(G2). Let G1 be the graph
that obtained if we remove an edge e from G9 and let v. be the vertex of T
such that 7(e) = v.. Let also p. be the parent node of v, and v, be the other
vertex of L(T) that is connected with p. in 7. Let D' = (T,7') be the branch
decomposition of G obtained from D if we remove the edges {pe, ve} and {pe, vz}
and 7/(771(v;)) = pe. We choose Y’ such as follows: let p be the third neighbour
of pe in T. If {pe,p} € E(Y), then Y’ be the graph induced by E(Y) \ {pe,p}.
If {pe,p} ¢ E(Y), then Y =Y. If e € E(T)N E(T"), midg, (¢) < midg,(e) so
every edge of F(T) N E(Y) can also be in E(Y’). Then the boundary of Y’ is at
most equal with the boundary of ¥ so ¢4 x(G1) < ¢ 1(Ga2) (see Figure [6.1)).
Removing a vertex is the same as removing all the edges that have this vertex
as an endpoint.
Now let G; be obtained if we contract a vertex v of degree 2 in Gs. Let v1, v
be the two neighbours of v in Gy and {v1,v2} the edge after the contraction of v
in G1. The branch decomposition D’ = (T”,7') obtained by removing the vertex
7({v1,v}) in T and do the same as before with p. and also 7/({v1,v2}) = 7({va, v}).
We choose Y as before. Moreover, if e € E(T) N E(T"), midg, (e) < midg,(e) so
every edge of E(T)N E(Y) can also be in E(Y’). Then the boundary of Y’ is at
most equal with the boundary of Y so ¢, (G1) < ¢gx(G2) (see Figure[6.2).
O

34



CHAPTER 6. WEIGHT AND CAPACITY

D= (T,7) D = (T',7)
*——0
p be p pe =T (17 (v2))
7({v,11})
T({v,v2}) 7({v1,v2})

Figure 6.2: D and D’ are branch decompositions of G5 and G respectively, where
(G1 is obtained by contracting a vertex v of degree 2 with neighbours vy, ve. If
{pe;p} € E(Y) in D, then Y’ =Y \ e{pe, p}, otherwise Y’ =Y.

Lemma 6.3. Let G be a 2-edge connected plane graph and let G* be its dual and
¢,k > 2. cap, ;(G) = cap, ,(G*)

Proof. Let G has a sphere-cut decomposition D = (7', 7) with width at most k
and D be a g-core Y. We define the branch decomposition D* = (T*,7*) of G*
where T* = T and for each e* € E(T*), 7*(e*) = 7(e). We also set Y* =Y.
Notice that D* is a sphere-cut decomposition.
Claim : For every e € E(T), midg+(e) = midg(e).
Proof of the claim. Let Rg be the radial graph of G that is the same for G*.
Assume also that every noose N, meets only points that are in edges and vertices
of Rg and not in the faces. Let Vg = N. N V(Rg) and that means Vi = (VR N
V(G)) U (VRN V(G*)). It is clear that in N, there is an alternative sequence
between the vertices of (V(R) N V(G)) and the vertices of (V(R) N V(G*)), so
midg- (e) = midg(e) (see Figure [6.3)).

This implies that D has width at most k& and that, w(Y™*) = w(Y). O

Lemma 6.4. Let G, Gy, and G2 be plane connected graphs such that G € G1 Py Go
for some h € {1,2}. Let also D; = (T;,7;) be a branch decomposition of G;, Y; is
a g-core of Dy, i € {1,2}. Then there is a branch decomposition D = (T, 1) of G
and Y is a q-core of D such that w(Y) < w(Y1) + w(Y2) and the width of D is
the maximum width of D1, Do
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Figure 6.3: The radial graph of the graph G of the Figure[T.2} The black vertices
are the vertices of G and the red are the vertices of G*. The red edges consistute
the noose of the edge eg in Figure of T of the sphere-cut decomposition of

Figure

Proof. For the proof of this lemma we construct a branch decomposition of G,
D = (T,7) based on D; = (T;,7;) of G;,i € {1,2}. Denote by w the function
indicating the middle set of the edges of T" and by wi, wo indicating the middle
sets of the edges of 11, T5 respectively. There are three cases:

1. G € G1®2G2. Let a,b be the vertices of G such that V(G1)NV(G2) = {a, b}
and additionally assume that, {a, b} is not an edge of G,

2. Like above, but now {a, b} is an edge of G and

3. G € G1 ®1 Gs.

In the first case, we remove in T} the edge €] that has an endpoint which
corresponds to e = {a,b} in G; and we call p; the parent node of this endpoint.
Similarly remove €}, and call ps in To. To construct the tree T' of the branch
decomposition of G we add the edge {p1,p2}. We define 7: E(G) — L(T) such as
follows: if e € E(G) N E(G;),i € {1,2}, then 7(e) = 7;(e). From the construction
of T'if e € E(T)N E(T;),t1 € {1,2}, then w(e) = w;(e) and w({p1,p2}) = {a,b}.
We choose Y such as Y = Y; U Ys and it satisfies the properties of the lemma.
That means that for e € E(T) N E(T;),i € {1,2} if e € Y}, then e € Y and also if
e belongs to the boundary of Y;, then e belongs to the boundary Y. If €] is in the
boundary of Y;, then {p1,p2} is in the boundary of Y. If this is true for €| and €},
then we count {p1,p2) twice in the g-weight of Y. Now it is obvious that for this
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case there is a branch decomposition D = (T,7) of G and Y a g-core of D such
that w(Y) < w(Y1) 4+ w(Y2) (see also Figure [6.4)).

a a
D,
T2 (U,7 b) P2
(a) b b
a
D
P1 P2
G

(c) b (@)

Figure 6.4: In (a) are depicted two graphs G1,G2 that both have labelled the
adjacent vertices a and b. In (b) are the the parts of their branch decompositions
Dy and D, that contain 7({a,b}). The graph G in (c) is a 2-clique sum of G;
and G5, where have been identified the common labelled vertices and deleted the
edge {a,b}. In (d) is shown the way we construct from D; and Ds a branch
decomposition of G where w(Y) < w(Y71) + w(Y2).

In the second case we similarly add the edge {p1,p2} but also subdivide it and
call s; the subdivison vertex. To construct 7', we add a leaf v, and connect it
with s1. We define 7 : E(G) — L(T) as follows: if e € E(G) N E(G;),i € {1,2},
then 7(e) = 7i(e) and 7({a,b}) = va. The only difference from the previous case
is that, if €} is in the boundary of Y;, then {p;, s1} is in the boundary of Y (see

also Figure .

In case G € G1 @1 Ga, let v be the vertex of G that is in G1 and Gs. Let eq, e
be two edges of G'1, Go respectively that have v as an endpoint. Let e;’, es” be the
edges of T1,T5 that have the vertex that corresponds to e, es as an endpoint and
call p1, p2 the other endpoint of e1’, es’ respectively. We subdivide e1’, es” and we
denote the subdivisions vertices by v, vs. In order to construct T', we add the edge
{v1,v2}. We define 7 : E(G) — L(T) as follows: if e € E(G) N E(G;),i € {1,2},
then 7(e) = 7;(e). From the construction of T', if e € E(T)NE(T;),i € {1,2}, then
w(e) = wj(e). As previously, we choose Y so that Y = Y; U Y5 and notice that
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Dy D,

p1 7i(a,b) m(a,b)  po

(©) b (d)

Vab

Figure 6.5: In (a) are depicted two graphs G1,G2 that both have labelled the
adjacent vertices a and b. In (b) are the the parts of their branch decompositions
Dy and D that contain 7({a,b}). The graph G in (c) is a 2-clique sum of G
and G2, where have been identified the common labelled vertices. In (d) is shown

the way we construct from D; and Ds a branch decomposition D of G where
w(Y) <w(Y1) +w(Ya).

Y satisfies the properties of the lemma. Also, for e € E(T) N E(T;),i € {1,2}, if
e €Y;, then e € Y. Also, if e belongs to the boundary of Y;, then e belongs to the
boundary Y. If €] is in the boundary of Y, then {p;,v;} is in the boundary of Y.
We just constructed the branch decomposition D = (T, 7) of G. Moreover, Y is a
g-core of D such that w(Y) < w(Y7) + w(Y2) (see Figure [6.6)).

In any case, it follows that the width of D is the maximum width of Dy, Do
because for every e € E(T) N E(T;),i € {1,2}, then w(e) = w;(e). O

Observation 6.5. If the branch decompositions D1 and Dy of the previous lemma
are sphere-cut decompositions of G1 and Go respectively, then D is also a sphere-
cut decomposition of G.

Lemma 6.6. If G is a 3-connected plane graph where rdsi(G) < k and D = (T, 1)
is a branch decomposition of G, then there exists Y which is 2-core of D such that

w(Y) <3k —6.

Proof. Let L C V(T') be the leaves of T' and E;, C E(T') be the edges of T that
have one endpoint in L. Beacause G is a plane graph, from Proposition
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., D, D,
v p1 D2
(a) (0)
D
v
P U2 v2 P2
el
(©) (d)

Figure 6.6: In (a) are depicted two graphs G1,G2 that both have a labelled vertex
v and an edge which has v as an endpoint, ej, ez in G, Go respectively. In (b)
are the parts of their branch decompositions D; and Ds that contains 7(e;) and
7(e2). The graph G in (c) is a 1-clique sum of G; and G2 where the vertex v has
been identified. In (d) is shown the way we construct from D; and Dy a branch
decomposition D of G where w(Y) < w(Y7) + w(Y32).

obtained that |E(G)| = |L| = |FL| < 3k — 6. For the middle sets of edges of T" we
note that if e € £, then midg(e) = 2 and if e ¢ Fr, midg(e) > 2 because of the
3-connectivity of G. We choose Y as the subgraph induced by E(T)/Er, and Ep,
is the boundary of Y. Recall that the 2-weight of Y in D is |Er| which is at most
3k — 6. O
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Chapter 7

Main Result

7.1 Weakly dominated and strong dominated tricon-
nected components
Given a graph G and a positive integer r, the set of weakly dominated compo-

nents W, (G) and the set of strong dominated triconnected components S, (G) are
recursively defined as follows:

e If rds,(G) < 2, then W,(G) = {G} and S,(G) = {0}.

e If rds,(G) > 3 and G is 3-connected, then S,.(G) = {G} and W,.(G) = {0}.

o If G € Gy &) G for some h € {1,2}, then S, (G) = S§,(G1) U S,-(G2) and
WT(G) = Wr(Gl) U Wr(GQ)

By this recursive definition we construct a tuple (77, z), where T is a rooted
tree and z is a function such that z : V(Tg) — G. The construction based on the
following conditions:

e The restriction of z in the leaves is a bijection from the leaves to W,(G) U

S (G).

e If G’ is a graph such that G’ € z(v1) @}, z(v2) for some h € {1,2}, then
z(v) = G’ where v is the parent node of v; and vy in T,

Observe that if R is the root of Tf,, then z(R) = G.

Notice that all graphs in S,(G) and W,.(G) are topological minors of G. It is
also clear from Proposition that if G € G; @), G2 for some h € {1,2}, then
bw(G) = max{bw(G1),bw(G2)}
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7.2 Main Proof

Now we are in position to prove Theorem [I.3] But before that we restate the
theorem more formally in a way related on the concepts of the previous chapters.

Theorem 7.1. Let G be plane graph and r a positive integer. If rds,(G) < k,
then bw(G) <r-v4.5 -k and cap,, ,  57(G) < 3k —6.

Proof. Assume that there are no vertices of degree one in G. We use induction on
r. If r =1, for every graph the minimum 1-radial dominating set is equal to the
number of its vertices.

Now by induction on Tcl,, we will prove that there is a sphere-cut decomposition
D of G and a Y which is a 2-core of D such that w(Y) < 3k — 6, where k =
rds; (G) = |V(G)|.

Let G’ € &1(G) and Dy = (T',7') be the branch decomposition of G’ of
minimum width. By [£.10] we can assume that is a sphere-cut decomposition.
Lemma implies that there exists a Y’ which is a 2-core of D; and such that
w(Y’) < 3K — 6, where k' = rds1(G') = |V(G')|. We observe that S1(G) = 0
because there are no vertices of degree one.

Let R be the root of T and assume now that for every v € V(T}) \ R there
is a sphere-cut decomposition D, of minimum width of z(v) and a a Y, which is
a 2-core of D, such that w(Y,) < 3k, — 6, where k, = rds;(z(v)) = |V (z(v))|.
This propositions hold also for G = z(R). Let v1,v2 be the children of R in T},
s0 G € z(v1) ®p, 2(vg) for some h € {1,2}. From the induction hypothesis, there
exist a branch decompositions D; of z(v;) and a Y; which is a 2-core of D; such
that w(Y;) < 3k; — 6 , where k; = rdsi(z(v;)) = |V (2(v;))] for ¢ € {1,2}.

Using Lemma [6.4] and Observation there exists a sphere-cut decomposition
D of G and a Y which is a 2-core of D such that w(Y) < w(Y7) +w(Y2) = 3k; —
6+3ko—6 = 3(k1+k2) —12. Lemmal5.6|implies that w(Y) < 3(k+2)—12 = 3k—6
and the width of D is bw(G) because equals to max{bw(G1),bw(G2)}.

Assume now that the theorem holds for values smaller than r and we will prove
that it also holds for r > 2. Let H € S,(G) and S is a radial dominating set of H.
H is topological minor of G. By Observation kg = rds,(H) < rds,(G) = k.
By Proposition H is the topological minor of a 3-connected plane graph H;
where S is r-radially extremal.

Let Hy be the graph obtained if we remove from H; the vertices of S. Because
of 3-connectivity of Hy, for any v € S the graph H[Ng, (v)] is a cycle and each
such cycle is the boundary of the face of Hy. We denote by F' the set of these faces
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and observe that F* is a (r — 1)-radial dominating set of Hj (we denote by F*
the vertices of Hj that are duals of the faces of F' in Hy). Moreover, the fact that
S is a 2r-scattered dominating set in H; implies that F* is a 2(r — 1)-scattered
dominating set in Hj.

From the induction hypothesis and the fact that |F*| = |S|, we obtain that

caPy(, 1 (_1).visE(H3) < 3k — 6.

From Observation [6.1] and Proposition [4.9

cap,, 1) _1).viskH12) < 3kg — 6.

The graph Hs is 2-connected because of Lemma [2.4. This fact along with
Lemma [6.3] implies that

Cap2(r71),(r71)-\/4.5-k(HZ) < 3ky — 6.

In graph Ha, for any face f; € F, let (z, ...z, — 1°) be the cyclic order of
the vertices in its boundary cycle. We also denote by ' the vertex in H; that
was removed in order for f; to appear in Hy. Let D = (T,7) be a sphere-cut
decomposition of Hy of width at most (r — 1) - V4.5 -k and a 2(r — 1)-core Y of
D such that w(Y) < 3kyg — 6. We use (T, 7) in order to construct a sphere-cut
decomposition of H; by adding new leaves in T' and mapping them to the edges
E(Hy)/E(H3) = Uiz, p{{a",2}} | h=0,1,...m —1} in the following way: for
everyi=1,...,|Fland h =0,1,...m—1 we set t}, = 7*1({302,:15?&1 mod m; ) and
let 62 = {y}l, t}l} be the unique edge of T' that is incident to t%- We subdivide ez
and we call the subdivision vertex sj. We also add a new vertex z; and make it
adjacent to s’,il. Finally, we extend the mapping of 7 by mapping the vertex z,i to
the edge {z’, z} } and we use the notation D’ = (1", 7’) for the resulting sphere-cut
decomposition of Hi.

By Propositionthe width of D’ is at most r-v/4.5- k. Let e € E(T)/E(Y)
and N, be the noose of e in D. By the definition of g-core, midg,(e) < 2(r — 1).
Because Hj is r-radially extremal N, meets at most 2 faces of F', midy, (e) < 2r.
We choose Y/ =Y as 2r-core of D’. Now it is clear that w(Y’) < 3kg — 6 and
also Capgm,\/m(Hl) < 3kyg — 6.

Lemma |6.2| implies that cap,, . /57(H) < 3ky — 6.

This result can be applied for every H € S,.(G).

We have proven that if G; € Sp(G), then cap,,, /;57(Gi) < 3kg, — 6 .
Moreover, by the definition of capacity and Proposition if G; € W,(G), then
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cap,, ;(G;) = 0 for every [ > 0. In this case there exists a branch decomposition of
G, by Lemmal7.I] the width of it is at most 2r, and as 2r-core we choose the empty
graph. By Proposition [£.10| we assume that it is a sphere-cut decomposition.

Let R be the root of T}, and assume now that for every v € V(T() \ R there
is a sphere-cut decomposition D, of minimum width of z(v) and a a Y, which is
a 2r-core of D, such that w(Y,) < 3k, — 6, where k, = rds,(z(v)) = [V (2(v))|.
This propositions hold also for G = z(R). Let vy, vo be the children of R in Tf,
so G € z(v1) @, z(va) for some h € {1,2}. From the induction hypothesis, there
exists a branch decompositions D; of z(v;) and a Y; which is a 2r-core of D; such
that w(Y;) < 3k; — 6, where k; = rds,(z(v;)) = |V (2(v;))| for i € {1, 2}.

Using Lemma there exist a branch decomposition D of G and a Y which is
a 2r-core of F' such that w(Y') < w(Y7)+w(Y2) = 3k1 —6+3ka—6 = 3(k1+k2)—12.
Lemma implies that w(Y) < 3(k +2) — 12 = 3k — 6 and the width of D is
at most r - V4.5 - k. We observe that if for exactly one of ¥; and Y is the empty
graph the result is the same because if for example Y5 is the empty graph, then
w(Y) < w(Y1) + w(Ya) = 3k; — 6 < 3k — 6. Both of Y7 and Y5 are the empty
graph iff S,(G) = () and at this case the capacity of G is zero.

Now let us remember that we have assumed that in G there are no vertices of
degree one. To complete the proof of the theorem we will add these vertices, if
there exist, and the related edges in the decomposition without any change in the
result.

Let v be a vertex of degree one and u the only neighbour of it. Let ¢ be an
edge of GG that has u as an endpoint but not v. In T we subdivide the edge that
has 7(e’) as an endpoint and call p the vertex obtained by the subdivision. We
add also a new vertex z and connect it with p. We extend 7 such as 7({u,v}) = 2
and hold the same 2r-core. For every e € E(T) \ {{p, z}, {p, 7(¢/)}} we can easily
extend the corresponding noose N, such that {p, z} and {p,7(e’)} be in the same
open disc without v € V() at any case. The width of the decomposition and
the capacity of G do not change, so we complete the proof of the theorem. O

7.3 Conclusion and further work

In this master-thesis we have introduced some new concepts, g-weight and (g, k)-
capacity, which are related to branch decompositions. We have proven that in
plane graphs, given an optimal sphere-cut decomposition and an r-radial domi-
nating set of it, which has size at most &, the edge of the tree T with the maximum
middle set can be found in a subgraph of 7" which is a forest. The number of leaves
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of this forest is at most 3k — 6.

At first glance, it seems our results cannot be applied directly to other related
problems of Graph Theory, Parameterized Algorithms, Parameterized Complexity,
etc. We believe that a closer look can disprove this assessment. Let us now give
some definitions regarding Parameterized problems, Kernelization, etc, and then
we will explain what we think is the real impact of our results. Of course these
extensions need a lot of further work and cannot be obtained directly by our
results.

Parameterized Graph Problems. A parameterized graph problem II in gen-
eral can be seen as a subset of ¥* x Z* where, in each instance (z,k) of II, x
encodes a graph and k is the parameter.

Kernelization. A parameterized problem is said to admit a polynomial kernel
if there is a polynomial time algorithm (the degree of polynomial is independent
of k), called a kernelization algorithm, that reduces the input instance down to an
instance with size bounded by a polynomial p(k) in k, while preserving the answer.
This reduced instance is called a p(k) kernel for the problem. If p(k) = O(k), then
we call it a linear kernel.

A more formal definition of kernelization follows.

Definition 7.2. Let Il C ¥* XZ be a parameterized problem and g be a computable
function. We say that 11 admits a kernel of size g if there exists an algorithm IC,
called kernelization algorithm, or, in short, a kernelization, that given (z,k) €
S* X ZT, outputs, in time polynomial in |x|+k, a pair (z', k') € ¥* x Zt such that

(a) (z,k) € II if and only if (', k') € II, and

(b) max{|z'|,k'} < g(k).

When g(k) = k9 or g(k) = O(k), then we say that II admits a polynomial or
linear kernel respectively.

Kernelization has been extensively studied in the realm of parameterized com-
plexity, resulting in polynomial kernels for a variety of problems. Some examples
of kernelization in well-known problems of parameterized complexity are the fol-
lowing. VERTEX COVER has a 2k-sized vertex kernel [15], PLANAR DOMINATING
SET has 67k-sized vertex kernel [13], and FEDDBACK VERTEX SET has an O(k?)
kernel parameterized by the solution size [60].
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For a variety of parameterized graph problems linear kernels can be obtained
for their planar version. Some of these problems are CONNECTED VERTEX COVER,
MINIMUM EDGE DOMINATING SET, MAXIMUM TRIANGLE PACKING, EFFICIENT
EDGE DOMINATING SET, INDUCED MATCHING, FULL-DEGREE SPANNING TREE,
FEEDBACK VERTEX SET, CYCLE PACKING, and CONNECTED DOMINATING SET
[1,3,11,/12,/14,35,36,38,45,49]. In particular, a specific kernelization approach for
the DOMINATING SET has led to polynomial kernels for some graph classes other
than planar graphs. For example there is a linear kernel for graphs with bounded
genus [29], and a polynomial kernel for graphs excluding a fixed graph H as a
minor and for d-degenerated graphs [5,/51]. A detailed survey about the area of
kernelization is in [34].

Moreover, in this area there are some meta-results, meaning if a parameterized
graph problem II has some properties and 1I is restricted in a graph class, then it
has poylnomial (or linear) kernel. In [10] Bodlaender et al. proved a meta-result
for graphs of bounded genus, in [27] Fomin et al. for H-minor-free graphs, and
in [31] Gajarsky et al. for sparse graph classes. Recently another meta-result was
given by Kim et al. for graphs that are H-topological-minor-free [23].

Protrusion Decompositions. Protrusion decompositions have been defined
in [10] and were used in the same paper to prove that a lot of problems in planar
graphs admit polynomial or linear kernels. First we will give the definitions of
t-protrusion and («, 3)-Protrusion decomposition and then we will explain how
our results may be related to them.

Definition 7.3. Given a graph G, we say that a set X C V is a t-protrusion of
G if [INg(X)| <t and tw(G[X]) < t.

Definition 7.4. [(«a, 8)-Protrusion decomposition] An («a, §)-protrusion de-
composition of a graph G is a partition P = {Ro, R1,...,R,} of V(G) such that

e max{p, |Ro|} < a,
e cach Rj = Ng[Ri], i € {1,...,p}, is a B-protrusion of G, and
o for everyi € {1,...,p}, Ng(R;) C Ryp.
We call the sets R}, i € {1,...,p}, the protrusions of P.
The next proposition is a lemma that was also proven in [10].
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Proposition 7.5 (H. L. Bodlaender et al. [10], Lemma 6.2). Let r be a positive
integer and let G = (V, E) be a graph embedded in a surface ® of Euler genus g
that contains a set S of vertices, |S| < k, such that Ri(S) = V. Then G has an
(ak, B)-protrusion decomposition for some constants o and [ that depend only on
r and g.

In parameterized complexity, protrusion decompositions are mainly applica-
ble in algorithm design and kernelization. Some work in algorithm design via
protrusion decompositions appears in problems such as PLANAR F-DELETION,
[-PSEUDOFOREST DELETION, etc. [26}50]. Furthermore, in kernelization pro-
trusion decompositions were used for problems such as r-DOMINATING SET, 7-
SCATTERED SET, PLANAR F-DELETION, CONNECTED DOMINATING SET, etc.
[17,25/32,:33./50]. Of course in the meta-results that we have mentioned protrusion
decompositions are a main tool for the proofs. [23}27,31].

In the landscape that we have defined, all graphs are embedded in the the 2-
dimensional sphere Sy = {(,y) | 22+ y? = 1}, so its Euler genus is 2. Our aim is
to make exact the constant « of Proposition at this landscape. Our approach
will use protrusions of branchwidth instead of treewidth and will be based on the
concepts g-weight and (g, k)-capacity that we have defined. We will also try to
improve the bound for the constant 5.

Achieving this goal is likely to have a significant impact in a lot of kernelization
problems by improving or finding explicit bounds for linear kernels of several
problems on graphs.
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