
National Technical University of Athens
School of Electrical and Computer Engineering

Department of Computer Science

High dimensional Approximate r-nets with emphasis on

vectors on a unit hypercube

Loukas Kavouras

Submitted to the Department Of Mathematics
Graduate Program in Logic, Algorithms and Computation

µΠλ∀, November 2016

Abstract

The construction of r-nets offers a powerful tool in computational and metric geometry. We focus

on high-dimensional spaces and present a new randomized algorithm which efficiently computes

approximate r-nets with respect to Euclidean distance. For any fixed ε > 0, the approximation factor

is 1 + ε and the complexity is polynomial in the dimension and subquadratic in the number of points.

The algorithm succeeds with high probability. More specifically, the best previously known LSH-based

construction of Eppstein et al. [EHS15] is improved in terms of complexity by reducing the dependence

on ε, provided that ε is sufficiently small. Our method does not require LSH but, instead, follows

Valiant’s [Val15] approach in designing a sequence of reductions of our problem to other problems in

different spaces, under Euclidean distance or inner product, for which r-nets are computed efficiently

and the error can be controlled. Our result immediately implies efficient solutions to a number of

geometric problems in high dimension, such as finding the (1 + ε)-approximate kth nearest neighbor

distance in time subquadratic in the size of the input.

1

Περίληψη

Σε αυτή τη διπλωματική, παρουσιάζουμε έναν αλγόριθμο για την κατασκευή προσεγγιστικών r-nets σε

Ευκλείδιο χώρο υψηλής διάστασης. Δεδομένου ενός μετρικού χώρου X, |X| = n, ένα r-net είναι ένα υπ-

οσύνολο N των αρχικών σημείων, τέτοιο ώστε τα σημεία που ανήκουν στο N έχουν απόσταση τουλάχισ-

τον r, και όλα τα υπόλοιπα σημεία του σημειοσυνόλου απέχουν απόσταση από τα σημεία του N το πολύ

r. Για την κατασκευή r-net, έχουν προταθεί διάφοροι αλγόριθμοι, οι οποίοι έχουν χρόνο τερματισμού

τετραγωνικό στο πλήθος του σημειοσυνόλου ή εκθετικό στη διάσταση του μετρικού χώρου, με ανάλυση

χειρότερης περίπτωσης. Οι τεχνικές που χρησιμοποιούνται συχνότερα είναι αυτή της άπληστης μεθόδου,

καθώς και της δημιουργίας πλεγμάτων σε συνδυασμό με κατακερματισμό και κουβάδιασμα. Τέτοιοι αλγόρι-

θμοι δεν μπορούν να θεωρηθούν αποδοτικοί σε περιπτώσεις μεγάλου πλήθους σημείων και σε περιπτώσεις

μετρικών χώρων με υψηλή διάσταση. Μια αποδοτική προσέγγιση για το πρόβλημα της κατασκευής r-net σε

υψηλή διάσταση είναι ο αλγόριθμος των [EHS15], οποίος βασίζεται στο LSH (Locality Sensitive Hashing).

Ο αλγόριθμός τους είναι πιθανοκρατικός και υπολογίζει προσεγγιστικά r-net, με μεγάλη πιθανότητα. Ο

προσεγγιστικός λόγος είναι 1 + ε, για κάθε ε > 0, και η χρονική πολυπλοκότητα είναι Õ(dn2−Θ(ε)), για

κατάλληλα μικρά ε, όπου το Õ κρύβει πολυλογαριθμικούς παράγοντες. Ο αλγόριθμος που αναπτύσσουμε

για την κατασκευή r-nets βελτιώνει το αποτέλεσμα των [EHS15] όσο αφορά την εξάρτηση από το ε, για

κατάλληλα μικρά ε. Συγκεκριμένα, η πολυπλοκλότητα του αλγορίθμου είναι Õ(dn2−Θ(
√
ε)) και υπολογίζει

(1 + ε)r-nets με μεγάλη πιθανότητα. Επιπλέον, η μέθοδος που χρησιμοποιούμε δεν βασίζεται στο LSH,

αντιθέτως εκμεταλλεύεται φαινόμενα που εμφανίζονται σε υψηλές διαστάσεις. Η προσέγγισή μας ακολου-

θεί αυτή του Valiant [Val15], για την επίλυση του προβλήματος του προσεγγιστικά κοντινότερου γείτονα.

Αρχικά ανάγουμε το πρόβλημά του υπολογισμολού του r-net για αυθαίρετα διανύσματα με Ευκλείδια απόσ-

ταση στο ίδιο πρόβλημα για μοναδιαία διανύσματα και ακολουθούν διάφορες μετατροπές του προβλήματος

όπως μετασχηματισμοί των μοναδιαίων διανυσμάτων σε διανύσματα με στοιχεία 1 ή -1, μετάφραση της

Ευκλείδιας απόστασης σε εσωτερικό γινόμενο, και εμβάπτιση του σημειοσυνόλου έτσι ώστε να μπορούμε

να ξεχωρίσουμε ¨μακρινά’ και ¨κοντινά’ σημεία. ΄Ολες αυτές οι αναγωγές απαιτούν αποδείξεις ορθότητας,

που εγγυώνται ότι θα έχουμε το επιθυμητό αποτέλεσμα, με μεγάλη πιθανότητα, και ότι το συσσωρευτικό

σφάλμα, που προκύπτει από την ακολουθία των μετασχηματισμών, είναι στα επιτρεπτά όρια. Στο τελικό

στάδιο του αλγορίθμου εκμεταλλευόμαστε γρήγορο πολλαπλασιασμό πινάκων. Ο αλγόριθμός μας μπορεί

να χρησιμοποιηθεί σαν υπορουτίνα στο πλαίσιο Net and Prune και να επιλύσει αποδοτικά σε χώρο υψηλής

διάστάσης προβλήματα, όπως το k-center και k-th nearest neighbor distance.

2

Acknowledgements

I would first like to thank my supervisor Ioannis Z. Emiris, Georgia Avarikioti and Ioannis Psarros,

since this thesis is based on a joint work with them. This accomplishment would not have been possible

without them.

I would also like to thank to my parents for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching and writing this

thesis.

3

4

Contents

Abstract 1

Acknowledgements 3

1 Introduction 7

1.1 Existing Work . 8

1.2 Our Contribution. 10

2 Approximate ρ-net for vectors on a unit hypercube 12

3 Approximate r-nets in high dimension under Euclidean distance 24

4 Applications and future work 33

4.1 k -th nearest neighbor distance . 37

4.2 k -center clustering and greedy permutations . 38

Bibliography 39

5

6

Chapter 1

Introduction

We study r-nets, a powerful tool in computational and metric geometry, with several applications in

approximation algorithms. An r-net for a metric space (X, ‖·‖), |X| = n and for numerical parameter

r is a subset R ⊆ X, such that the closed r/2-balls centered at the points of R are disjoint, and the

closed r-balls around the same points cover all of X. Thus, nets provide a sketch of the point set for

distances that are r or larger.

Nets are a useful tool in presenting point sets hierarchically. In particular, computing nets of different

resolutions and linking between different levels, leads to a tree like data-structure that can be used

to facilitate many tasks. Nets can be defined in any metric space, but in Euclidean space a grid can

sometimes provide an equivalent representation. In particular, net-trees can be interpreted as an

extension of (compressed) quadtrees to more abstract settings.

Computing nets is closely related to k-center clustering. In the metric k-center problem, one is given

a metric space X, (X, ‖·‖), |X| = n and an integer k, and the objective is to place k centers so as

to minimize the maximum distance of a point to a center. A reduction from the dominating set

problem shows that it is NP-hard to approximate k-center within a factor < 2. However, there is a

simple greedy algorithm for this problem which uses the concept of r-nets to achieve the best possible

approximation ratio of 2. The algorithm constructs an approximate r-net with k net points, which is

also a 2 approximation to the k-center problem. We define approximate r-nets analogously. Formally,

Definition 1. Given a pointset X ⊆ Rd, a distance parameter r ∈ R and an approximation parameter

ε > 0, a (1 + ε)r-net of X is a subset R ⊆ X s.t. the following properties hold:

7

8 Chapter 1. Introduction

1. (packing) For every p, q ∈ R, p 6= q, we have that ‖p− q‖2 ≥ r.

2. (covering) For every p ∈ X, there exists a q ∈ R s.t. ‖p− q‖2 ≤ (1 + ε)r.

In this thesis, we consider the efficient construction of r-nets on high dimensional spaces. The efficiency

comes in terms of time complexity as well as in terms of solution quality. Time complexity can be

affected by big data phenomena and the curse of dimensionality, which refers to how certain algorithms

may perform poorly in high dimensional data. Towards this end, we present a new randomized

algorithm with complexity polynomial in the dimension and subquadratic in the number of points.

In terms of solution quality, our algorithm computes approximate r-nets with respect to Euclidean

distance and succeeds with high probability. For any fixed ε > 0, the approximation factor is 1 + ε. The

best previously known algorithm of Eppstein et al. [EHS15] also computes (1 + ε)-approximate r-nets

with high probability and has running time Õ(dn
1+ 1

(1+ε)2), where Õ hides polylogarithmic factors. For

quite small ε > 0, this is roughly Õ(dn2−Θ(ε)) and we improve this result by reducing the dependence

on ε to Õ(dn2−Θ(
√
ε)). Moreover, our algorithm is not based on locality sensitive hashing.

Introduced in work of Indyk and Motwani [IM98], the concept of locality sensitive hashing (LSH) uses

a series of hashing functions that all have the property that close points have a higher probability of

hashing to the same bucket. To perform a given query, one simply hashes the query point, and then

checks the subset of the n data points that have also been hashed to those buckets.

However, our approach follows Valiant’s [Val15] in designing a sequence of reductions of our problem

to other problems in different spaces under Euclidean distance or inner product, for which r-nets are

computed efficiently and the error can be controlled. Substantial work of this thesis forms part of the

paper ”High-dimensional approximate r-nets” [SODA2017], together with Georgia Avarikioti, Ioannis

Z.Emiris, and Ioannis Psarros [AEKP17].

1.1 Existing Work

Finding r-nets can be addressed naively by considering all points of X unmarked and, while there

remains an unmarked point p, the algorithm adds it to R and marks all other points within distance

r from p. A similar approach was used by Gonzalez [Gon85] to 2-approximate the k-center problem

in time O(nk). The greedy algorithm chooses the first center arbitrarily, and at each step selects the

1.1. Existing Work 9

point, which is the farthest from all preceding centers as the new center. This was later improved

to O(n) time, for low dimensional Euclidean space [Har04], if k is sufficiently small ,using grids and

hashing.

However, their complexity remains too large when dealing with big data in high dimension. The naive

algorithm is quadratic in n and the grid approach is in O(dd/2n), hence it is relevant only for constant

dimension d [HR15].

The aforementioned technique used by Gonzalez, can be generalized, when k = n, to lead to a

permutation of the point set , called the greedy permutation. Formally, a permutation Π =< π1, . . . πn >

of the vertices of a metric space (X, d) is a greedy permutation (also called a farthest-first traversal

or farthest point sampling) if each vertex πi is the farthest in X from the set Πi = {π1, . . . , πi−1}

of preceding vertices. Each prefix of a greedy permutation is an r-net, for r equal to the minimum

distance between points in the prefix, and for every r, an r-net may be obtained as a prefix of a greedy

permutation.

Greedy permutations may be computed for metric spaces in O(n2) time, and for graphs in the same

time as all pairs shortest paths. The only previous improvement on the naive algorithm, by Har-Peled

and Mendel [HP05] defines a concept of approximation for greedy permutations. They showed that

(1+ε)-greedy permutations can be computed in O(n log n) time in metric spaces ; these are permutations

Π =< π1, . . . πi > for which there exists a sequence of numbers r1 ≥ r2 ≥ . . .such that

1. the maximum distance of a point of X from Πi is in the range [ri, (1 + ε)ri],

2. the distance between every two points u, v ∈ Πi is at least ri.

This is satisfactory when doubling dimension of the metric space is constant, but requires a vast

amount of resources when it is high. More specifically, the overall running time of the algorithm is

O(2ddimn log n), thus suffers from the curse of dimensionality.

When the dimension is high, there is need for algorithms with time complexity polynomial in d and

subquadratic in n. One approach, which computes (1 + ε)r-nets in high dimension is that of [EHS15],

which uses the Locality Sensitive Hashing (LSH) method of [AI08]. The resulting time complexity is

Õ(dn2−Θ(ε)), where ε > 0 is quite small and Õ hides polylogarithmic factors.

In general, high dimensional analogues of classical geometric problems have been mainly addressed

by LSH. For instance, the approximate closest pair problem can be trivially solved by performing

10 Chapter 1. Introduction

n approximate nearest neighbor (ANN) queries. For sufficiently small ε, this costs Õ(dn2−Θ(ε))

time, due to the complexity factor of an LSH query. Several other problems have been reduced to

ANN queries [GIV01]. Recently, Valiant [Val12], [Val15] presented an algorithm for the approximate

closest pair problem in time Õ(dn2−Θ(
√
ε)). This is a different approach in the sense that while LSH

exploits dimension reduction through random projections, the algorithm of [Val15] is inspired by high

dimensional phenomena. One main step of the algorithm is that of lifting the pointset up to a higher

dimension.

Efficient construction of r-nets in high dimensional spaces may lead to efficient solutions for several

problems. In [HR15], they describe a framework that contains problems, satisfying specific properties,

that can be solved efficiently by algorithms, using r-nets as a subroutine. Our extension of r-nets

achieves the best high dimensional solution for the kth nearest neighbor distance problem and leads to

efficient solutions for the k-center problem. However, the further extension of net and prune framework

to other problems is challenging, due to the hardness of finding efficient deciders for these problems in

high dimensional spaces.

1.2 Our Contribution.

We present a new randomized algorithm that computes approximate r-nets in time subquadratic in

the number of points and polynomial in the dimension, and improves upon the complexity of the best

known algorithm. Our method does not employ LSH and, with probability 1− o(1), it returns R ⊂ X,

which is a (1 + ε)r-net of X.

We reduce the problem of an approximate r-net for arbitrary vectors (points) under Euclidean distance

to the same problem for vectors on the unit sphere. The reduction can be relatively easily accomplished

by adding a rather large randomly chosen vector v to all other vectors, then normalizing the vectors

so as to have unit norm. Provided the vector v has magnitude significantly more than the maximum

magnitude of all the vectors of interest, and the dimensionality of the space is sufficiently high so as to

guarantee that v is nearly orthogonal to the chords connecting all pairs of the vectors of interest, this

operation will simply scale all distances by roughly the same factor.

Then, depending on the magnitude of the distance r, an algorithm handling “small” distances or an

algorithm handling “large” distances is called. These algorithms reduce the problem of computing

1.2. Our Contribution. 11

r-nets on unit vectors under Euclidean distance to that of finding an r-net for unit vectors under inner

product. The “law of cosines” will allow us to translate between multiplicative 1 + ε bounds on the

distance r and additive cε bounds on the inner product, for c constant, provided that r is not too small.

If r is too small for an additive guarantee on the inner product to correspond to a meaningful

multiplicative guarantee on r we distinguish between the cases r ≥ 1
n0.9 and r < 1

n0.9 . In the first case,

we can achieve a multiplicative gap amplification between distances which immediately reduces the

problem to the case that can be solved by the “law of cosines”.

The second case is not straightforward and the approach of [Val15] can not be adapted. It requires

partitioning the pointset in a manner which allows computing r-nets for each part separately. Each

part has bounded diameter which implies that we need to solve a “large r” subproblem.

Next, we convert the vectors having unit norm into vectors with entries {−1,+1}. This transformation

is necessary in order to apply the Chebyshev embedding of [Val15], an embedding that reduces the

magnitude of the inner product of “far” vectors, while preserving the magnitude of the inner product

of “close” vectors. For the final step of the algorithm, we first apply a procedure that allows us to

efficiently compute (1 + ε)-nets in the case where the number of “small” distances is large. Then, we

apply a modified version of the Vector Aggregation algorithm of [Val15], that exploits fast matrix

multiplication, so as to achieve the desired running time.

In short, we extend Valiant’s framework [Val15] and we compute r-nets in time Õ(dn2−Θ(
√
ε)), thus

improving on the exponent of the LSH-based construction [EHS15], when ε is small enough. This

improvement by
√
ε in the exponent is the same as the complexity improvement obtained in [Val15]

over the LSH-based algorithm for the approximate closest pair problem.

Our study is motivated by the observation that computing efficiently an r-net leads to efficient solutions

for several geometric problems, specifically in approximation algorithms. In particular, our extension

of r-nets in high dimensional Euclidean space can be plugged in the framework of [HR15]. The new

framework has many applications, notably the kth nearest neighbor distance problem, which we solve

in Õ(dn2−Θ(
√
ε)).

Chapter 2

Approximate ρ-net for vectors on a

unit hypercube

In this chapter, we present an algorithm for computing an approximate net with respect to the inner

product for a set of unit vectors. We begin by defining the notion of approximate ρ-nets formally:

Definition 2. For any X ⊂ Sd−1, an approximate ρ-net for (X, 〈·, ·〉) , with additive approximation

parameter ε > 0, is a subset C ⊆ X which satisfies the following properties:

• for any two p 6= q ∈ C, 〈p, q〉 < ρ, and

• for any x ∈ X, there exists p ∈ C s.t. 〈x, p〉 ≥ ρ− ε.

Note that “far” points tend to have small inner product and “close” points tend to have “big” inner

product. Since our ultimate goal is a solution to computing r-nets with respect to Euclidean distance, we

allow additive error in the approximation, which under certain assumptions, translates to multiplicative

error in Euclidean distance.

Our basic tool is based on the Vector Aggregation Algorithm by [Val15]. Their approach is motivated by

the simple observation that if some columns of X have “big” inner product (the corresponding vectors

are close), then we can compress X, by simply aggregating sets of columns. If one randomly partitions

the n columns into, say, n2/3 sets, each of size n1/3, and then replaces each set of columns by a single

vector, each of whose entries is given by the sum (over the real numbers) of the corresponding entries

of the columns in the set, then we have shrunk the size of the matrix from d× n, to a d× n2/3 matrix,

12

13

Z. This step is required to reduce the runtime of the algorithm which uses fast matrix multiplication

of the matrices ZT , Z forming matrix W , which still contains the information of close and far vectors.

Following the exposition of [Val15], two vectors are close to each other when the magnitude of their

inner product is large, and two vectors are far from each other when the magnitude of their inner

product is small. Let |〈·, ·〉| denote the magnitude of the inner product of two vectors.

Definition 3. For any X = [x1, . . . , xn], X ′ = [x′1, . . . , x
′
n] ⊂ Rd×n, a crude approximate ρ-net for

(X,X ′, |〈·, ·〉|), with multiplicative approximation factor c > 1, is a subset C ⊆ [n] which satisfies the

following properties:

• for any two i 6= j ∈ C, |〈xi, x′j〉| < cρ, and

• for any i ∈ [n], there exists j ∈ C s.t. |〈xi, x′j〉| ≥ ρ.

We will now present Vector Aggregation algorithm, which is a slight modification of Valiant’s

algorithm. The main difference is that, instead of the “compressed” matrix ZTZ, we use the form

XTZ, where Z derives from vector aggregation. Both forms encode the information in the Gram

matrix XTX. The matrix XTZ is better suited for our purposes, since each row corresponds to an

input vector instead of an aggregated subset; this extra information may be useful in further problems.

Vector Aggregation

Input: X = [x1, . . . , xn] ∈ Rd×n, X ′ = [x′1, . . . , x
′
n] ∈ Rd×n, α ∈ (0, 1), τ > 0.

Output: n× n1−α matrix W and random partition S1, . . . , Sn1−α of {x1, . . . , xn}.

• Randomly partition [n] into n1−α disjoint subsets, each of size nα , denoting the sets

S1, . . . , Sn1−α .

• For each i = 1, 2, . . . , 78 log n:

– Select n coefficients q1, . . . , qn ∈ {−1,+1} at random.

– Form the d× n1−α matrix Zi with entries zij,k =
∑

l∈Sk ql · x
′
j,l

– W i = XTZi

14 Chapter 2. Approximate ρ-net for vectors on a unit hypercube

• Define the n× n1−α matrix W with wi,j = quartile(|w1
i,j |, . . . |w

78 logn
i,j |).

• Output W and S1, . . . , Sn1−α .

Theorem 4. Let X ∈ Rd×n, X ′ ∈ Rd×n, α ∈ (0, 1), τ > 0 the input of Vector Aggregation. Then,

the algorithm returns a matrix W of size n× n1−α and a random partition S1, . . . , Sn1−α, which with

probability 1−O(1/n3) satisfies the following:

• For all j ∈ [n] and k ∈ [n1−α], if ∀u ∈ Sk, |〈xj , u〉| ≤ τ then |wj,k| < 3 · nατ .

• For all j ∈ [n] and k ∈ [n1−α] if ∃u ∈ Sk, |〈xj , u〉| ≥ 3nατ then |wj,k| ≥ 3 · nατ .

Moreover, the algorithm runs in time Õ(dn+ n2−α +MatrixMul(n× d, d× n1−α)).

The proof Theorem 4 relies on the following extremely crude anti-concentration lemma to argue that if

an entry wij,k of W contains a contribution from a pair of columns with large inner product, then with

a reasonable probability over the random choice of q1, . . . , qn, the entry wij,k will not be too small.

Lemma 5 (Anti-concentration). Let q1, . . . , qt ∈ {−1, 1} be chosen independently and uniformly at

random, and let a1, . . . , at ∈ R s.t. |a1| = maxi |ai|. Then,

Pr[|
t∑
i=1

qi · ai| ≥ |a1|] ≥ 1/2.

Proof. Consider a given assignment for q2, . . . , qt. Then if

t∑
i=2

qi · ai = 0 =⇒ |
t∑
i=1

qi · ai| = |q1 · a1| = |a1|.

Otherwise,

Pr[|
t∑
i=1

qi · ai| ≥ |a1|] ≥ Pr[sign(q1 · a1) = sign(
t∑
i=2

qi · ai = 0)] = 1/2.

Proof of Theorem 4. Notice that

wij,k =
∑
xi∈Sk

qi · 〈xj , xi〉

15

and since q1, . . . , q|Sk| ∈ {−1, 1} are independent and chosen uniformly at random, we obtain

E[wij,k] = 0.

If ∀u ∈ Sk, |〈xj , u〉| ≤ τ , then

V ar(wij,k) = E[(wij,k)
2] ≤ n2ατ2

By Chebyshev’s inequality:

Pr[|wij,k| ≥ 3 · nατ] ≤ 1/9

With m repetitions, the number of successes N , that is the number of indices i for which |wij,k| ≤ 3 ·nατ ,

follows the binomial distribution. Hence,

Pr[N ≤ 3m/4] ≤ exp(−m/26).

We consider as bad event the event that for some j, k, more than 25% of the repetitions fail, that is

|wij,k| ≥ 3 · nατ . By the union bound, this probability is ≤ n2−α · exp(−m/26), which for m ≥ 78 log n

implies a probability of failure ≤ 1/n3.

Now consider xj , and xl ∈ Sk s.t. |〈xj , xl〉| ≥ 3 · nατ , then by Lemma 5, with probability 1/2,

|wij,k| ≥ 3 · nατ . We consider as bad event the event that for j, l, more than 75% of the repetitions fail,

that is |wij,k| ≤ 3 · nατ . Hence,

Pr[N ≤ m/4] ≤ exp(−m/8),

which for m ≥ 78 log n implies a probability of failure ≤ 1/n3.

The runtime of the algorithm is dominated, up to polylogarithmic factors, by the computation of

matrix Z, taking time O(dn), the computation of matrix W , taking time n2−a, or the computation of

the product W i, taking time MatrixMul(n× d, d× n1−a).

For the case of pointsets with many “small” distances, we rely crucially on the fact that the expected

number of near neighbors for a randomly chosen point is large. So, if we iteratively choose random

points and delete these and their neighbors, we will end up with a pointset which satisfies the property

16 Chapter 2. Approximate ρ-net for vectors on a unit hypercube

of having sufficiently few “small” distances. Then, we apply Vector Aggregation.

Crude ApprxNet

Input: X = [x1, . . . , xn] ∈ Rd×n, X ′ = [x′1, . . . , x
′
n] ∈ Rd×n, α ∈ (0, 1), τ > 0.

Output: C ′ ⊆ [n], F ′ ⊆ [n].

• C ← ∅, F1 ← ∅, F2 ← {x1, . . . , xn}

• Repeat n0.5 times:

– Choose a column xi uniformly at random.

– C ← C ∪ {xi}.

– Delete column i from matrix X and column i from matrix X ′.

– Delete each column k from matrix X, X ′ s.t. |〈xi, x′k〉| ≥ τ .

– If there is no column k from matrix X s.t. |〈xi, x′k〉| ≥ τ , then F1 ← F1 ∪ {xi}

• Run Vector Aggregation with input X, X ′, α, τ and output W , S1, . . . , Sn1−α .

• For each of the remaining rows i = 1, . . .:

– For any |wi,j | ≥ 3nατ :

∗ If more than n1.7 times in here, output ”ERrOR”.

∗ Compute inner products between xi and vectors in Sj . For each vector x′k ∈ Sj s.t.

x′k 6= xi and |〈xi, x′k〉| ≥ τ , delete row k and F2 ← F2\{xi}.

– C ← C ∪ {xi}

• Output indices of C and F ← {F1 ∪ F2}.

Algorithm Crude ApprxNet takes as input the output of a powerful embedding, namely the Chebyshev

embedding. This embedding allows us to distinguish between inner products of “close” and “far”

vectors.

In order for Vector Aggregation to give the desired results, we must preprocess the pointset with

17

a “sparsifying” step, which helps us to compute the centers of a crude approximate r-net and the far

points with high probability. We begin by choosing a point xi uniformly at random and adding it to

the net. We delete all columns j, such that |〈xi, x′j〉| is “big”, since this means that these two points

are close and we should add them both to the net. If there is not such a column, the point is definitely

“far” from all the other points and we add it to the set F . This step is repeated for n0.5 times.

Suppose that all points chosen in all repetitions have many neighbors. Then, the expected number

of points we delete is greater than n and we end up with an exact crude net. Now, suppose that the

previous hypothesis does not hold. Then, the number of points with “big” inner product will be less

than n1.7, with high probability, before Vector Aggregation is called. Thus, the pointset will have

sufficiently “small” distances.

Theorem 6. On input X = [x1, . . . , xn] ∈ Rd×n, X ′ = [x′1, . . . , x
′
n] ∈ Rd×n, α ∈ (0, 1), τ > 0, Crude

ApprxNet, computes a crude 3nα-approximate τ -net for X, X ′, following the notation of Definition 3.

The algorithm costs time:

Õ(n2−α + d · n1.7+α +MatrixMul(n× d, d× n1−α)),

and succeeds with probability 1− O(1/n0.2). Additionally, it outputs a set F ⊆ C with the following

property: {xi | ∀xj 6= xi |〈xj , xi〉| < τ} ⊆ F ⊆ {xi | ∀xj 6= xi |〈xj , xi〉| < naτ}.

Proof. We perform n0.5 iterations and for each, we compare the inner products between the randomly

chosen vector and all other vectors. Hence, the time needed is O(dn1.5).

In the following, we denote by Xi the number of vectors which have “large” magnitude of the inner

product with the randomly chosen point in the ith iteration. Towards proving correctness, suppose first

that E[Xi] > 2n0.5 for all i = 1, . . . n0.5. The expected number of vectors we delete in each iteration of

the algorithm is more than 2n0.5 + 1. So, after n0.5 iterations, the expected total number of deleted

vectors will be greater than n. This means that if the hypothesis holds for all iterations we will end up

with a proper net.

Now suppose that there is an iteration j where E[Xj] ≤ 2n0.5. After all iterations, the number of “small”

distances are at most n1.5 on expectation. By Markov’s inequality, when the Vector Aggregation

18 Chapter 2. Approximate ρ-net for vectors on a unit hypercube

algorithm is called, the following is satisfied with probability 1− n−0.2 :

|{(i, k) | |〈xi, x′k〉| ≥ τ, i 6= k}| ≤ n1.7.

By Theorem 4 and the above discussion, the number of entries in the matrix W that we need to visit

is at most n1.7. For each entry, we perform a brute force which costs dnα.

Now notice that the first iteration stores centers c and deletes all points p for which |〈c, p〉| ≥ τ . Hence,

any two centers c, c′ satisfy |〈c, p〉| < τ . In the second iteration, over the columns of W , notice that by

Theorem 4, for any two centers c, c′ we have |〈c, c′〉| < 3nατ.

The problem of computing ρ-nets for the inner product of unit vectors reduces to the less natural

problem of Definition 3, which refers to the magnitude of the inner product.

The first step consists of mapping the unit vectors to vectors in {−1, 1}d′ . The mapping is essentially

Charikar’s LSH scheme [Cha02]. Then, we apply the Chebyshev embedding of [Val15] in order to

achieve gap amplification, and finally we call algorithm Crude ApprxNet, which will now return a

proper ρ-net with additive error.

Theorem 7 ([Val15]). There exists an algorithm with the following properties. Let d′ = O(logn
δ2

) and

Y ∈ Rd′×n denote its output on input X, δ, where X is a matrix whose columns have unit norm, with

probability 1 − o(1/n2), for all pairs i, j ∈ [n],
∣∣∣〈Yi, Yj〉/d′ − (1 − 2 · cos−1(〈Xi, Xj〉)/π

)∣∣∣ ≤ δ, where

Xi, Yi denote the ith column of X and Y respectively. Additionally, the runtime of the algorithm is

O(dn logn
δ2

).

The following theorem provides a randomized embedding, namely the Chebyshev embedding, that

reduces the magnitude of the inner product of “far” vectors, while preserving the magnitude of the

inner product of “close” vectors. Such transformation could have been achieved by a simple embedding,

in which each vector is replaced by its degree q tensor power, leading to an exponent amplification of

the multiplicative gap between “big” and “small” inner products. However, with this approach, we

will obtain an algorithm with an undesired runtime of O(n2−Θ(ε)), for quite small ε.

Valiant [Val15] overcomes this difficulty by suggesting two embeddings f, g, which create two copies of

our vectors, and project each according to a different embedding, and then consider inner products

across these two sets of vectors. We define this embedding in the setting in which the vectors in

19

question have values in {−1,+1}; this uniformity ensures that the entries of the vectors returned by

the embedding have the same magnitudes, and hence are amenable to Chernoff bounds to guarantee

that the inner products. The statement is almost verbatim that of [Val15, Prop.6] except that we

additionally establish 1− o(1/n) probability of success instead of 1− o(1) as stated in [Val15].

The proof is the same, but since we claim stronger guarantees on success probability, we include

the complete proof. While 1− o(1/n) probability of success is enough for our purposes, even better

probability bounds can be achieved.

Theorem 8. Let Y , Y ′ be the matrices output by algorithm “Chebyshev Embedding” on input X,X ′ ∈

{−1, 1}d×n, τ+ ∈ [−1, 1], τ− ∈ [−1, 1] with τ− < τ+ , integers q, d′. With probability 1− o(1/n) over

the randomness in the construction of Y, Y ′, for all i, j ∈ [n], 〈Yi, Y ′j 〉 is within
√
d′ log n from the value

Tq

(〈Xi,X′j〉/d′−τ−
τ+−τ− 2− 1

)
· d′ · (τ+ − τ−)q/23q−1, where Tq is the degree-q Chebyshev polynomial of the

first kind. The algorithm runs in time O(d′ · n · q).

Proof. The fact that all inner products are concentrated within ±
√
m log n about their expectations

follows from the fact that each row of Y , Y ′ is generated identically and independently from the other

rows, and all entries of these matrices are ±1; thus, each inner product is a sum of independent and

identically distributed random ±1 random variables, and we can apply the basic Chernoff bound to

each inner product, and then a union bound over the O(n2) inner products. Let Xi ∈ ±1 i.i.d. random

variables. The basic chernoff bound gives probability,

Pr[|
m′∑
i=1

Xi − E[
m′∑
i=1

Xi]| >
√
m′ log n] ≤ 2 · exp(−Θ(log2 n)) = o(1/n3).

Given this concentration, we now analyze the expectation of the inner products. Let u, u′ be columns

of X,X ′ , respectively, and v, v′ the corresponding columns of Y, Y ′. Letting x = 〈u, u′〉/m, we argue

that by [Val15, Lemma 3.3], E[v, v′] = m′
∑q

i=1
x−ci

2 (1), where ci is the location of the ith root of the

qth Chebyshev polynomial after the roots have been scaled to lie in the interval [τ−, τ+]. To see why

this is the case, note that each coordinate of u, u′ ,is generated by computing the product of q random

variables that are all ±1; namely, a given entry of u is given by
∏q
l=1 sv(l), with the corresponding

entry of u′ given by
∏q
l=1 sv′(l). Note that for i 6= j, sv(i) is independent of sv(j) and tv′(j), although

by construction, sv(i) and tv′(i) are not independent. We now argue that E[sv(i)tv′(i)] = x−ci
2 , from

which Eq. (1) will follow by the fact that the expectation of the product of independent random

20 Chapter 2. Approximate ρ-net for vectors on a unit hypercube

variables is the product of their expectations.

By construction, in Step (1) of the inner loop of the algorithm, with probability 1/2, E[sv(i)tv′(i)] =

〈v, v′〉/m = x. Steps (2)–(4) ensure that with the remaining 1/2 probability, E[sv(i)tv(i)] = 1−ci
2 (1)−

1+ci
2 (−1) = −ci. Hence, in aggregate over the randomness of Steps (1)–(4), E[sv(i)tv′(i)] = x/2− ci/2i

, as claimed, establishing Eq. (1).

To show that Eq. (1) yields the statement of the proposition, we simply reexpress the polynomial∏q
i=1

x−ci
2 in terms of the qth Chebyshev polynomial Tq. Note that the qth Chebyshev polynomial has

leading coefficient 2q−1, whereas this expression (as a polynomial in x) has leading coefficient 1/2q,

disregarding the factor of the dimension m′. If one has two monic degree q polynomials, P and Q where

the roots of Q are given by scaling the roots of P by a factor of α, then the values at corresponding

locations differ by a multiplicative factor of 1/αq; since the roots of Tq lie between [−1, 1] and the

roots of the polynomial constructed in the embedding lie between [τ−, τ+], this corresponds to taking

α = 2
τ+−τ− .

Inner product ApprxNet

Input: X = [x1, . . . , xn] with each xi ∈ Sd−1, ρ ∈ [−1, 1], ε ∈ (0, 1/2].

Output: Sets C,F ⊆ [n].

• If ρ ≤ ε, then:

– C ← ∅, F ← ∅, W ← {x1, . . . , xn}

– While W 6= ∅:

∗ Choose arbitrary vector x ∈W .

∗ W ←W \ {y ∈W | 〈x, y〉 ≥ ρ− ε}

∗ C ← C ∪ {x}

∗ If ∀y ∈W , 〈x, y〉 < ρ− ε then F ← F. ∪ {x}

– Return indices of C, F .

21

• Apply Theorem 7 for input X, δ = ε/2π and output Y ∈ {−1, 1}d′×n for d′ = O(log n/δ2).

• Apply Theorem 8 for input Y , d′′ = n0.2, q = 50−1 log n, τ− = −1, τ+ = 1− 2 cos−1(ρ−ε)
π + δ

and output Z,Z ′.

• Run algorithm Crude ApprxNet with input τ = 3n0.16, α =
√
ε/500, Z,Z ′ and output C, F .

• Return C, F .

Theorem 9. The algorithm Inner product ApprxNet, on input X = [x1, . . . , xn] with each xi ∈ Sd−1,

ρ ∈ [−1, 1] and ε ∈ (0, 1/2], computes an approximate ρ-net with additive error ε, using the notation of

Definition 2. The algorithm runs in time Õ(dn+n2−
√
ε/600) and succeeds with probability 1−O(1/n0.2).

Additionally, it computes a set F with the following property: {xi | ∀xj 6= xi 〈xj , xi〉 < ρ− ε} ⊆ F ⊆

{xi | ∀xj 6= xi 〈xj , xi〉 < ρ}.

Theorem 10 ([Cop97]). For any positive γ > 0, provided that β < 0.29, the product of a k × kβ with

a kβ × k matrix can be computed in time O(k2+γ).

Corollary 11. For any positive γ > 0, provided that β < 0.29 · α < 1, the product of a n× nβ by a

nβ × nα matrix can be computed in time O(n1+α+αγ).

Proof. The idea is to perform n1−α multiplications of matrices of size nα × nβ and nβ × nα.

Hence, by Theorem 10, the total cost is:

O(n1−α(nα(2+γ))) = O(n1+α+αγ).

Fact 12. Let Tq(x) denote the qth Chebyshev polynomial of the first kind, then the following hold:

• For x ∈ [−1, 1], |Tq(x)| ≤ 1.

• For δ ∈ (0, 1/2], Tq(1 + δ) ≥ 1
2e
q
√
δ.

Claim 13. For ρ ∈ [−1, 1], ε ∈ (0, 1), it holds cos−1(ρ− ε)− cos−1(ρ) ≥ ε/2.

22 Chapter 2. Approximate ρ-net for vectors on a unit hypercube

Proof. If (ρ− ε)2 6= 1 then we have

cos−1(ρ− ε)− cos−1(ρ) =

∫ 1

ρ−ε

1√
1− x2

dx−
∫ 1

ρ

1√
1− x2

dx =

=

∫ ρ

ρ−ε

1√
1− x2

dx =

∫ ε

0

1√
1− (ρ− ε+ y)2

dy ≥
∫ ε

0

1√
1− (ρ− ε)2

dy =
ε√

1− (ρ− ε)2
≥ ε.

Now if (ρ− ε)2 6= 1 =⇒ ρ− ε = −1 then,

cos−1(ρ− ε)− cos−1(ρ) =

∫ −1+ε

−1

1√
1− x2

dx ≥ ε√
2ε− ε2

≥ ε/2.

Proof of Theorem 9. If ρ ≤ ε, our approach ensures that for any x, y ∈ C, it holds 〈x, y〉 < ρ− ε ≤ 0.

We show that |C| ≤ d+1, due to a simple packing argument. Let x1, . . . , xd+2 such that ∀i 6= j ∈ [d+2]

we have 〈xi, xj〉 < 0. Then, there exist λ1, . . . , λd+1 ∈ R not all zero for which
∑d+1

i=1 λixi = 0. Now

consider two subsets I, J ⊆ [d+2] of indices such that ∀i ∈ I, λi > 0 and ∀j ∈ J, λj < 0. We can write∑
i∈I λixi =

∑
j∈J −λjxj =⇒ 0 ≤ 〈

∑
i∈I λixi,−

∑
j∈J λjxj〉 = −

∑
i∈I,j∈J λiλj〈xi, xj〉 < 0 which

leads to contradiction. If J = ∅ (or equivalently if I = ∅), then 0 = 〈xd+2,
∑

i∈I λixi〉 < 0, which leads

again to contradiction.

We now focus on the case ρ > ε. By Theorem 7, with probability 1− o(1/n2), the matrix Y returned

by the corresponding algorithm will have the property that any pair of columns

〈Xi, Xj〉 ≥ ρ =⇒ 〈Yi, Yj〉
d′

≥ 1− 2 cos−1(ρ)

π
− δ

〈Xi, Xj〉 ≤ ρ− ε =⇒ 〈Yi, Yj〉
d′

≤ 1− 2 cos−1(ρ− ε)
π

+ δ.

Hence, according to Claim 13, it suffices to set δ = ε/3π in order to distinguish between the two cases:

1− 2 cos−1(ρ− ε)
π

+ 2δ ≤ 1− 2 cos−1(ρ)

π
− δ.

23

Now we set τ+ = 1− 2 cos−1(ρ−ε)
π + δ > −1. By Theorem 8, with probability 1− o(1),

〈Yi, Yj〉 ≤ τ+d′ ≤ =⇒ |〈Zi, Zj〉| ≤ d′′
2q

23q−1
+
√
d′′ log n ≤ 3n0.16

for large enough n. Moreover, let Yi, Yj s.t. 〈Yi, Yj〉 ≥ (τ+ + δ)d′. Then,

|〈Zi, Z ′j〉| ≥ d′′ · Tq
(

1 + 2
δ

τ+ + 1

) 2q

23q−1
−
√
d′′ log n >

1

2
· Tq
(

1 + 2
δ

τ+ + 1

)
· n0.16

for large enough n.

Then, by Fact 12,

|〈Zi, Z ′j〉| · n−0.16 ≥ 1

4
eq
√
δ =

1

4
n
√
δ/50 ≥ 3n

√
δ/100 ≥ 3n

√
ε/400,

where some of the inequalities hold for large enough n.

Now, by Theorems 7, 8, 6 and Corollary 11 the time complexity is Õ(dn+ n2−
√
ε/600), if we set as γ in

Corollary 11 a sufficiently small multiple of
√
ε. Finally,, the subroutine with the higher probability of

failure is Crude ApprxNet and by the union bound, it dominates the total probability of failure.

Chapter 3

Approximate r-nets in high dimension

under Euclidean distance

In this chapter, we translate the problem of computing r-nets in (Rd, ‖ · ‖) to the problem of computing

ρ-nets for unit vectors under inner product. One intermediate step is that of computing r-nets for unit

vectors under Euclidean distance.

First, we show that if one is interested in finding an r-net for (Rd, ‖ · ‖), it is sufficient to solve the

problem for points on the unit sphere. One analogous statement is used in [Val15], where they prove

that one can apply a randomized mapping from the general Euclidean space to points on a unit sphere,

while preserving the ratio of distances for any two pairs of points. The claim derives by the simple

observation that an r-net in the initial space can be approximated by computing an εr/c-net on the

sphere, where c is the maximum norm of any given point envisaged as vector. Our exposition is even

simpler since we can directly employ the analogous theorem from [Val15].

Standardize

Input: A d× n matrix X with entries xi,j ∈ R, a constant ε ∈ (0, 1), a distance parameter r ∈ R.

Output: A m′ × n matrix Y with columns having unit norm and m′ = log3 n, and a distance

parameter ρ ∈ R, such that our algorithm computes an r-net of X given a ρ-net of Y .

• Define two d-dimensional vectors Xn+1, Xn+2, s.t. r′ = Xn+1 −Xn+2 and ‖r′‖ = r, and let

matrix X ′ denote the concatenation of X, Xn+1 and Xn+2 with size d× n+ 2.

24

25

• Perform a Johnson-Lindenstrauss transformation on the columns of X ′, projecting them to

dimension m′, so as to yield matrix X ′′.

• Let c denote the magnitude of the largest column of X ′′. Choose a random m′-dimensional

vector u of magnitude 8c/ε.

• Let matrix Y be the result of adding u to each column of X ′′ and normalizing all columns so

as to have unit norm.

• Define ρ := ‖Yn+1 − Yn+2‖ to be the new distance parameter.

Theorem 14. [Val15] The algorithm Standardize, when given as input a d×n matrix X with entries

xi,j ∈ R and a constant ε ∈ (0, 1), outputs a m′ × n matrix Y with columns having unit norm and

m′ = log3 n, such that, with probability 1− o(1/poly(n)) for all sets of four columns Y1, Y2, Y3, Y4 of

matrix Y , with X1, X2, X3, X4 being the corresponding columns of matrix X, it holds that

‖Y1 − Y2‖
‖Y3 − Y4‖

‖X3 −X4‖
‖X1 −X2‖

∈ [1− ε

10
, 1 +

ε

10
].

We now show what is implied for our case by Theorem 14.

Corollary 15. The algorithm Standardize, when given as input a d × n matrix X with entries

xi,j ∈ R, a constant ε ∈ (0, 1) and a distance parameter r ∈ R, outputs a m′ × n matrix Y , with

columns having unit norm and m′ = log3 n, and a distance parameter ρ ∈ R, such that a ρ-net of Y is

an approximate (1 + ε)-net of X, with probability 1− o(1/poly(n)).

Proof. Now, let us define two d-dimensional vectors Xn+1, Xn+2, s.t. r′ = Xn+1 −Xn+2 and ‖r′‖ = r,

where X is a d × n matrix with entries xi,j ∈ R and r ∈ R is the radius of the r-net of X. Also,

let matrix X ′ denote the concatenation of X, Xn+1 and Xn+2 with size d× (n+ 2). After applying

Theorem 14 on input X ′ and ε/10, we define ρ := ‖Yn+1 − Yn+2‖ to be the new radius of Y . Then, we

claim that the following hold with probability 1− o(1/poly(n)), which immediately implies Corollary

15:

• For all Xi, Xj ∈ X and their corresponding Yi, Yj ∈ Y , if ‖Xi − Xj‖ ≤ r then ‖Yi − Yj‖ ≤

(1 + ε/10)ρ.

26 Chapter 3. Approximate r-nets in high dimension under Euclidean distance

• For all Xi, Xj ∈ X and their corresponding Yi, Yj ∈ Y , if ‖Xi −Xj‖ ≥ (1 + ε)r then ‖Yi − Yj‖ ≥

(1 + ε/2)ρ.

The remainder of this chapter is dedicated into proving that one can translate the problem of computing

an r-net for points on the unit sphere under Euclidean distance, to finding an r-net for unit vectors

under inner product as defined in the previous chapter. Moreover, we identify the subset of the r-net

which contains the centers that are approximately far from any other point. Formally,

Definition 16. Given a set of points X and ε > 0, a set F ⊆ X of (1 + ε)-approximate r-far points is

defined by the following property: {x ∈ X | ∀x 6= y ∈ X ‖x− y‖ > (1 + ε)r} ⊆ F ⊆ {x ∈ X | ∀x 6= y ∈

X ‖x− y‖ > r}.

If r is greater than some constant, the problem can be immediately solved by the law of cosines. If r

cannot be considered as constant, we distinguish cases r ≥ 1/n0.9 and r < 1/n0.9. The first case is

solved by a simple modification of an analogous algorithm in [Val15, p.13:28]. The second case is not

straightforward and requires partitioning the pointset in a manner which allows computing r-nets for

each part separately. Each part has bounded diameter which implies that we need to solve a “large r”

subproblem.

ApprxNet(Large radius)

Input: X = [x1, . . . , xn]T with each xi ∈ Sd−1 with d = log3 n, r > 1/n0.9, ε ∈ (0, 1/2].

Output: Sets R,F ⊆ [n].

• If r > 0.2 run Inner Product ApprxNet with error parameter ε/25 and ρ = 1− r2

2 .

• Otherwise, define the d× n matrix Z as follows: for each i ∈ [d], select q =
⌊

π
2 cos−1(1−r2/2)

⌋
uniformly random vectors v1, . . . , vq and for all j ∈ [n], set

zi,j = sign
k=q∏
k=1

XT
j vk,

where Xj is the jth column of matrix X.

27

• Run Inner Product ApprxNet with ρ =
(

1− 2 cos−1(1−r2/2)
π

)q
, error parameter ε/100 and

input matrix Z with all entries scaled by 1/
√
d to make them have unit norm.

Theorem 17. For any constant ε ∈ (0, 1/2], X ⊂ Sd−1 s.t. |X| = n, algorithm ApprxNet(Large

radius) outputs a (1+ε)r-net and a set of (1+ε)-approximate r-far points with probability 1−O(1/n0.2).

Additionally, provided r > 1/n0.9 the runtime of the algorithm is Õ(dn2−Θ(
√
ε)).

Proof. In the case of r > 0.2 we will show that the 1 + ε multiplicative approximation on the distance

translates to cε additive approximation to the inner product. Applying the law of cosines, the first

condition yields 〈p, q〉 ≥ 1− r2

2 and the second condition yields 〈p, q〉 ≤ 1− r2

2 −
2εr2+(εr)2

2 < 1− r2

2 −
ε

25 .

So, it suffices to take c = 1/25.

Now suppose that r < 0.2. For each random vector v we have that E[sign(XT
i v ·XT

j v)] = 1− 2θ(Xi,Xj)
π ,

where θ(Xi, Xj) denotes the angle between Xi, Xj . Since expectations of independent random variables

multiply, we have that, for each k,

E[zk,izk,j] = (1− 2 · θ(Xi, Xj)/π)q.

Now let θr = cos−1(1− r2/2),

‖Xi −Xj‖ ≤ r =⇒ θ(Xi, Xj) ≤ θr =⇒ E[〈Zi, Zj〉] ≥ d(1− 2θr/π)q

‖Xi −Xj‖ ≥ (1 + ε)r =⇒ θ(Xi, Xj) ≥ (1 + ε/2)θr =⇒ E[〈Zi, Zj〉] ≤ d(1− 2(1 + ε/2)θr/π)q.

Notice that,

(1− 2(1 + ε/2)θr/π)q

(1− 2θr/π)q
< 1− ε/10,

for q = bπ/(2θr)c and since n−0.9 ≤ r ≤ 0.2. Notice that d(1 − 2θr/π)q ∈ [0.3d, 0.5d]. Hence, if

‖Xi −Xj‖ ≤ r and ‖Xl −Xk‖ ≥ (1 + ε)r,

E[〈Zl, Zk〉] < (1− ε/10)E[〈Zi, Zj〉] ≤ E[〈Zi, Zj〉]− 0.3dε/10,

By a union bound over Chernoff bounds, since d = log3 n, with probability 1− o(1/poly(n)), the inner

products between any two columns of Z differs from their expectations by o(d). After performing

28 Chapter 3. Approximate r-nets in high dimension under Euclidean distance

the scaling procedure, and due to the fact that d(1− 2θr/π)q ≤ 0.5d, we conclude that it suffices to

compute Inner Product ApprxNet with ρ = (1− 2 · θr/π)q and approximation error ε/100.

The runtime of all components of the algorithm aside from the calls to Inner Product ApprxNet is

bounded by Õ(n/ cos−1(1− r2/2)) = Õ(n1.9).

Let us now present an algorithm which translates the problem of finding an r-net for r < 1/n0.9 to the

problem of computing an r-net for r ≥ 1/n0.9. The main idea is that we compute disjoint subsets Si,

which are far enough from each other, so that we can compute r-nets for each Si independently. We

show that for each Si we can compute Ti ⊆ Si which has bounded diameter and T ′i ⊆ Si such that

Ti, T
′
i are disjoint, each point in Ti is far from each point in T ′i , and |T ′i | ≤ 3|Si|/4. It is then easy to

find r-nets for Ti by employing the ApprxNet(Large radius) algorithm. Then, we recurse on T ′i which

contains a constant fraction of points from |Si|. Then, we cover points in Si \ (Ti ∪ T ′i) and points

which do not belong to any Si.

ApprxNet(Small radius)

Input: X = [x1, . . . , xn]T with each xi ∈ Sd−1, r < 1/n0.9, ε ∈ (0, 1/2].

Output: Sets R,F ⊆ [n].

1. Project points on a uniform random unit vector and consider projections p1, . . . , pn which

wlog correspond to x1, . . . , xn ∈ Rd.

2. Traverse the list as follows:

• If |{j | pj ∈ [pi − r, pi]}| ≤ n0.6 or i = n:

– If |{j | pj < pi}| ≤ n0.9 remove from the list all points pj s.t. pj < pi − r and save

set K = {xj | pj ∈ [pi − r, pi]}.

– If |{j | pj < pi}| > n0.9 save sets Ki = {xj | pj ∈ [pi − r, pi]} ∪K, Si = {xj | pj <

pi − r} \K and remove projections of Si and Ki from the list.

3. After traversing the list if we have not saved any Si go to 5; otherwise for each Si:

29

• For each u ∈ Si, sample n0.1 distances between u and randomly chosen xk ∈ Si. Stop if

for the selected u ∈ Si, more than 1/3 of the sampled points are in distance ≤ rn0.6.

This means that one has found u s.t. |{xk ∈ Si, ‖u− xk‖ ≤ rn0.6}| ≥ |Si|/4 with high

probability. If no such point was found, output ”ERrOR”.

• Let 0 ≤ d1 ≤ . . . ≤ d|Si| be the distances between u and all other points in Si. Find

c ∈ [rn0.6, 2rn0.6] s.t. |{j ∈ [n] | dj ∈ [c, c+ r]}| < n0.4, store Wi = {xj | dj ∈ [c, c+ r]},

and remove Wi from Si.

• Construct the sets Ti = {xj ∈ Si | dj < c} and T ′i = {xj ∈ Si | dj > c+ r}.

– For Ti, subtract u from all vectors in Ti, run Standardize, then ApprxNet (Large

radius), both with ε/4. Save points which correspond to output at Ri, Fi respec-

tively.

– Recurse on T ′i the whole algorithm, and notice that |T ′i | ≤ 3|Si|/4. Save output at

R′i, and F ′i respectively.

4. Let R←
⋃
iRi ∪R′i and F ←

⋃
i Fi ∪ F ′i . Return to the list p1, . . . , pn.

(a) Remove from F all points which cover at least one point from
⋃
iWi or

⋃
iKi.

(b) Delete all points (
⋃
i Ti) \ (

⋃
iRi), and (

⋃
i T
′
i) \ (

⋃
iR
′
i).

(c) For each i delete all points in Wi covered by Ri, or covered by R′i.

(d) For each i delete all points in Ki covered by R.

(e) Finally delete R from the list. Store the remaining points at F ′.

5. R′ ← ∅. Traverse the list as follows: For each pi, check the distances from all xj s.t.

pj ∈ [pi − r, pi].

• If ∃xj ∈ R′ : ‖xi − xj‖ ≤ r, delete xi from the list, set F ′ ← F ′\{xi, xj} and continue

traversing the list.

• If there is no such point xj then R← R ∪ {xi} and continue traversing the list.

6. Output indices of R← R ∪R′ and F ← F ∪ F ′.

Theorem 18. For any constant ε > 0, X ⊂ Sd−1 s.t. |X| = n, and r < 1/n0.9, ApprxNet(Small

radius) will output a (1 + ε)r-net and a set of (1 + ε)-approximate r-far points in time Õ(dn2−Θ(
√
ε)),

30 Chapter 3. Approximate r-nets in high dimension under Euclidean distance

with probability 1− o(1/n0.04).

Proof. Note that points in Si had projections pi in sets of contiguous intervals of width r; each interval

had ≥ n0.6 points, hence the diameter of the projection of Si is ≤ n0.4r. By the Johnson Lindenstrauss

Lemma [Das03] we have that for v ∈ Sd−1 chosen uniformly at random:

Pr
[
〈u, v〉2 ≤ ‖u‖

2

n0.4

]
≤
√
d
√
e

n0.2
.

Hence, E[|{xk, xj ∈ Si | ‖xk − xj‖ ≥ n0.6r and ‖pk − pj‖ ≤ n0.4r}|] ≤ |Si|2 ·
√
ed

n0.2 , and the probability

Pr[|{xk, xj ∈ Si | ‖xk − xj‖ ≥ n0.6r and ‖pk − pj‖ ≤ n0.4r}| ≥ |Si|1.95] ≤ |Si|0.05 ·
√
ed

n0.2
≤
√
ed

n0.15
.

Taking a union bound over all sets Si yields a probability of failure o(1/n0.045). This implies that (for

large enough n, which implies large enough |Si|) at least

(
|Si|
2

)
− |Si|1.95 ≥ |Si|

2

4

distances between points in Si are indeed small (≤ n0.6r). Hence, there exists some point pk ∈ Si

which (n0.6r)-covers |Si|/2 points. For each possible pk we sample n0.1 distances to other points, and

by Chernoff bounds, if a point (n0.6r)-covers a fraction of more than 1/2 of the points in Si, then it

covers more than n0.1/3 sampled points with high probability. Similarly, if a point (n0.6r)-covers a

fraction of less than 1/4 of the points in Si, then it covers less than n0.1/3 sampled points with high

probability. More precisely, for some fixed u ∈ Si, let Xj = 1 when for the jth randomly chosen point

v ∈ Si, it holds ‖u− v‖ ≤ n0.6r and let Xj = 0 otherwise. Then, for Y =
∑n0.1

j=1 Xj , it holds:

E[Y] ≥ n0.1/2 =⇒ Pr[Y ≤ n0.1/3] ≤ exp(−Θ(n0.1)),

E[Y] ≤ n0.1/4 =⇒ Pr[Y ≥ n0.1/3] ≤ exp(−Θ(n0.1)).

Since for any point x ∈ Ti and any point y ∈ T ′i we have ‖x− y‖ > r, the packing property of r-nets is

preserved when we build r-nets for Ti and T ′i independently. For each Ti, we succeed in building r-nets

with probability 1 − O(1/n0.2). By a union bound over all sets Ti, we have a probability of failure

O(1/n0.1). Furthermore, points which belong to sets Wi and Ki are possibly covered and need to be

checked.

31

For the analysis of the runtime of the algorithm, notice that step 4b costs time O(d·(
∑

i |Ti|+
∑

i |T ′i |)) =

O(dn). Then, step 4c costs time O(d ·
∑

i |Wi| · |Ti|+ d ·
∑

i |Wi| · |T ′i |) = O(dn1.4). Finally, notice that

we have at most n0.1 sets Ki. Each Ki contains at most 2n0.6 points, hence checking each point in⋃
iKi with each point in R costs O(dn1.7).

Now regarding step 5, consider any interval [pi − r, pi] in the initial list, where all points are projected.

If |{j | pj ∈ [pi − r, pi]} ≤ 2n0.9 then the ith iteration in step 5 will obviously cost O(n0.9), since

previous steps only delete points. If |{j | pj ∈ [pi − r, pi]} > 2n0.9, we claim that |{j < i | pj ∈

[pi − r, pi] and Kj is created}| ≤ 1. Consider the smallest j < i s.t. Kj is created and pj ∈ [pi − r, pi].

This means that all points pk, for k ≤ j, are deleted when pj is visited. Now assume that there exists

integer l ∈ (j, i) s.t. Kl is created. This means that the remaining points in the interval [pl − r, pl] are

≤ n0.6 and all of the remaining points pk < pl are more than n0.9. This leads to contradiction, since by

the deletion in the jth iteration, we know that all of the remaining points pk < pl lie in the interval

[pl − r, pl].

Now, assume that there exists one j < i s.t. pj ∈ [pi− r, pi] and Kj is created. Then, when pi is visited,

there at least 2n0.9 − n0.6 > n0.9 remaining points in the interval [pi − r, pi]. Hence, there exists l ≥ i

for which the remaining points in the interval [pi− r, pi] are contained in Sl ∪Kl. Hence in this case, in

step 5, there exist at most O(n0.6) points which are not deleted and belong to the interval [pi − r, pi].

Now assume that there does not exist any j < i s.t. pj ∈ [pi − r, pi] and Kj is created. This directly

implies that there exists l ≥ i for which the remaining points in the interval [pi − r, pi] are contained in

Sl ∪Kl.

At last, the total time of the above algorithm is dominated by the calls to the construction of the

partial r-nets of the sets Ti. Thus, the total running time is O(
∑

i |Ti|
2−Θ(

√
ε) +

∑
i |Ti|′

2−Θ(
√
ε)) =

O(
∑

i |Ti|
2−Θ(

√
ε)+
∑

i (3|Ti|/4)2−Θ(
√
ε)) = Õ(n2−Θ(

√
ε))). Finally, taking a union bound over all recursive

calls of the algorithm we obtain a probability of failure o(1/n0.04).

We now present an algorithm for an (1 + ε)r-net for points in Rd under Euclidean distance.

ApprxNet

Input: Matrix X = [x1, . . . , xn] with each xi ∈ Rd, parameter r ∈ R, constant ε ∈ (0, 1/2].

32 Chapter 3. Approximate r-nets in high dimension under Euclidean distance

Output: R ⊆ {x1, . . . , xn}

• Let Y , r′ be the output of algorithm Standardize on input X, r with parameter ε/4.

• If r′ ≥ 1/n0.9 run ApprxNet(Large radius) on input Y , ε/4, r′ and return points which

correspond to the set R.

• If r′ < 1/n0.9 run ApprxNet(Small radius) on input Y , ε/4, r′ and return points which

correspond to the set R.

Theorem 19. Given n points in Rd, a distance parameter r ∈ R and an approximation parameter

ε ∈ (0, 1/2], with probability 1− o(1/n0.04), ApprxNet will return a (1 + ε)r − net, R, in Õ(dn2−Θ(
√
ε))

time.

Proof. The theorem is a direct implication of Theorems 17, 18, 14.

Before we proceed to the next chapter, we show how to store and delete the set F of far points. This

is a direct implication of the previous results.

Theorem 20. Given X ⊂ Rd such that |X| = n, a distance parameter r ∈ R and an approximation

parameter ε ∈ (0, 1/2], there exists an algorithm DelFar, which will return, with probability 1−o(1/n0.04),

a set F ′ with the following properties in Õ(dn2−Θ(
√
ε)) time:

• If for a point p ∈ X it holds that ∀q 6= p, q ∈ X we have ‖p− q‖ > (1 + ε)r, then p /∈ F ′.

• If for a point p ∈ X it holds that ∃q 6= p, q ∈ X s.t. ‖p− q‖ ≤ r, then p ∈ F ′.

Proof. By Theorems 17, 18, 15, both ApprxNet(Large radius) and ApprxNet(Small radius) return

a set F , the subset of the centers of r-net that are isolated, i.e. the points that do not have any

neighbor at distance (1 + ε)r. Also, both procedures run in Õ(dn2−Θ(
√
ε)). Thus, DelFar on input a

d×n matrix X, a radius r ∈ IR and a fixed constant ε ∈ (0, 1/2] returns a set F ′ ⊆ {x1, . . . , xn}, which

contains all the points (vectors) of X that have at least one neighbor at distance r. Additionally, the

algorithm costs Õ(dn2−Θ(
√
ε)) time and succeeds with probability 1− o(n0.04).

Chapter 4

Applications and future work

Concerning applications, in [HR15], they design an approximation scheme, which solves various distance

optimization problems. The technique employs a grid-based construction of r-nets which is linear in n,

but exponential in d. The main prerequisite of the method is the existence of a linear-time decider .

The framework is especially interesting when the dimension is constant, since the whole algorithm costs

time linear in n which, for some problems, improves upon previously known near-linear algorithms.

When the dimension is high, we aim for polynomial dependency on d, and subquadratic dependency

on n.

The cornerstone of this framework is to find an algorithm that can bound the optimal solution of a

problem in an appropriate interval in order to perform in it binary search for the desired approximation

of the optimal solution. We present the algorithm Net and Prune of [HR15], modified to call the

algorithms ApprxNet and DelFar. We claim that this algorithm computes, with high probability, a

constant spread interval and costs O(dn1.999999) time.

We assume the existence of a fast approximate decider procedure for the problems we want to address

using this framework, specifically an algorithm that runs in Õ(dn2−Θ(
√
ε)), where ε is the approximation

factor. Formally,

Definition 21. Given a function f : X → IR, we call a decider procedure a (1 + ε)-decider for f , if for

any x ∈ X and r > 0, decider(r, x) returns one of the following: (i) f(x) ∈ [α, (1 + ε)α], where α is

some real number, (ii) f(x) < r, or (iii) f(x) > r.

Additionally, we assume the problems we seek to improve with this method have the following property:

33

34 Chapter 4. Applications and future work

if the decider returns that the optimal solution is smaller than a fixed value r, we can efficiently remove

all points that do not have any neighbor at distance at most r and this does not affect the optimal

solution. Let us denote f(X) the optimal solution of a problem for input X.

Net & Prune

Input: An instance (X,Γ) s.t. X ⊆ IRd.

Output: An interval [x, y] containing the optimal value.

• X0 = X, i = 0

• While TRUE do

– Choose at random a point x ∈ Xi and compute its nearest neighbor distance, li

– Call 3
2 -decider(2li/3, Xi) and 3

2 -decider(cli, Xi). Do one of the following:

∗ If 3
2 -decider(2li/3, Xi) returns f(Xi) ∈ [x, y], return f(X) ∈ [x/2, 2y]

∗ If 3
2 -decider(cli, Xi) returns f(Xi) ∈ [x′, y′], return f(X) ∈ [x′/2, 2y′]

∗ If 2li/3 is too small and cli too large, return [li/3, 2cli]

∗ If 2li/3 is too large, call Xi+1 =DelFar(2li/3, Xi,
3
2)

∗ If cli is too small, Xi+1 =ApprxNet(4li, Xi,
3
2)

– i = i+ 1,

Let us denote as |Xi
≤l| and |Xi

≥l| the set of points in X, whose nearest neighbor distance is smaller

than l and greater than l, respectively.

Theorem 22. Assume that the DelFar algorithm and the ApprxNet algorithm succeed with probability

1− 1
n0.01 . The algorithm Net & Prune (X,Γ) runs in expected O(dn1.999999) time.

Proof. In each iteration of the while loop the algorithm calls on input Xi the 3
2 -decider procedure and

either ApprxNet or DelFar, all of which cost O(d|Xi|1.999999) time. Thus, the total running time of

the algorithm is O(
∑i=k−1

i=0 d|Xi|1.999999), where k denotes the last iteration of the while loop.

In the (i+ 1)th iteration of the while loop, where (i+ 1 < k), lets assume that x1, x2, . . . , xm is the

35

points’ labels in increasing order of their nearest neighbor distance in Xi. If j is the index of the

chosen point on the first step of the algorithm and Xi
≥j and Xi

≤j are the subsets of points with index

≥ j and ≤ j, respectively, then we call i a successful iteration when j ∈ [m/4, 3m/4]. Then, we have

that |X≥ji | ≥ |Xi+1|/4 and |X≤ji | ≥ |Xi+1|/4 for a successful iteration. The probability that i+ 1 is a

successful iteration is 1/2.

At each iteration, but the last, either ApprxNet or DelFar gets called. Thus, for any successful iteration,

a constant fraction of the point set is removed (it follows from Lemma 3.2.3 in [HR15] and Theorem

20). Also, the algorithms (1 + ε)-decider, ApprxNet and DelFar succeed at every call with probability

1− O(logn)
n0.01 = 1−o(1), since the expected number of iterations is O(log n). Hence, the expected running

time of the algorithm is O(dn1.999999), given the above algorithms succeed.

At every step, either far points are being removed or we net the points. If the DelFar algorithm is

called, then with small probability we remove a point which is not far. This obviously affects the

optimal value, thus we will prove the correctness of the algorithm with high probability. On the

other hand, if the ApprxNet algorithm is called, the net radius is always significantly smaller than the

optimal value, so the accumulated error in the end, which is proportional to the radius of the last net

computation, is also much smaller than the optimal value. For the following proofs we assume both

DelFar and ApprxNet algorithms succeed, which occurs with probability 1− o(1).

Lemma 23. For every iteration i, we have |f(Xi)− f(X0)| ≤ 16li.

Proof. Let I be the set of indices of the ApprxNet iterations up to the ith iteration. Similarly, let I ′

be the set of iterations where DelFar is called.

If ApprxNet was called in the jth iteration, then Xj is at most a 6lj-drift of Xj−1, therefore |f(Xj)−

f(Xj−1)| ≤ 12lj . Also, if DelFar is called in the jth iteration, then f(Xj) = f(Xj−1) (by Theorem

20). Let m=maxI, we have that,

|f(Xi)− f(X0)| ≤
i∑

j=1

|f(Xj)− f(Xj−1)| =
∑
j∈I
|f(Xj)− f(Xj−1)|+

∑
j∈I′
|f(Xj)− f(Xj−1)|

≤
∑
j∈I

12lj +
∑
j∈I′

0 ≤ 12lm

∞∑
j=0

(
1

4

)j
≤ 16lm ≤ 16li

,where the second inequality holds since for every j < i, in the beginning of the jth iteration of the

while loop, the set of points Xj−1 is a subset of the net points of a 4li-net, therefore lj ≥ 4li.

36 Chapter 4. Applications and future work

Lemma 24. For any iteration i of the while loop such that ApprxNet gets called, we have li ≤ f(X0)/η,

where η = c− 16.

Proof. We will prove this with induction. Let m1,m2, . . . ,mt be the indices of the iterations of the

while loop in which ApprxNet gets called.

Base: In order for ApprxNet to get called we must have ηlm1 < clm1 < f(Xm1−1) and since this is the

first time ApprxNet gets called we have f(Xm1−1) = f(X0). Therefore, ηlm1 < f(X0).

Inductive step: Suppose that lmj ≤ f(X0)/η, for all mj < mi. If a call to 3
2 -rNet is made in iteration

mi then again clmi < f(X(mi)−1) = f(Xmi−1). Thus, by the induction hypothesis and Lemma 23 we

have,

lmi <
f(Xmi−1)

c
≤
f(X0) + 16lmi−1

c
≤ f(X0) + 16f(X0)/η

c
=

1 + 16/η

c
f(X0) = f(X0)/η

Therefore, if we set c = 64 we have η = 48, thus by Lemma 23 and Lemma 24,

|f(Xi)− f(X0)| ≤ 16li ≤ 16f(X0)/η = f(X0)/3

Corollary 25. For c ≥ 64 and for any iteration i we have:

• (2/3)f(X0) ≤ f(Xi) ≤ (4/3)f(X0),

• if f(Xi) ∈ [x, y], then f(X0) ∈ [(3/4)x, (3/2)y] ⊆ [x/2, 2y],

• if f(X0) > 0 then f(Xi) > 0.

Theorem 26. For c ≥ 64, the Net & Prune algorithm computes in O(dn1.999999) time a constant

spread interval containing the optimal value f(X), with probability 1− o(1).

Proof. Consider the iteration of the while loop at which Net & Prune terminates. If the interval [x, y]

was computed by the 3
2 -decider, then it has spread ≤ 3

2 . Thus, by Corollary 25 the returned interval

[x′, y′] = [x/2, 2y] contains the optimal value and its spread is ≤ 6. Similarly, if 2li/3 is too small and

cli too large, then the returned interval is [li3 , 2cli] and its spread is 384.

4.1. k-th nearest neighbor distance 37

4.1 k-th nearest neighbor distance

Let us focus on the problem of approximating the kth nearest neighbor distance.

Definition 27. Let X ⊂ IRd be a set of n points, approximation error ε > 0, and let d1 ≤ . . . ≤ dn be

the nearest neighbor distances. The problem of computing an (1 + ε)-approximation to the kth nearest

neighbor distance asks for a pair x, y ∈ X such that ‖x− y‖ ∈ [(1− ε)dk, (1 + ε)dk].

Before we present the approximate decider for the k-th nearest neighbor problem, we show a direct

implication of the approximate net construction from previous chapters. More specifically, we prove

how to identify and delete far points in high dimensional Euclidean space.

kth NND Decider

Input: X ⊆ IRd, constant ε ∈ (0, 1/2], integer k > 0.

Output: An interval for the optimal value f(X, k).

• Call DelFar(X, r
1+ε/4 , ε/4) and store its output in W1.

• Call DelFar(X, r, ε/4) and store its output in W2.

• Do one of the following:

– If |W1| > k, then output “f(X, k) < r”.

– If |W2| < k, then output “f(X, k) > r”.

– If |W1| ≤ k and |W2| ≥ k, then output “f(X, k) ∈ [r
1+ε/4 ,

1+ε/4
r]”.

Theorem 28. Given a pointset X ⊆ IRd, one can compute a (1 + ε)-approximation to the k-th nearest

neighbor in Õ(dn2−Θ(
√
ε)), with probability 1− o(1).

Proof. For this particular problem, the optimal solution is not affected by the DelFar’s removal of the

points with no other point at distance at most r. Also, each time the ApprxNet algorithm is called, for

a fixed distance r, the drift of the optimal solution is at most 2r. Thus, Theorem 26 holds, and we

compute a constant spread interval [x, y] containing the optimal value, with high probability. We then

38 Chapter 4. Applications and future work

apply binary search on values x, (1 + ε)x, (1 + ε)2x, . . . , y using the algorithm kth NND Decider. We

perform O(1/ log(1 + ε)) = O(1/ε2) iterations, hence the total amount of time needed is Õ(dn2−Θ(
√
ε))

and the algorithm succeeds with high probability 1− o(1).

To the best of our knowledge, this is the first high dimensional solution for this problem. Setting k = n

and applying Theorem 28 one can compute the farthest nearest neighbor in Õ(dn2−Θ(
√
ε)) with high

probability.

4.2 k-center clustering and greedy permutations

Concerning future work, let us start with the problem of finding a greedy permutation. A permutation

Π =< π1, π2, · · · > of the vertices of a metric space (X, ‖·‖) is a greedy permutation if each vertex πi

is the farthest in X from the set Πi−1 =< π1, . . . , πi−1 > of preceding vertices. The computation of

r-nets is closely related to that of the greedy permutation.

The k-center clustering problem asks the following: given a set X ⊆ IRd and an integer k, find the

smallest radius r such that X is contained within k balls of radius r. By [EHS15], a simple modification

of our net construction implies an algorithm for the (1 + ε) approximate greedy permutation in time

Õ(dn2−Θ(
√
ε) log Φ) where Φ denotes the spread of the pointset. Then, approximating the greedy

permutation implies a (2 + ε) approximation algorithm for k-center clustering problem. We expect

that one can avoid any dependencies on Φ.

The Corollaries below follow from Theorem 19, Lemma 3.5[EHS15] and Lemma 2.1[EHS15].

Corollary 29. Let X be a set of n points in IRd, ε ∈ (0, 1) an error parameter and let Φ be the spread

of the Euclidean metric on X. Then, one can compute in O(dn2−Θ(
√
ε) log Φ) expected time a sequence

that is a (1 + ε)-greedy permutation for the Euclidean metric on X, with high probability.

Corollary 30. Given a set X of n points in IRd, an integer k and an error parameter ε ∈ (0, 1),

one can compute with high probability a (2 + ε)-approximation to the optimal k-center clustering in

O(dn2−Θ(
√
ε) log Φ), where Φ is the spread of the Euclidean metric on X.

Bibliography

[AEKP17] A. Avarikioti, I. Z. Emiris, L. Kavouras, and I. Psarros. High-dimensional approximate

r-nets. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’17, 2017.

[AI08] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Commun. ACM, 51(1):117–122, 2008.

[Cha02] M. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings

on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,

Québec, Canada, pages 380–388, 2002.

[Cop97] D. Coppersmith. Rectangular matrix multiplication revisited. J. Complex., 13(1):42–49,

March 1997.

[Das03] A. Dasgupta, S. and Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss.

Random Struct. Algorithms, 22(1):60–65, 2003.

[EHS15] D. Eppstein, S. Har-Peled, and A. Sidiropoulos. Approximate greedy clustering and distance

selection for graph metrics. CoRR, abs/1507.01555, 2015.

[GIV01] A. Goel, P. Indyk, and K.R. Varadarajan. Reductions among high dimensional proximity

problems. In Proc. 12th Symposium on Discrete Algorithms (SODA), pages 769–778,

January 2001.

[Gon85] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-

ret.Comp.Sci., 38(2-3):293–306, 1985.

[Har04] S. Har-Peled. Clustering motion. Discrete & Computational Geometry, 31(4):545–565, 2004.

39

40 BIBLIOGRAPHY

[HP05] M. Har-Peled, S. and Mendel. Fast construction of nets in low dimensional metrics, and

their applications. In Proc. 21st Annual Symp. Computational Geometry, SCG’05, pages

150–158, 2005.

[HR15] S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for euclidean distance

problems. J. ACM, 62(6):44, 2015.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of

dimensionality. In Proceedings of the ACM Symposium on Theory of Computing (STOC),

1998.

[Val12] G. Valiant. Finding correlations in subquadratic time, with applications to learning parities

and juntas. In 53rd Annual IEEE Symp. on Foundations of Computer Science, FOCS 2012,

20-23, 2012, pages 11–20, 2012.

[Val15] G. Valiant. Finding correlations in subquadratic time, with applications to learning parities

and the closest pair problem. J. ACM, 62(2):13, 2015.

