
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Τμήμα Μαθηματικών

Μεταπτυχιακό Πρόγραμμα στη Λογική και Θεωρία Αλγορίθμων
και Υπολογισμού

Èåùñßá Áëãïñßèìùí êáé

á

ì

ì

á

ó

ô

ç

Ë

ï

ã

é

ê

Þ

ê

á

é

Õ

ð

ï

ë

ï

ã

é

ó

ì

ï

ý

-

1

9

9

7

Ìåôáðôõ÷éáêüÐñüãñ

ì

Y

ë8

LiquidHaskell : Liquid Types for Haskell

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΝΙΚΗ ΒΑΖΟΥ

Επιβλέπων : Νικόλαος Σ. Παπασπύρου

Αν. Καθηγητής Ε.Μ.Π.

Αθήνα, Απρίλιος 2015

Η παρούσα Διπλωματική Εργασία

εκπονήθηκε στα πλαίσια των σπουδών

για την απόκτηση τουΜεταπτυχιακού Διπλώματος Ειδίκευσης

στη

Λογική και Θεωρία Αλγορίθμων και Υπολογισμού

που απονέμει το

Τμήμα Μαθηματικών

του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την 3η Απριλίου 2015 από Εξεταστική Επιτροπή αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

1. Νικόλαος Σ. Παπασπύρου Αν. Καθηγητής Ε.Μ.Π. .

2. Κωστής Σαγώνας Αν. Καθηγητής Ε.Μ.Π. .

3. Παναγιώτης Ροντογιάννης Αν. Καθηγητής Ε.Κ.Π.Α. .

. .

Νίκη Βάζου

Copyright © Νίκη Βάζου, 2015.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμή-
ματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό
μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή
προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας
για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και
δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού και Καποδιστριακού
Πανεπιστημίου Αθηνών.

Περίληψη

Ακόμα και τα ασφαλή προγράμματα μπορούν να έχουν λάθη. Προγράμματα που έχουν μεταγλωτι-
στεί με βάση κάποιο ισχυρό σύστημα τύπων, όπως αυτό της Haskell, μπορούν να πετάξουν σφάλμα
κατα τον χρόνο εκτέλεσης ή να δώσουν μη αναμενώμενη απάντηση. Τα refinement συστήματα τύπων
αντιμετωπίζουν αυτήν την κατάσταση αφού επιτρέπουν την έκφραση σημασιολογικών προδιαφρα-
φών των προγραμμάτων. Αναλύουμε την απόδειξη των προδιαγραφών σε αυτά τα συστήματα. Πολύ
εκφραστικά συστήματα απαιτούν ελέγχους κατά τον χρόνο εκτέλεσης ή ρητές αποδείξεις από τον
χρήστη, για την αποδειξη των προδιαγραφών, Λιγότερο εκφραστικά συστήματα τύπων επιτρέπουν
την αυτόματη απόδειξη των προδιαγραφών, κατά τον χρόνο μεταγλώτισης.

Παρουσιάζουμε τους liquidTypes ένα σύστημα τύπων που επιτρέπει την αυτόματη απόδειξη προ-
διαγραφών κατά τον χρόνο μεταγλώτισης. Επεκτείνουμε τους liquidTypes με abstract refinement,
έναν μηχανισμό που αυξάνει την εκφραστικότητα του συστήματος, χωρίς να αυξάνει την πολυπλοκο-
τητά του. Υλοποιήσαμε την LiquidHaskell ένα σύστημα τύπων για Haskell που συνδιάζει liquidTypes
με abstract refinement και το χρησιμοποιήσαμε για να αποδείξουμε ιδιώτητες πραγματικων βιβλιο-
θηκών της Haskell.

Λέξεις κλειδιά

Γλώσσες προγραμματισμού, Συστήματα Τύπων, Ασφαλείς γλώσσες

5

Abstract

Even well-typed programs can go wrong, by returning a wrong answer or throwing a run-time error. A
popular response is to allow programmers use refinement type systems to express semantic specifica-
tions about programs. We study verification in such systems. On the one hand, expressive refinement
type systems require run-time checks or explicit proofs to verify specifications. On the other, less ex-
pressive type systems allow static and automatic proofs of the specifications. Next, we present abstract
refinement types, a means to enhance the expressiveness of a refinement type system without increas-
ing its complexity. Then, we present LiquidHaskell that combines liquidTypes with abstraction over
refinements to enhance expressiveness of LiquidTypes. LiquidHaskell is a quite expressive verifica-
tion tool for Haskell programs that can be used to check termination, totality and general functional
correctness. Finally, we evaluate LiquidHaskell in real world Haskell libraries.

Key words

Programming languages, Refinement Types, Abstract Interpretation, Algorithmic Verification

7

Ευχαριστίες

Ευχαριστώ θερμά τον επιβλέποντα καθηγητή αυτής της διατριβής, κ. Νικόλαο Παπασπύρου για τις
βάσεις και τις γνώσης που μου παρείχε κατά την διάρκεια των σπουδών μου. Ευχαριστώ επίσης τα
μέλη της συμβουλευτικής επιτροπής, κ.κ. Κωστή Σαγώνα, Παναγιώτη Ροντογιάννη, αλλά και τον
κ. Στάθη Ζάχο τόσο για την επιρροή που έχουν ασκήσει πάνω μου, αλλά και για το γενικότερο έργο
τους: να διατήρουν σε ένα πολύ υψηλό επίπεδο στην ελληνική κοινώτητα γλωσσών προγραμματι-
σμου αλλά και πληροφορικής γενικότερα. Η δουλειά αυτή έγινε με την βοήθεια και την στήριξη του
επιβλέποντα καθηγητή μου στο πανεπιστήμιο της Καλιφόρνιας, Σαν Ντιέγκο, Ranjit Jhala τον οποίο
και ευχαριστώ θερμά για την στήριξη και τις γνώσεις που μου παρέχει. Τέλος, θα ήθελα να ευχα-
ριστήσω τους γονείς μου και την αδερφή μου, οι οποίοι με υποστήριξαν με κάθε δυνατό τρόπο όλα
αυτά τα χρόνια.

Νίκη Βάζου,

Αθήνα, 3η Απριλίου 2015

Η εργασία αυτή είναι επίσης διαθέσιμη ως Τεχνική Αναφορά CSD-SW-TR-2-15, Εθνικό Μετσόβιο Πολυτε-
χνείο, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Τομέας Τεχνολογίας Πληροφορικής
και Υπολογιστών, Εργαστήριο Τεχνολογίας Λογισμικού, Απρίλιος 2015.

URL: http://www.softlab.ntua.gr/techrep/

FTP: ftp://ftp.softlab.ntua.gr/pub/techrep/

9

Contents

Περίληψη . 5

Abstract . 7

Ευχαριστίες . 9

Contents . 11

1. Introduction . 13

2. Preliminaries . 15
2.1 Syntax . 15
2.2 Typing . 15

3. Undecidable Systems . 17
3.1 Interactive theorem Proving . 17
3.2 Contracts . 18

3.2.1 Manifest Contracts . 19
3.2.2 Formal Language . 20

4. Decidable Type Systems . 21
4.1 Liquid Types . 22

4.1.1 Applications of Liquid Types . 23
4.1.2 Formal Language . 24

5. Abstract Refinement Types . 25
5.1 The key idea . 25
5.2 Inductive Refinements . 26
5.3 Function Composition . 27
5.4 Index-Dependent Invariants . 28
5.5 Recursive Invariants . 28
5.6 Formal Language . 29

6. LiquidHaskell . 31
6.1 Specifications . 32
6.2 Verification . 32
6.3 Measures . 33
6.4 Refined Data Types . 34
6.5 Refined Type Classes . 35
6.6 Abstracting Refinements . 36

11

7. Totality . 39
7.1 Specifying Totality . 39
7.2 Verifying Totality . 39
7.3 Case Studies . 40

8. Termination . 43

9. Functional Correctness Invariants . 47
9.1 Red-Black Trees . 47
9.2 Stack Sets in XMonad . 48

10. Conclusion . 53

Bibliography . 55

12

Chapter 1

Introduction

Functional programming languages, like ML and Haskell, come with strong static type systems,
which detect a lot of errors at compile-time and enhance code documentation.

The usefulness of these type systems stems from their ability to predict, at compile-time, invariants
about the run-time values computed by the program. Unfortunately, traditional type systems only
capture relatively coarse invariants. For example, the system can express the fact that a variable i is
of type Int, meaning that it is always an integer, but not that it is always an integer with a certain
property, say different than zero. Thus, the type system is unable to statically ensure the safety of
critical operations, such as division by i. Several authors have proposed the use of refinement types
[Free91, Flan06, Rond08, Gree12] as a mechanism for enhancing the expressiveness of type systems.

Refinement types refine a vanilla type with a predicate. For example, one can give i the following
type:

i :: {v:Int | v != 0}

that describes a value v of type Int, while the refinement constraints this value v to be different than
0.

One can use this refinement type to define a safe division operator:

safeDiv :: Int −> {v:Int | v != 0} −> Int

This type captures that the division operator takes two Int arguments and returns an Int. Moreover,
it restricts the second argument to be different that zero, to eliminate division by zero operations.

At the call site of safeDiv the type system should check that the real arguments do not violate its
specification. For instance, safeDiv 8 9 is safe, since 9 is always different that zero, but safeDiv 8

0 should raise a type error. Apart from concrete values, safeDiv can be applied to arbitrary program
expressions: safeDiv n m is safe only if m is an integer different than zero.
Refinement Function Types. Refinement function types [Augu98, Flan06] allow the specification
of the result to depend on the argument. A parameter is used to bind the argument and can appear in
the refinement of the result. As an example, we define a pred function, which takes as argument a
positive integer n and returns its predecessor. Refinement function types allow us to give pred a type
that exactly captures this behaviour:

pred :: n : {v:Int | v > 0} −> {v:Int | v = n−1}
pred n = n−1

This type denotes that for each positive integer argument n, the result is an Int exactly equal to n−1.
When pred is applied to a concrete value, the parameter n is substituted with this value. For example

pred 2 :: {v:Int | v = n−1}[2/n] = {v:Int | v = 1}

Thus, for each concrete argument, the result should be the predecessor of this argument.
Specifications. A specification [Lams00] is the expression in some formal language and at some
level of abstraction of a collection of properties some program should satisfy. Specifications can be
expressed in various techniques. For example, temporal logic can be used to express history-based

13

specifications, e.g., to reason about program’s behaviour over time, while monitors can be used to
express state-based specifications, e.g., reasoning about concurrency. In this paper we use refinement
type signatures to describe (pure) functional specifications, i.e., the program is specified as a collection
of mathematical functions. This way, we limit ourselves to ignore features such as temporal constrains,
imperative features and concurrency.
Verification. Verification is a procedure that takes as input a program, i.e., definitions for functions
and values, and some specifications, i.e., refinement type signatures for functions and values, and
decides whether the specifications hold for the program. Informally, it checks that each expression
satisfies its type, for example, that the pred definition actually returns the predecessor of its argu-
ment, or that at each function application the arguments satisfy the function’s preconditions, as in the
safeDiv example. If the specifications hold, the program is Safe, otherwise it is Unsafe.

Higher-order programming languages, such as ML or Haskell, treat functions as first order ob-
jects. Thus, one can use functions in refinements and create higher-order predicates. For instance, the
following type

f:(a−>b) −> {v:Bool|terminates f}

describes that an arbitrary functional argument should satisfy a predicate terminates. Reasoning in
a higher-order logic is undecidable, thus if arbitrary program values appear in the refinements, the
verification procedure is undecidable. As we shall see, if the refinement language is restricted, i.e., is
less expressive, verification can be decidable.

The rest of this paper is organized as follows: In § 2 we present a core calculus that constitutes
the base for many refinement type systems. In § 3 we describe reasoning in undecidable refinement
type systems. In § 4 we present less expressive type systems (like LiquidTypes) that are decidable.
In § 5 we present how abstraction over refinements enhances expressiveness of decidable type sys-
tems. Then § 6 we present LiquidHaskell that combines liquidTypes with abstraction over refinements
to enhance expressiveness of LiquidTypes. LiquidHaskell is a quite expressive verification tool for
Haskell programs that can be used to check termination (§ 8), totality (§ 7) and general functional
correctness (§ 9). Finally, we evaluate LiquidHaskell and conclude.

14

Chapter 2

Preliminaries

To formally describe and compare type systems, we define a core calculus, following [Flan06,
Rond08, Gree12]. We refer to our calculus as λC , and in this section we present its syntax and type
system.

2.1 Syntax

The syntax of expressions and types is summarized in Figure 2.1. λC expressions include vari-
ables, constants, typed λ-abstractions and function applications. Constants include primitive integers:
0, 1, 2, . . . and primitive booleans: true or false, which take the basic types, integer and boolean,
respectively. A basic type can be refined with a predicate to construct a basic refinement type. Re-
finement types also contain function types, in which a variable binds the argument, so that the result
refinement can refer to it. The predicate p is not yet defined. As noted earlier, if p contains arbitrary
program expressions, the type system is undecidable, but p can be restricted in such a way as to render
the type system decidable. Finally, we define a typing environment Γ that maps variables to their type,
and will be used in the typing rules that we will discuss.

2.2 Typing

The typing rules used by λC are summarized in Figure 2.2.
Type Checking. Type checking rules state that an expression e has a type τ under an environment Γ,
that is, when the free variables in e are bound to values described by Γ, the expression e will evaluate
to a value described by τ . We write Γ ⊢ e : τ and create one rule for each program expression.

The rule T-Const uses a function tc that maps each primitive constant to its predefined type. The
rule T-Var checks the type of a variable, according to the environment Γ. The rule T-Fun checks the
type of the function-body in the environment, extended with the argument of the function. Since the
argument type is given, it could be any arbitrary type, say {v : b | 1}, which is invalid, as a base type
is refined with the value 1, which cannot be a valid predicate. A well-formedness rule is used to check
that the argument type is well-formed, i.e., its refinements are valid predicate expressions. Finally, the
rule T-App checks that in an application e1 e2 the expression e1 has a function type whose argument

Expressions e ::= x | c | λx : τ .e | e e

Predicates p ::= . . .

Basic Types b ::= int | bool

Refinement Types τ ::= {v : b | p} | x : τ → τ

Typing Environment Γ ::= ∅ | x : τ,Γ

Figure 2.1: Syntax of λC

15

Type Checking Γ ⊢ e : τ

Γ ⊢ c : tc (c)
T-Const x : τ ∈ Γ

Γ ⊢ x : τ
T-Var

Γ, x : τx ⊢ e : τ Γ ⊢ τx
Γ ⊢ λx : τx.e : (x : τx → τ)

T-Fun
Γ ⊢ e1 : x : τx → τ Γ ⊢ e2 : τx

Γ ⊢ e1 e2 : τ [e2/x]
T-App

Well-Formedness Γ ⊢ τ

Γ, v : b ⊢ p : bool

Γ ⊢ {v : b | p}
WF-Base

Γ ⊢ τx Γ, x : τx ⊢ τ

Γ ⊢ x : τx → τ
WF-Fun

Subtyping Γ ⊢ τ ⪯ τ

(Γ, v : b ⊢ Valid(p1 ⇒ p2))

Γ ⊢ {v : b | p1} ⪯ {v : b | p2}
≺-Base

Γ ⊢ τ21 ⪯ τ11 Γ, x2 : τ21 ⊢ τ12[x2/x1] ⪯ τ22
Γ ⊢ x1 : τ11 → τ12 ⪯ x2 : τ21 → τ22

≺-Fun

Figure 2.2: Static Semantics for λC

is the type of the argument e2. As we discussed in the introduction, in the final type, the parameter x
should be replaced with the actual argument e2.
Well-formedness Rules. Well-formedness rules state that a type τ is well-formed under an environ-
ment Γ, that is, the refinements in τ are boolean expressions in the environment Γ. We write Γ ⊢ τ
and create one rule for each type.

The rule WF-Base checks that in a basic refinement type, the refinement is a valid boolean expres-
sion. The environment of this check is extended with the value that is refined; for instance, to check the
validity of {v : int | v > 0}, we check that v > 0 is a boolean expression, in an environment where
v is an integer value. The rule WF-Fun recursively applies the well-formedness rule to the argument
type of the function, and to the result type, in an environment extended with the argument parameter.
Subtyping Rules. Consider that the predefined type for the integer 2 is an integer that is exactly equal
to 2. The type system can check, via the rule T-Const, that ∅ ⊢ 2 : {v : int | v = 2}. If 2 is applied
to a function that expects a positive integer, say f :: x : {v : int | v > 0} → τ , the type system
should also check that ∅ ⊢ 2 : {v : int | v > 0}. There are many ways for this check to succeed.
We follow syntactic subtyping, in which subtyping reduces to implication checking. In our example,
v = 2 ⇒ v > 0 implies {v : int | v = 2} ⪯ {v : int | v > 0}.

In the general case, subtyping rules state that the type τ1 is a subtype of the type τ2 under environ-
ment Γ, i.e., when the free variables of τ1 and τ2 are bound to values described by Γ, the set of values
described by τ1 is contained in the set of values described by τ2. We write Γ ⊢ τ1 ⪯ τ2 and create one
rule for every type.

The rule ≺-Base serves two purposes. Firstly, it checks that the basic type is the same in the two
types. Secondly, it checks that under the environment Γ, the left hand side refinement implies the
right hand side. The implication checking is enforced by a predicate Valid which varies between the
systems that we will describe. The rule≺-Fun relates two function types according to the contravariant
rule.

In the rest of this paper, we will use the core calculus λC upon which we will build a subset of
three typing systems [Rond08, Gree12, Vazo13].

16

Chapter 3

Undecidable Systems

In systems where the refinement language can have arbitrary program expressions, higher order
predicates can be expressed, thus the verification procedure is undecidable. There are many alter-
natives to reason in such languages; in this section we will present two of them. Firstly, we present
Interactive theorem proving, where the proofs are statically provided by the user. Secondly, we present
Contracts Calculi, where the specifications are checked at run time.

3.1 Interactive theorem Proving

One approach to verify that a program satisfies some specifications is for the user to statically
prove them. This approach is used by interactive theorem provers, such as NuPRL [Cons86], Coq
[Bert04], F⋆ [Swam11], Agda [Nore07] and Isabelle [Nipk02] that can express mathematical asser-
tions, mechanically check proofs of these assertions, help to find formal proofs, and extract a certified
program from the constructive proof of its formal specification.

As an example, consider once again the pred function that computes the predecessor of a positive
number.

pred :: s:{n : nat | n > 0} −> {v:nat | s = S v}

This type signature says that if pred is called with a positive number s, it will return s’s predecessors.
There are two different assertions that should be proved:

• The result of the function is the predecessor of the argument. At pred’s definitions the program-
mer should provide a proof that this assertion is indeed satisfied.

• The argument is a positive number. At each call site of pred, the user should provide a proof
that its argument is positive.

To illustrate programming with refinement types in Coq, we define the pred function, as presented
in Figure 3.1, following [Chli13]. In Coq the refinement type is defined in the standard library, and

Inductive sig (A : Type) (P : A −> Prop) : Type :=

exist : forall x : A, P x −> sig P

Notation

”{ x : A | P }” := sig (fun x : A => P)

Definition pred (s : {n : nat | n > 0}) : {m : nat | proj1_sig s = S m} :=

match s return {m : nat | proj1_sig s = S m} with

| exist 0 pf => match zgtz pf with end

| exist (S n’) pf => exist _ n’ (eq_refl (S n’))

end.

Figure 3.1: The pred function in Coq

17

is syntactic sugar, for the type family sig. The function pred takes an argument s which has two
components: a natural number n and a proof pf that this number is positive. There is a case analysis
on s: if n is zero, then the proof pf is used to construct a proof that zero is greater that zero (using a
lemma zgtz) and thus reach a contradiction; so this case can not occur. Otherwise, n has a predecessor,
say n’ and the function returns n’ combined with a proof that its successor is equal to n. This proof
is constructed by applying eq_refl, the only constructor of equality to S n’.

In the call site of pred, the programmer should provide both the argument and a proof that it is
positive. As an example, if two_gt0 is a proof that two is greater than zero, we can have

pred (exist _ 2 two_gt0)

This application typechecks, as Coq verifies that the argument satisfies pred’s precondition, i.e.,
that two_gt0 is indeed a proof that 2 is greater than 0.

Even though this example seems tedious, interactive theorem proving can be simplified using
inference and tactics. However, the user still needs to provide proofs. We discuss other systems, which
remove this burden from the user.

3.2 Contracts

Another approach to verify that a program satisfies some assertions is to dynamically check them.
These assertions are called contracts, i.e., dynamically enforced pre- and post-assertions that define
formal, precise, and verifiable interface specifications for software components. Their use in pro-
gramming languages dates back to the 1970s, when Eiffel [Meye91], an object-oriented programming
language, totally adopted assertions and developed the “Design by Contract” philosophy [Meye92].

Contracts are of the form: ⟨{v:τ|p}⟩l. The refinement part, as usual, describes the values v, of
type τ that satisfy the predicate p. The l superscript is a blame label, used to identify the source of
failures. As an example, consider a contract for positive integers ⟨{v:Int|v > 0}⟩l applied to two
values, 2 and 0:

⟨{v:Int|v > 0}⟩l′ 2 → 2

⟨{v:Int|v > 0}⟩l 0 → ⇑ l

If the check succeeds, as in the case for 2, then the application will return the value, so the first appli-
cation just returns 2. If it fails, then the entire program will “blame” the label l, raising an uncatchable
exception ⇑ l, pronounced “blame l”.

In 2002, Findler and Felleisen [Find02] were the first to create a system for higher order languages
with contracts. In their system, the blame is properly assigned in the higher-order components of the
program via a “variance-contravariance” rule. Moreover, they allow dependent contracts, i.e., con-
tracts that have the form of a refinement function type, where the result can depend on the argument.
Finally, they treat contracts as first class values, i.e., contracts are values that can be passed to and from
functions. In 2004, Blume and McAllester [Blum06] formally defined contract satisfaction on Findler
and Felleisen’s system, and they proved that their system is indeed sound and complete. The contract
system is sound if whenever the algorithm blames a contract declaration, that contract declaration is
actually wrong. Conversely, it is complete if blame on an expression is explained by the fact that the
expression violates one of it contract interfaces.

Since Findler and Felleisen’swork a variety of contract calculi systems have been studied. Broadly,
these come in two different sorts. In systems with latent contracts, types and contracts are orthogo-
nal features. Examples of these systems include Findler and Felleisen’s original system, Hinze et al.
[Hinz06], Blume and McAllester [Blum06], Chitil and Huch [Chit07], Guha et al. [Guha07], and
Tobin-Hochstadt and Felleisen [Tobi08]. By contrast, manifest contracts are integrated into the type
system, which tracks, for each value, the most recently checked contract. Hybrid types [Flan06] are
a well-known example in this style; others include the work of Ou et al. [Ou04], Wadler and Findler

18

[Wadl09], Gronski et al. [Gron06], Belo et al. [Belo11], and Grennberg et al. [Gree12]. In the rest of
this subsection we discuss manifest contracts and present a core calculus for them.

3.2.1 Manifest Contracts

Manifest Contracts Systems [Gree12], use casts ⟨τs ⇒ τt⟩l to convert values from the source type
τs to the target type τt and raise ⇑ l if the cast fails.

As an example, consider a cast from integers to positives:

⟨Int ⇒ {v:Int|v > 0}⟩l n

The system should statically verify that the value n is of the source type Int. After the cast, this value
is treated as if it has the target type {v:Int|v > 0} . At run-time, a check will be made that n is
actually a positive integer and if it fails it will raise ⇑ l.

To generalize, for base contracts a cast will behave just like a check on the target type: applied to
n, the cast either returns n or raises ⇑ l . A function application cast (⟨τ11 -> τ12 ⇒ τ21 -> τ22⟩l f) v
will reduce to ⟨τ12 ⇒ τ22⟩l (f (⟨τ21 ⇒ τ11⟩l v)) wrapping the argument v in a (contravariant) cast
between the domain types and wrapping the result of the application in a (covariant) cast between the
range types.

To illustrate how function casts work let’s once more consider the pred example. To get the
desired type signature for pred, we have to wrap the function’s definition in a type cast:

pred’ x = x− 1

pred = ⟨Int->Int ⇒ x : {v:Int|v > 0}->{v:Int|v = x - 1}⟩l pred’

If we apply a positive number, say 2 :: {v:Int | v > 0}, we will have the following computation:

pred 2

= (⟨Int->Int ⇒ x : {v:Int|v > 0}->{v:Int|v = x - 1}⟩l pred’) 2
→⋆ (⟨Int ⇒ {v:Int|v = 2 - 1}⟩l) (pred’(⟨{v:Int|v > 0} ⇒ Int⟩l2))
→⋆ (⟨Int ⇒ {v:Int|v = 2 - 1}⟩l) (pred’ 2)
→⋆ (⟨Int ⇒ {v:Int|v = 2 - 1}⟩l) 1
→⋆ 1

The first line is pred’s definition. In the second line the rule for functional cast is applied. Then,
the check that 2 is an integer succeeds, and 2 is applied to pred’so, we get 1. Finally, this result is
checked to be 1 and since this check succeeds the value is returned. If pred’was not returning the
correct value, the program would raise a blame:

pred’ x = 0

pred 2

= (⟨Int->Int ⇒ x : {v:Int|v > 0}->{v:Int|v = x - 1}⟩l pred’) 2
→⋆ (⟨Int ⇒ {v:Int|v = 2 - 1}⟩l) (pred’(⟨{v:Int|v > 0} ⇒ Int⟩l2))
→⋆ (⟨Int ⇒ {v:Int|v = 2 - 1}⟩l) (pred’ 2)
→⋆ (⟨Int ⇒ {v:Int|v = 2 - 1}⟩l) 0
→⋆⇑ l

The evaluation is the same as in the previous example, up to the point where the pred’application
returns. Here, the application returns 0, thus the final check fails and the program raises the blame l.

19

You may notice that in both cases pred’is applied to a positive integer. Since a positive integer
is not a primitive type, the only way to get such a type is via a cast. Thus, for this application to
statically typecheck, the argument should be wrapped in a cast. But, if we cast a non-positive value to
be positive, then the cast will fail:

pred ((⟨Int ⇒ {v:Int|v > 0}⟩zero) 0) →⋆⇑ zero

We saw that two distinct casts should be used to satisfy the functions pre- and post-conditions.
These casts use different labels, with which we can track the source of failure, if any.

3.2.2 Formal Language

Lets now extend our core calculus λc to λcc, so that it supports manifest contracts. In the expres-
sions of our language we add a blaming expression and a type cast. The refinement language includes
any core expression. Everything else remains unchanged.

In the typing judgements we add two rules: a blame expression can have any well-formed type,
while a type cast expression behaves as a function from the source to the target type. For a casting
expression to typecheck, both types should be well-formed and compatible, i.e., their unrefined types
should be the same. We check this with a new compatibility judgement.

Expressions e ::= . . . | ⇑ l | ⟨τ ⇒ τ⟩l

Predicates p ::= e

Figure 3.2: Syntax from λC to λCC

Compatibility τ1∥τ2

{v : b | p1} ∥ {v : b | p2}
C-Base

τx1∥τx2 τ1∥τ2
x1 : τx1 → τ1∥x2 : τx2 → τ2

C-Fun

Type Checking Γ ⊢ e : τ

Γ ⊢ τ
Γ ⊢⇑ l : τ

T-Label
Γ ⊢ τ1 Γ ⊢ τ2 τ1∥τ2

Γ ⊢ ⟨τ1 ⇒ τ2⟩l : (x : τ1 → τ2)
T-Cast

Figure 3.3: Static Semantics from λC to λCC

20

Chapter 4

Decidable Type Systems

In 1991 Freeman and Pfennning [Free91] introduced a decidable refinement type system for a
subset of ML. In their system, the programmer defines refinement types for the vanilla data types; for
example, the vanilla list data type can be refined to describe nil lists, or singleton lists, i.e., lists with
exactly one element. These definitions are used to construct a finite datatype lattice of each ML type;
a singleton list or a nill list is also a vanilla list, thus both refined lists are less than the unrefined one
in the lattice. The datatype lattice is a representation of the subtype relationship that is used in the
refinement type inference algorithm. Since each lattice is finite, the subtyping relation is decidable.

Later, they extended [Xi98] their language to support linear arithmetic constraints; thus they could
encode a list with length some integer n and reason about safety of list indexing. In this system,
subtyping reduces to predicate implication and they used a variant of Fourier’s method [Pugh92] for
constraint solving. Finally, they created DML(C) [Xi99], an extension of ML with refinement types,
that supports array bounds check elimination, redundant pattern matching clause removal, tag check
elimination and untagged representation of datatypes. Refinements in DML(C) are restricted to a finite
and decidable constrain domain C, which renders constraint solving, and thus subtyping decidable.

DML(C) is a practical programming language, in the sense that programs can often be annotated
with very little internal change and the resulting constraint simplification problems can be solved ef-
ficiently in practice. Its disadvantage is that annotation burden is high for the programmer, as often
10-20% of the code is typing annotations. In order to encourage programmers to use refinement spec-
ifications in their programs, Ou et al. [Ou04], proposed a language design and type system that allows
programmers to add semantic specifications to program fragments bit by bit. More specifically, for
certain program components the type checker verifies statically the refinement type specifications.
The rest of the components are written as in any ordinary simply-typed programming language. When
control passes between different components, data flowing from simply-typed code into refinement-
typed code is checked dynamically to ensure that the invariants hold.

Another system that combines static verification with dynamic checks is presented in Flanagan’s
Hybrid Type Checking [Flan06]. Flanagan’s type system uses syntactic sybtyping to create implica-
tions, as discusses in Section 2. Moreover, he assumes an algorithm that decides the validity of the
implications. For each implication the algorithm runs for limited time: if it answers unsafe, the pro-
gram is unsafe, but if it does not terminate, a cast is added to postpone the check until runtime. Thus,
his system checks implications statically, whenever possible and dynamically, only when necessary.

In Liquid Types [Rond08], implication checking always terminates, as implications belong to a
decidable subset of first order logic. This is achieved by restricting the refinement language according
to a finite set of qualifiers. With this technique, liquid type system allows type inference, as a means
of decreasing the annotation burden. We present Liquid Types in the rest of the section.

Many systems discussed so far, including DML(C), Hybrid Type System and Liquid Types, use
syntactic subtyping for constraint generation and SMT solvers for constraint solving. Satisfiability
Modulo Theories (SMT) solvers solve implications for (fragments of) first-order logic plus various
standard theories such as equality, real and integer (linear) arithmetic, uninterpreted functions, bit
vectors, and (extensional) arrays. Some of the leading systems include CVC3 [Barr07], Yices [Dute],
and Z3 [dMou08].

With the advent of SMT solvers, the combination of syntactic subtyping for constraint gener-

21

ation and an SMT solver for constraint solving has been used in various systems: Mandelbaum et
al. [Mand03], extended the domain of predicates to describe the state and the effects of the verified
programs. Suter et al. [Sute11] increase the power of reasoning to support user defined recursive func-
tions. Finally, Unno et al. [Unno13], created a relatively complete system for higher-order functional
programs.

Apart from syntactic subtyping, SMT solvers can be used in other refinement decidable systems:
Dminor [Bier10] uses semantic subtyping where subtyping is totally decided by first order implication
checking, while HALO [Vyti13] uses denotational semantics to prove specification checking.

4.1 Liquid Types

In Liquid Types [Rond08], Rondon et al. restrict the refinement language according to a finite set
of qualifiers, and achieve not only decidable type checking, but also automatic type inference.

The system takes as input a program and a finite set of logical qualifierswhich are simple boolean
predicates that encode the properties to be verified. The system then infers liquid types, which are re-
finement types where the refinement predicates are conjunctions of the logical qualifiers. Type check-
ing and inference are decidable for three reasons. First, they use a conservative but decidable notion of
subtyping, where subtyping reduces to implication checks in a decidable logic. Each implication holds
if and only if it yields a valid formula in the logic. Second, an expression has a valid liquid type deriva-
tion only if it has a valid unrefined type derivation, and the refinement type of every subexpression
is a refinement of its vanilla type. Third, in any valid type derivation, the types of certain expressions
must be liquid. Thus, inference becomes decidable, as the space of possible types is bounded.
Logical Qualifiers and Liquid Types. A logical qualifier is a boolean-valued expression over the
program variables, the special value variable v which is distinct from the program variables, and the
special placeholder variable ⋆ that can be instantiated with program variables. Let Q be the set of
logical qualifiers {0 < ⋆, v < ⋆, v = ⋆ + 1}. A qualifier q matches the qualifier q′ if replacing
some variables in q with ⋆ yields q′. For example, the qualifier v < x matches the qualifier v < ⋆.
Q⋆ is the set of all qualifiers not containing ⋆ that match some qualifier in Q. For instance, if x, y and
n are program variables,Q⋆ includes the qualifiers {0 < x, v = n + 1, v < n, v < y}. A liquid
type over Q is a refinement type where the refinement predicates are conjunctions of qualifiers from
Q⋆.
Type Inference. Type inference is performed in three steps: (1) the vanilla type of each expression is
refined with liquid variables which represent the unknown refinements; (2) syntactic subtyping is used
to create implication constraints between the unknown variables and the concrete refinements; (3) a
theorem prover is used to find the strongest conjunction of qualifiers in Q that satisfies the subtyping
constraints.

To illustrate this procedure, consider our pred example:

pred n = n − 1

The liquid type for pred can be inferred in three steps:
(Step 1) By Hindley-Milner, we can infer that pred has the type Int −> Int. Using this type we

create a template for the liquid type of pred,

pred :: n:{v:Int | kn} −> {v:Int | kp}

where kn and kp are liquid type variables representing the unknown refinements for the argument n
and the body of pred, respectively.

(Step 2) We assume a descriptive type for minus:

(−) :: x:Int −> y:Int −> {v:Int | v = x − y}

22

and use it to construct the type of pred’s result:

{v:Int | v = x − y}[x/n][y/1] = {v:Int | v = n − 1}

This type should be subtype of the template type of the body:

{v:Int | v = n − 1} <: {v:Int | kp}

The above subtype reduces to the following constraint:

v = n - 1 ⇒ kp

(Step 3) Since the program is “open”, i.e., there are no calls to pred, we assign kp true, meaning that
any integer argument can be passed, and use a theorem prover to find the strongest conjunction of
qualifiers in Q that satisfies the subtyping constraints. The algorithm infers that v = n − 1 is the
strongest solution for kp. By substituting the solution for kp into the template for pred, the algorithm
infers

pred :: n:Int −> {v:Int | v = n−1}

Type Checking. As one may notice the inferred type signature of pred does not constrain the type
of the argument. This is correct, as pred’s definition does not constrain its argument. One could give
pred a more precise type, say:

pred :: n:{v:Int | v > 0} −> {v:Int | n − 1}

The system can verify that this type holds, following a procedure similar to the one for type inference:
The first step can be skipped, since there exists a concrete type for pred. The body of the function

will be type-checked against the given signature. In the second step, as before, we construct the type
of the body to be {v:Int | n − 1} and constrain this type to be a subtype of pred’s result, or

{v:Int | v = n − 1} <: {v:Int | v = n − 1}

This subtyping reduces to a trivial implication v = n - 1 ⇒ v = n - 1 that can be proven in the
third step.

Given the above type signature if pred is called with some positive integer value, say 2, then in
the call site the constraint v = 2 ⇒ v >0 will be generated, that can be statically verified. However,
if it is called with a non-positive value, say 0, we will get the unsatisfied constraint v = 0 ⇒ v > 0,
so the program will be unsafe.

4.1.1 Applications of Liquid Types

Liquid Types, as introduced in [Rond08], used OCaml as target language and were used to verify
array bounds checking. One year later [Kawa09], they were extended with recursive and polymorphic
refinements to enable static verification of complex data structures; among which list sortedness or
Binary Tree ordering. Liquid Types were used to verify properties even in imperative languages.
Low-level Liquid Types [Rond10] is a refinement type system for C based on Liquid Types to verify
memory safety properties, like the absence of array bounds violations and null-dereferences. Finally,
Liquid Effects [Kawa12], is a type-and-effect system based on refinement types which allows for
fine-grained, low-level, shared memory multithreading while statically guaranteeing that a program
is deterministic.

23

4.1.2 Formal Language

We extend the core calculus λC to λL, a calculus that supports liquid type checking.
The crucial difference between the previous systems, is that the refinement language can not con-

tain arbitrary expressions, but is constrained to conjunctions of the logical qualifiers, which form a
finite set, as shown in Figure 4.1.

Static typing uses syntactic subtyping, as defined in Section 2. In this setting, the subtyping relation
is decidable because the refinement language, and thus the implications created, refer to a decidable
logic. Finally, the Valid relation is evaluated using the Z3 [dMou08] SMT solver.

Predicates p ::= true | q | p ∧ p , q ∈ Q⋆

Figure 4.1: Syntax from λC to λL

Type Checking Γ ⊢ e : τ

Γ ⊢ e : τ2 Γ ⊢ τ2 ⪯ τ1 Γ ⊢ τ1
Γ ⊢ e : τ1

T-Sub

Figure 4.2: Static Semantics from λC to λL

24

Chapter 5

Abstract Refinement Types

Refinement type systems, as presented so far, fall into two categories. Expressive type systems, as
presented in Section 3, are statically undecidable, while decidable systems, as presented in Section 4,
restrict the refinement language to a subset of first order logic. In this section, we present abstract re-
finement types [Vazo13], a means to enhance expressiveness of a refinement system, while preserving
(SMT-based) decidability. The key insight is that we avail quantification over the refinements of data-
and function-types, simply by encoding refinement parameters as uninterpreted propositions within
the refinement logic. We illustrate how this mechanism yields a variety of sophisticated means for
reasoning about programs, including: inductive refinements for reasoning about higher-order traver-
sal routines, compositional refinements for reasoning about function composition, index-dependent
refinements for reasoning about key-value maps, and recursive refinements for reasoning about re-
cursive data types.

5.1 The key idea

Consider the monomorphic max function on Int values. We give max a refinement type, stating
that its result is greater or equal than both its arguments:

max :: x:Int −> y:Int −> {v:Int | v >= x && v >= y}

max x y = if x > y then x else y

If we apply max to two positive integers, say n and m, we get that the result is greater or equal to
both of them, as max n m :: {v:Int | v >= n && v >= m}. However, we can not reason about
an arbitrary property: If we apply max to two even numbers, can not verify that the result is also even.
Thus, even though we have the information that both arguments are even on the input, we lose it on
the result.

To solve this problem, we introduce abstract refinements which let us quantify or parameterize a
type over its constituent refinements. Using abstract refinements, we can type max as

max :: forall <p::Int−>Bool>. Int<p> −> Int<p> −> Int<p>

where Int<p> is an abbreviation for the refinement type {v:Int | p(v)}. Intuitively, an abstract
refinement p is encoded in the refinement logic as an uninterpreted function symbol, which satisfies
the congruence axiom [Nels81]

∀X,Y : (X = Y) ⇒ P (X) = P (Y)

It is trivial to verify, with an SMT solver, that max enjoys the above type: the input types ensure
that both p(x) and p(y) hold and hence the returned value in either branch satisfies the refinement
{v:Int | p(v)}, thereby ensuring the output type.

In a call site, we simply instantiate the refinement parameter of max with the concrete refinement,
after which type checking proceeds as usual. As an example, suppose that we call max with two even
numbers:

n :: {v:Int | even v}

m :: {v:Int | even v}

25

Then, the abstract refinement can be instantiated with a concrete predicate even, which will give
max the type

max [even] ::

{v:Int | even v} −> {v:Int | even v} −> {v:Int | even v}

where the expression in brackets is the refinement instantiation. Since both n and m are even numbers,
they satisfy the function’s preconditions, thus we can apply them to max, to get an even result:

max [even] n m :: {v:Int | even v}

This is the basic concept of abstract refinements, which as we shall see, have many interesting
applications.

5.2 Inductive Refinements

As a first application we present how abstract refinements allow us to formalize induction within
the type system.

Consider a loop function that takes as arguments a function f, an integer n, a base case z and
applies the function f to the z, n times:

loop :: (Int −> a −> a) −> Int −> a −> a

loop f n z = go 0 z

where go i acc | i < n = go (i+1) (f i acc)

| otherwise = acc

Now consider a user function incr that uses loop and at each iteration increases the accumulator by
one:

incr :: Int −> Int −> Int

incr n z = loop f n z

where f i acc = acc + 1

The accumulator is initialized with z and at each loop’s iteration it is increased by 1. So, at the ith
iteration, the accumulator is equal to z+i. There will be n iterations, thus the final result will be z+
n. This reasoning constitutes an inductive proof that characterizes loop’s behaviour. However, it is
unclear how to give loop a (first-order) refinement type that describes its inductive behaviour. Hence,
it has not been possible to verify that incr actually adds its two arguments.
Typing loop. Abstract refinements allow us to solve this problem, while remaining within the bound-
aries of SMT-based decidability. We give loop the following type:

loop :: forall <r :: Int −> a −> Bool> .

f : (i:Int −> a<r i> −> a<r (i+1)>)

−> n : {v:Int | n >= 0}

−> z : a<r 0>

−> a<r n>

The trick is to qualify over the invariant r that loop establishes between the loop iteration and the
accumulator. Then the type signature encodes induction on natural numbers: (1) n should be a natural
number, thus a non-negative integer, (2) the base case z should satisfy the invariant at 0, (3) in the
inductive step, f uses the old accumulator to create the new one, thus if the old accumulator satisfies
the invariant on the iteration i, the new one, as constructed by f, should satisfy the invariant at i+1. If
these four conditions hold, we conclude that the result satisfies the invariant at n. This scheme is not
novel [Bert04]; what is new is the encoding, via uninterpreted predicate symbols in a SMT-decidable
refinement type system.

26

Using loop. We can use this expressive type of loop to verify inductive properties of user functions:

incr :: n:{v:Int|v >= 0} −> z:Int −> {v:Int|v = n + z}

incr n z = loop [{\i acc −> acc + i}] f n z

where f i acc = acc + 1

In the above example, the expression in brackets denotes the instantiation of the abstract refinement.
For purpose of illustration we make abstract refinement instantiation explicit, but it could be automat-
ically inferred via liquid typing [Vazo13].

5.3 Function Composition

As a next example, we present how one can use abstract refinements to reason about function
composition.

Consider a plusminus function that composes a plus and a minus operator:

plusminus :: n:Int

−> m:Int

−> x:Int

−> {v:Int | v = (x − m) + n}

plusminus n m x = (x − m) + n

In a first order refinement system we can verify that the function’s behaviour is captured by its type.
However, consider an alternative definition that uses function composition (.):: (b −> c)−> (a

−> b)−> a −> c.
plusminus n m x = plus . minus

where plus x = x + n

minus x = x − m

It is unclear how to give (.) a (first-order) refinement type that expresses that the result can be refined
with the composition of the refinements of both arguments results. Thus, this definition of plusminus
can not have the previous descriptive type.
Typing function composition. To solve this problem, we can use abstract refinements and give (.)
a type:

(.) :: forall < p :: b −> c −> Bool

, q :: a −> b −> Bool>.

f : (x:b −> c<p x>)

−> g : (x:a −> b<q x>)

−> x : a

−> exists[z:b<q x>]. c<p z>

The trick is once again to quantify the type over refinements we care about. This time, we use two
abstract refinements: the refinement p of the result of the first function f and the refinement q of the
result of the second function g. For any argument x, we use an existential to bind the intermediate
result to z = g x, so z satisfies q at x, and the result satisfies p at the intermediate result.
Using function composition. With this type for function composition, user functions get the concrete
refinement of the final result to be the composition of the two refinements of the argument functions.

Back to the plusminus example, with the appropriate refinement instantiation we get the concrete
refinement type for function composition:

(.) [{\x v −> v = x + n}, {\x v −> v = x − m}]

:: f : (x:b −> {v:c | v = x+n})

−> g : (x:a −> {v:b | v = x−m})
−> x : a

−> exists[z:{v:b | v = x−m}]. {v:c | v = z+n}

27

The result type asserts that there exists a value z, which is indeed the intermediate result, with the
property z = x − m. With this, the final result is equal to z + n. If our logic supports equality, as
SMT solvers do, we can verify that the final result is indeed equal to (x − m)+ n. In other words,
we can verify the desired type of plusminus.

5.4 Index-Dependent Invariants

Next, we illustrate how abstract invariants allow us to specify and verify index-dependent invari-
ants of key-value maps. To this end, we encode vectors as functions from Int to some generic range
a. Formally, we specify vectors as

data Vec a <dom :: Int −> Bool, rng :: Int −> a −> Bool>

= V (i:Int<dom> −> a <rng i>)

Here, we are parameterizing the definition of the type Vecwith two abstract refinements, dom and rng,
which respectively describe the domain and range of the vector. That is, dom describes the set of valid
indices, and rng specifies an invariant relating each Int index with the value stored at that index.
Describing Vectors. With this encoding, we can describe various vectors. To start with we can have
vectors of Int defined on positive integers with values equal to their index:

Vec <{\v −> v > 0}, {_ v −> v = x}> Int

Or a vector that is defined only on index 1 with value 12:

Vec <{\v −> v = 1}, {_ v −> v = 12}> Int

As a more interesting example, we can define a Null Terminating String with length n, as a vector of
Char defined on a range [0, n) with its last element equal to the terminating character:

Vec <{\v −> 0 <= v < n}

,{\i v −> i = n−1 => v = ‘\0‘}> Char

Finally, we can encode a Fibonacci memoization vector, which can be used to efficiently compute a
Fibonacci number, that is defined on positive integers and its value on index i is either zero or the ith
Fibonacci number:

Vec <{\v −> 0 <= v}

,{\i v −> v != 0 => v = fib(i)}> Char

Using Vectors. A first step towards using vectors is to supply the appropriate types for vector op-
erations, (e.g., set, get and empty). This usually means qualifying over the domain and the range of
the vectors. Then, the programmer has to specify interesting vector properties, as we did for the Fi-
bonacci memoization, or the null terminating string. Finally, the system can verify that user functions,
that transform vectors, preserve these properties. This procedure is applied in [Vazo13], where, with
the appropriate types for vector operations, we reason about functions that transform null terminating
strings or efficiently compute a Fibonacci number.

5.5 Recursive Invariants

Finally, we describe how we use abstract refinements to reason about properties of recursive data
structures. For the purpose of illustration, we define a refined version of a List datatype with values
of type a:

data List a <p :: a −> a −> Bool>

= N

| C (hd :: a) (tl :: List <p> (a <p h>))

28

We are parametrizing the List over an abstract refinement p that relates two elements of type a. With
this, the list is either the empty list N, or contains a head hd of type a and a tail tl which is a list of
elements of type a<p h>, i.e., these elements satisfy the abstract refinement p at the head. Since this
definition is recursively applied, the abstract refinement p holds between each pair of elements in the
list.
Unfolding Lists. To demonstrate the previous property, we will unfold a List with three elements
that satisfies an abstract refinement p. Consider such a list:

C h1 (C h2 (C h3 N)) :: List <p> a

If we unfold this list once, by the definition of the C data constructor, the first element is of type
a, while the rest is a list with values that satisfy p at the first element, i.e., (C h2 (C h3 N))::

List <p> a<p h1>. With a second unfold we get that the second element satisfies p at the first
element, i.e., h2::a<p h1>, while the rest is a list with values that satisfy p at both the first and the
second element, i.e., C h3 N :: List <p> a<p h1 && p h2>. With the last unfold we get that the
last element satisfies p at all the previous elements, i.e., h3 :: a<p h1 && p h2>, while the empty
list satisfies p at every list element, i.e., N :: List <p> a<p h1 && p h2 && p3>, which holds as
by its definition the empty list N satisfies any refinement.

Thus, p holds between every pair of the list, as for any two two elements hi and hj, with i < j,
at the ith unfold hj satisfies p at hi.

If we instantiate the abstract refinement p with the concrete refinement {\h v −> h <= v}, that
expresses that each values is greater than the head, we get that each element is greater than all its
previous in the list. So we describe an increasing list:

type IncrList a = List <{\h v −> h <= v}> a

We can describe different list properties, by embedding appropriate concrete refinements. For in-
stance, if we use a refinement that expresses that each value is less than the head, i.e., {\h v −> h

>= v} or different from it, i.e., {\h v −> h ~= v}, we can describe decreasing or unique element
lists.
Using Lists. We can use the refined type for lists to verify list properties. As an example, our system
can verify that the following inserting sort algorithm actually returns an increasing list.

insertSort :: (Ord a) => [a] −> IncrList a

insertSort = foldr insert N

insert :: (Ord a) => a −> IncrList a −> IncrList a

insert y N = C y N

insert y (C x xs) | y <= x = C y (C x xs)

| otherwise = C x (insert y xs)

5.6 Formal Language

We suggest that any refinement system can be extended with abstract refinements without increas-
ing its complexity. First of all, the syntax should be extended to support refinement abstraction and
application. In the case of refinement abstraction, we abstract from an expression e the refinement π
with type τ , while in refinement application we instantiate an abstrast refinement with a concrete one
p that may have some parameters x̄. The predicates of the language should be extended to include ab-
stract refinements, applied to program expressions. The types of the language should also be extended
to include refinement abstraction.

Since we extended our expressions the relevant typing rules should be added. The refinement
abstraction expression is typed as an refinement abstraction type, the abstract refinement is treated

29

as a variable and the checking proceeds in a straightforward way. In the refinement application, the
abstract refinement π is replaced with a concrete one over the type τ . A formal definition of this
substitution can be found in our paper[Vazo13].

Similarly, since we extended our types, the well-formedness and subtyping rules should be ex-
tended. In both cases, the abstract refinement is added in the environment and the check proceeds in
a straightforward way.

We note that abstract refinements can be treated as uninterprented functions in the implication
checking algorithm, thus the complexity of the system is not increased. Moreover, they appear only
in the types, thus they can be erased at run-time.

Expressions e ::= . . . | Λπ : τ .e | e [λx : τx.p]

Predicates p ::= . . . | π e

Types τ ::= . . . | ∀π : τ.τ

Figure 5.1: Syntax of Expressions, Types and Schemas

Type Checking Γ ⊢ e : τ

Γ, π : τπ ⊢ e : τ Γ ⊢ τ

Γ ⊢ Λπ : τπ.e : ∀π : τπ.τ
T-Gen

Γ ⊢ e : ∀π : τπ.τ Γ ⊢ λx : τx.p : τπ
Γ ⊢ e [λx : τx.p] : τ [π ▷ λx : τx.p]

T-Inst

Subtyping Γ ⊢ τ ⪯ τ

(Γ, v : b ⊢ Valid(p1 ⇒ p2))

Γ ⊢ {v : b | p1} ⪯ {v : b | p2}
≺-Base

Figure 5.2: Static Semantics from λC to λA

30

Chapter 6

LiquidHaskell

Figure 6.1: LiquidHaskell Workflow

LiquidHaskell combines Liquid Types (§ 4) with Abstract Refinements (§ 5) to give an expres-
sive and decidable verification mechanism for Haskell programs. We will start with a short descrip-
tion of the LiquidHaskell workflow, summarized in Figure 6.1, and continue with an example driven
overview of how properties are specified and verified using the tool.
Source. LiquidHaskell can be run from the command-line1 or within a web-browser2. It takes as
input: (1) a single Haskell source file with code and refinement type specifications including refined
datatype definitions, measures (§ 6.3), predicate and type aliases, and function signatures; (2) a set
of directories containing imported modules (including the Prelude) which may themselves contain
specifications for exported types and functions; and (3) a set of predicate fragments called qualifiers,
which are used to infer refinement types. This set is typically empty as the default set of qualifiers
extracted from the type specifications suffices for inference.
Core. LiquidHaskell uses GHC to reduce the source to the Core IL [Sulz07], and, to facilitate source-
level error reporting, creates a map from Core expressions to locations in the Haskell source.
Constraints. Then, it uses the abstract interpretation framework of Liquid Typing [Rond08], modified
to ensure soundness under lazy evaluation [Vazo14], to generate logical constraints from the Core IL.
Solution. Next, it uses a fixpoint algorithm (from [Rond08]) combined with an SMT solver to solve
the constraints, and hence infers a valid refinement typing for the program. LiquidHaskell can use any
solver that implements the SMT-LIB2 standard [Barr10], including Z3 [dMou08], CVC4 [Barr11],
and MathSat [Bozz05].
Types & Errors. If the set of constraints is satisfiable, then LiquidHaskell outputs Safe, meaning
the program is verified. If instead, the set of constraints is not satisfiable, then LiquidHaskell outputs
Unsafe, and uses the invalid constraints to report refinement type errors at the source positions that
created the invalid constraints, using the location information to map the invalid constraints to source
positions. In either case, LiquidHaskell produces as output a source map containing the inferred types
for each program expression, which, in our experience, is crucial for debugging the code and the

1 https://hackage.haskell.org/package/liquidhaskell
2 http://goto.ucsd.edu/liquid/haskell/demo/

31

specifications.
LiquidHaskell is best thought of as an optional type checker for Haskell. By optional we mean that

the refinements have no influence on the dynamic semantics, which makes it easy to apply Liquid-
Haskell to existing libraries. To emphasize the optional nature of refinements and preserve compati-
bility with existing compilers, all specifications appear within comments of the form {-@ ... @-},
which we omit below for brevity.

6.1 Specifications

A refinement type is a Haskell type where each component of the type is decorated with a pred-
icate from a (decidable) refinement logic. We use the quantifier-free logic of equality, uninterpreted
functions and linear arithmetic (QF-EUFLIA) [Nels81]. For example,

{v:Int | 0 <= v && v < 100}

describes Int values between 0 and 100.
Type Aliases. For brevity and readability, it is often convenient to define abbreviations for particular
refinement predicates and types. For example, we can define an alias for the above predicate

predicate Btwn Lo N Hi = Lo <= N && N < Hi

and use it to define a type alias

type Rng Lo Hi = {v:Int | (Btwn Lo v Hi)}

We can now describe the above integers as (Rng 0 100).
Contracts. To describe the desired properties of a function, we need simply refine the input and
output types with predicates that respectively capture suitable pre- and post-conditions. For example,

range :: lo:Int −> hi:{Int | lo <= hi}

−> [(Rng lo hi)]

states that range is a function that takes two Ints respectively named lo and hi and returns a list
of Ints between lo and hi. There are three things worth noting. First, we have binders to name the
function’s inputs (e.g.,, lo and hi) and can use the binders inside the function’s output. Second, the
refinement in the input type describes the pre-condition that the second parameter hi cannot be smaller
than the first lo. Third, the refinement in the output type describes the post-condition that all returned
elements are between the bounds of lo and hi.

6.2 Verification

Next, consider the following implementation for range:

range lo hi

| lo <= hi = lo : range (lo + 1) hi

| otherwise = []

When we run LiquidHaskell on the above code, it reports an error at the definition of range. This is
unpleasant! One way to debug the error is to determine what type has been inferred for range, e.g.,,
by hovering the mouse over the identifier in the web interface. In this case, we see that the output type
is essentially:

[{v:Int | lo <= v && v <= hi}]

which indicates the problem. There is an off-by-one error due to the problematic guard. If we replace
the second <= with a < and re-run the checker, the function is verified.

32

Holes. It is often cumbersome to specify the Haskell types, as those can be gleaned from the regular
type signatures or via GHC’s inference. Thus, LiquidHaskell allows the user to leave holes in the
specifications. Suppose rangeFind has type

(Int −> Bool) −> Int −> Int −> Maybe Int

where the second and third parameters define a range. We can give rangeFind a refined specification:

_ −> lo:_ −> hi:{Int | lo <= hi}

−> Maybe (Rng lo hi)

where the _ is simply the unrefined Haskell type for the corresponding position in the type.
Inference. Next, consider the implementation

rangeFind f lo hi = find f $ range lo hi

where find from Data.List has the (unrefined) type

find :: (a −> Bool) −> [a] −> Maybe a

LiquidHaskell uses the abstract interpretation framework of Liquid Typing [Rond08] to infer that
the type parameter a of find can be instantiated with (Rng lo hi) thereby enabling the automatic
verification of rangeFind.

Inference is crucial for automatically synthesizing types for polymorphic instantiation sites – note
there is another instantiation required at the use of the apply operator $ – and to relieve the program-
mer of the tedium of specifying signatures for all functions. Of course, for functions exported by the
module, we must write signatures to specify preconditions – otherwise, the system defaults to using
the trivial (unrefined) Haskell type as the signature i.e.,, checks the implementation assuming arbitrary
inputs.

6.3 Measures

So far, the specifications have been limited to comparisons and arithmetic operations on primitive
values. We use measure functions, or just measures, to specify inductive properties of algebraic data
types. For example, we define a measure len to write properties about the number of elements in a
list.

measure len :: [a] −> Int

len [] = 0

len (x:xs) = 1 + (len xs)

Measure definitions are not arbitrary Haskell code but a very restricted subset [Vazo14]. Eachmeasure
has a single equation per constructor that defines the value of the measure for that constructor. The
right-hand side of the equation is a term in the restricted refinement logic. Measures are interpreted
by generating refinement types for the corresponding data constructors. For example, from the above,
LiquidHaskell derives the following types for the list data constructors:

[] :: {v:[a]| len v = 0}

(:) :: _ −> xs:_ −> {v:[a]| len v = 1 + len xs}

Here, len is an uninterpreted function in the refinement logic. We can define multiple measures for a
type; LiquidHaskell simply conjoins the individual refinements arising from each measure to obtain
a single refined signature for each data constructor.
Using Measures. We use measures to write specifications about algebraic types. For example, we
can specify and verify that:

append :: xs:[a] −> ys:[a]

−> {v:[a]| len v = len xs + len ys}

33

map :: (a −> b) −> xs:[a]

−> {v:[b]| len v = len xs}

filter :: (a −> Bool) −> xs:[a]

−> {v:[a]| len v <= len xs}

Propositions. Measures can be used to encode sophisticated invariants about algebraic data types.
To this end, the user can write a measure whose output has a special type Prop denoting propositions
in the refinement logic. For instance, we can describe a list that contains a 0 as:
measure hasZero :: [Int] −> Prop

hasZero [] = false

hasZero (x:xs) = x == 0 || (hasZero xs)

We can then define lists containing a 0 as:
type HasZero = {v : [Int] | (hasZero v)}

Using the above, LiquidHaskell will accept
xs0 :: HasZero

xs0 = [2,1,0,−1,−2]
but will reject
xs’ :: HasZero

xs’ = [3,2,1]

6.4 Refined Data Types

Often, we require that every instance of a type satisfies some invariants. For example, consider a
CSV data type, that represents tables:
data CSV a = CSV { cols :: [String]

, rows :: [[a]] }

With LiquidHaskell we can enforce the invariant that every row in a CSV table should have the same
number of columns as there are in the header
data CSV a = CSV { cols :: [String]

, rows :: [ListL a cols] }

using the alias
type ListL a X = {v:[a]| len v = len X}

A refined data definition is global in that LiquidHaskell will reject any CSV-typed expression that does
not respect the refined definition. For example, both of the below
goodCSV = CSV [”Month”, ”Days”]

[[”Jan” , ”31”]

, [”Feb , ”28”]

, [”Mar” , ”31”]]

badCSV = CSV [”Month”, ”Days”]

[[”Jan” , ”31”]

, [”Feb , ”28”]

, [”Mar”]]

are well-typed Haskell, but the latter is rejected by LiquidHaskell. Like measures, the global invariants
are enforced by refining the constructors’ types.

34

6.5 Refined Type Classes

Next, let us see how LiquidHaskell supports the verification of programs that use ad-hoc poly-
morphism via type classes. While the implementation of each typeclass instance is different, there is
often a common interface that we expect all instances to satisfy.

Class Measures. As an example, consider the class definition

class Indexable f where

size :: f a −> Int

at :: f a −> Int −> a

For safe access, we might require that at’s second parameter is bounded by the size of the container.
To this end, we define a type-indexed measure, using the class measure keyword

class measure sz :: a −> Nat

Now,we can specify the safe-access precondition independent of the particular instances of Indexable
:

class Indexable f where

size :: xs:_ −> {v:Nat | v = sz xs}

at :: xs:_ −> {v:Nat | v < sz xs} −> a

Instance Measures. For each concrete type that instantiates a class, we require a corresponding
definition for the measure. For example, to define lists as an instance of Indexable, we require the
definition of the sz instance for lists:

instance measure sz :: [a] −> Nat

sz [] = 0

sz (x:xs) = 1 + (sz xs)

Class measures work just like regular measures in that the above definition is used to refine the types
of the list data constructors. After defining the measure, we can define the type instance as:

instance Indexable [] where

size [] = 0

size (x:xs) = 1 + size xs

(x:xs) ‘at‘ 0 = x

(x:xs) ‘at‘ i = index xs (i−1)

LiquidHaskell uses the definition of sz for lists to check that size and at satisfy the refined class
specifications.

Client Verification. At the clients of a type-class we use the refined types of class methods. Consider
a client of Indexables:

sum :: (Indexable f) => f Int −> Int

sum xs = go 0

where

go i | i < size xs = xs ‘at‘ i + go (i+1)

| otherwise = 0

LiquidHaskell proves that each call to at is safe, by using the refined class specifications of Indexable
. Specifically, each call to at is guarded by a check i < size xs and i is increasing from 0, so
LiquidHaskell proves that xs ‘at‘ i will always be safe.

35

6.6 Abstracting Refinements

So far, all the specifications have used concrete refinements. Often it is useful to be able to abstract
the refinements that appear in a specification. For example, consider a monomorphic variant of max

max :: Int −> Int −> Int

max x y = if x > y then x else y

We would like to give max a specification that lets us verify:

xPos :: {v: _ | v > 0}

xPos = max 10 13

xNeg :: {v: _ | v < 0}

xNeg = max (−5) (−8)

xEven :: {v: _ | v mod 2 == 0}

xEven = max 4 (−6)

To this end, LiquidHaskell allows the user to abstract refinements over types [Vazo13], for example
by typing max as:

max :: forall <p :: Int −> Prop>.

Int<p> −> Int<p> −> Int<p>

The above signature states that for any refinement p, if the two inputs of max satisfy p then so does
the output. LiquidHaskell uses Liquid Typing to automatically instantiate p with suitable concrete
refinements, thereby checking xPos, xNeg, and xEven.
Dependent Composition. Abstract refinements turn out to be a surprisingly expressive and useful
specification mechanism. For example, consider the function composition operator:

(.) :: (b −> c) −> (a −> b) −> a −> c

(.) f g x = f (g x)

Previously, it was not possible to check, e.g., that:

plus3 :: x:_ −> {v:_ | v = x + 3}

plus3 = (+ 1) . (+ 2)

as the above required tracking the dependency between a, b and c, which is crucial for analyzing
idiomatic Haskell. With abstract refinements, we can give the (.) operator the type:

(.) :: forall < p :: b −> c −> Prop

, q :: a −> b −> Prop>.

f:(x:b −> c<p x>)

−> g:(x:a −> b<q x>)

−> y:a

−> exists[z:b<q y>].c<p z>

which gets automatically instantiated at usage sites, allowing LiquidHaskell to precisely track invari-
ants through the use of the ubiquitous higher-order operator.
Dependent Pairs. Similarly, we can abstract refinements over the definition of datatypes. For exam-
ple, we can express dependent pairs in LiquidHaskell by refining the definition of tuples as:

data Pair a b <p :: a −> b −> Prop>

= Pair { fst :: a, snd :: b<p fst>}

That is, the refinement p relates the snd element with the fst. Now we can define increasing and
decreasing pairs

36

type IncP = Pair <{\x y −> x < y}> Int Int

type DecP = Pair <{\x y −> x > y}> Int Int

and then verify that:

up :: IncP

up = Pair 2 5

dn :: DecP

dn = Pair 5 2

Now that we have a bird’s eye view of the various specification mechanisms supported by Liquid-
Haskell, let us see how we can profitably apply them to statically check a variety of correctness prop-
erties in real-world codes.

37

Chapter 7

Totality

Well typed Haskell code can go very wrong:

*** Exception: Prelude.head: empty list

As our first application, let us see how to use LiquidHaskell to statically guarantee the absence of such
exceptions, i.e.,, to prove various functions total.

7.1 Specifying Totality

First, let us see how to specify the notion of totality inside LiquidHaskell. Consider the source of
the above exception:

head :: [a] −> a

head (x:_) = x

Most of the work towards totality checking is done by the translation to GHC’s Core, in which every
function is total, but may explicitly call an error function that takes as input a string that describes the
source of the pattern-match failure and throws an exception. For example head is translated into

head d = case d of

x:xs −> x

[] −> patError ”head”

Since every core function is total, but may explicitly call error functions, to prove that the source
function is total, it suffices to prove that patError will never be called. We can specify this require-
ment by giving the error functions a false pre-condition:

patError :: {v:String | false } −> a

The pre-condition states that the input type is uninhabited and so an expression containing a call to
patError will only type check if the call is dead code.

7.2 Verifying Totality

The (core) definition of head does not typecheck as is; but requires a pre-condition that states that
the function is only called with non-empty lists. Formally, we do so by defining the alias

predicate NonEmp X = 0 < len X

and then stipulating that

head :: {v : [a] | NonEmp v} −> a

To verify the (core) definition of head, LiquidHaskell uses the above signature to check the body in
an environment

d :: {0 < len d}

39

When d is matched with [], the environment is strengthened with the corresponding refinement from
the definition of len, i.e.,,

d :: {0 < (len d) && (len d) = 0}

Since the formula above is a contradiction, LiquidHaskell concludes that the call to patError is dead
code, and thereby verifies the totality of head. Of course, now we have pushed the burden of proof
onto clients of head – at each such site, LiquidHaskell will check that the argument passed in is indeed
a NonEmp list, and if it successfully does so, then we, at any uses of head, can rest assured that head
will never throw an exception.
Refinements and Totality. While the head example is quite simple, in general, refinements make it
very easy to prove totality in complex situations, where we must track dependencies between inputs
and outputs. For example, consider the risers function from [Mitc08]:

risers [] = []

risers [x] = [[x]]

risers (x:y:zs)

| x <= y = (x:s) : ss

| otherwise = [x] : (s:ss)

where

s:ss = risers (y:etc)

The pattern match on the last line is partial; its core translation is

let (s, ss) = case risers (y:etc) of

s:ss −> (s, ss)

[] −> patError ”...”

What if risers returns an empty list? Indeed, risers does, on occasion, return an empty list per its
first equation. However, on close inspection, it turns out that if the input is non-empty, then the output
is also non-empty. Happily, we can specify this as:

risers :: l:_ −> {v:_ | NonEmp l => NonEmp v}

LiquidHaskell verifies that risersmeets the above specification, and hence that the patError is
dead code as at that site, the scrutinee is obtained from calling risers with a NonEmp list.
Non-Emptiness viaMeasures. Instead of describing non-emptiness indirectly using len, a user could
a special measure:

measure nonEmp :: [a] −> Prop

nonEmp (x:xs) = true

nonEmp [] = false

predicate NonEmp X = nonEmp X

After which, verification would proceed analagous to the above.
Total Totality Checking. patError is one of many possible errors thrown by non-total functions.
Control.Exception.Base has several others (recSelError, irrefutPatError, etc.) which serve
the purpose of making core translations total. Rather than hunt down and specify false preconditions
one by one, the user may automatically turn on totality checking by invoking LiquidHaskell with the
–totality command line option, at which point the tool systematically checks that all the above
functions are indeed dead code, and hence, that all definitions are total.

7.3 Case Studies

We verified totality of two libraries: HsColour and Data.Map, earlier versions of which had pre-
viously been proven total by catch [Mitc08].

40

Data.Map. is a widely used library for (immutable) key-value maps, implemented as balanced binary
search trees. Totality verification of Data.Map was quite straightforward. We had previously verified
termination and the crucial binary search invariant [Vazo13]. To verify totality it sufficed to simply re-
run verification with the –totality argument. All the important specifications were already captured
by the types, and no additional changes were needed to prove totality.

This case study illustrates an advantage of LiquidHaskell over specialized provers (e.g.,, catch
[Mitc08]), namely it can be used to prove totality, termination and functional correctness at the same
time, facilitating a nice reuse of specifications for multiple tasks.
HsColour. is a library for generating syntax-highlighted LATEX and HTML from Haskell source
files. Checking HsColourwas not so easy, as in some cases assumptions are used about the structure of
the input data: For example, ACSS.splitSrcAndAnnos handles an input list of Strings and assumes
that whenever a specific String (say breakS) appears then at least two Strings (call them mname and
annots) follow it in the list. Thus, for a list ls that starts with breakS the irrefutable pattern (_:mname
:annots)= ls should be total. Currently it is somewhat cumbersome to specify such properties, and
these are interesting avenues for future work. Thus to prove totality, we added a dynamic check that
validates that the length of the input ls exceeds 2.

In other cases assertions were imposed via monadic checks, for example HsColour.hs reads the
input arguments and checks their well-formedness using

when (length f > 1) $ errorOut ”...”

Currently LiquidHaskell does not support monadic reasoning that allows assuming that (length f

<= 1) holds when executing the action following the when check. Finally, code modifications were
required to capture properties that currently we do not know how to express with LiquidHaskell. For
example, trimContext checks if there is an element that satisfies p in the list xs; if so it defines ys
= dropWhile (not . p)xs and computes tail ys. By the check we know that ys has at least one
element, the one that satisfies p, but this is a property that we could not express in LiquidHaskell.

On the whole, while proving totality can be cumbersome (as in HsColour) it is a nice side benefit
of refinement type checking, and can sometimes be a fully automatic corollary of establishing more
interesting safety properties (as in Data.Map).

41

Chapter 8

Termination

To soundly account for Haskell’s non-strict evaluation, a refinement type checker must distinguish
between terms that may potentially diverge and those that will not [Vazo14]. Thus, by default, Liquid-
Haskell proves termination of each recursive function. Fortunately, refinementsmake this onerous task
quite straightforward. We need simply associate a well-founded termination metric on the function’s
parameters, and then use refinement typing to check that the metric strictly decreases at each recursive
call. In practice, due to a careful choice of defaults, this amounts to about a line of termination-related
hints per hundred lines of source. Details about the termination checker may be found in [Vazo14],
we include a brief description here to make the paper self-contained.
Simple Metrics. As a starting example, consider the fac function

fac :: n:Nat −> Nat / [n]

fac 0 = 1

fac n = n * fac (n−1)

The termination metric is simply the parameter n; as n is non-negative and decreases at the recursive
call, LiquidHaskell verifies that fac will terminate. We specify the termination metric in the type
signature with the /[n].

Termination checking is performed at the same time as regular type checking, as it can be reduced
to refinement type checking with a special terminating fixpoint combinator [Vazo14]. Thus, if Liq-
uidHaskell fails to prove that a given termination metric is well-formed and decreasing, it will report
a Termination Check Error. At this point, the user can either debug the specification, or mark the
function as non-terminating.
Termination Expressions. Sometimes, no single parameter decreases across recursive calls, but there
is some expression that forms the decreasing metric. For example recall range lo hi (from § 6.2)
which returns the list of Ints from lo to hi:

range lo hi

| lo < hi = lo : range (lo+1) hi

| otherwise = []

Here, neither parameter is decreasing (indeed, the first one is increasing) but hi−lo decreases across
each call. To account for such cases, we can specify as the termination metric a (refinement logic)
expression over the function parameters. Thus, to prove termination, we could type range as:

lo:Int −> hi:Int −> [(Btwn lo hi)] / [hi−lo]

Lexicographic Termination. The Ackermann function

ack m n

| m == 0 = n + 1

| n == 0 = ack (m−1) 1

| otherwise = ack (m−1) (ack m (n−1))

is curious as there exists no simple, natural-valued, termination metric that decreases at each recursive
call. However ack terminates because at each call either m decreases or m remains the same and n

43

decreases. In other words, the pair (m,n) strictly decreases according to a lexicographic ordering.
Thus LiquidHaskell supports termination metrics that are a sequence of termination expressions. For
example, we can type ack as:

ack :: m:Nat −> n:Nat −> Nat / [m, n]

At each recursive call LiquidHaskell uses a lexicographic ordering to check that the sequence of ter-
mination expressions is decreasing (and well-founded in each component).
Mutual Recursion. The lexicographic mechanism lets us check termination of mutually recursive
functions, e.g., isEven and isOdd

isEven 0 = True

isEven n = isOdd $ n−1

isOdd n = not $ isEven n

Each call terminates as either isEven calls isOddwith a decreasing parameter, or isOdd calls isEven
with the same parameter, expecting the latter to do the decreasing. For termination, we type:

isEven :: n:Nat −> Bool / [n, 0]

isOdd :: n:Nat −> Bool / [n, 1]

To check termination, LiquidHaskell verifies that at each recursive call the metric of the caller is less
than the metric of the callee. When isEven calls isOdd, it proves that the caller’s metric, namely [n
,0] is greater than the callee’s [n−1,1]. When isOdd calls isEven, it proves that the caller’s metric
[n,1] is greater than the callee’s [n,0], thereby proving the mutual recursion always terminates.
Recursion over Data Types. The above strategies generalize easily to functions that recurse over
(finite) data structures like arrays, lists, and trees. In these cases, we simply use measures to project
the structure onto Nat, thereby reducing the verification to the previously seen cases. For example,
we can prove that map

map f (x:xs) = f x : map f xs

map f [] = []

terminates, by typing map as

(a −> b) −> xs:[a] −> [b] / [len xs]

i.e.,, by using the measure len xs, from § 6.3, as the metric.
GeneralizedMetrics Over Datatypes. In many functions there is no single argument whose measure
provably decreases. Consider

merge (x:xs) (y:ys)

| x < y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

from the homonymous sorting routine. Here, neither parameter decreases, but the sum of their sizes
does. To prove termination, we can type merge as:

xs:[a] −> ys:[a] −> [a] / [len xs + len ys]

Putting it all Together. The above techniques can be combined to prove termination of the mutually
recursive quick-sort (from [Xi01])

qsort (x:xs) = qpart x xs [] []

qsort [] = []

qpart x (y:ys) l r

| x > y = qpart x ys (y:l) r

44

| otherwise = qpart x ys l (y:r)

qpart x [] l r = app x (qsort l) (qsort r)

app k [] z = k : z

app k (x:xs) z = x : app k xs z

qsort (x:xs) calls qpart x xs to partition xs into two lists l and r that have elements less and
greater or equal than the pivot x, respectively.When qpart finishes partitioning it mutually recursively
calls qsort to sort the two list and appends the results with app. LiquidHaskell proves sortedness as
well [Vazo13] but let us focus here on termination. To this end, we type the functions as:

qsort :: xs:_ −> _

/ [len xs, 0]

qpart :: _ −> ys:_ −> l:_ −> r:_ −> _

/ [len ys + len l + len r, 1 + len ys]

As before, LiquidHaskell checks that at each recursive call the caller’s metric is less than the callee’s.
When qsort calls qpart the length of the unsorted list len (x:xs) exceeds len xs + len [] +

len []. When qpart recursively calls itself the first component of the metric is the same, but the
length of the unpartitioned list decreases, i.e., 1 + len y:ys exceeds 1 + len ys. Finally, when
qpart calls qsort we have len ys + len l + len r exceeds both len l and len r, thereby en-
suring termination.
Automation: Default Size Measures. The qsort example illustrates that while LiquidHaskell is
very expressive, devising appropriate termination metrics can be tricky. Fortunately, such patterns are
very uncommon, and the vast majority of cases in real world programs are just structural recursion
on a datatype. LiquidHaskell automates termination proofs for this common case, by allowing users
to specify a default size measure for each data type, e.g., len for [a]. Now, if no explicit termination
metric is given, by default LiquidHaskell assumes that the first argument whose type has an associated
size measure decreases. Thus, in the above, we need not specify metrics for fac or map as the size
measure is automatically used to prove termination. This heuristic suffices to automatically prove
67% of recursive functions terminating.
Disabling Termination Checking. In Haskell’s lazy setting not all functions are terminating. Liq-
uidHaskell provides two mechanisms the disable termination proving. A user can disable checking
a single function by marking that function as lazy. For example, specifying lazy repeat tells the
tool to not prove repeat terminates. Optionally, a user can disable termination checking for a whole
module by using the command line argument –no-termination for the entire file.

45

Chapter 9

Functional Correctness Invariants

So far, we have considered a variety of general, application independent correctness criteria. Next,
let us see how we can use LiquidHaskell to specify and statically verify critical application specific
correctness properties, using two illustrative case studies: red-black trees, and the stack-set data struc-
ture introduced in the xmonad system.

9.1 Red-Black Trees

Red-Black trees have several non-trivial invariants that are ideal for illustrating the effectiveness of
refinement types, and contrasting with existing approaches based on GADTs [Kahr01]. The structure
can be defined via the following Haskell type:

data Col = R | B

data Tree a = Leaf

| Node Col a (Tree a) (Tree a)

However, a Tree is a valid Red-Black tree only if it satisfies three crucial invariants:

• Order: The keys must be binary-search ordered, i.e., the key at each node must lie between the
keys of the left and right subtrees of the node,

• Color: The children of every red Node must be colored black, where each Leaf can be viewed
as black,

• Height: The number of black nodes along any path from each Node to its Leafs must be the
same.

Red-Black trees are especially tricky as various operations create trees that can temporarily violate
the invariants. Thus, while the above invariants can be specified with singletons and GADTs, encoding
all the properties (and the temporary violations) results in a proliferation of data constructors that can
somewhat obfuscate correctness. In contrast, with refinements, we can specify and verify the invariants
in isolation (if we wish) and can trivially compose them simply by conjoining the refinements.
Color Invariant. To specify the color invariant, we define a black-rooted tree as:

measure isB :: Tree a −> Prop

color (Node c x l r) = c == B

color (Leaf) = true

and then we can describe the color invariant simply as:

measure isRB :: Tree a −> Prop

isRB (Leaf) = true

isRB (Node c x l r) = isRB l && isRB r &&

c = R => (isB l && isB r)

47

The insertion and deletion procedures create intermediate almost red-black trees where the color in-
variant may be violated at the root. Rather than create new data constructors we can define almost
red-black trees with a measure that just drops the invariant at the root:

measure almostRB :: Tree a −> Prop

almostRB (Leaf) = true

almostRB (Node c x l r) = isRB l && isRB r

Height Invariant. To specify the height invariant, we define a black-height measure:

measure bh :: Tree a −> Int

bh (Leaf) = 0

bh (Node c x l r) = bh l

+ if c = R then 0 else 1

and we can now specify black-height balance as:

measure isBal :: Tree a −> Prop

isBal (Leaf) = true

isBal (Node c x l r) = bh l = bh r

&& isBH l && isBH r

Note that bh only considers the left sub-tree, but this is legitimate, because isBalwill ensure the right
subtree has the same bh.
Order Invariant. Finally, to encode the binary-search ordering property, we parameterize the datatype
with abstract refinements:

data Tree a <l::a−>a−>Prop, r::a−>a−>Prop>
= Leaf

| Node { c :: Col

, key :: a

, lt :: Tree<l,r> a<l key>

, rt :: Tree<l,r> a<r key> }

Intuitively, l and r are relations between the root key and each element in its left and right subtree
respectively. Now the alias:

type OTree a

= Tree <{\k v −> v<k}, {\k v −> v>k}> a

describes binary-search ordered trees!
Composing Invariants. Finally, we can compose the invariants, and define a Red-Black tree with
the alias:

type RBT a = {v:OTree a | isRB v && isBal v}

An almost Red-Black tree is the above with isRB replaced with almostRB, i.e., does not require any
new types or constructors. If desired, we can ignore a particular invariant simply by replacing the
corresponding refinement above with true. Given the above – and suitable signatures LiquidHaskell
verifies the various insertion, deletion and rebalancing procedures for a Red-Black Tree library.

9.2 Stack Sets in XMonad

xmonad is a dynamically tiling X11 window manager that is written and configured in Haskell.
The set of windows managed by XMonad is organized into a hierarchy of types. At the lowest level
we have a set of windows a represented as a Stack a

48

data Stack a = Stack { focus :: a

, up :: [a]

, down :: [a] }

The above is a zipper [Huet97] where focus is the “current” window and up and down the windows
“before” and “after” it. Each Stack is wrapped inside a Workspace that has additional information
about layout and naming:

data Workspace i l a = Workspace

{ tag :: i

, layout :: l

, stack :: Maybe (Stack a) }

which is in turn, wrapped inside a Screen:

data Screen i l a sid sd = Screen

{ workspace :: Workspace i l a

, screen :: sid

, screenDetail :: sd }

The set of all screens is represented by the top-level zipper:

data StackSet i l a sid sd = StackSet

{ cur :: Screen i l a sid sd

, vis :: [Screen i l a sid sd]

, hid :: [Workspace i l a]

, flt :: M.Map a RationalRect }

Key Invariant: Uniqueness of Windows. The key invariant for the StackSet type is that each
window a should appear at most once in a StackSet i l a sid sd. That is, a window should not
be duplicated across stacks or workspaces. Informally, we specify this invariant by defining a measure
for the set of elements in a list, Stack, Workspace and Screen, and then we use that measure to assert
that the relevant sets are disjoint.
Specification: Unique Lists. To specify that the set of elements in a list is unique, i.e., there are no
duplicates in the list we first define a measure denoting the set using Z3’s [dMou08] built-in theory
of sets:

measure elts :: [a] −> Set a

elts ([]) = emp

elts (x:xs) = cup (sng x) (elts xs)

Now, we can use the above to define uniqueness:

measure isUniq :: [a] −> Prop

isUniq ([]) = true

isUniq (x:xs) = notIn x xs && isUniq xs

where notIn is an abbreviation:

predicate notIn X S = not (mem X (elts S))

Specification: Unique Stacks. We can use isUniq to define unique, i.e.,, duplicate free, Stacks as:

data Stack a = Stack

{ focus :: a

, up :: {v:[a] | Uniq1 v focus}

, down :: {v:[a] | Uniq2 v focus up} }

using the aliases

49

predicate Uniq1 V X

= isUniq V && notIn X V

predicate Uniq2 V X Y

= Uniq1 V X && disjoint Y V

predicate disjoint X Y

= cap (elts X) (elts Y) = emp

i.e., the field up is a unique list of elements different from focus, and the field down is additionally
disjoint from up.
Specification: Unique StackSets. It is straightforward to lift the elts measure to the Stack and
the wrapper types Workspace and Screen, and then correspondingly lift isUniq to [Screen] and
[Workspace]. Having done so, we can use those measures to refine the type of StackSet to stipulate
that there are no duplicates:

type UniqStackSet i l a sid sd

= {v: StackSet i l a sid sd | NoDups v}

using the predicate aliases

predicate NoDups V

= disjoint3 (hid V) (cur V) (vis V)

&& isUniq (vis V)

&& isUniq (hid V)

predicate disjoint3 X Y Z

= disjoint X Y

&& disjoint Y Z

&& disjoint X Z

LiquidHaskell automatically turns the record selectors of refined data types to measures that return
the values of appropriate fields, hence hid x (resp. cur x, vis x) are the values of the hid, cur and
vis fields of a StackSet named x.
Verification. LiquidHaskell uses the above refined type to verify the key invariant, namely, that no
window is duplicated. Three key actions of the, eventually successful, verification process can be
summarized as follows:

• Strengthening library functions. xmonad repeatedly concatenates the lists of a Stack. To prove
that for some s:Stack a, (up s ++ down s) is a unique list, the type of (++) needs to capture
that concatenation of two unique and disjoint lists is a unique list. For verification, we assumed
that Prelude’s (++) satisfies this property. But, not all arguments of (++) are unique disjoint lists:
”StackSet”++”error” is a trivial example that does not satisfy the assumed preconditions of
(++) thus creating a type error. Currently, LiquidHaskell does not support intersection types,
thus we used an unrefined (++.) variant of (++) for such cases.

• Restrict the functions’ domain. modify is a maybe-like function that, given a default value x, a
function f, and a StackSet s, applies f on the Maybe (Stack a) values inside s.

modify :: x:{v:Maybe (Stack a) | isNothing v}

−> (y:Stack a

−> Maybe {v:Stack a | SubElts v y})

−> UniqStackSet i l a s sd

−> UniqStackSet i l a s sd

Since inside the StackSet s each y:Stack a could be replaced with either the default value x or
with f y, we need to ensure that both these alternatives will not insert duplicates. This imposes
the curious precondition that the default value should be Nothing.

50

• Code inlining Given a tag i and a StackSet s, view i s will set the current Screen to the screen
with tag i, if such a screen exists in s. Below is the original definition for view in case when a
screen with tag i exists in visible screens

view :: (Eq s, Eq i) => i

−> StackSet i l a s sd

−> StackSet i l a s sd

view i s

| Just x <− find ((i==).tag.workspace)

(visible s)

= s { current = x

, visible = current s

: deleteBy (equating screen) x

(visible s) }

Verification of this code is difficult as we cannot suitably type find. Instead we inline the call
to find and the field update into a single recursive function raiseIfVisible i s that in-place
replaces x with the current screen.

Finally, xmonad comes with an extensive suite of QuickCheck properties, that were formally ver-
ified in Coq [Swie12]. In future work, it would be interesting to do a similar verification with Liquid-
Haskell, to compare the refinement types to proof-assistants.

51

Chapter 10

Conclusion

In this thesis we presented various refinement type systems. We started with type systems where
the refinement language expresses arbitrary program expressions. Even though these systems are ex-
pressive, the assertions formed can not be statically verified. To reason in such systems, we presented
two alternatives: interactive theorem proving, where the user should provide explicit proofs, and con-
tracts calculi, where the assertions are verified at runtime. Next we presented refinement type system
which restrict the refinement language, so as to render type checking decidable. As an example, we
presented Liquid Types, in which the refinement language is restricted according to a finite set of qual-
ifiers and allows not only decidable verification, but also automatic type inference. Then, we presented
Abstract Refinement Types, which can be used in a refinement type system to enhance expressive-
ness without increasing complexity. Then, we present LiquidHaskell that combines liquidTypes with
abstraction over refinements to enhance expressiveness of LiquidTypes. LiquidHaskell is a quite ex-
pressive verification tool for Haskell programs that can be used to check termination, totality and
general functional correctness. Finally, we evaluate LiquidHaskell in real world Haskell libraries.

53

Bibliography

[Augu98] L. Augustsson, “Cayenne - a Language with Dependent Types.”, in ICFP, 1998.

[Barr07] Clark Barrett and Cesare Tinelli, “CVC3”, in Werner Damm and Holger Hermanns,
editors, Proceedings of the 19th International Conference on Computer Aided Verifica-
tion (CAV ’07), vol. 4590 of Lecture Notes in Computer Science, pp. 298–302, Springer-
Verlag, July 2007. Berlin, Germany.

[Barr10] C. Barrett, A. Stump and C. Tinelli, The SMT-LIB Standard: Version 2.0, 2010.

[Barr11] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds and
C. Tinelli, “CVC4”, in CAV, 2011.

[Belo11] J. F. Belo, M. Greenberg, A. Igarashi and B. C. Pierce, “Polymorphic Contracts”, in
ESOP, pp. 18–37, 2011.

[Bert04] Yves Bertot and Pierre Castéran, Interactive TheoremProving and ProgramDevelopment.
Coq’Art: TheCalculus of Inductive Constructions, Texts in Theoretical Computer Science,
Springer Verlag, 2004.

[Bier10] Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu and David E. Langworthy, “Se-
mantic subtyping with an SMT solver”, in ICFP, 2010.

[Blum06] Matthias Blume and David A. McAllester, “Sound and complete models of contracts”, J.
Funct. Program., vol. 16, no. 4-5, pp. 375–414, 2006.

[Bozz05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum, S. Schulz and R. Sebas-
tiani, “MathSAT: Tight Integration of SAT and Mathematical Decision Procedures”, J.
Autom. Reason., 2005.

[Chit07] Olaf Chitil and Frank Huch, “Monadic, Prompt Lazy Assertions in Haskell”, in APLAS,
pp. 38–53, 2007.

[Chli13] Adam Chlipala, Certified Programming with Dependent Types, MIT Press, 2013.

[Cons86] R.L. Constable, Implementing Mathematics with the Nuprl Proof Development System,
Prentice-Hall, 1986.

[dMou08] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver”, TACAS, 2008.

[Dute] B. Dutertre and L. De Moura, “Yices SMT Solver”. http://yices.csl.sri.com/.

[Find02] R. B. Findler and M. Felleisen, “Contracts for higher-order functions.”, in ICFP, pp.
48–59, 2002.

[Flan06] C. Flanagan, “Hybrid Type Checking”, in POPL, ACM, 2006.

[Free91] T. Freeman and F. Pfenning, “Refinement Types for ML”, in PLDI, 1991.

[Gree12] M. Greenberg, B. C. Pierce and S. Weirich, “Contracts Made Manifest”, JFP, vol. 22,
no. 3, pp. 225–274, May 2012.

55

[Gron06] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund and Cormac Flana-
gan, “Sage: Hybrid checking for flexible specifications”, in Scheme and Functional Pro-
gramming Workshop, pp. 93–104, 2006.

[Guha07] Arjun Guha, Jacob Matthews, Robert Bruce Findler and Shriram Krishnamurthi,
“Relationally-parametric polymorphic contracts”, in DLS, pp. 29–40, 2007.

[Hinz06] Ralf Hinze, Johan Jeuring and Andres Löh, “Typed Contracts for Functional Program-
ming”, in FLOPS, pp. 208–225, 2006.

[Huet97] G. P. Huet, “The Zipper”, J. Funct. Program., 1997.

[Kahr01] S. Kahrs, “Red-black trees with types”, J. Funct. Program., 2001.

[Kawa09] M. Kawaguchi, P. Rondon and R. Jhala, “Type-based Data Structure Verification”, in
PLDI, pp. 304–315, 2009.

[Kawa12] Ming Kawaguchi, Patrick Maxim Rondon, Alexander Bakst and Ranjit Jhala, “Determin-
istic parallelism via liquid effects”, in PLDI, pp. 45–54, 2012.

[Lams00] Axel Van Lamsweerde, “Formal Specification: a Roadmap”, 2000.

[Mand03] Yitzhak Mandelbaum, David Walker and Robert Harper, “An effective theory of type
refinements.”, in ICFP, pp. 213–225, 2003.

[Meye91] B. Meyer, Eiffel: The Language, Prentice-Hall, 1991.

[Meye92] B. Meyer, “Applying ”Design by Contract”.”, IEEE Computer, vol. 25, no. 10, pp. 40–51,
1992.

[Mitc08] N. Mitchell and C. Runciman, “Not All Patterns, But Enough - an automatic verifier for
partial but sufficient pattern matching”, in Haskell, 2008.

[Nels81] G. Nelson, “Techniques for program verification”, Technical Report CSL81-10, Xerox
Palo Alto Research Center, 1981.

[Nipk02] T. Nipkow, L.C. Paulson and M. Wenzel, Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, vol. 2283 of Lecture Notes in Computer Science, Springer, 2002.

[Nore07] U. Norell, Towards a practical programming language based on dependent type theory,
Ph.D. thesis, Chalmers, SE-412 96 Göteborg, Sweden, September 2007.

[Ou04] X. Ou, G. Tan, Y.Mandelbaum andD.Walker, “Dynamic Typingwith Dependent Types”,
in IFIP TCS, pp. 437–450, 2004.

[Pugh92] W. Pugh, “A practical algorithm for exact array dependence analysis”, Communications
of the ACM, vol. 35, no. 8, pp. 102–114, August 1992.

[Rond08] P. Rondon, M. Kawaguchi and R. Jhala, “Liquid Types”, in PLDI, 2008.

[Rond10] Patrick Maxim Rondon, Ming Kawaguchi and Ranjit Jhala, “Low-level liquid types”, in
POPL, pp. 131–144, 2010.

[Sulz07] M. Sulzmann, M. M. T. Chakravarty, S. L. Peyton-Jones and K. Donnelly, “System F
with type equality coercions”, in TLDI, 2007.

[Sute11] Philippe Suter, Ali Sinan Köksal and Viktor Kuncak, “Satisfiability Modulo Recursive
Programs”, in SAS, pp. 298–315, 2011.

56

[Swam11] N. Swamy, J. Chen, C. Fournet, P-Y. Strub, K. Bhargavan and J. Yang, “Secure distributed
programming with value-dependent types”, in ICFP, pp. 266–278, 2011.

[Swie12] W. Swierstra, “Xmonad in Coq (experience report): Programming a Window Manager In
A Proof Assistant”, in Haskell Symposium, 2012.

[Tobi08] Sam Tobin-Hochstadt and Matthias Felleisen, “The design and implementation of typed
scheme”, in POPL, pp. 395–406, 2008.

[Unno13] Hiroshi Unno, Tachio Terauchi and Naoki Kobayashi, “Automating relatively complete
verification of higher-order functional programs”, in POPL, pp. 75–86, 2013.

[Vazo13] N. Vazou, P. Rondon and R. Jhala, “Abstract Refinement Types”, in ESOP, 2013.

[Vazo14] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis and S. Peyton-Jones, “Refinement Types
for Haskell”, in ICFP, 2014.

[Vyti13] Dimitrios Vytiniotis, Simon L. Peyton Jones, Koen Claessen and Dan Rosén, “HALO:
haskell to logic through denotational semantics”, in POPL, pp. 431–442, 2013.

[Wadl09] Philip Wadler and Robert Bruce Findler, “Well-Typed Programs Can’t Be Blamed”, in
ESOP, pp. 1–16, 2009.

[Xi98] H. Xi and F. Pfenning, “Eliminating Array Bound Checking Through Dependent Types.”,
in PLDI, 1998.

[Xi99] H. Xi and F. Pfenning, “Dependent Types in Practical Programming”, in POPL, 1999.

[Xi01] H. Xi, “Dependent Types for Program Termination Verification”, in LICS, 2001.

57

