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Περίληψη

΄Ενα σημαντικό αποτέλεσμα στη Θεωρία Γραφημάτων αποτελεί η απόδειξη της εικασίας

του Wagner από τους Neil Robertson και Paul D. Seymour. στη σειρά εργασιών

‘Ελλάσσονα Γραφήματα’ απο το 1983 εώς το 2011. Η εικασία αυτή λέει ότι στην κλάση

των γραφημάτων δεν υπάρχει άπειρη αντιαλυσίδα ώς προς τη σχέση των ελλασόνων

γραφημάτων. Η Θεωρία που αναπτύχθηκε για την απόδειξη αυτής της εικασίας είχε

και έχει ακόμα σημαντικό αντίκτυπο τόσο στην δομική όσο και στην αλγοριθμική

Θεωρία Γραφημάτων, άλλα και σε άλλα πεδία όπως η Παραμετρική Πολυπλοκότητα.

Στα πλάισια της απόδειξης οι συγγραφείς εισήγαγαν και νέες παραμέτρους πλά-

τους. Σε αυτές ήταν η κλαδοαποσύνθεση και το κλαδοπλάτος ενός γραφήματος.

Η παράμετρος αυτή χρησιμοποιήθηκε ιδιαίτερα στο σχεδιασμό αλγορίθμων και στην

χρήση της τεχνικής ‘διαίρει και βασίλευε’. Επιπλεόν εισήχθησαν νέες παρεμφερείς

έννοιες όπως οι αποσυνθέσεις σφαιρικών τομών που είναι κλαδοαποσυνθέσεις στην

κλαση των επίπεδων γραφημάτων που έχουν κάποιες επιπλέον ιδιότητες.

Στην εξέλιξη της έρευνας υπήρξαν σημαντικά αποτελέσμα σχετικά με το κλαδο-

πλάτος στην κλάση των επίπεδων γραφημάτων. Οι Fedor V. Fomin και Δημήτριος

Μ. Θηλυκός απέδειξαν ότι το κλαδοπλάτος ενός επίπεδου γραφήματος με n κορυφές

είναι το πολύ
√

4.5 · n. Βασιζόμενος σε αυτό το αποτέλεσμα, ο Δημήτριος Μ. Θη-

λυκός συσχέτισχε το κλαδοπλάτος με μια άλλη παράμετρο σε επίπεδα γραφήματα, το

r-ακτινικό σύνολο κυριαρχίας. Απέδειξε ότι αν ένα εμβαπτισμένο επίπεδο γράφημα

έχει r- ακτινικό σύνολο κυριαρχίας το πολύ k, τότε το κλαδοπλάτος του γραφήματος

θα είναι το πολύ r ·
√

4.5 · k.
Η παρούσα διπλωματική εργασία κάνει μια ποιοτική επέκταση του αποτελέσματος

αυτού. Αποδεικνύουμε ότι το παραπάνω όριο μπορεί να αναζητηθεί σε ένα δάσος που

είναι υπογράφημα του δέντρου μιας αποσύνθεσης σφαιρικών τομών του γραφήματος,

όπου το μέγεθος του είναι γραμμικό ως προς το k.
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Abstract

An important result in Graph Theory is the proof of Wagner’s Conjecture by Neil

Robertson and Paul D. Seymour in Graph Minor Series from 1983 until 2011. This

conjecture state that there is no infinite anti-chain in the class of graphs under

the minor relation. The theory that was built for the proof of this conjecture had,

and continues to have, an important impact not only in structural and algorithmic

Graph Theory, but also in other fields such as Parameterized Complexity.

In the context of this proof, the authors have introduced some new width

parameters. Within these were branchwidth and branch decompositions. This

parameter was used for algorithm design via the “divide and conquer” technique.

Moreover, the authors have introduced, similar to branch decompositions, concepts

such as sphere-cut decompositions which are a special type of branch decomposi-

tions in planar graphs that have some additional properties.

In the course of the research there was a lot of important results about branch-

width in the class of planar graphs. Fedor V. Fomin and Dimitrios M. Thilikos

proved that the branchwidth of a n-vertex planar graph is at most
√

4.5 · n. Based

on this result Dimitrios M. Thilikos connected the branchwidth with r-radial dom-

inating set which is another parameter in plane graphs. He proved that if a plane

graph has an r-radial dominating set of size at most k, then the branchwidth of

the graph is at most r ·
√

4.5 · k.

The purpose of this thesis is to provide a qualitative extension of this result.

What we show is that this upper bound is attained by a number of edges of a

sphere-cut decomposition, that is a linear function of k.
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Chapter 1

Introduction

1.1 About graphs

One of the most common entertaining riddle is the following:

Can you draw a given figure (for example, the left-most figure in Figure 1.1.)

without picking up your pen and overlapping lines?

or

Can you draw a given figure (for example, the right-most figure in Figure 1.1.)

without picking up your pen, overlapping lines, and by beginning and ending at

the same point?

The solution of this riddle is the first result in the history of Graph Theory

and was given by L. Euler in 1736. This result is a theorem stating when a figure

Figure 1.1: The drawing riddle
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1.1. ABOUT GRAPHS

can de drawn without picking up your pen and overlapping lines (i.e. when it has

an Euler path) and when a figure can be drawn without picking up your pen or

overlapping lines and by beginning and ending at the same point (i.e. when it has

an Euler cycle.)

Science is developed and utilized in order to fulfill certain needs (real or fic-

titious). In Mathematics this connection is not apparent at all. Graph Theory

as a field of Mathematics, and more specifically of Discrete Mathematics, is no

exception. Let consider that a graph G is a pair (V,E) where V is a finite set of

elements, called vertices and E is a set of subsets of V such that the cardinality

of each subset is two. The elements of E are called edges. If someone though

questioned where he could find Graph theory, the answer would be Facebook.

Facebook can be expressed as a graph, whose vertices are people that have signed

in. For every friend-connection of two people there is an edge between their ver-

tices. This example help us to understand some of the reasons that Graph Theory

developed. Using graphs can model a lot of problems from several areas of Discrete

Mathematics.

We focus our attention in Structural Graph Theory. This field of Graph Theory

deals with establishing results that characterize various properties of graphs. An

important result in this field is Kuratowski-Pontryagin Theorem (1930), stating

that a graph is planar iff has no K5 and K3,3 as minor [42]. The most well-known

open problem in Structural Graph Theory is Hadwinger Conjecture [37], stating

that for every k ≥ 1, every graph with chromatic number at least k contains the

complete graph Kk as a minor. For k = 1, 2, 3, this is easy to prove, and for k = 4

Hadwiger [37] proved it. The conjecture also holds for k = 5 [6, 7, 52, 61] and

k = 6 [54]. So far, the conjecture is open for every k ≥ 7.

There is no field of Mathematics, and generally of science, that is developed

without being influenced from others. The development of Graph Theory is di-

rectly connected with Algorithms, Complexity, and Logic. For example it is easy

to consider that a lot of Graph problems such as Independent Set, Vertex

Cover and Dominating Set are NP-complete. Klaus Wagner conjectured that

for every infinite set of finite graphs, one of its members is a minor of another.

Graph Minor Series, that is a series of 23 papers of Neil Robertson and Paul D.

Seymour, was mainly dedicated to the proof of this conjecture (now Graph Minor

Theorem, [55]). Two interesting surveys that describe Graph Minor Theorem and

its consequences are in [46] and [39].

The theory that was developed in order to prove Wagner’s conjecture has a sig-

nificant impact in Algorithmic Graph Theory, Parameterized Complexity, Logic,
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CHAPTER 1. INTRODUCTION

and Computational Complexity and upgraded the importance of Graph Minor

Theory. A key issue to this connection is width-parameters. Width-parameters

express topological or geometrical properties of a graph. For example treewidth

express how a graph is “tree-like”. Typically, every width-parameter is related

to a respective graph decomposition. Graph decompositions are used for algo-

rithm design as a guide to apply the “divide and conquer” method. Moreover,

width-parameters have a particular importance for Parameterized Complexity. A

well-known theorem that connect width-parameters with Logic and Parameterized

Complexity is Courcelle’s theorem stating that every graph property definable in

the monadic second-order logic of graphs can be decided in linear time on graphs

of bounded treewidth [16].

At this thesis branchwidth is a width-parameter that has a central role in our

results. There are a lot of interesting results related to branchwidth. One of them

is that every n-vertex plane graph has branchwidth at most
√

4.5 · n [30]. This

result was extended in [59] where it was proven that if a plane graph has an r-

radial dominating set of k vertices, then branchwidth of G is at most r ·
√

4.5 · k.

The purpose of this thesis is to provide a qualitative extension of this result. What

we show is that the upper bound proved in [59] is attained by a number of edges

of the branch decomposition that is a linear function of k.

1.2 Main description of our result

We say that a tree is ternary if all its vertices that are non-leaves have degree 3.

Given a graph G we denote by V (G) and E(G) the set of its vertices and edges

respectively.

Carvings. Let S be a finite set and let τ be a bijection mapping the leaves of T

to the elements of S. Notice that each edge e of T defines a partition Pe = {S1, S2}
of S as follows: if T1 and T2 are the connected components of T \e, then Si contains

the preimages, via τ , of the leaves of T that are leaves of Ti, for i = 1, 2. We define

the carving of S generated by the pair (T, τ) as the collection of partitions

carv(S, T, τ) = {Pe | e ∈ E(T )}

A carving of V is any collection of partitions of S that is generated by some

pair (T, τ).

3



1.2. MAIN DESCRIPTION OF OUR RESULT

Sphere-cut decompositions. Let G be a planar graph and we consider it as

being embedded in the 2-dimensional sphere S0 = {(x, y) | x2 + y2 = 1}. In that

way we denote by G not only the graph itself but also some particular embedding

of it. We refer to such an embedded graph as a plane graph. A sphere-cut of G is

a Jordan curve N of S0 that does not meet the edges of G and where each of the

two open disks that N defines (i.e., the connected components of S0 \N) contains

some of the edges of G. We define the cost of N as the number of vertices that it

meets and denote as V (N) the set of these vertices. Notice that each sphere-cut N

defines a partition PN of the edges of G into two sets: one contains the edges that

are subsets of one of the connected components of S0 \N and the other contains

the rest. A collection N of sphere-cuts of G is a sphere-cut decomposition of G if

the set

{PN | N ∈ N}

is a carving of E(G). This means that there exists a pair (T, τ) where T is a

ternary tree and τ is a bijection from the leaves of T to E(G) such that

carv(S, T, τ) = {PN | N ∈ N}

The cost of a sphere-cut decomposition is the maximum cost of its sphere-cuts.

From now each sphere-cut decomposition will be denoted by the pair (T, τ) that

certifies it.

Example 1.1. A graph G and a sphere-cut decomposition of it in Figure 1.2 and

a noose of an edge in Figure 1.3.

A sphere-cut decomposition of a plane graph represents a way to recursively

decompose it by recursively cutting along the sphere where it is embedded without

touching its edges. If all of these cuts meet a small number of vertices, then the

cost of such a decomposition is also equally small. As each cut represents a way

to separate the graph, sphere-cut decompositions can be used in algorithm design

as a “guide” for a divide and conquer approach. In [22] algorithms based on

sphere-cut decomposition are used by Dorn et al. to solve Planar Hamiltonial

Cycle , Planar TSP and Planar k-Cycle in subexponential time. Another

use of them is in [21] where a subexponential algorithm is given for Hamiltonial

Cycle problem on graphs of bounded genus. Moreover, the concept of sphere-

cut decomposition was extended for graphs on surfaces and were introduced new

types of branch decompositions. These types were used for dynamic programming

[56,57].

4



CHAPTER 1. INTRODUCTION
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G

(T, τ)

Figure 1.2: A graph G and a sphere-cut decomposition of it. Given that Nei

is the sphere-cut obtained by the edge ei of T , we denote by Vi the set of ver-

tices that it meets and ci the cost of the corresponding sphere-cut. Therefore, we

have that V1 = {v1, v3}, c1 = 2, V2 = {v1, v2}, c2 = 2, V3 = {v1, v2, v3}, c3 =

3, V4 = {v2, v3}, c4 = 2, V5 = {v1, v2, v3}, c5 = 3, V6 = {v1, v3, v4}, c6 =

3, V7 = {v3, v3}, c7 = 2, V8 = {v1, v4}, c8 = 2, V9 = {v2, v3, v4}, c9 = 3, V10 =

{v2, v3, v5}, c10 = 3, V11 = {v3, v5}, c11 = 2, V12 = {v2, v5}, c12 = 2, V13 =

{v4, v5}, c13 = 2. The cost of (T, τ) is 3.

In [30], it was proven that every n-vertex plane graph admits a sphere-cut

decomposition of cost at most
√

4.5 · n. This result improves the bounds of subex-

ponential algorithms for a lot of problems in planar graphs. But why are those

algorithms subexponential? Recall that by making use of the well-known approach

of Lipton and Tarjan [44] based on the celebrated planar separator theorem [43] one

can obtain algorithms with time complexity cO(
√
n) for many problems on planar

graphs. Graph decompositions is a similar approach. One can use a decomposition

of a small width instead of graph separators and dynamic programming instead of

the “divide and conquer” technique. The main idea is very simple: Let a problem

that we are able to solve for every n-vertex graph G, which has a graph decom-

position of width at most l, in time 2O(l(G))nO(1). Since the width in a class of

graphs, such as plane graphs in the aforementioned result, is O(
√
n) the problem

is solvable is subexponential time.

However, the constants “hidden” in O(
√
n) can be crucial for practical imple-

mentations. During the last few years, a lot of techniques have been developed to

compute and improve the “hidden” constants. Sphere-cut decompositions, that
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v1 v2

v3

v4 v5

Figure 1.3: Ne9 is drawn with red.

we deal with, is one of them. Some other techniques are : Alber et al. use graph

separators theorems in combination with linear problem kernels [4], Deineko et al.

use cyclic separators of triangulations [18], Demaine and Hajiaghayi use layers of

k-outerplanar graphs [20]. Other similar work is in [2, 19,24,40,41].

Radial dominating sets. Let G be a plane graph and let x, y be a vertex or

face of G. The radial distance between x and y is one less than the minimum

length of a sequence p1, . . . , pq of alternating faces and vertices of G such that

each two consecutive elements are incident to each other (see Figure 1.4).

x yf1

f2

z

Figure 1.4: The radial distance between x and y is 4. One of the respective

sequences is x, f1, z, f2, y.

Let G be a plane graph and let S ⊆ V (G) and r ∈ Z+. We say that S is an

r-radial dominating set of G if every face or vertex of G is in radial distance at

most r from some vertex in S (see Figure 1.5).

The main result of [30] was extended in [59] where it was proven that if a

plane graph has an r-radial dominating set of k vertices, then G has a sphere-cut

decomposition of cost r ·
√

4.5 · k. Notice that when r = 1, then this relation

yields the main result of [30]. The purpose of this thesis is to provide a qualitative

extension of this result. What we show is that the upper bound proved in [59]

is attained by a number of sphere-cuts that is a linear function of k. As in most

6



CHAPTER 1. INTRODUCTION

x y

Figure 1.5: The vertices x and y are a 3-radial dominating set in this graph.

applications k is typically much smaller than the size of the graph, this implies

that the “essential cost” of an optimal sphere-cut decomposition can be located

in a small (linear on k) part of the graph. Interestingly, this locality phenomenon

implies that the algorithmic complexity of many problems on planar graphs with

small dominating sets is concentrated to restricted (linear on k) parts of the input

graph [10,27].

q-cores and their weight. To formalize the above landscape we need to in-

troduce first the notion of a q-core of a sphere-cut decomposition. Let (T, τ) be

a sphere-cut decomposition and q ∈ Z≥2. We say that a subgraph Y of T is a

q-core of (T, τ) if every sphere-cut of G of cost greater than q corresponds to an

edge of Y and none of the leaves of T is a vertex of Y . Notice that a q-core Y

is not necessarily a connected subgraph of T . If Z is a connected component of

Y , then we define its weight as the number of edges of T that contain exactly one

endpoint in Z. Moreover, the weight of the q-core Y is the sum of the weights of

its connected components. Intuitively, the edges of a q-core represent sphere-cuts

that might correspond to hight-cost sphere-cuts and the weight of a q-core bounds

their number.

Example 1.2. The weight of the q-core in the Figure 1.6 is 21.

Using this terminology, we can summarize the main result of this thesis with

the following result.

Theorem 1.3. Every plane graph with an r-radial dominating set of size at most

k has a sphere-cut decomposition of cost ≤ r ·
√

4.5 · k that additionally contains

a 2r-core of weight at most 3k − 6.

7
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> q

> q

> q

> q
> q

> q

> q
> q

> q

> q

Figure 1.6: The edges with > q correspond to sphere-cuts with cost > q. The edges

that have been drawn fat are the edges of the q-core that we have choose. This

q-core has 3 connected components with weight 10,4,7 respectively. The weight of

the q-core is 21.

1.3 Structure of the thesis

The rest of this thesis is dedicated to the proof of Theorem 1.3. To this aim, we

need to introduce several combinatorial concepts. In Chapter 2 we give some basic

definitions and results about Graph Theory that are necessary for the proof of the

Theorem. We refer to concepts such as connectivity, planarity, duality, etc.

In Chapter 3 we deal with partially ordered sets. A lot of binary relations can

be defined in the class of graphs. Some of the most important that gather the

most interest of the researchers are subgraphs, topological minors, and minors.

These are the relations we need at this thesis. Graph parameters that are closed

under topological minors, is a key issue for the proof of Theorem 1.3.

The subject of Chapter 4 is width-parameters and Decompositions. We intro-

duce the reader to the most well-known width-parameter, which is treewidth, but

we mainly deal with its “twin” parameter. This parameter is branchwidth and was

first defined by Robertson and Seymour in [53]. We also formulate the main re-

sults associated with branchwidth that are necessary for the proof of Theorem 1.3.

8



CHAPTER 1. INTRODUCTION

Moreover, we present sphere-cut decompositions, which were mentioned in the pre-

vious section, as a special type of branch decompositions in planar graphs.

In Chapter 5, we concentrate on radial dominating sets and properties of this

graph parameter. Particular reference is deserved for results linking radial domi-

nating sets with branchwidth.

In this thesis the most research interest is in Chapters 6 and 7. We define

formally the concepts of q-weight and (q, k)-capacity and prove the necessary lem-

mas (Chapter 6). Particularly Chapter 6 is dedicated to minor results of great

importance for the proof of the main theorem, which is presented in Chapter 7.

In conclusion we deal with the applications of our results.

9
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Chapter 2

Basic definitions and results

2.1 Basic definitions

Graphs. A graph G is a pair (V,E) where V is a finite set of elements, called

vertices and E is a set of subsets of V such that the cardinality of each subset is two.

The elements of E are called edges. For a given graph G we use V (G) to denote

its vertex set and E(G) to denote its edge set. For an edge e = {x, y} ∈ E(G),

the vertices x and y are called the endpoints of e. Two vertices x, y are called

adjacent if {x, y} ∈ E(G). We use the notation G for the set of all graphs.

Neighbourhood and degree. The neighbourhood of a vertex v in a graph G

is the set NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. The Degree of a vertex v in G is

degG(v) = |NG(v)|, the minimum degree of G is δ(G) = min{degG(v) | v ∈ V (G)}
and maximum degree of G is ∆(G) = max{degG(v) | v ∈ V (G)}. Similarly for

S ⊆ V (G), NG(S) = {v ∈ V (G) \ S | ∃u ∈ S such that {u, v} ∈ E(G). For a

vertex v, (or a vertex set S ⊆ V (G)) NG[v] = NG(v) ∪ v (NG[S] = NG(S) ∪ S
respectively). We say that a vertex v is isolated if degG(v) = 0.

Common graphs. We now give the definitions of some special graphs that are

used frequently:

• Path of length k is the graph Pk = ({v1, v2, . . . , vk+1}, {{v1, v2}, . . . ,
{vk, vk+1}}). The vertices v1 and vk+1 are the endpoints of Pk

• Cycle of size k is the graph Ck = ({v1, v2, . . . , vk}, {{v1, v2}, . . . , {vk−1, vk,
{vk, v1}}).

11



2.1. BASIC DEFINITIONS

• Clique of size k is the graph Kk = ({v1, v2, . . . , vk}, {{vi, vj} | 1 ≤ i ≤ j ≤
k}).

• Kk,l = (A ∪B, {{a, b} | a ∈ A, b ∈ B}) where |A| = k, |B| = l.

See also Figure 2.1.

P3 C4 K4 K2,2

Figure 2.1: Examples of graphs that are used frequently.

The graph G′ = (V ′, E′) is called subgraph of G = (V,E), if V ′ ⊆ V and

E′ ⊆ E. For a subset S ⊆ V (G), the graph that is induced by the vertices of S

is G[S] = (S, {{u, v} ∈ E(G) | u, v ∈ S}). Similarly for a subset D ⊆ E(G), the

graph that induced by the edges of D is

G[D] = ({x | x is an endpoint of an edge e such that e ∈ D}, D).

Let S ⊆ V (G), the graph G \S = (V (G) \S, {{x, y} ∈ E(G) | {x, y}∩S = ∅})
is the subgraph of G that obtained by removing the vertices of S. For D ⊆ E(G),

the graph G\D = (V (G), E(G)\D) is the graph obtained by removing the edges

of D.

For two graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of these

graphs is the graph G1 +G2 = (V1 ∪ V2, E1 ∪ E2)

Connectivity. A graph G is connected if every two of its vertices are linked by

a path in G. A maximal connected subgraph of G is a connected component of

G. A graph G is k-connected (for k ∈ N) if V (G) > k and G \ S is connected

for every set S ⊆ V (G) with |S| < k. Similarly a graph G is k-edge connected if

G \D is connected for every set D ⊆ E(G) with |D| < k.

A graph T is called tree if it is connected and contains no cycles as subgraph.

A leaf in a tree is a vertex that has degree one. Given a tree T , we denote by

L(T ) the set of its leaves. Also, we denote by M(T ) the set of all edges of T that

have an endpoint in L(T ). The set V (T ) \ L(T ) is the set of internal vertices of

12



CHAPTER 2. BASIC DEFINITIONS AND RESULTS

the tree. A rooted tree is a tree in which one vertex has been designated as the

root, otherwise the tree is unrooted.

Planarity. We use the term arc for any subset of the plane homomorphic to the

closed interval [0, 1]. A graph can be drawn in the plane by locating each vertex at

one point of the plane and an arc from one point to another is drawn between the

points corresponding to vertices connected by an edge. A graph is planar if it can

be drawn in the plane without crossings. A planar embedding of a planar graph is

the function that locates vertices to points and edges to curves. A graph that is

embedded in the plane without crossings is called plane graph. Whitney proved

that any two planar embeddings of a 3-connected graph are equivalent [62]. For

simplicity, we do not distinguish between a vertex of a plane graph and the point

of the plane used in the drawing to represent the vertex or between an edge and

the open line segment representing it.

The connected components of R2 \ G, that are open subsets of the plane are

called faces. We denote by F (G) the set of the faces of G. We use the notation

A(G) for the set V (G) ∪ F (G) and we say that A(G) contains the elements of G.

If ai, i = 1, 2 is an edge or an element of G, we say that a1 is incident to a2 if

a1 ⊆ a2 or a2 ⊆ a1, where x is the closure of the set x. For every face f ∈ F (G),

we denote by bor(f) the boundary of f , i.e., the set f \ f where f is the closure

of f .

A graphG is called outerplanar if there exists a face f ofG such that V (G) ⊆ f .

Proposition 2.1. Every planar graph with n vertices has at most 3n− 6 edges.

Graph parameters. A graph parameter is a function mapping a plane graph

to N. There are a lot of parameters in graphs, some of them we have already seen

such as |V (G)|, |E(G)|, or ∆(G).

Multigraphs. A multigraph is a graph that can have multiple edges (i.e., more

than one edge between a pair of vertices) and loops, i.e., edges that connect a

vertex to itself (see Figure 2.2). We say that we simplify a multigraph when we

remove the loops and multiple edges and add an edge for every pair of vertices

that was connected with a multiple edge. If G is a multigraph, we denote the

graph obtained by the simplification as G.

13



2.2. BASIC CONCEPTS

Figure 2.2: A multigraph with one loop and three multiple edges.

2.2 Basic concepts

Separators. A separator of a graph G is a set of vertices S ⊆ V (G), where

removing them from G, the number of the connected components of the remaining

graph is greater than the number of connected components of G. For two vertices

s, t which are in the same connected component of G, a subset S ⊆ V (G) is called

(s, t)-separator if S is a separator of G and s, t are not in the same connected

component of G \ S. An (s, t)-separator S is minimal if there is no other (s, t)-

separator S′ such that S′ is a proper subgraph of S. A separator S is a minimal

separator of G if it is a minimal (s, t)-separator for some s, t ∈ V (G).

Clique Sum. We denote G ∈ G1 ⊕h G2,h ∈ N if G can be obtained from the

disjoint union of G1 and G2 by identifying pairs of vertices of a clique of size h

of G1 and G2 to form a single shared clique of size at most h, and then possibly

deleting some of the clique edges.

Triconnected components. Let G be a connected graph, let S ⊆ V (G), and

let V1, . . . , Vq be the vertex sets of the connected components of G \ S. We define

C(G,S) = {G1, . . . , Gq} where Gi is the graph obtained from G[Vi ∪ S] if we add

all edges between vertices in S.

Given a graph G, the set Q(G) of its triconnected components is recursively

defined as follows:

• If G is 3-connected or a clique of size ≤ 3, then Q(G) = {G}.

• If G contains a minimal separator S where |S| ≤ 2, then we define Q(G) =⋃
H∈C(G,S)Q(H) (see Figure 2.3 for an example).

14
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Figure 2.3: A graph and its triconnected components.

A triangulation H of a plane graph G is a plane graph H where V (H) = V (G),

E(G) ⊆ E(H), and where H is triangulated, i.e., every face of H has exactly three

edges incident upon it (see Figure 2.4).

Two paths P and P ′ with s, t as endpoints are vertex internally disjoint if

V (P ) ∩ V (P ′) = {s, t}.

Theorem 2.2 (Menger, [48]). Let G be a graph and let s, t ∈ V (G) be distinct,

non-adjacent vertices. The maximum number of vertex internally disjoint paths

with s, t as endpoints equals to the minimum size of an (s, t)-separator.

As corollary of the theorem can be obtained the next proposition.

Corollary 2.3. A graph G is k-connected if and only if for every two non-adjacent

vertices s and t there are k vertex internally disjoint paths with endpoints s and t.

A subset I ⊆ V (G) is radially independent set of a plane graph G if for every

x, y ∈ I, there is no face f of G such that x ⊆ f and y ⊆ f .

Lemma 2.4. If G is a 3-connected plane graph, and I ⊆ V (G) is a radially

independent set of G, then G \ I is a 2-connected graph.

Proof. Let s, t be two arbitrary non-adjacent vertices of G\I and P1, P2, P3 vertex

internally disjoint paths of G with endpoints s and t. Let v ∈ I and suppose that

Fv is a subset of V (G) such that

Fv = {u ∈ V (G) | ∃f ∈ F (G) such that u ⊆ f and v ⊆ f}.
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Figure 2.4: An example of a triangulated graph.

Because of 3-connectivity of G the graph G[Fv] is a cycle. Of course if (V (P1) ∪
V (P2) ∪ V (P2)) ∩ I = ∅ the graph G \ I remains 3-connected. Suppose that

v ∈ I belongs to the vertex set of P1, then there are two vertices v1, v2 such that

V (P1)∩NG(v) = {v1, v2} and P1 is in form s . . . v1vv2 . . . t. Let R1, R2 be the two

paths with endpoints v1 and v2 in G[Fv]. We observe that it may be true at most

one of V (Pi) ∩ V (R1) 6= ∅ and V (Pi) ∩ V (R2) 6= ∅ for i = 2, 3. Assume that for

i = 2 both of them are true and x1 ∈ V (P2) ∩ V (R1), x2 ∈ V (P2) ∩ V (R2). Let

also that P ′ is the subpath of P2 with endpoints x1 and x2 and R′ the path of

G[Fv] with endpoints x1 and x2 that contains v1. The disjoint union of P ′ and R′

is a cycle C. Let ∆1,∆2 be the two open discs bounded by C and assume that

v ∈ ∆1. If t ∈ ∆2, then P1 and P2 cannot be vertex internally disjoint paths.

Moreover, if t ∈ ∆1, then it is contradiction both of the pairs P1, P3 and P2, P3 to

be vertex internally disjoint paths .

2.3 Duality

Given a plane graph G = (V,E), the dual graph of G denoted by G∗ = (V ∗, E∗)
is the graph that satisfies the following conditions:

• Every vertex of G∗ is a point of a face of G.

• For every face f of G, V ∗ ∩ f contains exactly one point of the plane

• If f1, f2 ∈ F (G) and v1, v2 ∈ V ∗ such that vi = V ∗ ∩ fi for i = 1, 2, for every

edge e ∈ E(G) where e = f1 ∩ f2 there is an edge e∗ ∈ E∗ with endpoints v1

and v2 (see also Figure 2.5).

We observe (as also shown in the example) that the dual graph of a simple

graph G can be a multigraph. Moreover, if G is a simple graph and ∆(G) ≥ 2,

then its dual has no loops.

16



CHAPTER 2. BASIC DEFINITIONS AND RESULTS

Figure 2.5: A graph drawn with black and its dual with red.

Let G = (V,E) be a plane graph. The radial graph of G (we denote it as RG)

is the graph RG = (V (G) ∪ F (G), {{v, f} | v ∈ V (G), f ∈ F (G) and v ⊆ f}). We

observe that G and its dual have the same radial graph (see Figure 2.6).

Figure 2.6: The radial graph of graphs in Figure 2.5. The black vertices are the

vertices of G. The red verticesare the vertices of G∗. Observe that all the edges

of RG have one black and one red endpoint.

A graph parameter p on plane graphs is said to be self-dual if p(G) = p(G∗).

Example 2.5. The number of edges in a graph G is self-dual parameter, E(G) =

E(G∗).
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Chapter 3

Partially Ordered Sets

Posets. A partially ordered set(poset) is a set P and a binary realtion ≤ such

that for all x, y, z ∈ P

1. x ≤ x (reflexivity).

2. x ≤ y and y ≤ z implies that x ≤ z (transitivity).

3. x ≤ y and y ≤ x implies that x = y (anti-symmetry).

A pair of x, y ∈ P are comparable if x ≤ y or y ≤ x. Otherwise they are

incomparble. We write x < y if x ≤ y and x 6= y. A chain is a sequence

x1 < x2 < x3 < . . . < xn. A set A is anti-chain if every pair of elements in A are

incomparable.

Posets in graphs. In the set of G there are a lot of interesting partial orderings.

Some of them are subgraph, topological minor and minor.

As we have mentioned in the introduction, the graph H = (V ′, E′) is called

subgraph of G = (V,E), if V ′ ⊆ V and E′ ⊆ E. We denote it by H ≤s G.

A subdivision of a graph H is any graph that can be obtained from H if we

apply a sequence of subdivisions to some (possibly none) of its edges (a subdivision

of an edge is the operation of replacing an edge e = {x, y} by a path with x and

y as endpoints of length two. We say that a graph H is topological minor of a

graph G (we denote it by H ≤t G) if some subdivision of H is subgraph of G.

A contraction of an edge e = {x, y} is the graph G′ = (V ′, E′) where V ′ =

V (G) \ {x, y} ∪ vxy and E′ = E(G) \ {EG(x) ∪ EG(y)} ∪ {{vxy, v} | v ∈ (NG(x) ∪
NG(y)) \ {x, y}}. A graph H obtained by a sequence of edge contractions is said

to be a contraction of G. A graph H is a minor of G (we denote it by H ≤m G) if
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(a) (b)

(c) (d)

Figure 3.1: The graph in (d) is minor of the graph in (a) that is obtained by

deleting the blue vertices and edges in (b) and contracting the red edges in (c).

H is a subgraph of some contraction of G (see Figure 3.1). A well-known result,

that Robertson and Seymour proved in the Graph Minors series, known as Graph

Minor Theorem is the following:

Theorem 3.1 (N. Robertson, P. D. Seymour [55]). There is no infinite anti-chain

in the class G under the minor relation.

Definition 3.2. Let ≤ be a relation on graphs such as ≤s,≤t or ≤m. A graph

class C is closed under ≤ if for every graph G ∈ C, if H ≤ G for a graph H, then

H ∈ C.

Definition 3.3. The obstruction set of a graph class C which is closed under ≤,

obs(C) is the minimal set of graphs H satisfying the following property

G ∈ C ⇔ for every H ∈ H, H � G
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Example 3.4. The obstruction set in the class of trees T , for ≤∈ {≤s,≤t,≤m},
is obs(T ) = K3.

For the obstruction set in the class of planar graphs for ≤∈ {≤m} the next

result that was proven by L. Pontryagin around 1927, however he never published

his proof. Independently K. Kuratowski published his proof in 1930 [42]. Now the

result is known as Kuratowski’s theorem or Kuratowski–Pontryagin theorem.

Theorem 3.5. A graph G is planar if and only if has none of K5 and K3,3 as

minor.

The following result which we will use later is a consequence of the previous

theorem.

Proposition 3.6. A graph G is outerplanar if and only if has none of K4 and

K2,3 as minor.

Proof. It is easy to observe that K4 and K2,3 are not outerplanar graphs. Also,

the class of outerplanar graphs is closed under minors, so if a graph G has K4

or K2,3 as minor is not outerplanar. Now let G is non-outerplanar graph and set

G+ = (V (G) ∪ v,E(G) ∪ {v, x} | x ∈ V (G)). We claim that G+ is a non-planar

graph. Assume that G+ is planar and is given to us with an embedding of it. Then

v belong to a face of G that its boundary contains all the vertices of G. This is a

contradiction. From Theorem 3.5, G+ has no K5 and K3,3 as minor. We observe

that removing a vertex can affect either a vertex or an edge of a subdivision of a

graph. In any case that means that G has either K4 or K2,3 as minor.

Figure 3.2: The obstruction set of outerplanar graphs, K4 and K2,3.

A graph parameter p is said to be closed under a partial ordering of P if the

following holds: if H,G ∈ P and H ≤ G, then p(H) ≤ p(G).

Example 3.7. If H ≤t G, then ∆(H) ≤ ∆(G).
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At the next chapters we will mainly refer to graph parameters which are closed

under topological minors.
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Chapter 4

Width-parameters and

Decompositions

In this chapter we deal with width-parameters. Width-parameters have a lot of

applications in several areas such as graph searching, structural graph theory,

parameterized algorithms, and others. Moreover, it is easier to understand the

structure of a graph if we know a width-parameter of it. For example a well-

known parameter, which has a lot of applications is treewidth.

Treewidth. A tree decomposition of a graph G is a pair T = (T, {Xt}t ∈ V (T ))

where T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G) called

a bag, such that the following three conditions hold:

1.
⋃
t∈V (T )Xt = V (G). In other words, every vertex of G is in at least one bag.

2. For every edge {u, v} ∈ V (G) there exists a node t of T such that bag Xt

contains both u and v.

3. For every u ∈ V (G), the set Tu = t ∈ V (T ) : u ∈ Xt, i.e., the set of nodes

whose corresponding bags contain u, induces a connected subtree of T .

The width of a tree decomposition T = (T, {Xt}t ∈ V (T )) is equal to

max
t∈V (T )

|Xt| − 1.

The treewidth of a graph G, denoted by tw(G), is the minimum possible width

of a tree decomposition of G. Intuitively treewidth shows how similar is a graph

with a tree.
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Example 4.1. The following propositions hold:

1. The treewidth of trees is 1.

2. The treewidth of Kk is k − 1.

3. The treewidth of the graph in Figure 4.1 is 2.

v1

v3

v5 v6 v7

v11

v2 v4 v8 v9 v10

v1
v2
v3

v3
v4
v5

v4
v5
v6

v6
v7

v4
v6
v8

v8
v9

v9
v11

v9
v10

G

Figure 4.1: A graph G with a tree decomposition of it. As easily can be seen from

the decomposition, every bag has at most 3 vertices, so tw(G) = 2.

By the definition of tree decomposition, if t1, t2 are connected vertices in T ,

then Xt1 ∩Xt2 is a separator of the graph. This property of tree decompositions is

very useful to deal with algorithmic problems on graphs [8,9]. In what follows, we

mainly deal with its “twin” parameter, which is a constant factor approximation

of treewidth. This parameter is branchwidth and was first defined by Robertson

and Seymour in [53]. There branchhwidth has been introduced as an alternative to

the parameter of treewidth, as it appeared to be easier to handle for the purposes

of their proofs. We stress, that especially for our study, branchwidth is much more

suitable for dealing and exposing the concepts related to our main result.
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4.1 Branchwidth

Let G be a graph on n vertices. A branch decomposition (T, τ) of a graph G

consists of an unrooted ternary tree T (i.e., all internal vertices are of degree

three) and a bijection τ : L→ E(G) from the set L of leaves of T to the edge set

of G. We define for every edge e of T the middle set ω(e) ⊆ V (G), as follows: Let

T e1 and T e2 be the two connected components of T \ e. Then, let Gei be the graph

induced by the edge set {τ(f) : f ∈ L ∩ V (T ei )} for i ∈ {1, 2}.
The middle set is the intersection of the vertex sets of Ge1 and Ge2, i.e., ω(e) =

V (Ge1)∩V (Ge2). We denote midG(e) = |ω(e)|. The width of (T, τ) is the maximum

order of the middle sets over all edges of T (in case T has no edges, then the width

of (T, τ) is equal to 0).

The branchwidth, denoted by bw(G), of G is the minimum width over all

branch decompositions of G.

Example 4.2. The following propositions hold:

1. The branchwidth of a graph is at most 1 iff it does not contain a path on 4

vertices as a subgaph.

2. The branchwidth of cycles is 2.

3. The branchwidth of Kk is at most d2k/3e.

4. The graph G of Figure 4.2 has bw(G) = 2.

We can observe that in a branch decomposition (T, τ), for every edge e ∈ E(T )

the vertices of G that belongs to ω(e) is a separator of G. The relation between

branchwidth and treewidth is given by the following result

Proposition 4.3 (P. D. Seymour and R. Thomas [53]). If G is a graph, then

bw(G) ≤ tw(G) + 1 ≤ 3
2bw(G)

Now let us see some other results related on branchwidth.

Proposition 4.4 (P. D. Seymour and R. Thomas [53]). A graph G has branch-

width ≤ 2 if and only if has no K4 as minor.

Proposition 4.5 (F. V. Fomin, D. M. Thilikos [30]). If G is a n-vertex planar

graph, then bw(G) ≤
√

4.5 · n.

Proposition 4.6 (F. V. Fomin, D. M. Thilikos [28]). If G is a graph that contains

a cycle, then bw(G) = max{bw(H) | H ∈ Q(G)}.
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Figure 4.2: A graph G and a branch decomposition of it.

Proposition 4.7 (P. D. Seymour and R. Thomas [53]). The parameter bw is

closed under topological minors, i.e., if H ≤t G, then bw(H) ≤ bw(G).

Proposition 4.8 ([47, 58]). If G is a plane graph with a cycle, then bw(G) =

bw∗(G).

Lemma 4.9. If G is a multigraph and G is a graph with a cycle, then bw(G) =

bw(G).

Proof. Let D = (T, τ) be a branch decomposition of G that achieves the minimum

width. If x and y are vertices of G that are connected with l ≥ 2 edges, let Exy be

the set of these edges. Then suppose that T ′ is a rooted binary tree with l leaves.

Let r be the root of the tree and f a function such as f : Exy → L(T ′). Let z be
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CHAPTER 4. WIDTH-PARAMETERS AND DECOMPOSITIONS

the only neighbour of τ({x, y}) in T , then we delete the edge {z, τ({x, y}) from T

and add T ′ in T by identifying z with r and extend τ with f . Similarly for the

loops of a vertex x and {x, y} an arbitary edge of G, we divide the edge of T (let z

be the new vertex) that has τ({x, y}) as an endpoint and identify z with r where

r is the root of the binary tree with the loops of x. With this process for every

multiple edge and all the loops of G a branch decomposition of G that its width

is equal to the width of D is obtained.

4.2 Sphere-cut decompositions.

In the introduction we defined sphere-cut decompositions using carvings. Now

we give another equivalent definition which is more suitable for our proofs. This

definition examine sphere-cut decompositions as a special type of branch decom-

positions in plane graphs.

Given a plane graph G, an arc I that does not intersect the edges of G (i.e.,

I ∩ G ⊆ V (G)) is called normal. The length |I| of a normal arc I is equal to

the number of elements of A(G) that it intersects minus one. If x and y are the

elements of A(G) intersected by the extreme points a normal arc I, then we also

call I normal (x, y)-arc. A noose of the plane, where G is embedded, is a Jordan

curve that does not intersect the edges of G. We also denote by V (N) the set of

vertices of G met by N , i.e., V (N) = V (G) ∩N .

The length |N | of a noose N is |V (N)|, i.e., is the number of the vertices it

meets.

Let G be a plane graph. A branch decomposition (T, τ) of G is called a sphere-

cut decomposition if for every edge e of T there exists a noose Ne, such that

(a) ω(e) = V (Ne),

(b) Gei ⊆ ∆i ∪Ne for i = 1, 2, where ∆i is the open disc bounded by Ne, and

(c) for every face f of G, Ne ∩ f is either empty or connected (i.e., if the noose

traverses a face, then it traverses it once).

We denote by SCk(G) the set of all sphere-cut decompositions of G with width

at most k.

Proposition 4.10 (P. D. Seymour, R. Thomas [58]). Let G be a planar graph

where δ(G) ≥ 2 and with branchwidth at most k embedded on a sphere. Then

there exists a sphere-cut decomposition of G of width at most k.
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Chapter 5

Radial Dominating Set

Let G be a plane graph and let r be a non-negative integer. Given two elements

x, y ∈ A(G), we say that they are within radial distance at most r if there is

a normal (x, y)-arc of the plane of length at most r. We denote this fact by

rdistG(x, y) ≤ r
Given a vertex set S ⊆ V (G) and a non-negative integer r, we denote by

Rr
G(S) the set of all elements of G that are within radial distance at most r from

some vertex in S. We say that a set S ⊆ V (G) is an r-radial dominating set of

G (or, alternatively we say that S r-radially dominates G) if Rr
G(S) = A(G). We

define

rdsr(G) = min{k | G contains an r-radial dominating set of size at most k}.

Observation 5.1. The parameter rds is closed under topological minors. In other

words, if H,G are graphs, r ∈ N, and H ≤t G, then rdsr(H) ≤ rdsr(G).

Observation 5.2. If G is a multigraph, then rdsr(G) = rdsr(G).

Let G be a plane graph, y ∈ N, and S ⊆ V (G). We say that S is y-radially

scattered if for any a1, a2 ∈ S, rdistG(a1, a2) ≥ y. We say that S is r-radially

extremal in G if S is an r-radial dominating set of G and S is 2r-radially scattered

in G.

The relation between radial domination and radially extremal set is provided

by the following result.

Proposition 5.3 (D. M. Thilikos [59]). Let G be a 3-connected plane graph and

S be an r-radial dominating set of G. Then G is the topological minor of a trian-

gulated 3-connected plane graph H where S is r-radially extremal in H.
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The Proposition 5.3 served as the main tool of the proof of the main theorem

of [59] (combined with Proposition 4.5 as induction basis) which is the following.

Proposition 5.4 (D. M. Thilikos [59]). Let r be a positive integer and let G be a

plane graph. Then bw(G) ≤ r ·
√

4.5 · rdsr(G).

Based on the same induction rule with the previous theorem, we prove the

following lemma.

Lemma 5.5. For every positive integer r, if G is a plane graph with rdsr(G) ≤ 2,

then bw(G) ≤ 2r.

Proof. We use induction on r ≥ 2. For r = 1 the result is trivial but cannot be used

as induction basis because there are no edges in the branch decomposition. For the

induction basis, if r = 2 we examine the cases where rds2(G) = 1 or rds2(G) = 2.

If rds2(G) = 1, that means that G is outerplanar graph. By Proposition 3.6, G

has no K4 as minor and follows by Proposition 4.4 that branchwidth of G is at

most 2. If rds2(G) = 2 let s1, s2 be the 2-radial dominating set of G. If we remove

s1, s2 from G the remaining graph will be a cycle. The branchwidth of a cycle is

2, so by adding s1, s2 branchwidth of G will be at most 4. From these two cases

it is clear that if rds2(G) ≤ 2, then bw(G) ≤ 4.

Assume now that the lemma holds for values smaller than r and we will prove

that it also holds for r where r > 2. Using Proposition 4.6, we choose H ∈ Q(G)

such that bw(H) = bw(G) (we may assume that G contains a cycle, otherwise the

result follows trivially). By Observation 5.1, rdsr(H) ≤ rdsr(G). Let S be a r-

radial dominating set of H where |S| ≤ 2. From Theorem 5.3, H is the topological

minor of a 3-connected plane graph H1 where S is r-radially extremal.

Let H2 be the graph obtained if we remove from H1 the vertices of S. Because

of 3-connectivity of H1 for any v ∈ S the graph H[NH1(v)] is a cycle and each

such cycle is the boundary of the face of H2. We denote by F the set of these faces

and observe that F ∗ is a (r − 1)-radial dominating set of H∗2 (we denote by F ∗

the vertices of H∗2 that are duals of the faces of F in H2). Moreover, the fact that

S is a 2r-scattered dominating set in H1 implies that F ∗ is a 2(r − 1)-scattered

dominating set in H∗2 . From the induction hypothesis and the fact that |S| = |F ∗|,
we obtain that bw(H∗2 ) ≤ 2(r − 1). This fact along with Proposition 4.8 implies

that bw(H2) ≤ 2(r − 1).

In graph H2, for any face fi ∈ F , let (xi0, . . . , x
i
m−1) be the cyclic order of the

vertices in its boundary cycle. We also denote by xi the vertex in H1 that was

removed in order fi to appear in H2. Let (T, τ) be a branch decomposition of
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CHAPTER 5. RADIAL DOMINATING SET

H2 of width at most 2(r − 1). By Proposition 4.10, we may assume that (T, τ)

is a sphere cut decomposition. We use (T, τ) in order to construct a branch

decomposition of H1 by adding new leaves in T and mapping them to the edges

E(H1)/E(H2) = ∪i=1,...,|F |{{xi, xih} | h = 0, 1, . . .m− 1} in the following way: for

every i = 1, . . . , |F | and h = 0, 1, . . .m − 1 we set tih = τ−1({xih, xih+1 mod mi
})

and let eih = {yih, tih} be the unique edge of T that is incident to tih. We subdivide

eih and we call the subdivision vertex sih. We also add a new vertex zih and make

it adjacent to sih. Finally, we extend the mapping of τ by mapping the vertex

zih to the edge {xi, xih} and we use the notation (T ′, τ ′) for the resulting branch

decomposition of H1. We claim that the width of (T ′, τ ′) is at most 2r.

To prove this, we use the functions ω and ω′ to denote the middle sets of (T, τ)

and (T ′, τ ′) respectively. Let e be an edge of T ′. If e is not an edge of T , then

|ω′(e)| ≤ 3. If e is also an edge of T , let Ne be the noose of H2 meeting the vertices

of ω(e). Because |F | is at most 2, Ne meets at most all the faces of F , then the

vertices in ω′(e) of a noose N ′e of H1 meeting all vertices of ω(e) plus at most 2,

x1, x2. Then |ω′(e)| ≤ |ω(e)| + 2 ≤ 2(r − 1) + 2 = 2r. Therefore the width of

(T ′, τ ′) is at most 2r.

We just proved that bw(H1) ≤ 2r. As H is topological minor of H1, from

Proposition 4.7, bw(H) ≤ 2r and also from Proposition 4.6, bw(H) = bw(G) ≤
2r.

At the next lemma we give a relation between rds of a graph G which is an

1- or 2-clique sum of two other graph with the rds of these graphs.

Lemma 5.6. Let G,G1, and G2 be plane connected graphs such that rdsr(G) ≤ k
and G ∈ G1 ⊕h G2 for some h ∈ {1, 2}. Then rdsr(G1) + rdsr(G2) ≤ k + 2.

Proof. Let S ⊂ V (G) be the vertices of G that are in G1 and also in G2, k1

(k2 respectively) is the number of vertices of rdsr(G) that are in G1 \ S (G2 \ S
respectively). Let l be the number of vertices of rdsr(G) that are in S, so k1 +

k2 + l = k. If l = 0, it is clear that if a vertex or a face x in G1 is dominated

in G by a vertex of rdsr(G), that is also in G2, then if in rdsr(G1) we add a

vertex s of S, x will be dominated by s. So if l = 0, rdsr(G1) ≤ k1 + 1 and

rdsr(G2) ≤ k1 + 1, then rdsr(G1) + rdsr(G2) ≤ k + 2. If l = 1 or l = 2, then

there is no need to add any vertex to dominate vertices or faces of G1 or G2, so

rdsr(G1) + rdsr(G2) ≤ k + 2.
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Chapter 6

Weight and Capacity

6.1 q-weight

Let G be a graph and let D = (T, τ) be a branch decomposition of G. Given a

q ≥ 2 and a subgraph Y of T , we say that Y is a q-core of D if

• L(T ) ∩ V (Y ) = ∅

• ∀e ∈ E(T ) if midG(e) > q, then e ∈ E(Y ).

• There are no isolated vertices in Y .

We denote by C(Y ) the connected components of Y . For each Z ∈ C(Y ) we define

its extension Ẑ as the subtree of T obtained if in Z we add all edges with one

endpoint in V (Z), we also call these edges boundary of Z and we denote it by ∂Z.

The q-weight of Y in D is defined as the quantity

w(Y ) =
∑

Z∈C(Y )

|∂Z|

Given a graph G a q ≥ 2 and a k ≥ 2, we define (q, k)-capacity of G as follows:

capq,k(G) = min{s | ∃D ∈ SCk(G), there exists a q-core Y (6.1)

of D such that w(Y ) ≤ s} ∪ {0}.

6.2 Before the main proof

Observation 6.1. If G is a multigraph and G is a graph with a cycle, then

capq,k(G) = capq,k(G).
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D = (T, τ)

p pe

ve

vx

p pe = τ ′(τ−1(vx))

D′ = (T ′, τ ′)

Figure 6.1: D and D′ are branch decompositions of G2 and G1 respectively, where

G1 = G2 \ e. If {pe, p} ∈ E(Y ) in D, then Y ′ = Y \ e{pe, p}, otherwise Y ′ = Y .

The proof does as in Lemma 4.9, by choosing the same q-core for the branch

decomposition of G as the branch decomposition of G.

Lemma 6.2. Let q, k ≥ 2 and let G1 and G2 be graphs where G1 is a topological

minor of G2. Then capq,k(G1) ≤ capq,k(G2).

Proof. Let D = (T, τ) be the branch decomposition of G2 and let Y is a q-core

of D such that Y achieves the minimum q-weight cq,k(G2). Let G1 be the graph

that obtained if we remove an edge e from G2 and let ve be the vertex of T

such that τ(e) = ve. Let also pe be the parent node of ve and vx be the other

vertex of L(T ) that is connected with pe in T . Let D′ = (T, τ ′) be the branch

decomposition of G1 obtained from D if we remove the edges {pe, ve} and {pe, vx}
and τ ′(τ−1(vx)) = pe. We choose Y ′ such as follows: let p be the third neighbour

of pe in T . If {pe, p} ∈ E(Y ), then Y ′ be the graph induced by E(Y ) \ {pe, p}.
If {pe, p} /∈ E(Y ), then Y ′ = Y . If e ∈ E(T ) ∩ E(T ′), midG1(e) ≤ midG2(e) so

every edge of E(T ) ∩ E(Y ) can also be in E(Y ′). Then the boundary of Y ′ is at

most equal with the boundary of Y so cq,k(G1) ≤ cq,k(G2) (see Figure 6.1).

Removing a vertex is the same as removing all the edges that have this vertex

as an endpoint.

Now let G1 be obtained if we contract a vertex v of degree 2 in G2. Let v1, v2

be the two neighbours of v in G2 and {v1, v2} the edge after the contraction of v

in G1. The branch decomposition D′ = (T ′, τ ′) obtained by removing the vertex

τ({v1, v}) in T and do the same as before with pe and also τ ′({v1, v2}) = τ({v2, v}).
We choose Y ′ as before. Moreover, if e ∈ E(T )∩E(T ′), midG1(e) ≤midG2(e) so

every edge of E(T ) ∩ E(Y ) can also be in E(Y ′). Then the boundary of Y ′ is at

most equal with the boundary of Y so cq,k(G1) ≤ cq,k(G2) (see Figure 6.2).
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D = (T, τ)

p pe

vx

pe = τ ′(τ−1(vx))

D′ = (T ′, τ ′)

τ({v, v2})

τ({v, v1})
p

τ({v1, v2})

Figure 6.2: D and D′ are branch decompositions of G2 and G1 respectively, where

G1 is obtained by contracting a vertex v of degree 2 with neighbours v1, v2. If

{pe, p} ∈ E(Y ) in D, then Y ′ = Y \ e{pe, p}, otherwise Y ′ = Y .

Lemma 6.3. Let G be a 2-edge connected plane graph and let G∗ be its dual and

q, k ≥ 2. capq,k(G) = capq,k(G
∗)

Proof. Let G has a sphere-cut decomposition D = (T, τ) with width at most k

and D be a q-core Y . We define the branch decomposition D∗ = (T ∗, τ∗) of G∗

where T ∗ = T and for each e∗ ∈ E(T ∗), τ∗(e∗) = τ(e). We also set Y ∗ = Y .

Notice that D∗ is a sphere-cut decomposition.

Claim : For every e ∈ E(T ), midG∗(e) = midG(e).

Proof of the claim. Let RG be the radial graph of G that is the same for G∗.
Assume also that every noose Ne meets only points that are in edges and vertices

of RG and not in the faces. Let VR = Ne ∩ V (RG) and that means VR = (VR ∩
V (G)) ∪ (VR ∩ V (G∗)). It is clear that in Ne there is an alternative sequence

between the vertices of (V (R) ∩ V (G)) and the vertices of (V (R) ∩ V (G∗)), so

midG∗(e) = midG(e) (see Figure 6.3).

This implies that D has width at most k and that, w(Y ∗) = w(Y ).

Lemma 6.4. Let G,G1, and G2 be plane connected graphs such that G ∈ G1⊕hG2

for some h ∈ {1, 2}. Let also Di = (Ti, τi) be a branch decomposition of Gi, Yi is

a q-core of Di, i ∈ {1, 2}. Then there is a branch decomposition D = (T, τ) of G

and Y is a q-core of D such that w(Y ) ≤ w(Y1) + w(Y2) and the width of D is

the maximum width of D1, D2
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Figure 6.3: The radial graph of the graph G of the Figure 1.2. The black vertices

are the vertices of G and the red are the vertices of G∗. The red edges consistute

the noose of the edge e9 in Figure 1.3 of T of the sphere-cut decomposition of

Figure 1.2.

Proof. For the proof of this lemma we construct a branch decomposition of G,

D = (T, τ) based on Di = (Ti, τi) of Gi, i ∈ {1, 2}. Denote by ω the function

indicating the middle set of the edges of T and by ω1, ω2 indicating the middle

sets of the edges of T1, T2 respectively. There are three cases:

1. G ∈ G1⊕2G2. Let a, b be the vertices of G such that V (G1)∩V (G2) = {a, b}
and additionally assume that, {a, b} is not an edge of G,

2. Like above, but now {a, b} is an edge of G and

3. G ∈ G1 ⊕1 G2.

In the first case, we remove in T1 the edge e′1 that has an endpoint which

corresponds to e = {a, b} in G1 and we call p1 the parent node of this endpoint.

Similarly remove e′2 and call p2 in T2. To construct the tree T of the branch

decomposition of G we add the edge {p1, p2}. We define τ : E(G)→ L(T ) such as

follows: if e ∈ E(G) ∩ E(Gi), i ∈ {1, 2}, then τ(e) = τi(e). From the construction

of T if e ∈ E(T ) ∩ E(Ti), i ∈ {1, 2}, then ω(e) = ωi(e) and ω({p1, p2}) = {a, b}.
We choose Y such as Y = Y1 ∪ Y2 and it satisfies the properties of the lemma.

That means that for e ∈ E(T ) ∩ E(Ti), i ∈ {1, 2} if e ∈ Yi, then e ∈ Y and also if

e belongs to the boundary of Yi, then e belongs to the boundary Y . If e′i is in the

boundary of Yi, then {p1, p2} is in the boundary of Y . If this is true for e′1 and e′2,
then we count {p1, p2) twice in the q-weight of Y . Now it is obvious that for this
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case there is a branch decomposition D = (T, τ) of G and Y a q-core of D such

that w(Y ) ≤ w(Y1) + w(Y2) (see also Figure 6.4).

a a

b b

G1 G2

τ1(a, b) τ2(a, b)

p1 p2

a

b

G

D1 D2

p1 p2

D

(a) (b)

(c) (d)

Figure 6.4: In (a) are depicted two graphs G1,G2 that both have labelled the

adjacent vertices a and b. In (b) are the the parts of their branch decompositions

D1 and D2 that contain τ({a, b}). The graph G in (c) is a 2-clique sum of G1

and G2, where have been identified the common labelled vertices and deleted the

edge {a, b}. In (d) is shown the way we construct from D1 and D2 a branch

decomposition of G where w(Y ) ≤ w(Y1) + w(Y2).

In the second case we similarly add the edge {p1, p2} but also subdivide it and

call s1 the subdivison vertex. To construct T , we add a leaf vab and connect it

with s1. We define τ : E(G) → L(T ) as follows: if e ∈ E(G) ∩ E(Gi), i ∈ {1, 2},
then τ(e) = τi(e) and τ({a, b}) = vab. The only difference from the previous case

is that, if e′i is in the boundary of Yi, then {pi, s1} is in the boundary of Y (see

also Figure 6.5).

In case G ∈ G1⊕1G2, let v be the vertex of G that is in G1 and G2. Let e1, e2

be two edges of G1, G2 respectively that have v as an endpoint. Let e1
′, e2′ be the

edges of T1, T2 that have the vertex that corresponds to e1, e2 as an endpoint and

call p1, p2 the other endpoint of e1
′, e2′ respectively. We subdivide e1

′, e2′ and we

denote the subdivisions vertices by v1, v2. In order to construct T , we add the edge

{v1, v2}. We define τ : E(G) → L(T ) as follows: if e ∈ E(G) ∩ E(Gi), i ∈ {1, 2},
then τ(e) = τi(e). From the construction of T , if e ∈ E(T )∩E(Ti), i ∈ {1, 2}, then

ω(e) = ωi(e). As previously, we choose Y so that Y = Y1 ∪ Y2 and notice that

37



6.2. BEFORE THE MAIN PROOF

a a

b b

G1 G2

p1 p2τ1(a, b) τ2(a, b)

p1 p2

a

b

G

vab

s1

D1 D2

D

(a) (b)

(c) (d)

Figure 6.5: In (a) are depicted two graphs G1,G2 that both have labelled the

adjacent vertices a and b. In (b) are the the parts of their branch decompositions

D1 and D2 that contain τ({a, b}). The graph G in (c) is a 2-clique sum of G1

and G2, where have been identified the common labelled vertices. In (d) is shown

the way we construct from D1 and D2 a branch decomposition D of G where

w(Y ) ≤ w(Y1) + w(Y2).

Y satisfies the properties of the lemma. Also, for e ∈ E(T ) ∩ E(Ti), i ∈ {1, 2}, if

e ∈ Yi, then e ∈ Y . Also, if e belongs to the boundary of Yi, then e belongs to the

boundary Y . If e′i is in the boundary of Yi, then {pi, vi} is in the boundary of Y .

We just constructed the branch decomposition D = (T, τ) of G. Moreover, Y is a

q-core of D such that w(Y ) ≤ w(Y1) + w(Y2) (see Figure 6.6).

In any case, it follows that the width of D is the maximum width of D1, D2

because for every e ∈ E(T ) ∩ E(Ti), i ∈ {1, 2}, then ω(e) = ωi(e).

Observation 6.5. If the branch decompositions D1 and D2 of the previous lemma

are sphere-cut decompositions of G1 and G2 respectively, then D is also a sphere-

cut decomposition of G.

Lemma 6.6. If G is a 3-connected plane graph where rds1(G) ≤ k and D = (T, τ)

is a branch decomposition of G, then there exists Y which is 2-core of D such that

w(Y ) ≤ 3k − 6.

Proof. Let L ⊆ V (T ) be the leaves of T and EL ⊆ E(T ) be the edges of T that

have one endpoint in L. Beacause G is a plane graph, from Proposition 2.1,
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Figure 6.6: In (a) are depicted two graphs G1,G2 that both have a labelled vertex

v and an edge which has v as an endpoint, e1, e2 in G1, G2 respectively. In (b)

are the parts of their branch decompositions D1 and D2 that contains τ(e1) and

τ(e2). The graph G in (c) is a 1-clique sum of G1 and G2 where the vertex v has

been identified. In (d) is shown the way we construct from D1 and D2 a branch

decomposition D of G where w(Y ) ≤ w(Y1) + w(Y2).

obtained that |E(G)| = |L| = |EL| ≤ 3k− 6. For the middle sets of edges of T we

note that if e ∈ EL, then midG(e) = 2 and if e /∈ EL midG(e) > 2 because of the

3-connectivity of G. We choose Y as the subgraph induced by E(T )/EL and EL
is the boundary of Y . Recall that the 2-weight of Y in D is |EL| which is at most

3k − 6.
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Chapter 7

Main Result

7.1 Weakly dominated and strong dominated tricon-

nected components

Given a graph G and a positive integer r, the set of weakly dominated compo-

nents Wr(G) and the set of strong dominated triconnected components Sr(G) are

recursively defined as follows:

• If rdsr(G) ≤ 2, then Wr(G) = {G} and Sr(G) = {∅}.

• If rdsr(G) ≥ 3 and G is 3-connected, then Sr(G) = {G} and Wr(G) = {∅}.

• If G ∈ G1 ⊕h G2 for some h ∈ {1, 2}, then Sr(G) = Sr(G1) ∪ Sr(G2) and

Wr(G) =Wr(G1) ∪Wr(G2).

By this recursive definition we construct a tuple (T rG, z), where T rG is a rooted

tree and z is a function such that z : V (T rG)→ G. The construction based on the

following conditions:

• The restriction of z in the leaves is a bijection from the leaves to Wr(G) ∪
Sr(G).

• If G′ is a graph such that G′ ∈ z(v1) ⊕h z(v2) for some h ∈ {1, 2}, then

z(v) = G′ where v is the parent node of v1 and v2 in T rG.

Observe that if R is the root of T rG, then z(R) = G.

Notice that all graphs in Sr(G) and Wr(G) are topological minors of G. It is

also clear from Proposition 4.6 that if G ∈ G1 ⊕h G2 for some h ∈ {1, 2}, then

bw(G) = max{bw(G1),bw(G2)}
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7.2 Main Proof

Now we are in position to prove Theorem 1.3. But before that we restate the

theorem more formally in a way related on the concepts of the previous chapters.

Theorem 7.1. Let G be plane graph and r a positive integer. If rdsr(G) ≤ k,

then bw(G) ≤ r ·
√

4.5 · k and cap2r,r·
√
4.5·k(G) ≤ 3k − 6.

Proof. Assume that there are no vertices of degree one in G. We use induction on

r. If r = 1, for every graph the minimum 1-radial dominating set is equal to the

number of its vertices.

Now by induction on T 1
G, we will prove that there is a sphere-cut decomposition

D of G and a Y which is a 2-core of D such that w(Y ) ≤ 3k − 6, where k =

rds1(G) = |V (G)|.
Let G′ ∈ S1(G) and D1 = (T ′, τ ′) be the branch decomposition of G′ of

minimum width. By 4.10 we can assume that is a sphere-cut decomposition.

Lemma 6.6 implies that there exists a Y ′ which is a 2-core of D1 and such that

w(Y ′) ≤ 3k′ − 6, where k′ = rds1(G
′) = |V (G′)|. We observe that S1(G) = ∅

because there are no vertices of degree one.

Let R be the root of T 1
G and assume now that for every v ∈ V (T 1

G) \ R there

is a sphere-cut decomposition Dv of minimum width of z(v) and a a Yv which is

a 2-core of Dv such that w(Yv) ≤ 3kv − 6, where kv = rds1(z(v)) = |V (z(v))|.
This propositions hold also for G = z(R). Let v1, v2 be the children of R in T 1

G,

so G ∈ z(v1) ⊕h z(v2) for some h ∈ {1, 2}. From the induction hypothesis, there

exist a branch decompositions Di of z(vi) and a Yi which is a 2-core of Di such

that w(Yi) ≤ 3ki − 6 , where ki = rds1(z(vi)) = |V (z(vi))| for i ∈ {1, 2}.
Using Lemma 6.4 and Observation 6.5 there exists a sphere-cut decomposition

D of G and a Y which is a 2-core of D such that w(Y ) ≤ w(Y1) + w(Y2) = 3k1 −
6+3k2−6 = 3(k1+k2)−12. Lemma 5.6 implies that w(Y ) ≤ 3(k+2)−12 = 3k−6

and the width of D is bw(G) because equals to max{bw(G1),bw(G2)}.
Assume now that the theorem holds for values smaller than r and we will prove

that it also holds for r ≥ 2. Let H ∈ Sr(G) and S is a radial dominating set of H.

H is topological minor of G. By Observation 5.1 kH = rdsr(H) ≤ rdsr(G) = k.

By Proposition 5.3 H is the topological minor of a 3-connected plane graph H1

where S is r-radially extremal.

Let H2 be the graph obtained if we remove from H1 the vertices of S. Because

of 3-connectivity of H1, for any v ∈ S the graph H[NH1(v)] is a cycle and each

such cycle is the boundary of the face of H2. We denote by F the set of these faces
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and observe that F ∗ is a (r − 1)-radial dominating set of H∗2 (we denote by F ∗

the vertices of H∗2 that are duals of the faces of F in H2). Moreover, the fact that

S is a 2r-scattered dominating set in H1 implies that F ∗ is a 2(r − 1)-scattered

dominating set in H∗2 .

From the induction hypothesis and the fact that |F ∗| = |S|, we obtain that

cap2(r−1),(r−1)·
√
4.5·k(H

∗
2 ) ≤ 3kH − 6.

From Observation 6.1 and Proposition 4.9,

cap2(r−1),(r−1)·
√
4.5·k(H

∗
2 ) ≤ 3kH − 6.

The graph H2 is 2-connected because of Lemma 2.4. This fact along with

Lemma 6.3 implies that

cap2(r−1),(r−1)·
√
4.5·k(H2) ≤ 3kH − 6.

In graph H2, for any face fi ∈ F , let (xi0, . . . xm − 1i) be the cyclic order of

the vertices in its boundary cycle. We also denote by xi the vertex in H1 that

was removed in order for fi to appear in H2. Let D = (T, τ) be a sphere-cut

decomposition of H2 of width at most (r − 1) ·
√

4.5 · k and a 2(r − 1)-core Y of

D such that w(Y ) ≤ 3kH − 6. We use (T, τ) in order to construct a sphere-cut

decomposition of H1 by adding new leaves in T and mapping them to the edges

E(H1)/E(H2) = ∪i=1,...,|F |{{xi, xih} | h = 0, 1, . . .m− 1} in the following way: for

every i = 1, . . . , |F | and h = 0, 1, . . .m−1 we set tih = τ−1({xih, xih+1 mod mi
}) and

let eih = {yih, tih} be the unique edge of T that is incident to tih. We subdivide eih
and we call the subdivision vertex sih. We also add a new vertex zih and make it

adjacent to sih. Finally, we extend the mapping of τ by mapping the vertex zih to

the edge {xi, xih} and we use the notation D′ = (T ′, τ ′) for the resulting sphere-cut

decomposition of H1.

By Proposition 5.4 the width of D′ is at most r ·
√

4.5 · k. Let e ∈ E(T )/E(Y )

and Ne be the noose of e in D. By the definition of q-core, midH2(e) ≤ 2(r − 1).

Because H1 is r-radially extremal Ne meets at most 2 faces of F , midH1(e) ≤ 2r.

We choose Y ′ = Y as 2r-core of D′. Now it is clear that w(Y ′) ≤ 3kH − 6 and

also cap2r,r·
√
4.5·k(H1) ≤ 3kH − 6.

Lemma 6.2 implies that cap2r,r·
√
4.5·k(H) ≤ 3kH − 6.

This result can be applied for every H ∈ Sr(G).

We have proven that if Gi ∈ Sr(G), then cap2r,r·
√
4.5·k(Gi) ≤ 3kGi − 6 .

Moreover, by the definition of capacity and Proposition 7.1 if Gi ∈ Wr(G), then
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cap2r,l(Gi) = 0 for every l > 0. In this case there exists a branch decomposition of

Gi, by Lemma 7.1 the width of it is at most 2r, and as 2r-core we choose the empty

graph. By Proposition 4.10 we assume that it is a sphere-cut decomposition.

Let R be the root of T rG and assume now that for every v ∈ V (T rG) \ R there

is a sphere-cut decomposition Dv of minimum width of z(v) and a a Yv which is

a 2r-core of Dv such that w(Yv) ≤ 3kv − 6, where kv = rdsr(z(v)) = |V (z(v))|.
This propositions hold also for G = z(R). Let v1, v2 be the children of R in T rG,

so G ∈ z(v1) ⊕h z(v2) for some h ∈ {1, 2}. From the induction hypothesis, there

exists a branch decompositions Di of z(vi) and a Yi which is a 2r-core of Di such

that w(Yi) ≤ 3ki − 6, where ki = rdsr(z(vi)) = |V (z(vi))| for i ∈ {1, 2}.
Using Lemma 6.4 there exist a branch decomposition D of G and a Y which is

a 2r-core of F such that w(Y ) ≤ w(Y1)+w(Y2) = 3k1−6+3k2−6 = 3(k1+k2)−12.

Lemma 5.6 implies that w(Y ) ≤ 3(k + 2) − 12 = 3k − 6 and the width of D is

at most r ·
√

4.5 · k. We observe that if for exactly one of Y1 and Y2 is the empty

graph the result is the same because if for example Y2 is the empty graph, then

w(Y ) ≤ w(Y1) + w(Y2) = 3k1 − 6 ≤ 3k − 6. Both of Y1 and Y2 are the empty

graph iff Sr(G) = ∅ and at this case the capacity of G is zero.

Now let us remember that we have assumed that in G there are no vertices of

degree one. To complete the proof of the theorem we will add these vertices, if

there exist, and the related edges in the decomposition without any change in the

result.

Let v be a vertex of degree one and u the only neighbour of it. Let e′ be an

edge of G that has u as an endpoint but not v. In T we subdivide the edge that

has τ(e′) as an endpoint and call p the vertex obtained by the subdivision. We

add also a new vertex z and connect it with p. We extend τ such as τ({u, v}) = z

and hold the same 2r-core. For every e ∈ E(T ) \ {{p, z}, {p, τ(e′)}} we can easily

extend the corresponding noose Ne such that {p, z} and {p, τ(e′)} be in the same

open disc without v ∈ V (Ne) at any case. The width of the decomposition and

the capacity of G do not change, so we complete the proof of the theorem.

7.3 Conclusion and further work

In this master-thesis we have introduced some new concepts, q-weight and (q, k)-

capacity, which are related to branch decompositions. We have proven that in

plane graphs, given an optimal sphere-cut decomposition and an r-radial domi-

nating set of it, which has size at most k, the edge of the tree T with the maximum

middle set can be found in a subgraph of T which is a forest. The number of leaves
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of this forest is at most 3k − 6.

At first glance, it seems our results cannot be applied directly to other related

problems of Graph Theory, Parameterized Algorithms, Parameterized Complexity,

etc. We believe that a closer look can disprove this assessment. Let us now give

some definitions regarding Parameterized problems, Kernelization, etc, and then

we will explain what we think is the real impact of our results. Of course these

extensions need a lot of further work and cannot be obtained directly by our

results.

Parameterized Graph Problems. A parameterized graph problem Π in gen-

eral can be seen as a subset of Σ∗ × Z+ where, in each instance (x, k) of Π, x

encodes a graph and k is the parameter.

Kernelization. A parameterized problem is said to admit a polynomial kernel

if there is a polynomial time algorithm (the degree of polynomial is independent

of k), called a kernelization algorithm, that reduces the input instance down to an

instance with size bounded by a polynomial p(k) in k, while preserving the answer.

This reduced instance is called a p(k) kernel for the problem. If p(k) = O(k), then

we call it a linear kernel.

A more formal definition of kernelization follows.

Definition 7.2. Let Π ⊆ Σ∗×Z be a parameterized problem and g be a computable

function. We say that Π admits a kernel of size g if there exists an algorithm K,
called kernelization algorithm, or, in short, a kernelization, that given (x, k) ∈
Σ∗×Z+, outputs, in time polynomial in |x|+k, a pair (x′, k′) ∈ Σ∗×Z+ such that

(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and

(b) max{|x′|, k′} ≤ g(k).

When g(k) = kO(1) or g(k) = O(k), then we say that Π admits a polynomial or

linear kernel respectively.

Kernelization has been extensively studied in the realm of parameterized com-

plexity, resulting in polynomial kernels for a variety of problems. Some examples

of kernelization in well-known problems of parameterized complexity are the fol-

lowing. Vertex Cover has a 2k-sized vertex kernel [15], Planar Dominating

Set has 67k-sized vertex kernel [13], and Feddback Vertex Set has an O(k2)

kernel parameterized by the solution size [60].
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For a variety of parameterized graph problems linear kernels can be obtained

for their planar version. Some of these problems are Connected Vertex Cover,

Minimum Edge Dominating Set, Maximum Triangle Packing, Efficient

Edge Dominating Set, Induced Matching, Full-Degree Spanning Tree,

Feedback Vertex Set, Cycle Packing, and Connected Dominating Set

[1,3,11,12,14,35,36,38,45,49]. In particular, a specific kernelization approach for

the Dominating Set has led to polynomial kernels for some graph classes other

than planar graphs. For example there is a linear kernel for graphs with bounded

genus [29], and a polynomial kernel for graphs excluding a fixed graph H as a

minor and for d-degenerated graphs [5, 51]. A detailed survey about the area of

kernelization is in [34].

Moreover, in this area there are some meta-results, meaning if a parameterized

graph problem Π has some properties and Π is restricted in a graph class, then it

has poylnomial (or linear) kernel. In [10] Bodlaender et al. proved a meta-result

for graphs of bounded genus, in [27] Fomin et al. for H-minor-free graphs, and

in [31] Gajarský et al. for sparse graph classes. Recently another meta-result was

given by Kim et al. for graphs that are H-topological-minor-free [23].

Protrusion Decompositions. Protrusion decompositions have been defined

in [10] and were used in the same paper to prove that a lot of problems in planar

graphs admit polynomial or linear kernels. First we will give the definitions of

t-protrusion and (α, β)-Protrusion decomposition and then we will explain how

our results may be related to them.

Definition 7.3. Given a graph G, we say that a set X ⊆ V is a t-protrusion of

G if |NG(X)| ≤ t and tw(G[X]) ≤ t.

Definition 7.4. [(α, β)-Protrusion decomposition] An (α, β)-protrusion de-

composition of a graph G is a partition P = {R0, R1, . . . , Rρ} of V (G) such that

• max{ρ, |R0|} ≤ α,

• each R+
i = NG[Ri], i ∈ {1, . . . , ρ}, is a β-protrusion of G, and

• for every i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0.

We call the sets R+
i , i ∈ {1, . . . , ρ}, the protrusions of P.

The next proposition is a lemma that was also proven in [10].
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Proposition 7.5 (H. L. Bodlaender et al. [10], Lemma 6.2). Let r be a positive

integer and let G = (V,E) be a graph embedded in a surface Φ of Euler genus g

that contains a set S of vertices, |S| ≤ k, such that Rr
G(S) = V. Then G has an

(αk, β)-protrusion decomposition for some constants α and β that depend only on

r and g.

In parameterized complexity, protrusion decompositions are mainly applica-

ble in algorithm design and kernelization. Some work in algorithm design via

protrusion decompositions appears in problems such as Planar F-Deletion,

l-Pseudoforest Deletion, etc. [26, 50]. Furthermore, in kernelization pro-

trusion decompositions were used for problems such as r-Dominating Set, r-

Scattered Set, Planar F-Deletion, Connected Dominating Set, etc.

[17,25,32,33,50]. Of course in the meta-results that we have mentioned protrusion

decompositions are a main tool for the proofs. [23, 27,31].

In the landscape that we have defined, all graphs are embedded in the the 2-

dimensional sphere S0 = {(x, y) | x2 + y2 = 1}, so its Euler genus is 2. Our aim is

to make exact the constant α of Proposition 7.5 at this landscape. Our approach

will use protrusions of branchwidth instead of treewidth and will be based on the

concepts q-weight and (q, k)-capacity that we have defined. We will also try to

improve the bound for the constant β.

Achieving this goal is likely to have a significant impact in a lot of kernelization

problems by improving or finding explicit bounds for linear kernels of several

problems on graphs.
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[56] Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming

for graphs on surfaces. In Automata, Languages and Programming, 37th

International Colloquium, ICALP 2010 (1), volume 6198 of Lecture Notes in

Computer Science, pages 372–383. Springer, 2010.

[57] Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming

for h-minor-free graphs. In Computing and Combinatorics - 18th Annual

International Conference, COCOON 2012, Sydney, Australia, August 20-22,

2012. Proceedings, pages 86–97, 2012.

[58] Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Com-

binatorica, 14(2):217–241, 1994.

[59] Dimitrios M. Thilikos. Fast sub-exponential algorithms and compactness in

planar graphs. In 19th Annual European Symposium on Algorithms (ESA

2011), pages 358–369, 2011.
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