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We consider the approximation of two NP-hard problems: Minkowski Decom-
position (MinkDecomp) of lattice polygons in the plane and the closely related
problem of Multidimensional Subset Sum (kD-SS) in arbitrary dimension. In kD-
SS we are given an input set S of k-dimensional vectors, a target vector ¢ and we
ask if there exists a subset of S that sums to ¢. We prove, through a gap-preserving
reduction, that, for general dimension k, £ D-SS does not have a PTAS although the
classic 1D-SS does. On the positive side, we present an O(n?/€?) approximation al-
gorithm for 2D-SS, where n is the cardinality of the set and e bounds the difference
of some measure of the input polygon and the sum of the output polygons. Ap-
plying this algorithm, and a transformation from MinkDecomp to 2D-SS, we can
approximate MinkDecomp. For an input polygon () and parameter ¢, we return
two summands A and B such that A + B = @)’ with )" being bounded in relation
to @ in terms of volume, perimeter, or number of internal lattice points and an ad-
ditive error linear in € and up to quadratic in the diameter of (). A similar function
bounds the Hausdorff distance between ) and @)'. We offer experimental results
based on our implementation which is openly provided via Github.
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Chapter 1

Introduction

Factoring polynomials has a long history and is a fundamental tool in computer
algebra systems. This, and other related concepts, are the main motivation for
this thesis. We will briefly review some topics and approaches on this field and
then present our own results and ideas. These ideas concern the decomposition of
polygons that, through a theorem of Ostrowski, are related to the problem whether
a polynomial is reducible or not. Most algorithms use tools (like GCD and lattice
reductions) in order to find the coefficients of the factors. We will try to use a differ-
ent approach that initiated mainly in Gao and Lauder [GL01] and Gao [Gao01]. It
disregards the coefficients and uses the Newton polygon of a polynomial, namely,
if its Newton polytope has a Minkowski decomposition. To deal with this NP-
complete problem we propose an approximation algorithm. In this way, given a
polygon (), our approximation algorithm can return in polynomial time two poly-
gons A and B that their Minkowski sum almost equals to ). Apart from any ap-
plication in factorization, the problem of Minkowski Decomposition of polygons
(or polytopes) is significant on its own.

1.1 Historic overview

The topic of polynomial factorization is huge and has many different and interest-
ing cases: univariate or multivariate, in which field are the coefficients (Z, Q,F,),
whether the algorithms are deterministic or randomized. Here, we will just present
the progress in the field mostly in the last 40 years. Most of the material of this sec-
tion is from the surveys of Kaltofen [Kal85; Kal90; Kal92; Kal03], from the book of
Gathen and Gerhard [GGO03] and the references therein.

The first attempts on factorizing polynomials date back to Newton’s Arith-
metica Univesalis (1707) and later to the astronomer Friedrich T. v. Schubert who,
in 1793, presented a finite step algorithm to compute the factors of a univari-
ate polynomial with integer coefficients. In 1882 L. Kronecker rediscovered this
method and generalized it to factor polynomials with two or more variables and
coefficients in algebraic extensions. Another question is whether a polynomial can
be factored or not. A criterion for deciding irreducibility was given by F. G. Eisen-
stein in 1850 (for the history of this theorem check [Cox11]) and later (around 1920)
another criterion is attributed to A. Cohn [Mur(2]. In recent years generalizations
of Eisenstein’s criterion appeared, for example [Bro08; KS97].

The first computer algebra systems that appeared around 1963-4 implemented
the "almost a century old"-algorithm of Kronecker to factor a polynomial. The first
improvement came with Berlekamp in 1967 [Ber67] with a deterministic algorithm
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than can factor univariate polynomials in Z,, where p is prime, in time O(n®+prn?)
where n is the degree of the polynomial and r the number of actual roots. The
Berlekamp algorithm takes as input a square-free polynomial f(z) of degree n
and returns a polynomial g(z), with coefficients in the same field as f(x), that
divides f(z). Applying the algorithm recursively in g(x) eventually we will find
a decomposition of f(z) into irreducible polynomials. It was a great speed up
compared to previous methods.

The application of the Hensel’s lemma was introduced by Zassenhaus in 1969
[Zas69] in order to "lift" in k iterations a factorization modulo p to a factorization
modulo pzk. From then on Hensel’s lemma, or Hensel’s lifting lemma, became a
valuable tool in the field. Informally, the statement of the lemma says that if f(x) is
a polynomial with integer coefficients and f(a) is "small" compared to f’(a), then
the equation f(z) = 0 has a solution near a. Then we can use the lemma to "lift"
a root 7 mod p* of f(x) to a new root 7 mod p**! such that r = " mod p*; we
extend a factorization over F, to one over Z/(p*Z). In the coming years, from 1969
to 1976, many authors generalized and used Hensel’s lifting lemma for factoring
multivariate polynomials [Wan76; Tra76; WR76] or for multivariate GCD compu-
tations [MY73]. But even contemporary papers still use this powerful tool, for
example [SGLO4].

Around this time some randomized algorithm were proposed like the ones
from Rabin and Berlekamp [RR79]. A landmark randomized algorithm is the
Cantor-Zassenhaus algorithm that appeared in 1981 [DGC81] and can factor a
polynomial f(z) € F, of degree n into irreducible factors in time O(n?log p). This
algorithm, along with Berlekamp’s algorithm, are widely used and implemented
in most computer algebra systems.

Few years later another powerful algorithm made its appearance. The famous
Lensta, Lenstra, Lovasz (LLL) algorithm was published in 1982 [LLL82] and it was
the first polynomial time algorithm for factoring a univariate polynomial over Q or
Z. Since then it found many different applications. (Another problem that the LLL
algorithm is applied is the Shortest Vector Problem (SPV). The problem consering
us is a special case of the SPV and both will be formally defined later.) The LLL
algorithm can decompose an integer polynomial of degree n into irreducible non-
constant integer polynomials in time O(n?log B), where B bounds the lengths of
the coefficients. At that time, it was also shown that factoring a dense multivariate
polynomial can be reduced, in polynomial time, to univariate factoring [Kal82].
So, combining these two ideas, integer multivariate polynomials can be factored
in polynomial time. At this point (we are around 1985), we can say that dense
multivariate and univariate polynomials over the prime fields F, and Q can be
factored in polynomial time. But also, there are fields where the problem, even for
univariate polynomials, is undecidable.

In 1992 Gathen and Shoup developed new techniques that allowed to imple-
ment the Cantor-Zassenhaus algorithm so that it uses an expected number of
O(n?+°MW) 4pl+o) Jog p) operations in F, [GS92]. The first randomized subquadratic
algorithm is due to Kaltofen and Shoup [KS98] that uses fast matrix multiplication
and requires O(n'®'? log p) operation is F,. Two other randomized algorithm are
of Gathen and Gao [GGY94] and Kaltofen and Lobo [KL94]. Finding a deterministic
algorithm that runs in polynomial time in n» and log p (and not » and p) remains an
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open problem.

In 2002, Hoeij described a new algorithm for factoring polynomials over Q by
reducing the problem to an instance of Knapsack using power sums [Hoe02]. This
results was generalized by Belabas [Bel04] to number fields but non of this these
papers states a complexity bound. In [Bel+04] is it shown that this runs in polyno-
mial time.

For the case of multivariate polynomials the Zassenhaus and LLL algorithms
can be applied or Kaltofen’s algorithm that reduces the problem to univariate fac-
torization. Most recent improvements are the works of [S593; NY02] and also in
[GKLO4]. In 1985, Gathen and Kaltofen [GK85] gave two polynomial time algo-
rithms for factoring polynomials in two variables with coefficients in [F,: the first
algorithm is probabilistic with complexity O(n log p)°") and the second algorithm
is deterministic with complexity O(dp)°). The authors of [Bos+04] improved the
complexity bounds by a deterministic algorithm with complexity O(n“*!) and a
probabilistic algorithm with complexity O(n*) for factoring bivariate polynomials
with coefficients in F,, (2 < w < 3 is the matrix multiplication exponent in O(n*)
with the current record being w = 2.3728639 by [CW90; Gal14]). Another approach
of the problem is by Gao in [Gao03; Kal+08; SGL04] and additionally with a paper
that is closely related to and motivated this work in [GL01] along with [ET06].

Many of the previous algorithms give exact solution to factorization while
some of them offer approximate solution in the sense shown in the next example.

Example ( of approximate factoring by Kaltofen ). Input polynomial to factor: 81z* +
16y* — 6482* + 722%y? — 648x%y? — 288y? + 1296 = 0

Approximate solution: (922 + 4y? + 18v/22% — 36)(922 + 4y? — 18v/2222 — 36) = 0
that gives the polynomial:

8124 +16y*—648.0032* +722%9%+.0022° 22 +.001y? 2> — 64822 —288y? —.0072°+1296 = 0

Related to polynomial factorization is the problem of irreducibility testing, that
is to test a given polynomial if it can be factored in a given field. Some algorithms
use randomization to test irreducibility in the univariate case over a finite field
like Rabin’s algorithm in [RR79] that needs O(n?log nlog p) to test a polynomial of
degree n over a field IF,, (see also [GP97]). Polynomial time randomized algorithms
also exist for the multivariate case over some field (one is [Gat85]). In [Kal87]
Kaltofen presented an algorithm that tests dense multivariate polynomials over
large finite fields for irreducibility in deterministic polynomial time. In [GL04] Gao
and Lauder introduced an idea that does not involve computations in the given
tield by computations on the Newton polytope of the polynomial. Thus, it can test
a polynomial for absolute irreducibility in any field, not necessarily computable.

Our work is mainly motivated by these last mentioned results of Gao and
Lauder. In the papers [Gao0l; GL01; GL04] the authors consider the Newton
polytope of a polynomial and, using a theorem of Ostrowski, they can test if the
polynomial is reducible or not exploiting the properties of its Newton polytope.
Details on this approach will be given in the next chapters. So, we mostly attack
the problem of Minkowski Decomposition of polygons by an approximation algo-
rithm and try to use that to problems related to polynomials. In [SGL04; Sal04]
they consider the problem of factoring a polynomial f knowing that is decompos-
able and given two summands that their addition given the Newton polytope pf
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f. As it turns out this can be useful to us because our method always finds a de-
composable polytope and two summands. Of course, apart from factorization and
irreducibility testing, Minkowski decomposition is a natural problem and as such
it may be useful in other applications. For example, other topics that the problem
can find an application is Bezier patches [Gol03, chapter 8] or in implicitization
where, for example, we want to construct matrices for the sparse resultant of 3
bivariate polynomials [KGO03, section 10.3][EKZ15]. Or tropical geometry where
the concept of Minkowski sum (and thus its inverse Minkowski decomposition) is
fundamental [MS15].

1.2 Definitions-Preliminaries

We start with some very basic notions. We will give a simple definition of a poly-
nomial: a univariate polynomial f(x) € F, where F is an arbitrary field, is an
expression in the form

f(@) = anz™ + ap 12"+ arz + ag

where z is the variable (or indeterminate) and the constants a; € F. We can also
use the notation .
f(x) = Z a;x’
i=0

The degree deg f of a nonzero polynomial f is the largest n such that a,, # 0.
A multivariate polynomial with n variables f(xy,...,z,) € F can be written as

f(zo, ..., 2,) = Z i, g, .t

In the present work we will only deal with bivariate polynomials. In this case
a polynomial f usually is written as

flx,y) = Z @ijiﬂiyj
Y]

The degree of f(x,y) with respect to variable z is deg, f (or deg, f respectively)
and is the degree of the polynomial if we consider f as a univariate polynomial in
x and y as part of the coefficients. The total degree of a monomial z'y’ is i + j and
the total degree deg f of the bivariate polynomial f is the maximum total degree
of its monomials.

Let f(z,y) = > a;jz'y’ be a bivariate polynomial. For every term with a;; # 0,
the corresponding exponent vector (i, j) viewed in Z?, is called a support vector
of f. Define as Supp(f) the set of all supporting vectors of f

Supp(f) = {(i,j) | aij # 0}

The Newton polygon (or polytope for higher dimensions) P; of a bivariate
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(1,3) (1,3)
(3,2)
A

f=a3+y*+1 f=ap+2* +y*+1 =2+ 2%y +ay® + 2+ y

(24) (44) (24) (44)
f +ay + 2%y

[=2% + 2%y + by + 2%yt + 2 + P + oyt + 2%yt + 1

FIGURE 1.1: Examples of polynomials and their Newton polygons.
In the two last examples some monomials are interior points of Py.

polynomial f is the convex hull of Supp(F'). Sometimes we will also use the nota-
tion N P(f) to denote the Newton polygon of f,

NP(f)= Py = ConvHull(Supp(f))

Some examples can be seen in figure 1.1. Since coefficients are disregarded all
example polynomials will have coefficients either 1 or 0 for the terms missing. An
equivalent statement is that we consider bivariate polynomials over GF(2).

A polygon P is called integral or lattice polygon when all its vertices are points
with integer coordinates. All Newton polygons are integral polygons and every
integer point corresponds to a monomial of the polynomial.

For every polynomial f(xz,y) there is a corresponding Newton polygon P,
while a specific polygon can be generated by a number of different polynomials.
For a given integral polygon P C Z? we denote the family of polynomials that
generate this polygon with NP~!(P):

NP~ (P) = {f(z,y) | NP(f) = P}

Definition 1. The Minkowski sum (or addition) of two sets of vectors A and B in
Euclidean space is defined by adding each vector in A to each vector in B, namely:
A+B={a+blac Abe B}.

In figure 1.2 you can see two examples of the Minkowski addition of two poly-
gons.
The main problem related to this work is the following.

Problem 2. Minkowski Decomposition (MinkDecomp)

Given a lattice convex polygon P, decide if it is decomposable, that is, if there
are nontrivial lattice polygons A and B such that A + B = (), where + denotes
Minkowski addition. The polygons A and B are called the summands.
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4

31 2,2)
+ —
14 (3,2) 1
ERED; 2

oo S

FIGURE 1.2: Two examples of the minkowski sum of polygons.

The decision version of problem 2 (whether a polygons admits a Minkowski
decomposition) is proven NP-complete even for dimension 2 in [GLO1] using a
reduction from the Partition problem. Also in [GL01] the authors propose an algo-
rithm to solve the problem in pseudo-polynomial time depending on the number
of vertices and the maximum length of the edges. In [ET06] a different reduction
from Subset-Sum is given and an improved algorithm is presented with optimum
running time. For the reduction and more detailed analysis see section 3.2.

Our approach is motivated by Emiris and Tsigaridas [ET06] in the sense that
we will use the reduction from Subset Sum to solve the MinkDecomp problem
with an approximation algorithm. For this task we shall define an approximation
version of the problem.

Problem 3. MinkDecomp-/-approx

Input: A lattice polygon P, a parameter 0 < € < 1 and a function .

Output: Lattice polygons A, B such that 0 < u(A+ B) — u(P) < €- ¢(D), where
D is the diameter of P and ¢() a polynomial. We call such an output an € - ¢(D)-
solution.

For ;1 we will consider the functions vol(P): the volume, per(P): the perimeter
and latt_points(P): the internal lattice points of P (#(P N Z) but also we consider
dy (P, A+ B): the Hausdorff distance between P and A + B.

Let X and Y be two non-empty subsets of a metric space (M, d). We define
their Hausdorff distance dy (X,Y") by

dg(X,Y) = max{ sup inf d(z,y), sup inf d(z,y) },
zeX YEY yeYy X
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where sup represents the supremum and inf the infimum. In words, it is the longest
minimum distance from one set to the other. It is defined for point sets but can be
generalized for curves or surfaces by interpreting them as point sets.

A question is what bounds can we prove for other functions used to measure
the similarity of two polygons like Fréchet distance or turning functions. It turns
out that shape comparison is a big topic. For more information in shape matching
and comparison see [Ark+91; Vel01; VHO1; McCO08].

Now, the missing connection is a theorem by Ostrowski that links polynomials
and polytopes.

Theorem 4 (Ostrowksi [Ost76]). Let f,g,h € K|x1, %, ...,x,] and Py, Py, P, be their
respective Newton polytopes in R™. If f = gh then Py = P, + P,

The contrapositive of this theorem gives at once an irreducibility criterion,

Corollary 5 ([GLO04, cor. 2]). Let f € K|xy, 2o, ..., x,] and Py be its Newton polytope
in Z". If Py is indecomposable and [ is not divisible by any nonconstant monomial, then
f is absolutely irreducible over K.

Here absolute irreducibility means that the polynomial f is irreducible over the
algebraic closure of K. A polygon P is decomposable if there exist non-trivial lattice
polytopes A and B such that A+ B = P and by non-trivial we mean they cannot be
points. A point as Newton polytope corresponds to a single monomial. Thus one
method of detecting absolutely irreducibility of polynomials is to check whether
their Newton polytopes are indecomposable. This is one possible application of
our approach on MinkDecomp.

In section 3.2 we will present a reduction from MinkDecomp to the 2D Sub-
set Set problem. Here we will only just give the definition of the problem for &
dimensions and all further details are in chapter 3.

Problem 6. kD-Subset Sum (kD-SS)

Input: A vector set S = {v; | v; € Z*¥,1 < i < n,k > 1} and a target vector
t e Z".

Output: Decide whether there exists a vector subset S’ C S such that ) v, = ¢,
v; € S’

This is a generalization of the classical Subset Sum problem and as such it is
NP-complete.

1.3 Contribution - Organization

We introduce the k£D-SS problem. It is clearly NP-complete and we prove that it
cannot be approximated efficiently: for general dimension k it does not have a
PTAS (although the classic 1D-SS has). In the coming sections we propose two
algorithms to solve 2D-SS approximately. Using this algorithms and the reduc-
tion from MinkDecomp, we can use them to provide approximate solution to the
MinkDecomp problem. We prove that this solutions are bounded by some func-
tions on the polygons, like volume and perimeter, but also from the Hausdorff
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Bivariate Factorization

section 4
Ostrowski

MinkDecomp MinkDecomp-approx

Gao, Lauder

) section 3
section 2.2

2D8u&et Sum ——» 2D-SS-approx

section 2.1
kD-SS¢ PTAS

FIGURE 1.3: A sketch of the motivation and organization of this the-
sis.

distance. This is an approach to approximately decompose polygons. It is an sub-
ject of its own interest but our ultimate goal is to use this ideas on polynomials.

In the next chapter 2 we discuss the kD-SS problem. We present an inapprox-
imability result but also polynomial time algorithms that provide some kind of
approximation solutions. In 3 we use these algorithms to solve approximately the
MinkDecomp problem for polygons



Chapter 2

Multi-dimensional Subset Sum

The classic Subset Sum (SS or 1D-SS) problem is well studied and has many ap-
plications mainly in cryptography. In Subset Sum we are given a set of numbers S
in Z, a number ¢ € Z and we ask if there exist a subset of S such that its elements
sum to ¢t. This is a special case of the more general Knapsack problem that also
appears in cryptography frequently and elsewhere. Both problem are standard
NP-complete problems. We define a general version of Subset Sum where instead
of numbers we are given k-dimensional vectors.

Problem 7. kD-Subset Sum (kD-SS)

Input: A vector set S = {v; | v; € Z¥,1 < i < n,k > 1} and a target vector
tezk.

Output: Decide whether there exists a vector subset S’ C S such that > v; = ¢,
v; € S/.

This is a generalization of the classical Subset Sum problem and as such it is NP-
complete. Suppose the vectors in S are sorted in increasing vector length order and
let P, be the set of all possible vector sums that can be produced by adding vectors
from the first i vectors in S. Then, P, C Zj, is the set of all possible vector sums we
can produce by adding vectors from S.

Although 1D-5S and £ D-SS are NP-complete they are not strongly NP-complete
and both can be solved exactly is pseudo-polynomial time: 1D-SS is solved in
O(n|t|) [Cor+09] and, generalizing this idea, kD-SS is solved in O(n|M|*) [infor-
mation in Zir14], where M/ = max P, is the longest possible vector and | - | the
euclidean norm.

Given the same input, another question is to find the longest and shortest vec-
tor in P,. It seems that the longest vector problem can be solved in O(nlogn) or
O(n) if vectors are sorted. Probably finding the shortest vector is harder, as is the
shortest vector problem in lattices.

We care about an approximation approach and a fundamental concept are the
approximation schemes.

Definition 8. A PTAS (Polynomial Time Approximation Scheme) is an algorithm
which takes an instance of an optimization problem and a parameter ¢ > 0 and, in
polynomial time, produces a solution that is within a factor 1 + € of being optimal
for minimization problems, or 1 — € for maximization problems.

One further defines the classes EPTAS (Efficient PTAS) where time complexity
is polynomial in the input size (but can have any dependence on ¢) and FPTAS
(Fully PTAS) where the time complexity is polynomial in both input size and pa-
rameter e.
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We also say that a problem is in the complexity class PTAS (or just in PTAS) if
there is a PTAS for the problem. The same applies for EPTAS and FTPAS. The class
APX contains every problem that can be approximated within a constant factor c.

1D-SS is proven to be in FPTAS [IK75] when all numbers are positive (probably
not the case when we allow negative numbers) and improved algorithm are given
in [KPS97b; KPS97a]. Some related generalizations of the SS problem include the
Multiple SS Problem (MSSP) which is a special case of the Multiple Knapsack Prob-
lem: MSSP is proven not to be in FPTAS but it admits a PTAS [CKP98]. In MSSP
we are given multiple bins and we want to maximize the sum of the of the items
in each bin without exceeding its capacity.

Another, closely related problem, is the Multidimensional Knapsack Problem
(MKP) where each item has a k£ dimensional weight vector, a value and we must
maximize the value of the selected items that can fit in the multidimensional kna-
pasck. Firstly, this problem was proven not to be in FPTAS in [M(C84; KPP04] and
later this result was strengthened in [KS10] where the authors prove that the prob-
lem has no EPTAS. In the meantime it was known that MKP is in PTAS and such
algorithms appeared in [Cap+00; FC84]. On the other hand, for £ = 1, the classic
Knapsack is in FPTAS [Vaz01, chap. 8].

Although 1D-SS is a special case of the Knapsack problem it does not seem
that this is the case for higher dimensions. The definition of kD-S5-opt given here
makes the problem a minimization one while MKP is a maximization problem.
The optimum values are different in each case and probably this makes kD-SS-opt
harder to approximate.

Something similar holds for the SS problem. While 1D-SS is in FPTAS we will
prove that kD-SS cannot be approximated with any constant factor (is not in APX).

A similar problem to £D-SS is the well studied Closest Vector Problem (CVP):
we are given a set of basis vectors B = {by,...,b,}, where b; € Z*, and a target vec-
tor t € ZF, and we ask what is the closest vector to ¢ in the lattice £(B) generated
by B. Thisis £(B) = {> ", a;b; | a; € Z} and thus kD-SS is a special case of CVP
where a; € {0, 1} but we do not know if it easier to solve. CVP is not in APX and
cannot even be approximated within a factor of 2°¢' " with ¢ = (log(logn))® for
¢ < 1/2 [Aro+97; Din+03]. Less are known for the related Shortest Vector Problem
where we do not have a target vector ¢ but we try to find the shortest vector in
L(B).

2.1 kD-SS is not in APX

First, we must define an optimization version of the problem since approximation
schemes apply for optimization problems while k£D-SS is a decision problem.

Problem 9. kD-SS-opt
Given the set S and target ¢, find a subset of vectors 5" C S such that ) |
and

/
v, €S’ Vi = t

min dist (¢, ")

We are simply looking for the vector sum closest to our target. The distance
can be the euclidean ( /) or any other distance function.
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FIGURE 2.1: A decision and an optimization version of the problem.

For a different perspective, the question of the problem can also be stated as:
find the nearest neighbour of ¢ in P,.

To prove that kD-SS-opt is not in APX we will apply the idea used to prove that
CVP is not in APX [Aro+97]. We will change their proof and apply it to our prob-
lem to prove something similar for kD-SS-opt for general dimension k. Briefly,
in SAT we are given a CNF formula ¢ and we want a valuation of its variables
x1,. .., T, that make ¢ true. In the Set Cover problem we are given a ground set of
elements U, the subsets S; C U, i = 1,...,m and we want to find a collection of
the sets S; that cover all elements of /.

Proposition 10. [Bel+93] For every c > 1 there is a polynomial time reduction that, given
an instance ¢ of SAT, produces an instance of Set Cover {U, (Sh, ..., Sy)} where U is the
input set of integers and S, ..., Sy, are subsets of U, and integer K with the following
property: If ¢ is satisfiable, there is an exact cover of size K, otherwise all set covers have
size more than cK.

Given a CNF formula ¢ we invoke Proposition 10 and get an instance of the Set
Cover problem. This is a gap introducing reduction, because if ¢ is satisfiable then
the instance of Set Cover has a solution of size exactly K and if ¢ is not satisfiable
every solution has size at least cK for a constant c. From this instance of Set Cover
we create an instance for kD-SS that preserves the gap. Now, if ¢ is satisfiable, the
closest vector to a given target ¢ has distance exactly K. If ¢ is not satisfiable, the
closest vector in target ¢ has distance at least cK.

We reduce £D-SS to Set Cover for norm [, but this can easily be generalized to
any [,, where p is a positive integer since [, = (2} + 2} + - - - + 22)/? for a vector

(x1,22,...,2,). We say that a cover is exact if the sets in the cover are pairwise
disjoint.
Theorem 11. Given a CNF formula ¢ and ¢ > 1 we create an instance {v, ..., vn;t}

of kD-SS. If ¢ is satisfiable, then the minimum distance of a possible vector sum from t is
smaller than K otherwise, it is larger than cK.

Proof. Let {U,(S1,...,Sm), K} be the instance of Set-Cover obtained in proposi-
tion 10 for the formula ¢. We transform it to an instance of £D-SS with input set



12 Chapter 2. Multi-dimensional Subset Sum
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At —t] < K V't —t] > K

FIGURE 2.2: When ¢ is satisfiable there exists a vector sum close to
the target. Otherwise, all vector sums are far.

{v1,...,v,} and target ¢, such that the distance of ¢ from the nearest point in the
set of all possible points P, is either K or > cK.

Let v; € Z"™™, where [U| = n. We will create such a vector v; for every set .S;;
1 < i< m. Let L = cK. Then, the first n coordinates of each vector v; have their
j'th-coordinate (j < n) equal to L if the corresponding j’th-element belongs to set
S;, or 0 otherwise. The remaining m coordinates have 1 in the (n +7)’th-coordinate
and zeros everywhere else:

vi=(L-xs,0,...,1,...0)

where Y, is the characteristic function of the set S;. The target vector ¢ has in the
first n coordinates L and the last m coordinates are zeros, t = (L,...,L,0,...,0).

Now, let the instance of Set-Cover have an exact cover of size K. We will prove
that the minimum distance of every v € P, from target ¢ is less than K. Without
loss of generality, let the solution be {5y, ..., Sk}. Foreach S;, 1 <i < K, sum the
corresponding vectors v; and let this sum be ¢ € Z""™:

K
¢=> vi=(L...,L1,...,10,...0).
P ——— N —

n K m—

The first n coordinates must sum up to (L, L ..., L), because if one of the coordi-
nates was 0, the solution would not be a cover and if one of them was greater than
L, then some element is covered more than once and the solution would not be
exact. The key point is that in the last m coordinates we will have exactly K units
and everything else 0 since the size of the cover is K. The distance of this vector ¢
from ¢ is
| —t+ ¢l =10,...,0,1,...,10,...,0), = K
—— —— ——

n K m—K

Thus, there is a point in P, that its distance from ¢ is at most K. (Actually the exact
cover has distance exactly K).

Let us consider the other direction, where the Set Cover instance has a solution
set greater than cK = L. We will show that the closest vector to ¢ has distance at
least L from t. This solution must have at least cK' = L sets. As before, || —t+(||; >
L (this time the cover need not be exact).
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Towards a contradiction, suppose there exist sets 51, . . ., S, that the correspond-
ing vectors sum to a vector £ whose distance from ¢ is less than L:

L
szvi and || —t+¢[i <L
=1

If the sets 51, . .., S, donot form a cover of S then some element of I/ is not covered
and one of the first n coordinates of £ is 0 and this alone is enough for || —¢+¢|[; > L.
If the sets form a cover that is not exact, then one element is covered more than
once and at least one of the first n coordinates of £ will be greater than L and will
force || —t+£||; to be greater than L. Finally, if the sets form an exact cover, the first
n coordinates of || — ¢ + &||; will be 0. For the distance to be less than L, in the last
m coordinates there must be less than L units implying that the sets in the cover
are less than L contradicting our hypothesis.

In all cases, there cannot exist a vector whose distance from ¢ is < cK. l

Using this reduction we can state the next theorem.
Theorem 12. There is no APX algorithm for kD-SS-opt unless P=NP.

Proof. Let ¢ be a given formula as an instance of SAT. Use proposition 10 to get an
instance of Set Cover and then the reduction from theorem 11 to get an instance of
kD-SS. Suppose there exists an algorithm A for £ D-SS-opt that is in APX. A returns
a vector t’ such that ||t — ¢'||; < (14 ¢)OPT, where OPT = ||t — t*||; and t* is the
closest vector in P,. From theorem 11, if ¢ is satisfiable then OPT < K and if ¢ is
not satisfiable OPT > cK.

We must run algorithm A with a suitable parameter € so we can distinguish
if the optimum solution ¢* is within distance K or not. When ¢ is satisfiable we
would want (14+€) K < cK = e < c¢—1.Set ¢ < c—1, call A with parameter e = ¢
and let ¢’ be the returned vector. In the case where ¢ is satisfiable and OPT < K
we have

|t =]y < (14 €)OPT < cK

Of course if ¢ is not satisfiable for any ¢ we have that ||t — /[y > c¢K. Thus,
|t —t'|i < c¢K if and only if ¢ is satisfiable. Since ¢ is a constant and A is in APX
we can decide SAT in polynomial time. O

Although there can be no algorithm that returns an constant factor approxi-
mation solution for general dimension %k, we will present algorithms that provide
different kind of approximation. Specifically, the returned vector t' of our algo-
rithm is an (OPT + eM ) solution where M = max P, is the longest possible vector
sum.

2.2 2D-SS approximation algorithm

The initial motivation was to extend the already known FPTAS algorithm for 1D-
SS in the two dimensional case and provide an FPTAS for 2D-SS; partially this
failed . We are able to provide another type of approximation if we do not impose
any constrains to the input vectors. The FTPAS for SS restricts the input to positive



14 Chapter 2. Multi-dimensional Subset Sum

numbers and it can be found in many textbooks like [Cor+09, chap. 35]. We will
briefly describe it here.

Problem 13. 1D-SS-opt

Input: A set of n integers S = {a; | a; € N,i =1,...,n}, a parameter 0 < e <1
and a target ¢t € N.

Find a subset S’ C S that its elements sum to ¢’ and max(¢') while ¢’ < t.

The FPTAS for this problem creates the lists £; with the intermediate sums and
then trims each list by a parameter 6. That is, remove an element v € E; if there
w € E; such that w < v < (1 + §)w. For 6 = 2¢/2 this algorithms returns a solution
t' such that t' = (1 4 €)OPT in time O(n?logt/e). We try to apply the same idea of
trimming in the 2D case and see why this does not perform so well in that case.

Our input is the set S = {vy, va, ..., v,} with v; = (2;,9;) € Z* and target t € Z?
and we want to find S’ C S such that the vectors in S’ sum to t. Suppose that
vectors in S are sorted in increasing order according to their lengths. Also, P, is
the set of all possible vectors that can be produced by adding at most ¢ elements
from the first ¢ vectors in S. P, is the set of all possible vector sums.

2.2.1 An exact and exponential time algorithm

First we will describe an exact and exponential time algorithm for 2D-SS and then
we will modify that to take the approximation version.
Set the list £y = {0} and forall 1 <i <mn,

Ei = Eifl U{UZ—FUJ | w € Eifl}

and sort in increasing order.
The first few steps will give:
Eo = {0}
E1 = {07111}
Ey = {0,v1,v9,v1 + v}
E3 = {0, v1,v9,v3,v1 4+ vg,01 + U3, Vg + v3, V1 + Vo + U3}

At the end, E,, = P, and will contain all possible O(2") vector sums. From the
output £,, we can decide if there exist a vector sum equal ¢ or find a ¢’ that is closest
to t.

2.2.2 2D-SS approx

Now, in order to achieve polynomial time, at each step we will trim the lists E;
using an appropriate factor J, like the 1-dimensional FPTAS, and then add the
next v;+1. Let B, = L;_y U{w +v; | w € L;_; } be the list created at the beginning of
every step and that is about to get trimmed, L; = trim(E;, 0) is the trimmed list and
0 <0 < 1. The factor 4 plays a role in the running time, space and approximation
ratio. It depends on € and n and it will be set later.

At the beginning of the i-th step we create the list £; from the previous trimmed
list. Sort E; based on the lengths and call L, = trim(E;, §).In trim, for each vector
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FIGURE 2.3: a) A single cell for the dashed vector v. All vectors in the
cell will be deleted. The distances are shown and the furthest point

is in distance ad|v|. b) A few cells. The shorter the vector the smaller
the cell.

u € E; with length |u| and angle 6(u) from the z-axis, first copy u in L;. Then, from
the vectors v’ € E;, check only those v’ that have length

Jul < [u'] < (1+0)[ul (2.1)

If also
O(u) — 6 <O0(u') <O(u)+6 (2.2)

remove v’ from F;.

This two conditions, eq. (2.1) eq. (2.2), ensure that dist(u',u) < ad|u|, where
1 < a < 2is a constant. For every vector in the original list £; there is a vector in
the trimmed list L; that is not very far:

Vu € EFw € Lyt u=w+ 1y, |1y < adlw| (2.3)

hence, |w| < |u| < (1 + J)|w| (see figure 2.3). Function trim can be seen in pseu-
docode in algorithm 2 and the whole algorithm in algorithm 1.

Since all vectors have integer coordinates, any vector u € E; such that |u| <
1/ad implies that ad|u| < 1. Thus, the area around u does not contain any other
lattice points except u.

Algorithm 1: approx-2D-SS
input :SCZ? 0<e<1
output: all approximation points L,,
L():@
forv; € Sdo
Ei = Lz’fl U {Lifl + ’Ui}
Ll‘ = trlm(EZ, 6/271)
return L,
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Using algorithm 2 as the main procedure we have algorithm 1 that provides
approximate solutions to the 2D-SS problem.

Algorithm 2: trim
input : F CZ%0<6<1
output: a trimmed list L

sort(E)
forv, € F'do
i=1
while |vi, ;| < (1 + 9)|vk| do
L if O(vpgi) — 6 < 0(vi) < 0(vpys) + 0 then

remove vg,; from F
1=1t+1

return E

We will bound the size of the lists L; (|L;| = O(|E;|)) in order to bound the total
running time and the space requirements of the algorithm.

Lemma 14. Using the above notation, call function L; =trim(E;, §), with parameter § =
€/2n. It holds that |E;| = O(n%¢%log M,,) for 1 <i < n.

Proof. Let M; = maz{|u| : v € E;}, the vector in E; with the largest magnitude.
Every vector in E; has length between (1 + §)F and (1 + §)**!. These are circles
with center (0,0) and radius (1 + §), (1 4+ 0)?,..., (1 + §)* for some k. Every two
successive circles form an annulus that we call it a zone. We must cover all u € P,
and k is the minimum such that (1 + 6)* > M,,. Solving (1 + §)* > M, for k, there
are O(nlog M, /e) = O(n?/e) many zones that can be created.

Every zone is divided into cells. Each cell is taken in such a way that it will
cover 20 R of the inner circle of the zone, where R is the radius of this circle (fig-
ure 2.3a). Thus, every zone between the circles with radious R and (1 + §) R has at
most 2rR/0R = 4mn/e cells.

Since a list L; has at most an entry for every cell created in every zone, its size
can be at most (nlog M, /¢) - (47n/e) = O(n*e2log M,,). O

For function trim, the time required is | E;| to consider all vectors and, in the
worst case, we have to check each vector in E; with all the others leading to a
running time of T'(trim) = O(|L;|*). The running time for algorithm 1 is n -
T(trim) = O(n|L,|?) and overall, from lemma 14, it requires time O(n°¢~*log® M,),).
The algorithm only stores at each step the list L; so the space consumption is
O(n*e %log M,,).

Corollary 15. For § = ¢/2n, the running time of algorithm 1 is O(n°c¢*log®> M) and
space required is O(n?e 2 log M,,).

Our next task is to bound the approximation ratio. The goal was an (1 + ¢)
error but this is not the case for this algorithm. The actual bound we can prove
is eM can be seen in Corollary 17. This is a quite relaxed result but we are not
able to improve it at this time. As it seems, while for dimension 1 the problem
is easier, the 2 dimensional case immediately gets harder. The key difference is
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in the definitions of the problems. When we try to maximize the sum, in 1D-SS,
the optimum value is O(]t|]) whereas, in the minimization version of 2D-SS the
optimum value can be arbitrary small, way smaller than any vector length. One
can define a maximization version of the problem but this does not captures the
intuition we would like. An optimum, maximum length vector ¢’ can be opposite
to target ¢ and theit difference |t — ¢'| can be even 2|¢|.

Theorem 16. For a set of vectors S = {v; | v; € Z*, 0 < i < n}, every possible vector
sum v € P, can be approximated by another vector sum w:

Yo € P3w € Ly, 3ry €72 : v =w + 1y, |re| <ndM,
This also means that dist(u,w) < ndM,.

Proof. The proof is by induction. For the base step, it is easy to see that if we only
have one element the theorem holds. The induction hypothesis is:

Vo€ Py 13w € Ly 1,3ry, :v=w+ry, re] < (n—1)0M,_

Now suppose v € P, \ P,_1, because if v € P,_; the theorem holds straight from
the induction hypothesis. We write v as v = 2z + v,, z € P,_; and the induction
hypothesis holds for z, thus

dpe L, Frp:z=p+ry, |rp] < (n—1)0M,_. (2.4)

Since p € L,_ this means that p+v,, € £, and L,, = trim(E,). From the guarantee
of function trim we know that

dge L, :p+uv,=q+r, |1y <0lgl (2.5)

From egs. (2.4) and (2.5) we getv = z + v, = p + v, + 1, = ¢ + r4 + 1. This proves
that for v € P, there exists a vector ¢ € L, that approximates it; but how close are
they? We will bound the length |r, + ,|. From egs. (2.4) and (2.5),

Irpl < (n—1)dmax{L,_1} < (n—1)6M,
Iral < lal, ¢ € L = |rg| <M,
Thus
rg + 1y < |1l + |rp| < (n— 1)6M,, + 6M,, < néM.
]

Setting 6 = €/2n we can ensure that every vector will be approximated by a
vector in L,, at most eM,, far from the optimum. Again, OPT = mindist(t, P,).

Corollary 17. Given a vector t € 72, for § = €/2n there is w € L,, such that dist(t,w) <
OPT + €M,

Proof. Let v € P, be the vector sum that achieves the minimum distance from ¢,
its nearest neighbour, and OPT = dist(v,t). By theorem 16 and § = €/2n, exists
w € L, such that dist(v,w) < eM, thus dist(t,w) < OPT + eM,,. O
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FIGURE 2.4: If we consider
the maximization version of
the problem, the optimum
solution ¢* does not seem as
"optimum" as vector v.

To further illustrate the importance of how one defines the problem we will see
what happens in a maximization version. Now we want the vector v € P, that
maximizes |v| while |v| < |t|. This last condition can also be v, < t, and v, < t,
but it is equivalent. Let the optimum vector that maximizes the length be t*. See
in figure 2.4 that this setting is not what we usually would prefer.

If we restrict our input to only positive vectors (actually we want all vectors to
belong to one quadrant) and there are no short vectors, we can alter the proof of
theorem 16 and prove that

Vo € P, 3w € Ly, Iry v =w+ 71y, |1 < ndjw|

which also implies that |w| < |v| < (1+nd)|w|. Under the maximization definition,
and for 0 = €/n, this is a FPTAS algorithm because now OPT = |v|.

2.2.3 A grid based algorithm

It turns out that the same approximation ratio €M, can be achieved by a faster
algorithm that separates the plane into a grid. Instead of creating this different
annulus-slice cells we have a regular orthogonal grid where each square cell has
side d = eM,,/2n. Many thanks to Giinter Rote for the fruitful conversation.

Again we construct the lists £; and L; but the trimming is different. This time
every vector in a cell is represented by a vector in one of the corners of the cell. Let
the cell side length be d = ¢M,,/2n, and for each v(x,y) € E; store in the trimmed
list L, the vector with its coordinates rounded in the integer multiple of d:

vo(o) € B3uy) € L' = 3| =[]

and
eM,

n

dist(v,w) < V2d <

and the maximum value reaches when v and w are in the diagonal of the cell.

The whole grid has size 2/, and since d = €M, /2n the grid has O(M,,/d) =
O((n/e)?) cells. In the worst case we will have a vector in every cell and this means
that the time to traverse the lists E; at each step is O(n*¢~%). Since we have n lists
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FIGURE 2.5: For every t the returned vector is at most e M from the
optimum

the total running time of the new algorithm is O(n3¢~?) and the space requirements
are O(n%e2).

Also, every u € P, is the sum of at most n vectors from S. In the worst case we
"lose" d every time we call trim. In that case we lost at most nd = eM,,:

Yv € P,Jw € L, : dist(v,w) < eM,

A remark. There is a factor v/2 that we also omit it from our approximation.
This happens because the maximum distance inside a cell is not d but /2d. For
dimension k the minimum distance is v/kd and this affects the algorithm in higher
dimension (see section 2.3).

Corollary 18. The grid-based algorithm runs in time O(ne~?), requires space O(n?*e~?)
and returns a solution t' such that dist(t,t') < OPT + eM,,

2.24 Combining the two ideas

The first algorithm seems to approximate intermediate results better. For short
vectors that appear in some E; trims them according to their length. But has to
check the whole list E; in the worst case in order to remove close vectors. This
adds a quadratic factor to the running time. At this point we cannot exploit the
"better" approximation behaviour and the bound proven seems quite loose.

The second, grid-based algorithm "cuts" a constant d from every factor regard-
less of its length. If a vector has length 10,10° or 10° the algorithm will behave the
same. But it is faster because it does not have to check any other vector; for every
vector it sees it rounds it on the spot thus having linear time to the size of the lists.

What if we can combine the better aspects of these two approaches? The better
approximation behaviour of the first algorithm and the speed of the second. We
will keep the ideas of the first and try to trim every vector "on each own", mean-
ing that we will not check with the other vectors saving the quadratic factor (see
figure 2.6).

At step « we have the list £; and we will trim it with a factor §. We will consider
the polar coordinates of the vectors. For a vector v(¢, ) let ¢ = 6(v) be the angle
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T
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P5 — P4 > Ps—P3

FIGURE 2.6: How space is divided. The red vector is deleted and
replaces by the yellow one.

with the x axis and r = |v]| its euclidean length. Let v be a vector in E; and we will
change v to v' = (¢', 7). First round its angle in multiple of §:¢' = |¢/J]. Next we
will round its length. The idea is to round in such a way that shorter vectors are
approximated better than the long ones. Rounding to a multiple of some d does
not provide that.

For rounding the lengths we will construct an array A with all the acceptable
rounded lengths. The entries A are the lengths [1, (1 +9),..., (1 4+ §)] for the min-
imum ¢ such that (1 + §)" > M,. Solving this inequality, as in lemma 14, we get
that i = O(nlog M, /€) and this is the size of A. Now, for a vector v we just make a
binary search in A for |v| that returns the zone such that (1 +6)" < |v] < (1 + §)"™
and r’ = bin_search(A,|v|) = (1 4 0)".

The space is divided in O(d) = O(e/e) angles and O(n log M,, /€) different lengths.
Each F; has size O(n*¢ 2 log M,,); we save the quadratic factor but add a log | E;| for
the binary search. The whole algorithm runs in time

nlog M, n

O(n|E;|log |E;]) = O(n’e 2 log ) = O(n*¢ ?log E)

€
and provides the same approximation since Vv € E;, 3w € L; : dist(v,w) < €|lw| as
before.

So why all the fuzz? We just have a slower algorithm with the same bound.
We believe that the better behaviour of this algorithm can be suited for an average
case analysis that will prove that the algorithm provides a better approximation
ratio for the majority of v € P,. Also, maybe the binary search can be dropped and
use a method to round the lengths in O(1) time.

2.3 kD-SS approx

We will generalize the same algorithmic idea for arbitrary dimension £. The input
set of vectors is again S = {v;,v,...v,} but v; € ZF. It is easier to consider the
polar, or spherical, coordinates for each vector: every vectoris v = (r, ¢1, ..., ¢p_1)
where r = |u| is the magnitude and ¢, the angle with the i-th axis.
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The algorithm is almost the same. For v € E; consider all vectors v’ € E; such
that |u| < |u/| < (1 + 9)|u|. Let 6;(u) be the angle ¢; of u. Next check all angles, if
Vi:6;i(u) —d < 6;(v) < 0;(u) + 0, remove . This process leads to a similar result
as in eq. (2.3) although, now o depends on the dimension, o = ©(v/k) and

Vu € E;Fw € Ly - u=w+T7y, |7y S\/E(S\w\

This implies that |w| < |u| < (1 + Vkd)|w|.

The space is first divided by the lengths of the vectors creating O(n log M, /¢)
concentric spheres with center the origin. Then, every separation based on the
angles creates n/e new cells and for all £ — 1 angles this is O((n/e)*!). In total, the
size of the array E; can have O(n*e *log M,,) cells in the worst case. Because this
algorithm is quadratic in |E;| it becomes very slow quickly with a total running
time O(n**1e=2*log M,,)

If we separate the space in a grid with every cell having side length d = €M, /n
for each dimension we create at most M,,/d = n/e cells. We have k dimensions
therefore the size of the array is O((n/¢)*) and the total running time is O(n**'e").
The maximum length inside a cell is its diagonal with length dv/k. With this setting
every vector in F; is approximated by some vector in L, that is at most ev/kM, /n
far and every vector in P, can be approximated be some vector in L,, that is at most

eVEM, far. If we set d = €M, /(n\/d) the running time becomes O(n*+1v/& ¢ *) but
the approximation ration drops to e,,.

Corollary 19. For the problem kD-SS-opt the grid algorithm returns a solution t' such
that, either dist(t,t') < OPT + e/kM,, in time O(n**1e=*) or dist(t,t') < OPT + M,
in time O(n*+1e kEF/2),
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Chapter 3

Minkowski Decomposition

MinkDecomp has its fair share of attention. One application is in the factoriza-
tion of bivariate polynomials through their Newton polygons. As noticed by Os-
trowski in 1921, if a polynomial factors, then its Newton polygon has a Minkowski
decomposition. An algorithm for polynomial irreducibility testing using MinkDe-
comp is presented in [KMO8] motivated by previous similar work in [Gao01]. They
present a criterion for MinkDecomp that reduces the decision problem into a ques-
tion in linear programming. Continuing the work in [ET06, sections 4,5], we pro-
pose a polynomial time algorithm that solves MinkDecomp approximately using
a solver for 2D-5S. Here, we are interested in finding approximate solutions: poly-
gons whose Minkowski Sum is almost the original polygon.

Knowing if and how a polygon decomposes can be useful in other fields. Namely
implicitization where we have the parametric representation of an object and we
want to find its algebraic, or implicit, representation. Another topics can be tropi-
cal geometry where one operation can be the Minkowski sum of polygons and its
reverse is Minkowski decomposition.

The decision version of problem 2 (whether a polygons admits a Minkowski
decomposition) is proven NP-complete even for dimension 2 in [GL01] using a re-
duction to the Partition problem. Also in [GLO1] the authors propose an pseudo-
polynomial time algorithm to solve the problem in time O((nD)?). In [ET06] a
different reduction from Subset-Sum is given and an improved algorithm is pre-
sented with running time O((nD)?). This last bound is tight as can be seen in
[ETO6, sec. 2]. Here DE is the diameter of the polygon.

We will briefly present the NPcompleteness proof and in the next sections we
will describe an approximation algorithm for MinkDecomp. The algorithm takes
as input polygon @), transforms it into an instance {5, t} of 2D-5S-approx and calls
algorithm 1 for 2D-SS-approx. Then it takes the output and converts it into an
approximate solution to MinkDecomp.

An approach, apart from dynamic programming, to overcome the difficulty of
NPhard problems is to device approximation algorithms that return a near optimal
solution. For this task we will define the approximation version of MinkDecomp.

Problem 20. MinkDecomp-/-approx

Input: A lattice polygon P, a parameter 0 < ¢ < 1 and a function p.

Output: Lattice polygons A, B such that 0 < p(A+ B) — u(P) < €- ¢(D), where
D is the diameter of P and ¢() a polynomial. We call such an output an ¢ - ¢(D)-
solution.

For ;1 we will consider the functions vol(P): the volume, per(P): the perimeter
and latt_points(P): the internal lattice points of P (#(P N Z), but also we consider
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dy(P,A + B): the Hausdorff distance between P and A + B. Other functions
suitable for comparison of shapes is the Fréchet distance between curves and the
turning function of a polygon but we do not have results for these.

3.1 MinkDecomp is NP complete

Recall the definition of the problem and restrict it to polygons.

Problem. 2D-MinkDecomp

Given a lattice convex polygon P C Z?, decide if it is decomposable, that is, if there
are nontrivial lattice polygons A and B such that A + B = (), where + denotes
Minkowski addition.

Let P, <, P, denote a polynomial time reduction from problem P; to P.
Theorem 21. Partition <, 2D-MinkDecomp <, 2D-SS

Proof. Partition <, 2D-MinkDecomp

The input is set S = {a4,...,a,} of integers that > S = t and we want a subset
of S that sums to ¢/2. Sort the numbers in increasing order and create the vectors
v; = (a4, 1),Va; € A. Also, take n times the vector (0, —1) and two times (—t/2,0).
Notice that the sum of all these vectors equals (0, 0) and they form a polygon (see
figure 3.1). Suppose there is S’ C S such that |S'| = k and ) S’ = ¢/2. Take the
corresponding vectors v;, Va; € S’, k vertical vectors that sum to (0, —%) and one
horizontal vector that sum to (—¢/2,0). These sum to (0,0) and form a polygon
that is a summand of P.

On the other direction, if there is a summand A of P then (—¢/2,0) must be in
its edge sequence. Also, > s(A) = (0,0) and in order to achieve this there must
be vectors v; that sum to (¢/2, k) and k(0, —1) vectors. Note that the a; for every v;
add up to t/2 which means that the partition problem has a solution.

2D-MinkDecomp <, 2D-SS
Given a polygon P get its edge sequence s(P) and the set S as described. The set
S and target ¢ = (0, 0) are the inputs of 2D-SS. If there are polygons A, B such that
A+ B = Pthen ) s(A) =(0,0)and also }_ s(B) = (0, 0) so, there must be a subset
in S that corresponds to s(A) that sums to zero since s(A) C S. On the other hand,
if 35" C S such that > 5" = (0,0) we could take s(A) = S’ and form polygons A
and s(B) = S\ S’ for B that yield A+ B = P.

O

Since Partition is NP-complete both MinkDecomp and 2D-SS are NP-hard. Given
a solution to either of them is easy to check its correctness (Minkowski sum can be
done in linear time) making them both NP-complete.

3.2 Solve MinkDecomp Using 2D-SS

Let @ be the input polygon to MinkDecomp. First we create the vector set s(Q)
by subtracting successive vertices of () (in clockwise order): s(Q)) = {vo — v1,v; —
Va,...,U, — Up}. Each vector in s(@Q) is called an edge vector and s(()) the edge
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U3

FIGURE 3.1: The polygon from the reduction of 1D-SS to 2D-
MinkDecomp.

. .
!

FIGURE 3.2: An example where the polygon has 4 vertices but, with

the naive approach, its edge sequence 28 vectors. In a worst case, if

we are not careful, s(Q) could have exponential size compared to the
size of (). The actual s(Q)) now has only 12 vectors instead of 28.

sequence of (). For each edge vector in s(Q)) we calculate its primitive vector. It
is easy to see that if () is decomposable into A and B such that ) = A + B, then
s(Q) = s(A) U s(B). In words, the edges of () are exactly the edges of the two
polygons figure 3.3.

Algorithm 3: approx-MinkDecomp

input : Q, €
output: Q’

S = primitive_edge_sequence(Q)

s(A) = approx-2D-SS (5,(0,0))  //get the edge sequence for the two
summands

s(B) =S\A

A=get-points(s(A)) / /returns a polygon fom an input edge sequence

B=get-points(s(B))

return Q'=A + B

Definition 22. Let v = (a, b) be a vector and d = gcd(a, b). The primitive vector of
vise = (a/d,b/d).

We must construct the vector set S that will be the input to to 2D-SS solver.
Get an edge vector (z,y) € s(Q) and calculate its primitive vector e = (z/d,y/d),
where d = ged(z,y). We could create the set S by adding in it d times the vector
e for every v € s(Q)) but this may create a set S that has exponential size to the
number of edges of the polygon. For example the edge sequence of a rectangle can
be very large if we do it this way, see figure 3.2.
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Instead, we computer the scalars d, . . ., dj, by the following formulas

| |log, /2
di=2,i=0,... [logd/2)andd =d— > d;

=1

We create the set S from the vectors d;e and repeat the procedure for all vectors
v € 5(Q). Notice that 2% d; = d, so this edge sequence also sums to (0,0). (For
example, if d = 110 the scalars d; will be 1,2, 4,8, 16, 32,47 and every number be-
tween 1 and 110 can be expressed as a combination of these numbers.) Using this
construction, the vectors added are at most log d for every v € s(Q)), keeping the
size of S polynomial with respect to the number of edges of (). (Given a square
() with sides parallel to the axes, |s(Q)| = nlog D since the length of each side
is almost D.) The primitive edge sequence uniquely identifies the polygon up to
translation determined by v,. This is a standard procedure as in [GL01; ET06].

A simple heuristic can be introduced here. The idea is to increase the vectors in
s(Q) because this can give as more possible vector sums and thus more possible so-
lutions. Suppose that for an edge vector u € s(Q) its coordinates are co prime. This
edge cannot be separated to a smaller primitive vector. It has to be used in a sum
undivided. If we perturb its coordinates a bit, only by adding or subtracting 1, we
alter the vector slightly but we can now divide the edge at least one time but hope-
fully more. For example consider the vector u = (31,21) with length |u| = 37.44
that has no lattice point, its indivisible ged(u) = 1. If we change the coordinates
a bit, we can take the vector v’ = (33,21) instead that can be divided 3 times and
has length |v/| = 39.11 or the vector v” = (30, 20) that can be divided 10 times and
has length |u"| = 36.05. Since an approximate solution already contributes at most
eM,, adding such a small factor is negligible but can greatly increase the possi-
bilities of finding a better solution. Consider for example the case where no edge
contains lattice points and |s(Q))| = m. Using this heuristic each edge will be di-
vided at least once doubling the size of the new s'(Q)) and greatly helping towards
a possible solution. We cannot prove an actual improvement thus we regard this
technique a heuristic.

Now we can give this edge sequence of the polygon to the algorithm for 2D-
SS-approx with target (0, 0). If ) is decomposable in A and B such that A+ B = Q)
then ) s(A) = 0 since A is a closed polygon (the same for B) and s(A) C s(Q).
Thus, there exists a subset of s((Q) that sums to (0,0). See also theorem 21 for the
reduction to 2D-5S. The main defect in this approach is that the approximation
algorithm returns a sequence of vectors S’ C S that sum close to the origin but
probably not exactly to (0,0). This means that the corresponding edge sequence
does not sum to (0, 0) and does not form a closed polygon. To overcome this, we
add the missing vector to force the sequence to sum to zero (figure 3.4).

If s(A) sums to a point (a,b), by adding vector v = (—a, —b) to s(A) the edge
sequence s(A) U {v} now sums to (0,0). If we rearrange the vectors by their an-
gles, they form a closed, convex polygon that is summand A. We do the same
for the sequence s(B). The vector added in s(B) is —v = (a, b) and this sequence
(rearranged) also forms a closed, convex polygon. We name s(A4’) = s(A) U {v},
s(B') = s(B) U {v} and take their Minkowski Sum @)’ = A’ + B/, where A’ and B’
are the convex polygons formed by s(A’) and s(B’). We measure how close @)’ is
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(%)

V1 U3 V2 'UII V3 — Vg

2
Wz

FIGURE 3.3: How from a polygon @) we get its edge sequence s(Q)
and transform it to an instance of 2D-SS. See that s(A) + s(B) = s(Q).

to the input ). Let D be the diameter of (), the maximum distance between two

vertices of ().
S(A)Z :U o

FIGURE 3.4: Two examples for two polygons (). Their summands

are shown and the red vector v is the new vector added to fill the

gap. At the end, the new polygon @’ is Minkowski Sum of the two
summands.

3.3 Results for approximating MinkDecomp

The approximation algorithms gives some results but how the returned polygon
compares to the input? Actually the subject of shape comparison and measuring
similarity is not as trivial as it may seem at first [Vel01; VHO1]. And probably, com-
paring one measure alone is not enough. For example a circle and a rectangle can
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A //\\(]F /A\ //\\ / FIGURE 3.5: The Haus-
/ \\ 7 \ / \ / \ di dorff dy and Fréchet dr
/ \ / \[/ \ / \— distance between two

\V/ V \/ curves.

have the same volume, or perimeter, but are very different. At least how humans
perceive the difference between a circle and a rectangle.

Another way is to measure their distance. Two important functions for dis-
tance is the Hausdorff and the Fréchet distance, dy and dr respectively. Com-
puting the Hausdorff between two point sets with n points in R? can be done in
O(nlogn) time using Voronoi diagrams. For the Fréchet distance thing seem more
complicated and it has been well studied. Several algorithm exist, both exact and
approximate, with polynomial running time. One with subquadratic algorithm
recently appeared in [Aga+12]. The seminal paper is from Alt and Godau [AG95]
and other interesting recent papers are [Aga+12; Bril4]. In our case the two dis-
tances are almost equal but further work can be done here for the bound in the
Fréchet distance.

Lemma 23. Let ) be the input polygon and Q' be the polygon as discussed above. vol
stands for volume, per for perimeter, latt_p are the interior lattice points of a polygon and
dy the Hausdorff distance. We deduce that

1. vol(Q") — vol(Q) < eD?

2. per(Q') — per(Q) < 2eD
3. latt_p(Q') — latt_p(Q) < eD?

Proof. We observe that

s(Q)=s(A)Us(B")=s(A)Us(B)U{v}U{-v} =
s(Q) = s(Q) U{v} U {—v}.

This equals adding to @ a single segment s of length |s| = |v] and Q' = Q + s.
The length of vector v we add to close the gap, is the key factor to bound polygon
()'. From the guarantee of the 2D-SS-approx algorithm we know that s(A) (and
respectively s(B)) sum to a vector with length at most e max{L,,}. This is vector v
and thus |v| < emax{L,}. Since max{L,} < D, we get |s| = |v| < eD.

From above we easily see that:

L per(Q) = X eqq) vl it follows per(Q') = per(Q) + 2|v| < per(Q) + 2eD.
2. vol(Q') < vol(Q) + sD < vol(Q) + eD?

3. By Pick’s theorem, vol(Q) = i(Q)+b(Q)/2—1 = i(Q) = vol(Q)—b(Q)/2+1.
Note that b(Q) = >_y,c.q) v Where v = (z,y) € s(Q) and d, = ged(z, y) asis
Definition 22. Now, i(Q’') = i(Q) + i(sD) since sD is the maximum volume
added and i(sD) < sD—b(sD)/2+1 < sD—1 < eD? Thus, i(Q") < i(Q)+eD?
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4. The two polygons are as in figure 3.4, their Hausdorff distance is |v|. If we
"slide" @ by |v|/2 units in the direction of v, dy (Q, Q') = s/2 = du(Q,Q’) <
€/2D

]

A bad example can be seen in figure 3.6 where the vector we must add is (al-
most) perpendicular to D maximizing the extra volume and internal lattice points.
Lemma 23 leads to following conclusion:

Corollary 24. The proposed algorithm provides a 2eD-solution for MinkDecomp-per-
approx, a e D*-solution for MinkDecomp-vol-approx and MinkDecomp-latt_p-approx and
a €/2D-solution for MinkDecomp-d g-approx.

FIGURE 3.6: A worst
case example where the
vector v is (almost) per-
pendicular to the di-
ameter D maximizing
the extra volume added.
More, D and v have no
lattice points thus the
interior points added
are also maximum (D is
not vertical).

FIGURE 3.7: Another example how from a polygon () we get its edge
sequence, we find a subset of s((Q) that sums close to (0,0) and form
the two summands that give an approximation to out input.
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Chapter 4

Conclusion and open problems

To summarize the present thesis, we examined a new approach to solve the NP-
complete problem MinkDecomp by approximating it. MinkDecomp is connected
to the Subset Sum problem and this lead us to define a generalization of Subset
Sum to arbitrary dimension k£ where instead of numbers we have k-dimensional
vectors. We were able to provide solutions in polynomial time that are e M far from
the optimum for £D-SS. Using this algorithm, and the reduction from Minkde-
comp to kD-SS, we can provide solutions to MinkDecomp-approx. We measured
these solutions using different functions like volume,internal lattice points or Haus-
dorff distance.

The final goal is to see how, from an approximate solution to MinkDecomp
we can get solutions to questions related to polynomials. It turns out that is not
straightforward; if it can be done at all. We also came up with questions that are
left unanswered at the moment. All these consist the future work that has to be
done in this subject. As it turned out we end up with more questions than answers
and certainly more than when we started.

4.1 kD-SS

Results and answers here concern theoretical and practical aspects. The algorithms
proposed can return solutions that their error depend on the longest vector in time
polynomial to the input and the error ratio e. Since the problem is defined here,
we do not have prior results to compare to ours. Can the algorithms and approx-
imation ratio be improved in any way? For low constant dimensions can we do
better? If we restrict to specific cases, say for example when all vectors are posi-
tive, can we provide better results? Through experimental tests, it appears that the
algorithm is way faster and more precise in this case. We also believe that with a
probabilistic analysis better bound can be proven for the average case.

On the theoretical side, as a generalization of the classic 1D-SS the problem
is easily NP-complete. Also, for general dimension £, it cannot be approximated
within a constant factor. It is connected, as a special case, to the well-studied CVP
that is even harder to approximate. Is the same true for kD-S5? can we prove the
same inapproximability results as for CVP or is it easier. If we consider constant
dimensions, even for £ = 2 or 3, can the problem be approximated better or is
still hard? Answers here will adequately characterize the problem when it comes
to approximate solutions. Apart from approximation, where the problem stands
concerning other complexity classes.
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A seemingly similar know problem is Multidimensional Knapsack (MK). The
1D-SS is a straight special case of Knapsack when the weight of each object equals
its value. For their multidimensional versions it depends on the definition. For the
classic 1-dimensional case, their optimization version are defined as maximization
problems. For Knapsack, we want to maximize the value of all the object without
exceeding the knapsack’s capacity. In Subset Sum we want a subset of number
that have maximum sum but less than target t. We defined the kD-SS as an min-
imization problem: we are looking for a subset that sums to ¢" and minimizes the
distance from target ¢t. The difference in the definitions makes £D-SS a harder
problem to approximate.

We can give a similar definition for the 1D case: a subset that sums to ¢" and
minimizes the quantity ¢ —¢'. These two versions are the same in the sense that the
optimal solution for the maximization problem is also optimal for the minimiza-
tion. In two dimensions (and higher) this is not correct.

4.2 MinkDecomp

The algorithm for approximating 2D-SS directly applies here. Through the trans-
formation of a polygon @ to its vector sequence we can solve MinkDecomp by first
solving 2D-SS. The resulting polygon ()’ is bounded in many ways compared to
the original as already seen in section 3.2. We believe that for the Fréchet distance
an actual bound can be proved. Maybe the same can be done for other functions
used in polygon comparison like the turning function.

In section 3.2 we introduce a heuristic where each vertex is slightly perturbed
in order to be able to divide in smaller segments. Can this idea give us proven
better results? If we know that every edge of the input polygon can be divided at
least once (or maybe more), is the problem easier? (This is equivalent to also allow
multiplication with 1/2.) This can be stated as follows. Given a polygon () that
we also know that every edge of () can be divided exactly d times, decide if it is
decomposable. This problem is reduced to the problem of finding a subset S’ in
the set R where now, R is not s(Q) but is the set of all primitive vectors of ), such
that,

> av=1(0,0), a€{0,1,...,d}
ves’

If we know that the vectors in s()) can be divided at least d times, we get
the set of its primitive vectors and allow multiplication with a scalar up to d. In
some sense, this approaches CVP and probably is as difficult. Maybe dynamic
programming can be more effective now. This proposes an algorithm that first
slightly perturbs the vertices of the polygon in a suitable manner and then uses
dynamic programming to solve exactly this new perturbed instance. This also
raises the question if this perturbation of all vertices can be done efficiently because
changing one vertex affects two vectors.

Since MinkDecomp is a natural geometric problem other, completely new ap-
proaches can be used that do not have a connection with Subset Sum. On a
theoretical view the problem is not given much consideration apart from its NP-
completeness. A related problem is the k-summand where we search for polygons
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with k edges [ET06]. What is the difficulty of this parametric version of the prob-
lem? Classifying this in the parameterized complexity hierarchy might give fur-
ther insight to the problem. Equivalently, how difficult is the problem with respect
to approximation?

Apart from polygons we can generalize the problem to point set. For example,
what is the difficulty of the variation where we do not have polygons to decom-
pose but point sets? A polygon is a point set with a specific property thus the
problem defined for point sets is more general. An approach in this variation
maybe enable us to work with the support Supp(f) of the polynomial f instead of
its Newton polytope. The support holds more information since interior points do
not disappear and maybe can give different kind of results. A related question was
proposed by Sturmfels: given the support of a polynomial to compute the support
of all possible factorizations. In [GL01] the authors give a partial solution using
the Newton polytope. Perhaps this can be approached by similar methods but on
the support instead of the Newton polytope.

4.2.1 From polygons back to polynomials

It is easy and quick to retrieve a polygon (the Newton polygon or polytope for
higher dimensions) given a polynomial. Every polynomial has a unique support
and thus a unique Newton polytope. The reverse is not so trivial. Given a polygon
P it can be the Newton polygon of many polynomials. Name this family Fp, ie.
the set of polynomials that their Newton polygon equals P,

Fp=A{f €Flz,y] | NP(f) = P}

Because a polygon does not come from a unique polynomial, retrieving a suitable
polynomial from Fp is not easy.

Applying the algorithm for MinkDecomp-approx in the Newton polygon ()
of a bivariate polynomial f will return two other polygons A and B such that
A+ B = @', thus )’ is decomposable. This does not give any information about
the original (); it may be decomposable or indecomposable, we do not know. Thus,
this approach cannot give answers concerning the irreducibility testing of a poly-
nomial because it completely alters the Newton polytope.

The news are not so encouraging for approximate factoring either. Ostrowski’s
theorem works on one direction, if the Newton polytope of a polynomial decom-
poses does not mean that the polynomial can be factored. Nonetheless, we can
make some observations on this matter. Besides the two polygons A and B the
algorithm finds a single vector ¢’ (with |t'| < eD) such that ()’ = Q +t' and

Q=A+B=Q+"1

Because t’ is just a vector, NP~!(t') = 2y + ¢ where a, b are integers and cis a
constant and also a + b < €D where D is less than the total degree of f. Let fp be
a polynomial such that fp = NP(P) for some polygon P. Given fg, we can state
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the question: are there polynomials f4, fg, %y’ + ¢ such that,

fafs fo

fQ:x“yb—l—c_xayb—l—c

knowing that ' = A+ B = @ +t'. And if those polynomials exist how they can
be found?

Towards this goal are the results of Salem, Gao, and Lauder [SGL04] and the
PhD thesis of A. Salem [Sal04, chap. 6]. There the authors consider the problem of
factorizing a polynomial f or deciding irreducibility if they also know polygons
P¢, A, B such that Py = A + B. They propose an algorithm for that task under
minor conditions that runs in time cubic to the latt_p(P;). Note that this is not
polynomial to the input since the number of integer lattice points can be exponen-
tially many compared to the number of vertices of P;. Combining the algorithms
here with their results is a future goal that may offer an approximation algorithm
for factoring.

4.3 Implementation and experiments

We implement both Algorithms 1 and 3 in Python3. The code can be accessed
through Github ! and is roughly 750 lines long. We provide methods for either
2D-SS-approx or MinkDecomp-yi-approx. To test algorithm 1 we created vectors
v; at random with |v;| < 5000. For algorithm 3 we create random points and take
their convex hull to form input polygon ). All tests were executed in an Intel
Core i5-2320 @ 3.00 GHz with 8Gb RAM, 64-bit Ubuntu GNU/Linux. Results for
algorithm 1 are shown in Figure 4.1 and for algorithm 3 in table 4.1. It is clear
in figure 4.1 that our results stay way below the expected time and behave analo-
gously. In table 4.1 the results obtained are much better than the proven bounds
and in most cases volume and perimeter are almost the same and the polygons
differ slightly.

| #vertices #examples || vol(Q)/vol(Q) per(Q)-per(Q) Hausdorff € time(secs) |

3—10 51 0,93 18,55 3,32 0,18 4,1
11—16 45 0,977 3,43 1,81 0,33 126,4
17—25 54 0,994 1,12 1,25 0,38 377,5

TABLE 4.1: Input polygon @, output Q' (per(Q) > 1000). Gather ex-
amples by the number of their vertices. We measure volume, perime-
ter and Hausdorff distance and present their mean values.

https:/ / github.com/tzovas/ Approximation-Subset-Sum-and-Minkowski-Decomposition
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FIGURE 4.1: Experimental results for 2D-SS-approx: a)e = 0.2 and
b)e=0.30, c)n = 30 and d)n = 40. The blue line is the expected time,
the red dots our experiments.
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