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Abstract

The subject of the Ph.D Thesis is the study of problems concerning end extensions of
models of subsystems of first-order Peano arithmetic (PA) in the first order language
of arithmetic £5. More specifically the problem first posed by J. Paris, Is every model
of Li-Collection a proper initial segment of a model of bounded induction? remains
unanswered.

This problem was stated in an effort to miniaturize the famous McDowell-Specker
Theorem that every model of PA has a proper elementary end extension. The main
problem was studied by J. Paris and A. Wilkie who showed that a sufficient condition
for a positive answer is that the model is [Ap-full (where 1Ay denotes the theory of
Ap-induction).

We show that the notion of IAy-fullness can be by-passed by alternative proofs to
these results which employ the classical argument of the Completeness theorem in its
arithmetised form (Hilbert-Bernays) together with consistency statements referring to
semantic tableaux methods.

Furthermore, using the same methodology suitably modified we prove the generalisa-
tion of the result, namely that every countable model of X,,-Collection, n > 1, has a
proper X, -elementary end extension to a model of bounded induction.

SUBJECT AREA: 03F30 First-order arithmetic and fragments
03H15 Nonstandard models of arithmetic
03C62 Models of arithmetic and set theory

KEY WORDS: Arithmetized completeness theorem, Fragments of Peano Arithmetic,
End extensions, Elimination lemma, Bounded Induction
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IepiAndn

H dtdaxtopixy) StatpLBn aoxoAeitor pe ™) LEAETN TEOPRANUATWY TTOL APOPOVY TEAL-
XEC EMEXTATELG LOVTEAWY VTTOCLGTNUATWY TNG TTEWTORAOULaG apLOunTing Peano. ITo
oLYXEXPLUEV, TO TEOPRANUa Tov J. Paris: «Y7mapyet, yioo xabe apbunolo povtéio
™6 L1 OVAAOYYG YVNOLor TEAXY ETEXTOGY TOV TTOU IXOVOTOLEL TNV Ay ETOYWYN;»
TIOPOULEVEL OVOLXTO.

To mpoPAnua perétnoay ot J. Paris xar A. Wilkie (1989), ov omotor amédetEoy ot
ko ouvB7xy yra BTy advtnon eivat To Lovtélo va givar 1Ay-tApeg (6mov pe
1Ay ovpBoAileton n Bewpio T™g Ag-emorywYHC).

Amodewxvdovpe 4t M xpNnom g évvorag g LA -TAnpdTTOG UTTOPEL Vo TTOpOXK oL -
ebei o ot B€on g va ypmotpomotnbel N TVTOTTOLNON TOL XKAXGLYOD ETLYELPNUATOS
Tou Bewphuotog TAnEdTRTag (Bedpnuo Hilbert-Bernays), pe xpMomn onpraotohoytxwy
Twéxwy (semantic tableaux).

EmimtAéoy, pe v (dta pebodoroyior xatdAANAo TOOTOTTOLNUEYY] ATTOSELXYVOOLUE TN
YEVIXELON TOL ATOTEAEOUATOG, ONAaSY OTL YL xdbe aplbunolpo novtéAo g Ln-
oLANOYNG, M > 1, LTT&PEYEL YVNOLOL X -OTOLXELWING TEALXY] ETEXTOGT, TOU TTOL LXOVO-
ToLel TNV Ag-eTOYWY.

OEMATIKH ITEPIOXH: 03F30 Ipwtofdabuto apltbuntinn xat vwocuotilato
03H15 My ovppatixéd (Nonstandard) povtéda tng opLOuntixig
03C62 Movtéha g aptbuntinng xot g Hewpliog cLVOAWY

AEZEEIY KAEIAIA: Aptbuntixomoinuévo bewdpnuo mAnpdtntag, Y'moovotiuato aplb-
untxng Peano, TeAuég emextdoelg, Ao amoaiolpyg, Ppooyuévn emoywyn
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Introduction

The famous McDowell-Specker Theorem states that every model of Peano arithmetic
(PA) has a proper elementary end extension. Questions related to complexity theory,
existence of solutions to diophantine equations and the MRDP theorem led to efforts to
miniaturise the problems for subsystems of first-order Peano arithmetic. The motivation
for this thesis and one of the main questions in the area is a problem first posed by J.
Paris, namely

Is every model of 1-Collection a proper initial segment of a model of bounded
induction?

The main problem remains unanswered. However, some partial results have been ob-
tained by J. Paris and A. Wilkie who studied the problem in a classical paper (1989).
We give alternative proofs to these results which employ the classical argument of the
Completeness theorem in its arithmetised form (Hilbert-Bernays) together with consis-
tency statements referring to semantic tableaux methods.

The first chapter is dedicated to the basic notions needed for the rest of this work. So
we start with the necessary notions that enable us to define the arithmetical hierarchy
and the induction and collection schemes, which makes it possible to draw the picture of
the connections between subsystems of PA. Next, we describe briefly the arithmetization
of syntax in order to formalize the notions of semantic tableaux proofs and tableaux
consistency arguments. We then define satisfaction, another notion fundamental for the
sequel. The chapter is concluded with a brief overview of the Arithmetized Completeness
Theorem (ACT). As a rule in this chapter, we will try to avoid details and give suitable
references instead.

In the second chapter, we study a significant tool, tableaux proofs, that will assist us to
prove the main results. Since we work at a very low level of the arithmetical hierarchy, a
lot of work needs to be done in order to show that the formalization of tableaux proofs is
available. Therefore, one goal of this chapter is to obtain the necessary formal statements
and bounds. A second goal is to calculate the complexity of the so-called Elimination
Lemma. Armed with the Elimination Lemma and formal consistency statements we can
set, off for modifications of the ACT suitable for weak theories.

Chapter three is the heart of this thesis. The main results and methods are presented
in this Chapter. We begin with an alternative proof of a result by J. Paris and A.
Wilkie, which states that every countable model of X;-collection with exponentiation
can be properly end extended to a model of bounded induction. This is an instance of
the main problem and the “closest” we can get to it thus far. The idea behind the proof
is that given a model of X;-collection, one can start with a tableau consistent extension
of the theory of bounded induction as a base theory. This theory includes the diagram
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of the initial model and a set of sentences that guarantee that its models are different
from the initial one. We can then proceed to construct a maximal tableau consistent
extension in a way that the initial segment property is preserved. This is possible by
a modification of the ACT. The same method is used to show that there is always a
proper end extension of a countable model which satisfies Xj-collection together with
conditions other than exponentiation. Generally, these conditions include a notion of
(weak) recursive saturation or the existence of specific powers in the presence of a very
strong condition, namely that the Arithmetic hierarchy provably collapses in 1A,.

In the fourth and final, chapter we examine the generalisation of the problem, namely
for n > 1 is every countable model of Z,-collection, properly and X -elementarily end
extendable to a model of bounded induction? The problem was first studied by J. Paris
and L. Kirby who, used a restricted ultrapower construction in order to obtain a proper
Y n-elementary end extension. By adjusting the methods of chapter 3 in the new context
where superexponantiation is available, we obtain an alternative proof for for n = 2 and
go on to generalise the result for all n > 2.

The main problem that motivated this work remains unanswered but we feel that our
results provide a uniform and in a sense simpler method to study instances of the main
problem and, hence, contribute to the better understanding of the main problem itself.



1 Basics

1.1 Preliminaries

Throughout this thesis, LA denotes the first-order language of arithmetic whose nonlog-
ical symbols consist of the following: the constant symbols, O and 1; the binary relation
symbol, <; and the two binary function symbols, + and -. The standard model for the
language LA will be denoted by N.

1.1.1 Axioms of Peano Arithmetic

The base theory satisfied in models of Arithmetic is denoted by PA™ and it consists of
some simple axioms that are obviously true in every model of Arithmetic. If we add
the axiom schema of induction to the base theory, we obtain Peano Arithmetic, which is
denoted by PA. We work with weaker theories than Peano Arithmetic. These theories
are obtained by adding to the base theory weak induction axioms. This area of model
theory is better known as Subsystems of Peano Arithmetic or Weak Arithmetics.

The first five axioms of PA™ state that the binary functions + and - of LA are asso-
ciative and commutative, and satisfy the distributive law:

Axi Yy z((x+y)+z=(x+ (y +z)),
Axy  Yxy(x+y=y+x),

Axs Wy z(x-y)-z=(x- (y-2),
Axs  Yx,y(x-y=y-x)and

Axs  Yxy,z((x+y)-z=x-z+y-z).

The next two axioms state that the constant symbols 0 and 1 of LA are the identity
of + and - respectively:

Axg Yx[(x+0=x)A(x-0=0)] and
Ax;  Vx(x-1=1).

N is linearly ordered and the following axioms state that the 2-placed relation symbol
< of LA is a linear order:

Axs  Vx,y,z(((x <y) N\ (y <z)) — (x < z)),

Axe  Vx(—(x < x)) and
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Axio Vxylx<y)Vix=y)V(y <x)).

The following three axioms state the relation between the function symbols and the
relation symbol of LA:

Ax11 YxYy,z((x<y) = (x+z<y+1z)),
Ax1z Y y((0<z)A((x<y) = (x-z<y-z))) and
Axiz - Vxy((x <y) = (Fzx+z=y))).

Hence, + and - respect <, and we can subtract x from vy, if x <y.
The last two axioms of the base theory state the order is discrete and that O is the
least natural number:

Axyy 0<1TAVx(x>0—x>1)and

Axis  Vx(x > 0).

1.1.2 Induction, collection and exponentiation

Our aim in this section is to define the Induction schema, some of its alternatives, like
the Least number principle and the Collection azioms, the axiom of the totality of the
exponential function denoted by exp and some weaker forms of it denoted by Q.

PA is the first-order theory we get when we add to the our base theory, PA™, the
induction axiom for all formulas of LA. More precisely, let ' be a class of formulas of
LA we denote by IT" the class of first-order formulas of the form:

Vy(d(0,y) AVx(d(x,y) = ¢x +1,4)) = Vxd(x,y))

for all  €T.

Throughout the history of mathematics, induction has taken many forms which were
later proven to be equivalent. These equivalent forms are usually called alternative
induction schemes. The first alternative induction scheme is usually called induction up
to z and it is the scheme:

VY, (00, y) AVx < z(d(x,§) = d(x +1,4)) = Vx < z(d(x, 7))

for all ¢ €T.
The Least number principle is, perhaps, the most commonly used alternative to the
induction scheme. It is the class of all sentences of the form:

Yy(3xd(x,y) = Jz(db(z,y) ANVwW < z=d(w, 1))

for all ¢ € T" and it is usually denoted by LT where T is a class of LA-formulas.

Another alternative induction schema is the principle of complete induction. Denoted
by 1T, for a class of LA-formulas I, the principle of complete induction is the class of
sentences:

Yy (Vx(Vz < xd(z,Y) — d(x, 1)) = Vxd(x,Y))
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forall ¢ €T.
All the induction schemes defined so far are proven to be equal in the presence of PA™,
for a proof see Chapter 4 in [9].

The arithmetic hierarchy and induction

Godel’s First Incompleteness theorem made evident that induction for all LA formulas
was too much to ask for. So questions were raised about the strength of induction
on classes of LA-formulas whose complexity is restricted. This leads us to define the
arithmetic hierarchy which is a hierarchy of formula classes. The complexity measure
used in the arithmetic hierarchy is the number of alternations of existential and universal
quantifiers.

The definition of the bounded quantifiers is a prerequisite in order to define the base
of the hierarchy.

Definition 1. If t is an LA-term then Vx < t¢ is an abbreviation for Vx(x < t — ¢)
and Ix < t¢ is an abbreviation for Ix(x < t A ¢). Similarly, Vx < td and Ix < td are
shorthand for Vx(x <t — ¢) and Ix(x < t /A ) respectively. These quantifiers are said
to be bounded.

The base class of the hierarchy consists of all £A-formulas defined in the next defini-
tion.

Definition 2. An LA formula ¢ is Ag iff all quantifiers in ¢ are bounded.

The class Ay of LA formulas is also denoted by Ly and TTy in order to recursively
define the arithmetic hierarchy of classes of LA formulas. So the classes X, and TT,, are
defined by recursion on n € N in the next definition.

Definition 3. Let ¢ be an LA formula. The formula ¢ is X, iff it is of the form Ixd
with ¢ € TT,. The formula ¢ is TT,,,; iff it is of the form Vx¢$ with ¢ € L,,.

We say that the formula 6(x) is equivalent to a L, formula ¢(x) in the theory T or
the model M if

TEVX(0(x) & d(x)) or M EVX(0(X) « d(x))

and, if necessary, we write that 0(x) € Z,(T) or 8(x) € £,(M). The class of TT,,(T)
and TT,, (M) formulas is defined similarly. Finally, the formula ¢ is An(T) (respectively
An(M)) iff it is equivalent to both a X, (T) (respectively £, (M)) formula and a TT,(T)
(respectively TT,,(M)) formula. In the previous notation the theory T and the model M
will be omitted when they are clear from the context.

We are now able to define weaker classes of induction axioms. Let T be a theory T and
M a model of a theory. According to the definition of the induction schema we denote
by IX,, ITT, and IA;, the class of all sentences of the form:

Yy(d(0,y) Avx(d(x,y) = d(x +1,9)) = Vxd(x,y))
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where ¢ € L, (or ¢ € Z(T) or ¢ € L,(M)), b € TT,, (p € TT,(T), ¢ € Mx(M)) and
b € An(T) (or ¢ € An(M)) respectively. The alternative induction schemata for the
restricted formula classes can be defined similarly.

Collection

The collection scheme is the class of sentences:
VzVa(Vx < adyod(x,y,z) — ItVx < ady < td(x,y,z))

for all formulas ¢ in I', and it is denoted by BI" where T is a class of LA-formulas. The
restricted collection scheme can be defined as before, e.g. BZ,, is the class of sentences
of the form:

VzVa(Vx < adyd(x,y,z) — Jtvx < ady < td(x,y,z))

where ¢ € X,,. We also denote by BX,, the theory with axioms PA™; induction for Ag
formulas; and collection for X,, formulas.

The unrestricted collection scheme is equivalent to the induction schemata over the
weak theory PA™ + 1Ay, for a proof see Chapter 7 in [9]. At this point, a natural question
to ask is how are the collection scheme and the classical induction schemata related when
we restrict the classes of formulas to which they are applied to. The relation between
collection subsystems and the traditional induction subsystems of Peano Arithmetic was
proved in [15] and it is as follows.

Theorem 1. Let n > 0. The following implications hold in the presence of PA™ 4 [Ap:

X4
J
BZn-H — B”n
J
L, & Il < Li, & LI,

Howewver, the converses to the two vertical arrows are false.

Exponentiation

We conclude this section with the definition of some exponentiation axioms that will be
used later on. We denote by exp the axiom expressing that exponentiation is total, i.e.

Vx,y3z(z = xY).

Recall that there is a Ay formula representing the graph of the function 2* for details
see chapter 2 of [(] or the exercises of chapter 5 in [9]. Hence, exp € TT;.

As with induction, there are also restricted versions of the exponentiation axiom. An
example of a weaker exponential is Q1 expressing that the function x™ is total, where
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Jfor now, |x| denotes the logarithm of x. To define the axioms denoted by Q,, we first
need the following definition.

Definition 4. For n € w, the n + 1-place function e, is defined as follows:

eo(x1) =x1
€nti (X1 yee xn+2) = xﬁn(xz,...,XnJrz).

Thus .

SAInH

X)
en(X1y. oy Xny1) = Xq
Also, set
wn (%) = en(x, xI, Ixll, ..., IxI™)

where |[x|™ denotes the result of applying the length function n times to x.

The graph of the function w;, can be represented by a A formula, but the axiom Q.
expressing that wy is total, is TT;.
Finally, the superexponential function is defined as follows.

Definition 5. For all x,y € N the superezponential function, denoted by supexp, is
defined by the following recursion:
supexp(x,0) = x
supexp(x,y 4 1) = xSPPoy)
It easy to show that the graph of supexp can be expressed by a Ay formula and
whenever the function is defined we can prove, in the presence of 1Ay that the recursive

equations hold. However, the formula expressing the totality of the supexp function is
IT, and so;

(1.1) IZ; F VxVy3z(z = supexp(x,y)).

1.1.3 Model theory concepts

If M, N are models for the same first-order language £, Then M is a submodel of N
(or a substructure of N), M C N, iff the domain of M is a subset of the domain of N
containing the constants of N and closed under the functions of N, and each relation
symbol in £ is interpreted in M according to the restriction of its interpretation in N.

Definition 6. M is an elementary submodel of N, M < N, iff M C N, and for each
formula ¢(x) and each a € M

ME ¢(a) <= NEd(a).
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Definition 7. Let ' be a class of LA-formulas. M is an I'-elementary submodel of N,
M <r N, iff M C N, and for each T' formula ¢(x) and each a e M

ME ¢(a) <= N ¢(a).

Definition 8. if M and N are LA-structures with N a substructure of M, then N is an
initial segment of M, or M is an end-extension of N, or (in symbols) N C. M iff for all
x € N and for ally € M,

MEy<x=yeN.

N is a proper initial segment if, in addition, N % M.

Theorem 2. Let M C. N both be LA-structures, with N an end-extension of M. Then
M =<Ao N.

Notice also that for all n
M<s. N & M=, N

therefore, we will write M <3 N when I' =X, or ' =TI,,.

1.2 Arithmetization of syntax

PA is such strong a system that it can code many of its aspects. In this section, we
will define formulas that express syntactical notions of the language. We will omit the
most common or obvious definitions for the sake of clarity. Since our resources will be
restricted, we will also note, when important, the complexity of the formula defined.

Coding function

There are many functions that have been proposed for coding. We will briefly introduce
the coding function used in [17].
Let M be a model of bounded induction i.e. M = IA;. We can Godel number the
basic logical symbols of the language using the alphabet {3,4,..., B} as follows:
( ) - — A A% 1 / + . < 0 —
3 4 5 6 7 8 9 10 11 12 13 14 15

Then the Godel number of a formula or a term will be its natural B-adic code. To see
an example let w be any non-zero element of M. Then

MEw=meB®+mB'+-- - +mB!

where for i =0,1,...,t t € M and m; € M are unique and such that M =1 <m; < B.
We will write (w); = x if x is the i-th element of the sequence with code w. The
length of the empty word is 0 and the length of every non-zero w € M, denoted by |w|,
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is equal to t € M if and only if
w =myB® + m;B' + -+ + m;B!

where mi e Mand ME1<my <Bfori=0,1,...,t. Finally, we write x xy = z when
z is the code of the sequence deriving from the concatenation of the word with code x
with the word with code y. Note that there are Ay formulas that express syntactically
the three functions that were presented above.

From now on we will not make a distinction between an expression of LA and its code
when it is clear from the context to which of both we are referring to. For instance,
suppose t is an LA-term, we will often write “the term t” instead of the correct “the
term with Gédel number t”.

Formalization of basic functions and relations

Let £ be a language extending £A. The following functions and relations are recursive
in every model of [Ay + w; for L:

Var(x) x is the Godel number of a variable,
EX(x) x is the Godel number of an expression,

MP(x,y,z) z is the Godel number of an expression derived from the expressions with
Godel numbers x and y by the use of the Modus Ponens rule,

Term(x) x is the Godel number of a term of L,
ATF(x) x is the Gédel number of an atomic formula of L,
Form(x) x is the Godel number of a formula of L,

SUB(x,y,u,Vv) xis the Godel number of the expression that results from the substitution
of the term with Gédel number v for all free occurrences of the variable with Godel
number u in the expression with Gédel number y,

LA(x) x is the Gédel number of a logical axiom,
LEAxiom(x) x is the Godel number of a logical equality axiom,
PA~(x) x is the Godel number of an axiom of PA™,

Prooft(x) x is the Godel number of a formal proof from a recursive set of sentences T
and

Prooft(x,y) x is the Godel number of a formal proof, from a recursive set of sentences
T, ending with a formula with Gédel number y.
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Definition 9. Let £ be a language extending £A4 and k € N. A formula 0 of a language
L is said to be a k-formula iff there is an £ formula ¢ with Goédel number less than k
and O is obtained from ¢ by substituting some or all of its free variables with terms of

L.

For this restricted kind of formulas, the following functions and relations are also
recursive:

ReForm(k,x) x is the Gédel number of a k-formula of L,

ReProoft(k,x) x is the Godel number of a formal proof from a recursive set of k-
sentences T and

ReProoft(k,x,y) x is the Godel number of a formal proof, from a recursive set of k-
sentences T, ending with a formula with Gédel number y.

Definition 10. We say that the variable x occurs in the £ term t if and only if:
e t=xor
e t =3¢’ , where s is an £ term and x occurs in s or
e t =357+ sy, where s; and s, are £ terms and x occurs in either sy or s; or

e t =375y, where s; and s; are £ terms and x occurs in either sy or s;.
TOccur(x,t) <= (Var(x) A Var(t) Ax =1)V
Js < t(Term(s) /A TOccur(x,s) At =s*"'")V

Ity, tr < t(Term(ty) A Term(ty)A
(TOccur(x,t1) V TOccur(x,t2)) At =t * T+ x )V

Ity, tp < t(Term(ty) A Term(ty)A
(TOccur(x,t1) V TOccur(x,t2)) At =t; « - Txty).

Definition 11. We say that the variable x occurs in the £ formula ¢ if and only if:
e ¢ =t =1, and x occurs in either t; or t, or
e & =—¢’ and x occurs in ¢’ or
e d =d; — Py and x occurs either in ¢q or in ¢ or

e ¢ =Vyod’ and x occurs in ¢’ or x = y.

10
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FOccur(x, ) < Var(x) A Form(dp) N[

Ity, t2 < $(Term(ty) A Term(ta)A
(TOccur(x,t1) V TOccur(x,t2)) Ap =t «"="x 1)V

dp < ¢(Form () AFOccur(x, p) Nd ="""xVP)V

F, 0 < ¢(Form(P) A Form(0) A (FOccur(x,1) V FOccur(x, 0))A
d=9Px"="%x0)V

Yy, b < ¢(Form(p) A Var(y) A ((FOccur(x, ) V (x = y))A
o ="VTxy ).
The previously defined formulas can be combined in one by the definition:

Definition 12.
Occur(x,y) < TOccur(x,y) V FOccur(x,y).

Definition 13. We say that the variable x is free in the £ formula ¢ if and only if:
e ¢ is atomic and x occurs in ¢ or
e ¢ =—¢’ and x is free in ¢’ or
e ¢ =d; — ¢y and x is free either in ¢ or in ¢, or

e & =Vyd’ and x is free in ¢’ and y is a variable different from x.

Free(x,¢) < Var(x) A Form(dp) N[

Ity, ty < ¢(Term(ty) A Term(ty) A (Occur(x, t1) V Occur(x, t2))A
b=t *x"="x1)V

F < ¢(Form(P) AFree(x, P) ANd =""TxP)V

Y, 0 < d(Form(P) A Form(0) A (Free(x, ) V Free(x, 0))A
b=V Tx0)V

3y, P < d(Form(h) A Var(y) A (Free(x, ) A=(x = y)A
b ="V1xy ).

11
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We define the formula FreeFor(x,y,z) which expresses that the term with code x is
free for the variable with code y in the formula with code z.

Definition 14. We say that the £ term t is free for the variable x in the £ formula ¢
if and only if:

e ¢ is atomic or
e d=—¢' and t is free for x in ¢’ or
e =1 — Py and t is free for x in both ¢; and P, or

e & =VYyd' and one of the following conditions holds:
— X is not free in ¢,

— x is free in ¢, t is free for x in ¢’ and y does not occur in t.
FreeFor(t,x, ¢) <= Term(t) A Var(x) A Form(¢) /\ [
dty,t) < ¢(Term(ty) ATerm(tr)) Ad =11« =% 1)V
AF($)V
Fp < d(Form(P) A FreeFor(t,x, p) ANp ="—"T*xP)V

F, 0 < d(Form(P) A Form(0) /A FreeFor(t, x, )\
FreeFor(t,x,0) Ap =P x"—="%x0)V

(—Free(x, ¢) V Jy, b < d(Free(x, d) A FreeFor(t, x, )N\
—Occur(y,t)) Ad ="VTxy xp)]

1.3 Tableaux proofs

The method of Tubleaur proofs is an alternative to the classic Hilbert system which
avoids the use of the Modus Ponens rule.

Let £ be a language extending LA. To give a precise definition first we need to
introduce the equality axioms:

Reflexivity for each variable x: x = x,

Substitution for functions for all variables x and y, and any function symbol f:

x=y—fl...,x,...)=f(...,y,...) and

12



1.3 Tableaux proofs

Substitution for formulas (Leibniz’s law) for any variables x and y, and any formula
& (x), if ¢’ is obtained by replacing any number of free occurrences of x in ¢ with
y, such that these remain free occurrences of y, it holds that:

x=y—(d— ).

We are now ready to give a precise definition of a tableau proof from a set of formulas
Y of a contradiction. The definition following was first given by A.J Wilkie and J.B.
Paris in [17].

Definition 15. Let X be a set of sentences (or formulas). We say that a sequence of
sets of sets of formulas Iy, T7,...,T5 is a tableau proof from X of a contradiction if the
following hold:

1. For all X € T there is an atomic formula 0 such that 6 € X and —6 € X.
2. X € Ty implies X C X U {the logical equality axioms}.

3. For all X € T} with i < s one of the following holds:
a) X e Ty,
b) XU{0(x)} € 4y for some =—O(x) € X,
c) XU{=61}, XU{0,} € Ti4; for some (07 — 0,) € X,
d) XU{01,—0,} € Ti4; for some —(07 — 03) € X,
)
)

e) XU{B(t)} € T4 for some ¥xB(x) € X and some term t free for x in 0(x)

f) XU{=0(y)} for some —=Vx0(x) € X and some variable y which does not occur
in any formula in X.

4. For all Y € Ti1 with 1 < s there is an X € [j such that Y is obtained from X by
one of the rules 3. a)-f).

A sequence TT of sets of sets of formulas Iy, I7,...,T5 is a tableau from X, if 2., 3. and
4. of definition 15 hold. Furthermore, if T is a tableau proof from X of a contradiction
we will say that the tableau T is closed and that T is a first-order confutation of . The
depth of a tableau proof T, denoted by dp(T) is the height of the tree representation of
the tableau proof. So if T is the tableau in the definition above, then dp(T) =s+ 1.

Remark 1. If we change 3. in definition 15 with “For all X € T} with i < s exactly one of
the following holds:”, then the deriving tableau could be represented by a binary tree.

Let TT be a tableau from X. We shall say that TT is pure if the following two conditions
hold:

1. The terms t used in the applications of the V-rule in IT do not contain any variable
that occurs bound in X.

2. The critical variables of the applications of the —V-rule in TT do not occur bound
in Z.

13



1 Basics

The rest of this paragraph is dedicated to the formalization of the notion of tableaux
proofs.

Definition 16. Let 7 be a theory for £ and let A(x) be a Ay formula of £. We say that
T is coded by A(x), if T F 1Ay and

IAy F Vx(A(x) — Sent(x))

and
{f67:6eTt={mew:NE=A(m)}L

Similarly, we will say that £ is coded by X(x) if £ is a recursive set of L-formulas and
there is a Ag formula X(x) satisfying

IAy F Vx(Z(x) — Form(x))

and

fo7":pell=fmew:NEXLm)h.

Each node of the tableaux proof tree is a set of formulas. So we need a formula to
identify the codes that are sets of formulas.

SForm(x) <= Vi < lh(x)Form((x);).

Furthermore, since each I}, in the definition of tableaux proofs, is a set of sets of formulas,
we define SSForm(x) to stand for the codes of sets of sets of formulas:

SSForm(x) <= Vi < lh(x)SForm((x);).

The £ formula FUnion(Z,X,y) holds if and only if Z is the code of a sequence (set)
derived from the set with code X by adding the formula with code y to it, i.e.

FUnion(Z,X,y) <= SForm(Z) /\ SForm(X) /A Form(y)A
(Vi <Ih(2))[(F) < Ih(X))[(Z2): = (X);]V
(2)i =yl
We now have all the necessary relations to formalize tableaux and tableau proofs for
a set of formulas X. The subscript of each Tp relation below denotes the formalization

of the corresponding number in definition 15. Notice that in the definitions below we
can replace the set of sentences A with the set of formulas X.

Tpy(v) &= Vy <lh(y)3I, iz, 21,22 < vz ="~ % 22/\
z1 = ((V)yi; Nz2 = ((V)y)i, ANATF(z1) AN ATF(z2)]

14



1.3 Tableaux proofs

) = (Vi<Ih(y))(EX <y)IX= (YA

(Vj < Ih(X))[A((X);) V LEAxiom((X);)]]

Tp;, (Viy Yis1, k) = N < Th(yie) [(vidk = (Yigr

Tps, (vi, Vi1, k) = (3x <1h(vi))(3X <vi)(3y <Ih(yier)) (Y <vigr)

(Fz < (vi)x ) {Form(z) A [X = (vi)] ALY = (vig1 yIA
[(X)x ="="%"="%z] AFUnion(Y, X, z)}.

Tps, (v, Yir1, k) & (Ix <Th(yi))(3X < vi)(3y1,y2 < Th(yisr))

= (Vi) A Y1 = (i) JA Y2 = (Yig1)yIN
(X)k =21 * "= Tx 2] AFUnion(Y7, X,T= "% z1)A
FUnion(Y>, X, z2)}.

(
(A1, Y2 < viy1)(3z1, 22 < (vi)x){Form(z1) A Form(zz) A
(X
[

Tps, (viy Yit1, k) &= (3x < Th(vi))(IX < vi)(3y1,y2 < Th(yit))

Tps, (Vi, Yir1y k)

= (i) A Y1 = (Yig )y J A Y2 = (Yig1)y,IN
( ) — M= —l*l_( *Z]*’__)—I*ZZ*,_)—I]/\
FUnion(Y7,X,z1) A FUnion(Y2, Y7, "% z5)}.

(
(AY1, Y2 < viv1)(Fz1, 22 < (vi)x){Form(zy) A Form(zz) A\
[X
[

& (Fz1,22 < vi) (3t < vip1)(3v < vi) (Ix < Th(yy))

(IX <vi)(Fy < Th(yit1))(3Y < visr)

{Form(z;) /A Form(z;) A Term(t) /\ Var(v)/A\

X = (vi) I ALY = (vig1 )yl A Free(v, z1)A
FreeFor(t, v,z1) A[(X)k ="V s vk T(Txzy x7)TA
SUB(zy, z1,v,t) A FUnion(Y, X, z5)}.
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1 Basics

Tps, (Y, Yie1, k) &= (3z1,22 < vi)(Fw < vi1)(3v <vi)(3x < 1h(yyi))
(FX <vi)(Fy < Ih(yin))(EY <vit)
{Form(z1) /A Form(z;) A Var(w) /A Var(v)A
X = (vi)J ALY = (vig1)yl A Free(v, z1)A
(V1 < Ih(X))[—Occur(w, (X))IA
[(X)x ="V % vx*z1] A SUB(2z2, 21, v, W)\
FUnion(Y, X, "% z)}.

Tp; (v, Yir1) &= Vk <1h(yi)[Tps, (vi, Yis1, kK)V
Tps, (Vis Yir1, k) V...V Tps, (viy Yigr, K]

The formalization of a tableau x for the set of formulas X is the relation:

Tableau(X,x) <= ds < x1h(x) = s /A (Vi < s)[SSForm((x);)\
Tpy(Z, (x)o) A (V) < s)Tps((x);, (x)j+1)].

Furthermore, the formalization of a closed tableau x from A is the relation:

Tabinconseq(A,x) <= Js < xlh(x) = s A (Vi < s)[SSForm((x)i) A Tpy((x)s)/\
Tpy (A, (x)o) A (V) < s)Tp3((x);, (x)j+1)]-

We are now able to define the TTy formula Tabcon(T) which says that there is no
tableau proof of a contradiction from the theory T.

Definition 17. For any theory T as in 16, set:

Tabcon(T) <= 4 Vx—Tabinconseq(T,x).

Restricted consistency statements

If we replace in Tabcon(T) the occurrences of the formula Form(x) by the formula
Reform(k, x), where k € N, the formula derived, denoted by k—Tabcon(T), is the formal-
ization of the statement “there is no tableau proof of a contradiction from T, using only
substitution instances of formulas with Gédel number < k”; note that this is strongly
reminiscent of the formula Con(X, k), which was introduced and used extensively in [17].

The difference between Tabcon and k— Tabcon resembles the difference between unre-
stricted consistency statements and consistency statements that involve only substitution
instances of formulas with Gédel number less than a fixed bound. The unrestricted con-
sistency of a theory implies the restricted version for all k € N. However, the converse
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1.4 Satisfaction

implication does not necessarily hold; indeed, as shown in [17], for all k € w
IAy + exp F Con(I1Ap, k)

but
IAy + exp ¥ Con(IAy).

1.4 Satisfaction

Another fact that is necessary for the sequel is a result of H. Lessan ([10], see also
Theorem 2 of [11]), concerning the satisfaction of Ay formulas (in models of IAy).

Theorem 3. There exists a Ay formula Saty(x,y,z) such that, for any M E 1A,
@(X) € Ay and d,b € M,

M [ b > 2max(@+2*" , [o(d@) & Sato(b, (@), "o (%) 7).

Remark 2. Saty acts like a satisfaction relation, for formulas in the sense of M. For
example, for any d,e € M, if, in the sense of M, d is the Gédel number of a Ay formula
of the form Jy < x1P(y,X) and e is the Godel number of the formula VP (y,x), then

M = Vzvt>2mex@29 s qt (t ,(Z), d)=3Fy<z;Sato(t, (y,2), e)]

Remark 3. The particular value of b is insignificant, as long as it exceeds 2(max(@)+2)""

Recall that if 0p(y) € Ao, then there is an open formula (X, y) such that:

(1.2) 00(y) = Qix1 < t1(y) ... Qnuxn < ta(Y)W (X, Y)

where Q; is either Vor dforalli=1,2,...,n
We will show by induction on the complexity of 1\ that:

Lemma 1. For all open formulas P if © is as 1.2, then there are polynomials f,g €
N[X, y, U] such that © is equivalent in the presence of 1Aq to:

Qix1 <t1(¥)...Qnxn < thQnitwy < th1(X,Y) ..

Qn-i—mum < tn+m(XaU)[ (7_5 g 11) (7_{> g) ﬁ)]

Proof. Base o It holds, if Y(X,y) = t(X,y) = s(X, §).
o IfY(X,7) = t(X,4) < s(X,y), we can take the equivalent formula

ar < tb_{) g) + S(%a g) [t(%a g) +r= S(%3 g)]

hen by the induction hypothesis there are

IS « IfP(Xy) = Wi(XY) V(X,Y), t
[X, Y, u] such that

polynomials fy, g1,f2,92 €

P1(X,Y) = Qnun < t11(X,7) ... Quin < tin(X,4)[f1 (X, 4, 0) = g1(X, 4, U)]

17
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and

P2(%, ) = Qaruzr < t21(X,Y) ... Qauzk < tax (X, 4)[f2(X, 4, 0) = g2(X, y, U)]

If necessary, we can rename the bounded variables so that w;; # up; for all
i=1,...,nand for all j =1,...,k. Then for

U =uyy, U2 =Ug2y..00y Up = Uy Upgpr = U210y Uy = Uk
we have that

yY) o Qmum < tm(X,4)
[ﬁ (72,13 ) 91(7()9) )\/fZ(%)g)ﬁ) =02 (7_{ g ﬁ)]

which is equivalent to

1I)(%) g) = Q]LL] <t1( ) Qmum < tm(%) g)
[(ﬁ(X)y) )_91( )y) ))( (i’)g)ﬁ) 92 (%gﬁ)):O]

Then f(X,y,U) is the positive part of the above equation and g(X,y,u) the
negative part.

If Y(X,y) = —P1(X,y), then there are polynomials f1,g; € N[X,y,u] such
that

V1(%,9) = Qrui < t1(X, ) ... Qmum < tm(X, Y1 (X, §, 1) = g1 (X, y, W)]
hence
“P1(%,§) = Qruwr < ti(%,§) ... Quum < tm(X,§)~[f1(X, 4, 1) = g1 (R, Y, )]
which is equivalent to

_'ll” (£>g) = Q{ul <t1( g) lenum < tm(x)y)
[( (7_{ g 11) < 9](7_(‘,}]‘,11))\/( ( »y> ) > 91( »g>ﬁ))]

where Q/ is 3 if Q; is V and vice versa for i = 1,2,...,m. Continuing as in
the cases for disjunction and inequality we can get the required polynomials
f and g. O

We denote by Ag the class of Ag formulas with k alternations of bounded quantifiers

i.e.

Qix1 < t1(F) ... Quxx < tud(%, 1)

where ¢ is open and Qj; is either Jor V for all i =1,2,...,k. By Lemma 1 and the first
part of the proof of proposition 4 in [11] we get the following theorem.

18
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Theorem 4. There is a Ay formula Saty(x,y,z) such that, for any M = 1Ay, @(X) € Ao
and d,b € M,

M b > (max(d@) +2) ¢ — [p(d) « Sate(b, (@), @ (X)7)].

This means that if we care for the satisfaction of Ay formulas with only k alternations
of bounded quantifiers we only need weak exponentiation and for standard formulas we
need no exponentiation at all.

1.5 Arithmetized Completeness Theorem

Having proved his first incompleteness theorem, Godel realized that the proof could
be formalized and thus, he obtained his second incompleteness theorem. The same
fundamental insight works for other results, including Gédel’s completeness theorem
for the predicate calculus. This idea led to the so-called Arithmetized Completeness
Theorem (ACT), first formulated by D. Hilbert and P. Bernays ([3]).

The ACT is undoubtedly an important result, as it can be applied to construct arith-
metical models and give alternative proofs of the incompleteness theorems (see, e.g., [9]).
Its statement has two forms, a syntactic and a semantic one. Since in the sequel we will
be considering models of theories in £.A4, the semantic form seems more appropriate (see,
e.g. section 13.2 in [9]). In what follows, T will denote a theory in LA.

Theorem 5. (ACT-Semantic Form) Let M be a model of PA and T be a theory definable
in M. If M |E Con(T), then there exists a model K of T such that K is “strongly definable”
in M.

Here, strong definability means, roughly speaking, that
(a) the universe of K may be taken to be the same as that of M and

(b) the satisfaction relation for K is parametrically definable in M, i.e. there is a
formula Sat(x,y,z) and some b € M such that for all formulas &(X) of & € K

N E ¢[&] & M [ Sat(b, (&), p(x)7).

If the theory T contains PA, the relationship between M and K is much nicer; indeed,
one can prove (6.12 in [16]) the following.

Lemma 2. If M,K are models of PA and K is strongly definable in M, then M is
isomorphic to an initial segment of K.

By condition (b) of strong definability and the (well-known) fixed-point lemma, it
follows that M cannot be isomorphic to an elementary substructure of K. However, the
ACT can be applied in such a way that M is isomorphic to a I, elementary substructure
of K. Indeed, the following result, first stated explicitly by K. McAloon ([12]), refers to
this fact.
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1 Basics

Theorem 6. Let M be a model of PA and T be a theory definable in M such that
M k= Con(T+Tr(TTy,)), where Tr(TT,,) denotes the set of (Géodel numbers of) Tl sentences
true in M. Then there exists a model K of T such that

1. K is strongly definable in M (and, therefore,)
2. M is isomorphic to a proper L, elementary initial segment of K.

We will continue this (historical) review in chapter 3, where we will also see the ACT
play the main role in the effort to answer questions concerning the end extendability of
a model.
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2 Tableau proof elimination

2.1 Elimination Lemma

This chapter is dedicated to the formalization of the Elimination Lemma. The aim is to
formalize the proofs presented in chapter 2 sections 5 and 6 of [1] in an arbitrary model
of IAg+ Q7. If we restrict ourselves to standard formulas the Elimination Lemma states
that for any set of formulas T and any formula ¢ if we can get a confutation for T+ ¢ and
T 4+ —d, then we can confute T alone. It is an immediate corollary of the Completeness
theorem that the Elimination Lemma holds. This is because any valuation satisfies
either ¢ or —=¢. So if both T + ¢ and T + —¢ are unsatisfiable then T is unsatisfiable.
Hence, by the Completeness theorem, there exists a confutation for T. In this chapter
L will denote a language extending L£A. Since we will be working with variants of the
Arithmetized Completeness Theorem we will also require an arithmetized version of the
Elimination Lemma.

2.1.1 Some “book-keeping” lemmas

When we use the V-rule in a tableau proof the term has to be free for the variable that
is replaced in the formula. A similar situation should be considered in the use of the
—V-rule. A way to avoid this complication is to use terms in the applications of the
V-rule in a tableau proof that do not contain bounded variables of £ and also when the
—V-rule is applied the critical variables used are not among the bounded variables of X.

The above discussion leads us to the definition of the notion of being a variant of a
formula, which is done by recursion on the construction of the formula. This notion
can be formalized by a Ay formula Variant(x,y) which holds when x and y are codes of
formulas of £ and ™x" is a variant of y", where X" denotes the formula with Godel
number X.

Definition 18.
o If ¢ is atomic, 1 is a variant of ¢ if and only if p = ¢
o If & =—@’, P is a variant of ¢ if and only if p = —p’ and ' is a variant of ¢’.

o If =1 — b2, P is a variant of ¢ if and only if p = P — P2, Py is a variant
of 7 and 1, is a variant of ¢,.

o If ¢ =Vxd’, Y is a variant of ¢ if and only if P’ is a variant of ¢’ and P = Vxp’
or \p = Vzp’(x/z) where z is a variable which is not free in 1’ but is free for x in

V.
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2 Tableau proof elimination

Variant(x,y) <= Form(x) /A Form(y) A [

(AF(x) NAF(y) Ax =y)V

Ix; < x3y; < y(Form(x7) A Form(yy) /A Variant(xy,y7)/\
x="="Txx  Ay=""Txy;)V

Ix1, %2 < xFy1,y2 < y(Form(xq) A Form(x;) /\ Form(yr)
A Form(y;) /A Variant(x,ys) /\ Variant(xz,yz)/A\
x=x1x' 2 xx; A ANy=yrx" > "xyy)V

Ix1,v < x3y1, Y2,z < y(Form(x;) A Form(y;) /\ Form(y;)A
Var(v) A Var(z) A Variant(x1,y1) Ax ="V xvxx;/A\
(y="V'xvxy;s V (—Free(z,y;) /A FreeFor(z,v,y;)A\
SUB(y2,y1,v,2) Ay ="V'xzxy))]

We will write ¢ ~ 1 whenever ¢ is a variant of . Notice that if ¢ is a variant of
then the formulas have the same complexity.

Definition 19. The complexity of a formula is the height of the tree representation of
the formula; that is to say:

e cpl(d) =0, if ¢ is atomic,
o cpl(¢ V) = cpl(d AP) = cpl(d — ) = max{cpl(¢), cpl(P)} +1,
e cpl(—¢) = cpl(Vxd) = cpl(Ixp) = cpl(d) + 1.

Hence, if ¢ ~ 1, then cpl(¢d) = cpl(l). However, the notion of being a variant says
more about the relation between the variant formulas. If ¢ ~ 1, then ¢ and 1\ have the
same tree representation.

The following lemma shows that in every model of 1Ay + Q7 we can prove that if ¢
is a variant of 1, then ¢p(x/t) is a variant of P(x/t), where x is a variable and t a term
of LA and ¢(x/t) is the formula that results from the substitution of the term t for all
the free occurrences of the variable x in ¢.

Lemma 3. For every model M of 1Ay + Qg

M EVcq, ¢y, z, t, c3, c4[(Variant(cq, c2) /A Var(x) A Term(t)A
SUB(c3,c1,x,t) A SUB(c4, €2, X, t) — Variant(cs, c4)].
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Proof. We will show by complete induction on k that if M E 1Ay + Qy,

M EVeq, ¢o, 2, t, €3, ¢4 < k[(Variant(cy, c2) A Var(x) A Term(t)A
SUB(c3,c1,x,t) ASUB(c4, c2,%,t) — Variant(cs, cq)].
Base It holds trivially for k = 0.

IH Suppose it holds for all k < n, i.e.

M EVceq, o, %, t, €3, ¢4 < n[(Variant(cy, c2) A Var(x)A
Term(t) A SUB(c3,c1,x,t) A SUB(cg, €2, x,t) — Variant(cs, c4)].

IS We show that it holds for k =n + 1, i.e.

M EVeq, ¢, %, t, ¢3,c4 <+ 1[(Variant(cy, c2) A Var(x)/A\
Term(t) A SUB(c3,c1,%,t) A SUB(c4, €2, x,t) — Variant(cs, c4)].
It suffices to prove the statement of ¢c; = nor ¢ = nand M | Form(cy)/A\Form(c;),
for otherwise either the hypothesis of the implication is false and so the implication

is true or both c; and c; are less than n and so the implication holds by the
Induction Hypothesis.

We will consider the most interesting case where the formula with code c; is
universal. Suppose ¢; = "Vwf7, then by definition 18 ¢; = "VwR'" or ¢; =
"Vz(B'(w/z))7; where z is not free in B’ but is free for w in B’.

Let v be the variable of LA such that "v' = x. We may assume that v is free in
the formula with Gédel number ¢; because otherwise we have that

M E SUB(c1,c1,"v, t) ASUB(cz,c2," v, t)

and the assertion of the lemma is trivial.

For the time being, we will assume that s, where t = s, is free for w in both
formulas with codes ¢ and ¢;. So w cannot occur in s, hence

M E —Occur("w7, t)
and it is easy to show by induction on k =n + 1 that:

M E3c < n+ 1[SUB(c3,c1, X, t)A
SUB(c,"B 7 x,t) Acz3 ="Vw™x* ]

which means that we can show in M that

(VwB)(v/s) = Vw(B(v/s)).
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Similarly,

M E3d < n + 1[SUB(c4, c2, %, 1)\
SUB(A, B' 7y x,t) Acy = "v¥w™ * d].

By definition 18 we have that
M = Variant(cq, c;) — Variant("p7,"B’7)
and "B7<ci<n+1,"B7<c; <n+1 hence by the induction hypothesis

M EVariant(c, d).

Now suppose ¢; = "Vz(B'(w/z))7, then z cannot occur in s, s is free for v in
B’(w/z) it is easy to show by induction that:

M E3d, ¢y, cq, %, t <+ 1[SUB(c4, €2, %, t)A
SUB(d,"B'(W/z) "\ x,t) Acg ="Vz(Txdx")7.

Since z is free for y in B’ and s is free for v in B’(w/z) it follows that in going from
B’ to B’(w/z)(v/s) no alphabetic changes are made. Thus, B’ and B'(w/z)(v/s)
have exactly the same bound occurrences of variables. Next, we observe that by
induction on k =n 4+ 1 we can show:

M E3b, ¢, d,x,t <n+ 1[SUB(c, B, x,t) ASUB(d,c,™w™,"z)A
SUB(b,"B'7,"w™,7z") ASUB(d, b, x, t)].

For, x is different from both w and z and y does not occur in s; so it makes no
difference whether we first substitute z for w and then t for x, or vice versa. Thus,

M E3e, d, cz, ¢4, %, t < 1+ 1[SUB(c4, 2, x,t) ASUB(d, "B 7, x, t)A
SUB(e,d,"™ W, Tz ) Acy ="Vz(Txex")T.

By the definition of variants and the fact that z is not free in B’

M EVariant(cq,c2) — Variant("B7, 7B’ (w/z)")A
—Free(z,"B'7) /\ FreeFor(z, w, ')

and "7 <c;<n+1,"B'(w/z)" < c; <n+ 1. By the induction hypothesis

M [=Variant ("B (v/s)7, "B’ (w/z) (v/s) A
—Free(z,”3'7) A FreeFor(z, w, 3'7)
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which by the discussion above implies

M [=Variant ("B (v/s)7, "B’ (v/s)(w/z) A
—Free("z7,"B'7) A FreeFor("z7, "w™, T3'7).

Now z is not free in 3’(v/s), because z was not free in B’ and z does not occur in
s and it is easy to show that in M, i.e. for any formula B’ and any variable z

M E —Free("z7,"B’") A—=Occur("z7,"s™) — —Free("z","B'(v/s)™))

Also, z is free for w in B’(v/s), because z was free for w in f’ and the substitution
of s for v in B’ cannot change matters in this respect since s does not contain w
and no alphabetic changes are made by the substitution. Hence, we can show that
for any formula ', any term s and all variables z and w

M [=FreeFor("z7,"w™, T3/ )A

—Occur("w7,7s7) — FreeFor("z7,"™w™,"B'(v/s)7)).
Therefore,

M EVariant("B(v/s)7, "B (v/s)(w/z) A
—Free(z,"B’(v/s)7) A FreeFor(z,w, B’ (v/s)7).

Hence, by definition 18
M [=Variant("vw(B(v/s))7, "Yw(B’(v/s)(w/z))7)
and it is trivial to show

M EVariant("(Ywg) (v/s))7, T (YwB (w/z)) (v/s) 7).

The notion of being a variant can be extended to tableaux and sets of formulas.

Definition 20. Let TT and TT’ be tableaux. We say that T1’ is a variant of TT (briefly,
IT ~ T1’) if and only if TT can be transformed into TT’ by replacing each formula ¢ in TT
by a variant ¢’, in such a way that each application of rule 3.(e) in TT is transformed
into an application of the same rule with the same term t, and each application of the
rule 3.(f) in T is transformed into an application of the same rule with the same critical
variable.

Similarly, we say that the set of sentences L is a wariant of the set of sentences X’
(briefly, £ ~ £') if and only if £ can be transformed into £’ by replacing each formula ¢
in X by a variant ¢’.

Both notions defined above can be formalized in 1Ay + Q1. In the next definition we
will demonstrate how this formalization can be achieved for tableau proof variants.
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Definition 21. For a A formula A such that

we define:

where

26

IAy + Q1 F Vx(A(x) — Sent(x))

TVariant(A,x,y) <= Tabinconseq(A,x) /\ Tabinconseq(A,y)/\

[th(x) =1Ih(y)] A (Vi <Ih(x))(Vj < Ih((x):))
(3L < Th((y))N

(x)
X)iy (X)i15 ) A Tps (Y3, (Y, VIV

0> ()11, 3) A Tz, (Y (Y)ign, VIA
(Vk <1h(((x)i);))(Fn < 1h(((y)i)))
Variant((((x)i);j)x, ((y)d)u)n)]V

(

Tp3b((x)u X 1+1>J)/\Tp3b((y)i, (Y)is, YV
(
(

VTPS (X Y, )\/VTPSf(X Y1 )}

VTps, (x,y,1) &= {[(Fz1,22 < (x)1) (Tt < (x)i1)(Iv < (x)1)

(Fjhr < Th((x)i))(3X < (x)i) (Fjz2 < Th((x)i+1))

(Y < (3)i41) (3k < Ih(((x)1);5, )

Form(z1) /A Form(z;) A Term(t) /\ Var(v)A

X = ((x)1)5, ALY = ((x)i41)5,] A\ Free(v, z )\
FreeFor(t,v,z1) A[(X)x ="V v (Txz; )TN
SUB(zy,z1,v,t) /A FUnion(Y, X, z2) ]/

[(Fz3,24 < (Y)))(Bt1 < (Y)ir1) (Bw < (y)i)

(BU < h((Y)) (3% < (1)) (BL < h((y)is)

(FY1 < (Yl (En < Th(((x)i)5, )]

Form(z3) /\ Form(z4) A\ Term(t;) A Var(w)A

Xq = (W] A YT = ((Y)ir1),] A Free(w, z3)A
FreeFor(t1,w,z3) A (X1 )n ="VIsxwx"(Txz3x7)IA
SUB (24, z3, W, t1 ) A FUnion(Y; , X1, z4)]IN

Variant(zq,z3) /A Variant(zp, z4) At =t}
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and

VTps, (x,y,1) & {[(Fz1,22 < (x)i) (Fw < (%)i11) (Fv < (x)1)
(F1 < Th((x):))(3Xy < (x)i)(Fj2 < h((x%)i+1))
(31 < (x)i+1) (Fk < Ih(((x)i);))]
Form(z1) AN Form(zz) A Var(w) A Var(v)/A\
= ((x)1);,] = ((x)i+1)j,] A\ Free(v, z1)A
(Vl < 1h(X1)) ﬁOccur( , (X)) OIN
[(X1)x ==V % v * 2] ASUB(22, z1,v, WA
FUnion(Y7, X7, ™ "2)]IA

{[(3z3,z4 < (%)) (Fwr < (¥)i41) (v < (X)1)
(3L < 1h((x)1))(FXz2 < (x)1) (32 < 1h((x)i+1))
(32 < (x)i+1) (Fk < Th(((x)i)y, )]
Form(zg,) A Form(24) A Var(wq) A Var(vi)A

= ()] ALY = ((%)i11)1,] /A Free(vq, z3)A
(Vl < 1h(X3)) ﬁOccur(wh (X2)DIN
[(X2)x = "=V % vy % z3] A SUB(z4, 23, v1, W1 )A
FUnion(Y,, X2, ™ z4)]IA

Variant(z,z3) /\ Variant(zy,z4) Aw = wy}

We can now formalize and prove the lemmas needed for the proof of the Elimination
Lemma. Most of the lemmas are obvious and so we will omit the details giving only the
basic idea of each proof.

For the rest of this chapter, unless otherwise mentioned, the results are proven in a
model M of Ay induction that satisfies (0. Let £ be a recursive, in M, set of formulas.

Lemma 4. If L ~ X/ then given a Tableau T1 for X, we can construct a tableau T1' for
Y/ such that:
M~T, dp(IT) =dp(TT) and T ~TI.

Where TI' ~ T means that the Gédel numbers of TT and TI' have approzimately the same

size.

Proof. The lemma is proven by induction on the number of nodes in TI. The idea is to
make sure that when a bounded variable in TT is renamed in TT’ the substitution by a
term is not affected. So by lemma 3 TT’ ~ TI. Furthermore, dp(T1’) = dp(TT). Finally, TT/
is obtained by TT by renaming variables, hence TT' ~ TT. O
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2 Tableau proof elimination

Lemma 5. Let yi,...,Yn be variables. Given a confutation T of L, we can construct
a confutation T' for X in which none of the variables yi,...,yn is used as a critical
variable and it is such that:

dp(T)=dp(T) and T'~T.

Proof. First, notice that we may assume that yi,...,yn are not free in X. Then from
a tableau proof T for £ and lemma 4 we can get a pure tableau proof T; for a variant
Y of L. Now we can replace yi,...,Yn in Ty with any set of new variables that do not
occur in Ty and get a tableau proof T, for £’. Finally, since £ ~ £’ by lemma 4 again
we can get a variant T’ of T which is a tableau proof for £ and has the required proper-
ties. Furthermore, the process described above, involves only renaming of variables that
doesn’t affect the height and the size of the tableau proof. Hence, dp(T’) = dp(T) and
T ~T. O

Lemma 6. Given a confutation T of L, a wariable z and a term s, there exists a
confutation T' for L(z/s) such that:

dp(T) =dp(T) and T' <T-s.

Proof. By the previous Lemmas we may assume that no variable occurring in the term
s serves in T as a critical variable, T is pure and no variable occurring in s occurs bound
in X. Hence, s is free for z in every formula of T.

Let T’ be the tableau proof obtained by T by replacing each formula ¢ in T by the
formula ¢(z/s). T’ is a tableau proof for £(z/s) and by examining the application of
each rule used in T we see that it can be transformed into an application of the same
rule in T’. Hence, T’ is a confutation for X(z/s).

In the transformation of T to T’ no new nodes are added and so dp(T’) = dp(T).
However, the substitution of z by s may increase the the size of T, compared to the size
of T. For the worst case we would have to substitute z by s for all formulas that appear
inT. Hence T" < T - s. O

2.1.2 Proof of the Elimination Lemma

Definition 22. For all formulas 0, for all sets of formulas £ such that 8 € X and for all
tableaux T for X + 0, set nt(0) to be the number of subformulas of 6 in T.

Lemma 7. Let X/ be any finite set of formulas. Given a confutation T of Z, there exists
a confutation T’ for ZU X' such that:

dp(T") =dp(T) and T ~T.

Proof. In order to adjoin L’ to the initial node of the given tableau, we have first to
rename all the tableau variables that are free in £’ and might have been used as critical
variables. This is easily done because by Lemma 5 we can construct a confutation T’
for £ in which no free variable of L’ is used as a critical variable. In this tableau we can
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adjoin L’ to the initial node, getting a confutation of £ U X’. Furthermore, since only
alphabetic changes take place we have that dp(T’) =dp(T) and T ~ T. O

Lemma 8. Given a confutation T of £,——0, there is a confutation T' of £,0 such that:
dp(T) <dp(T) and T <T
Syntactically:
M = VT 3T’ ((Tabinconseq(T, £,——6) — Tabinconseq(T’, Z,8)) Adp(T’) < dp(T)).

Proof. Let T be a confutation of L,——0. We can derive a confutation T’ of £,0 by
replacing =0 with 0 in every node of T as in figure 2.1. The derived tableau T’ has less
nodes than T if =0 appears in T. Hence, dp(T’) < dp(T) and T' < T. O

Figure 2.1: Transforming T to T’ in Lemma 8

Lemma 9. Given a confutation T of ,0 — &, there exist confutations T and T" for
X,—0 and L, d respectively such that:

dp(T') < dp(T) and dp(T") < dp(T).

Furthermore,

T<T and T'"<T
Syntactically:

M VT EIT’,T”(
(Tabinconseq(T, Z,0 — ) — Tabinconseq(T’, Z, —0) /A Tabinconseq(T", Z,—0))A
dp(T) < dp(T) Adp(T") <dp(T) AT <TAT" < T).
Proof. Let T be a confutation of £,0 — ¢. In order to get a confutation T’ for L, —0
we can erase 0 — ¢ and the branch following ¢ wherever the —-rule is applied in T as

in Figure 2.2. The remaining tree T’ is a confutation of X,—0 with fewer nodes than T.
Hence, dp(T’) < dp(T) and T < T.
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5,05 ¢ z,—0

60— o B
N N
—0 d —0 W

Figure 2.2: Transforming T to T’ in Lemma 9

Similarly, starting with T we can get a confutation T” of L, ¢ which has fewer nodes
than T. Hence, dp(T”) < dp(T) and T” < T. O

Lemma 10. Given a confutation T of L,—(0 — &), there exists a confutation T’ for
X, 0,—d such that:
dp(T') <dp(T) and T <T.

Proof. Let T be a confutation of £, ~(8 — ¢). We can derive a confutation T’ of £, 0, —~¢
by erasing —(0 — ¢) in every node of T as in figure 2.3. The derived tableau T’ has
fewer nodes than T if =(0 — ¢) appears in T. Hence, dp(T’) < dp(T) and T' < T. [

L,~(0— )

o b
|

9,/—\43

Figure 2.3: Transforming T to T’ in Lemma 10

Lemma 11. If T is a confutation of £,—Vx0, there exists a confutation T for L, —0(x/t),
where t is any term, such that:

dp(T") <dp(T) and T ' <T-t

Proof. By complete induction on the depth of the given confutation, say T, we will show
that there is a confutation T’ of £, —0(x/t), where t is any term and dp(T’) < dp(T). By
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Lemma 5 we may assume that no variable occurring in the term t is used as a critical
variable in the tableau T.

Base For dp(T) = 0 the hypothesis of the Lemma holds trivially since X is inconsistent.

I.LH. Suppose that the hypothesis holds for every confutation T with dp(T) < n.

IS For the induction step we have to examine how the nodes of the first level in T could
have been obtained.

First, suppose that the first level of T is obtained by an equality rule or by applying
rules 3.b) or e) to a formula x € X and that ¢ is the derived formula. By erasing ¢
from the first level of T and adding it to the hypothesis we get a confutation S of
L, ¢, —Vx0. Since dp(S) < dp(T) by the induction hypothesis there is a confutation
S’ of Z, ¢, —0(x/t), where t is any term, dp(S’) < dp(S) and S" < S - t.

We can now get the required confutation T’ for £, —0(x/t) by starting with ¢ at
the first level and continuing as in S’. Clearly:

dp(T) =dp(S")+1<dp(S)+1=dp(T) and T'<T-t.

This transformation is depicted in Figure 2.4.

T, —Vx0 L,—6(x/t)
‘ L, ¢, —vx0 L, ¢, —0(x/t) ‘

A fgie A LP_I) A def/gse ﬁ

Figure 2.4: Transforming T to T’, 1st case of Lemma 11

Next, we have to consider the case where the first level of T is obtained by applying
rules 3.c) or d) to a formula x € Z. Let ¢ and P be the formulas obtained at the
first level. If we add ¢ to the set X, —~Vx0 and erase ¢ and the subtree following \
together with { we get a confutation Tq for X, &, =Vx0 such, that dp(T;) < dp(T)
and Ty < T. By the induction hypothesis there is a confutation T{ of X, ¢, =0(x/t),
where t is any term, such, that

dp(T{) <dp(T;) <dp(T) and T/-t<T-t<T-t.

Similarly, we can get a confutation T, of Z,1{,—0(x/t) for the same term t used
for £, ¢, —0(x/t) and such that

dp(Ty) < dp(Ty) <dp(T) and T -t<Th-t<T-t.
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We can now get the required confutation T’ for £, —0(x/t) by starting with ¢ and

P at the first level and continuing as in T{ after ¢ and as in T, after . Clearly:
dp(T') = max{dp(Ty), dp(T;)} + 1 < max{dp(Ty),dp(T2)} + 1 = dp(T).
Furthermore, since T~ Ty + T, and T’ ~ T/ 4+ T, we get that
T+ <Th-t+Th-t~T-t.
This transformation is depicted in Figure 2.5.

L, $,~vx0 L, d,—0(x/t)

. )

~ / Yeg
&\Xj’g j*i T] —\’\/AQS
T,oYx0 e ¢ L, —0(x/1)

P P
A e 1,1, Vx0 L, —0(x/t) & A
e, IH A o
e T T

1
K T

Figure 2.5: Transforming T to T/, 2nd case of Lemma 11

For the final case, suppose that the first level of T is obtained by applying rule
3.f) to =Vx0. Then the formula of the first level would be of the form —6(x/y)
where y is a variable which, by Lemma 5, we may assume does not occur at all in
—0(x/y). If we erase —0(x/y) from T and add it to the initial set £, ~Vx0 we get
a confutation Ty for X, —0(x/y), ~Vx0 that has smaller depth and size than T i.,e.
dp(T7) < dp(T) and T; < T.

By the induction hypothesis, for y instead of t, there is a confutation T, for:
L, _‘e(X/y), ﬁe(X/y) or X, _'e(X/y)

with dp(Ty) < dp(Ty) and T, < Ty -y ~ Ty.

By Lemma 6 there exists a confutation T’ of L(y/t),—0(x/y)(y/t), where t is any
term, and T’ is such that

dp(T) <dp(Tp) and T'<T-t.

However, the critical variable y does not appear in any of the tableaux T, Ty and



2.1 Elimination Lemma

T,. Hence, y cannot be free in £ and so X(y/t) = £. Furthermore, y was chosen
so that it does not occur in 8 at all. Hence,

0(x/y)(y/t) = 6(x/t)
and T’ is a confutation for £, 0(x/t) and it is such that:
dp(T') < dp(Tz) < dp(Ty) < dp(T)

and
T<Th t<T-t<T-t.

See also Figure 2.6.

T, —Vx0
‘ Z)_'e(x/y))_'vxe Z>_'6(X/y)
_‘e(X/y) fuse IE) Lemma 6
A ~ fort=y ~
Z(y/t),~6(x/y)(y/t) L,—6(x/t)

£=£(y/t)
A
-6 (x/y)(y/t)=—8(x/t)

Figure 2.6: Transforming T to T’, 3rd case of Lemma 11

O]

Lemma 12. Given confutations Ty and T, of Z+ 0 and X + —0 respectively, where 0 is
atomic, there is a confutation T of X such that:

dp(T) <dp(Th) +dp(T2) and T<T; +nr,(0)T,.

Proof. If 8 does not occur in Tq, then Ty is a confutation of X and the Lemma holds
for T = Ty. Similarly, if =0 does not occur in T,, then T, is a confutation of £ and the
Lemma holds for T = T,.

Suppose, now, that 0 occurs in Ty and —0 occurs in T,. The only use that could have
been made of © was to close branches of T; in which —68 turned up and the only use that
could have been made of =0 was to close branches of T, in which 6 turned up. Let b
be a branch of T, that =0 was used to close it. Let b’ be the branch obtained by b by
deleting —0 from it. T is the tableau obtained by T; by replacing each occurrence of 0
by the branch b’. Since b’ is smaller than b and b is a branch of T, we get that:

dp(T) < dp(Ty) +dp(T2).
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Since 0 is a atomic, the number of subformulas of 6 in Ty, nt, (), is equal to the to the
number of the replacements of 0 is T; by b’. Hence, T is derived by T; by “hanging’
nt, (0) branches which are of size at most T,. Thus,

i

T<T +np,(0)T.
m

Lemma 13 (Elimination Lemma). For any model M of 1A+ exp, any recursive theory
> and any formula 0, given confutations Ty and Ty of £ 4+ 0 and X + —0 respectively,
there is a confutation T of £ such that:

0,T7,T

dp(T) < 22" max{dp(T}), dp(T2)}

where (0, Ty, T2) = cpl(0) + nT, (6) + nr, (—0).
Syntactically if M | Tabinconseq(Z + 6, T;) and M = Tabinconseq(X + —0,T,), then

Cp1(9)+nT] (9]+I1T2 (—0)

M k= JpTabinconseq(£, p) A dp(p) < 22 -max{dp(T;), dp(T>)}

Proof. 1f 0 € £ or =0 € X the Lemma holds trivially. The non trivial case where neither
0 € X nor —0 € X will be proved by induction on the complexity of 0.

Base If 0 is atomic it holds by Lemma 12.

IH Suppose that the hypothesis holds for all sets of sentences X and all formulas with
complexity less than the complexity of 0.

IS For the inductive step we will consider all the cases for the formula 6.

If 8 = —¢, then we have confutations T; and T, of £, —~d and X, —~—¢ respectively.
By Lemma 8 there is a confutation T, of L, ¢. Hence, by the induction hypothesis,
there is a confutation T of £ such that:

JePI(@)+nTy (~@)+np (@)
dp(T) < 2 -max{dp(T1), dp(T;)}

HePL() 0 (@) tny, (<)

-max{dp(Ty),dp(T2)}

< ZZCI;)I(GH»HT1 (9)+n-|—2 (—8)

-max{dp(Ty),dp(T2)}
since by Lemma 8 dp(T;) < dp(T;) and
ny; (¢) < nr,(77¢) = nr,(—6).

If 8 = ¢ — U, we have confutations Ty and T, of £, — P and Z,—(d — V)
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respectively, see also Figure 2.7. By Lemmas 9 and 10 there are:

(2.1) a confutation S; of Z, —~¢ such that dp(S7) < dp(Tq),
2.2) a confutation S, of X, such that dp(S;) < dp(T;) and
(2.3) a confutation S3 of L, b, — such that dp(S3) < dp(T,).

By Lemma 7 and (2.2) we get
(2.4) a confutation S} of £, ¢, such that dp(S5) = dp(Sz) < dp(Ty);

by (2.3) and (2.4) and the induction hypothesis for X, ¢ we get a confutation S
of X, ¢ such that

Pl )+ng ($)+ns ()

(2.5) dp(S4) <27 -max{dp(T1), dp(T2)}

by (2.1) and (2.5) and the induction hypothesis for £ we get a confutation T of £
such that:

ch1(¢)+ns4 (b)+ng, (—d)

dp(T) <2
ePl(@Tens, (@) 4ns, ()

-max{dp(Ty),dp(S4)}

2¢p1(¢)+nsé(lb)+ns3(ﬁll‘)
max {dP(Tl ),2 - max{dp(Th), dp(Tz)}}
epl(¢)ns, (¢)+ng, (~p) _cPlW)Tngs (W)ingy (~4)
22 ST 92 2 -max{dp(Ty),dp(T2)}
cpl(¢)ng, (0)+ng, (~d) PP Fng/ (W) ng, (2)
2 4 e 2 -max{dp(Ty),dp(T)}

cpl(¢) < max(cpl(¢), cpl(p)) and cpl() < max(cpl(), cpl(p)), therefore

dp(T) < szax(cpl(¢)>cpl(ﬂ)])+ns4(¢)+n5] () | yax(ePl(®hepll))ng (W)ns 5 ()

max{dp(Ty),dp(T)}
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ng; (V) + ns, (—p) < nr,(0) + n1,(—0), since the number of subformulas of P in
S; is less than the number of subformulas of 6 in T;. Furthermore, the number of
subformulas of = in S3 is less than the number of subformulas of =0 in T,. Also,
ng, (¢)+ns, (—¢) < nr, (0)+n7,(—6), since ng, () < ns, (d) < ns,(—0) (notice that
we extended only X, with ¢, so ¢ is not added to S4). Finally, nr, (—d) < ng, (6).

Hence
d (T) < 22maX(cpl(¢),cpl(d>J)+nT1 (0)+nT, (ﬁe)+2maX(cpl(¢J,cp1(w))+nT] (0)+nT, (70)
p(T) < )
max{dp(Ty),dp(T2)}
max(cpl($),cpl())+ny, (8)+n, (~0)
< 2T TR nax{dp(Ty), dp(T2)}
jmax(epl(®),epl(1))+nr, (0)+nr, (~0)
<2 -max{dp(Ty),dp(T2)}
and since cpl(0) = max(cpl(¢), cpl(W)) + 1
cpl(0)+n . (0)+nT, (—0)
dp(T) < 22 "7 max{dp(Ty),dp(T2)}
L~
Lo— 3
| L.9 ! >
| = =
T
—¢ v 5 b
Z y &y 4
AR
| H
: ~ Za d)
g A
S
S 4
L=(¢—Y) X, b,
e ]
b, —b 53

T

Figure 2.7: Elimination Lemma 13 implication
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2.1 Elimination Lemma

For the last case, suppose that 6 = Vx¢ and we have confutations T; and T, of
>, Vxd and X, —Vxd respectively.

Suppose that ¢(x/t) appears in Ty for some term t (see also Figure 2.8), if not,
then Ty is a confutation for X and the hypothesis holds trivially. Take a branch
such that ¢(x/t1), for some term t;, appears at the deepest possible level and let
$11, P12, ...y P1p be the formulas preceding ¢(x/t1) on the chosen branch. Clearly
the subtree R; following ¢ (x/t1) is a confutation for:

Z>¢Ha---)¢1‘p)¢(x/t1)) dp(Rl) Sdp(—ﬁ)

and the number of subformulas for ¢ in R; is less than the number of subformulas
of 8 in Ty. Hence,

ng, (¢) < nr, (6).

Since T, is a confutation of X, —~Vx¢$ by Lemma 11 there is a confutation T, of
L, —~d(x/t1), for the same term t; used above and T; is such that dp(T;) < dp(T>)
and

ny;(=¢) < nr,(—6).

By Lemma 7 there is a confutation Ry of: X, {11,...,¢1p, ~d(x/t1)  such that

dp(Ry) < dp(Ty) <dp(T2) and  ng,(—¢) =ny(—d) < nr,(—0).

Since the induction hypothesis holds for all sets of formulas there is a confutation
Sy of L, d11,..., d1p such that:

cpl()+ng | (¢)+ng, (~¢)

dp(Sy) < 2° -max{dp(Ry),dp(R;)}

o 2P R () gy (20

-max{dp(T),dp(T2)}.
We repeat the process for all applications of rule 3.e) for Vx¢ at level p+ 1 and so
the depth of each derived confutation S;p is at most dp(Sy).

We can simultaneously eliminate all ¢(x/t;) from each branch of T; at level p + 1,
by replacing them with the respective confutation S;,. As we’ve seen above the
branch ¢ji1,..., ¢y followed by Sip is closed. Let C, be the tableau obtained by
“hanging” Sip after ¢y in Ty as described previously. Then:

dp(Cyp) < dp(S1) +dp(Th)

HePL(P)Fng, (0)ng, (~b)

-max{dp(Ty),dp(T2)} + dp(Th)

o g 2R (@, )

2c})1((1>)+rl]21 (¢)+HR2 (—d)

-max{dp(Ty),dp(T2)}
1 max{dp(Ty), dp(T,)}.
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Hence, if we set Ry = Ry 41,

2CP1(¢)+HRP+1 (¢)+HRZ (—d)

(2.6) dp(Cp) <2 1 max{dp(T1),dp(T2)}.

Repeating the process for level p in Cp, if an application of rule 3.f) for ¥x¢ exists
at level p — 1, we get a confutation C,_; such that

dp(Cp—1) < dp(S2) +dp(Cy)
chl(dJHnRP ($)+ng, (—)
-max{dp(Cy),dp(T2)} +dp(Cp)
CP1(¢)+HRP(¢J+HR2(ﬁ¢)
-max{dp(C,),dp(T2)}

1 max{dp(Cp), dp(T2)}

<2.2?

< 220P1[¢J+HRP (¢)+HRZ (—d)

by (2.6)

< 226p1[¢)+nkp (®)+ng, (ﬁ¢)+]

- max {22

epl(@)ng  (®) R, (~0)

1 max{dp(Ty), dp(Ta)), dp(Tz)}

since max{x - 3,vy} < - max{f, vy} and max{max{«, B,}, B} = max{«x, B}

cpl[¢]+an (d)+ng, (=) ch1(¢)+an+1 (¢)+nkz(ﬁ¢)

<2 +1.9 1 max{dp(Ty), dp(T2)}

JPU@) Ry, (O)mp, () oePU@ R,y (#)4ng, (00)

1 max{dp(Ty), dp(T)}

1
and 22" 1 < 22" hence

2cp1(¢>)+nRp (b)4ng, (Cb)+1 +2cp1(¢l+an+] ($)+ng, (—4)+1

-max{dp(Ty),dp(T2)}

but cpl(d) + 1 = cpl(0), so

20pl[9)+nkp ($)+ng, (wp)+2c1a>1(9)+an+1 (@) +ng, (=)

=2 -max{dp(Ty),dp(T2)}

,epl(0)+ng, (~d) (anp (@) 5 Ry 41 (cb))

=2 -max{dp(Ty),dp(T2)}.

Hence,

,epl(0)4ng, (~d) (znkp (@), "Ry 41 (dﬂ)

dp(Cp) <2 -max{dp(T), dp(T2)}.

Continuing this way after at most p steps we get a confutation T = Cy for X such



2.1 Elimination Lemma

chl(enngz(w).(znm (@) y"Rp () )R,y <¢))

dp(T) <2 -max{dp(Ty),dp(T2)}

since the number of subformulas of ¢ is decreasing when we go from Ci.q to C; we
have that 2771 (®) ... 4 Jnkp (@) | JRy (@) <2V 20Rp (D) 4 DRy (¢), hence

Hepl(@)ng, (~d) (2] "Ry () TR (¢))

dp(T) <2 -max{dp(Ty),dp(T2)}

n (b)
and 21 4 -4 2% (@) 4 R () 9 2T D1 g R = R,

2cp1<e)+nR2<ﬁ¢>_(2nR](¢u+1 )

-2 ) - max{dp(Ty), dp(T2)}

ng, (¢) +1 < nr, (0) and ng, (—¢) < n1,(—06)

cpl(0)+nT (ﬁe)v nt (9]7
=2 ETY) addp(Ty ), dp(Ta)

22Cp1(9]+n-r] (9)+nT2 (—0)

-max{dp(Ty),dp(T2)}.

Hence
’ cp1(9)+n-|-] (9]+nT2(ﬁ9)

dp(T) < 2? -max{dp(Ty),dp(T2)}.

as required and the induction is completed.

X, Vxd

Z)¢11--~¢1p>¢(x/t1) IH

s Z)d)ﬂ---d)]p
S A

L d1r... drp, ~b(x/t1)

L, —db(x/t) T R, A
Sy TZ/A
-

Figure 2.8: Elimination Lemma 13 quantifier
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O]

The following lemma is trivial semantically. However, it is useful and it simplifies the
merging of two tableau proofs.

Lemma 14. Let M be a model of 1Ay + Q1, L is a set of formulas. Then for all ¢
M E —Tabcon(X) <<= M E—Tabcon(Z,d — )

Proof. If  — ¢ € X, then the lemma holds.

Suppose that & — ¢ ¢ X and that T is the tableau proof of a contradiction from
I, — ¢. We will show by induction, on the number of applications of rule 3(c) for
¢ — ¢ in T, that

M E —Tabcon(L, ¢ - ¢) = M E —Tabcon(X)
Base If rule 3(c) is not used for ¢ — ¢ in T, then T is a confutation of X.

ILH. If rule 3(c) is used less than n + 1 times for & — ¢ in T and T confutes L, — o,
then there is a tableau T’ that confutes Z.

Figure 2.9: Confutation of ;b — ¢

1.S.

Suppose that rule 3(c) is used n 4 1 times for ¢ — ¢ in T and T confutes L, d — ¢.
In T find a node N in the deepest level at which ¢ — ¢ is used. Let L’ be the set of
formulas that occur in the node except from ¢ — ¢ and let Ty and T, be the tableau
we get when we apply the rule 3(c). Rule 3(c) is not used again for @ — ¢ in Ty and
T,. Let T{ and T, be the tableaux we get from T; and T, respectively, if we erase every
¢ — ¢ from them. Both T/ and T, remain closed when we eliminate ¢ — ¢ from Ty
and T, because rule 3(c) is not used for ¢ — ¢. Hence, T is a confutation for X’ + —¢
and T, is a confutation for X’ + ¢ i.e.

M = —Tabcon(Z' +—¢) and M |=—Tabcon(Z' + ¢).
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2.1 Elimination Lemma

By the Elimination Lemma 13
M = —Tabcon(Z').

Hence, there is a tableau T; which confutes Z’. Add ¢ — ¢ to every node of T; to get
T3. Replace node N and the tree under node N in T to get T”. Then T” is a confutation
of ;¢ — ¢ and rule 3(c) is used n times for ¢ — ¢ and by the induction hypothesis,
there is a tableau T’ that confutes L. O

Proposition 1. Let M be a model of bounded induction with exponentiation. Let T be
a recursive theory in the sense of M and let © be a sentence such that T+ 0. Then

M E Tabcon(T) <<= M E Tabcon(T + 0).

Proof. If T is inconsistent, the equivalence is trivially true.
Suppose, towards a contradiction, that

(2.7) M = Tabcon(T)
and
(2.8) M E —=Tabcon(T + 0).

Since T F 0 we get that T + —0 is inconsistent hence
(2.9) M = —Tabcon(T + —0).
By (2.8), (2.9) and the Elimination Lemma 13
M E —Tabcon(T)
which contradicts (2.7). Hence,
M |k Tabcon(T + 0).

Conversely, if
M E Tabcon(T + 0),

then it cannot be the case that
M = —Tabcon(T)

because then, by Lemma 7, we would have that the superset T+ 0 is tableau inconsistent
contradicting the hypothesis.
O
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3 End extensions of countable models of
weak arithmetic

3.1 End extensions

As it was the case with other fundamental theorems that were known to hold for PA,
there were attempts to miniaturize the results presented at the end of chapter 1, i.e. prove
their counterparts for fragments of PA. Such a result, described as “a mild refinement of
the arithmetized completeness theorem”, was proved by J. Paris ([13]) and is essentially
the following.

Theorem 7. Let M be a model of BXy, n>2, and T D [Ag be a theory An_1 definable
in M such that M = Con(T). Then there exists a model K of T which is Ay definable in
M and M is isomorphic to a proper initial segment of K.

By applying this result, the same author showed that (see Theorems 2 and 5 in [13])
(i) every model of BL,,, n > 2, has a proper end extension | = BL,
(ii) every model of IZ,, n > 2, has a proper end extension | = X,

(in fact, the author proved stronger results, but we are restricting our attention to
versions relevant to our work).

In order to obtain a model K that has a nicer relationship to M in theorem 7 we need
an extra assumption on M as the following result obtained by J. Paris and L. Kirby in
their classic paper [15] shows.

Theorem 8. For any countable model M of 1Ay and n > 2,
(a) M = BXL, & there exists K |= 1Ag such that M < ¢ K.
(b) if M has a proper Ly elementary end extension, then M = BL;.

Note that the previous result is also a miniaturization of the following well-known theo-
rem that was proved by R. MacDowell and E. Specker (see [11]).

Theorem 9. Fvery nonstandard model of PA has a proper elementary end extension.

Concerning part (a) of the previous Theorem, let us note that the proof of (&) does
not rely on the countability of M, while the proof of the converse implication relies
heavily on this assumption. Despite attempts to show that any model M of BL,,, n > 2,
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3 End Extensions Countable Models

is extendable to a model K of 1Ay such that M <y ¢ K, this question still remains open
(see, e.g., [3] and [1]).

In view of Theorem 8, a natural question that arises is whether (a) holds for n =0, 1.
Concerning the implication (&), it holds for both n = 0 and n = 1, by the fact that
BXy & BX; and the fact that if M C. K = IAg, then M | BLZ;. Concerning the converse
implication, it does not hold for n = 1, by part (b) of Theorem 8 and the existence
of models of the theory BL; + —=BZ; (see Theorem 1 on page 6). Therefore, the only
remaining question is

Problem 1. Is every countable model M of BX; extendable to a model K of IAj such that
M <0,e K?

Since for any structures M, K for LA, M C, K implies M < K (see Theorem 2.7 in [9]),
it follows that Problem 1 is equivalent to

Problem 2. Is every countable model M of BX; extendable to a model K of 1Ay such that
M C., K?

Problem 2 is considered one of the main problems concerning fragments of PA (see
“Fundamental problem F” in [5]). This problem was examined exhaustively by J. Paris
and A. Wilkie in [18]. These authors introduced the notion of I'-fullness, T being a set
of sentences, and showed that this problem has a positive answer, provided that M is
[Ap-full, i.e. they proved the following result.

Theorem 10. For any countable model M of BLy, if M is 1Ag-full, then there exists
K E 1Ay such that M C, K.

Moreover, Paris and Wilkie proved that certain natural conditions on M imply IAp-
fullness. In order to be able to state their result precisely, we need to recall the definition
of a notion and some notation.

Definition 23. Let M be a structure for £LA. M is said to be short Tlj-recursively
saturated, if whenever ® = {x < a A @i(x,b) : 1 € N} is a recursive set of TT; formulas
(with parameters from M) finitely satisfiable in M, then @ is satisfiable in M.

Notation 1. 1Ay F —ApH stands for the hypothesis that the Ay hierarchy provably col-
lapses in 1Ay, i.e. there is a fixed n such that for any formula 6 € Ay there is a formula

X € Ap in prenex normal form with at most n alternations of bounded quantifiers such
that 1Ag -0 & x.

Now we can state the result in [18] which concerns sufficient conditions for a model of
BX; to be IAg-full.

Theorem 11. For any countable nonstandard model M of BXq, each of the following
conditions imply that M is I1Ay-full:

(1) M is short T -recursively saturated

(2) M exp
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3.2 Exponentiation

(3) 1Ag = —AgH and IN <y € M;M E Vx3y(y = xY)
(4) 1A - —AgH and Ja € Mv¥b € MIn € N,b < a™
(5) 1A0 - —AH and IM C. K |= BZ;.

However interesting the notion of I'-fullness may be, it is highly technical and, there-
fore, not very intuitive. For this reason, we found it worthwhile to look for an alternative
approach, which would avoid use of this notion and would be easier to grasp. Actually,
the answer lies in a remark in [18], made just after the end of the proof of Theorem 5(2)
(page 154), which reads as follows.

Remark. A direct proof that any countable model of 1Ag + BXq which is closed under ex-
ponentiation has a proper end extension to a model of 1Ay may be obtained by mimicking
the proof of Theorem 4 but with “Semantic Tableau consistency of I'” in place of “T-full”
and adding a new constant symbol T > M to ensure that the end extension is proper.

This chapter is dedicated to showing how one can apply variants of the ACT to prove
in an alternative way that if a countable nonstandard model M of BX; satisfies any of
conditions (1) — (4) of Theorem 11, then it is properly end extendable to a model of IA.
Note that working with condition (5) makes no sense in our context, as it presupposes the
proper end extendability of M. Although we have obtained no new results, we feel our
undertaking is interesting from a methodological point of view, as it connects Problem
2 with the approach suggested by the ACT.

3.2 Exponentiation and end extensions

In this section, we will prove that every countable model of BL; 4+ exp has a proper end
extension satisfying IA,. We begin with the definition of the diagram of a model.
Let A be a model for a language L. Let:

La=LU{cq|aeA}

where, for each a € A, cq is a new constant symbol. So the new language L is an
expansion of £. The model A can be expanded to a model for £, denoted by Aa,
where each new constant ¢, is interpreted by the element a.

Definition 24. The diagram of A, denoted by A4 or A when there is no doubt about
the model A, is the set of all atomic sentences and negations of atomic sentences of L
which hold in the model Ax.

Aa={beSc, | ArEd, $=0 or ¢p=-8, 6¢cAS,,)

In order to have a simpler notation for the expanded language, for the rest of this
chapter we will denote LA by L.

We will now start with a couple of lemmas that provide the means to implement the
idea of the Arithmetized Completeness Theorem.
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In [17] lemma 8.10 states that if r € w and o is any X, sentence, then 1Ay + o + exp
proves the tableau consistency of 1Ay + o + Q.. We will modify this proof in order to
get the tableau consistency of 1Ag + A 4+ ¢ > M, which will later be the base theory in
the completeness argument.

Lemma 15. Let M be a countable model for Ly, = Lm U{c} where C is a new constant
symbol. If M is a model of 1Ay + exp, then M is a model of the tableau consistency
of the TIy theory 1Ay + A+ ¢ > M, where ¢ > M denotes the set of Ly, sentences
{c>cq|lae ML

Proof. Suppose, towards a contradiction, that M = —Tabcon(IAy + A + ¢ > M). Since
M = exp for any b, ¢, t € M, there is a Ay formula Saty c(x,y) asserting that “If
x ="0(x1,...,x¢) " is any L5, formula with x < ¢ and y = (bs,...,by) is a sequence of
elements less than b, then 0(by,...,bt) is true in M” (see paragraph 1.4).

Suppose T, I, ..., T is a tableau proof (in M) from IAy+A+c > M of a contradiction.
Let ¢ € M be larger than the Gédel number of any formula occurring in any T3, let
d —1 € M be larger that the Gédel number of any constant occurring in any I} and set
b > qlos™ e,

For all i < s and X € I} we define in M a function F; x with domain the set of variables
occurring in formulas in X and range bounded by b, by recursion on 1 as follows:

o Ifi=0, Fyx is empty
o For x a variable in (some formula in) Y € T4 pick X € T} such that Y is derived
from X by one of the tableau rules.
— If x appears in X, set Fi11y(x) = Fix(x).

— IfY=XU{—=0(x,%1,...,%p,C,Cq)} where =Vx0(x,x1,...,%p,C,Cq) € X, set

mo Lif M= mp = (um < b)[Saty.c(e, (m, Fix(%, d, @))]
Fipv(x) = .
0 ,otherwise,

where

g

€= ,__'e(x) 7_()) Z, g)—l) Fi,X(g) = Fi,X(X1 )) ceey Fi,X(Xp)

and (um < b)[dp(m)] is the least m € M which is less than b and it is such
that M E ¢(m).

— In all other cases set Fiyqy(x) =0.

Lemma 16. For alli <'s and for all X €T3,

i41

Range(Fix) C{meM | MEm < d¢ ¢},
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3.2 Exponentiation

Proof of lemma. By induction on 1i.

Base It holds for all X € T} trivially since Fo x is empty.
IH For all X € T, Range(Fix) C{meM | MEm< dlos' ¢},

IS For each X € Iy that is obtained from Y € I} using rules 3.(a)-(d) no new variables
are introduced. Rule 3.(e) may introduce new variables which will be evaluated by
0. Finally, when rule 3.(f) is used to eliminate an unbounded quantifier the worst
case would be to have log ¢ multiplications. Each multiplication factor is less than
d. Hence, in the worst case we substitute i times and we get that the number
assigned to the fresh variable y would have to be less than d'°s' ¢,

O]

Lemma 17. For alli < s there is an X € I} such that for all formulas:

9(x1,...,xp,cm,...,c“q)

in X which are either X1 or T4

M ': Satb,c(’_e(xh' . ')Xp)é)j) <Fi,X(X1)a .. ')Fi,X(Xp»)'

Proof of lemma. By induction on 1i.

Base It holds for Ty trivially since M satisfies 1Ay, M satisfies its diagram A and for
every valuation o for M such that o(c) >M o(cy) for all ¢, used in the tableau
proof M satisfies ¢ > M.

IH Suppose that for all 1 < s there is an X € I} such that for all formulas 0 in X which
are either Xy or TTh

M }: Satb,c(re(xh see )X]J)E)—l) <Fi,X(X1)) .. -)Fi,X(Xp)>)-

IS We will show that for i+ 1 <'s there is an X € I such that for all formulas 6 in X
which are either X7 or TTy

M = Satp o (T0(x1, ..+, Xpy ©) 7y (Figr x(x1)y+ o+, Fipax(xp)).

By the induction hypothesis i < s there is an X € T; such that for all formulas
0(x1,...,%p) in X which are either X; or TTy

M IZ Satb,c(l—e(x1 yeeoy Xpy 6)—'> <Fi>X(X1 )) EES ) Fi,X(Xp)>)

and there is a Y in 741 which is derived from X by one of the rules 3.(a)-(f). Hence,
we have that:
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o if rule 3.(a) is the case, X € Ti;1 and the hypothesis for i+ 1 holds for Y = X.
o If rule 3.(b) is the case, we have that

M = Saty o (T0(x1, . .y Xp, €)Y (Fix (x1)y .o, Fix(%p)))
and by the properties of Saty ¢(x,y)
M = Saty (T0(x1,y ...y Xp, €)1 (Fix(x1)y -y Fix(xp)))
and the hypothesis for 1+ 1 holds for

Y = XU{0(x1y...,%p,C)}.

o If rule 3.(c) is the case, we have that
M = Satp o (T01(X1y ...y Xpy €©) = 02(X1y ..y Xpy €) 7y (Fix(X1)y -+ o Fix(xp)))
and, by the properties of Saty ¢ (x,y), either
M = Satp o (T01(x1, ..., xp, €) 7y (Fix(x1), .-+, Fix(xp)))

or

M ): Satb,c(FGZ(Xb <oy Xpy 6)—l) <Fi,X(X1 )) ceey Fi,X(Xp)>)
and the hypothesis for i 4+ 1 holds for

Y =XU{=01(x1,...,%p,C)} or Y =XU{02(x1,...,%p,C)}
o If rule 3.(d) is the case, we have that
M = Satp o (T(01(x1y . o, Xpy €) = 02(x1, ..+, %p, €))7, (Fix(x1), -+, Fix(xp)))
and, by the properties of Saty ¢ (x,y),

M = Satp ¢ ("01(x1y ..y Xpy ©) T (Fix(x1)y - - oy Fix(xp)))

and
M ’: Satbyc('—ﬁez()(] yoeoy Xp, E)j, <Fiyx(X] ), ey Fi,X(Xp)>)

and the hypothesis for i 4+ 1 holds for

Y =XU{6:1(x,¢), —0:(%, )}

o If rule 3.(e) is the case, we have that

M = Saty ¢ ("Vx0(x, X1, .+ Xp, €) T, (Fix(X1)y - -+ Fix(xp)))
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and, by the properties of Saty ¢ (x,y),
M = Satp (TO(t(X), X1, - -, Xp, €) 7,
(Fix(x1)y -y Fix(xp)y Figr,y (pa1)y o« oy Figr,v(x1)))
for all terms t(X) freely substitutable for x in 0 with "t7 < ¢ and where
Y = XU{B(t(X),x1, ..., xp, €)}

and X = Xp41,...,X, are fresh variables introduced by t(X). Clearly, the
hypothesis for i+ 1 holds for Y.

o If rule 3.(f) is the case, we have that
M = Satp o (T=VXO (%, X1y .+ o, Xpy €) 7 (Fix(X1)y -+ o, Fix(%p)))
and, by the properties of Saty ¢(x,y),
M = Saty o ("0(y, X1y .. ., Xp, €)
(Fit XUE0yyxtsxp, @ (U )y Fix (x1), ++ o, Fix (%))

for some variable y not occurring in any formula in X, and the hypothesis
holds for i+ 1 for Y = XU {=0(y,x1,...,%p,C)}.

d

By Lemma 17, there exists X € Iy such that for all 8 € X which are either X; or TT;
M |: Satb,c(l—e(x1 yooe )xp)—l) <Fi,X(X1 )) ey Fi,X(Xp)>)-

But 1. of definition 15 implies that X contains 6 and —8, for some atomic formula 6.
Therefore,

M |: Satb,c('_e(xh oo )Xp)—l> <Fi>X(X1 )) ey Fi,X(Xp)>)
and
M ’: Satb,c(l—_'e(x1 yo. ')x‘p)—lv <Fi,X(X1 )) KRS Fi,X(Xp)>)

which is a contradiction. O

The following lemma will enable us to prove that the ground model is an initial segment
of any model satisfying the theory constructed in the completeness argument. Note that
this is the point where we need X;-collection in order to bound tableaux proofs uniformly.

Lemma 18. Let M be a countable model for Ly, = Ly U{c} where C is a new constant
symbol, such that M = 1Ay + exp. If 8(y,c,C) is a formula of L3, a € M and T is a
finite extension of 1Ay such that:

(3.1) M k= Tabcon(T + A+ ¢ > M),
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then either:
(3.2) M [ Tabcon(T + A+ ¢ > M+ —3y < ¢q0(y,¢,C))
or for some b € M such that M EDb < a:

(3.3) M E Tabcon(T+ A+ ¢ > M + 6(cp, c,C))

Proof. Suppose, towards a contradiction, that:

(3.4) M E —Tabcon(T+A+¢c > M+ —3Fy < cq0(y,¢,C))
and
(3.5) M E Vb < a—Tabcon(T+ A+ ¢ > M + 0(cp, C,C))

For simplicity let T" = T4+ A+ ¢ > M and 0(x) = 0(x,¢,¢). By Definition 17 of
Tabcon(T) and (3.5)

M E Vb < a3pTabinconseq(T’ + 0(cy), p).
Since M = BX;, we can bound p. So we get that
(3.6) M = 3to¥b < adp < toTabinconseq(T’ 4 0(cp),p)

and Vb < adp < tyTabinconseq(T’ + 0(cp),p) is a Ay formula.
By Ap induction and the fact that M is closed under exponentiation we will show that:

(3.7) M = Vy < adp < tTabinconseq (T’ + Ix < ¢y0(x), p),

where, for the ty that were found in (3.6), t = (log to)téy, each set of formulas that
appears on a node of the tableau proof, say S7, has g.n. less than loglog ty and

dp(S7) < 2Ylog to.
Base By (3.5) and (3.6) it holds for y = 0.

IH Suppose that (3.7) holds for ally =b < a, i.e. if b < a, then there is a t; € M such
that:
M [= Vb < adp < tyTabinconseq (T + 3Ix < ¢,0(x), S1)
b
where t; = (log to)té , each set of formulas that appears on a node of the tableau
proof S; has g.n. less than loglogty and

dp(S1) < 2% log to.
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IS Let y =b+ 1 < a. The implication x < cp11 — X < €p V X = Cpy1 is provable from
1Ay hence,

(3.8) MEXx<cpr 2 x<cpVX=Cpii-

Hence, in order to get a confutation in M for T' + Ix < cp10(x), it suffices to
construct a confutation for T/ + Ix(x < ¢p AO(x) V x = cpr1 AO(x)).

By (3.6) we get that:
M = 3p < toTabinconseq (T’ + 0(cps1), S2)
and by the induction hypothesis for b<b+1<a

M k= Vb < adp < tyTabinconseq (T’ + Ix < cp0(x), S1)

b
where t; = (log to)té , each set of formulas that appears on a node of the tableau
proof S; has g.n. less than loglogty and

dp(S1) < 2% log to.

T 4+ 3Ix(x < cp AO(x))
| e

+J%e
ZSCb/\e(Z) T,+E|XX<Cb/\e \/X—Cb+]/\e( ))
S / A \
z<cp/N\O(z X = cpr1 AN\ O(x))
B1 /S3\B2
T/ + 0(cy1)) e 5

A -
Figure 3.1: Combining proofs

Combining the above two proofs, as in Figure 3.1 we can get a tableaux proof
of a contradiction for T’ + 3x < cp,10(x). To see this let S; be the confutation
of T" +3x < ¢p0(x) and let S; be the confutation of T + 0(cpy1). In Sq find a
application of rule 3.f) for Ix < ¢,0(x) as close to the root of the tableau tree as
possible and let z be the critical variable. Replace it by two subtrees By and Bj.
The subtree By has z < ¢p /A 0(z) for initial node and the rest of the tree is as in
S1. The other subtree, namely B, has z = cp1/\0(z)) for initial node and the rest
of the tree is as in S;.
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3 End Extensions Countable Models

Repeat the process for another branch where rule 3.f) is applied for Ix < ¢,0(x),
if such a branch exists. Note that this process needs to be carried out only once
for each branch containing the application of rule 3.f) for Ix < ¢,0(x).

Continuing this way in a finite number of repetitions of the above described process,
we can replace all the applications of rule 3.f) for Ix < ¢p0(x) and get the desired
confutation for T/ + Ix < cp10(x).

For every such replacement we “hang” in S; a tree of depth max{dp(S1),dp(S2)}.
Since none of these replacements can happen in the same branch of S, we can
hang at most 1 tree of depth max{dp(S7),dp(S,)} on every branch of the derived
confutation S7. Hence,

dp(S7) < dp(S1) + max{dp(S1),dp(S2)}
< 2Zmax{dp(S1),dp(S2)}
(IH) < 2max{2° log ty, log to}
=2-2%logtg
= 2T og t,.
Furthermore, by the inductive hypothesis, the codes of the sets of formulas of Sy

are all bounded by loglogty. By (3.6) the later is also true for all the sets of
formulas of Sy, i.e., the codes of all sets of formulas of S; are bounded by log log to.

In S} there are 24p(81) gets of formulas each of which has a code less than log log to.
Hence,

rs]/j S 22dp(51 ]~log log to

b+1
— zté -log log to

St

= (log o)

2b+1

Hence, there is a t = (logtg)®®  such that:
M = Vb < adp < tTabinconseq (T’ + Ix < cp0(x),p)

and so the proof of the inductive step is complete.

Setting y = a in (3.7), we deduce that:

(3.9) M E —Tabcon (T’ + Ix < c0(x))

By (3.4), (3.9) and the Elimination Lemma 13 we get that:
M = —Tabcon(T’)

which contradicts (3.1). O
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2nd proof of Lemma 18. We can also prove the lemma by an indirect appeal to the
Elimination Lemma 13. Suppose, towards a contradiction, that the assumption doesn’t
hold. Then

(3.10) M = —Tabcon (T’ + =3y < ¢.0(y))
and
(3.11) M E Vb < a—Tabcon (T’ +{0(cy)).

‘We can now confute

T 4+ 3y <caBy) — Fy < cab(y)

Start by applying rule 3.c) for 3y < cq0(y) — Jy < cq0(y) at the first level. Then the
resulting branches are as good as closed by (3.10) and (3.11).

By Lemma 14 for ¢ = Fy < ¢q0(y) — Fy < ¢q0(y) there exists a confutation for T’
which contradicts (3.1). O

Theorem 12. If M is a countable model of BX; + exp, then there exists a proper end
extension K = 1Ay of M.

Proof. Let L3, = LU{cm|m € M} U{c} where ¢ is a new constant symbol.
We enumerate recursively all sentences of L},

q)])(bZ)'---

Note that this is a countable list, since M is countable.
By Lemma 15 there is a countable model M for £}, such that:

M E Tabcon(IAy + A+ ¢ > M).

Starting with:
To=1A0+A+c>M

we will construct a sequence of consistent theories T; such that:
1. forallie NT; C Ty
2. for allie N M & Tabcon(T; + A+¢c > M)
3. either ¢; € Ty or =y € T, for all i € N*| and
4. if dig = Ix < cg0(x) for some a € M and biy1 € Tiyq, then:
(3.12) O(ck) € Tinq

where ¢y is a constant such that M Ek < a.
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3 End Extensions Countable Models

For the base of the definition set by Lemma 15 we have that:
M E Tabcon(IAg +A+¢c > M)

which satisfies conditions 1.-4.
For the inductive step suppose T; has been defined. Then:

M E Tabcon(T; + A+ ¢ > M).
Hence,
(3.13) M E Tabcon(T).
Suppose, towards a contradiction that:
M E —Tabcon(T; + di;1) and M E —Tabcon(T; + —~di1).

Then by the Elimination Lemma 13 we have that:

M E —Tabcon(T;)
which contradicts (3.13). Hence,

M E Tabcon(T; + ¢ir1) or M E Tabcon(T; + —diyq)

Set
Wisy = big if M = Tabcon(T; + ¢iy1)
o —¢pir1 otherwise

If Py is of the form Ix < c,0(x) by Lemma 18 set:

T = T U{iq1,0(ck)}

where cy is such that k <M «. Otherwise, set:

Tip1 = T U{iga)

Thus, the recursive definition is complete.

Set Too = UieN Ti. Then T, is tableau consistent in M for, otherwise, there would
be tableau proof S of a contradiction from T.,. There is, however, an n € N such that
x € T, for each formula x that appears in S. Hence, S is a also a tableau proof of a

contradiction for T, which contradicts the construction of the Tis.

Thus, Ty is a complete and consistent theory in L3, extending IAg, containing the

diagram of M and all sentences of the form ¢ > cy, x € M and whenever:

Ix < cu(x,¢,C) € Too,
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3.2 Exponentiation

then there exists b < a in M such that 0(cy,c,C) € Tx.

We will now apply the omitting types theorem to obtain a model K* of T, in which
the interpretation of the constant symbols {cy | * € M} form an initial segment.

For each & € M let Ly(x) be the type:

La(x) ={x #em IMEmM < a}U{x < ca}

And let
L) = |J Zal).

xeM

Let 0(x) be a formula consistent with To,. Then there is a model A of T, such that
A = 0[i] for some i € A. For all x € M it holds that

AEi<citVvi>cd
o If for all @ € M it holds that: A =1 > cZ, then for all x € M
A Ix(x > e A O(x))

or equivalently
A E Ix(—(x < cq) AO(xX)).

Hence, since A is a model of Ty, —(x < cq) A O(x) is consistent with Te,. Thus,
T locally omits Z.

o If for some o« € M it holds that A =1 < cZ, then
AlEi<cd Aol

or equivalently
A E Ix(x < ce AB(x)).
Then
A E Ix < ¢ B(x).

A is a model of Ty and T, is complete, thus Ix < ¢0(x) € Too. By 3.12 there is a
k < o in M such that 6(cy) € Ts. Hence, since A is a model for Ty,

A E Ix(0(x) Ax = ck).

or

A E Ix(0(x) A\ —=(x # cx)).

Hence, 08(x) A —(x # cy) is consistent with To, therefore Ty, locally omits X.
By the Omitting Types Theorem, Ty, has a model K* which omits Z(x).
We go on to show that M is a proper initial segment of K*. We will show that M is
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3 End Extensions Countable Models

a submodel of K* first. Indeed, let:
f:M — K*

be a function such that for all x € M

Clearly, since To, contains the Ay diagram of M, f is an homomorphic embedding of M
into K*, i.e.
M Cy K™,

Let M* = f(M). We will show that M* is an initial segment of K*. Indeed, suppose
that:
K E=l< X
for some o € M. Furthermore, for every &« € M by the definition of M* we get that
cX" e M*. Let ¢(x) = x < cq. K* omits X(x) therefore for some k € M:

K = o)A (L= c)

which implies that
K'El=cf =f(cth),

which by the definition of f and M* we get that 1 € M*.
Thus, the interpretations of the cy for « € M form an initial segment of K*.
Furthermore, K* is a proper end extension of M* since for all x € M

K* = ¢ > cq.

Finally, since the base theory Ty contains [Ay we get that K* is a model of IAj as well.
The reduct K of K* to £ has the required properties, i.e.

M C. K k= IA,.

3.3 Other conditions

Our aim in this section is to show that Theorem 12 holds, if we replace the assumption
that M is closed under exponentiation by each of conditions (1), (3), (4) of Theorem
11. Note that conditions (3) — (4) contain the assumption that 1Ay - —AgH, defined at
Notation 1, which may well be false. However, following [18], we consider it worthwhile
to study how it affects Problem 2.

The argument when we adopt one of conditions (1), (3), (4) is basically similar to that
employed when M = exp. The main difference between the approach in 3.2 and the one
taken in this section is that here we have to pay more attention to the behaviour of the
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satisfaction formula Satp, so that we can keep on working with (modifications of) it even
when M satisfies properties other than being a model of exp. In fact, assuming either
one of conditions (3) and (4), Saty works with b significantly smaller than in Theorem 3;
this is due to the following result from [11].

Theorem 13. Assuming 1Ay F —AgH, the bound 2max(@+2)°" i Theorem 3 can be
replaced by (max(a@) +2) ¢

Remark 4. The assumption IAy - —AgH is necessary only if we need to be able to talk
about satisfiability of all standard formulas. So, if we need to talk about the satisfiability
of formulas with Goédel number less than a natural number k, it suffices to know that
(max(a) + 2)¥ exists, which is guaranteed in any model of IA,.

Independently of which condition we will be assuming, we have to work with a
restricted form of the formula Tabcon(T). Indeed, we will be using the formula k-
Tabcon(T) defined in section 1.3.

First, we need to check that

Lemma 13 holds for the restricted form of the formula expressing the tableau consis-
tency of a theory. This is due to the fact that substitution in restricted formulas can be
performed in IAy alone. For unrestricted formulas we need at least 1Ay + Q (see the
discussion after Lemma 5.1.5 in [2])

Lemma 19. For any model M of 1Ay and i € M, any theory T coded in M and any
sentence 0, if M = — i-Tabcon(T + 0) and M |E — i-Tabcon(T + —0), then M E — i-
Tabcon(T).

Now we can proceed to proving the following variant of Lemma 15.

Lemma 20. (a) If M satisfies condition (1) or (4), then for allk € N
M E k-Tabcon(IAy + A+ ¢c>M).
(b) If M satisfies condition (3), then there exists j € M —N such that

M E j-Tabcon(IAy + A+ c>M).

Proof of Lemma 20. (a) We essentially repeat the proof of Lemma 15, noting that the
formula Saty is still at our disposal, in view of Remark 4.

(b) In this case, we can do better than when M satisfies condition (1) or (4). Indeed,
one can mimic the proof of Lemma 15, working with j-tableau proofs, for any

nonstandard j much smaller than the y of condition (3).
g

Now we can proceed to proving the following variant of Theorem 12.

Theorem 14. If M is a countable model of BLy satisfying one of conditions (1), (3),
(4) of Theorem 11, then there exists K = 1A such that M C, K.
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3 End Extensions Countable Models

Proof. Letting M be as in the hypothesis, we use the same notation as in the proof of
Theorem 12. Clearly, what we have to prove is modification of Lemma 18.
Let us now proceed to the counterpart of Lemma 18.

Lemma 21. (a) Assume M satisfies condition (1) or (4). If (y,c,C) is a formula of
LA*, a € M and T is a finite extension of 1Ay such that

M [ k-Tabcon(T + A+ c>M), for all k € N,
then either
M = k-Tabcon(T + A+ c>M + —3Fy<c,0(y,c,C)), for all k € N,
or there exists b<Ma such that
M k& k-Tabcon(T + A+ c>M + 0(cy, C,C)), for all k € N.

(b) Assume M satisfies condition (3). If ©(y,c,C) is a formula of LA*, a € M and T is
a finite extension of 1Ay such that

M Ej-Tabcon(T + A+ c>M), for somej € M —N,
then either
M k= j-Tabcon(T + A+ ¢c>M + —Fy<c.0(y, ¢, C)), for somej € M —N,
or there exists b<Ma such that

M [ j-Tabcon(T + A+ ¢c>M + 0(cp, ¢, C)), for some j € M —N.

Proof of Lemma 21. (a) First, we note that, as shown in [18], if M satisfies condition (4),
then it satisfies condition (1). Hence, it suffices to work with M satisfying condition (1).
So let us assume M is short TTy-recursively saturated and T is a finite extension of 1Ag
such that

(i) M = k-Tabcon(T + A+ c>M), for all k € N, and

(ii) M | —ko-Tabcon(T + A+ ¢c>M + —IFy<c,0(y, ¢, C)), for some ky € N.
We will show that there exists b <M a such that
(3.14) M E k — Tabcon(T + A+ c>M + 08(cy, C,C)), for all k € N.

Observe that the set
Z={z<aAk-Tabcon(T+A+c>M +0(c,,¢,C))k € N}

is a recursive set of TTy formulas. We claim that Z is finitely satisfiable in M. Supposing

not, there would be some ki,...,kn € N such that
M E =3z < a Aoy ki-Tabcon(T + A +c>M + 6(c,, ¢, €)).
Letting K = max{ky,...,kmn}, we see that

M EVz < adt—K-Tabcon(T + A; + c>t + 0(c,, ¢, C)),
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where At denotes the restriction of the diagram to sentences involving constants with
index less than t.
Since M satisfies BZ1, there exists b € M such that

M EVz < adt < b—K-Tabcon(T + A¢ + c>t + 6(c,, ¢, C)).

But now note that the size of a K-tableau proof from T + A; + ¢>t + 0(c,, ¢, C) of a
contradiction cannot exceed max(a,b)t, for some natural number L depending on K.
This is because the depth of the tree depends and hence, the number of the nodes of
the tree depend on the complexity of the formulas that appear in the initial set and
all of these formulas are bounded by K. The formulas that appear in the K-tableau
are substitution instances of K-formulas and the terms substituted are all bounded by
standard powers of the parameters a and b. Therefore, by an inductive argument similar
to that used in the proof of Lemma 15, we can show that

M E —K-Tabcon(T + A+ c>M + Fy<c,0(y,c,C)).
But then, by (ii) and Lemma 19, it follows that
M E —L-Tabcon(T + A+ c>M),

with L = max(ko, K), which contradicts (i).

It follows that Z is finitely satisfiable in M and so it is satisfied in M, by the saturation
hypothesis about M. Therefore, there exists b <™ a such that (3.14) holds, as required.
(b) Suppose that M satisfies condition (3) and T is a finite extension of IAy such that

(i) M Ejo-Tabcon(T + A+ c>M), for some jo € M —N
(i) M E —j-Tabcon(T + A+ c>M + —3Fy<cq0(y,c,c)), forallj e M —N

(iii) for all b <M q,
M k= —j-Tabcon(T + A +c>M + 8(cy, ¢, €)), for all j € M — N.

Clearly, (iii) implies that
M E Vz < adt—jo-Tabcon(T + Ay + c>t + 0(c,, ¢, C)).
Since M satisfies BZ1, there exists b € M such that
M E Vz < a3t < b—jo-Tabcon(T + Ay + c>t 4+ 0(c, ¢, C)).

As in the first part of the proof, we observe that the size of a jp-tableau proof of a
contradiction from T+ A¢ + ¢>t + 0(c;, ¢, C) cannot exceed max(a, b)’°. Therefore, one
can use induction on z to prove that

(3.15) M E —jo — Tabcon(T + A+ c>M + Fy<c,0(y,c,C)).

But now, combining (3.15) with (ii) and Lemma 19, it follows that
M [ —jo-Tabcon(T + A+ c>M),
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which contradicts (i). O

Returning to the proof of Theorem 14, we see that Lemma 20 and Lemma 21 enable
us to construct a sequence of theories in LA* satisfying conditions 1. — 4. of Theorem 12,
the only difference being that the formula Tabcon(...) has to be replaced by its restricted
version. Then we can apply the omitting types theorem as before, to obtain a proper
end extension K = 1Ay of M. O

Remark 5. For an alternative proof, we can employ the the fact that
IAg + ~AgH = IA, is finitely axiomatizable

(See the discussion before lemma 7 in [17])
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To obtain both Theorem 8 and Theorem 10, one has to use very strongly the countability
of the model. The countability of the model is again present, if we want to show that
there is a proper X,-elementary end extension of a model of X,-collection. Indeed in
[15] J. Paris and L. Kirby prove that:

Theorem 15. If M is a countable model of X, -collection, n > 2, then M has a proper
Y. -elementary end extension.

In fact, J. Paris and L. Kirby prove the converse result as well, but we will focus our
attention on the one direction only.

In this chapter, we will use the methods of chapter 3 to prove a generalization of
Theorem 12. It is interesting that the Arithmetized Completeness Theorem can be used
in a (sort-of) uniform manner to prove the proper X, -elementary end extendability of
countable models of BE,,(+exp when n =1) for all n > 1.

We will begin with a theorem that will allow us to bypass Lemma, 15.

Theorem 16. For each k > 1, I1Xy proves the consistency of the set of all true Ty q
sentences, i.e. if Tr(TTy. 1) is the Ty, 1-set of all true TTy1-sentences then

ISy F Con(Tr(Mess)).

For a proof see Theorem 4.33 in chapter I of [7]. One way of seeing Tr(IT,41) is that it
is a formula having only one free variable x saying “x is a closed formula and Sat,, , (x)”.
Since the complete formulas Satyy, , | (x) are model dependent, Con(Try, ., (M)) is an ab-
breviation for

M E Vo[Satn, ,, (@) — Con(e)],

where ¢ is the code (in M) of a TTy1 sentence.
We will also make use of the following proposition.

Proposition 2. If M C¢ N and N = Trrg, (M), n > 0, then M <, ¢ N.

Proof. We will show by induction on m that If M C, N and N | Trp (M), n > 0, then
ym<nM <neN.

Base It holds by Theorem 2.

IH Suppose that it holds for m <n, ie. M < N.
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IS Let a € M, d(x) € L1 such that ¢ (x) = FybO(y,x) and O(y,x) € TT;,. Then
(4.1) N = d(a) <= N k= 3yo(y,a).
Suppose, towards a contradiction, that
Vb e ME—0(b,a) = M E=VYy—0(y,a).
However, Yy—0(y,x) € Tlipy1, m+ 1 <n and N [ Trrg, (M), hence,
N = vy—6(y, a)

which contradicts (4.1).

For the other direction, let a € M, d(x) € Z41 such that ¢(x) = FyO(y,x) and
0(y,x) € My,. Then

M ¢(a) &= M yo(y,a)
& JbeME0O(b,a).

0(y,x) € My, and, by the inductive hypothesis, M < ¢ N, hence,

N = 0(b, a).

Actually, for n =0, M C¢ N is enough as we have seen in Theorem 2.

Remark 6. There is another significant difference from the proofs of chapter 3. In the
presence of 1Ay 4 supexp the formalized consistency Con(X) and the formalized tableau
consistency Tabcon(X) are equivalent. By Theorem 1 and (1.1) we have that:

(4.2) BX, = I¥; = supexp.

Hence, we may replace Con(X) with Tabcon(X) and vice versa.

Let £LA* be the language obtained from LA by adding new constant symbols ¢ and

[cq : @ € M}. Let LA™ be the language obtained by adding to £A* the Henkin
constants {dq : a € M}

Lemma 22. Let M be a structure for LA™ such that M = By for k> 1 and
M k= Con(IAg + Trm,,, (M) +¢ > M).

Then for every consistent extension T of IAg+Trm,, (M)+c > M and for every sentence
Ix@(x) of LAY there exists a constant de such that:

M E Con(T + Ixe(x) = @(de)).

62



4.1 X,-collection

Proof. Let T be any finite consistent extension of 1Ay + Trr, ., (M) + ¢ > M and let
Ix@(x) be a sentence of LA®H. Choose a dy € LA®H that doesn’t appear in T and
Ix@(x) and suppose, towards a contradiction, that:

M E —Con(T 4+ Ixe@(x) — @(de)).
Then by the properties of Con(X)
M E —Con(T + Ixp(x) — Ixe(x)).
By Remark 6 we have that:
M = —Tabcon(T + Ixe(x) — Ixe(x))
and by Lemma 14 we get that:
M = —Tabcon(T).

Hence, by Remark 6:
M E — Con(T)

which contradicts the assumption about T. O

We will also employ the notion of the definable elements of a model from a set of
parameters.

Definition 25. Let M | PA, let n > 1 and let A € M. Then K*(M,A) is the
substructure of M consisting of all b € M such that

M E 0(b, d) AVx(0(x,d) — x =Db)
for some 0(x,y) € L, and some d € A.

The relation between the X,-definable elements and the initial model is described by
the following Theorem.

Theorem 17. Letn >k > 1 and suppose A C M =1Ly 1. Then A C K'(M,A) < M.

For a proof see Theorem 10.2 in [9].

4.1 X,-collection

The goal of this section is to prove that every countable model of X, collection is prop-
erly and X,-elementarily end extendable to a model of bounded induction. The proof
resembles that given in the previous chapter for Theorem 12; the main modifications
made are:

1. replacing the diagram with the set of true TI; sentences in the model and
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2. employing the usual formula Con(X) expressing the consistency of the theory X
instead of the tableau consistency formula Tabcon(X).

More specifically, instead of starting with the formula Tabcon(IAg + A + ¢>M) we will
start with the formula:

Vel[Satm, (@) — Con(IAg + @ + c>M)],
where Sat, (...) denotes a complete formula for TT, truth in M.

Theorem 18. For any countable model M of BL; there exists a model K of 1Ay such
that M <2,e K.

Proof. Let M be a model of BL, and LA* be the language obtained from LA by adding
new constant symbols ¢ and {cq : @ € M}. As before, the proof will be based on a couple
of lemmas, the first of which is as follows.

Lemma 23. M = Vo[Satr, (¢) — Con(IAg +¢ + c>M)].

Proof of Lemma 23. By Theorem 1 we have that:
BX, = I%;.

Recall that, by theorem 16
IZ; F Con(Tr(TT3)).

Since 1A is TTy-axiomatized and ¢ > M is a set of Ap-sentences we get that
M k= Con(IAg + Tri, (M) +¢ > M).
O

Now let LA*H be the extension of LA* obtained by adding Henkin constants {dq : a €
M} and H the corresponding set of Henkin sentences.

Lemma 24. If a € M, 0(y,c,c) € A1(M) is an LA®H-formula where € = cq;y...,Cq,
forar,...a; € M and T is a finite extension of

Ao + Tri, (M) + ¢ > M,

then either
M E Con(T +Vz3ax > z—Fy < ¢0(y,x,C))

or
M E Con(T + Vz3ax > z0(cp, x,C)), for someb < a, be M.

Proof. First, notice that only one of the following holds:

(4.3) M E Vz3x > z—3y < c.0(y, x, C)
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4.1 X,-collection

or for some b<a,beM
(4.4) M = Vz3x > z0(cp, X, C)

Indeed, suppose that both (4.3) and (4.4) fail, i.e.:

(4.5) M E Fzvx > z3y < ¢.0(y, x,C)
and
(4.6) M E Vb < adzVx > z—0(cp, X, C).

Since Vx > z—0(cy, x, C) € TTy, by (4.6) and the fact that M |= BTT; we get that
M E Jtvb < adz < tVx > z—0(cp, x, C)

which implies that
M E JzVb < aVx > z—0(cp, X, C).

Thus,
(4.7) M k= Jzvx > z—Fy < ab(y,x, C).
By (4.5) and (4.7) we have that
M E Fzvx > z(Fy < ab(y,x,¢) A—=Fy < ab(y,x,c))

a contradiction.
The sentences in (4.3) and (4.4) are TTp, T is a finite extension of Trp, (M) and by
Theorem 16 we get that (4.3) implies

M E Con(T +Vz3ax > z—Fy < ¢0(y,x,C))
and that that (4.4) implies
M & Con(T + Vzax > z0(cp, x,C)), for someb < a, b e M.

O]

By (4.3) we can assign a value to c¢ greater than all values assigned to the constants
in T+ Vz3ax > z—3y < ¢q0(y,x,C) and get that

M E Con(T + —Fy < ¢q0(y, ¢, C)).
Similarly, by (4.4) we get that

M E Con(T +6(cyp,c,C)) for some b < a, be M.
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4 End extensions of models of weak arithmetic

We can prove that:

Lemma 25. There exists a set of sentences (in the sense of M ):

r=Jn

ieN
such that:
1. X contains 1Ay + Trr, (M) + c>M,

2. for every sentence Ix@(x) of LA®H there exists a constant dy such that:

Ixe(x) — @(dy) € L,

3. for every sentence © of LA®H,

BeXor—0el,

4. for every formula 8(y,c,C) € Ay of LAY, either
—Jy < c.0(y,c,C) € X or 0O(cp,c,C) €L for someb<a,be M.
5. for alli €N,
M ’: COD(Zi).

Proof. Let 01,0,,... be a recursive enumeration of the £A" sentences.
For the base of the definition set by Lemma 23:

M k= Con(IAg + Trr, (M) + ¢ > M)

which satisfies conditions 1.-5.

For the inductive step suppose X; has been defined and satisfies condition 1.-5.

Using the standard argument for the completeness theorem, we can take care of con-
dition 3. concerning 0, thus obtaining the set

I =L Uil

where
By if M= Con(Z; + 0i41)
Yiy = ,
—0;.7 otherwise

If P41 is of the form Ixd(x) by Lemma 22 set:

I =2 U{dp(d)}
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4.1 X,-collection

where dy is the first Henkin constant that does not occur in Zi’ . Otherwise set:
s/ — 5!,

Finally, if {i.q is of the form 0(y,c,C) € Ay then by Lemma 24 we add —3y <
caB(y,c,C) to X" if

M = Con(T + Vz3ax > z—3y < ¢q0(y,x, <))
otherwise if
M E Con(T + Vz3ax > z0(cp,x,C)), for some b < a,be M.

we add 0(cp, ¢, C) to L. The derived set is the required Xiq.
This completes the recursive definition of ¥, so that conditions 1.-5. are satisfied. [

Set ¥ =(JZi. Then
M E Con(Z),

for, otherwise,

M E —Con(X),
and there exists i € N such that:
M E —Con(L;).

which contradicts the construction of the X;s.

Thus, X is a complete and consistent theory in £A4"" extending 1Ay, containing the
ITo-truth of M and all sentences of the form ¢ > ¢y, x € M.

Returning now to the proof of Theorem 18, let J* be a model of (the standard part
of) . Then J* is a model of Ap-induction and

(4.8) J* = Trn,(M).
Now let ] be the reduct of J* to LA. It is easy to see that
(4.9) J = Trr, (M),

and that M is isomorphic to a substructure of J. Let K be the substructure of | with
universe the set of Xi-definable elements of | with parameters form the set

{ch laeMyuU{dY,

i.e.

K=K (J(lcala e MpU{e))").
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4 End extensions of models of weak arithmetic

Since | = [Ag, by Theorem 17 we get that

(4.10) K <1J.
By (4.9) and (4.10) we get that

(4.11) K E T, (M).

Claim 1. M is a proper initial segment of K, i.e. M C. K.

Indeed, suppose that K = b < a, for some a € M. Then | E b < a and so for some
bel

(4.12) J* E (b(cp, ¢, C) Acp < cq) AVxbD(x,¢,C) = x = Cp),
which means that
(4.13) (b(cp,c,C) Acp < co) AVXP(x,c,C) = x =cp) € L.
By the construction of X either
—Ix < cqb(x,¢,6) € X or P(cr, ¢, C) € X for a specific f < a, f € M.

By (4.13) and the fact that J* &= L, it cannot be the case that —3x < cqdb(x,c,C) € L.
Hence,
d(csy ¢, C) € X for a specific f < a

which implies that ¢y = c¢f € £. Thus b is (the image of) an element of M and so M is
an initial segment of K
Now recall that ¢/” is an element of (the universe) of | and that ¢ < ¢/ € Z for all
x €M, ie.
] E CL* <d”, forall a e M.

It follows that M is (isomorphically embedded to) a proper initial segment of J. In
addition,
K = Ty, (M).

Therefore, by Proposition 2 for n = 2, we have that
M <3 K.
Since, clearly, K = IAp, we see that K has all the required properties, i.e.
M <2 KETAp

which completes the proof. O
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4.2 ¥ ,-Collection

4.2 > -Collection

Let us finish this section by remarking that one can modify the proof of Theorem 18 to
give an alternative proof of Theorem 15 for any n > 2. We will leave out the details
which are the same as in the proof of Theorem 18 and give a sketch of the proof instead.

Theorem 19. Every countable model M of BL,, n > 2, has a proper L. -elementary
end extension K satisfying 1Ag, i.e.

M < K E 1A,

Proof. Let M be a model of L, collection, where n > 2 and LA* be the language
obtained from LA by adding new constant symbols ¢ and {cy : « € M}. We can now
prove a Lemma similar to 23, namely

Lemma 26. M = Vo[Saty, (@) — Con(I1Ay +¢ +c>M)].
Proof of Lemma 26. By Theorem 1 we have that for all n > 2:
BL, = 1%, ;.

Hence, by theorem 16
IZ, 1 F Con(Tr(TTy,)).

Since 1Ay is TTy-axiomatized and ¢ > M is a set of Ap-sentences we get that
M = Con(I1Ag + Tr, (M) + ¢ > M).
O

Now let LA*H be the extension of LA* obtained by adding Henkin constants {dq : a €
M} and H the corresponding set of Henkin sentences.

Lemma 27. There exists a set of sentences (in the sense of M):

Z:UL

ieN
such that:
1. X contains (1Ag) + Trr, (M) 4+ c>M,

2. for every sentence Ix@(x) of LA*M there exists a constant dy such that:

Ixe(x) — @(dy) € L,

3. for every sentence © of LA®H,

ek or—0ek
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4 End extensions of models of weak arithmetic

4. for every formula 8(y,c,C) € An_q of LASH, either

—Jy < cq0(y,c,C) €L or 0O(cp,c,C) €L for someb <a, be M.

5. for allieN,
M E Con(LZy).

We now have a complete and consistent theory X for £LA*H extending 1A, containing
the TT,-truth of M and all sentences of the form ¢ > ¢y, € M. Let | be a model of
(the standard part of) X. Since IA is contained in X, | is a model of 1A,.

(4.14) J* &= Trp, (M).
Now let ] be the reduct of J* to LA. It is easy to see that
(4.15) J E Trn, (M).

and that M is isomorphic to a substructure of J. Let K be the substructure of | with
universe the set of X;-definable elements of | with parameters form the set

[l laeMjud,

i.e.

K=K"(J,((cal a € M}U{e))).

Since I1X,,_; in TT, axiomatizable, | E 1Z, 5. By Theorem 17 we get that
(4.16) K <n-1].
By (4.15) and (4.16) we get that
(4.17) K= Trn, (M).

Claim 2. M is a proper initial segment of K, i.e. M C, K.

Indeed, suppose that K = b < a, for some a € M. Then | = b < a and so for some
beln

(4.18) J* E (b(cp, ¢, C) Acp < cq) AVxb(x,¢,C) = x = cp),

which means that

(4.19) (b(cp,c,C) Acp < co) AVXP(x,c,C) = x =cp) € L.
By the construction of X either

—Ix < cqb(x,¢,6) € X or P(cr ¢, C) € X for a specific f < a, f € M.
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By (4.19) and the fact that J* = Z, it cannot be the case that =3x < cqPp(x,¢,C) € X.
Hence,
d(csy ¢, C) € X for a specific f < a

which implies that c, = ¢f € £. Thus b is (the image of) an element of M and so M is
an initial segment of K
Now recall that ¢/” is an element of (the universe) of | and that ¢ < ¢/ € £ for all
x €M, ie.
JEc <d, forallae M.

It follows that M is (isomorphically embedded to) a proper initial segment of J. In
addition,
K |: TT‘]-[TL (M)

Therefore, by Proposition 2, we have that
M <ne K.
Since, clearly, K = IAg, we see that K has all the required properties, i.e.
M <ne K= 1A

which completes the proof. O

4.3 A note on cardinality

Given that Theorem 9 holds for models of any cardinality, it is natural to expect that
Theorems 8 and 10 also hold for models of any cardinality. Indeed,

Such a possibility was first suggested by A. Wilkie,

as mentioned in [3], in which P. Clote tried, using a formalization of a recursion theoretic
argument, to show that Theorem 8 holds for every model of BZ,,, n > 2. Unfortunately,
Clote’s approach fell short of his aim; however, it led to a proof of the following result

(see [4]).

Theorem 20. Every nonstandard model of I1X,, n > 2, has a proper L, -elementary end
extension satisfying 1Ag.

Note that, since BZ, = IX,,_; (as proved in [15]), for any n > 1, a straightforward
consequence of Clote’s result is

Theorem 21. Every nonstandard model of BL,, n > 3, has a proper L, _1-elementary
end extension satisfying 1A,.

The case for n = 1 remains open and as we have seen Theorem 12 is the best result
we have so far in this direction.

We believe that a proof of Theorem 20 can be given, in the spirit of the proofs of the
previous two sections, i.e. using a variant of the proof of the ACT.
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