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Abstract

Resource Allocation Problems are of particular importance not only from a theo-

retical aspect, but also due to their applications in network design. A central place

in this area have occupied the so called Facility Location Problems, where given a set

of facilities with opening costs and a set of clients with service demands and their

respective connection costs, the objective is to satisfy the clients’ demands while min-

imizing the total cost. This line of problems dates back to the 60’s, however it was not

until the mid-90’s that a breakthrough was made in terms of approximation. Since

then, numerous variants and results have appeared.

In this work, some of the most representative variants are examined followed by a

comparison of the techniques employed so far to tackle them, most prominently LP-

based techniques and local search. We begin by a thorough presentation of the basic

Uncapacitated Facility Location Problem and then continue with the more generic

Fault-Tolerant setting. We proceed by analyzing a capacitated version, a variant

with outliers and generalizations of the original problem. Finally, we examine the

case where the notion of time is introduced, leading to Facility Leasing Problems.
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Chapter 1

The Facility Location Problem

1.1 Preliminaries

In Facility Location Problems we are given a set of demand points C and a set of

facilities F . The opening cost of a facility i ∈ F is fi and the cost of connecting a

client j ∈ C to facility i is equal to the distance cij between j and i. In the metric

uncapacited version, clients and facilities are embedded in a metric space and the

goal is to open a subset of facilities such that each is connected to an open facility,

with the objective to minimize the total (opening and connection) cost.

There are numerous variants of Facility Location Problems. If at least one client

requires to be connected to more than one facility to satisfy the demand, the problems

are called Fault-Tolerant. In other cases, we can chose not to connect a client and

pay a penalty instead. There is also quite an extensive literature on hierarchical

facility location models. Sahin and Sural in their survey [51] classify these problems

depending on flow patterns, service availability at each level of hierarchy, and spatial

configuration of services in addition to the objectives to locate facilities.

It is easily shown that non-metric FLP is at least as hard as the set cover problem,

thus an O(log n) approximation is the best attainable. In fact, this can be achieved

by formulating the non-metric FLP as a set cover problem and then apply the stan-

dard greedy algorithm for the set cover. Furthermore, Guha and Khuller [26] proved

in 1999 that there can be no better possible approximation factor for the Metric

Uncapacitated Facility Location than 1.463, unless NP ⊆ DTIME[nO(log logn)]. In

2002, Jain et al. [33] further generalized the result and proved that there exists no

(γf , γc)-bifactor approximation for γc < 1 + 2e−γf unless NP ⊆ DTIME[nO(log logn)],
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and in the same year Sviridenko strengthened the inapproximability results showing

that there is no ρ-approximation for the UFL with ρ < 1.463 unless P = NP [55].

However, there can be versions of the problem solved in polynomial time, such as the

structured p-facility location problem on the line, where we select no more than p

sites for facilities to serve customers located at n demand points and the cost of serv-

ing any customer is a unimodal function of the location of the serving facilities [31].

According to Byrka & Aardal in [14], the approximation gap for the metric facility

location problem is not yet closed.

More formally, in the (uncapacitated) facility location (UFL) problem, we have

a set F of nf facilities and a set C of nc clients. For every facility i ∈ F there

is a non-negative opening cost fi and for every facility i ∈ F and client j ∈ C,
there is a connection cost cij. The objective is to open a subset of facilities and

connect all the clients to these open facilities so that the total cost is minimized.

From now on, we shall only refer to the metric version, where connection costs satisfy

the triangle inequality. Originally, the problem was studied in the early 60s from

more traditional combinatorial optimization perspectives, such as worst case analy-

sis, polyhedral combinatorics and and empirical heuristics (Balinski [10], Kuehn &

Hamburger [40], Manne [47], Stollsteimer [54], Cornuejols et al. [21]).

In 1980 Hochbaum [30] presented the first approximation algorithm for this kind of

problems. Assuming that the customer set I = {1, 2, ..., n} consists of finite discrete

locations and that J is the feasible facility location set, where J might be: (i) a

discrete set of points, (ii) any point in a finite dimensional Euclidean space with cost

the dij Euclidean distances, or (iii) considering the points of I as vertices on a graph,

the set J consists of the vertices and any point along the arcs between them, with an

arbitrary cost function associated with the arcs, Hochbaum reformulated each case as

a set covering problem and employed the standard greedy heuristic, thus guaranteeing

an O(log n) approximation for the general non-metric facility location problems.

The first constant factor approximation algorithm for the metric UFL was given

in 1997 by Shmoys, Tardos and Aardal [53]. Based on the filtering technique of Lin

& Vitter [44], which rounded fractional solutions to linear programming relaxations,

their algorithm yielded a 3.16-approximation for the UFL. Moreover, they presented

algorithms with constant approximation to certain variants of the capacitated version

and a 4-approximation algorithm based on filtering and rounding for the 2 − level

uncapacitated facility location problem. One year later, Chudak [18] further improved

the approximation factor for the UFL to 1 + 2/ε. Again, his algorithm was based on
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LP-rounding, using properties of optimal solutions to the linear program, randomized

rounding, as well as a generalization of the decomposition techniques of Shmoys,

Tardos, and Aardal.

1.2 Primal-Dual Schemes

Both of the initial algorithms bearing a constant factor approximation for the UFL

were based on LP-rounding and therefore had high running times. The first to employ

a primal-dual scheme were Jain & Vazirani [35] in 1999, with a running time of

O(m logm), where m = nc × nf is the total number of edges in the underlying

complete bipartite graph on clients and facilities. The novelty of their method lies in

extending the primal-dual schema to handle a primal-dual pair of of LP’s that are not

a covering-packing pair. It is also worth mentioning that their algorithm is suitable

for distributed computation.

Following is the most commonly proposed integer program for the UFL, which is

also employed by Jain and Vazirani. In this program, yi denotes whether facility i is

open and xij indicates whether client j is connected to facility i. The first constraint

ensures that each client is connected to at least one facility and the second ensures

that this facility must be open.

minimize
∑

i∈F ,j∈C

cijxij +
∑
i∈F

fiyi

subject to:
∑
i∈F

xij ≥ 1 ∀j ∈ C (1.1)

yi − xij ≥ 0 ∀i ∈ F , j ∈ C (1.2)

xij ∈ {0, 1} ∀i ∈ F , j ∈ C (1.3)

yi ∈ {0, 1} ∀i ∈ F (1.4)

The LP-relaxation of the above program is:

minimize
∑

i∈F ,j∈C

cijxij +
∑
i∈F

fiyi
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subject to:
∑
i∈F

xij ≥ 1 ∀j ∈ C (1.5)

yi − xij ≥ 0 ∀i ∈ F , j ∈ C (1.6)

xij ≥ 0 ∀i ∈ F , j ∈ C (1.7)

yi ≥ 0 ∀i ∈ F (1.8)

The dual program is:

maximize
∑
j∈C

αj

subject to: αj − βij ≤ cij ∀i ∈ F , j ∈ C (1.9)∑
j∈C

βij ≤ fi ∀i ∈ F (1.10)

αj ≥ 0 ∀j ∈ C (1.11)

βij ≥ 0 ∀j ∈ C, i ∈ F (1.12)

Suppose the LP has an optimal solution that is integral, i.e. I ⊆ F and φ : C → I

and for this solution, yi = 1 iff i ∈ I, and xij = 1 iff i = φ(j). Let also (α, β) the

optimal dual solution. In a nutshell, the primal and dual complementary slackness

conditions imply the following:

• Each open facility is fully paid for, that is if i ∈ I, then∑
j:φ(j)=i

βij = fi.

• Suppose client j is connected to facility i, that is φ(j) = i. Then, j does not

contribute for opening any facility besides i, i.e. βi′j = 0 if i′ 6= i. Furthermore,

αj−βij = cij, that is αj can be viewed as the total price paid by client j, where

cij is the connection cost for edge (i, j) and βij is the contribution of j towards

opening facility i.

The standard approach would be to relax the dual complementary slackness con-

ditions. Instead, Jain & Vazirani relax the primal conditions as follows, while main-

taining the dual conditions:
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• ∀j ∈ C : (1/3)cφ(j)j ≤ αj − βφ(j)j ≤ cφ(j)j,

• ∀i ∈ I : (1/3)fi ≤
∑

j:φ(j)=i βij ≤ fi.

Then, the cost of the (integral) solution found would be within thrice the dual

found, leading to a 3-approximation algorithm. However, in order to use the same

algorithm to solve the k-median problem, the primal conditions are relaxed in a way

such as to partition clients into the two sets of directly and indirectly connected.

Now, only directly connected clients shall pay for opening facilities. Thus, for an

indirectly connected client j, the primal condition is subsequently relaxed:

(1/3)cφ(j)j ≤ αj ≤ cφ(j)j.

Consequently, the Jain & Vazirani algorithm consists of two phases. In Phase 1,

the algorithm finds a dual feasible solution and also determines a set of tight edges

(aka. edges where the dual constraint corresponding to the connection goes tight,

i.e. for a connection ij: αj − βij = cij) and a set of temporarily open facility Ft. In

Phase 2, it chooses which subset I of Ft to open and a mapping φ from clients to I is

determined. More detailed:

I and φ define a primal integral solution, where xij = 1 if φ(j) = i and yi = 1

if i ∈ I. The values of αj and βij obtained at the end of Phase 1 form a feasible

dual solution. It remains to be shown how the dual αj’s pay for the primal opening

and connecting costs. Denote by αfj and αej the contribution of client j to these two

costs respectively, so that αj = αfj + αej . If j is indirectly connected, then αfj = 0

and αej = αj, else, if j is directly connected, then αj = cij + βij, where ı = φ(j) = i.

From now on, let αfj = βij and αej = cij. It is fairly straightforward to see that for

i ∈ I if (i, j) was tight at the end of Phase 1, then φ(j) = i and that (for i ∈ I again)∑
j:φ(j)=i α

f
j = fi, which also leads to

∑
i∈I fi =

∑
j∈C α

f
j . Note that only the directly

connected clients pay for the cost of opening facilities. So, it is proved that for an

indirectly connected client j, cij ≤ 3αj, where i = φ(j):

Proof: Since j is indirectly connected to i, there is a tight edge (i′, j) such

that i is the closing witness for i′ and i′ the connecting witness for j. That is, there

is an edge (i′, i) in H and, thus, there must be client j′ that has a tight edge to

both facilities i and i′. Let ti and ti′ be the time at which i and i′ were respectively

declared temporarily open. Given that i is the closing witness for i′, ti ≤ ti′ . Since

edge (i′, j) is tight, αj ≥ ci′j, and since i′ was the connecting witness for j, αj ≥ ti′ .
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Algorithm Phase 1

1. A notion of time is defined so that each event can be associated with the time it

happened. The phase starts at time 0, with zero primal and zero dual solution

and all clients are unconnected. As time passes, the algorithm raises the dual

variable αj for each unconnected client uniformly at rate one. The following

events may happen - if several events happen at the same time, choose arbitrarily

one of them:

• When αj = cij for some edge (i, j), this edge is considered tight. Starting

from this point, the dual variable βij is raised uniformly in order to ensure

that the first constraint in the dual LP is not violated. If i is temporarily

open, j is declared connected to i and i is considered the connecting witness

for j (see below).

• Considering that βij goes towards paying for facility i, facility i is consid-

ered paid for if
∑

j βij = fi. When a facility i is fully paid for and there is

a client j having a tight edge to i such that j is still unconnected, this fa-

cility is declared temporarily open and all unconnected cities having tight

edges to this facility are declared connected and i is considered to be the

connecting witness for each of these clients. The dual variables αj of these

clients are not raised anymore.

2. Repeat until all clients get connected.

6



Algorithm Phase 2

1. Let Ft denote the set of temporarily open facilities and T denote the graph

with vertex set V consisting of the client set C and the set of temporarily open

facilities Ft and edge set E consisting of these edges that where tight at the end

of Phase 1.

2. Consider a new graph H that has Ft as the vertex set and edge (i1, i2) if both

facilities i1, i2 where connected in T to the same client j, that is if both facilities

were ”tightly” opened by the same client j.

3. Order the facilities in Ft according to the time they were temporarily opened

and pick a maximal independent set I of Ft in H, beginning from the earliest

facility.

4. While considering a facility i, if it has a neighbour in the independent set, then

this neighbour is called the closing witness for i and i remains closed. In the

end, all facilities in I are declared open.

5. Clients are then connected to the open facilities:

• If for a client j there is a tight edge (i, j) and i is open, then φ(j) = i and

j is considered directly connected.

• Otherwise, consider the tight edge (i, j) with i the connecting witness for

j and, since i /∈ I, its closing witness i′ is open, so define φ(j) = i′ and

client j becomes indirectly connected.
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It holds that ti′ ≥ cij′ and ti′ ≥ ci′j′ . Suppose not. Then consider the edge which

went tight later and the instant at which it was declared tight. At this instant

however, both i and i′ had been declared temporarily open and so j′ must have

already been declared connected, which leads to a contradiction, since an already

connected city cannot get additional tight edges. Hence the cost of each of the three

edges (i′, j), (i′, j′) and (i, j′) is bounded by aj. By the triangle inequality, we get that

cij ≤ ci′j + ci′j′ + cij′ ⇒ cij ≤ 3αj. �

Taking into consideration all the above mentioned, it now follows that the primal

solution constructed by the algorithm is at most thrice the dual solution:∑
i∈F ,j∈C

cijxij + 3
∑
i∈F

fiyi ≤ 3
∑
j∈C

αj.

Also, the algorithm runs in polynomial time, with the sorting step weighing the most:

we sort all edges by increasing cost in O(m logm), where m = nf × nc. Then, for

each facility i, we maintain its unpaid cost and the current number of clients that

are contributing towards its cost, initialising each to fi and 0 respectively. Thus,

each iteration takes O(nf ) time and there are O(nc) iterations. Therefore, besides

the sorting, the rest of the algorithm takes linear time, that is O(m), and thus it is a

3-approximation algorithm for the UFL with a running time of O(m logm).

Figure 1.1: tightness example

This approximation is tight, as shown by the following instance: Consider a graph
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with n clients, j1, j2, ..., jn and two facilities i1 and i2, with ci2j = 1, ∀j ∈ C. Also,

for facility i1 we have ci1j1 = 1 and ci1jl = 3 for l = 2, ..., n. The opening costs are

fi1 = ε and fi2 = (n + 1)ε, for a small number ε. The optimal solution is to open i2

and connect all clients to it, at a total cost of (n + 1)ε + n. However, the algorithm

will open facility i1 and connect all clients to it, at a total cost of ε+ 1 + 3(n− 1).

In 2004, Charikar & Guha [16] presented a gap example showing that the primal-

dual algorithm can construct a dual whose value is 3 − ε away from the optimal for

arbitrarily small ε, introducing however in their example the notion of demand:

Figure 1.2: gap example - image taken from [16]

Suppose the example instance as tree rooted at w′. w′ has a child w with service

cost cw′w = 1. w also has r2 children v1, ..., vr2 with connection cost cwvi=1, for

i = 1, ...., r2, where r is a parameter. Also, each vi has an only child v′i with cvv′i = 1.

To complete the instance graph, all other distances are considered as shortest path

instances along the tree. Node w′ has facility cost fw′ = 2 and the nodes vi have

facility cost fvi = 2 + 2/r. All other nodes are considered without facility or, more

conveniently, having facility costs of ∞. The node w has demand 2r - a part in their

proof which strays from the original UFL and leans more towards the fault-tolerant

version. Each v′i node has unit demand and the rest of the nodes have zero demand.

From the dual solution returned by the algorithm, αw = 2r(1+1/r) and αv′i = 1+2/r

for each v′i. The value of the dual solution is r2 + 4r + 2, while the optimal solution

by choosing on the vi facilities has total cost 3r2 + 2r + 2/r. Therefore, for r large

enough, the dual solution is 3−ε times the optimal. This means that it is not possible

to prove an approximation ratio better than 3 − ε using the dual constructed as a

lower bound and can be considered as the analog of an integrality gap for LPs.
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1.3 Combinatorial Approaches

In 2000 Korupolu, Plaxton and Rajaraman [38] proved that a simple local search

heuristic achieves a (5+ε) approximation ratio in O(n4 log n/ε) running time. Four

years later, Charikar & Guha [16] applied the ideas of cost scaling and greedy improvement

on a more complex greedy local search algorithm of their conception, which also served

as introduction the fault-tolerant version of the problem, by covering the case where

each node j has a demand dj. We proceed to a brief presentation of Charikar &

Guha’s local search algorithm and afterwards we shall expand on the aforementioned

techniques.

The initial solution is chosen by sorting the facilities in order of increasing facility

cost and picking the first i facilities in this order which satisfy the needs while mini-

mizing the total cost Fi + Ci. The initial solution is computed in O(n2) time and it

is shown that it is at most n2FSOL + nCSOL, where FSOL and CSOL are the facility

and service costs of an arbitrary solution SOL to the LP.

At each local search step, let F be the set of facilities in the current solution.

The algorithm considers a random facility i which may or may not already belong

to F and examines updating the solution with i ∈ F . Nodes that are assigned to a

facility already in F but are closer to i are now assigned to i. Also, the algorithm

tries to remove facilities already in the current solution. If i′ ∈ F is removed, then

all clients j connected to i′ are now connected to i. The authors define as gain(i) the

largest possible decrease in F + C by switching clients to i and removing facilities. If

the total cost only increase by adding facility i to F , then gain(i) is said to be 0. If

gain(i) > 0, then i is included to F and the solution is rearranged accordingly. This

step is repeated until there is no i such that gain(i) > 0.

It is shown that gain(i) can be computed in O(n) time. Also,
∑
gain(i) ≥

C − (FSOL + CSOL) and
∑
gain(i) ≥ F − (FSOL + 2CSOL), where FSOL and CSOL

are the facility and connection costs of an arbitrary fractional solution SOL. Thus,

the local search algorithm after O(n log(n/ε)) iterations reaches a solution C + F ≤
2FSOL+3CSOL+ε(FSOL+CSOL) with probability at least 1/2, leading to the following

Theorems:

Theorem. The algorithm reaches a solution with F ≤ (1 + ε)(FSOL + 2CSOL) and

C ≤ (1 + ε)(FSOL +CSOL) in O(n(log n+ 1
ε
)) steps, that is O(n2(log n+ 1

ε
)) running

time, with constant probability.

Theorem. The derandomized algorithm finds a solution such that F ≤ (1+ε)(FSOL+

10



2CSOL) and C ≤ (1 + ε)(FSOL + CSOL) in O(n(log n + 1
ε
)) steps with O(n3(log n +

1
ε
)) running time, by examining all facilities and choosing the one with the highest

gain,instead of picking a random facility i.

The novelty of their method comes to the application of cost scaling in order to

exploit the asymetry in the guarantees of the service and facility cost. The idea is to

scale the facility costs uniformly by a factor δ and then solve the modified instance

by using local search. The solution of the modified instance is then scaled back to

determine the cost of the original instance.

Assuming that the facility and connection costs of the optimal solution are FOPT

and COPT respectively, then after scaling there exists a solution to the modified

instance of δFOPT facility cost and COPT connection cost. From the above theorem,

there exists a solution to the scaled instance such that:

F ≤ (1 + ε′)(δFOPT + 2COPT ) , and C ≤ (1 + ε′)(δFOPT + COPT )

By scaling back to a solution of facility cost F/δ and setting δ =
√

2, it is easily

shown that the UFL can be approximated to a 1 +
√

2 + ε factor in randomized

O(n2/ε+ n2 log n) time, where ε = (1 +
√

2)ε′.

On a more general examination, by setting δ = 2CSOL/(γFSOL), it is shown that

the facility cost is at most (1 + γ)FSOL and the service cost is (1 + 2/γ)CSOL upto

factors of (1 + ε) for arbitrarily small ε. Furthermore, executing the above algorithm

for some value of δ withina 1 + ε′ factor of 2CSOL/(γFSOL) results in the following

theorem:

Theorem. Let SOL be any solution to the UFL, even fractional, with facility cost

FSOL and service cost SSOL. For any γ, the above local search heuristic combined with

scaling gives a (1 +γ, 1 + 2/γ)-approximation upto multiplicative factors of (1 + ε) for

arbitrarily small ε > 0.

In the tradeoff problem using the (p, q) notation, p denotes the approximation

factor of the facility cost and q the approximation factor of the service cost. Charikar

& Guha’ result is an improvement on the previously known tradeoffs and very close

to the best possible, which is (1 +γ, 1 + 1/γ) as can be demonstrated in the following

example:

Consider an instance I consisting of two nodes u and v with facility costs fu = 1,

fv = 0 and connection cost cuv = 1. The demands of the nodes are du = 1 and

dv = 0, that is, node u is also a client. Therefore, there are two integer solutions to
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I: SOL1 picks u as a facility with FSOL1 = 1 and CSOL1 = 0, while SOL2 picks v as

a facility with FSOL2 = 0 and CSOL2 = 1. For γ > 0 a fractional solution SOL can

be constructed for I with FSOL = 1/(1 + γ) and CSOL = γ/(1 + γ). This fractional

solution is obtained by taking the linear combination (1/(1 + γ))SOL1 + (γ/(1 +

γ))SOL2. It follows that there can be no integer solution with facility cost strictly

less than (1 + γ)FSOL and service cost strictly less than (1 + 1/γ)CSOL.

It should be noted that Charikar & Guha also achieve an improved approximation

for the capacitated version of the facility location problem by applying scaling with

δ = 2
√

2− 2, thus getting a 3 + 2
√

2 + ε approximation.

Based on the augmentation technique presented by Guha & Khuller [26], they

alter the selection step of the local search algorithm by picking the node u of cost fu

such that if the total service cost decreases from C to C ′ after opening u, the ratio
C−C′−fu

fu
is maximized. Observing that C − C ′ − fu is in fact gain(u), they greedily

pick the gain with the best ratio. Again, the node with the best ratio can be found in

O(n2) time and since no node can be added twice, the algorithm takes O(n3). If the

initial solution has facility and connection costs F0 and C0, respectively, and SOL is a

feasible fractional solution, after application of the greedy augmentation the solution

cost is at most

F0 + FSOL max
[
0, ln(

C0 − CSOL
FSOL

)] + FSOL + CSOL .

In the final version of their algorithm, Charikar & Guha first scale the facility

costs by a δ such that ln(3δ) = 2/(3δ). Then they run the primal-dual algorithm on

the scaled instance, scale back the solution and finally apply the greedy augmentation

technique. This yields a 1.8526-approximation in O(n3) time and if combined with

Chudak’s LP-rounding algorithm in [18],the approximation drops to 1.728 .

1.4 Greedy approach using Dual-Fitting analysis

In 2002 Jain et al. in [33] introduced the notion of factor-revealing LP and one year

later in [32] formalized the dual-fitting method for facility location problems and

proceeded with its application to factor-revealing LPs.

A typical example of dual fitting analysis is in case of the simple set covering

algorithm. In this greedy algorithm, the dual constructed is infeasible. However, the

value of the primal integral solution returned by the algorithm is bounded by that of

the dual. Thus, if the dual is divided by a factor γ, the shrunk dual is feasible in the
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sense that it fits into the original instance. In this case, the shrunk dual serves as a

lower bound on the optimal solution and γ is the approximation factor. In order to

find the minimum γ for the problem, one has to find the worst case scenario, that is

an instance where the dual solution needs to be shrunk the most to become feasible.

In this line, Jain et al. create a factor revealing LP that encodes the problem of

finding the worst possible instance with nc clients, resulting in a family of LP’s, one

for each value of nc. The supremum of the optimal solutions to these LP’s is factor

γ. Because it is complex to compute the supremum, the authors instead prove that

the upper bound on the (feasible) solutions of the duals of these LPs is also an upper

bound on the optimal γ.

The idea of factor-revealing LPs is similar to using LP bounds in coding theory,

where they are used to obtain bounds on the minimum distance of a code with a given

rate. Factor revealing LPs essentially serve to prove a bound on the approximation

ratio. In the case of UFL, Jain et al. also use it to estimate the approximation

ratio of facility costs versus the approximation ratio of connection costs. They also

prove that the algorithms presented in [33] and [32] have what they named the

Lagrangian multiplier preserving property. This property is present in the classic

primal-dual algorithm of Jain & Vazirani and they consider it the key to the versatility

of algorithms which preserve that property. Suppose A and approximation algorithm

for the UFL. A is a Lagrangian Multiplier Preserving α-approximation if for every

isntance I with optimal solution cost OPT , F and C are the facility and connection

costs, respectively, of the solution returned by algorithm A such that C ≤ α(OPT −
F ).

With these two tools, Jain et al. formulated two versions of a greedy algorithm.

The first and simpler algorithm follows the logic of the set cover algorithm - iteratively

pick the most cost-effective choice at each step. They alter the LP formulation in

order to treat facilities as ”star-centers”. More specifically, a star consists of one

facility i as center and the cities connected to it. The cost of the star (i, C ′), where

i is the facility and C ′ ⊆ C a subset of clients, is fi +
∑

j∈C′ cij. The cost of the

star (i, C ′) is defined as (fi +
∑

j∈C′ cij)/|C ′|.They ensure that the primal solution

is fully paid by the dual by setting the rule that when a city connects to an open

facility, it withdraws its contribution towards the opening costs of other facilities.

More specifically:

The star-formulated IP, where S is the set of all stars, cS the cost of star S and

13



Algorithm Algorithm 1

1. Let U the set of unconnected clients. In the beginning, all clients are uncon-

nected (U := C) and all facilities are unopened.

2. While U 6= ∅:

• Find the most cost-effective star (i, C ′), open facility i, if it is not already

open, and connect all cities in the star to i.

• Set fi := 0, U := U\C ′.

xs the variable indicating whether star S is picked in the solution:

minimize
∑
S∈S

cSxS

subject to:
∑
S:j∈S

xS ≥ 1 ∀j ∈ C (1.13)

xS ∈ {0, 1} ∀S ∈ S (1.14)

The LP-relaxation of the above program is:

minimize
∑
S∈S

cSxS

subject to:
∑
S:j∈S

xS ≥ 1 ∀j ∈ C (1.15)

xS ≥ 0 ∀S ∈ S (1.16)

The dual program is:

maximize
∑
j∈C

αj

subject to:
∑

S:j∈S∩C

αj ≤ cS ∀S ∈ S (1.17)

xS ≥ 0 ∀j ∈ C (1.18)
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If (1.17) is re-written as
∑

j∈C max(0, αj − cij) ≤ fi for every facility i, the

most cost effective star in each iteration can be found by raising the dual vari-

ables of all unconnected cities simultaneously until we reach the first star for which∑
j∈C max(0, αj − cij) = fi. Thus, the algorithm can be restated in order to capture

the LP formulation, which is similar to that of the set cover problem:

Algorithm Algorithm 1 restated

1. Introduce a notion of time, so as to associate the events with the ”time” they

occurred. Starting at time 0, each client is considered unconnected (U := C),

all facilities unopened and αj = 0 ∀ j ∈ C.

2. While U 6= ∅, increase the time and simultaneously for every client j ∈ U

increase variable αj at the same rate, until one of the following events happen

(if two events occur simultaneously, they are processed in random order):

(a) αj = cij for an unconnected city j and an open facility i. In this case,

connect city j to facility i and remove j from U .

(b)
∑

j∈C max(0, αj − cij) = fi for an unopened facility i. In this case, open

facility i and for every unconnected client j with αj ≥ cij, connect j to i

and remove j from U .

It is clear that the contribution αj of each city j contributes to opening at most

one facility. That way ᾱ is not a feasible solution, because by excluding clients and

withdrawing their contributions, there can be a facility i such that
∑

j∈C max(0, αj−
cij) > fi. Consequently, a γ factor needs to be found such that ᾱ/γ is feasible.

Without loss of generality, clients can be ordered by increasing contribution α1 ≤
α2 ≤ ... ≤ αk and each time examine the bounds for the first k clients. That is, find

the minimum γ for which
∑k

j=1(α/γ− cij) ≤ fi, or, equivalently, the maximum of the

ratio
∑k

j=1 αj/(f +
∑k

j=1 dj), where f = fi and dj = cij, leading to the following LP:

zk = maximize

∑k
j=1 αj

f +
∑k

j=1 dj
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subject to: αj ≤ αj+1 ∀j ∈ {1, ..., k − 1} (1.19)

αj ≤ αl + dj + dl ∀j, l ∈ {1, ..., k} (1.20)

k∑
l=j

max(αj − dl, 0) ≤ f ∀j ∈ {1, ..., k − 1} (1.21)

αj, dj, f ≥ 0 ∀j ∈ {1, ..., k − 1} (1.22)

The above zk is equal to the optimal solution of the following factor-revealing LP:

zk = maximize
k∑
j=1

αj

subject to: f +
k∑
j=1

dj ≤ 1 (1.23)

αj ≤ αj+1 ∀j ∈ {1, ..., k − 1} (1.24)

αj ≤ αl + dj + dl ∀j, l ∈ {1, ..., k} (1.25)

xjl ≥ αj − dl ∀j, l ∈ {1, ..., k} (1.26)

k∑
l=j

xjl ≤ f ∀j ∈ {1, ..., k} (1.27)

αj, dj, f ≥ 0 ∀j ∈ {1, ..., k − 1} (1.28)

By defining γ = supk≥1{zk}, we get that every facility is at most γ-overpaid. Also,

the approximation factor of the algorithm is precisely supk≥1{zk}. It is difficult to

calculate the exact upper bound of this supremum. However, Jain et al. tackled it

by solving the dual of the factor-revealing LP for smaller values of k and thus made

an assumption of a how small this upper bound could be. They proceed proving

that, ∀k ≥ 1, zk ≤ 1.861, which is their approximation factor of Algorithm 1. They

furthermore present a tight example for k = 2, where the approximation factor is 1.5

(see Figure below), and by computer-aided calculations also show that z300 ≈ 1.81,

implying that the approximation factor actually lies somewhere between 1.81 and

1.861.
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Figure 1.3: tight example for Algorithm 1 for k = 2 with approximation ratio 1.5 -

image taken from [32]

An improved version of algorithm 1 follows, where clients now do not withdraw

their contributions to other facilities once they get connected to an open facility, thus

resulting to a better approximation of 1.61:

For the sake of brevity, we omit the analysis, which is similar to that of Algorithm

1.

The authors of [32] also present some results on the tradeoff between facility and

connection costs concerning Algorithm 2:

Theorem 1. Let γf ≥ 1 and γc := supk{zk}, where zk is the solution of the following

LP:

zk = maximize

∑k
j=1 αj − γff∑k

i=1 di

subject to: αi ≤ αi+1 ∀1 ≤ i ≤ k (1.29)

rj,i ≥ rj,i+1 ∀1 ≤ j ≤ i ≤ k (1.30)

αi ≤ rj,i + di + dl ∀1 ≤ j ≤ i ≤ k (1.31)

i−1∑
j=1

max(rj,i − dj, 0) +
k∑
j=1

max(αi − dj, 0) ≤ f ∀1 ≤ i ≤ k (1.32)

αj, dj, f, rj,i ≥ 0 ∀1 ≤ j ≤ i ≤ k (1.33)

Then for every instance I of UFL, and for every solution SOL for I with facility

cost FSOL and connection cost CSOL, the cost of the solution found by Algorithm 2 is

at most γfFSOL + γcCSOL.

Consequently, based on the proof in [26] for hardness of the UFL, they state the

following theorem and compare the tradeoffs in the figure below:
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Algorithm Algorithm 2

1. Introduce a notion of time. Starting at time 0, each client is considered uncon-

nected (U := C), all facilities unopened and αj = 0 ∀ j ∈ C. At every moment,

each client j offers part of its contribution to each unopened facility i in the

following way:

− If j is unconnected, the offer is equal to max(αj − cij, 0).

− If j is already connected to some other facility i′, then its offer to i is equal

to max(ci′j − cij, 0).

2. While U 6= ∅, increase the time and simultaneously for every client j ∈ U

increase variable αj at the same rate, until one of the following events happen

(if two events occur simultaneously, they are processed in random order):

(a) For an unopened facility i, the total offer it receives from clients is equal

to the cost of opening i. In this case, open i and every client j (connected

or unconnected) with nonzero contribution to i gets connected to i. Client

j is no longer allowed to decrease the amount it offered to i.

(b) For an unconnected client j and an open facility i, αj = cij. In this case,

connect j to i and remove j from U .
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Theorem 2. Let γf and γc constants with γc ≤ 1 + 2e−γf . Assume there is an

algorithm A such that for every instance I of the metric facility location problem,

A finds a solution SOL whose cost is no more that γfFSOL + γcCSOL. Then NP ⊆
DTIME

[
nO(log logn)

]
.

Figure 1.4: the tradeoff between γf and γc - image taken from [32]

The dashed line corresponds to the general lower bound stated in the Theorem

2, while the thick line represents the tradeoff between γf and γc, where γf ≥ 1 and

γc := supk{zk} as described in Theorem 1, for k = 100 and after running tests on

various values of γf between 1 and 3.

By setting γf = 1, Jain et al. elaborate on this tradeoff to design algorithms for

other variants of the facility location problem.

1.5 Randomized Algorithms

Lin & Vitter [44], working on geometric median problems in 1992, used the filtering

technique to round the fractional solution of the LP of the metric k-median prob-

lem to obtain an integer solution 2(1+1/ε) times the fractional solution while using

(1+ε)k medians. Five years later, Shmoys, Tardos and Aardal [53] used this technique

combined with a rounding algorithm to achieve a 4-approximation.

1.5.1 Byrka’s algorithm

The big break-through in the approach of the metric facility location problem came

in 2007, when Byrka presented in [13] an algorithm with the optimal bifactor ap-

proximation ratio, which as proven in [32] is (γf , 1 + 2e−γf ). This was achieved

by modifying the (1+ 2/e)-approximation algorithm presented in [18] by Chudak,

thus obtaining a 1,5-approximation, or else expressed as a bifactor approximation, an
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(1.6774,1.3738)-approximation which gives optimal approximation in instances dom-

inated by connection costs.

The key techniques employed by Byrka in this work are the modification of the

support graph of the LP before clustering the clients and using the average distances

of the fractional solution to bound the cost via a sparsening technique, similar to

filtering. The sparsening technique is used to measure and control ”irregular” in-

stances which are potentially tight for the original (1+ 2/e)-approximation algorithm.

A simplified overview of Byrka’s algorithm follows, before we proceed to the analysis

of his techniques and the final presentation of the algorithm:

Algorithm Overview

Step 1. solve the LP-relaxation with solution (x∗, y∗)

Step 2. scale up the fractional solution obtaining (x̄, ȳ)

Step 3. compute a greedy clustering on the scaled up solution (x̄, ȳ), where cluster

centers are those clients minimizing some average diastances

Step 4. for every cluster center j randomly open one of his close facilities with

probabilities x̄ij

Step 5. for every facility i that is not a close facility of any cluster center, open it

randomly with probability ȳi

Step 6. connect each client to its closest open facility.

We begin by presenting the clustering method. The support graph of the LP

solution is a bipartite graph G with vertex set V = C ∪ F , where C and F are the

client and facility set respectively, and an edge connecting the according vertices of

i ∈ F and j ∈ C if xij > 0 in the LP optimal solution. Two clients j, j′ adjacent to

the same facility in G are called neighbours. Clustering is the partitioning of clients

into clusters with a leading client for each cluster, called the cluster center. No two

cluster centers can be neighbours in the support graph G.

Scaling the facility opening costs in the beginning and applying greedy augmen-

tation helps to balance the analysis of an approximation algorithm -here, Chudak &

Shmoys’ (1 + 2/e)-approximation algorithm. Suppose we have a feasible solution for

a metric UFL instance. For greedy augmentation the steps are:

• For each facility i not opened in the solution, compute the impact of opening

this i on the total cost of the solution (the aforementioned gain of opening i,
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Figure 1.5: image taken from [13]

now denoted as gi).

• While ∃i ∈ Fs.t. gi > 0, open a facility i0 that maximizes gi
fi

.

• Update values of gi.

The procedure terminates when no facility’s opening cost can decrease the total cost.

For a given approximation algorithm A for the metric UFL and a real δ ≥ 1, greedy

augmentation together with scaling can be implemented resulting in the following

algorithm Sδ(A):

Algorithm Sδ(A) scaling procedure

1. scale up all facility opening costs by a factor δ

2. run algo A on the modified instance

3. scale back the opening costs

4. run the greedy augmentation

Byrka, following the analysis of Mahdian, Ye and Zhang [46] shows that if A is a

(λf , λc)-approximation algorithm for the metric UFL, then Sδ(A) is a (λf + ln(δ), 1 +
λc−1
δ

)-approximation algorithm for this problem. Thus, the above method can be
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applied to balance instance where connection costs are greatly larger than facility

costs. He then proceeds to construct a second algorithm via sparsening of the graph

of the fractional solution, so as to tackle the opposite imbalance (i.e. when facility

costs dominate the connection costs). The combination of the two algorithms achieves

the 1,5 approximation.

The sparsening technique is similar to Lin and Vitter’s [44] filtering techinque, a

way of modifying the fractional solution. Suppose for the given LP of a metric UFL

we have optimal primal solution (x∗, y∗) and optimal dual (α∗, β∗), where facility cost

F ∗ =
∑

i∈F fiy
∗
i , connection cost C∗ =

∑
i∈F ,j∈C cijx

∗
ij and each client j has its share

aj of the total cost. This cost can be divided into a client’s fractional connection cost

C∗j =
∑

i∈F cijx
∗
ij and his fractional facility cost F ∗j = a∗j − C∗j .

The main idea of the sparsening technique is to make use of some irregularities

of an instance if they occur. An instance is considered regular if the facilities that

fractionally serve a client j are all at the same distance from j. On such regular

instances, using algorithm Sδ(A) with scaling and greedy augmentation the original

F ∗+ (1 + 2
e
)C∗ solution is dropped to an optimal 1.463 approximation. On irregular

instances, particular clients are fractionally served by facilities at different distances.

The sparsening techinque divides the serving facilities of a client into two groups:

the close and the distant facilities. The links to distant facilities are removed before

the clustering step, so as to decrease distances to cluster centers. So, in the case of

regular instances, the sparsening technique gives the same results as Sδ(A), but for

irregular instances it takes some advantage of that irregularity.

Now, let (x̄, ȳ) the obtained complete solution. For a client j the facility i is a

close facility, if it fractionally serves j in (x̄, ȳ), else it is a distant facility, if x̄ij = 0,

but x∗ij > 0. Byrka then proceeds to define rγ(j), a measure of the irregularity of

the instance around client j. It is the average distance to distant facility minus the

fractional connection cost C∗j (which can also be perceived as the general average

distance to both close and distant facilities), divided by the fractional facility cost of

client j:

rγ(j) =


γ
γ−1

(
∑
i∈{i∈F|x̄ij=0} cijx

∗
ij−C∗j )

F ∗j
, for F ∗j > 0,

0, for F ∗j = 0

where 0 ≤ rγ(j) ≤ 1. If rγ(j) = 0, client j is served in (x∗, y∗) by facilities that

are all in the same distance, else if rγ(j) = 1, client j is served by facilities that

are at different distances and the distant facilities are so far from j he is not willing
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Algorithm Sparsening Procedure

Suppose we are given the primal optimal solution (x∗, y∗):

• scale up the y-variables by a constant γ > 1.

• with the y-variables fixed, the x-variables can be changed to minimize the total

cost. Each client j uses his closest facilities in the following way:

1. order facilities according to their nondecreasing distances to j.

2. fully connect client j (xij = yij) to the first facilities in the ordering, with

the possible exception of the last chosen one, for which 0 < xij < yj.

3. Facilities can be split in order to assume the solution is complete (that is,

@i ∈ F , j ∈ C s.t 0 < xij < yi)

to contribute to their opening. Let also r′γ(j) = rγ(j) · (γ − 1). For client j with

F ∗j > 0, r′γ(j) =
C∗j−

∑
i∈F cij x̄ij

F ∗j
, which is the fractional connection cost minus the

average distance to a close facility, divided by the fractional facility cost of a client

j. Then, for every client j it holds that:

• his average distance to a close facility equals DC
av(j) = C∗j − r′γ(j) · F ∗j ,

• his average distance to a distant facility equals DD
av(j) = C∗j + rγ(j) · F ∗j ,e

• his maximal distance to a close facility is at most the average distance to a

distant facility: DC
max(j) ≤ DD

av(j) = C∗j + rγ(j) · F ∗j .

Considering the bipartite graph G obtained from (x̄, ȳ), where each client is di-

rectly connected to his close facilities, Byrka greedily clusters this graph in each round,

choosing as cluster center an unclustered client j with the minimal DC
av(j)+DC

max(j).

That way, each cluster center has a minimal value of DC
av(j) +DC

max(j) among clients

in his cluster.

Byrka describes an intermediate algorithm A1(γ) as follows:

AlgorithmA1(γ = 1.67736) produces a solution with expected cost E[cost(SOL)] ≤
1.67736 · F ∗ + 1.37374 · C∗.

Finally, Byrka combines hisA1 algorithm with the Jain et al. [32] 1.61-approximation

algorithm for the metric UFL to obtain a 1.5-approx. The analysis is based on the

following lemma by Mahdian, Ye & Zhang:
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Algorithm A1(γ)

1. solve the LP and obtain optimal primal solution (x∗, y∗).

2. scale up the y-variables by a constant γ > 1

3. change value of x-variables so as to use closest possible fractionally open facilities

- if necessary, split facilities to obtain a complete solution (x̄, ȳ)

4. compute a greedy clustering for (x̄, ȳ), choosing as said before for cluster centers

unclustered clients minimizing DC
av(j) +DC

max(j)

5. for every cluster center j, open one of his close facilities randomly with proba-

bilities x̄ij

6. for each facility i that is not a close facility of any cluster center, open it

independently with probability ȳi

7. connect each client to an open facility that is closest to him.

Figure 1.6: image taken from [13]

Lemma. The cost of a solution return by the JMS algorithm is at most 1.11 · F ∗ +

1.7764·C∗, where F ∗ and C∗ are the optimal solution’s facility opening and connection

costs, respectively, for the relaxed LP.

So, considering the solutions obtained with the A1 and JMS algorithms, the

cheaper of them is expected to have a cost at most 1.5 times the cost of the op-

tional fractional solution.
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There are some interesting remarks concerning the approximation limits. If the A2

algorithm combined the A1 algorithm with Mahdian, Ye & Zhang’s 1.52-approximation

algorithm for the metric UFL, then A2’s approximation would drop to 1.4991. Byrka’s

algorithm also has improved results in the 3-level and 4-level facility location problem.

While Byrka & Aardal constructed instances that are hard for the MYZ algorithm,

construction of hard instances for the A1(γ) algorithm still remains an open prob-

lem. Scaling and greedy augmentation enables to move the bifactor approximation

guaranty of an algorithm along the approximability lower bound of Jain, Mahdian &

Saberi towards higher facility opening costs. If a technique was developed to move

the analysis in the opposite direction, together with the A1 algorithm, it would imply

closing the approximation gap for the metric UFL. However, such an approach has

the difficulty of analysing an algorithm that closes some of the previously opened

facilities.

1.5.2 Shi Li’s results

In 2011 Shi Li in [42] presented the best to date approximation algorithm on the

UFL problem, achieving a 1.488-approximation. Shi Li based his result on Byrka’s

algorithm [13] and in fact reached this approximation by improving the analysis of

Byrka’s own algorithm. Byrka had used a γ parameter in his analysis for the A1

algorithm which he had opted to set to 1.6774. Shi Li elaborated on this and proved

that if γ is randomly selected, the approximation ratio drops to 1.488. The novelty of

his method lies in that he gave an explicit distribution for γ by introducing a 0-sum

game.
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Chapter 2

The Fault Tolerant Facility

Location Problem

2.1 Preliminaries

So far, we have seen the case in the metric uncapacitated facility location problem

where each client has unit demand. However, in a combinatorial approach presented

in the previous section by Charikar & Guha [16], we had seen that the authors in the

analysis of their algorithm had also accommodated the case where each client had a

distinct demand dj.

There are various settings from real-world problems where clients might have a

demand to be connect to more than one facilities to cover their needs. Imagine for

example a network, where facility nodes are servers with cached information and

the clients are nodes with data requests. We want nodes to be able to access the

data at any moment. In order to cover system failures, or cases where i.e. a server

is down for maintenance, the client should have access to more than one servers.

Another example would be that of facilities which are electric power supply stations

and clients-consumers, such as hospitals for example of factories, which have high

electric power consumption and need to reassure that they will be able to function

non-stop even when a power supply station goes off, meaning that there is also a call

for back-up suppliers.

The common element in all of the above real-life scenarios is the need to build

resilience in the network and tackle efficiently provider failures. If each provider may

fail with probability p and each client needs a guarantee to be served of at least qj
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probability, client j should be connected to at least rj = dlog(1− qj)/ log pe distinct

providers. This UFL variant, where each client j has a distinct request rj, is called

fault − tolerant (from now on refered to as FTFL). The integral linear program

formulation of the problem is as follows:

minimize
∑

i∈F ,j∈C

cijxij +
∑
i∈F

fiyi

subject to:
∑
i∈F

xij ≥ rj ∀j ∈ C (2.1)

yi − xij ≥ 0 ∀i ∈ F , j ∈ C (2.2)

xij ∈ {0, 1} ∀i ∈ F , j ∈ C (2.3)

yi ∈ {0, 1} ∀i ∈ F (2.4)

The LP-relaxation of the above program is:

minimize
∑

i∈F ,j∈C

cijxij +
∑
i∈F

fiyi

subject to:
∑
i∈F

xij ≥ rj ∀j ∈ C (2.5)

yi − xij ≥ 0 ∀i ∈ F , j ∈ C (2.6)

xij ≥ 0 ∀i ∈ F , j ∈ C (2.7)

yi ≥ 0 ∀i ∈ F (2.8)

The dual program is:

maximize
∑
j∈C

rjαj −
∑
i∈F

zi

subject to: αj − βij ≤ cij ∀i ∈ F , j ∈ C (2.9)∑
j∈C

βij ≤ fi + zi ∀i ∈ F (2.10)

αj ≥ 0 ∀j ∈ C (2.11)

βij ≥ 0 ∀j ∈ C, i ∈ F (2.12)
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The same applies for the intuitive meaning and the correspondence of the variables

used as in the case of the simple metric UFLP presented in the previous section.

It should be noted that variable zi which now appears in the fault-tolerant dual

corresponds to the constraint 1 ≥ yi and intuitively means that facility i should not

”overdo” it’s opening (1 ≥ yi ⇒ zi ≥ yizi).

Unlike the simple version of the uncapacitated facility location problem, there is

no inapproximability result for the fault-tolerant version. However, Byrka, Srinivasan

& Swamy in [15] stated the conjecture that the fault-tolerant version has the same

approximation threshold as UFL, that is 1.463.

2.2 Primal-dual Schemas

The first non-trivial approximation algorithm for the FTFL was given by Jain &

Vazirani in [34]. Their algorithm is similar to an algorithm presented in [25] for the

generalized Steiner network problem. It is proven to be a 3 ·Hk-approximation, where

k is the maximum requirement and Hk the kth harmonic number.

Once again, as in [35], Jain & Vazirani use a primal-dual schema. The algorithm

runs in phases. Each phase p takes into consideration only those clients j who have

reached requirement p and lowers (satisfies) their requirement by one unit by con-

necting them to open facilities, thus dropping their residual requirement to p − 1.

More specifically, the algorithm starts with an empty solution (Ik, Ck), where Ip is

the set of free facilities at the beginning of phase p and Cp the set of clients with

residual requirement p. Each phase p returns a solution (Ip−1, Cp−1), where if a client

j gets connected to an already opened facility i (meaning i ∈ Ip), we pay only for the

connection costs, otherwise we also pay for the opening cost of i. In the first case, the

free facility can only be used by clients which are not already connected to it. So, by

defining as Cp(j) the set of facilities to which j is already connected at the beginning

of phase p we get the following intermediate programs:

minimize
∑

i∈F ,j∈Cp

cijxij +
∑

i∈F−Ip

fiyi
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subject to:
∑

i∈F−Cp(j)

xij ≥ 1 ∀j ∈ Cp (2.13)

yi − xij ≥ 0 ∀i ∈ F − Ip, j ∈ Cp (2.14)

xij ∈ {0, 1} ∀i ∈ F , j ∈ C (2.15)

yi ∈ {0, 1} ∀i ∈ F − Ip (2.16)

The LP-relaxation of the above program is:

minimize
∑

i∈F ,j∈Cp

cijxij +
∑

i∈F−Ip

fiyi

subject to:
∑

i∈F−Cp(j)

xij ≥ 1 ∀j ∈ Cp (2.17)

yi − xij ≥ 0 ∀i ∈ F − Ip, j ∈ Cp (2.18)

xij ≥ 0 ∀i ∈ F , j ∈ C (2.19)

yi ≥ 0 ∀i ∈ F (2.20)

The dual program is:

maximize
∑
j∈C

αj

subject to: αj − βij ≤ cij ∀i ∈ F − Ip, j ∈ Cp (2.21)

αj ≤ cij ∀i ∈ Ip, j ∈ Cp (2.22)∑
j∈C

βij ≤ fi ∀i ∈ F − Ip (2.23)

αj ≥ 0 ∀j ∈ C (2.24)

βij ≥ 0 ∀j ∈ C, i ∈ F (2.25)

Theorem. The optimum solution of the p-phase LP is at most OPTf/p, where OPTf

is the optimal solution of the original problem’s LP.

Proof: Let the optimum solution of the p-phase LP be OPTp. From the strong

duality theorem, there is a dual feasible solution (α, β) for the p-phase dual of value

OPTp. (α, β) can be extended to a feasible solution for the original problem’s LP of

value p ·OPTp by the following transformations:
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1. ∀j ∈ C − Cp, αj := 0.

2. ∀j ∈ C − Cp, i ∈ F, βij := 0.

3. ∀j ∈ Cp, i ∈ Cp(j), βij := αj.

4. ∀i ∈ Ip, zi =
∑

j∈Cp βij �

The p-phase algorithm is identical to the primal-dual algorithm for the UFL in [35],

taking into account that only clients in Cp are considered, that free facilities, that

is facilities in Ip, have no opening costs and that for a client j ∈ Cp that is already

connected to a facility i ∈ Ip the connection cost is infinite, so as not to be reassigned

to it.

The final algorithm runs in two stages. In the first stage, starting from phase

p := k, it runs the p-phase algorithm until there are no more unconnected clients.

So, we a have a (I0, C0) feasible solution, where I0 is the set of temporarily open

facilities. Similar to [35], there may be some clients overpaying, that is, they may

have contributed towards the opening of more than one facilities. Exactly as in [35], a

maximal set of the temporarily opened facilities is picked to be permanently opened,

so as no client overpays. Following the steps in [35], clients are reassigned accordingly

to the maximal set and the other facilities close. Because the method is identical

to [35], this step guarantees that the new solution is at most thrice the original and

combined with the theorem, it becomes clear that this is a 3 · Hk-approximation

algorithm.

2.3 Combinatorial approaches

In [27], Guha, Meyerson & Munagala gave a constant factor approximation algo-

rithm by using the filtering and decomposition technique of [53], guaranteeing a

3.16-approximation. Afterwards they reduced it to 2.408 by applying a greedy lo-

cal improvement postprocessing step. However, their results were not on the strict

FTFL problem, but rather for a more general version of it, where the service cost

of a client j is a weighted sum of its distances to the rj facilities to which it gets

connected, weights being part of the input.

Swamy and Shmoys in [56] gave a combinatorial 4-approximation algorithm for the

FTFL problem before proceeding to the construction of a more complex randomized

version of it, yielding a 2.076-approximation. A key point to their analysis is the use of
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complementary slackness conditions. With the aid of these conditions they managed

to overcome the presence of terms with negative coefficients, while maintaining the

optimality properties of the dual solution.

Let (x, y) and (α, β, z) be the optimal primal and dual solutions, respectively, and

OPT their value. The primal slackness conditions are: xij > 0⇒ αj = βij + cij and

yi > 0⇒
∑

j βij = fi + zi. The dual slackness conditions are: αj > 0⇒
∑

i xij = rj,

βij > 0 ⇒ xij = yi and zi > 0 ⇒ yi = 1. Like Chudak & Shmoys’s algorithm

in [19] for the UFLP, Swamy & Shmoys observe that the optimal solution is α-close

(xij > 0 ⇒ cij < αj), based on the slackness conditions. Although initially it seems

that in order to reach an approximation, it is not enough to bound the cost by the

term
∑

j rjαj, due to the presence of the negative term −
∑

i zi in the dual objective,

the authors observe that slackness condition zi > 0 ⇒ yi = 1 implies that all those

facilities i for which the condition applies can be opened and thus add the opening

cost to the LP.

Considering each client j with requirement rj as consisting of rj distinct copies, the

algorithm consists of two phases, the allowing exploitation of the optimal LP solution

due to the slackness conditions and the second phase constructing the clusters:

Figure 2.1: Clustering step in phase 2 with j the cluster center. In this iteration 2

copies of j, 2 copies of k and 1 copy of l get connected. j and are l removed from the

input after this iteration - image taken from [56]

The cost of Phase 1 is bounded by
∑

j njαj −
∑

i zi. The proof is based on

complementary slackness conditions and specially on condition zi > 0 ⇒ yi = 1,
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Algorithm

Phase 1: Open all facilities with yi = 1 and define the set of these facilities as L1.

For every client j, if xij > 0 and yi = 1, connect exactly one copy of j to i. Let |nj|
be the number of the copies of j which got connected in this phase.

Phase 2: For every client j, let r′j = rj − nj the residual requirement of j and

Fj = {i : yi < 1, xij > 0} the set of facilities not in L1 that fractionally serve j. Let

S = {j : r′j ≥ 1}. Repeat the following steps until S = ∅:

1. Pick j ∈ S with minimum aj as cluster center.

2. Order facilities in Fj by increasing facility cost. Starting from the first facility

in Fj, pick M ⊆ Fj such that
∑

i′∈M yi′ ≥ r′j. If
∑

i′∈M yi′ > r′j, split the last

facility i in M , that is the farthest facility which serves j, in two copies i1 and

i2. Set yi1 = r′j −
∑

i′∈M\{i} yi′ and yi2 = yi − yi1 . For every client k, including

j, with xik > 0 set arbitrarily xi1k, xi2k such that xi1k + xi2k = xik, xi1k ≤ yi1 ,

xi2k ≤ yi2 . Include only i1 in M , so that now
∑

i′∈M yi′ = r′j.

3. Open the r′j least expensive facilities in M . For each client k, including j with

Fk ∩M 6= ∅, connect min(r′k, r
′
j) copies of k to these newly opened facilities and

set r′k := r′k −min(r′k, rj) and Fk := Fk\M . Remove j and facilities in M from

the process.
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meaning that each such i is in L1.

The facility opening cost in Phase 2 is bounded by
∑

i fiyi, which is straightfor-

ward since at each iteration, at most the r′j least expensive facilities are opened at

step 2. During Phase 2, if k(c) is a copy of k connected to facility i, then cik ≤ 3αk.

By adding the cost of Phase 1, the facility opening cost of Phase 2 and the con-

nection cost of each of the r′j copies connected in Phase 2, it follows that the above

algorithm returns a solution of cost at most 4 ·OPT .

2.4 A Dependent Rounding algorithm

As stated previously, Swamy and Shmoys in [56] presented a randomized version of

their original 4-approximation combinatorial algorithm for the FTFL problem. The

randomized version gave a 2.076-approximation and was based on clustered random-

ized rounding, a technique that was first used by Chudak and Shmoys in [19].

In [15] presented a 1.725-appoximation algorithm, which gives the best to date

approximation for the FTFL problem. It is a randomized dependent LP-rounding

algorithm, expanding on the clustering and introducing a novel hierachical cluster-

ing method, based on laminarity properties. They were also the first to apply the

dependent rounding technique on a facility location problem. As a note, dependent

rounded is a very promising and adaptable technique, first employed by Gandhi,

Khuller, Parthasarathy & Srinivasan in [22] on bipartite graphs and later generalized

by the same authors in [23] to encompass a broader range of approximation problems.

Below follows a quick overview of this techique.

The dependent rounding techique is, in essence, a polynomial-time randomized

algorithm which takes as input a fractional vector y = (y1, y2, ..., yN) ∈ [0, 1]N and

returns a random vector ŷ ∈ {0, 1}N satisfying the following properties:

• (P1): marginals. ∀i, Pr[ŷi = 1] = yi

• (P2): sum-preservation. Pr[
∑N

i=1 ŷi = b
∑N

i=1 yic or d
∑N

i=1 yie] = 1

• (P3): negative correlation. ∀S ⊆ [N ],Pr[
∧
i∈S(ŷi = 0)] ≤

∏
i∈S(1 −

yi), and Pr[
∧
i∈S(ŷi = 1)] ≤

∏
i∈S yi

Byrka et al. devised a hierarchical clustering method, which returns a laminar
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family of subsets of facilities1, in order to ensure property (P2) and thus apply the

dependent rounding techinque. So, since in the case of the presented algorithm, the

family of subsets of indices (facilities) S ⊆ 2[N ] is laminar:

(P2’): sum-preservation. Pr[
∑

i∈S ŷi =
∑

i∈S yi] = 1 and |{i ∈ S : ŷi = 1}| =

b
∑

i∈S yic .

Below follows a short overview of the final algorithm:

Algorithm Overview

Step 1. Solve the LP-relaxation.

Step 2. Scale the fractional solution.

Step 3. Create a laminar family of clusters (containing close facilities).

Step 4. Round the fractional openings yi via dependent rounding.

Step 5. Connect each client j to rj closest open facilities.

Step 6. Output the solution as (x̃, ỹ).

We proceed by a more thorough presentation, starting from the scaling Step 2.

Given (x*,y*) to be the OPT solution of the LP, set x̂ij = min{1, γ · x∗ij} and ŷi =

min{1, γ · y∗i }. For each facility i with ŷi = 1, set ŷi = 0 and ỹi = 1 and for each pair

(i, j) such that. x̂ij = 1, set x̂ij = 0 and x̃ij = 1 and decrease rj by one. When these

transformations are completed, call the resulting r, ŷ and x̂ by r̄, ȳ and x̄.

From now on, the algorithm only tackles r̄, ȳ and x̄. If a client j connected in this

initial phase to a facility i, care is taken so that it will not be re-connected throughout

the rest of the algorithm. Define a facility i as special for client j ỹi = 1 and 0 <

x̄ij < 1. There is at most one special facility for each client j and it will be at maximal

distance among facilities serving j in x̄ij.

Once again, Byrka et al. as in [13] use the concept of close and distant facilities.

Because of the scaling, for all clients j ∈ C it holds that
∑

i∈F x̄ij ≥ γ · r̄j. Let

1A laminar family F ⊆ 2V is a family of subsets of V such that for any A,B ∈ F :
A ⊆ B or B ⊆ A or A ∩B = ∅ .
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i1, i2, ..., i|F| be an increasing ordering of the distances cij to client j. Let ik such that∑k−1
l=1 x̄ilj < r̄j and

∑k
l=1 x̄ilj ≥ r̄j.

x̄
(c)
ilj

=


x̄ilj, for l < k,

r̄j −
∑k−1

l=1 x̄ilj, for l = k,

0, for l > k

where x̄
(d)
ilj

= x̄ij − x̄(c)
ilj

. Then:

• The set of close facilities of j is Cj = {i|i ∈ F s.t. x̄
(c)
ij > 0}.

• The set of distant facilities of j is Dj = {i|i ∈ F s.t. x̄
(d)
ij > 0}.

Afterwards a family S ∈ 2F of subsets of facilities is constructed, where each

subset S ∈ S is a cluster and each client j is related to at most one cluster (Sj).

Clients j with r̄j = 1 and a special facility do not take part in the clustering process,

while the remaining clients belong to C ′. For each j ∈ C ′, two families Aj and Bj of

disjoint subsets of facilities are considered, where Aj stores clusters containing only

close facilities of j and Bj stores only clusters that contain at least one close facility

of j. Initially, Aj = {{i} : i ∈ Cj} and Bj = ∅. Subsets in Aj ∪ Bj will always

be pairwise disjoint. Thus, the following routine describes the hierarchical clustering

method:

Algorithm of hierarchical clustering method

While exists j ∈ C ′ such that r̄j−
∑

S∈(Aj∪Bj)
∑

i∈S ȳi (≡ rrj) > 0, take j with minimal

distance from the farthest of its close facilities (d
(max)
j ) and do:

1. Take Xj minimal subset of Aj such that
∑

S∈Xj(
∑

i∈S ȳi − b
∑

i∈S ȳic) ≥ rrj.

Form new cluster Sj =
⋃
S∈Xj S and S ←− S ∪ {Sj}.

2. Update Aj ←− (Aj \Xj) ∪ {Sj}.

3. For each j′ with rrj′ > 0 do:

• If Xj ⊆ Aj′ , then set Aj′ ←− (Aj′ \Xj) ∪ {Sj}.

• If Xj ∩ Aj′ 6= ∅ and Xj \ Aj′ 6= ∅, then set

Aj′ ←− Aj′ \Xj and Bj′ ←− {S ∈ Bj′ : S ∩ Sj = ∅} ∪ {Sj}
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Therefore, when a new cluster Sj is created, it becomes the root of a new tree in

the laminar family. Due to triangle inequality and way of creating Bj from j′ with

d
(max)
j′ ≤ d

(max)
j , the following lemma holds:

Lemma 2.4.1. The family of clusters S contains for each client j ∈ C ′ a collection

of disjoint clusters Aj ∪ Bj containing only facilities within distance 3 · d(max)
j and∑

S∈Aj∪Bjb
∑

i∈S ȳic ≥ r̄j.

Consequently, the algorithm can proceed to Step 4., which opens the facilities

via dependent rounding, applying the following routine:

Algorithm for opening facilities via dependent rounding

1. While there is more than one fractional entry:

(a) Select minimal subset S ∈ S that contains more than one fractional entry.

(b) Apply the rounding procedure to entries of ȳ indexed by elements of S

until at most one entry in S remains fractional.

2. If there remanins a fractional entry, round it independently and let yR be the

resulting vector.

3. Combine the results: ỹ := ỹ + yR.

In the end, connect each client j ∈ C to rj closest opened facilities and code it in x̃.

The above algorithm guarantees a 1.7245-approximation for the FTFL problem and

the key to the analysis of bounding solution (x̃, ỹ) is that for a client j it is possible

that there is facility both close and distant. Once such a facility is opened, it is vital

to know the fraction of the demand that is served from the close facilities. To achieve

this, the authors in their proof toss an unbiased coin to decide if using this facility

counts as using a close facility.

Also, the writers developed two theorems useful not only for the analysis of this

specific algorithm but for fault-tolerant related objectives in general:

Consider a real vector λ = (λ0, λ1, λ2, ..., λ|S|) and any x ∈ {0, 1}n such that

gλ,S(x) = λi, where i = SumS(x) (that is, the number of entries in {xj : j ∈ S} that

are 1). Let R(y) be a random vector in {0, 1}N obtained by independently rounding

each yi to 1 with probability yi and to 0 with probability 1 − yi.Define ŷ the vector
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obtained via the dependent rounding. Then the following holds true:

Theorem 1. Suppose we conduct dependent rounding on y = (y1, y2, ..., yN). Let

S ⊆ [N ] be any subset with cardinality s ≥ 2, and let λ = (λ0, λ1, λ2, ..., λs) be any

vector such that for all r with 0 ≤ r ≤ s− 2 we have λr − 2λr+1 + λr+2 ≤ 0.

Then, E[gλ,S(ŷ)] ≥E[gλ,S(R(y)].

In other words, after dependent rounding, more elements of vector y will have

been rounded to 1. Also:

Theorem 2. For any y ∈ [0, 1]N , S ⊆ [N ], and k = 1,2,..., we have

E[min{k, SumS(ŷ)}]≥E[min{k, SumS(R(y)}].

Intuitively, this final result is important, because it combines the tractability of

independence with the benefits of dependent rounding, thus furthering the potential

applications of the dependent-rounding technique. By generalizing the result and

considering S as an arbitrary subset of the dependently rounded variables, all either

0 or 1, and an arbitrary integer k > 0, then in fault-tolerant settings, such as one where

X = |si ∈ S : si = 1| the number of the variables rounded to 1, and Z = min{k,X}
the random variable which we wish to ”maximize” without violating the ”constraint”

that X ≤ k, it is possible to replace X with X0, where X0 is the number of how many

variables would be rounded to 1 independently. Subsequently, if Z0 = min{k,X0},
then E[Z] ≥E[Z0], which allows working with Z0 instead of Z in bounding analyses

etc., where Z0 can be handled more easily due to the independence, while preserving

the desired properties of dependent rounding.
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Chapter 3

Other variants of Facility Location

Problems

Facility Location problems hold a prominent position amongst combinatorial opti-

mization, not only because of their challenging mathematical nature, but also because

they are closely related to many real world network design problems and needs of the

industry. Thus, there have arisen numerous variants of facility location problems,

each inspired by and trying to model a more specific real world scenario.

For example, it may not be required that all clients get connected to a facility.

In the case a client’s demand is not satisfied, a penalty (fee) is imposed. In [43] the

authors deal with linear and sublinear penalty costs, a case which we will presented

more thoroughly in this work.

Other variants impose limits on the resources. For instance, in the well-acknowledged

Capacitated Facility Location Problem, each facility i now can has an upper limit ui

on the quantity of products it can produce or, in other words, the units of service it

can offer to the clients’ demands. There are versions where this capacity is common

for all the facilities (i.e. [5]) or where one can open multiple copies of any facility

(i.e. [20]). Barahona and Jensen from IBM in [11] tackle another variant, which was

inspired by a real life parts warehousing problem. The special case where there is

no upper bound on any facility’s capacity (ui = ∞, ∀i ∈ F ) is, in fact, the classical

Uncapacited Facility Location Problem.

Furthermore, there are models which require a hierarchy in the structure of their

solution, in the sense that facilities (or the demanded service) are now divided into

levels, where each level (i.e. type of facility or connection type) may serve a different

need of a client or in order for a client’s demand of level k it is prerequisite that another
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need of level k − 1 is covered by another facility/connection of the appropriate type,

as for example may be the case in supply chains or, even more prominently, a cost-

effective placement of servers in a network. An extensive study by Sahin & Süral [51]

groups the various hierarchical facility location problems into categories depending

on: i) the flow pattern, ii) the service varieties, iii) spatial configuration and iv) the

objective. In this work we shall examine the simple k-level Facility Location Problem.

A presentation follows of some of the most noteworthy or representative variants

as sample of the vast field covered by facility location problems.

3.1 Universal Facility Location

The Universal Facility Location Problem can be considered as variant of the Capaci-

tated Facility Location Problem and was first introduced by Mahdian & Pál in [45],

alongside a (7.88 + ε)-approximation algorithm for the problem. The problem, in

essence, captures those cases where the opening cost of one or more installations on

a certain site depends on the location and is formally described as follows:

Typically, let C be the set of clients and F the set of facilities, with n = |C|
and m = F . Distances d(i, j) between client j and facility i follow the triangle

inequality and d(i, i′) is the length of the shortest graph between facilities i and i′.

The key difference from other models lies, as mentioned, in the definition of opening

costs: the associated opening cost for facility i is now a non-decreasing function

fi : N → R+, fi(0) = 0. In order to serve clients, capacities u are installed at each

facility site. A solution S = (u, x), where xij = 1 if client j is connected to facility i;0

otherwise, and ui ∈ N the capacity allocated to facility i, or equivalently the number

of clients connected to it, incurs a connection cost Cs(S) =
∑

i∈F ,j∈C d(i, j)xij and a

facility cost Cf (S) =
∑

i∈F fi(ui). The goal is to find a feasible solution minimizing

the total cost C(S) = Cs(S) + Cf (S).

In [7] Angel et.al. present the best known to date (5.83 + ε) approximation al-

gorithm for the problem, although in the case of concave facility costs Hajiaghayi

et.al. in [28] give a 1.861-approximation algorithm. Angel et.al. algorithm is based

on local search and stands out from previous local search algorithms on the problem

in defining a new, polynomially computable operation called Open− close. In short,

their algorithm uses the below operations:

• Add(s, δ): increase the capacity us of facility s by δ and find the minimum cost

assignment of demands to facilities, given their capacities.
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• Open(s, δ): increase capacity of s by sending δ units of flow from one or more

facilities i1, i2, .. to s via the shortest paths between i1, i2, .. and s and decrease

the capacity of i1, i2, ...

• Close(s, δ): decrease capacity of s by sending δ units of flow from s to one or

more facilities i1, i2, .. via the shortest paths between i1, i2, .. and s and increase

the capacity of i1, i2, ...

• Open−close(s, t, δs, δt): increase the capacity of s by δ and decrease the capacity

of t by δ. This operation also includes the exchange of flow units to and from

other facilities i1, i2, ... from and to, respectively, t and s, again via shortest

paths.

Each operation takes polynomial time. Let S be an arbitrary feasible solution.

When no improvement in the solution can be made in order for the cost to by reduced

by at least εC(S), where ε > 0, the algorithm returns S. The process halts after at

most 1
ε

log C(S)
C(S∗) where S∗ is a global minimum. Although the solution returned by

the algorithm is not a local optimum, it is only (1 + ε) factor worse than the bound

of a local optimum. Thus, if the local optimum, according to the aforementioned

operations, can by bound by r times the global optimum, then the approximation

ratio of the algorithm is r(1 + ε).

3.2 Facility Location with Penalties

The Facility Location Problem with penalties was first introduced in [17] for linear

penalties (FLPLP), and in [29] for submodular penalties(FLPSP), where a set func-

tion P : 2D → R+ is considered submodular if P (X∩Y )+P (X∪Y ) ≤ P (X)+P (Y ),

with a primal-dual 3-approximation and an LP-rounding 2.5-approximation algo-

rithm, respectively. Facility Location with penalties follows exactly the same formu-

lation as the simple Uncapacitated Facility Location problem, with the exception that

it is not required that all clients are connected, incurring in that case a pj penalty

cost for each client j that does not get connected. The goal is to find a solution

minimizing the total opening, connection and linear/submodular penalty costs.

In 2013 Li et al. in [43] presented that best to date approximation algorithms

for both problems, yielding a 2-approximation ratio for the FLSP and a 1.5148-

approximation ratio for the FLPLP. In this work, they generalized results of Geunes
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et al. [24] on linear penalties to a framework for a class of covering problems (FLPs

can be considered falling in this category) with submodular penalties, where any LP-

based α-approximation for the original problem can be converted to a (1− ε−1/α)−1-

approximation algorithm for the counterpart with submodular penalties.

It should be noted that FLPSP and FLPLP are substantial different in their

essence, because linear penalty functions have properties which cannot be exploited

in the submodular case. Thus, algorithms for the FLPLP cannot be directly applied

to the FLPSP and the latter is harder to approximate than the former.

3.2.1 A rounding approximation for the FLPSP

The FLPSP can be described by the following LP relaxation:

minimize
∑
i∈F

∑
j∈D

cijxij +
∑
i∈F

fiyi +
∑
S⊆D

P (S)zS

subject to:
∑
i∈F

xij +
∑

S⊆D:j∈S

zS ≥ 1 ∀j ∈ D (3.1)

yi − xij ≥ 0 ∀i ∈ F , j ∈ D (3.2)

xij, yi, zS ≥ 0 ∀i ∈ F , j ∈ D, S ⊆ D (3.3)

(3.4)

where P (S) a nondecreasing submodular function and P (∅) = 0. Define (x∗, y∗, z∗)

the optimal fractional solution. The author in [43] consider the more general model

which captures a class of covering problems:

minimize ϕ(w) +
∑
S⊆D

P (S)zS

subject to: wj +
∑

S⊆D:j∈S

zS ≥ 1 ∀j ∈ D (3.5)

wj, zS ∈ {0, 1} ∀j ∈ D, S ⊆ D (3.6)

where wj denotes whether client j gets connected or not, S being the subset of

the rejected clients and P (S) the respective penalty cost. Term ϕ is an embedding

of subproblem φ satisfying the following assumption:

Assumption 1. There exists a function ϕ̄ : [0, 1]nc 7→ R+ such that:
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1. ϕ̄ is a lower bound on ϕ;

2. for any fixed w ∈ {0, 1}nc, there can be efficiently found a solution to φ(w) of

cost at most αϕ̄(w), where α ≥ 1 ;

3. the following optimization problem can be solved efficiently:

minimize ϕ̄(w) +
∑
S⊆D

P (S)zS

subject to: wj +
∑

S⊆D:j∈S

zS = 1 ∀j ∈ D (3.7)

wj, zS ∈ [0, 1] ∀j ∈ D, S ⊆ D (3.8)

Another assumption, based on the scaling property from [24], necessary for the

central theorem of the paper:

Assumption 2. The function ϕ̄(w) satisfies the scaling property if

ϕ̄(w) ≤ 1

1− β
ϕ̄(w∗), ∀w∗ ∈ [0, 1]nc ,∀− ≤ β < 1.

The following rounding algorithm, which is also based on Geunes et al. [24], is

one of the important results of the paper and serves as the, earlier mentioned, general

algorithmic frame for a class of covering problems with submodular penalties, yielding

an expected penalty cost of no more than δ−1
∑

S⊆D P (S)zS∗:

Algorithm 1

1. Solve the LP relaxation of Assumption 1 with optimal fractional solution w∗, z∗.

2. Select parameter β uniformly at random from interval [0, δ).

3. Reject the subset S := {j|1−w∗j ≥ β}, paying therefore the penalty cost P (S).

Construct variable w ∈ {0, 1}nc by setting w := I(D\S).

4. Find a solution to subproblem φ(w) and cover (serve) the remaining unrejected

elements (clients) in D\S.
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Theorem. For δ = 1−ε−1/α, the approximation ratio of Algorithm 1 is no more than

(1− ε−1/α)−1.

The subproblem ϕ(w) is generally NP -hard, so in the case of FLPSP, ϕ(w) is

the simple UFLP. So, if ϕ(w) is approximated by the best known to date 1.488-

approximation algorithm for the UFL from [42], then Algorithm 1 approximates the

FLPSP for no more than (1− ε−1/α)−1 ≤ 2.044. However, Algorithm 1 in its current

generic state ignores the fact that some unrejected clients may have paid fractional

cost for penalty. By including this case in the algorithm for the FLPSP and applying

the greedy algorithm from Jain et al. [32] instead of Li’s, the approximation ratio

drops down to 2.

3.2.2 A rounding approximation for the FLPLP

The FLPLP is described by the following LP-relaxation:

minimize
∑
i∈F

∑
j∈D

cijxij +
∑
i∈F

fiyi +
∑
j∈D

pjzj

subject to:
∑
i∈F

xij + zj ≥ 1 ∀j ∈ D (3.9)

yi − xij ≥ 0 ∀i ∈ F , j ∈ D (3.10)

xij, yi, zj ≥ 0 ∀i ∈ F , j ∈ D (3.11)

where zj denotes whether client j is connected or not. Let (x∗, y∗, z∗) be the

optimal solution to the LP. The authors prove the, intuitively logical, lemma, that

for every client j, if z∗j > 0 and x∗ij > 0, then pj ≥ cij - that is, if a client j is

(partially) served by a facilty i and in the same time is (partially) excluded from

the solution, then its connection cost is at most as large as its penalty (otherwise,

if the connection cost was strictly greater than the penalty, we could have excluded

that client to obtain a better than optimal solution, which is absurd). By following

closely Li’s analysis on a rounding algorithm which is very similar to Byrka’s [13],

with clustering and discerning the facilities into close and distant, just as Byrka,

and differentiating only the choice of cluster centers (for the FLPLP only unclustered

clients in Dγ =
{
j ∈ D|

∑
i∈F x

∗
ij ≥ 1

γ

}
are considered for cluster centers), then by

following Li’s analysis for γ from [42], the authors arrive to a 1.5148-approximation

ratio for the FLPLP.
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3.3 K-level Facility Location

Another variant of the standard UFLP is the k-level Facility Location Problem, for-

mally described for the first time in [3] by Aardal, Chudak & Shmoys in 1999. Interest-

ingly enough, the algorithm proposed in that paper, a 3-approximation LP-rounding

algorithm, still remains the best for the general k case. However, the algorithm in-

cludes a step where a LP relaxation with exponential number of variables needs to

be solved and, even if the ellipsoid method is applied, still the implementation of the

algorithm is impractical. Therefore, there have been attempts to devise combinatorial

approximations for the algorithm, which although fall behind the initial algorithm in

aspect of approximation ratio, they ran at least in strongly polynomial time. The

combinatorial algorithm which so far yields the best results was proposed in [4]. In

the general case where k tends to∞, the approximation factor tends to 3.25, while for

the special cases where k = 2 and k = 3 it succeeds an approximation guarantee even

better than that of Aardal, Chudak & Shmoys, with a guarantee of roughly 2.4211

and 2.8446 respectively.

In [39] Krishnaswamy & Sviridenko prove that there is no polynomial algorithm

for the k-level uncapacitated facility location problem with approximation ratio less

than 1.61 unlessNP ⊆ DTIME(nO(log logn)). Specifically for the case where k = 2 the

best attainable ratio becomes 1.539, thus proving that the problem is computationally

harder than the simple UFLP.

The k-level Facility Location Problem can be described as follows: A complete

(k+ 1)-partite graph G = (D∪F1 ∪F2 ∪ ...∪Fk, E) is given, where the node set V is

the union of the D, F1, F2, ..., Fk disjoint sets and edge set E contains all the edges

between these sets. The nodes inD are the clients and the nodes in F = F1∪F2∪...∪Fk
are the facilities of level 1,2,...,k respectively. Connection costs are induced by a

metric c on V while opening costs follow the common pattern. The goal is to open

a subset Xt ⊆ Fk for each level t ∈ {1, 2, ..., k} and to connect each client j ∈ D
to a chain ϕ(j) = i1(j), i2(j), ...ik(j), where it(j) ∈ Xt, minimizing the total cost∑

i∈X1∪X2∪...∪Xk fi +
∑

j∈D
(
c(j, i1(j) + c(i1(j), i2(j) + ...+ c(ik−1(j), ik(j))

)
.

It is interesting to note that there exists a variation of the k-level Facility Loca-

tion with imposed penalties, presented in [9] and accompanied by a 4-approximation

algorithm.
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3.4 Fault-Tolerant Facility Allocation

The Fault-Tolerant Facility Allocation Problem (FTFAP) is a generalization of the

classical FTFLP and is first presented in [52]. This variant resembles the fault-tolerant

version, in the sense that each client j has a demand rj, and differentiates itself in

the aspect that on each site an unlimited number of facilities can be opened. Thus,

the following formulation for the problem:

minimize
∑

i∈F ,j∈C

cijxij +
∑
i∈F

fiyi

subject to:
∑
i∈F

xij ≥ rj ∀j ∈ C (3.12)

yi − xij ≥ 0 ∀i ∈ F , j ∈ C (3.13)

xij, yi ∈ Z+ ∀i ∈ F , j ∈ C (3.14)

A practical application of the FTFA problem is in surrogate server deployment

in a content distribution network, i.e. the installation of multiple ATMs at one site

in order to serve multiple clients simultaneously. The FTFA is less restricted than

the FTFL, given that it allows more that one facilities to be opened per site, thus

incurring a smaller total cost. In the case where the demand is equal to 1 for each

client j, the problem is identical to the classical UFL problem.

The authors prove that UFL ⊆ FTFA ⊆ FTFL. For the second inclusion

they consider the FTFA as a special case of an FTFL instance, where each site

has R copies of the facility i on that site, R the maximum demand rj amongst all

clients, or more formally, as a set F ′ of facilities distributed by groups such that

F ′ = F × {1, 2, ..., R}. It is observed that, although any FTFA instance could be

handled as a FTFL one via the above transformation and therefore employ any known

FTFL algorithm, the authors prefer to treat the FTFA instance as a transformed UFL

one, because algorithms for the latter can deliver a better approximation ratio than

the ones for the fault-tolerant setting. To attain the transformed UFL instance, as

facility set they consider F ′ and as client set C ′ = {(j, p), j ∈ C, 1 ≤ p ≤ rj}, where

(j, p) the p-th port of city j, under the restriction that different ports of a city must

be connected with different facilities. Because this constraint is nontrivial, FTFA is

harder to solve than UFL, hence leading to the first inclusion. The authors target

their work on how to tackle this constraint in order to derive better approximation

for the FTFA compared to the FTFL.
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The aim is to reach a primal-dual formulation so as to apply a greedy p-phase

algorithm closely resembling algorithms already presented for the UFL problem. Let

R = {1, 2, 3, ..., R} and set dummy clients for the unused connectivity requirements.

Following the UFL transformation described above, each client j has rj ports, each site

R facilities, and all ports must be connected. Let Cp = {j ∈ C : rj ≥ p} be the set of

clients that get their requirement satisfied by one unit in phase p. Variable ypi ∈ {0, 1}
denotes whether the p-th facility at site i is opened and variable xpij ∈ {0, 1} denotes

whether the p-th port of a city is connected with a facility at site i. This leads to the

following formulation of the FTFA:

minimize
∑
i∈F

∑
p∈R

(fiy
p
i +

∑
j∈C

cijx
p
ij)

subject to:
∑
i∈F

xpij ≥ 1 ∀p ∈ R, j ∈ C (3.15)∑
p∈R

ypi −
∑
p∈R

xpij ≥ 0 ∀p ∈ R, i ∈ F , j ∈ C (3.16)

xpij, y
p
i ∈ {0, 1} ∀p ∈ R, i ∈ F , j ∈ C (3.17)

Authors take special care in the second constraint, as it is not equivalent to the

UFL case where ypi ≥ xpij, ∀p ∈ R. That is, there can be a case ypi < xpij for some p,

meaning that the p-th port of client x can be connected to a facility opened on site i

in an earlier phase, as yi = 0 and xpij = 1. Thus, they define cost fpi = fi if an extra

facility needs to be opened on site i in phase p, and fpi = 0 otherwise. Consequently,

authors define a variable zpi ∈ {0, 1} to denote whether a new facility is opened on site

i in phase p, i.e. zpi = 1 if
∑

j∈Cp x
p
ij > 0 and zpi = 0 otherwise, and observe that since∑

p∈R z
p
i is not necessarily equal to yi, it can be defined as yi = maxj∈C

∑
p∈R x

p
ij.

This implies that the previous formulation can be rewritten as:

minimize
∑
p∈R

∑
i∈F

(fpi z
p
i +

∑
j∈Cp

cijx
p
ij)

subject to:
∑
i∈F

xpij ≥ 1 ∀p ∈ R, j ∈ Cp (3.18)∑
p∈R

zpi − x
p
ij ≥ 0 ∀p ∈ R, i ∈ F , j ∈ Cp (3.19)

xpij, z
p
i ∈ {0, 1} ∀p ∈ R, i ∈ F , j ∈ Cp (3.20)
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Accordingly, this is the dual of the above problem’s LP relaxation:

maximize
∑
p∈R

∑
j∈Cp

αpj

subject to:
∑
j∈Cp

βpij ≤ fi ∀p ∈ R, i ∈ F (3.21)∑
p∈R

αpj − β
p
ij ≤ cij ∀p ∈ R, i ∈ F , j ∈ Cp (3.22)

αpj , β
p
ij ≥ 0 ∀p ∈ R, i ∈ F , j ∈ Cp (3.23)

According to weak duality theorem, it is enough to find an effective algorithm

producing a feasible solution to the dual problem. The authors decompose the prob-

lem into R sub-phases and in each sub-phase p they consider the group of city ports

p, where Cp = {j ∈ C, rj ≥ p} with vectors Xb =
∑b

p=1 xp and Yb =
∑b

p=1 yp,

1 ≤ b ≤ R, establishing one connection for each city j in Cp. As in [32], the cost-

efficiency of a star is defined as eff(i, p, C ′) =
fpi +

∑
j∈C′ ci,j

|C′| , where fpi is the cost to

open a facility at site i in phase p and C ′ the set of clients participating in the star.

Dual variables αpj and βpij can be used to find the most cost effective star; if the dual

variables of all unconnected clients get raised simultaneously, the most cost effective

star is the first (i, p, C ′) such that
∑

j∈C′ max(t − cij, 0) = fpi , where αpj = t and

βpij = max(t − cij, 0). A description of the p-phase Algorithm, closely reminiscent of

the first version of the JMS et al. [32] algorithm:

Algorithm for the p-phase

1. Let U ⊆ Cp be the set of not fully connected cities, initially set U ← Cp.

2. While U 6= ∅:

(a) Find the most cost efficient star (i, p, C ′).

(b) Open a facility at site i if not already open, and connect to it all cities in

C ′.

(c) Set fi ← 0, U ← U\C ′.

This subroutine differs from the one used for the UFL in [32] that in each iteration

the feasibility of the solution needs to be maintained by assuring that Xp
ij ≤ Y p

i ,
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∀i ∈ F , p ∈ R, j ∈ Cp. Without loss of generality, the algorithm can set ypi ← 1 when

a new facility on site i is opened and xpij ← 1 when a new connection between client j

and facility i is established. So, in order to maintain condition Xp
ij ≤ Y p

i , three cases

are considered in the FTFA for any j ∈ Cp:

1. Xp−1
ij ≤ Y p−1

i : The feasibility of the solution is maintained if xpij ← 1. Then

there is no need to open a new facility on site i and, thus, fpi = 0.

2. Xp−1
ij = Y p−1

i and ypi = 0: A new facility need to be opened at site i in order to

connect client j, which means ypi ← 1 and fpi = p. The opening cost is shared

between a set of clients in C ′ that need to connect to that facility.

3. Xp−1
ij = Y p−1

i and ypi = 1: A new facility was opened at that site i in this phase

p by some previous clients in C ′ before j, meaning that xpij ← 1 and fpi = 0.

Consequently, the p-phase subroutine can be restated as follows:

Algorithm for the p-phase restated

1. Let U ⊆ Cp be the set of not fully connected cities, initially set U ← Cp

and t ← 0. Assuming ∀j ∈ U has rj ports with a credit associated with the

connection cost and which increases from zero simultaneously with time before

the port is connected, set apj = 0, ∀ ∈ U

2. While U 6= ∅, increase time t until one of the following event occur:

(a) A city j ∈ U has enough credit to be connected with an already opened

facility on site i, i.e. t = cij and Xp−1
ij ≤ Y p−1

i . In this case, Xp
ij ← Xp−1

ij

(b) A site i receives enough credit from cities in U to open it’s p-th facility,

i.e.
∑

j∈U max(t − cij, 0) = fi. In this case, C ′ = {j ∈ U : cij ≤ t},
Y p
i ← Y p−1

i + 1 and Xp
ij ← Xp−1

ij + 1 for any j ∈ C ′.

(c) A city j in U has enough credit to be connected to a newly opened (in this

phase) facility. i.e. t = cij. In this case, Xp
ij ← Xp−1

ij + 1.

3. For any city j ∈ U , set αpj ← t and remove city j from U if it got connected

with a facility in phase p.

The complete 1.861-approximation algorithm for the FTFA is the following:
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Algorithm for the FTFA

1. Initially X0 ← 0, Y 0 ← 0, C1 = C and p← 1.

2. While p ≤ R:

(a) Invoke the p-th phase Algorithm with input (Xp−1, Y p−1,F , Cp) and receive

output (Xp, Y p).

(b) Set p← p− 1.

3. Set x = XR and y = Y R.

For I and instance of the FTFA and p ∈ R a phase, let

λp,I = max
i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j

fi +
∑

j∈C′ cij

be the maximum cost ratio with respect to any star (i, p, C ′). The authors claim that

the cost of the solution in each phase p is equal to
∑

j∈Cp α
p
j and that the maximum

cost ratio λp,I is bounded by a constant λ for any phase p and any instance I of the

problem. Based on that, they prove the following theorem:

Theorem. If the p-th phase Algorithm fulfills the claim, then the complete Algorithm

for the FTFA is a λ-approximation to the FTFA.

The proof to the theorem is based on an inverse dual fitting technique, compared

to the one in [32], by composing an extra instance of the problem with same size as

the original, but different value for facility and connection cost, scaling up both costs

by factor λ (that is, f ′i ← λfi and c′ij ← λcij). Arguing that the inverse dual fitting

technique is more powerful in multifactor approximation analysis based on results by

the same authors, and because in the FTFA a client is involved in multiple stars, thus

assigning their costs to achieve balance between relevant stars, as would be expected

in the traditional dual fitting analysis, is rather complicated, the authors instead of

shrinking the dual variables prefer to use the unshrunk duals which are feasible to the

composed instance of the dual problem and achieve the λ approximation ratio based

on the claim, which in turn is proved using the following lemmas:

Lemma 1. For any instance I and phase p ∈ R,
∑k

j=h max(αph − cij, 0) ≤ fi holds

for any facility i and any client h, 1 ≤ h ≤ k.
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The lemma above covers the case where a new facility is opened and on how the

contribution is received. The following lemma guarantees a property concerning the

triangle inequality. Because only ports of the same rank are processed in each phase,

it is possible to derive the following property despite the fault-tolerant nature of the

problem:

Lemma 2. For any instance I and phase p ∈ R, αpj ≤ αph + cij + cih holds for any

facility i and clients h and j, 1 ≤ h, j ≤ k.

By evaluating λk, where λk the upper bound of the following factor-revealing LP

as in [32] the authors prove that their algorithm is an 1.861-approximation for the

FTFA.
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Chapter 4

Leasing Problems

4.1 The Parking Permit Problem

So far, we have examined models where the service nodes, once opened, can be indefi-

nitely used for no extra charge. The first problem in network design dealing with time

durations, is considered to be the Parking Permit problem. It is first introduced by

Meyerson in [48] and can be seen as a variant of the ski rental problem [12], a classic

problem in online algorithms. The Parking Permit is an online problem too, where

purchases have durations of various costs which expire regardless of their use, and is

thus labeled because of the real-world example presented by Meyerson: A commuter

has the choice to go to work either on foot or by driving. However, it is not known

in advance what he will opt for. On any driving day, he can apply for a parking

permit, picking from a set of parking durations and permits following the subadditive

property.

More formally, there are K different types of permits available to purchase, each

permit k with duration Dk days and cost Ck. The schedule indicating which are the

driving days is revealed one day at a time. The goal is to minimize the competitive

ratio α(K) of the cost paid in the online version to cover all days versus the offline

cost. Meyerson two observations on the nature of the problem, which would be later

applied by Nagarajan & Williamson in [50] to a more general infrastructure leasing

context:

Scaling Theorem. For each permit type 1 < k ≤ K, it can be assumed that Ck ≥
2Ck−1 and Dk ≥ Dk−1 by a loss of at most a factor of 2 in the competitive ratio

Interval Model Theorem. Assume a version of the problem in which each permit
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is available only over specific time spans and each permit of type k has Rk = Dk
Dk−1

permits of type k−1 embedded within. At any given time, there is exactly one possible

permit of type k to cover this time. Within a Θ(1) factor, any online algorithm for

this version of the problem is competitive for the original version, and vise-versa.

A deterministic approach for the ski rental problem, where the skis are rented

until the total rental payment equals the purchase cost and upon which point the

skis are purchased, yields a Θ(1) competitive ratio. An adaptation for the parking

permit problem, is the following: Consider the interval version of the problem. Each

time the commuter chooses to drive, a permit of type 1 is purchased, until a type 2

permit becomes available and the optimum solution would purchase a type 2 permit,

assuming we have seen so far the entire schedule. For any interval of type k, as

soon as the optimum offline solution would purchase this permit (only based on the

schedule seen do far), the proposed algorithm purchases it too. Meyerson proves that

the stated deterministic algorithm delivers an O(K)-competitive ratio for the parking

permit problem and, furthermore, that no deterministic algorithm whose competitive

ratio is dependent solely on the number K of permits can deliver better than Ω(K)

competitive ratio.

However, Meyerson obeserved that there is an equivalence between an online de-

terministic fractional solution and a randomized algorithm, thus designing a ran-

domized algorithm with memory based on the following theorem:

Theorem. There exists a randomized algorithm for the parking permit proble with

competitive ratio Θ(α(K)) iff there exists a deterministic fractional algorithm with

competitive ratio Θ(α(K)).

Consequently, a fractional algorithm can buy fractional permits, maintaining that

each driving day, the total sum of the fractional permits is at least equal to 1. In the

next page there is a description of the online fractional algorithm:

This online algorithm algorithm can be transformed to a randomized integral

algorithm using the method by which the previous theorem was proven. In the online

algorithm, it can be shown that each operation increases the fractional cost by at

most 2. Therefore, bounding the total number of operations also bounds the total

cost. The following theorems:

Theorem. The online fractional algorithm is O(logK) - competitive.

and
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Algorithm

1. Initially set all permits to 0.

2. If it is a driving day and the total sum of the fractional permits purchased for

this days is less than 1, repeat the following steps until the sum exceeds one:

(a) For each 1 ≤ i ≤ K multiply by a factor of 1 + 1
Ci

the fraction by which

the currently valid permit of type i is purchased.

(b) For each 1 ≤ i ≤ K increase the fraction by which the currently valid

permit of type i is purchased by adding 1
KCi

.

Theorem. Any randomized algorithm for the Parking Permit Proble has expected

competitive ratio at least Ω(logK) .

constitute the parking permit problem closed with respect to designing approxi-

mation algorithms with ratios dependent on the number of permits K. Meyerson also

gives results on delivering algorithms with competitive ratio dependent on durations

or costs:

Theorem. There is a deterministic algorithm for the parking permit problem obtain-

ing competitive ratio O(log Ck
C1

) and a randomized algorithm with expected competitive

ratio O(log log Ck
C1

).

Theorem. There is a deterministic algorithm for the parking permit problem obtain-

ing competitive ratio O(log Dk
D1

) and a randomized algorithm with expected competitive

ratio O(log log Dk
D1

).

It is worth noting that in the randomized lower bound, the ratio of durations is

quite large, allowing to choose Dk = 2k
2

and still return good results, the lower bound

still matching the upper bound.

Theorem. No deterministic algorithm for the parking permit problem can guarantee

a competitive ratio better than Ω(log Ck
C1

) and no randomized algorithm can guarantee

an expected competitive ratio better than Omega(log log Ck
C1

).

Theorem. No deterministic algorithm for the parking permit problem can guarantee

a competitive ratio better than Ω(log Dk
D1
/ log log Dk

D1
) and no randomized algorithm can

guarantee an expected competitive ratio better than Ω(log Dk
D1
/ log log Dk

D1
).
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4.2 Infrastructure Leasing Problems

In [8] Anthony & Gupta presented a novel variant of facility location introducing the

notion of time called Facility Leasing as part of a general framework for Infrastructure

Leasing problems. The problem can be described as follows: A set of clients D is

given and a set F of facility locations. There are distinct time periods from time 1 to

T and at each time period t, a subset Dt of clients that must be served by a facility

that is open at that time. There are K different l1, l2, ..., lK lease lengths available

and each facility iinF can be leased at any period t for lease length lk at a cost fki .

The lease cost can be dependent on both the facility and the lease type. Standard

metric connection costs c apply, satisfying the triangle inequality and dependent on

the distance between a client j and the allocated facility i. The goal is to minimize

the total connection and leasing costs while ensuring that for each time period t,

clients in Dt can be served by at least one open, at that period, facility.

Anthony & Gupta pointed out the connection between deterministic leasing prob-

lems and stochastic optimization problems and, consequently, how algorithms and

techniques designed for the latter can also be employed in the former, leading to the

following General Leasing Theorem:

Theorem 1. The offline leasing version of a subadditive combinatorial optimization

problem Π with |K| = k lease lengths can be reduced to the stochastic optimization

version of Π in the model of k-stage stochastic optimization with recourse.

where the k-stage stochastic optimization with recourse can be defined as follows:

The demand set D is revealed on day-k drawn from some known distribution π,

but on each of days 1, 2, ..., k1 we are given additional information about the set D.

This process can alternatively be viewed as having a joint distribution over signals

s1, s2, ..., sk1, each st received on the various days t ∈ {1, 2, ..., k − 1}, with actual

demand set some known function of this signals. The costs of elements change over

time, usually getting more expensive.

The following lemmas lead them to their next central theorem:

Lemma 4.2.1. Given any instance I of a leasing problem, I can be converted into

an instance I ′ in which the lengths of leases exactly divide each other (i.e., `i|`j for

i < j), and where the costs satisfy c(`j) < c(`i) × (`j/`i). Moreover, there is an

optimal solution to I ′ which has cost at most 2 times the optimal cost for I.
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Lemma 4.2.2. Given an instance I of a leasing problem, there is a solution which

has cost at most 2 times the optimum, where a lease of length ` is obtained only for

intervals of the form [t, t+ `) with t a multiple of `.

Graphically this can be represented as:

Figure 4.1: image taken from [8]

where on the left lies the solution and on the right the corresponding nested version.

Assuming without loss of generality that lease length l1 = 1 and that the solutions

are nested:

Theorem 2. Any offline problem Π in the above framework with |K| = k lease lengths

can be reduced to the standard k-stage stochastic optimization version of Π.

Consequently, [8] guaranteed for the Facility Leasing Problem anO(k)-approximation

algorithm.

4.3 The Facility Leasing Problem

The following year, in [50] Nagarajan & Williamson attempted a totally different ap-

proach and went over the O(log n) barrier, thus opening new potentials for the facility

leasing problem. By formulating the problem in its LP relaxation, they were able to

treat the problem as a generalized UFL and by altering the classical Jain-Vazirani al-

gorithm from [35] they produced a 3-approximation algorithm for the leasing version.

In order to express the problem in an LP-relaxation, Nagarajan & Williamson define

the following: Let L be the set of the available lease lengths, where L = K. They

extend the definition of a facility to a triple (i, k, t), where i is the facility location

starting a lease of duration lk at time t, meaning that i can serve clients arriving in

the time interval [t, t + lk). Let Ikt denote that time interval. In the same spirit, the

definition of a client is extended to a pair (j, t) where j ∈ Dt, Dt the set of client
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demanding service on time period t. Denoting the set of facility triples as F and the

set of client demand pairs as D, they give the following LP-relaxation:

minimize
∑

(j,t)∈D

∑
(i, k, t′) ∈ F : t ∈ Ikt′cijxikt′,jt +

∑
(i,k,t)∈F

fki yikt

subject to:
∑

(i,k,t′)∈F :t∈Ik
t′

xikt′,jt ≥ 1 ∀(j, t) ∈ D (4.1)

yikt′ − xikt′,jt ≥ 0 ∀(i, k, t′) ∈ F , (j, t) ∈ D (4.2)

xik′t,jt, yikt ≥ 0 ∀(j, t) ∈ D, (i, k, t), (i, k, t′) ∈ F (4.3)

The dual program is:

maximize
∑

(j,t)∈D

vjt

subject to: vjt − wikt′,jt ≤ cij ∀(j, t) ∈ D, (i, k, t′) ∈ F , t ∈ Ikt′ (4.4)∑
(j,t)∈D

wikt′,jt ≤ fki ∀(i, k, t′) ∈ F (4.5)

vjt, wikt′,jt ≥ 0 ∀(j, t) ∈ D, (i, k, t′) ∈ F (4.6)

where xikt′,jt denotes whether client (j, t) is assigned to facility (i, k, t′) and yikt′

indicates whether facility i is chosen to be opened at time t′ for lease length of type

k.

The algorithm proposed by Nagarajan & Williamson is identical to the Jain-

Vazirani primal-dual algorithm for the UFLP, following the same sequence of two

Phases and events. In the leasing variation, as client is considered now the pair (j, t)

and as facility set the set of facility triples F , while maintaining for the dual variables

that wikt′,jt = max(0, vjt − cij). Thus, if constraint (3.18) becomes tight for a facility

(i, k, t) ∈ F , then the triple (i, k, t) is declared temporarily open and define as T
the set of temporarily open facilities. Similarly, a client (j, t) contributes to facility

(i, k, t′) if t ∈ Ikt′ and vjt > cij and is considered connected to that facility if t ∈ Ikt′
and vjt ≥ cij. As in the original Jain-Vazirani algorithm, Phase 1 proceeds increasing

uniformly the duals of clients not connected to a temporarily open facility and ends

when there no more unconnected clients.
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Following the logic of the JV-algorithm, in Phase 1 a client may have contributed

towards the opening/leasing of more than one facilities/leases. In order to ensure

that each client contributes to only one facility lease, Nagarajan & Williamson con-

struct in Phase 2 a graph G(V,E) with V = T and an edge between to facilities

in V if there is client that contributes to both facilities. Although in [35] a random

maximal independent set in G is found, in the leasing version of the algortithm Na-

garajan & Williamson first order the temporarily open facilities in V = T according

to non-increasing lease lengths and then, following this ordering, greedily pick the

vertices/facility triples to construct the maximal independent set I. The aim is to

give priority to facilities with longer lease lengths and thus be able to bound the

returned solution. The constructed independent set I is maximal and, moreover, for

every temporarily opened (i, k, t′) ∈ T \I, there exists a facility (i, k, t) ∈ I adjacent

to it in G and with the same or longer lease length.

This final property is crucial in constructing a feasible solution. For each (i, k, t) ∈
I, Nagarajan & Williamson include three leases in the final solution: the initial

(i, k, t), (i, k, t+ lk) and (i, k, (t− lk)+), where (t− lk)+) = max(0, t− lk). Denote by

I ′ the final set of the above described leases, open those facilities in I ′ accordingly

and connect each client to the closest open facility. The figure below gives an overview

of why this is a feasible solution:

Figure 4.2: image taken from [50]

Consider a client (j, t). If it is connected to a facility (i, k, t′) ∈ I, assign the

client to that facility and consider (j, t) directly connected to (i, k, t′). If not, then

(j, t) is connected to a temporarily opened facility (̂ı,k̂,̂t)∈ T \I, and given that I is a

maximal independent set, this temporarily opened facility must be adjacent to some

(i, k, t′) inI. Client (j, t) can be indirectly connected to one of the three opened

facilities (i.e. (i, k, t), (i, k, t + lk) and (i, k, (t − lk)+)). This is possible, because

t ∈ [(t′ − lk)+, t
′ + 2lk).
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Proof: Since (̂ı,k̂,̂t) and (i, k, t′) are adjacent, there is some client (j̄, t̄) contributing

to both facilities. Therefore, t̄ ∈ I k̂
t̂
∩ Ikt′ . Also, lease length lk̂ cannot be longer than

lease length lk, due to the ordering of the facilities according to their lease lengths

prior to the construction of I. Thus, I k̂
t̂
⊆ [(t′ − lk)+, t

′ + lk) and client (j, t) can

indeed be serviced by one of the facilities (i, k, t), (i, k, t+ lk) or (i, k, (t− lk)+). �

Apart from this remark, Nagarajan & Williamson follow closely the analysis

in [35], which is already presented in Chapter 1 under the Primal-Dual schemas, to

conclude that their algorithm is a 3-approximation for the Leasing Facility Location.
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Chapter 5

Efforts

The introduction of the notion of time in the Facility Location problem opened up

a field of new possibilities in this research area. Motivated by this perspective, we

initially tried to tackle the Facility Leasing in a fault-tolerant setting. That is, we

maintained the natural description of the problem as it was stated in [50], but instead

of unit demand, we allowed clients to have multiple requirements per day, in the sense

that client j on day t had a demand to be connected to rjt different facility sites i

serving on that day t.

The problem was formulated as follows:

minimize
∑

(j,t)∈D

∑
(i,k,t′)∈F :t∈Ik

t′

cijxikt′,jt +
∑

(i,k,t)∈F

fki yikt

subject to: yikt′ − xikt′,jt ≥ 0 ∀(i, k, t′) ∈ F , (j, t) ∈ D (5.1)∑
(i,k,t′)∈F :t∈Ik

t′

xikt′,jt ≥ rjt ∀(j, t) ∈ D (5.2)

1 ≥ yikt ∀(i, k, t) ∈ F (5.3)

1 ≥
∑

(i,k,t′)∈F

xikt′,jt ∀(j, t) ∈ D, i ∈ Floc (5.4)

xikt′,jt, yikt ∈ {0, 1} ∀(i, k, t′), (i, k, t) ∈ F , (j, t) ∈ D (5.5)

leading to this relaxation:
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minimize
∑

(j,t)∈D

∑
(i,k,t′)∈F :t∈Ik

t′

cijxikt′,jt +
∑

(i,k,t)∈F

fki yikt

subject to: yikt′ − xikt′,jt ≥ 0 ∀(i, k, t′) ∈ F , (j, t) ∈ D (5.6)∑
(i,k,t′)∈F :t∈Ik

t′

xikt′,jt ≥ rjt ∀(j, t) ∈ D (5.7)

1 ≥ yikt ∀(i, k, t) ∈ F (5.8)

1 ≥
∑

(i,k,t′)∈F

xikt′,jt ∀(j, t) ∈ D, i ∈ Floc (5.9)

xikt′,jt, yikt ≥ 0 ∀(i, k, t′), (i, k, t) ∈ F , (j, t) ∈ D (5.10)

and its dual:

maximize
∑

(j,t)∈D

αjtrjt −
∑

(i,k,t′)∈F

zikt′ −
∑

(j,t)∈D

∑
i∈Floc

wi,jt

subject to:
∑

(j,t)∈D

βikt′,jt ≤ fki + zikt′ ∀(i, k, t′) ∈ F

(5.11)

αjt − βikt′,jt − wi,jt ≤ cij ∀(j, t) ∈ D, i ∈ Floc, (i, k, t′) ∈ F , t ∈ Ikt′

(5.12)

αjt, βikt′,jt ≥ 0 ∀(j, t) ∈ D, (i, k, t′) ∈ F
(5.13)

As one can see, we have added the condition 1 ≥
∑

(i,k,t′)∈F xikt′,jt∀(j, t) ∈ D, i ∈
Floc, where Floc is considered to be the set of facility sites, that is the set from which

the triplet (i, k, t) draws its first variable. This addition was done to ensure that each

unit requirement of client j on a day t would be satisfied by one and only facility site

i (and in the formulation of the IP, by one specific (i, k, t′)) and consequently, that

its requirement would be satisfied by rjt facilities on different site. In other words,

we avoided the case where a client would be mistakenly considered connected two

to ”different” facilities (i, k, t′) and (i, k′, t′′), i.e. connected to the same facility site,

but to different ”triplets”, that is to different combinations of lease lengths and lease

starting days by the same facility i.
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Variable wi,jt in the dual LP is corresponds to the addition of this condition.

As a means to better understand the properties and underlying structure of the

problem, we opted to approach the problem from a more traditionally combinatorial,

initially using the well studied primal-dual method, and later on the combinatorial

clustering by Swamy and Shmoys as presented in [56]. Along the road, we encountered

the following difficulties, all of which had to do with time-related issues.

To begin with, it soon became apparent that we could not find a way to use a p-

phase primal dual JV like algorithm in the fault-tolerant setting of the facility leasing.

A p-phase algorithm would include a subroutine which accepts a (Dp+1, Ip+1) solution

from a previous iteration of the subroutine, where according to usual notation Dp+1

are clients with requirement p+1 and Ip+1 the set of ”opened”/leased facility triplets,

and return a (Dp, Ip) having satisfied the group of clients (Dp+1) with maximum

residual requirement p by one unit, thus returning a solution (Dp, Ip) with now current

maximum requirement p according to the methodology used by Jain & Vazirani and

Nagarajan & Williamson. Now, imagine client j with residual requirement p on a day

t getting connected according to the subroutine in phase p to a facility i with a lease

length of k opening on day t′ - that is, connecting (j, t) to (i, k, t′). In the following

iteration (phase p− 1), the connections already used in (Dp, Ip) (the solution return

from the previous phase) are of infinite cost, so that we do not reuse them... But

what about the facilities? Normally, we would have Ip = F\Ip+1, that is, we should

exclude Ip from F so as to not ”release” the same triplets (i, k, t′) that are already

in Ip. However, this is not enough, because there is still the case that (j, t) gets

connected during phase p − 1 to the same facility i, just with different lease length

and/or starting lease time, for example (j, t) which got connected to (i, k, t′) in phase

p, in phase p− 1 could get connected to (i, k′, t′′) as long as t ∈ Ik′t′′ .
However, this is not what we wish for, since fault-tolerance means that client (j, t)

should get connected to a different facility site, not to facility i again. We could not

find an effective way to handle this, because we could not find a strategy that would

exclude facility triplets containing facility i and in the same time, provide a guarantee

for the bound of the returned resolution solution. Even by applying the Scaling and

Interval Model theorems mentioned in section 4.2, we could not reach to a bound or

a ratio for the solution returned by the p-th iteration, whereas in [34] and [50], for

example, the analysis of the approximation was based on the observation that the

optimum of p-phase LP is at most OPTf/p, where OPTf the optimal solution of the

original problem’s LP.
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Therefore, we tried to change perspective and modify the 4-approximation com-

binatorial algorithm presented in [56] by Swamy and Shmoys, described in section

2.3 . As in the original algorithm, our version would accept as input the dual op-

timal solution (α, β, ζ, w) and run in two phases, just like the algorithm in [56],

maintaining the same notation. Phase 1 run exactly as in [56], i.e. each facility

triplet (i, k, t) with yikt = 1 would be considered opened and included in L1. Ac-

cordingly, the cost of Phase 1 is proven to be
∑

(j,t)∈D njtαjt −
∑

(i,k,t′)∈ L1
zik′t −∑

i∈Floc:(i,k,t′)∈L1

∑
(j,t)∈D wi,jt.

Still following the notation in [56], plus maxL as the maximum lease length avail-

able, we changed Phase 2 as follows:

Step 1. Pick (j, t) ∈ S with minimum αjt as cluster center.

Step 2. Order the facilities in Fjt by increasing leasing cost. Starting from the first

facility in Fjt, pick M ⊆ Fjt such that
∑

(i,k,t′)∈M yikt′ ≥ r′jt. If
∑

(i,k,t′)∈M yik′t > r′jt,

split the last (i, k, t′) in M , in two copies (i1, k, t
′) and (i2, k, t

′). Set yi1kt′ = r′j −∑
i′,k,t′∈M\{i,k,t′} yi1kt′ and yi2kt′ = yikt′−yi1kt′ . For every client (j∗, t∗), including (j, t),

with xikt′,j∗t∗ > 0 set arbitrarily xi1kt′,j∗t∗ , xi2kt′,j∗t∗ such that xi1kt′,j∗t∗ + xi2kt′,j∗t∗ =

xikt′,j∗t∗ , xi1kt′,j∗t∗ ≤ yi1kt′ , xi2kt′,j∗t∗ ≤ yi2kt′ . Include only i1kt
′ in M , so that now∑

(ikt)∈M yikt = r(jt)
′.

Step 3. Open the r′jt least expensive facilities in M . For each (i, k, t′) of the opened

facilities, lease also the same facility i earlier for maxL duration, with the lease ending

exactly on time t′ and on release it on t′+k for maxL duration. For each client (j∗, t∗),

including (j, t) with F∩M 6= ∅, connect min(r′j∗t∗ , r
′
jt) copies of (j∗, t∗) to these newly

opened facilities and set r′j∗,t∗ := r′j∗,t∗ −min(r′j∗t∗ , rjt) and Fj∗t∗ := Fj∗t∗\{(i, k, t) ∈
F : yik′t′ > 0 and xj∗t∗,ik′t′ > 0, (i, k′, t′) in the r′jt least expensive facilities in M}.
Remove (j, t) and facilities in M from the process.

The cost of opening the least expensive facilities in Step 3 of the second phase

is at most 3 · maxL ·
∑

(i,k,t)∈F f
k
i yikt, based on the assumption that the leases are

subadditive and following the proof in [50]. Similarly, we also have cikt′,j∗t∗ ≤ 3αj∗t∗

for a copy of (j∗, t∗) connected to (i, k, t′) in Phase 2. However, we could not use the

above inequalities to derive to a bound on the total cost of the algorithm, due to the

presence of the negative term −
∑

(j,t)∈D, i∈Floc wi,jt. More specifically, we could not

associate the delivered cost of Phase 1 with the cost of Phase 2:
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The facility cost in phase 2 is at most 3·maxL·
∑

(i,k,t)∈F f
k
i yikt ≤ 3·maxL·OPT =

3 · maxL ·
∑

(j,t)∈D r
′
jtαjt + (

∑
(j,t)∈D njtαjt −

∑
(i,k,t′)∈F zikt′ −

∑
i∈Floc

∑
(j,t)∈D wi,jt).

The connection cost of (j, t) is the connection cost for the njt copies connected in

Phase 1 added to the connection cost for the rjt′ copies connected in Phase 2. Each

copy of (j, t) connected in Phase 2 incurs a connection cost of at most 3αjt. Hence, the

total cost is bounded by (cost of phase 1) + (facility cost in phase 2) + (connection

cost for r′jt copies in phase 2)

≤ (
∑

(j,t)∈D

njtαjt−
∑

(i,k,t′)∈ L1

zik′t−
∑

i∈Floc:(i,k,t′)∈L1

∑
(j,t)∈D

wi,jt) + 3 ·maxL ·
∑

(i,k,t)∈F

fki yikt

+ 3
∑

(j,t)∈D

r′jtαjt ≤ (
∑

(j,t)∈D

njtαjt −
∑

(i,k,t′)∈F

zik′t −
∑

i∈Floc:(i,k,t′)∈L1

∑
(j,t)∈D

wi,jt)+

3 ·maxL ·
∑

(j,t)∈D

r′jtαjt+(
∑

(j,t)∈D

njtαjt−
∑

(i,k,t′)∈F

zikt′−
∑
i∈Floc

∑
(j,t)∈D

wi,jt)+3
∑

(j,t)∈D

r′jtαjt

(5.14)

We comment that we can substitute
∑

(i,k,t′)∈L1
zikt′ with

∑
(i,k,t′)∈F zikt′ , because

of the complementary slackness condition zikt > 0 ⇒ yikt = 1, meaning that only

triplets members of the L1 can have positive variables z, whereas we cannot apply

the same for w, sine the dual conditions state wi,jt > 0 ⇒
∑

(i,k,t′) xikt′,jt = 1. This

permanence of L1 instead of F in the negative factor
∑

i∈Floc:(i,k,t′)∈L1

∑
(j,t)∈D wi,jt

means that we can not somehow group the result so as to bound the algorithm

solution with respect to the optimal value OPT =
∑

(j,t)∈D r
′
jtαjt + (

∑
(j,t)∈D njtαjt−∑

(i,k,t′)∈F zikt′ −
∑

i∈Floc
∑

(j,t)∈D wi,jt).

This problem is once again located in the time aspect of the leasing problem,

since the dual variable w corresponds to condition 1 ≥
∑

(i,k,t′)∈F xikt′,jt which was

introduced in order to assert that the same facility with different leases would not

count as multiple connections for a client on the same day. Observing that discerning

between leases of the same facility w.r.t. a certain client on one day was necessary and

that there was no obvious way we could somehow handle or ”hide” the negative term∑
i∈Floc:(i,k,t′)∈L1

∑
(j,t)∈D wi,jt, i.e. by somehow combining bikt′,jt and wi,jt, because

bikt′,jt’s are explicitly expressed in condition
∑

(j,t)∈D βikt′,jt ≤ fki + zikt′ .

Therefore, we decided to ”break” the leasing problem in an intermediate problem,

where leases would be continuous. We kept the same fault-tolerant setting as before,

where clients can have different demands per day, but leases now are considered

continuous, ie. a facility if chosen can be opened only in the beginning of time t0 and
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is open continuously until the day it is decided to be closed, thus ending the lease,

never to be opened again. If a satisfying algorithm were found for this problem, then

we could inverse it, i.e. if a facility were to be leased, then the leasing could start

any day, but should last till the end of time T , which is known. The goal was was

to come up with an approximate solution for the Fault-Tolerant Facility Leasing, by

combining those two subproblems and making some speculations on the permitted

lease types according to the Nested and Interval Model theorems.

The intermediate problem was initially modeled in the following relaxation:

minimize
∑

(j,t)∈D

∑
i∈Floc

cijxi,jt +
∑
i∈Floc

∑
t

t · fi · yit

subject to: yit − xi,jt′ ≥ 0 ∀(i, t) ∈ F , (j, t′) ∈ D : t′ ≥ t (5.15)∑
i∈Floc

xi,jt ≥ rj(t) ∀(j, t) ∈ D (5.16)

xi,jt, yit ≥ 0 ∀(i, t) ∈ F , (j, t) ∈ D (5.17)

where yit denotes ”how much” facility i is open on day t. However, this was substi-

tuted by the following more convenient LP formulation:

minimize
∑

(j,t)∈D

∑
i∈Floc

cijxi,jt +
∑

(i,t)∈F

gi(t) · yit

subject to: yit − xit,jt′ ≥ 0 ∀(i, t) ∈ F , (j, t′) ∈ D : t′ ≤ t (5.18)∑
(i,t′)∈F

xit′,jt ≥ rj(t) ∀(j, t) ∈ D (5.19)

1 ≥ yit ∀(i, t) ∈ F (5.20)

xit,jt′ , yit ≥ 0 ∀(i, t) ∈ F , (j, t′) ∈ D (5.21)

where variable yit still denotes ”how much” facility i is open on day t, and all the

g’s where gi(t) = fi(t) − fi(t − 1) can be considered already calculated in advance

for every i and t since the (i, t) are finite. The second version led to the following dual:
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maximize
∑

(j,t)∈D

αjtrjt −
∑

(i,t)∈F

zit

subject to:
∑

(j,t′)∈D : t≤t′
βit,jt′ ≤ gi(t) + zit ∀(i, t) ∈ F (5.22)

αjt′ −
∑
t : t≤t′

βit,jt′ ≤ cij ∀(j, t′) ∈ D, i ∈ Floc (5.23)

αjt, βit,jt′ ≥ 0 ∀(j, t′) ∈ D, (i, t) ∈ F (5.24)

However, neither for this intermediate problem did we manage to find an effective

approximation. Here follows an example of a proposed algorithm, starting from the

end day instead of the beginning, and the problems we encountered:

Let an instance of FTF with Continuous Leasing with total duration T and rjt

demand of client j on day t:

(algorithm presented in the next page)
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Algorithm for the FTF with Continuous Leasing

1. Let tcurr the latest day of the problem which has not been examined yet. Start

by setting tcurr ← T and repeat until days are over (ie. we have reached the

first day).

2. Run as subroutine an α-approximation algorithm for the Fault Tolerant Facility

Location problem with the following input:

• Consider as client set D the clients with positive demands on day tcurr.

As their respective demands, consider rj ← rjtcurr the demand of a client

j ∈ D.

• Consider set of facilities F the facility sites of the original FTF continuous

leasing problem, alongside the following opening costs:

If a facility i is already open, that is it had already been leased on a day

t > tcurr, consider then that it has zero opening cost fi ← 0, otherwise

consider that is has opening cost equal to the cost of leasing it up till day

tcurr, ie. fi ← fi(tcurr).

• Consider connection cost of client j ∈ D with facility i the same cij as in

the original FTF continuous leasing problem.

3. According to the solution returned by the α-approximation algorithm with input

the above described fault tolerant facility location instance, connect clients jtcurr

of the original leasing problem with the facilities to which the corresponding

clients j ∈ D connected according to this solution, and lease from the beginning

up till day tcurr whichever of these connected facilities were not already open

(ie. they hadn’t been already leased for a period longer than tcurr).

The above algorithm gives an αT approximation for the Fault Tolerant Facility

with Continuous Leasing.

To start with, the algorithm returns a feasible solution, since every client (j, t)

with demand rjt fully covers his daily demand via the solution returned by the α-

approximation algorithm fault tolerant facility location problem which we run on
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the subset of clients with positive requirements on day t.

As for the quality of the solution, let OPT ∗ the optimal solution for the Fault

Tolerant Facility with Continuous Leasing, SOL the solution returned by the above

algorithm and SOLt the solution returned by the α-approximation algorithm for the

FTF Location when run as subroutine on day t, according to the description given

in step 2 of the above algorithm. Also, consider OPT FTFLoct the optimal solution for

the FTF Location problem on day t as the instance is described in step 2.

We get that the combination of all the OPT FTFLoct solutions gives a feasible so-

lution to the original continuous leasing problem, since for every day t client (j, t)

connects to the rjt facilities of his demand while maintaining the connection costs cij

of the original leasing problem and also preserving facility leasing costs fi, since it

only adds cost to the solution once if facility i will be open till day t, ie. the leas-

ing cost fi(t) is only charged once and afterwards, for every day t′ < t it considers

facility i free. Thus,
∑T

t=1OPT
FTFLoc
t is a feasible solution of continuous leasing

OPT ∗ ≤
∑T

t=1OPT
FTFLoc
t .

It stands that SOL =
∑T

t=1 SOLt. Also, for every day t we have that

OPT FTFLoct ≤ SOLt ≤ α ·OPT FTFLoct and OPT FTFLoct ≤ OPT ∗

The last inequality needs some proving:Given that OPT FTFLoct is the optimal solu-

tion to the FTF Location instance on day t as decribed in step 2, solution OPT FTFLoct

cannot have a greater cost than OPT ∗, because some of the facilities used in the so-

lution, satisfying clients on that day, are considered as free, while in OPT ∗ we have

charged their leasing cost to some other day t′ > t, and even for those facilities that

solution OPT FTFLoct needs to open for a lease ending on day t, those facilities have

the same leasing cost fi(t) they would have in the original leasing instance too if

they were to be opened up till day t, so the subroutine can freely choose the free

facilties for a client if they are closer, ie. have smaller connection cost, and given that

connection costs are preserved, the incurred total cost OPT FTFLoct is indeed smaller

than OPT ∗.

From the above inequalities we get that SOL =
∑T

t=1 SOLt ≤
∑T

t=1 α·OPT FTFLoct

= α
∑T

t=1OPT
FTFLoc
t ≤ α

∑T
t=1 OPT

∗ = α · T ·OPT ∗.
Lastly, we also came across the following multi-leasing variant, where each lease,

even on the same facility location i, could count as a unit to satisfy the demand of

client j on day t, expressed with the following relaxation:
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minimize
∑

(j,t)∈D

∑
(i,k,t′)∈F :t∈Ik

t′

cijxikt′,jt +
∑

(i,k,t)∈F

fki yikt

subject to: yikt′ − xikt′,jt ≥ 0 ∀(i, k, t′) ∈ F , (j, t) ∈ D (5.25)∑
(i,k,t′)∈F :t∈Ik

t′

xikt′,jt ≥ rjt ∀(j, t) ∈ D (5.26)

1 ≥ yikt ∀(i, k, t) ∈ F (5.27)

xikt′,jt, yikt ≥ 0 ∀(i, k, t′), (i, k, t) ∈ F , (j, t) ∈ D (5.28)

and its dual:

maximize
∑

(j,t)∈D

αjtrjt −
∑

(i,k,t′)∈F

zikt′

subject to:
∑

(j,t)∈D

βikt′,jt ≤ fki + zikt′ ∀(i, k, t′) ∈ F (5.29)

αjt − βikt′,jt ≤ cij ∀(j, t) ∈ D, (i, k, t′) ∈ F , t ∈ Ikt′ (5.30)

αjt, βikt′,jt ≥ 0 ∀(j, t) ∈ D, (i, k, t′) ∈ F (5.31)

Essentially, it looks like the formulation for the Fault=Tolerant version of Facility

Leasing, but it lacks the fault-tolerant property because of lacking the condition which

guarantees that each unit demand should be covered by a different facility. This multi-

leasing formulation would make sense if it were considered the real-life analoque of

the problem, where a company wants to promote a product and contacts agencies

(aka. the facility sites i) which have as employees promoters each working on his own

shift (aka. the leases), with the purpose of borrowing the employees to promote the

product according to the needs of each day (the requirement analogue). In that case,

the company does not care if some promoters came from the same agency, as long as

they can cover their daily promotional schedule.
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However, it is easily proven that the above is identical to the Fault-Tolerant Fa-

cility Location problem, if we consider each client (j, t) as a distinct client j∗t with

requirement r∗jt = rjt, each facility (i, k, t) as a distinct facility i∗kt with opening cost

f ∗ikt = fki and connection costs c∗ikt′jt = cij if t ∈ Ikt′ or infinite otherwise.

69



Chapter 6

Conclusions

It is notable that the vast majority of the solutions proposed to numerous FL vari-

ants is heavily based the ground-techniques used in UFLP and FTFLP . Even more

prominent appears to be the impact of LP-based techniques, where in the general

case primal-dual methods are more robust than dual fitting, but with weaker approx-

imation results, whereas LP rounding and clustering algorithms seem to do better

exploiting the covering nature of the problem. Local search offers a more generic

approach, almost always guaranteeing results, albeit much weaker than those of the

LP-based algorthims.

It is interesting to point out here that, although linear programming has played

a key role in the study of algorithms for combinatorial optimization problems, es-

pecially in the case of the Uncapacitated Facility Location Problem, until recently

none of these powerful LP-based techniques, such as LP-rounding and primal-dual

schemas, had been successfully applied to the Capacitated version of the problem,

except for the special case where all facility costs are equal. Instead, local search

was the main technique to tackle the CFLP and it was not until 2014 that a linear

programming relaxation managed to successfully approximate the capacitated facil-

ity location problem in [6]. By employing theory from multi-commodity flows and

matchings, the authors arrived to a strong relaxation, with a constant integrality gap,

and thus were the first to achieve application of a strong LP-based technique such as

LP-rounding to the Capacitated version of the problem. Although their algorithm is

a 288-approximation, their result is important because it unlocked a means to employ

LP-based techniques to the CFLP. Consequently, with the addition of such a power-

ful tool as are LP-based techniques and the results concerning their applications on

approximation problems in general (i.e. [23]) , it remains open how usage of them
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could improve approximation ratios for the CFLP.

On the other side, the work from Kolliopoulos & Moysolgou in [36] and [37] do

not leave much space for essential improvement. They give negative results as far as

the ”computational quality” of a natural LP formulation for the Capacitated Facility

Location is concerned, wrapped up in the following theorem:

Theorem. Every approximate formulation for metric Capacitated Facility Location

that uses the natural encoding and has integrality gap at most g for some constant

g > 0, has 2Ω(n log n) constraints.

They furthermore strengthen the impossibility result by showing that the gap

remains unbounded with the addition of effective capacity inequalities or even sub-

modular inequalities to the relaxation for the Capacitated version, disproving this

way also a conjecture from [41]. The case of proper relaxations (the equivalent to

star-like LP relaxations in UFL) is also examined, with the same discouraging results,

although they find that there are proper relaxations with a gap of 1, when classes

(sets with an arbitrary number of facilities and clients together with an assignment of

each client to a facility in the set) are allowed to examine the total number of feasibly

openable facilities that is allowed in (classes of maximum complexity 1).

A contribution would be to take into consideration the real-world analogues of

facility location variants. For example, there are some practical aspects of FTF Al-

location open for future research. Suppose the scenario, i.e. in cloud service delivery,

where the downtime (aka the percent of time to rest) of links is predictable. In a net-

work where each serving node (facility) needs a fraction of time to rest, the downtime

is uniformly b for all facilities and the percent of time that a client j requires service

is bj, then that network design problem can be modeled as a FTFA instance with

rj = dbj/(1 − b)e, otherwise, if the downtime is unpredictable, rj = dlogb(1 − bj)e.
Either way, the algorithm proposed in [52] suitable. Nevertheless, if the downtime

is nonuniform, the constraints on connectivity become
∑

i∈F(1 − bij)xij ≥ bj for the

deterministic case and Πi∈F :xij=1bij ≤ 1 − bj for the stochastic case, both of which

remain open for future research.

As a last remark, the Leasing variants, where the notion of time is introduced,

are a promising, yet challenging field. They are hard to reduct to some already

known version of facility location problems, due to the addition of the dimension of

time. Furthermore, the generally straightforward tool to apply in various cases of

FL problem, the local search method, is not at all so straightforward in the leasing

71



case, as there is no obvious way on how it could be implemented, so as to work on

a multi-level local optima quest and grasp the dimension of time. A strategy could

be to embed time/the lease lengths into the distance metric, a device similar to the

one proposed in [49], where Meyerson et al. construct a Steiner tree which optimizes

the sum of edge costs on one metric and the sum of source-sink distances on another

metric, very much different in nature from the first one, as would be in our case the

metric of connection costs and possibly a metric encoding the leases. To date, there

has been no significant advancement in the Leasing aspect of the Facility Location

problems since the work of Nagarajan & Williamson, although there are still open

many core questions, such as whether the 3-approximation bound can drop or if there

can be constructed a constant factor approximation algorithm for the fault-tolerant

version.
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[29] A. Hayrapetyan, C. Swamy, and É. Tardos. Network design for information

networks. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, Jan-

uary 23-25, 2005. SIAM, 2005.

[30] D. S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical

Programming, 22(2), 1982.

[31] V. N. Hsu, T. J. Lowe, and A. Tamir. Structured p-facility location problems on

the line solvable in polynomial time. Oper. Res. Lett., 21(4), 1997.

[32] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility

location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM,

50(6), 2003.

[33] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location

problems. In STOC. ACM, 2002.

[34] K. Jain and V. V. Vazirani. An approximation algorithm for the fault tolerant

metric facility location problem. Algorithmica, 38(3), 2003.

[35] J. K. and V. V. V. Primal-dual approximation algorithms for metric facility loca-

tion and k-median problems. In Proceedings of the 40th Annual IEEE Symposium

on Foundations of Computer Science. IEEE Computer Society Press.

[36] S. G. Kolliopoulos and Y. Moysoglou. Exponential lower bounds on the size of

approximate formulations in the natural encoding for capacitated facility loca-

tion. CoRR, abs/1312.1819, 2013.

[37] S. G. Kolliopoulos and Y. Moysoglou. Sherali-adams gaps, flow-cover inequalities

and generalized configurations for capacity-constrained facility location. In Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain,

volume 28 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

[38] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search

heuristic for facility location problems. J. Algorithms, 37(1), 2000.

[39] R. Krishnaswamy and M. Sviridenko. Inapproximability of the multi-level unca-

pacitated facility location problem. In Proceedings of the Twenty-Third Annual

76



ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,

January 17-19, 2012. SIAM, 2012.

[40] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses.

(9), 1963.

[41] R. Levi, D. B. Shmoys, and C. Swamy. Lp-based approximation algorithms for

capacitated facility location. Math. Program., 131(1-2):365–379, 2012.

[42] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location

problem. In Automata, Languages and Programming - 38th International Collo-

quium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II,

2011.

[43] Y. Li, D. Du, N. Xiu, and D. Xu. Improved approximation algorithms for

the facility location problems with linear/submodular penalty. In Computing

and Combinatorics, 19th International Conference, COCOON 2013, Hangzhou,

China, June 21-23, 2013. Proceedings, volume 7936 of Lecture Notes in Computer

Science. Springer, 2013.

[44] J. Lin and J. S. Vitter. Approximation algorithms for geometric median prob-

lems. Inf. Process. Lett., 44(5), 1992.

[45] M. Mahdian and M. Pál. Universal facility location. In Algorithms - ESA 2003,

11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003,

Proceedings, 2003.

[46] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric

facility location problems. In Approximation Algorithms for Combinatorial Opti-

mization, 5th International Workshop, APPROX 2002, Rome, Italy, September

17-21, 2002, Proceedings, 2002.

[47] A. S. Manne. Plant location under economies of scale decentralization and com-

putation. (11), 1964.

[48] A. Meyerson. The parking permit problem. In 46th Annual IEEE Symposium on

Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh,

PA, USA, Proceedings, 2005.

77



[49] A. Meyerson, K. Munagala, and S. A. Plotkin. Cost-distance: Two metric net-

work design. In 41st Annual Symposium on Foundations of Computer Science,

FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA. IEEE

Computer Society, 2000.

[50] C. Nagarajan and D. P. Williamson. Offline and online facility leasing. In A. Lodi,

A. Panconesi, and G. Rinaldi, editors, Integer Programming and Combinatorial

Optimization, 13th International Conference, IPCO 2008, Bertinoro, Italy, May

26-28, 2008, Proceedings, volume 5035 of Lecture Notes in Computer Science.

Springer, 2008.
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