
Eleni Kalyvianaki

ALGORITHMIC NATURAL LANGUAGE SEMANTICS

A Study of Locality in the Theory of Referential Intensions

DOCTORAL DISSERTATION

September 2007

Graduate Program in Logic, Algorithms and Computation (�Π�@)
Department of Mathematics

National and Kapodistrian University of Athens

ii

The dictionaries know all the stories

that we write and that we will write

in the future, they have just forgotten them.

Our role is to remind these stories

to them.

Vassilis Alexakis

iii

iv

Acknowledgments

I would like to thank wholeheartedly my supervisor, Prof. Y.N. Moschovakis,
for the endless hours he has devoted in this work, his never ending patience
towards my occasional stubbornness and his constant encouragement and
persistence. Besides his exemplary mathematical teaching, he was an exam-
ple of a \way of life" which I consider as the most important \lesson" of my
studies.

I have to express my gratitude to the Graduate Program in Logic, Al-
gorithms and Computation (�Π�@) for the studies I had the opportunity
to pursue. I warmly thank all the academic and administrative sta� that
supports its operation during the last years.

There have been a lot of people who helped me in the course of my
studies and I thank them all. I thank Prof. Joan Rand Moschovakis for
her warm hospitality but also her encouraging and apt remarks on various
occasions. I would also have to thank Prof. Yannis Stephanou for his eager-
ness to respond to all my questions and also Prof. Fritz Hamm and Prof.
David Kaplan for their time. I also thank the Department of Mathematics of
U.C.L.A. for its hospitality during April-May 2005. Finally, I thank for their
perfect cooperation the members of the Three Member Committee: Prof. C.
Dimitrakopoulos and Prof. G. Koletsos and the other members of the Seven
Member Exam Committee: Prof. L. Kirousis, Prof. Ant. Melas, Prof. Y.
Stephanou, Prof. Ath. Tzouvaras and Prof. St. Psillos.

My graduate studies was co-funded by the European Union - European
Social Fund and National Resources - EPEAEK II.

Pursuing a Ph.D. diploma is an adventure into which the close friends
and the members of the family of the candidate participate whether they like
it or not. This adventure has its ups and downs for the candidate herself but
for them, it only means anxiety and the need to show never ending patience.
Someone told me once that till the end of one's graduate studies, he \has
lost" friends and family; I think that this hasn't happened to me.

I thus have to thank my parents for never questioning my decisions and

v

vi

for supporting me with all their heart, even contrary to their own ideas
some times. During all these years, my sister stood always by me, listening
patiently to my complaints and anxieties during endless hours of telephone
calls from dull Cambridge. I wish her with all my heart to �nish soon her
own studies as well.

I cannot also fail to acknowledge the patience and support in many ways
of my boyfriend N., who accompanied me in this adventure, hoping that I
will have the generosity to compensate him in the future.

Finally, I thank a loyal \friend" who was always ready to listen to me
\with the outmost attention" to explain parts of this dissertation.

Contents

Introduction 1

1 Formal Models of Meaning 5

1.1 Gottlob Frege: The Origins 5

1.2 The Typed �-Calculus . 8

1.3 Richard Montague: Formal Semantics 10

1.3.1 LIL: Language of Intensional Logic 12

1.3.2 Natural Language Examples in LIL 14

1.4 David Kaplan: Logic of Demonstratives 16

1.5 Theory of Referential Intensions 18

1.5.1 Syntax and Semantics of L�ar 18

1.5.2 Referential Synonymy and Local Meaning 23

1.6 Two Notions of Situated Meaning 25

2 Locality of Typed Objects 31

2.1 State-dependent Types of L�ar 31

2.2 Local Objects . 33

2.3 Locality Indices of Type r� . 39

2.4 Associate with respect to an Input Index 43

3 Locality of Terms 55

3.1 Local Terms . 55

3.2 Closed Locality Proofs . 57

3.3 The Most Local Locality Proof 66

4 Formal Associates of Terms 79

4.1 An Extension of L�ar . 79

4.2 Formal Local Associates of Local Terms 82

4.3 Formal Associates of General Terms 87

vii

viii CONTENTS

5 Algorithmic Factual Content 97

5.1 Factual Canonical Form and Factual Synonymy 98
5.2 Factual Content and the Logic of Demonstratives 103
5.3 Future Work . 105

Bibliography 107

Index 111

Introduction

As with any other system of signs, we use natural language expressions (the
signs) to \talk about", to refer to objects of the world around us. We com-
municate by means of a language if we know the way this mapping is per-
formed. Gottlob Frege (Section 1.1) argued that language expressions, apart
from their reference, have also meanings that determine their references but
are not exhausted by them.

Formal semantics, as conceived by Richard Montague (Section 1.3), seek
to study natural language semantics in exactly the same way as one studies
the semantics of any formal language in Mathematical Logic. The results are
truth-conditional, model-theoretic theories of meaning where for each term
of the language both meaning and reference are de�ned formally.

Context of reference is an indispensable part of language usage. In oral
or written form, we usually interpret and thus, understand language with
respect to a context that permits us to attribute speci�c references to lan-
guage expressions. For example, the indexical `I' refers each time to the
person who utters the sentence in which it occurs. In formal theories of
meaning, the reference of a term is de�ned at a particular context while its
meaning determines the corresponding reference at every context.

Another characteristic of these theories is that they adhere to the Compo-

sitionality Principle: \The meaning of a whole is a function of the meanings

of its parts and their mode of syntactic combination" (as stated in the In-
troduction of [24]). In this way, we explain how a language speaker can
understand a new sentence that she has never heard before or how a speaker
augments her knowledge of the language.

The work presented here is developed within the Theory of Referential

Intensions (Section 1.5). It is a formal theory of meaning that is part of the
Fregean tradition but at the same time, it introduces a whole new dimension
in formal semantics. The key idea is that ([22])

...the meaning of a term A can be faithfully modeled by its ref-

1

2

erential intension intpAq, an (abstract, idealized, not necessarily

implementable) algorithm which computes the denotation [refer-
ence] of A.

The meaning of a sentence in this theory determines the parts that we use
to compute its denotation, codi�es the way this computation is done and
it is through this process that it determines its denotation. This structural
notion of meaning yields a calculus of referential synonymy which makes
�ne distinctions between corresponding language expressions that go beyond
their references or even, their references at any particular context. In the
Theory of Referential Intensions, we attribute two kinds of meaning to a
sentence A: its global meaning, that is, the algorithm that computes the
denotation of A (Truth or Falsity) at every possible context of reference and
its local meaning at a context which is the algorithm that computes the
denotation of A at that particular context.

The problem that we address in this work is to investigate a notion of sit-
uated, structural meaning of a sentence at a context of reference which com-
putes the denotation at a context directly from the corresponding, situated
meanings of the parts of the sentence that are needed for the computation.
The aim is to de�ne a semantical value for each sentence at a context of ref-
erence, its factual content, which expresses formally what the sentence
says about the world at that particular context. Thus, at a context of
reference where `John' and `He' refer to the same person, the sentences `John
runs' and `He runs' should have the same factual content although they are
not locally synonymous; on the other hand, if `the brother of Mary' refers to
that particular person also, the factual content of the sentence `The brother
of Mary runs' di�ers since it expresses additional facts about the world.

A key idea in the approach adopted here, was to de�ne formally and study
a notion of locality that explains the way situated meanings of the parts of a
sentence are combined. The interpretation of each constant of the language
determines whether its value at a particular context depends only on the
values of its arguments at that context or on their values at other contexts
as well. For example, compare the verb `run' and the sentential operator
`necessarily'. The goal was then to produce a most local interpretation of
each sentence that respects the locality behavior of the constants that occur
in it but in the same time, the computation of the denotation of any of its
subterms at a context is restricted on the values of its arguments at that
context as much as possible. So ultimately, from the mathematical point of
view, this is a study of locality in the Theory of Referential Intensions.

The thesis is organized in �ve chapters as follows. In Chapter 1, we

3

present in detail certain formal theories of meaning that follow the inaugural
ideas of G. Frege, focusing on their treatment of situated meaning. We also
introduce the formal language L�ar, the language of the Theory of Referential
Intensions, which is the technical framework into which this work is devel-
oped. In Chapter 2, the fundamental ideas of locality are introduced for
objects in the interpretation structure of L�ar while in Chapter 3, these ideas
are developed into a study of the locality behavior of terms. In this latter
chapter, we also show that there exists a most local interpretation for each
term. In Chapter 4, we de�ne formally in L�ar for every term A a new term
that re
ects the locality behavior of A. Finally, in Chapter 5, for each term
A, we use this new term under its most local interpretation to de�ne the
factual content of A at every context of reference.

Thus, our main object of study is not introduced formally until the last
chapter of the thesis. Actually, although factual content is intuitively a clear
notion for simple examples in natural language, its precise de�nition turned
out to be fairly complex, especially since it was studied here under a general
notion of locality.

4

Chapter 1

Formal Models of Meaning

In the tradition of formal semantics, meaning in natural language is modeled
by various mathematical notions in an attempt to de�ne rigorously Fregean
sense and denotation. In this chapter, we present the notions of global and
local meaning as they are de�ned in the work of R. Montague (Section 1.3)
and of D. Kaplan (Section 1.4) and in the Theory of Referential Intensions
(Section 1.5). The last part is the technical framework of this thesis and
thus, it is introduced in a more detailed way.

In Section 1.2, there is a short account of the typed �-calculus which is
the basic tool of the theories presented here while in Section 1.6, we comment
on the basic results of [13] where two notions of situated meaning | local
meaning and factual content | are de�ned in addition to a notion of global
meaning in an \algorithmic" extension of Montague's logic. Throughout
the chapter, attention is paid in the di�erent ways that situated meaning is
de�ned and treated.

The chapter begins with a short account of the ideas of G. Frege | where
it all began.

1.1 Gottlob Frege: The Origins

In [6], G. Frege treats natural language as a system of signs and seeks to
understand it as he would do with any other such formal system with the
means of logical analysis. This kind of abstraction towards natural language
is not straightforward but it surely comes as no surprise to someone whose
primary interest is the logical foundations of mathematics.

First and foremost, the \signs" of natural language are used by speakers
to refer to the world in its full complexity and totality. Frege argues, though,

5

6 CHAPTER 1. FORMAL MODELS OF MEANING

that apart from the reference of each sign (its denotation, Bedeutung)1, there
is also its sense (Sinn), \wherein the mode of presentation is contained" ([6]:
p. 57)2. Thus, to mention a classical example, the two phrases `the evening
star' and `the morning star' have the same denotation; they both refer to
the planet Venus. Nevertheless, the two phrases do not have the same sense,
which explains why the statement `the morning star is the evening star' says
something non trivial about our world.

A language speaker knows the senses of the \names" or signs and by
their mediation may be able to determine their denotations (if they exist).
Although senses are not formally de�ned3, Frege gives emphasis to their
objective role in contrast to the subjective one of \ideas". To sum up, in one
phrase: \a proper name (...) expresses its sense, stands for or designates its
reference"([6]: p. 61).

The next step in Frege's consideration of natural language semantics is
the declarative sentences (sentences, for short). First of all, Frege considers
them as being composed of parts much like mathematical expressions can be
decomposed into a function and its arguments. In his own words ([3]: p. 31)

Statements in general, just like equations or inequalities of ex-

pressions in Analysis, can be imagined to be split up into two

parts; one complete in itself, and the other in need of supple-

mentation, or `unsaturated'. Thus, e.g., we split up the sentence

`Caesar conquered Gaul'

into `Caesar' and `conquered Gaul'. The second part is `unsat-

urated' | it contains an empty place; only when this place is

�lled up with a proper name, or with an expression that replaces

a proper name, does a complete sense appear. Here too I give

the name `function' to what this `unsaturated' part stands for.

In this case the argument is Caesar.

Secondly, a sentence as a whole, much like a \name", has a sense and a
denotation. Its sense is a \thought": \(...) not the subjective performance

of thinking but its objective content, which is capable of being the common

1In [6], \Bedeutung" is translated as \meaning" but we will use here the term \deno-
tation" instead, leaving the term \meaning" for more general uses.

2In all the extracts included in this chapter, the page numbers refer to the corresponding
reference in English.

3It is maybe because \what is logically simple cannot have a proper de�nition" ([5],
p. 193).

1.1. GOTTLOB FREGE: THE ORIGINS 7

property of several thinkers"([6]: p. 62). Its denotation is a truth value
(Truth or Falsity) which together with its sense yields knowledge.

The constituent parts of any sentence contribute by their denotations
to the denotation of the sentence. Frege states explicitly that when a part
of a sentence is replaced by a phrase with the same denotation, then the
denotation of the sentence remains the same although its sense may change.

There is a lively controversy (cf. [11], [23]) whether he believes an anal-
ogous substitution property for senses and whether this property, which is
clearly stated for denotations, implies the Compositionality Principle for de-
notations or senses, especially in relation to his Context Principle4 ([4]),
which, however, was formulated much earlier. It is fair to say that the sub-
stitution property for senses is not explicitly formulated in [6] but there are
extracts where it is, in a way, implied; for example, ([6]: p. 62-63)

If it were a question only of the sense of the sentence, the thought,

it would be unnecessary to bother with the reference of a part

of the sentence; only the sense, not the reference, of the part is

relevant to the sense of the whole sentence.

One thing that is worth mentioning here is that substitution of a part of a
sentence by an other expression with the same sense presupposes that some
kind of equivalence relation between senses must be de�ned and used. This
is not possible for Frege since senses are not formally de�ned, although he
states that the same sense can be expressed in various ways and thus the
possibility exists ([5]: p. 46).

What is the role of the context of reference in Fregean semantics? It is
not straightforward to say and one has to be cautious not to try to �nd in
Frege answers to questions that were posed several decades after his work.
Nevertheless, there is a clear assumption in Frege that a sentence is always
considered with respect to a context of reference | usually the current time,
place, etc. The denotation of a sentence is Truth or Falsity exactly because
the context of reference is always implicit in the use of natural language. A
passage in [7] ([25]: p. 40), although written much later than [6], is illumi-
nating:

Therefore the time of utterance is part of the expression of the

thought. If someone wants to say today what he expressed yes-

terday using the word `today', he will replace this word with

4The Context Principle, characterized thus by Frege scholars and not Frege himself,
states that the reference (denotation, Bedeutung) of words is to be determined in the
context of a sentence and not in isolation.

8 CHAPTER 1. FORMAL MODELS OF MEANING

`yesterday'. Although the thought is the same, its verbal expres-

sion must be di�erent in order that the change of sense which

would otherwise be e�ected by the di�ering times of utterance

may be canceled out.

Thus, according to Frege, an utterance of `It is raining today' at a par-
ticular day expresses the same thought (the same sense) with the utterance
of `It was raining yesterday' the next day. They have, of course, the same
denotation but, in addition, they express the same thought. Frege points
here at a synonymy relation between two semantic values that is intuitively
appealing and close to our experience.

Another example that is mentioned in [7] is that of an utterance involving
the indexical `I'. It is compared with a corresponding utterance where in the
place of `I' the name of the speaker is mentioned, namely `Dr Gustav Lauben'.
In this case the synonymy relation is not at all clear because both the sense
of `I' and the sense of a proper name are not trivially determined and they
involve the speaker's perception of them.

To sum up, in Fregean semantics, the denotation and the sense of a
sentence are always considered with respect to a context of reference. His
interest is primarily in situated meaning since Truth or Falsity of a sentence
can only be determined if we consider it at a particular context and to express
the same sense in two di�erent contexts may require the utterance of two
distinct sentences.

1.2 The Typed �-Calculus

The beginnings of the �-calculus in the 30's by Alonzo Church were a quest
of foundation of mathematics. It is used as a general framework for the study
of functions where a function is not exhausted by the set of pairs of argument
and value but rather is \expressed" by the way these pairs are produced. In
this section, the �-calculus is introduced brie
y in the form that it is used in
both the work of R. Montague and in the Theory of Referential Intensions.

Types are de�ned recursively by a set of basic types and the function
type over them. In our consideration here the basic types are: entities (e),
truth values (t) and, possibly, states (s), and, in general

� :� e | t | s | p�1 Ñ �2q: (1.1)

We assume that we have an in�nite number of typed variables for each
type. If x is a variable of type � , we use the notation x� . Terms are de�ned

1.2. THE TYPED �-CALCULUS 9

using two operations, application and �-abstraction by the recursion

A :� x | ApBq | �pxqpBq: (1.2)

Each term is assigned a type noted as

A : � ðñ the type of A is �

by the following type restrictions:

• If x is of type � (x�), then as a term x : � .

• If A : p�1 Ñ �2q and B : �1, then ApBq : �2.

• If B : �2 and x : �1, then �pxqpBq : p�1 Ñ �2q.

The free occurrences of a variable x in a term A are de�ned by5:

• If A � x, then the occurrence of x is free in A.

• If A � BpCq, then the free occurrences of x in A are those of x in B

and C.

• If A � �pxqpBq, no occurrence of x is free in A but the free occurrences
of any y � x in A are those of y in B.

In the case of the �-term, A � �pxqpBq, every occurrence of x in A is
considered bound . And a term is closed if there are no free occurrences of
variables in it.

The formal systems that we will consider are enriched by typed con-

stants (noted usually by c : �) and thus, terms are in general de�ned by the
recursion

A :� x | c | ApBq | �pxqpBq: (1.3)

For every term A, we can also de�ne its formation tree which is a suitable
representation of the way it is formed.

A standard structure of a typed �-calculus system comprises:

(i) Non empty sets (universes) of objects of the basic types (T�) and for
the function types, the corresponding sets of functions as follows:

T�1Ñ�2 � tf | f : T�1 Ñ T�2u:

5We will generally use the symbol \�" to denote the identity relation on syntactic
objects.

10 CHAPTER 1. FORMAL MODELS OF MEANING

(ii) If there are constants, for each constant c : � , a corresponding object
of the same type c P T� .

An assignment function g associates to each variable x : � some object in
the corresponding universe of objects of type � (gpxq P T�). We also de�ne
the update gtx :� fu of an assignment g by

gtx :� fupyq �

#
f; if y � x;

gpyq; otherwise:

Finally, a denotation function is de�ned in this structure such that each
term A : � and each assignment g to the variables is associated with an
object in the corresponding T� . We de�ne the function

denpAq : AssignmentsÑ T�

by the following recursive clauses:

• denpxqpgq � gpxq.

• denpcqpgq � c.

• denpBpCqqpgq � denpBqpgq
�
denpCqpgq

�
.

• denp�pxqpBqqpgq �
�
f ÞÑ denpBqpgtx :� fuq

�
,

where if x : � , then f P T� .

1.3 Richard Montague: Formal Semantics

R. Montague's work in the 60's founded formal natural language semantics;
it was motivated by his clearly stated conviction that opens [16]:

I reject the contention that an important theoretical di�erence

exists between formal and natural languages.

Montague develops and defends his conviction in a series of papers (collected
in [19]) that aim to provide English language with semantics much like the
semantics of any formal language of symbolic logic.

Natural language is translated into a formal language (Intensional Logic
{ IL) by a detailed procedure which maps its syntactic rules into appropriate
term formation rules of IL. Thus, any phrase, any sentence is rendered by
a term in IL which is a typed �-calculus equipped with an intension (^)
and an extension (�) operator. Interpretation in IL depends on context of

1.3. RICHARD MONTAGUE: FORMAL SEMANTICS 11

reference, and so every term A denotes its extension at any given context;
the intension of A is the function which assigns to each context the extension
of A at that context and it is denoted in IL by the term ^pAq.

Before presenting in detail a version of Montague's formal system, we will
make some general comments on the background of this work and its connec-
tions with Frege's ideas. Rudolf Carnap was the �rst to model Frege's sense
and denotation by intension and extension, respectively, and to formalize the
notion of context of reference as a state-description ([1]: p. 9):

A class of sentence in SI , which contains for every atomic sen-

tence either this sentence or its negation, but not both, and no

other sentences, is called a state-description in SI , because

it obviously gives a complete description of a possible state of

the universe of individuals with respect to all properties and re-

lations expressed by predicates of the system. Thus the state-

descriptions represent Leibniz' possible worlds or Wittgenstein's

possible states of a�airs.

The extension of an expression is now its denotation at a particular state-
description and its intension is a function from all such state-descriptions to
extensions | at every possible such state, the intension will determine the
corresponding denotation.

Montague's IL is based on these ideas but also builds on Saul Kripke's se-
mantics for Modal Logic where possible world semantics are de�ned formally
in a concrete way. States or indices, as used by Montague, and by all the
other formal semantics systems (with many but not essential variations), are
tuples of indicators that stand for each of the multiple aspects of a context of
reference. Usually, these indicators include but are not exhausted by: a pos-
sible world, a particular moment of time, a particular place, an agent who is
the speaker etc. In any case, it is a basic presupposition in such systems (as
in the ones that we will present and use here) that given a state, all aspects
of the context of the reference of an utterance of a particular expression are
speci�ed.

Finally, it is an important aspect of Montague's system that it fully re-
spects the Compositionality Principle. In IL, the intension of a complex term
is a function of the intensions of its parts and of their syntactic combination.

On the other hand, as Frege argued, there are cases where the denotation
of a sentence requires for its determination, not the denotation, but, the sense
of a subordinate clause, for example, in belief sentences like `Copernicus
believed that the planetary orbits are circles'. In other words, part of the
extension of such a sentence is the intension of its subordinate clause. Thus,

12 CHAPTER 1. FORMAL MODELS OF MEANING

in order to adhere to the Compositionality Principle, the intension of an
expression is not enough to be part of the metalanguage but in contrast, one
must be able to refer to it in the object-language as well6. In the case of IL,
the intension and extension operators are the mechanisms that are used to
de�ne the corresponding semantic values formally within it.

1.3.1 LIL: Language of Intensional Logic

The Language of Intensional Logic (LIL) is a version of IL that is closer to
our contemporary understanding of Montague semantics and at the same
time lies at the core of L�ar which is the formal language of the Theory of
Referential Intensions (Section 1.5)7.

Types in LIL are de�ned recursively by

� :� e | t | psÑ �2q | p�1 Ñ �2q (1.4)

where the basic types are: entities (e), truth values (t) and states (s). Notice
that s can only occur as the name of the domain of function types8.

We assume that there are in�nitely many variables of every type � (noted
as x�). The terms in LIL are the �-calculus terms (Section 1.2) along with
the terms formed by the intension and the extension operators, that is, they
are de�ned by

A :� x | c | ApBq | �pxqpBq | �pAq | ^pAq (1.5)

where x is a variable of any type, c is a typed constant and some type
restrictions must be obeyed. Each term is assigned a type as in the typed
�-calculus:

• If x� , then as a term x : � and if c is of type � , then c : � .

• If A : p�1 Ñ �2q and B : �1, then ApBq : �2.

• If B : �2 and x : �1, then �pxqpBq : p�1 Ñ �2q.

• If A : psÑ �q, then �pAq : � .

• If A : � , then ^pAq : psÑ �q.

6The distinction between object-language and metalanguage is due to R. Carnap in [1].
7LIL is also used in [13] (see Section 1.6).
8In [8], Gallin argues that s is not a type since \...IL was intended as a formal logic

with intensional features close to those of natural languages, and in natural language we

do not refer explicitly to contexts of use; ". Dana Scott in [26] argues in the same spirit
that \...the answer is that we just do not speak that way.".

1.3. RICHARD MONTAGUE: FORMAL SEMANTICS 13

Free and bound occurrences of variables in each term are de�ned as usual.

An interpretation structure of LIL comprises:

(i) Universes of objects of each type: a non empty set Te for entities, the
two membered set of truth values Tt � t0; 1u and by recursion for each type
p�1 Ñ �2q,

T�1Ñ�2 � tf | f : T�1 Ñ T�2u:

State variables vary over a non empty set Ts and the set TsÑ� is de�ned
as above.

(ii) For each constant c : � , a corresponding function c : Ts Ñ T� .

Now, in an interpretation structure of LIL, the function denLIL associates
with each term A : � the object

denLILpAq : AssignmentsÑ pTs Ñ T� q

and it is de�ned by the following recursive rules where a and b are states
in Ts:

• denLILpxqpgqpaq � gpxq.

• denLILpcqpgqpaq � cpaq.

• denLILpApBqqpgqpaq �
�
denLILpAqpgqpaq

	�
denLILpBqpgqpaq

�
.

• denLILp�pxqpBqqpgqpaq �
�
f ÞÑ denLILpBqpgtx :� fuqpaq

�
,

where if x : �, then f is any object in T�.

• denLILp �pAqqpgqpaq �
�
denLILpAqpgqpaq

	
paq.

• denLILp ^pAqqpgqpaq � pb ÞÑ denLILpAqpgqpbqq p� denLILpAqpgqq.

IL syntax and semantics as they are presented in [2] (pp. 155-162) are in
complete correspondence with LIL as it is presented here. The terms de�ned
in (1.5) are simply the typed meaningful expressions of IL. In IL semantics,
the universe of the objects of type � is the set of Montague denotations D�

which are de�ned as above while the denotations of type sÑ � for any type �
are the Montague senses of type � . Also, to each non-logical constant of type
� is assigned a Montague sense of type � . Accordingly, an assignment func-
tion assigns to each variable of type � a member of the Montague denotation
D� .

14 CHAPTER 1. FORMAL MODELS OF MEANING

Names, indexicals Mary; I; she : e
Common nouns man; book : eÑ t

Extensional intransitive verbs run : eÑ t

Extensional transitive verbs love; read : eÑ peÑ tq
Articles the : peÑ tq Ñ e

Quanti�ers every : peÑ tq Ñ ppeÑ tq Ñ tq
(Basic) necessity operator l : psÑ tq Ñ t

Table 1.1: Constants in LIL.

If we now consider each state as being a pair of a possible world and a
moment of time, xW;T y, then it is straightforward that for every term A and
any a P Ts:

Montague Extension of A at a : rrAssM;a;g � denLILpAqpgqpaq

Montague Intension of A : rrAssM;g � denLILpAqpgq:

Finally, notice that for any term A and a state a,

Montague Extension p ^pAqq at state a � Montague IntensionpAq:

1.3.2 Natural Language Examples in LIL

By rendering , we describe, in general, the procedure of the \translation" of
natural language expressions into a formal language such as LIL.

The �rst step is always an introduction of a set of constants that \rep-
resent" words of natural language | they constitute the \formal lexicon"
with respect to which we render natural language expressions. In Table 1.1,
there are some such constants like run that renders the verb `run' or man

that renders the noun `man'. As any other term in LIL, constants are typed.
Constants that fall under the same syntactical category are attributed the
same type (all intransitive verbs are of the type peÑ tq) but the same type
can be used for two di�erent syntactical categories e.g., the type pe Ñ tq is
used for both common nouns and intransitive verbs. In general, we adopt
here the typing of [13] (Section 1.6) which doesn't follow Montague faithfully
([18]) but is quite close to [2] (see also the discussion in Section 1.6, page 26).

Montague's rendering process of natural language into LIL is very precise
and rule speci�c: each syntactic rule corresponds to a translation rule which

1.3. RICHARD MONTAGUE: FORMAL SEMANTICS 15

determines an appropriate term formation rule. Each expression according
to its syntactical category is translated into a term of a speci�c type. Thus,
by the translation rules, language expressions are rendered into terms of
LIL that, more or less, represent the way they are understood semantically.
Following Frege, functional application is used in most of the cases and
there are later approaches where its use is exclusive (see [10] for a relative
discussion).

Consider the following two simple examples of natural language sentences
and their corresponding renderings.

Mary runs
render

ÝÝÝÑ runpMaryq (Mr)

Mary reads the book
render

ÝÝÝÑ readpthepbookqqpMaryq (Mrb)

The Montague Extension of `Mary reads the book' at a state a : s is computed
by applying the de�nition in the previous section9:

denLIL

�
readpthepbookqqpMaryq

�
paq

� denLILpreadqpaq
�
denLILptheqpaqpdenLILpbookqpaqq

��
denLILpMaryqpaq

�
� readpaq

�
thepaqpbookpaqq

�
pMarypaqq:

The meaning of the sentence `Mary reads the book' is modeled thus
by a function (Montague Intension) which at every state (every context of
reference) gives a truth value computed by the corresponding Montague Ex-
tensions of its constituent parts at that state.

Consider now the sentence `She runs' pSrq at a state a where Marypaq �
shepaq, that is, the demonstrative `She' denotes the same person as the name
`Mary'. The sentence is rendered in an analogous way and its denotationa
at a is shown below.

She runs
render

ÝÝÝÑ runpsheq
denLIL

�
runpsheq

�
paq � runpaqpshepaqq:

At state a, the Montague Extensions of the sentences pSrq and pMrq are
of course equal | they are both equal to either Truth or Falsity. Their
Montague Intensions are not equal functions unless Mary : sÑ e and she :
s Ñ e are themselves equal functions which is not of course the intended
interpretation. Thus, the notion of situated meaning of a sentence at a state
is exhausted by its Extension at that state.

9We omit assignments since the term is closed.

16 CHAPTER 1. FORMAL MODELS OF MEANING

1.4 David Kaplan: Logic of Demonstratives

D. Kaplan's work adds considerably to the tradition of Montague semantics,
but here we con�ne our presentation to the Logic of Demonstratives (LD)
([14]). Kaplan draws attention to some very interesting semantical distinc-
tions involving utterances to motivate the need for a non trivial notion of
situated meaning10. We have to point out that in general, D. Kaplan's the-
ory of direct reference ([15]) treats indexicality and demonstratives' usage in
a way that sheds light on their nature and, thus, it must be considered in
any study of situated meaning.

The formal language LD \is based on �rst-order predicate logic with

identity and descriptions". Its semantics is based on a dichotomization of
context of reference (or state) into two independent parts11: the context of
utterance and the possible circumstance considered as context of evaluation.

A context of utterance c in C (the set of contexts) comprises:

(i) an agent cA in U (the set of all individuals),

(ii) a moment of time cT in T (the set of natural numbers, considered as
moments of time),

(iii) a position cP in P (the set of positions) and

(iv) a world cW in W (the set of worlds).

On the other hand, a context of evaluation is a pair of

(i) a world w in W and

(ii) a moment of time t in T .

Other indicators are possible if other aspects of a circumstance are rele-
vant to the particular situation we are referring to.

Now, in an interpretation structure of LD, A, each term A at a particular
3-tuple xc; t; wy is assigned a denotation belonging to an appropriate set of
objects12

| A |Axc;t;wy :

If A renders a natural language sentence, its denotation is Truth or Falsity.

10A short exposition of these ideas can also be found in [13].
11There is a similar idea by Montague in [17] where the Montague Intension (modeling

meanings) is de�ned with respect to a pair xi; jy where i is a possible word (or a pair of
possible world and a moment of time) and j a context of use. It is stated that \The second

argument is introduced in order to permit a treatment,..., of such indexical locutions as

demostratives, �rst- and second-person singular pronouns,...".
12As usual, the denotation of each term is given with respect to an assignment to the

free variables that occur in it, but we silently omit this here to focus on more important
aspects of LD.

1.4. DAVID KAPLAN: LOGIC OF DEMONSTRATIVES 17

The global meaning of a term A is modeled by the Character of A, i.e.
the function

Character of A : C Ñ
�
T �W Ñ Denotation(A)

�
while the Content of A at a particular context of utterance c is

Content of A at context c : T �W Ñ Denotation(A)(c):

It is thus natural that

Character of A � pc ÞÑ Content of A at cq:

To refer to an example of [14], the Content of `I was insulted yesterday'
at a particular context c1 is di�erent from that of the utterance of the same
sentence at another context c2, while of course the two sentences may have
the same denotation (for example, they can be both true).

Content(`I was insulted yesterday') at c1

� Content(`I was insulted yesterday') at c2:

The denotation of indexicals depends on context and as a consequence, the
Character of a sentence into which an indexical occurs is not a constant
function over contexts.

On the other hand, at a given context c where cA is the individual named
`David Kaplan' and cT is 21 April 1973, the Content of `I was insulted
yesterday' is the same as the Content of `David Kaplan is insulted on 20
April 1973' at any context c1.

Content(`I was insulted yesterday') at c

� Content(`David Kaplan is insulted on 20 April 1973') at c1.

The two sentences have of course di�erent Characters.

Character(`I was insulted yesterday')

� Character(`David Kaplan is insulted on 20 April 1973').

The results of Kaplan's logic of demonstratives will be discussed again in
Section 1.6 in comparison to the two notions of situated meaning proposed
there in an extension of Montague's LIL. Finally, in Section 5.2, we will
reconsider Kaplan's ideas in the Theory of Referential Intensions using both
local meaning and the proposed notion of factual content.

18 CHAPTER 1. FORMAL MODELS OF MEANING

Names, indexicals Mary; I; she : re
Common nouns man : reÑ rt
Intransitive verbs run; rise : reÑ rt
Transitive verbs love : reÑ preÑ rtq
Articles the : preÑ rtq Ñ re
(Basic) necessity operator l : rtÑ rt

Table 1.2: Constants in L�arpKq.

1.5 Theory of Referential Intensions: Algorithmic

Formal Semantics

This section is a concise introductory presentation of the Theory of Refer-
ential Intensions which is the main technical framework of the thesis. It is
presented in detail in [22] (see also [20]) and in what follows, we summarize
the syntax and semantics of the formal language L�ar in which the theory is
developed.

1.5.1 Syntax and Semantics of L
�
ar

L�arpKq is a typed �-calculus (Section 1.2) enriched with a recursive construct.
Types are de�ned recursively by

� :� e | t | s | p�1 Ñ �2q (1.6)

where, unlike the types in LIL (1.4), the type s of states is a regular basic type.
The setK is a �nite set of typed constants c : � . As in LIL, they introduce

in L�arpKq the part of the lexicon of the natural language we are interested in.
In Table 1.2, some constants of K and their corresponding types are shown.
The types of the constants are a subset of (1.6) de�ned by

r� :� psÑ eq | psÑ tq | pr�1 Ñ r�2q (1.7)

and for short, re :� ps Ñ eq and rt :� ps Ñ tq. Notice that, unlike the
constants in LIL (Table 1.1), the constants in L�ar are typed by using the type
of states (s) in full (see also discussion in Section 2.1).

In this language, apart from the usual typed quanti�able variables (called
pure), there are also recursive variables with a distinct role made clear in
the recursive construct.

1.5. THEORY OF REFERENTIAL INTENSIONS 19

The terms of L�arpKq are de�ned by

A :� c | x | BpCq | �pvqpBq | A0 where tp1 :� A1; : : : ; pn :� Anu (1.8)

where x is a pure or recursive variable, v is a pure variable and p1; : : : ; pn
are recursive variables. A type is assigned to each term by this de�nition
and free and bound occurrences of the variables are determined.

In what concerns the recursive term, we note that
(i) p1; : : : ; pn are distinct recursive variables and they occur bound in it,
(ii) for all i � 1; : : : ; n, Ai; pi : �i and if A0 : � , then

A0 where tp1 :� A1; : : : ; pn :� Anu : �;

(iii) and, the system tp1 :� A1; : : : ; pn :� Anu is acyclic | that is, we
can associate a natural number, rankppiq, with each recursive variable pi so
that if pj occurs free in Ai, then rankppiq ¡ rankppjq.

In L�ar, we de�ne congruence as the smallest equivalence relation �c be-
tween terms which respects alphabetic replacement of bound, pure and re-
cursive, variables, application, �-abstraction and acyclic recursion and such
that for any permutation � : t1; : : : ; nu Ñ t1; : : : ; nu, for any recursive term

A0 where tp1 :� A1; : : : ; pn :� Anu

�c A0 where tp�p1q :� A�p1q; : : : ; p�pnq :� A�pnqu:

Both LIL and L�ar are formal languages at the core of which lies the typed
�-calculus (Section 1.2). Apart from the di�erences in types, in LIL there are
two additional operators, the intension and the extension ones, while in L�ar
there is a new recursive construct. Without trying to compare them, there
is a simple point worth mentioning13. The intensional operator enriches the
�-calculus in a basic way: with its use, one can de�ne formally within LIL

the semantic value (Montague Intension) that is expressed by its terms. We
will see in what follows that the recursive construct plays an analogous role
in L�ar. This is an important feature of both languages and reveals rather
than obscures their similarity.

The following examples are terms in L�ar which render natural language
sentences in exactly the same way as in LIL. Notice though that these terms
are now of type rt, and not of type t.

Mary runs
render

ÝÝÝÑ runpMaryq (Mr)

Mary reads the book
render

ÝÝÝÑ readpthepbookqqpMaryq (Mrb)

13See also the discussion at the end of this section.

20 CHAPTER 1. FORMAL MODELS OF MEANING

Finally, the following are examples of two recursive terms in L�ar again of
type rt.

runppq where tp :� Maryu
readpp1qpp3q where tp1 :� thepp2q; p2 :� book; p3 :� Maryu

An interpretation structure U of L�arpKq comprises:
(i) non empty universes of objects of basic and function types, Te;Tt and

Ts and T�1Ñ�2 � tf | f : T�1 Ñ T�2u,
(ii) an object c P T� for every constant c : � of K.
It is useful to assume that there are special objects, ere P Te and ert P Tt

which represent the value \error" for entities and truth values, respectively.
They build up for all types, that is, there is an object er� for every type �
and thus, we can compute the value of the denotation for every term.

In U , we de�ne a denotation function den that associates with each term
A : � and each assignment g to the variables, the object denpAqpgq P T� by
the recursion:

• denpxqpgq � gpxq; denpcqpgq � c.

• denpApBqqpgq � denpAqpgq
�
denpBqpgq

�
.

• denp�pvqpBqqpgq �
�
f ÞÑ denpBqpgtv :� fuq

�
,

where if v : � , then f is any object in T� .

• den
�
A0 where tp1 :� A1; : : : ; pn :� Anu

�
pgq

� denpA0qpgtp1 :� P1; : : : ; pn :� Pnuq
where for i � 1; : : : ; n, if pj1 ; : : : ; pjm are the recursive variables with
rank lower than rankppiq, each object Pi is de�ned by

Pi � den
�
Ai

�
pgtpj1 :� Pj1 ; : : : ; pjm :� Pjmu

�
:

Apart from the denotational semantics, we will associate with each proper
term A : � its referential intension intpAq which models its global meaning
in L�arpKq,

A ÞÑ intpAq:

In what follows, we describe brie
y how this association is established.
First, we call proper the terms that are not immediate. Immediate terms

in L�ar are treated like generalized variables and they are not assigned mean-
ings. They are de�ned by

X :� vi | ppv1; : : : ; vnq | �pu1; : : : ; umqppv1; : : : ; vnq (1.9)

1.5. THEORY OF REFERENTIAL INTENSIONS 21

where p is a recursive variable and v1; : : : ; vn and u1; : : : ; um are pure vari-
ables. Notice that by this de�nition for any recursive variable p, both p itself
(considered as p � �pu1; : : : ; umqppu1; : : : ; umq) and any �-term of the form
�pu1; : : : ; umqp are immediate terms.

Second, in L�ar, a reduction relation A ñ B on terms is de�ned by ten
reduction rules, presented in Table 1.3. Reduction rules are considered as
\compilation" rules in this theory and it is proved in [22] that they respect
denotational equivalence, their application terminates always and its result
is unique up to congruence.

We also de�ne irreducible terms with respect to this reduction relation.

A is irreducible ðñ for all B, if Añ B, then A �c B: (1.10)

Theorem 1.5.1. (Canonical Form Theorem) For each term A, there is

a unique (up to congruence) irreducible recursive term

cfpAq � A0 where tp1 :� A1; : : : ; pn :� Anu

such that Añ cfpAq.

The canonical form cfpAq can be e�ectively computed from A, it is de-
notationally equivalent with A, and its head A0 and its parts A1; : : : ; An

determine the basic computable modules that are needed in order to com-
pute the denotation of the original term A.

Now, the referential intension of A is the tuple of functions

intpAq � pf0; f1; : : : ; fnq

de�ned by the head and the parts of its canonical form, where

fipd1; : : : ; dn; gq � denpAiqpgtp1 :� d1; : : : ; pn :� dnuq pi � 0; : : : ; nq:

Tuples of functions like the one above are called recursors. They are
de�ned and used as formal representations of abstract algorithms in a series of
papers by Y. N. Moschovakis, see [21] and earlier articles referenced there14.

For any term A, its referential intension, intpAq, models the (global)
meaning of A in this theory | the abstract algorithm that computes its
denotation, denpAqpgq. Thus, the canonical form of A de�nes formally within

the language the meaning of A.

Global Meaning of A : cfpAq:

14A short, but highly motivating, introduction of these ideas can also be found in the
last section of [22].

22 CHAPTER 1. FORMAL MODELS OF MEANING

(cong) If A �c B, then Añ B

(trans) If Añ B and B ñ C, then Añ C

(rep1) If Añ A1 and B ñ B1, then ApBq ñ A1pB1q

(rep2) If Añ B, then �puqpAq ñ �puqpBq

(rep3) If Ai ñ Bi for i � 0; : : : ; n, then
A0 where tp1 :� A1; : : : ; pn :� Anu

ñ B0 where tp1 :� B1; : : : ; pn :� Bnu

(head)
�
A0 where tp1 :� A1; : : : ; pn :� Anu

�
where

tq1 :� B1; : : : ; qm :� Bmu

ñ A0 where tp1 :� A1; : : : ; pn :� An; q1 :� B1; : : : ; q1 :� Bmu

(B-S) A0 where

p :�

�
B0 where tq1 :� B1; : : : ; qm :� Bmu

�
;

p1 :� A1; : : : ; pn :� An

(
ñ A0 where tp :� B0; q1 :� B1; : : : ; qm :� Bm;

p1 :� A1; : : : ; pn :� Anu

(recap)
�
A0 where tp1 :� A1; : : : ; pn :� Anu

�
pBq

ñ A0pBq where tp1 :� A1; : : : ; pn :� Anu

(ap) ApBq ñ Apbq where tb :� Bu; if B is proper

(�-rule) �puq
�
A0 where tp1 :� A1; : : : ; pn :� Anu

�
ñ �puqA1

0 where tp11 :� �puqA1
1; : : : ; p

1
n :� �puqA1

nu

where (i � 1; : : : ; n), p1i is a fresh recursive variable and

A1
i :� Aitp1 :� p11puq; : : : ; pn :� p1npuqu:

Table 1.3: The Reduction Calculus.

1.5. THEORY OF REFERENTIAL INTENSIONS 23

For example, the global meaning of `Mary reads the book' pMrbq in the
Theory of Referential Intensions is de�ned by its canonical form15

readpthepbookqqpMaryq

ñcf readpp1qpp3q where tp1 :� thepp2q; p2 :� book; p3 :� Maryu:

It determines the particular step-by-step computation that we need to fol-
low to compute the denotation of pMrbq. Notice that the type of the term
readpthepbookqqpMaryq is rt and thus the denotation that we compute through
its canonical form gives its truth value at every possible state. The meaning
is characterized as global exactly because it expresses the semantical value
that one knows if she knows the language.

A �nal note about the comparison with respect to semantics, between
L�ar and the typed �-calculus. First of all, L�ar is not denotationally more
expressive than the typed �-calculus. It can be proved that every term is
denotationally equal to an explicit term, that is, a term that has no where

in it. On the other hand, there are terms in L�ar that are not referentially
synonymous with any explicit term. Referential synonymy is de�ned in the
next section but basically this result shows that terms in L�ar express more
\meanings" than �-calculus terms (see also paragraphs 1.7 and 3.24-3.25
in [22] for relevant discussion).

1.5.2 Referential Synonymy and Local Meaning

In the Theory of Referential Intensions, two terms are referentially synony-
mous if their referential intensions are naturally isomorphic. Nevertheless,
we don't have to use the de�nition of natural isomorphism between recur-
sors, but instead we will use the following (equivalent) de�nition based on
canonical forms.

De�nition 1.5.2. For any two terms A andB, A is referentially synonymous

with B (A ≈ B) if and only if

Añcf A0 where tp1 :� A1; : : : ; pn :� Anu

B ñcf B0 where tp1 :� B1; : : : ; pn :� Bnu

and for each i � 0; : : : ; n and all g, denpAiqpgq � denpBiqpgq.

Thus, we can decide on the synonymy between two terms based on the
denotational equivalence of the corresponding parts and head of their canon-
ical forms.

15We simply note Añcf B if and only if B �c cfpAq.

24 CHAPTER 1. FORMAL MODELS OF MEANING

Referential synonymy is a structural equivalence relation which can make
semantical distinctions between denotationally equal expressions. For exam-
ple, with pMrq and pSrq as above, since Mary � she,

runpqq where tq :� Maryu �≈ runpqq where tq :� sheu;

and hence, runpMaryq �≈ runpsheq.
Consider also the sentence pMrbq and the sentence `Mary reads the small

book'. It is straightforward that

readpp1qpp3q where tp1 :� thepp2q; p2 :� book; p3 :� Maryu

�≈ readpp1qpp3q where tp1 :� thepp2q; p2 :� smallpp4q; p4 :� book; p3 :� Maryu

since the two canonical forms do not have the same number of parts. The
inequality of the number of parts reveals an important di�erence in compu-
tation which referential synonymy takes into account.

An analogous synonymy relation in LIL would express equality between
the corresponding Montague Intensions of the sentences. Structural char-
acteristics of the sentences as those described above do not a�ect this kind
of synonymy. This is a feature of the Theory of Referential Intensions that
makes a de�nite turn on the way truth-conditional theories of meaning are
considered and developed.

Consider now the sentence pMrq uttered at a particular context of refer-
ence, at state a : s. Its denotation,

denprunpMaryqqpaq � runpMaryqpaq;

is Truth or Falsity, depending on whether the entity Marypaq is actually
running at state a. In the Theory of Referential Intensions, for terms of typert, besides denotations, we can also de�ne a non trivial local meaning. To do
that, it is convenient to enrich the language with a parameter ā associated
with each state a such that for any assignment g, denpāqpgq � gpāq � a.
Now, we de�ne

Local Meaning of A : rt at state a :� intpApāqq

and the corresponding relation of local synonymy :

De�nition 1.5.3. For any two terms A and B, A at state a is locally syn-

onymous with B at state b if and only if

Apāq ñcf A0pāq where tp1 :� A1; : : : ; pn :� Anu

Bpb̄q ñcf B0pb̄q where tp1 :� B1; : : : ; pn :� Bnu

1.6. TWO NOTIONS OF SITUATED MEANING 25

and for all g, denpA0qpgqpāq � denpB0qpgqpb̄q and for each i � 1; : : : ; n,
denpAiqpgq � denpBiqpgq.

The local meaning of the sentence `Mary sleeps' at state a is expressed by

sleeppqqpāq where tq :� Maryu:

By the de�nition, it is locally synonymous with the utterance of `Mary re-
laxes' at the same state a, i.e.,

sleeppqqpāq where tq :� Maryu ≈ relaxpqqpb̄q where tq :� Maryu;

if and only if for any assignment g,

sleeppgppqqpaq � relaxpgppqqpaq;

that is, if the set of individuals that sleep at state a is the same as the set
of the individuals that relax at that same state.

Suppose now that at state a, Marypaq � shepaq, and consider again the
utterances of the two sentences pMrq and pSrq. Can we deduce that the two
utterances are locally synonymous? The answer is negative,

runpqqpāq where tq :� Maryu �≈ runpqqpāq where tq :� sheu;

since Mary � she. Notice that the local referential intensions of these ut-
terances depend on the global meaning of Mary and she. In general, local
synonymy between two utterances at some state is a structural notion of
synonymy that is not exhausted by the denotational equivalence of the cor-
responding parts at that state.

The need of an additional notion of meaning which takes into account the
state dependent denotational equalities of the parts of the canonical form of
a term leads to the study of factual content which is the subject of this thesis
(see Introduction and Chapter 5 for relevant discussion). It is conceived here
not as an amendment to the local meaning but as its counterpart towards a
complete framework of situated meaning.

1.6 Two Notions of Situated Meaning

In this last section of the chapter, we will explore the possibility to enrich Ty2,
a two-sorted typed �-calculus presented in [8], with a recursive construct,
de�ne referential intensions in it and then, exploiting the way the terms of

26 CHAPTER 1. FORMAL MODELS OF MEANING

this language are typed, de�ne, in addition to global and local meaning, a
non trivial notion of factual content16.

Ty2 is formed by translating each term A of LIL and each state variable u
to a term AG;u of the same type as in LIL, where, though, the state variable
u is made explicit,

A : � and a state variable u ÞÑ AG;u : �:

In what follows, we won't focus on the translation but rather present directly
this new language and compare it to LIL and L�ar.

Types in Ty2 are the types of L�ar (1.6), that is, unlike LIL, states form a
basic type of their own. As in Section 1.2, terms are de�ned by

A :� x | cG | ApBq | �pxqpBq: (1.11)

Semantically, we interpret Ty2 terms (which form a subset of L�ar terms)
in an interpretation structure similar to that of L�ar, with the denotation
function de�ned as usual. Thus, unlike LIL, the terms in Ty2 are such that
for each term A : � and each assignment g to the variables, denpAqpgq P T� .

Let us now consider again the constants of LIL that we introduced in
Table 1.1. We presented there only constants that are extensional in order
to focus on the rendering procedure but these are just a subset of natural
language constants. Montague actually believed that intensional phenomena
are the rule and that is why he de�ned functional application by means of
the Montague intension of the argument. We don't follow this idea in LIL

but we rather type di�erently the constants according to the way they treat
their arguments17. For example, notice the type of rise in Table 1.4.

Now, for each constant c : � in LIL, cG : sÑ � is introduced in Ty2 such
that denpcGq � c. The Gallin translation of any constant c : � at a state u
in Ty2 is cGpuq : � , so that for any assignment g such that gpuq � a,

denpcG;uqpgtu :� auq � denpcGpuqqpgtu :� auq � cpaq � denLILpcqpgqpaq:

In general, for each LIL term A : � , AG;u : � , and for any assignment g such
that gpuq � a,

denpAG;uqpgq � denLILpAqpgqpaq:

The idea is that for each A and each state a, its Gallin translation AG;u

de�nes formally within Ty2 its LIL denotation at a.

16This work is presented in detail in [13]. A short account of it along with some pre-
liminary results of this thesis can also be found in [12].

17It is no longer true that constants of the same syntactical category are typed uniformly.

1.6. TWO NOTIONS OF SITUATED MEANING 27

Extensional intransitive verbs run : eÑ t

Intensional intransitive verbs rise : psÑ eq Ñ t

Extensional transitive verbs love : eÑ peÑ tq
(Basic) necessity operator l : psÑ tq Ñ t

de dicto modal operator Yesterday : psÑ tq Ñ t

de re modal operator Yesterday1 : psÑ peÑ tqq Ñ peÑ tq

Table 1.4: More constants in LIL.

We now form L
�;G
ar by adding to Ty2 an in�nite number of recursive vari-

ables for each type � , and extending the de�nition of terms by adding the
recursive construct as follows

A :� x | p | cG | ApBq | �pxqpBq

| A0 where tp1 :� A1; : : : ; pn :� Anu: (1.12)

Notice that L�;Gar is noted in [13] as simply L�ar because the original L
�
ar (Sec-

tion 1.5) is not presented there. We introduce this new notation in order to
avoid confusion although it should be clear that, if we exclude the typing of
the constants, the two languages are basically the same.

It is now possible to de�ne in L
�;G
ar for any LIL term A, aside from its global

and local meaning, an additional situated meaning, its factual content. We
have already pointed out that for any LIL term A, its Gallin translation AG;u

with respect to a state variable u de�nes formally the denotation of A at a
state. Now, the abstraction over all states of the Gallin translation of A
de�nes formally the denotation of A and, thus, the canonical form of that
term de�nes the algorithm which computes the denotation of A. That is,

Global Meaning of A : cf
�
�puqpAG;uq

�
As in Section 1.5.2, by evaluation, we simply have for any LIL term A and a
state a

Local Meaning of A at state a : cf
�
�puqpAG;uqpāq

�
:

Notice that this de�nition applies to LIL terms of any type and not just for
terms of type rt as stated in Section 1.5.2.

Since �-conversion does not preserve referential synonymy, in general

�puqpAG;uqpāq �≈ AG;utu :� āu;

28 CHAPTER 1. FORMAL MODELS OF MEANING

the canonical form of AG;utu :� āu � AG;ā de�nes an alternative notion of

situated meaning of A in L
�;G
ar ,

Factual Content of A at state a : cfpAG;āq:

For example, in the case of the simple sentence pMrq, considered as a LIL

term, the three notions of meaning are de�ned by the following canonical
forms:

Global Meaning : �puq
�
runGpuqpqpuqq

�
where tq :� �puqMaryGpuqu

Local Meaning at a : �puq
�
runGpuqpqpuqq

�
pāq where tq :� �puqMaryGpuqu

Factual Content at a : runGpāqpq1q where tq1 :� MaryGpāqu

If at a state a, sheGpaq �MaryGpaq, this notion of factual content produces
the expected synonymy between the utterances of pMrq and pSrq.

runGpāqpq1q where tq1 :� MaryGpāqu ≈ runGpāqpq1q where tq1 :� sheGpāqu:

It is again true that the two utterances are not locally synonymous

�puq
�
runGpuqpqpuqq

�
pāq where tq :� �puqMaryGpuqu

�≈ �puq
�
runGpuqpqpuqq

�
pāq where tq :� �puqsheGpuqu

which agrees with our intuition that these sentences convey the same in-

formation about the world at that particular context of reference but the

computation of that information involves di�erent basic computational mod-

ules.
Let us now consider the more interesting Kaplan example `I was insulted

yesterday'. In LIL, it is rendered as18

I was insulted yesterday
render

ÝÝÝÑ Yesterday1

�
^pbe insultedq

�
pIq

where be insulted : e Ñ t. Its proposed factual content at any state a is
de�ned by

Yesterday1
Gpāqppqpqq where tp :� �puqbe insultedGpuq; q :� IGpāqu

and, if at state b, it is uttered by a di�erent person (IGpaq � IGpbq), then

Yesterday1
Gpāqppqpqq where tp :� �puqbe insultedGpuq; q :� IGpāqu

�≈ Yesterday1
Gpb̄qppqpqq where tp :� �puqbe insultedGpuq; q :� IGpb̄qu:

18The word `Yesterday' is rendered here as the constant Yesterday1 and not as Yesterday
since the existence of the indexical `I' forces the use of the de re version of it.

1.6. TWO NOTIONS OF SITUATED MEANING 29

Suppose that DavidKaplan : e is a constant in LIL that denotes David
Kaplan and on20April1973 : pps Ñ pe Ñ tqq Ñ pe Ñ tq is an intensional
operator that determines time. It is trivially the case that if the time at
state a is 21 April 1973 and the speaker is David Kaplan, then at any state
b, where DavidKaplanGpb̄q denotes David Kaplan,

Yesterday1
Gpāqppqpqq where tp :� �puqbe insultedGpuq; q :� IGpāqu

≈ on20April1973Gpb̄qppqpqq where

tp :� �puqbe insultedGpuq; q :� DavidKaplanGpb̄qu:

Apart from Kaplan and his ideas on situated meaning, in [13], there is a
more general discussion on the interrelations of the three notions of meaning
de�ned for terms in LIL. We will return on some of these considerations on
Chapter 5 for terms of L�ar and with the aid of the proposed notion of factual
content that will be de�ned there.

30 CHAPTER 1. FORMAL MODELS OF MEANING

Chapter 2

Locality of Typed Objects

In this chapter, we introduce the basic notions about locality for the objects
in the interpretation structure of L�ar (cf. Section 1.5.1). First, we identify
the objects that interpret terms that render natural language expressions
and thus, they are the objects whose locality behavior we are interested in.
In L�ar, these objects are typed by the types in (1.7) and this is made precise
in Section 2.1.

In Section 2.2, we de�ne local objects | their values at a state depend
only on the values of their arguments at that state. They are characterized
by local associates whose properties are presented.

In Section 2.3, the notions of the previous section are generalized for
all objects of natural language renderings and locality is deployed in its full
complexity. Locality indices | strings that codify the locality behavior of
objects | are introduced and with the use of them, the notion of an associate
of an object.

2.1 State-dependent Types of L�
ar

Types of L�ar were de�ned by (1.6) in Chapter 1 by the recursion

� :� e | t | s | p�1 Ñ �2q: (2.1)

In order to de�ne locality, we will focus on some interesting subsets of these
types. First of all, the pure or state-free types are the L�ar types without the
basic type s,

� :� e | t | p�1 Ñ �2q: (2.2)

It is not uncommon to use these types in natural language rendering since
it is often assumed that any interpretation is performed at a particular �xed

31

32 CHAPTER 2. LOCALITY OF TYPED OBJECTS

state, \the current state" (see also footnote 8 in page 12). Montague types
follow this idea and the type s appears only in the types ps Ñ �q which
are used to de�ne the Montague Intension of a term in LIL (cf. (1.4) in
Section 1.3).

On the other hand, the state-dependent types of L�ar, de�ned in (1.7), are
types all of whose parts depend on states,

r� :� psÑ eq | psÑ tq | pr�1 Ñ r�2q: (2.3)

These two subset of L�ar types are more closely related than it appears at
�rst sight. The following simple transformation adds states uniformly in the
pure types and its converse removes states from the state-dependent ones.
For each pure type �, we associate the state-dependent type r� recursively by

re :� psÑ eqrt :� psÑ tq; and

if � � p�1 Ñ �2q; then r� :� pr�1 Ñ r�2q:

For example, if r� � pre Ñ rtq Ñ pre Ñ rtq, then the corresponding pure type �
is pe Ñ tq Ñ pe Ñ tq. And if for example � � pt Ñ tq Ñ pe Ñ pe Ñ tqq, the
corresponding state-dependent r� is prtÑ rtq Ñ preÑ preÑ rtqq.

The constants of L�arpKq in Table 1.2 have state-dependent types. Terms
that render natural language expressions are built up from these constants
and thus they are typed by exactly the types in (2.3). It will be clear in the
following sections of this chapter that our study will be con�ned on functions
of state-dependent type (and on Chapter 3 on analogously typed terms).

Finally, as usual, we de�ne for any type in (2.1)

�1 � �2 Ñ �3 :� �1 Ñ p�2 Ñ �3q

which we can generalize for any number of types1. Based on that, we can
alternatively de�ne the general form of a type � of L�ar as

� � �1 � : : :� �n Ñ �0

1This is the Sch�on�nkelization or Currying method of how a n-place function can
be reduced to a function whose arguments are 1-place functions. It is used in natural
language rendering (see [10]) in order to express more directly syntax. In this approach
we will exploit the equivalence of the two views and we will typically view the objects in
the standard L�ar structure as functions of many variables whose values are objects of the
basic types.

2.2. LOCAL OBJECTS 33

where �1; : : : ; �n is any type and �0 :� e | t | s. We also associate with each
type � a natural number, the level of � (levelp�q), as follows

levelpeq � levelptq � levelpsq � 0
level

�
�1 � : : :� �n Ñ �0

�
� max

�
levelp�1q; : : : ; levelp�nq

�
� 1:

In the case of state-dependent types, their general form is

r� � r�1 � : : : r�n Ñ r�0 where r�0 :� re | rt (2.4)

and r�1; : : : ; r�n are state-dependent types. The basic state-dependent types
are of level 1 (levelpreq � levelprtq � 1) whereas for any type r�1 Ñ r�2,
level

�r�1 Ñ r�2

�
¥ 2.

2.2 Local Objects

A function of a state-dependent type f : r�1 � : : :� r�n Ñ r�0 can be charac-
terized by whether its value fpf1; : : : ; fn; aq at a state a : s depends on the
values of its arguments fi : r�i (i � 1; : : : ; n) on states di�erent than a or not.
We will show that this is a concrete notion of locality and we will, �rst,
consider in this section the case where the value of f at a does not depend
on the values of its arguments at other states than a.

Example 2.2.1. Suppose we consider the object love : re � re Ñ rt which
interprets the constant love in L�ar. For any two objects f1; f2 : re and any
state a : s, the function love is de�ned by

lovepf1; f2; aq � 1 ðñ f2paq loves f1paq at state a:

Naturally enough, the evaluation of lovepf1; f2; aq only needs the values of f1

and f2 at state a. In other words, for any two pairs of arguments (f1; f2 : re)
and (f 11; f

1
2 : re) and any state a, if f1paq � f 11paq and f2paq � f 12paq, then

lovepf1; f2; aq � lovepf 11; f
1
2; aq.

The object love is just one example of a local object and we will make
this characterization formal with a use of local associates.

De�nition 2.2.2. (Local Associate of an Object) For each f : r�, we
de�ne what it means for

f 1 : sÑ �

to be a local associate of f by induction on the level of r�.

34 CHAPTER 2. LOCALITY OF TYPED OBJECTS

(i) If f : r�0, then f 1 is a local associate of f if and only if f 1 � f .

(ii) If f : r�1 � : : :� r�n Ñ r�0, then f 1 : s� �1 � : : :� �n Ñ �0 is a local
associate of f if and only if for any fi : r�i, a : s,

fpf1; : : : ; fn; aq � f 1
�
a; f 11paq; : : : ; f

1
npaq

�
where f 1i : sÑ �i, are such that for i � 1; : : : ; n, f 1i is a local associate of fi.

An object f : r� is local if it has a local associate.

The de�nition of love presented above expressed nothing more than the
existence of a local associate for it and thus, the object love is local. It is also
straightforward by the de�nition that all objects of types re and rt (objects of
level one types) are local and that they have unique local associates.

Example 2.2.3. Other trivial local objects of arbitrary level are constant
functions, that is, any function f : r�1 � : : : � r�n Ñ r�0 such that for any
f1; : : : ; fn of appropriate types and any a : s,

fpf1; : : : ; fn; aq � b

for some b : �0. The function f 1 : s � �1 � : : : � �n Ñ �0 such that for any
g1; : : : ; gn of appropriate types and any a : s,

f 1pa; g1; : : : ; gnq � b

is obviously a local associate of f .

Notice that if f 1 is an associate of both f1 and f2, then f1 and f2 are equal
on all local arguments. On the other hand, this de�nition does not determine
f 1 : s Ñ � | it merely determines some of its values. The de�nition does
not impose any constraint on the values of f 1 on arguments that are not
themselves values of local associates of arguments of f . In general, a local
object f : r� with levelpr�q ¥ 2 has many local associates whose relation is
described in the following straightforward proposition.

Proposition 2.2.4. If f1 and f2 are local associates of f : r�1�: : :�r�n Ñ r�0,

then, for any a : s and any local objects gi : r�i and local associates g1i : sÑ �i
of them, pi � 1; : : : ; nq,

f1

�
a; g11paq; : : : ; g

1
npaq

�
� f2

�
a; g11paq; : : : ; g

1
npaq

�
:

Let us now consider an example of a non local object.

2.2. LOCAL OBJECTS 35

Example 2.2.5. The most obvious is the sentential operator l : rt Ñ rt
interpreted as \necessarily always", that is for any f : rt and any state a : s,

lpf; aq � 1 ðñ @b : s; fpbq � 1:

To arrive at a contradiction, assume that there is a function f 1 : s � t Ñ t

such that for any f : rt and any a : s, lpf; aq � f 1pfpaq; aq. Suppose also that
for two objects f1 and f2 at state a, f1paq � f2paq � 1 but lpf1; aq � 1,
lpf2; aq � 0 because there is another state b : s such that f2pbq � 0.

Now, while f 1pf1paq; aq � f 1pf2paq; aq, it must also be the case that
f 1pf1paq; aq � 1 and f 1pf2paq; aq � 0, which is absurd.

We proved that the object l is not local by using an idea that can be
expressed in general and it is used in the following Locality Condition lemma.

Lemma 2.2.6. (Locality Condition -LC) An object f : r�1 � : : :� r�n Ñ r�0

is local if and only if the following condition holds: For any two n-tuples

pf1; : : : ; fnq and pg1; : : : ; gnq of local objects of appropriate types and corre-

sponding local associates pf 11; : : : ; f
1
nq and pg

1
1; : : : ; g

1
nq, and for any a : s, if,

for i � 1; : : : ; n, f 1ipaq � g1ipaq, then fpf1; : : : ; fn; aq � fpg1; : : : ; gn; aq.

Proof. The proof is by induction on the level of the type of f .
(ùñ) Let f 1 be a local associate of the local object f : r�1� : : :�r�n Ñ r�0.

Then, for any a : s and for any tuples of local objects of appropriate types
pf1; : : : ; fnq and pg1; : : : ; gnq and local associates pf 11; : : : ; f

1
nq and pg

1
1; : : : ; g

1
nq

of them, such that for i � 1; : : : ; n, f 1ipaq � g1ipaq,

fpf1; : : : ; fn; aq � f 1
�
a; f 11paq; : : : ; f

1
npaq

�
� f 1

�
a; g11paq; : : : ; g

1
npaq

�
� fpg1; : : : ; gn; aq:

(ðù) If f : r�1 � : : :� r�n Ñ r�0, we de�ne f
1 : s� �1 � : : :� �n Ñ �0 by

f 1pa; b1; : : : ; bnq �

$'&'%
fpf1; : : : ; fn; aq; if for i � 1; : : : ; n, there are local

f1; : : : ; fn such that f 1ipaq � bi;

er�0 ; otherwise:

The function f 1 is well de�ned since, by hypothesis, even if for some i, there
are two local fi and gi and local associates f 1i and g1i of them respectively,
such that bi � f 1ipaq and bi � g1ipaq for some a, it is the case that

fpf1; : : : ; fi; : : : ; fn; aq � fpf1; : : : ; gi; : : : ; fn; aq:

The function f 1 is clearly a local associate of f and thus, f is local. %

36 CHAPTER 2. LOCALITY OF TYPED OBJECTS

In general, the values of the local associates of a local object f may
di�er only on arguments that are not themselves values of local associates
of arguments of f . If we give a speci�c value to f on these arguments, then
we can de�ne a particular, \preferred" local associate of f .

De�nition 2.2.7. If f : r� is local, a local associate f� : s Ñ � of it is a
preferred local associate of f if and only if

(i) If f : r�0, then f� � f .
(ii) If f : r�1� : : :� r�n Ñ r�0, then f� : s��1� : : :��n Ñ �0 is such that

for any a : s and any b1 : �1; : : : ; bn : �n, if there are no local fi : r�i with
local associates f 1i such that bi � f 1ipaq, then

f�pa; b1; : : : ; bnq � er�0 :

Proposition 2.2.8. If f : r� is local, then it has a unique preferred local

associate.

Proof. The proof is by induction on the levelpr�q.
(i) If f : r�0, then f� � f and trivially, it is unique.
(ii) Let f 1 : s� �1 � : : :� �n Ñ �0 be a local associate of a local object

f : r�1 � : : :� r�n Ñ r�0. We de�ne the function

f�pa; b1; : : : ; bnq �

$'&'%
f 1pa; b1; : : : ; bnq; if, for i � 1; : : : ; n, there are local

f1; : : : ; fn such that f 1ipaq � bi;

er�0 ; otherwise:

The function f� is a local associate of f since for any appropriately typed
local objects f1; : : : ; fn with local associates f 11; : : : ; f

1
n and any a : s,

fpf1; : : : ; fn; aq � f 1pa; f 11paq; : : : ; f
1
npaqq � f�pa; f

1
1paq; : : : ; f

1
npaqq:

It also follows immediately from the de�nition that f� is a preferred local
associate of f .

Suppose now that f 1� : s � �1 � : : : � �n Ñ �0 is another preferred local
associate of f . We consider cases on the arguments of f� and f 1�.

For any a : s and any b1; : : : ; bn of appropriate types such that there are
local f1; : : : ; fn and local associates of them f 11; : : : ; f

1
n, respectively such that

f 1ipaq � bi, for i � 1; : : : ; n,

f�pa; b1; : : : ; bnq � f 1pa; b1; : : : ; bnq

� fpf1; : : : ; fn; aq

� f 1�pa; f
1
1paq; : : : ; f

1
npaqq � f 1�pa; b1; : : : ; bnq;

2.2. LOCAL OBJECTS 37

because f 1� is a local associate of f .
On the other hand, for any a : s and any other appropriately typed

b1; : : : ; bn,
f�pa; b1; : : : ; bnq � er�0 � f 1�pa; b1; : : : ; bnq;

because f 1� is a preferred local associate of f . %

Finally, the following theorem summarizes some basic properties of local
objects and their local associates.

Theorem 2.2.9. (i) (Projection) If f : r�1 � : : :� r�n Ñ r�i is a projection

function such that

fpf1; : : : ; fnq � fi;

then f is local and the function f 1 : s � �1 � : : : � �n Ñ �i de�ned for any

a : s by
f 1pa; y1; : : : ; ynq � yi

is a local associate of it.

(ii) (Evaluation at Local Values) If f : r�1 � : : :� r�n Ñ r� and y1 : r�1,

: : : ; yn : r�n are local with local associates f 1 and y11; : : : ; y
1
n respectively, then

fpy1; : : : ; ynq is also local and the function pfpy1; : : : ; ynqq
1 : s Ñ � de�ned

for any a : s by �
fpy1; : : : ; ynq

�1
paq � f 1pa; y11paq; : : : ; y

1
npaqq

is a local associate of it.

(iii) (Composition) If g : r�1� : : :�r�n�r� Ñ r� and h : r�1� : : :�r�n Ñ r�
are local with local associates g1 and h1 respectively, and

fpx1; : : : ; xnq � gpx1; : : : ; xn; hpx1; : : : ; xnqq;

then f is also local and the function f 1 : s� �1 : : :� �n Ñ � de�ned for any

a : s by
f 1pa; y1; : : : ; ynq � g1pa; y1; : : : ; yn; h

1pa; y1; : : : ; ynqq

is a local associate of it.

(iv) (�-abstraction) If f : r�1 � : : : � r�n � r� Ñ r� is local with local

associate f 1 and

gpx1; : : : ; xnq � �pxqfpx1; : : : ; xn; xq;

then g is local and the function g1 : s� �1 � : : :� �n Ñ p� Ñ �q de�ned by

g1pa; h1; : : : ; hnq � �phqf 1pa; h1; : : : ; hn; hq

is a local associate of it.

38 CHAPTER 2. LOCALITY OF TYPED OBJECTS

Proof. (i) Suppose f : r�1 � : : : � r�n Ñ r�i is a projection function, so that
for appropriately typed f1; : : : ; fn, fpf1; : : : ; fnq � fi.

Let r�i � r�1
i � : : : � r�mi Ñ r�0. We need to show, by De�nition 2.2.2,

that for any local x1; : : : ; xn; xn�1; : : : ; xn�m with local associates x11; : : : ; x
1
n,

x1n�1; : : : ; x
1
n�m and any a : s,

fpx1; : : : ; xn; xn�1; : : : ; xn�m; aq

� f 1pa; x11paq; : : : ; x
1
npaq; x

1
n�1paq; : : : ; x

1
n�mpaqq:

This holds since

f 1pa; x11paq; : : : ; x
1
npaq; x

1
n�1paq; : : : ; x

1
n�mpaqq

� x1ipaq
�
x1n�1paq; : : : ; x

1
n�mpaq

�
� xipxn�1; : : : ; xn�m; aq

� fpx1; : : : ; xn; xn�1; : : : ; xn�m; aq:

(ii) Let r� � r�1�: : :�r�m Ñ r�0. We need to show, by De�nition 2.2.2, that
for any local x1; : : : ; xm of appropriate types with local associates x11; : : : ; x

1
m

and any a : s,

pfpy1; : : : ; ynqq
�
x1; : : : ; xm; a

�
� pfpy1; : : : ; ynqq

1
�
a; x11paq; : : : ; x

1
mpaq

�
:

This holds since

pfpy1; : : : ; ynqq
1
�
a; x11paq; : : : ; x

1
mpaq

�
�

�
f 1pa; y11paq; : : : ; y

1
npaq

��
x11paq; : : : ; x

1
mpaq

�
� f 1pa; y11paq; : : : ; y

1
npaq; x

1
1paq; : : : ; x

1
mpaqq

� fpy1; : : : ; yn; x1; : : : ; xm; aq

�
�
fpy1; : : : ; ynq

�
px1; : : : ; xm; aq:

(iii) Suppose that r� � r�1 � : : :� r�m Ñ r�0. We need to show, by De�ni-
tion 2.2.2, that for any local x1; : : : ; xn; xn�1; : : : ; xn�m of appropriate types
with local associates x11; : : : ; x

1
n; x

1
n�1; : : : ; x

1
n�m and any a : s,

fpx1; : : : ; xn; xn�1; : : : ; xn�maq

� f 1pa; x11paq; : : : ; x
1
npaq; x

1
n�1paq; : : : ; x

1
n�mpaqq:

2.3. LOCALITY INDICES OF TYPE r� 39

Using case (ii) of this theorem, this holds since

f 1pa; x11paq; : : : ; x
1
n�mpaqq

� g1pa; x11paq; : : : ; x
1
npaq; h

1pa; x11paq; : : : ; x
1
npaqq; x

1
n�1paq; : : : ; x

1
n�mpaqq

� g1pa; x11paq; : : : ; x
1
npaq;

�
hpx1; : : : ; xnq

�1
paq; x1n�1paq; : : : ; x

1
n�mpaqq

� gpx1; : : : ; xn; hpx1; : : : ; xnq; xn�1; : : : ; xn�m; aq

� fpx1; : : : ; xn; xn�1; : : : ; xn�m; aq:

(iv) Suppose that r� � r�1 � : : : � r�m Ñ r�0. We need to show, by Def-
inition 2.2.2, that for any local x1; : : : ; xn; x; xn�1; : : : ; xn�m of appropriate
types with local associates x11; : : : ; x

1
n; x

1; x1n�1; : : : ; x
1
n�m and any a : s,

gpx1; : : : ; xn; x; xn�1; : : : ; xn�m; aq

� g1pa; x11paq; : : : ; x
1
npaq; x

1paq; x1n�1paq; : : : ; x
1
n�mpaqq

This holds since

g1pa; x11paq; : : : ;x
1
npaq; x

1paq; x1n�1paq; : : : ; x
1
n�mpaqq

�
�
�phqf 1pa; x11paq; : : : ; x

1
npaq; hq

�
px1paq; x1n�1paq; : : : ; x

1
n�mpaqq

� f 1pa; x11paq; : : : ; x
1
npaq; x

1paq; x1n�1paq; : : : ; x
1
n�mpaqq

� fpx1; : : : ; xn; x; xn�1; : : : ; xn�m; aq

� gpx1; : : : ; xn; x; xn�1; : : : ; xn�m; aq: %

The section ends with a simple straightforward corollary of the �-abstraction
case of the theorem.

Corollary 2.2.10. If f : r� is local with local associate f 1 and for xi : r�i,
g � �px1q : : : �pxnqf;

then g is local and the function g1 : s � �1 � : : : � �n Ñ � de�ned for any

a : s by

g1paq � �pz1q : : : �pznqpf
1paqq

is a local associate of it.

2.3 Locality Indices of Type r�

Local objects are only some of the objects that interpret natural language
constants. Like l, there are natural examples of objects that are not local

40 CHAPTER 2. LOCALITY OF TYPED OBJECTS

and they may even exhibit di�erent locality behavior at every one of their
arguments.

The basic characteristic of the approach towards locality that is adopted
here is that there is no assumption of a uniform, local or non local, behavior

of objects or even of the arguments of a single object. As a consequence, there
is a need of a suitable description of this behavior which will be formalized
in a way similar to that of local objects in Section 2.2.

Example 2.3.1. Consider the function former : preÑ rtq �reÑ rt which in-
terprets the constant former. For any objects f1 : re Ñ rt and f2 : re and any
a : s, the function is de�ned by

formerpf1; f2; aq � 1 ðñ f2paq has property f1 at some state b,

prior in time to a

For example, the sentence `John is a former minister' is rendered in L�ar by
the term formerpminister; Johnq. Its denotation at some state a : s depends
on the denotation of minister at other states that indicate a moment of time
in the past with respect to a while in the case of the denotation of John, only
its value at state a is needed.

The type pre Ñ rtq � re Ñ rt of former expresses formally that it expects
a �rst argument of type pre Ñ rtq and a second one of re. We de�ne in what
follows a corresponding formalization for each type, a closed locality index of

type r�, such that, for example, in the case of former, it expresses the fact
that any argument of type pre Ñ rtq is used by former non locally, noted by
the digit 1, while any argument of type re is used locally, noted by 0. The
index for former expresses also how any of its �rst arguments treats its
own arguments of type re | it describes thus totally the locality behavior of
the object.

De�nition 2.3.2. (Closed Locality Index of Type r�) A closed locality

index of type r� is any sequence of the form

` ë t

of two independent parts: a closed locality input index ` of type r� and a
closed locality output index t.

A closed locality output index t is an index constant de�ned by

t :� 0 | 1:

2.3. LOCALITY INDICES OF TYPE r� 41

rt; re lrtÑ rt xl ë 0y; xl ë 1yre�reÑ rt xl ë 0; l ë 0y; xl ë 1; l ë 1y;
xl ë 1; l ë 0y; xl ë 0; l ë 1y

preÑ rtq �reÑ rt xxl ë 0y ë 0; l ë 0y; xxl ë 1y ë 1; l ë 1y
xxl ë 1y ë 0; l ë 0y; xxl ë 0y ë 1; l ë 0y
xxl ë 0y ë 0; l ë 1y; xxl ë 1y ë 1; l ë 0y
xxl ë 1y ë 0; l ë 1y; xxl ë 0y ë 1; l ë 1y

Table 2.1: Examples of closed locality input indices.

A closed locality input index ` of type r� is de�ned by recursion on levelpr�q
as follows:

If r� � r�0, ` :� l, where l is a �xed constant symbol.
If r� � r�1 � : : : � r�n Ñ r�0, a closed locality input index ` of r� is an

expression
` :� x`1 ë t1; : : : ; `n ë tny

where `1; : : : ; `n are closed locality input indices of types r�1; : : : ; r�n respec-
tively and t1; : : : ; tn are index constants.

In Table 2.1, all the possible closed locality input indices of some low
level types are shown.

Notice also that, in general, by our understanding of tuples,

x`1 ë t1; : : : ; `n ë tny ë t � x`1 ë t1; x`2 ë t2; : : : ; `n ë tnyy ë t:

Finally, there are some closed indices of special interest for any type.

De�nition 2.3.3. If all the index constants of a closed locality (input)
index of any type are equal to 1 then it is called standard while if all its
index constants are equal to 0, it is called local .

Now, it is natural to generalize the de�nition of a closed locality index
with the use of binary variables.

De�nition 2.3.4. A locality index of type r� is de�ned as in De�nition 2.3.2
where a locality output index t is now an index token de�ned by

t :� 0 | 1 | b

42 CHAPTER 2. LOCALITY OF TYPED OBJECTS

where b is an index variable.

It follows that if every index variable b occurring anywhere in a locality
index ` of type r� is replaced by 0 or 1, the resulting string is a closed locality
index of the same type. Formally,

De�nition 2.3.5. A substitution is a function

� : tIndex Variablesu Ñ t0; 1u Y tIndex Variablesu:

We simply extend �p`q by replacing all the index variables b that occur in a
locality input index ` by �pbq. An evaluation �1 is analogously a special case
of a substitution such that

�1 : tIndex Variablesu Ñ t0; 1u:

For every type r�, there is locality index with index variables such that
any locality index of that type can be obtained by a substitution of the index
variables that occur in it.

Lemma 2.3.6. (Generic Locality Index) For each type r�, there is a local-
ity (input) index, called generic, such that all its index tokens are variables

and no index variable occurs more than once. Moreover:

(i) Any locality (input) index of type r� can be obtained from it by an

appropriate substitution of its index variables.

(ii) It is unique up to alphabetic variance of the index variables that occur
in it.

(iii) Any other locality (input) index of type r� that has property (i) is an

alphabetic variant of it.

Proof. The proof is by induction on the levelpr�q.
If r� � r�0, then the generic locality index is ` ë b where b is any index

variable.
If r� � r�1 � : : :� r�n Ñ r�0, let `1; : : : ; `n be generic locality input indices

of r�1; : : : ; r�n respectively with distinct index variables. The generic locality
index of r� is

` � x`1 ë b1; : : : ; `n ë bny ë b

where b1; : : : ; bn; b are distinct fresh index variables.
For property (i), it is enough to consider for each particular locality

index x`11 ë t1; : : : ; `
1
n ë tny ë t of r�, a substitution � such that �p`iq � `1i,

�pbiq � ti and �pbq � t pi � 1; : : : ; nq. Since each index variable occurs once,
� is well de�ned.

2.4. ASSOCIATE WITH RESPECT TO AN INPUT INDEX 43

In order to prove property (ii), let `1 � x`11 ë b11; : : : ; `
1
n ë b1ny ë b1

be another generic locality index of type r�. It is straightforward that the
substitution � such that �p`1q � ` is an alphabetic renaming of the index
variables of `.

To prove property (iii), let `1 � x`11 ë t11; : : : ; `
1
n ë t1ny ë t1 be any locality

index of type r� such that property (i) holds. Then, there is a substitution
� such that �p`1q � `. Now, since (i) holds for `, there is a substitution �1

such that �1p`q � `1. Thus, it must be the case that �p�1p`qq � `. So, � is the
inverse of �1 and thus, `1 is an alphabetic variant of `. %

2.4 Associate of an Object with Respect to a Closed

Locality Input Index of Its Type

Suppose that xl ë b1; l ë b2y is the generic locality input index of an object
f : re� reÑ rt. In Table 2.1, it was shown that there are four possible closed
locality input indices for this object. As we have mentioned before, the two
di�erent index constants, 0 and 1, symbolize the local and non local use
respectively of the corresponding argument that each one accompanies.

For example, the object f , considered with respect to the closed locality
input index xl ë 0; l ë 1y, uses its �rst argument with locality input index l

(since it is of level one type) locally and the second one non locally. Each of
the other three possible closed locality input indices of f expresses a di�erent
behavior of f with respect to the way its computation at a particular state
a uses the values of its arguments on other states than a. If f � love, then
the locality input index that we should use to express its locality behavior
as described in Example 2.2.1, is of course xl ë 0; l ë 0y.

Locality input indices are more complex if we consider objects of type of
level greater than two. The generic locality input index of type preÑ rtq Ñ rt
is xxl ë b2y ë b1y and one of its closed instances is, xxl ë 0y ë 1y. This
index indicates that an object of this type uses its �rst (and only) argument
non locally but only when the argument itself uses its own argument locally.
Another closed instance of its generic locality input index is xxl ë 1y ë 1y
which expresses the non local use of the object's �rst argument when, in
contrast, the argument itself uses its own argument non locally.

Locality input indices describe the locality behavior of objects and of
their arguments without assuming any �xed treatment of any kind. All the
di�erent combinations are allowed in an attempt to understand locality as
well as possible. In Section 2.2, we de�ned local objects with the use of local
associates and now, a generalized notion of an associate of an object will be

44 CHAPTER 2. LOCALITY OF TYPED OBJECTS

re l sÑ ere�reÑ rt xl ë 0; l ë 0y sÑ pe� eÑ tq
xl ë 1; l ë 1y sÑ pre�reÑ tq
xl ë 0; l ë 1y sÑ pe�reÑ tq

preÑ rtq �reÑ rt xxl ë 0y ë 0; l ë 0y sÑ ppeÑ tq � eÑ tq
xxl ë 1y ë 1; l ë 1y sÑ ppsÑ preÑ tqq �reÑ tq
xxl ë 0y ë 1; l ë 0y sÑ ppsÑ peÑ tqq � eÑ tq

Table 2.2: Examples of associate types.

de�ned with respect to a closed locality input index of its type. First, we
will need a simple transformation that associates with each state-dependent
type r� and each closed locality input index ` the associate type pr�q`� which
is going to be the type of the value of the corresponding associate at any
state.

De�nition 2.4.1. For each type r� and each closed locality input index ` of
type r�, the associate type pr�q`� is de�ned by recursion on levelpr�q as follows:

pr�0q
l
� :� �0�r�1 � : : :� r�n Ñ r�0

�x`1ët1;:::;`nëtny
�

:� �1 � : : :� �n Ñ �0;

where �i :�

#
pr�iq`i� ; if ti � 0
sÑ pr�iq`i� ; if ti � 1:

In Table 2.2, we present some types and their corresponding types of
the form ps Ñ associate typeq with respect to speci�c closed locality input
indices. Notice that each time if the closed locality input index ` is the local
one, then

pr�q`� � �:

On the other hand, for the standard locality input index of any type, we can
easily prove the following proposition.

Proposition 2.4.2. For any type r�, if ` is its standard closed locality input

index, and

Standpr�q :� sÑ pr�q`�;

2.4. ASSOCIATE WITH RESPECT TO AN INPUT INDEX 45

then

Standpr�0q :� r�0

Standpr�1 � : : :� r�n Ñ r�0q :� s� Standpr�1q � : : :� Standpr�nq Ñ �0:

For example, consider the associate types with respect to the standard
indices that are shown in Table 2.2.

De�nition 2.4.3. (Associate of an Object with respect to a Closed

Input Index of its Type) For each f : r� and any closed locality input
index ` of its type, we de�ne what it means for

f 1 : sÑ pr�q`�
to be an associate of f with respect to ` by recursion on the level of r�.

(i) If f : r�0 and ` � l, then f 1 : sÑ �0 is an associate of f if and only if
f 1 � f .

(ii) If f : r�1 � : : : � r�n Ñ r�0 and ` � x`1 ë t1; : : : ; `n ë tny, then
f 1 : sÑ pr�1 � : : :� r�n Ñ r�0q

`
� is an associate of f w.r.t. ` if and only if for

any fi : r�i and any a : s,

fpf1; : : : ; fn; aq � f 1
�
a; F1; : : : ; Fn

�
;

where, for i � 1; : : : ; n,

Fi :�

#
f 1ipaq; if ti � 0;
f 1i ; if ti � 1

and f 1i : sÑ pr�iq`i� is any associate of fi with respect to `i.
A closed locality input index ` of type r� is a closed locality input index

of an object f : r� if and only if there is an associate of f with respect to `.

Thus, by this de�nition, an object f : r� is local if and only if it has an
associate with respect to the local closed locality input index of r�.

Now, the associates of an object with respect to the same closed locality
input index are related as in the local case.

Proposition 2.4.4. Suppose that f : r�1 � : : : � r�n Ñ r�0 and f1 and f2

are associates of it with respect to ` � x`1 ë t1; : : : ; `n ë tny. Then, for

any objects f1; : : : ; fn such that for i � 1; : : : ; n, f 1i is an associate of fi with

respect to `i and any a : s,

f1pa; F1; : : : ; Fnq � f2pa; F1; : : : ; Fnq;

46 CHAPTER 2. LOCALITY OF TYPED OBJECTS

where

Fi �

#
f 1ipaq; if ti � 0;
f 1i ; if ti � 1:

To check whether an object has an associate with respect to an arbi-
trary closed locality input index of its type, a generalized version of the LC

Lemma 2.2.6 is used.

Lemma 2.4.5. (General Locality Condition - GLC) An object f : r�1 �
: : : � r�n Ñ r�0 has an associate w.r.t. ` � x`1 ë t1; : : : ; `n ë tny if and

only if the following condition holds: For any two n-tuples pf1; : : : ; fnq and
pg1; : : : ; gnq and corresponding associates f 11; : : : ; f

1
n and g11; : : : ; g

1
n such that

for i � 1; : : : ; n, f 1i and g1i are associates of fi and gi with respect to `i,

respectively, and for any a : s, if for i � 1; : : : ; n, either f 1ipaq � g1ipaq
(if ti � 0) or f 1i � g1i (if ti � 1), then fpf1; : : : ; fn; aq � fpg1; : : : ; gn; aq.

Proof. The proof is by induction on the level of the type of f .

(ùñ) Let f : r�1 � : : : � r�n Ñ r�0 have an associate with respect to
` � x`1 ë t1; : : : ; `n ë tny. Suppose that for i � 1; : : : ; n, fi is an object that
has an associate f 1i with respect to `i, then for any a : s

Fi �

#
f 1ipaq; if ti � 0;
f 1i ; if ti � 1:

We de�ne analogously Gi for i � 1; : : : ; n. If f 1 is an associate of f with
respect to `, then, for any a : s and for any tuples of objects of appropriate
types pf1; : : : ; fnq and pg1; : : : ; gnq such that for i � 1; : : : ; n, fi and gi have
associates with respect to `i,

fpf1; : : : ; fn; aq � f 1
�
a; F1; : : : ; Fn

�
� f 1

�
a;G1; : : : ; Gn

�
� fpg1; : : : ; gn; aq:

(ðù) If f : r�1 � : : : � r�n Ñ r�0 and ` � x`1 ë t1; : : : ; `n ë tny, then
consider the function f 1 : sÑ pr�1 � : : :� r�n Ñ r�0q

`
�, de�ned as

f 1pa; b1; : : : ; bnq �

$''''&''''%
fpf1; : : : ; fn; aq; if for i � 1; : : : ; n, there are

f1; : : : ; fn with corresponding

associates such that bi � Fi;

er�0 ; otherwise.

2.4. ASSOCIATE WITH RESPECT TO AN INPUT INDEX 47

The function f 1 is well de�ned since, by hypothesis, even if for some i,
there are two di�erent fi and gi such that bi � Fi and bi � Gi for some a,
then

fpf1; : : : ; fi; : : : ; fn; aq � fpf1; : : : ; gi; : : : ; fn; aq:

Trivially, f 1 is an associate of f with respect to `. %

For the standard locality input index of an object, we do not need to use
GLC Lemma since the following holds.

Proposition 2.4.6. (i) For every f : r�, there is a unique associate of f

w.r.t. the standard locality input index of its type.

(ii) For every f 1 : s Ñ pr�q`� where ` is the standard locality input index

of r�, there is a unique f such that f 1 is an associate of f w.r.t. `.

Proof. The proof is by induction on the levelpr�q.
If r� � r�0, both claims are trivial.
Let r� � r�1 � : : :� r�n Ñ r�0 and ` � x`1 ë 1; : : : ; `n ë 1y be its standard

locality input index. Notice that for i � 1; : : : ; n, `i is the standard locality
input index of type r�i respectively.

Suppose that for i � 1; : : : ; n, both claims hold. That is, for every fi : r�i,
there is a unique associate f 1i with respect to `i and for every f 1i : Standpr�iq
there is a unique fi such that f 1i is the associate of fi w.r.t. `i.

(i) We de�ne f 1 : s � Standpr�1q � : : : Standpr�nq Ñ �0 for appropriate
typed f 11; : : : ; f

1
n by

f 1pa; f 11; : : : ; f
1
nq � fpf1; : : : ; fn; aq

such that for i � 1; : : : ; n, fi is the unique object such that f 1i is the associate
of fi w.r.t. `i.

The function f 1 is clearly an associate of f w.r.t. `.
Suppose now that there is another associate g of f w.r.t. ` and that there

is a n-tuple pf 11; : : : ; f
1
nq such that

f 1pa; f 11; : : : ; f
1
nq � gpa; f 11; : : : ; f

1
nq:

Thus, it must be the case that

gpa; f 11; : : : ; f
1
nq � fpf1; : : : ; fn; aq

such that for i � 1; : : : ; n, fi is the unique object such that f 1i is its associate
w.r.t. `i. Since for each fi there is a unique associate w.r.t. `i and g is an
associate of f w.r.t. `, we have a contradiction.

48 CHAPTER 2. LOCALITY OF TYPED OBJECTS

(ii) We de�ne f : r�1 � : : : � r�n Ñ r�0 for appropriately typed f1; : : : ; fn
and their unique associates f 11; : : : ; f

1
n with respect to `1; : : : ; `n respectively,

by
fpf1; : : : ; fn; aq � f 1

�
a; f 11; : : : ; f

1
n

�
:

f is well de�ned and f 1 is an associate of f with respect to `.
Suppose that there is another object g such that f 1 is an associate of it

with respect to `. Then, for any f1; : : : ; fn and their associates f 11; : : : ; f
1
n

with respect to `1; : : : ; `n respectively

gpf1; : : : ; fn; aq � f 1
�
a; f 11; : : : ; f

1
n

�
� fpf1; : : : ; fn; aq: %

Next, we generalize the notion of preferred associate of an object with
respect to a closed locality input index and we prove that it is unique.

Proposition 2.4.7. If f : r� has an associate with respect to a closed locality

input index ` of its type, then it has a unique associate f `� (called preferred

associate with respect to `) such that:

(i) If f : r�0, then f l� � f .

(ii) If f : r�1 � : : : � r�n Ñ r�0 and ` � x`1 ë t1; : : : ; `n ë tny, then

f `� : s Ñ pr�1 � : : :� r�n Ñ r�0q
`
� is an associate of f with respect to ` such

that for any a : s and any appropriately typed b1; : : : ; bn, if they are such that

for i � 1; : : : ; n, there are no fi : r�i with associates f 1i with respect to `i such

that

bi �

#
f 1ipaq; if ti � 0;
f 1i ; if ti � 1;

then

f `�pa; b1; : : : ; bnq � er�0 :

Proof. If f : r�0, then it holds trivially.
Let f 1 be an associate of f : r�1 � : : :� r�n Ñ r�0 with respect to a closed

locality input index ` � x`1 ë t1; : : : ; `n ë tny. Suppose that for i � 1; : : : ; n,
f 1i is an associate of an object fi : r� with respect to the closed locality input
index `i and Fi is, for any a : s

Fi �

#
f 1ipaq; if ti � 0;
f 1i ; if ti � 1:

We de�ne f `� by

f `�pa; b1; : : : ; bnq �

$'&'%
f 1pa; b1; : : : ; bnq; if, for i � 1; : : : ; n, there are fi such

that bi � Fi;

er�0 ; otherwise:

2.4. ASSOCIATE WITH RESPECT TO AN INPUT INDEX 49

The function f `� is trivially an associate of f with respect to ` since for
appropriately typed f1; : : : ; fn with corresponding associates and any a : s,

fpf1; : : : ; fn; aq � f 1pa; F1; : : : ; Fnq � f `�pa; F1; : : : ; Fnq:

By its de�nition, f `� is also a preferred one.
Now, suppose that g`� is another preferred associate of f with respect to

`. It is either the case that

f `�pa; b1; : : : ; bnq � er�0 � g`�pa; b1; : : : ; bnq;

or,

f `�pa; b1; : : : ; bnq � f 1pa; b1; : : : ; bnq

� fpf1; : : : ; fn; aq � g`�pa; b1; : : : ; bnq: %

Finally, the properties of associates are described in the next theorem
that generalizes Theorem 2.2.9.

Theorem 2.4.8. (i) (Projection) If f : r�1 � : : :� r�n Ñ r�i is such that

fpf1; : : : ; fnq � fi;

and ` � x`1 ë t1; : : : ; `i ë ti; : : : ; `n ë tn; `iy is any closed locality input

index of its type, then f 1 de�ned for any a : s by

f 1pa; z1; : : : ; znq �

#
zi; if ti � 0
zipaq; if ti � 1

is an associate of f with respect to `.

(ii) (Evaluation) If f 1 is an associate of f : r�1 � : : : � r�k Ñ r� w.r.t.

xm1 ë s1; : : : ;mk ë sk; `y and for i � 1; : : : ; k, y1i is an associate of yi : r�i
w.r.t. mi, then the function pfpy1; : : : ; ykqq

1 de�ned for any a : s by

pfpy1; : : : ; ykqq
1paq � f 1pa; Y1; : : : ; Ykq

where

Yi �

#
y1ipaq; if si � 0;
y1i; if si � 1;

is an associate of fpy1; : : : ; ykq w.r.t. `.
(iii) (Composition) Suppose that

fpx1; : : : ; xkq � gpx1; : : : ; xk; hpx1; : : : ; xkqq;

50 CHAPTER 2. LOCALITY OF TYPED OBJECTS

where g : r�1 � : : :� r�k � r� Ñ r� and h : r�1 � : : :� r�k Ñ r� and that g1 is an

associate of g w.r.t. xm1 ë s1; : : : ;mk ë sk; `0 ë t0; `y and h
1 is an associate

of h w.r.t. xm1 ë s1; : : : ;mk ë sk; `0y; assume that for j � 1; : : : ; k, t0 ¤ sj,

and let the function f 1 be de�ned for any a : s by

f 1pa; z1; : : : ; zkq � g1pa; z1; : : : ; zk; Hpz1; : : : ; zkqq;

where

Hpz1; : : : ; zkq �

#
h1pa; z1; : : : ; zkq; if t0 � 0�
b ÞÑ h1pb; z1; : : : ; zkq

�
; if t0 � 1:

Then, f 1 is an associate of f with respect to xm1 ë s1; : : : ;mk ë sk; `y.

(iv) (�-abstraction) If f 1 is an associate of f : r�1 � : : : � r�n � r� Ñ r�
with respect to xm1 ë s1; : : : ;mn ë sn;m ë s; `y and

gpx1; : : : ; xnq � �pxqfpx1; : : : ; xn; xq;

then the function g1 de�ned by

g1pa; z1; : : : ; znq � �pzqf 1pa; z1; : : : ; zn; zq

is an associate of g with respect to xm1 ë s1; : : : ;mn ë sn;m ë s; `y.

Proof. (i) Notice that for j � 1; : : : ; n, if tj � 0, then zj : pr�jq`j� while if

tj � 1, zj : sÑ pr�jq`j� . Now, let `i � x`n�1 ë tn�1; : : : ; `n�k ë tn�ky.

Suppose that x1; : : : ; xi; : : : ; xn, xn�1; : : : ; xn�k are objects of appropriate
types and x11; : : : ; x

1
n�k are associates of them with respect to `1; : : : ; `n�k,

respectively. Suppose that for j � 1; : : : ; n� k,

Xj �

#
x1jpaq; if tj � 0
x1j ; if tj � 1

We need to show that

fpx1; : : : ; xn�k; aq � f 1pa;X1; : : : ; Xn�kq:

If ti � 0, then this holds since

f 1pa;X1; : : : ; x
1
ipaq; : : : ; Xn; Xx�1; : : : ; Xn�kq � x1ipaq

�
Xn�1; : : : ; Xn�k

�
� xipxn�1; : : : ; xn�k; aq

� fpx1; : : : ; xi; : : : ; xn�kq:

2.4. ASSOCIATE WITH RESPECT TO AN INPUT INDEX 51

If ti � 1, similarly,

f 1pa;X1; : : : ; x
1
i; : : : ; Xn; Xx�1; : : : ; Xn�kq � x1ipaq

�
Xn�1; : : : ; Xn�k

�
� xipxn�1; : : : ; xn�k; aq

� fpx1; : : : ; xi; : : : ; xn�kq:

(ii) Let r� � r�1 � : : :� r�n Ñ r�0 and ` � x`1 ë t1; : : : ; `n ë tny.

For any objects x1; : : : ; xn of appropriate types with associates x11; : : : ; x
1
n

with respect to `1; : : : ; `n respectively, and any a : s, if, for any i � 1; : : : ; n,

Xi �

#
x1ipaq; if ti � 0;
x1i; if ti � 1;

then,

pfpy1; : : : ; ykqqpx1; : : : ; xn; aq � fpy1; : : : ; yk; x1; : : : ; xn; aq

� f 1pa; Y1; : : : ; Yk; X1; : : : ; Xnq

� pfpy1; : : : ; ykqq
1pa;X1; : : : ; Xnq:

By De�nition 2.4.3, pfpy1; : : : ; ykqq
1 is an associate of fpy1; : : : ; ykq with re-

spect to `.

(iii) Notice that for j � 1; : : : ; k, if sj � 0, then zj : pr�jqmj

� while if
sj � 1, zj : sÑ pr�jqmj

� .

Now, let r� � r�1 � : : :� r�n Ñ r�0 and ` � x`1 ë t1; : : : ; `n ë tny.

Let also h1; : : : ; hk; x1; : : : ; xn be any objects of appropriate types with
associates h11; : : : ; h

1
k; x

1
1; : : : ; x

1
n with respect tom1; : : : ;mk; `1; : : : ; `n respec-

tively and let for i � 1; : : : ; n and j � 1; : : : ; k

Xi �

#
x1ipaq; if ti � 0;
x1i; if ti � 1

and Hj �

#
h1jpaq; if sj � 0;
h1j ; if sj � 1:

If t0 � 0, then, for any a : s, using case (ii),

f 1pa;H1; : : : ; Hk; X1; : : : ; Xnq � g1pa;HpH1; : : : ; Hkq; X1; : : : ; Xnq

� g1pa; h1pa;H1; : : : ; Hkq; X1; : : : ; Xnq

� g1pa; phph1; : : : ; hkqq
1paq; X1; : : : ; Xnq

� gph1; : : : ; hk; phph1; : : : ; hkqq; x1; : : : ; xn; aq

� fph1; : : : ; hk; x1; : : : ; xn; aq:

52 CHAPTER 2. LOCALITY OF TYPED OBJECTS

If t0 � 1, then for j � 1; : : : ; k, sj � 1, and using again case (ii),

f 1pa; h11; : : : ; h
1
k;X1; : : : ; Xnq

� g1pa; h11; : : : ; h
1
k; b ÞÑ h1pb; h11; : : : ; h

1
kq; X1; : : : ; Xnq

� g1pa; h11; : : : ; h
1
k; b ÞÑ phph1; : : : ; hkqq

1pbq; X1; : : : ; Xnq

� g1pa; h11; : : : ; h
1
k; phph1; : : : ; hkqq

1; X1; : : : ; Xnq

� gph1; : : : ; hk; hph1; : : : ; hkq; x1; : : : ; xn; aq

� fph1; : : : ; hk; ; x1; : : : ; xn; aq:

In both cases, by De�nition 2.4.3, f 1 is an associate of f with respect to
xm1 ë s1; : : : ;mk ë sk; `y.

Notice that the restriction t0 ¤ sj is necessary in order to de�ne f 1 in
the case where t0 � 1. Intuitively, f 1 is de�ned at a by the composition of g1

and h1 and if t0 � 1, it needs to compute the associate phpz1; : : : ; zkqq
1 and

not just its value at a. Thus, for each zj , it needs its associate and not just
the value of its associate at a.

(iv) Notice that for j � 1; : : : ; n, if sj � 0, then zj : pr�jqmj

� while if
sj � 1, zj : s Ñ pr�jqmj

� , and if s � 0, then z : pr�qm� while if s � 1, then
z : sÑ pr�qm� .

Let r� � r�1 � : : :� r�k Ñ r�0 and ` � x`1 ë t1; : : : ; `k ë tky.
Now for any y1; : : : ; yn; h0; h1; : : : ; hk of appropriate types with associates

y11; : : : ; y
1
n; h

1
0; h

1
1; : : : ; h

1
k with respect tom1; : : : ;mn; `1; : : : ; `k respectively, if

j � 1; : : : ; n and i � 0; : : : ; k,

Yj �

#
y1jpaq; if sj � 0;
y1j ; if sj � 1;

Hi �

#
h1ipaq; if ti � 0;
h1i; if ti � 1;

gpa; Y1; : : : ; Yn; H0; H1; : : : ; Hkq �
�
�pzqf 1pa; Y1; : : : ; Yn; zq

�
pH0; H1; : : : ; Hkq

� f 1pa; Y1; : : : ; Yn; H0; H1; : : : ; Hkq

� fpy1; : : : ; yn; h0; h1; : : : ; hk; aq

� gpy1; : : : ; yn; h0; h1; : : : ; hk; aq:

Thus, g1 is an associate of g w.r.t. xm1 ë s1; : : : ;mn ë sn;m ë s; `y. %

The following corollary generalizes Corollary 2.2.10.

Corollary 2.4.9. If f 1 is an associate of f : r� with respect to m and for

xi : r�i,
g � �px1q : : : �pxnqf;

2.4. ASSOCIATE WITH RESPECT TO AN INPUT INDEX 53

and ` � x`1 ë t1; : : : ; `n ë tn;my is a closed locality input index of its type,

then the function g1 de�ned for any a : s by

g1paq � �pz1q : : : �pznqpf
1paqq

is an associate of g with respect to `.

54 CHAPTER 2. LOCALITY OF TYPED OBJECTS

Chapter 3

Locality of Terms

In Chapter 2, we described formally the locality behavior of typed objects.
In this chapter, we will use these notions to study the locality character of
L�ar terms.

In Section 3.1, we de�ne local terms and their relation to local objects.
For general terms, the de�nition of an associate of the denotation of a term
A : r� with respect to a closed locality input index is not straightforward since
one has to keep track of the locality dependencies between the subterms of
A. In Section 3.2, this is made precise with the use of closed locality proofs

which are suitably labeled term formation trees.

In Section 3.3, we formulate and prove the main technical result of the
thesis, the existence of a most local closed locality proof of a term A which
represents the \most local" possible locality behavior of A. We will use this
result in Chapter 5 to de�ne the factual content of a term A at any state.

3.1 Local Terms

The denotational semantics of L�ar associate an object denpAq P T
r� with

every closed term A : r�. Would it be enough to characterize local terms as
those terms whose denotation is a local object? Although tempting, the idea
is not correct | all terms of type rt that render natural language sentences
would be local under this \de�nition". Any account of locality of terms
which cannot discriminate between runpJohnq : rt and lprunpJohnqq : rt misses
something crucial and cannot be used in any useful way.

At the core of the terms of L�arpKq that render natural language expres-
sions are the constants in the set K. The locality behaviors of constants are
given by their interpretation and in turn, they characterize the behavior of

55

56 CHAPTER 3. LOCALITY OF TERMS

the terms in which they occur. This is expressed in the following de�nition
and it is justi�ed by the lemma that follows it.

De�nition 3.1.1. (Local Term) A term A is local if the denotation of any
constant that occurs in it is a local object.

By this de�nition, runpJohnq is a local term while lprunpJohnqq and
formerpminister; Johnq are not. On the other hand, a term with no constants
is always local | a case that is of little interest for our consideration here.

Proposition 3.1.2. If a term A : r� is local and its free variables are in the

list x1 : r�1; : : : ; xn : r�n, then the function

fAph1; : : : ; hnq � denpAqpgtx1 :� h1; : : : ; xn :� hnuq

is a local object.

Proof. The proof is by induction on the formation rules of the terms of L�ar
and it uses the properties of local objects in Theorem 2.2.9.

(1) A � c. Then,

fcph1; : : : ; hnq � denpcqpgtx1 :� h1; : : : ; xn :� hnuq � c:

Since c is local, by Corollary 2.2.10, fc is also local.
(2) A � x : r�, where x is a pure or recursive variable. If x � xi, then

fxph1; : : : ; hnq � denpxqpgtx1 :� h1; : : : ; xi :� hi; : : : ; xn :� hnuq � hi:

By Theorem 2.2.9, projection functions are local, and thus fx is local.
(3) A � BpCq. Suppose that the free variables of both of B and C are in

the common list x1; : : : ; xn. By induction hypothesis, the proposition holds
for B and C, that is, fB and fC are local, and

fBpCqph1; : : : ; hnq � fB
�
h1; : : : ; hn; fCph1; : : : ; hnq

�
:

By the composition case in Theorem 2.2.9, fBpCq is local.
(4) A � �pvqpBq. Suppose that the free variables of B are in the list

x1; : : : ; xn; v. By induction hypothesis, fB is local, and

f�pvqpBqph1; : : : ; hnq � den
�
�pvqpBq

�
pgtx1 :� h1; : : : ; xn :� hnuq

�
�
h ÞÑ denpBqpgtx1 :� h1; : : : ; xi :� hi; : : : ; xn :� hn; v :� huq

	
:

By the �-abstraction case in Theorem 2.2.9, f�pvqB is local.

3.2. CLOSED LOCALITY PROOFS 57

(5) A � A0 where tp1 :� A1; : : : ; pn :� Anu. Suppose that the free
variables of all Ai are in the common list of x1; : : : ; xm and p1; : : : ; pn.
By induction hypothesis, the proposition holds for A0, A1; : : : ; An, that is,
fA0 ; fA1 ; : : : ; fAn are local. For any appropriately typed objects h1; : : : ; hm

fAph1; : : : ; hmq

� denpA0qpgtx1 :� h1; : : : ; xm :� hm; p1 :� P1; : : : ; pn :� Pnuq

� fA0ph1; : : : ; hm; P1; : : : ; Pnq;

where each Pi is de�ned by recursion on rankppiq as in Section 1.5.1.
By a generalized version of the composition case in Theorem 2.2.9, fA

is local if the objects P1; : : : ; Pn as functions over h1; : : : ; hm are local. The
proof that each Pi is local is by induction on the rank of pi.

(i) rankppiq � 0. Then, for any h1; : : : ; hm of appropriate types

Piph1; : : : ; hmq � fAi
ph1; : : : ; hmq

which is local by induction hypothesis of the proposition.
(ii) rankppiq � k ¥ 1. By induction hypothesis, all Pj1 ; : : : ; Pjr where the

ranks of all pj1 ; : : : ; pjr are lower than k, are local. Then, for any h1; : : : ; hm
of appropriate types

Piph1; : : : ; hmq � fAi
ph1; : : : ; hm; Pj1 ; : : : ; Pjrq;

and thus, Pi is again local by the composition case of Theorem 2.2.9. %

3.2 Closed Locality Proofs

In the case of general terms, we will explore in this section how the associate
of the denotation of a term A with respect to a closed locality input index `
of its type depends on the associates of its subterms. We have to understand
the locality dependencies of the locality indices that respect and follow the
L�ar-term formation rules.

Example 3.2.1. For example, consider the closed term formerppresidentq :reÑ rt and the closed locality input index ` � xl ë 0y of its type. If `1 � xxl ë
t1y ë 1; `y and `2 � xl ë t3y are closed locality input indices of former and
president, respectively, then, if we consider their corresponding preferred
associates, by the evaluation case in Theorem 2.4.8, for any a : s�

formerppresidentq
�`
�
paq � pformerq`1�

�
a; ppresidentq`2�

�
:

58 CHAPTER 3. LOCALITY OF TERMS

So, it must be the case that t1 � t3 and the locality output index of president
must be equal to 1. The restriction is quite natural since xl ë t1y is the part
of `1 which describes the way the �rst argument of former treats its own
argument and thus it should coincide with `2.

Such restrictions imitate in a way type restrictions applied in the forma-
tion rules of the terms of L�ar. We will use formation trees of terms suitably
labeled as tools for coding these restrictions in a way close to our intuitions
about them.

For any term A and its formation tree, we describe in what follows a
decoration of it (closed locality proof of A) such that each subterm is labeled
by a closed locality input index of its type. In the case of a constant c : r�
that occurs in a term A, we are only interested in the closed locality input
indices of its type such that its denotation c has an associate with respect
to them. We call them the closed locality input indices of a constant c.

De�nition 3.2.2. (Closed Locality Proof of a Term) A closed locality

proof (ΠA) of a term A is an annotated version of its formation tree such
that each node is decorated by a label of the form

A1 : ` ë t

where A1 is a term, ` is a closed locality input index of type(A1) and t is an
index constant. We say that A1 is indexed by ` ë t in ΠA.

A closed locality proof of a term A is de�ned by applying the following
rules:

(LP-CON) If A � c, ` is a closed locality input index of c and t is any index
constant, then

Πc :� c : ` ë t

is a closed locality proof of c.

(LP-VAR) If A � x where x is a pure or recursive variable, ` is a closed
locality input index of type(x) and t is any index constant, then

Πx :� x : ` ë t

is a closed locality proof of x.

(LP-APP) If A � BpCq, ΠB and ΠC are locality proofs of B and C respec-
tively and t1 is an index constant, then

3.2. CLOSED LOCALITY PROOFS 59

ΠB

...
B : x`1 ë t1; `2y ë t

ΠC

...
C : `1 ë t1ΠBpCq :�

BpCq : `2 ë t1

is a closed locality proof of BpCq provided that

1. Every pure or recursive variable that occurs free in both B and C is
indexed by the same closed locality index in both ΠB and ΠC .

2. If a pure or recursive variable x that occurs free in BpCq is indexed by
`x ë tx in ΠBpCq , then t1 ¤ tx.

(LP-�-INTRO) If A � �pvqpBq, ΠB is a locality proof of B, `0 ë t0 is a
closed locality index of the type of v and t1 is an index constant, then

ΠB

...
B : ` ë tΠ�pvqpBq :�

�pvqpBq : x`0 ë t0; `y ë t1

is a closed locality proof of �pvqpBq provided that

1. If v occurs free in B, then it is indexed in ΠB by `0 ë t0.

2. If a pure or recursive variable x that occurs free in �pvqpBq is indexed
by `x ë tx in Π�pvqpBq , then t1 ¤ tx.

(LP-REC) If A � A0 where tp1 :� A1; : : : ; pn :� Anu, ΠA0 , ΠA1 ; : : : ;ΠAn

are locality proofs of A0; A1; : : : ; An respectively, then

ΠA0

...
A0 : `0 ë t

ΠA1

...
A1 : `1 ë t1 : : :

ΠAn

...
An : `n ë tnΠA :�

A0 where tp1 :� A1; : : : ; pn :� Anu : `0 ë t

is a closed locality proof of A0 where tp1 :� A1; : : : ; pn :� Anu provided that

1. Every pure or recursive variable that occurs free in more than one of
the parts A0; : : : ; An is indexed by the same closed locality index in all
its occurrences in the corresponding locality proofs.

60 CHAPTER 3. LOCALITY OF TERMS

and : xl ë 0; l ë 0y ë 0
c1 : xl ë 1y ë 0 x : l ë 1

c1pxq : l ë 0
andpc1pxqq : xl ë 0y ë 0

c2 : xl ë 1y ë 0 x : l ë 1
c2pxq : l ë 0

andpc1pxq; c2pxqq : l ë 0
�pxqandpc1pxq; c2pxqq : xl ë 1y ë 0

Figure 3.1: A closed locality proof of �pxqandpc1pxq; c2pxqq.

2. For each i � 1; : : : ; n, pi is indexed by `i ë ti in any ΠAj
in which it

occurs free.

3. If a pure or recursive variable x that occurs free in A is indexed by
`x ë tx in ΠA, then t ¤ tx.

If ΠA is a closed locality proof of A, then the node labeled by A : ` ë t

is the root of the proof and A : ` ë t is its root label. If A1 : `1 ë t1 is the
label of a node in ΠA, the closed locality proof with root label A1 : `1 ë t1 is
the subproof of A1 de�ned by ΠA (Notation: ΠA1

A).
It is useful to make some remarks and give some examples of locality

proofs in order to elucidate the de�nition and motivate the constraints that
are imposed by it.

First, unlike all the other rules where the output index of the root label
is arbitrary, in the (LP-REC) rule, the output index of the recursive term
is equal to the output index of its head. Now, the output index of a term
codi�es the local or non local way that it will be used. Suppose that the
output index of a recursive term is equal to 1 while the output index of its
head is equal to 0. Then, although the computation of the denotation of a
recursive term is de�ned by the computation of the denotation of its head,
the second is used locally while the �rst is used non locally.

Second, by a simple inspection on the rules and especially, the constraints
imposed by (LP-APP) and (LP-REC) according to which any free occurrence
of a variable in the corresponding subproofs is indexed by the same closed
locality index, it follows that:

Proposition 3.2.3. In a closed locality proof of A, all the free occurrences

of a pure or recursive variable x are indexed by the same closed locality index.

Example 3.2.4. Let A � �pxqandpc1pxq; c2pxqq be a term where and : rt�rtÑrt and both c1 and c2 are constants of type re Ñ rt. Suppose that c1 has only

3.2. CLOSED LOCALITY PROOFS 61

love : xl ë 0; l ë 0y ë 0 p : l ë 0
loveppq : xl ë 0y ë 0 p : l ë 0

lovepp; pq : l ë 0 John : l ë 0
lovepp; pq where tp :� Johnu : l ë 0

Figure 3.2: A closed locality proof of lovepp; pq where tp :� Johnu.

one closed locality input index, xl ë 1y, while c2 has both xl ë 0y and xl ë 1y
and that the constant and is local. In Figure 3.1, a closed locality proof of A
is shown that respects the given closed locality input indices of the constants.

Notice that since c1 is indexed by xl ë 1y, all the free occurrences of x in
the subterm andpc1pxq; c2pxqq must be indexed by l ë 1 and thus, we must
also use the input index xl ë 1y for c2. But why x must be indexed by the
same index in both its occurrences? The answer is quite simple | if x is a
pure variable, in order to apply the (LP-�-INTRO) in a term A in which x

occurs, there must be a unique index for it in all its occurrences in A. This
index determines the index of the �rst argument of the new term �pxqpAq
and it surely depends on how x itself behaves in terms of locality within A.

Suppose now that p is a recursive variable. Then, analogously, p must
be indexed by the same index in order to apply the (LP-REC) rule which
bounds its occurrences.

Example 3.2.5. Consider the term lovepp; pq where tp :� Johnu and its
closed locality proof that is shown in Figure 3.2. By the corresponding
constraint of the (LP-REC) rule, the part of the recursive term John must
be indexed by the same closed locality index as p since in the recursive term
we have the assignment p :� John. Thus, by the time that we are to apply the
(LP-REC) rule, p must be indexed by the same index in all its occurrences
| in this example, by l ë 0.

Unlike variables and their indices that are described in Proposition 3.2.3,
if a constant c occurs in two di�erent places in a term A, then it may be
indexed by two di�erent closed locality input indices of its type as long as
they are both such that its denotation c has an associate with respect to
them.

Example 3.2.6. An example is shown in Figure 3.3 of a term that, using co-
ordination as it is presented in [22], renders the sentence `The temperature

62 CHAPTER 3. LOCALITY OF TERMS

and : xl ë 0; l ë 0y ë 0
x : xl ë 1y ë 0

the : xxl ë 0y ë 1y ë 0 temp : xl ë 0y ë 1
theptempq : l ë 1

xptheptempqq : l ë 0
andpxptheptempqqq : xl ë 0y ë 0

x : xl ë 1y ë 0
the : xxl ë 0y ë 0y ë 0 humid : xl ë 0y ë 0

thephumidq : l ë 1
xpthephumidqq : l ë 0

andpxptheptempqq; xpthephumidqqq : l ë 0
�pxqandpxptheptempqq; xpthephumidqqq : xxl ë 1y ë 0y ë 0 rise : xl ë 1y ë 0

�pxq
�
andpxptheptempqq; xpthephumidqqq

�
priseq : l ë 0

Figure 3.3: A closed locality proof of the term
�pxq

�
andpxptheptempqq; xpthephumidqqq

�
priseq.

and the humidity are rising'1. In this proof, the constant the is indexed by
two di�erent locality input indices.

Now, notice that in all the three rules, (LP-APP), (LP-�-INTRO) and
(LP-REC), there is a common constraint:

Proposition 3.2.7. All the free occurrences of any pure or recursive variable

x in a closed locality proof of A with root label A : ` ë 1 have locality output

index 1.

Proof. It follows directly by a simple inspection on the rules. %

We explain the importance of this constraint in the case of (LP-APP)
rule in the following example.

Example 3.2.8. Consider the closed locality subproof of the term risepthepxqq
shown in Figure 3.4. Since rise uses its �rst argument non locally, the only
closed locality input index of the constant rise is xl ë 1y. The application
of (LP-APP) rule in (�) forces the locality output index of thepxq to be 1.
Now, x occurs free in the subproof of thepxq and by the constraint of the
(LP-APP) rule, its locality output index must also be equal to 1.

The idea is simple | x is within the scope of a non local subterm of
A (in this case rise) and this means that x itself cannot be marked as used
locally. If we are to quantify over it by applying the �-abstractor, the new
term must use its �rst argument non locally. Thus, the term �pxqrisepthepxqq
has locality input index xxl ë 0y ë 1y.

1We assume that the constant temp : re Ñ rt renders the word `temperature' and the
constant humid : reÑ rt `humidity'.

3.2. CLOSED LOCALITY PROOFS 63

rise : xl ë 1y ë 0
the : xxl ë 0y ë 1y ë 0 x : xl ë 0y ë 1

thepxq : l ë 1
(�)

risepthepxqq : l ë 0
�pxqrisepthepxqq : xxl ë 0y ë 1y ë 0

Figure 3.4: A closed locality proof of �pxqrisepthepxqq.

The full technical role of the constraints imposed by all the rules will
be clari�ed further in Chapter 4 where closed locality proofs will be used in
order to de�ne formally the associates of the denotation of a term A.

Suppose now ΠA is a closed locality proof of a term A with root label
A : ` ë t. The question that follows is simple: is there an associate of
the denotation function of A with respect to `? By the de�nition of a closed
locality proof of a term A, if a constant c occurs in A, it is labeled in any proof
of A by an input index with respect to which its denotation has an associate.
Similarly thus to the case of the local terms, the answer is positive and this
is proved in the following theorem which generalizes Proposition 3.1.2.

Theorem 3.2.9. (Associate of the Denotation of a Term with respect

to a Closed Locality Proof) Let ΠA be a closed locality proof of a term

A with root label

A : ` ë t:

If the free variables of A are in the list x1 : r�1; : : : ; xn : r�n and for i � 1; : : : ; n,
xi is indexed in ΠA by `i ë ti, then the function f de�ned by

fph1; : : : ; hnq � denpAqpgtx1 :� h1; : : : ; xn :� hnuq

has an associate with respect to the closed locality input index

x`1 ë t1; : : : ; `n ë tn; `y:

Proof. The proof is by induction on A and it uses the properties of associates
shown in Theorem 2.4.8.

(1) A � c. Then, if Πc � c : ` ë t,

fcph1; : : : ; hnq � denpcqpgtx1 :� h1; : : : ; xn :� hnuq � c

and by hypothesis and Corollary 2.4.9, it has an associate with respect to
x`1 ë t1; : : : ; `n ë tn; `y where for i � 1; : : : ; n, `i is a closed locality input
index of type(xi).

64 CHAPTER 3. LOCALITY OF TERMS

(2) A � x : r� where x is a pure or recursive variable and for some i,
xi � x. Suppose Πx � x : ` ë t, and

fxph1; : : : ; hnq � denpxqpgtx1 :� h1; : : : ; xi :� hi; : : : ; xn :� hnuq � hi:

By case (i) of Theorem 2.4.8, if, for i � 1; : : : ; n, `i is a closed locality
input index of type(xi), fx has an associate w.r.t. x`1 ë t1; : : : ; `n ë tn; `iy.

(3) A � BpCq. Suppose that both B and C have free variables in the
common list x1; : : : ; xn. Let ΠBpCq be a closed locality proof of BpCq with
root label BpCq : ` ë t1 and suppose that for i � 1; : : : ; n, each xi is indexed
in it by `i ë ti.

ΠB

...
B : x`0 ë t0; `y ë t

ΠC

...
C : `0 ë t0ΠBpCq :

BpCq : ` ë t1

By induction hypothesis, x`1 ë t1; : : : ; `n ë tn; `0 ë t0; `y is a closed
locality input index of fB, x`1 ë t1; : : : ; `n ë tn; `0y is an index of fC , and

fBpCqph1; : : : ; hnq � fBph1; : : : ; hn; fCph1; : : : ; hnqq:

By Proposition 3.2.7, the hypothesis of the composition case in Theorem 2.4.8
are all met and thus, it follows that fBpCq has an associate with respect to
x`1 ë t1; : : : ; `n ë tn; `y.

(4) A � �pvqpBq. Let Π�pvqpBq be a closed locality proof of �pvqpBq and
suppose that for i � 1; : : : ; n, each xi is indexed in it by `i ë ti and if v
occurs free in ΠB, then it is indexed by `0 ë t0.

ΠB

...
B : ` ë tΠ�pvqpBq :�

�pvqpBq : x`0 ë t0; `y ë t1

By induction hypothesis, x`1 ë t1; : : : ; `n ë tn; `0 ë t0; `y is a closed locality
input index of fB, and

f�pvqpBqph1; : : : ; hnq � denp�pvqpBqqpgtx1 :� h1; : : : ; xn :� hnuq

�
�
h ÞÑ fBph1; : : : ; hn; hq

�
:

Thus, by �-abstraction case in Theorem 2.4.8, f�pvqpBq has an associate with
respect to x`1 ë t1; : : : ; `n ë tn; `0 ë t0; `y.

3.2. CLOSED LOCALITY PROOFS 65

(5) A � A0 where tp1 :� A1; : : : ; pn :� Anu. Suppose that the free
variables of all Ai are in list x1; : : : ; xm; p1; : : : ; pn and let i; k range over
1; : : : ; n and j over 1; : : : ;m. Let ΠA be a closed locality proof of A.

ΠA0

...
A0 : `0 ë t

ΠA1

...
A1 : `1 ë t1 : : :

ΠAn

...
An : `n ë tnΠA :�

A0 where tp1 :� A1; : : : ; pn :� Anu : `0 ë t

For any appropriately typed h1; : : : ; hm

fAph1; : : : ; hmq � fA0ph1; : : : ; hm; P1; : : : ; Pnq

where each Pi is de�ned by recursion on rankppiq as a function h1; : : : ; hm
as in Section 1.5.1.

If each xj is indexed by `xj ë txj , then by induction hypothesis, fA0 has
an associate with respect to x`xj ë txj ; `i ë ti; `0y. By a generalized version
of the composition case in Theorem 2.4.8, it is enough to show that each Pi
has an associate with respect to x`xj ë txj ; `k ë tk; `iy where rankppkq
rankppiq. The proof is by induction on the rankppiq.

(i) rankppiq � 0. It follows directly by the induction hypothesis of this
theorem.

(ii) rankppiq ¥ 1. Suppose that pr1 ; : : : ; prk have rank lower than rankppiq.
Then, by induction hypothesis, Pr1 ; : : : ; Prk are such that they have asso-
ciates with the appropriate locality indices. Then, for any h1; : : : ; hm

Piph1; : : : ; hmq � fAi
ph1; : : : ; hm; Pr1 ; : : : ; Prkq:

Since fAi
has an associate w.r.t. x`xj ë txj ; `r1 ë tr1 ; : : : ; `rk ë trk ; `iy, again

by the composition case of Theorem 2.4.8 and by induction hypothesis for
Pr1 ; : : : ; Prk , Pi has an associate with respect to x`xj ë txj ; `iy.

Notice that Proposition 3.2.7 again guarantees that we can indeed apply
the composition case of Theorem 2.4.8 in all cases. %

By this theorem, given closed locality input indices `c for every constant
c that occurs in a term A, if we can construct a closed locality proof of A
such that the constants are indexed by the given indices, then the denotation
function of A has an associate with respect to the closed locality input index
of the root label. In other words, the theorem describes a criterion based
on which the locality behavior of a term A is determined by the locality
behavior of the constants that occur in it.

66 CHAPTER 3. LOCALITY OF TERMS

former : xxl ë 0y ë 1; l ë 0y ë 0 minister : xl ë 0y ë 1
formerpministerq : xl ë 0y ë 0 John : l ë 0

formerpminister; Johnq : l ë 0

Figure 3.5: A closed locality proof of formerpminister; Johnq.

Example 3.2.10. Consider the term A � formerpminister; Johnq : rt. The
fact that there is an associate with respect to l does not give any information
about the locality behavior of the term. Suppose now that the constants of
the term are indexed as follows: former : xxl ë 0y ë 1; l ë 0y, minister : xl ë
0y and John : l. In Figure 3.5, it is shown that there is a closed locality proof
of A with respect to them.

Furthermore, by Theorem 2.4.8, we know exactly how an associate of the
object den

�
formerpminister; Johnq

�
pgq is computed with respect to the asso-

ciates of the denotations of its subterms. If we consider the corresponding
preferred associates, for any assignment g and any a : s,

�
den

�
formerpminister; Johnqpgq

�l
�
paq

� former
xxlë0yë1;lë0y
�

�
a;minister

xlë0y
� ; John`�paq

�
:

Finally, we end this section by a direct consequence of the de�nition of
the closed locality proof and Proposition 2.4.6.

Corollary 3.2.11. For any term A, there is a closed locality proof (called

standard) such that all the subterms are indexed by the standard locality index

of their type.

3.3 The Most Local Closed Locality Proof of a Term

For each term A there may be many closed locality proofs that may di�er
on one or some of the indices that label their nodes.

Example 3.3.1. Consider again the term formerpminister; Johnq (Exam-
ple 3.2.10) and its closed locality proof shown in Figure 3.5. This proof
is not unique | an alternative closed locality proof of this term is shown in
Figure 3.6. Both the constants former and minister are indexed in this proof
with di�erent locality input indices than those in the proof in Figure 3.5.

3.3. THE MOST LOCAL LOCALITY PROOF 67

former : xxl ë 1y ë 1; l ë 0y ë 0 minister : xl ë 1y ë 1
formerpministerq : xl ë 0y ë 0 John : l ë 0

formerpminister; Johnq : l ë 0

Figure 3.6: An alternative closed locality proof of formerpminister; Johnq.

Although the locality input index of the root label is still the same, the com-
putation of the associate of the denotation of the term with respect to the
associates of the subterms is di�erent.

Finally, notice that even given particular closed locality input indices of
the constants that occur in a term A, if there is a proof of A with respect to
them, it may be the case that there are more than one.

Now, it is natural to ask if we can compare two arbitrary closed locality
proofs of a term A and whether there is a way to express all the closed locality
proofs of a term A by some appropriate labeling of its formation tree. The
answer to the �rst question is the de�nition of a partial order between closed
locality proofs of a term. It is based on the natural ordering between the
two index constants 0 and 1, namely 0 1, and the corresponding partial
order between two locality indices of the same type de�ned as follows.

De�nition 3.3.2. For any two closed locality indices ` and `1 of the same
type r�, ` is less than or equal to `1 (` ¤ `1) (or ` is more local than `1) if:

(i) If r� � r�0, l ë t ¤ l ë t1 if and only if t ¤ t1.

(ii) If r� � r�1 � : : :� r�n Ñ r�0,

x`1 ë t1; `2y ë t ¤ x`11 ë t11; `
1
2y ë t1

if and only if `1 ë t1 ¤ `11 ë t11, `2 ¤ `12 and t ¤ t1.

For example, if r� � re�reÑ rt, `1 � xl ë 0; l ë 0y and `2 � xl ë 1; l ë 0y,
then `1 ¤ `2. The idea is that for any object f of type r�, if f is indexed
by `1 then the locality behavior that it expresses is \more local" than that
expressed by `2. The function f under `1 treats more arguments locally (or
in other cases, its arguments treat their own arguments more locally etc.)
than the same function does under `2.

Notice that the ordering de�ned above between locality indices of the
same type is partial | if, for example, `1 � xl ë 0; l ë 1y and `2 � xl ë
1; l ë 0y, then neither `1 ¤ `2 nor `2 ¤ `1.

68 CHAPTER 3. LOCALITY OF TERMS

y : xl ë 0; l ë 1y ë 0
the : xxl ë 0y ë 0y ë 0 x : xl ë 0y ë 0

thepxq : l ë 0
ypthepxqq : xl ë 1y ë 0

y : xl ë 1; l ë 0y ë 0
the : xxl ë 0y ë 0y ë 1 x : xl ë 0y ë 0

thepxq : l ë 1
ypthepxqq : xl ë 0y ë 0

Figure 3.7: Two closed locality proofs of ypthepxqq.

The partial order between indices is generalized to a partial order between
two closed locality proofs Π1 and Π2 of a term A: Π1 ¤ Π2 if and only if at
each node, if a node of Π1 is A1 : `1 ë t1 and at Π2, the corresponding node
is A1 : `2 ë t2, then `1 ë t1 ¤ `2 ë t2. The formal de�nition is by recursion:

De�nition 3.3.3. For any two closed locality proofs Π1 and Π2 of a term
A, Π1 is more local than Π2 (Π1 ¤ Π2) if and only if

(i) If A � c, Π1 � c : ` ë t and Π2 � c : `1 ë t1, then ` ë t ¤ ` ë t1.

(ii) If A � x, Π1 � x : ` ë t and Π2 � x : `1 ë t1, then ` ë t ¤ ` ë t1.

(iii) If A � BpCq, the root label of Π1 is BpCq : ` ë t and the root label
of Π2 is BpCq : `1 ë t1, then ΠB

1 ¤ ΠB
2 , ΠC

1 ¤ ΠC
2 and ` ë t ¤ `1 ë t1.

(iv) If A � �pvqpBq, the root label of Π1 is �pvqpBq : ` ë t and the root
label of Π2 is �pvqpBq : `1 ë t1, then ΠB

1 ¤ ΠB
2 and ` ë t ¤ `1 ë t1.

(v) If A � A0 where tp1 :� A1; : : : ; pn :� Anu, the root label of Π1 is
A : ` ë t and the root label of Π2 is A : `1 ë t1, then for i � 0; : : : ; n,
ΠAi

1 ¤ ΠAi
2 and ` ë t ¤ `1 ë t1.

Thus, if for two closed locality proofs Π1 and Π2 of a term A, Π1 ¤ Π2,
then Π1 expresses a \more local" locality behavior of A than Π2. We have
already seen that the locality behavior of A as it is expressed by a closed
locality proof depends on the locality input indices that label the constants
that occur in it. Thus, we already know that if a constant c has two locality
input indices that are incomparable with respect to the relation `less than or
equal to', then the corresponding closed locality proofs of A are incomparable
with respect to the `more local' ordering.

Now, suppose that we consider only the closed locality proofs of a term A

that are formed with respect to particular closed locality input indices of the

3.3. THE MOST LOCAL LOCALITY PROOF 69

constants that occur in it (or even with respect to comparable indices). It is
still not true that we can always order these proofs with respect to the `less
than or equal to' relation (see, for example, the two closed locality proofs in
Figure 3.7).

Nevertheless, we will show that under certain natural conditions, we can
determine a closed locality proof of a term A which is the most local one,
that is, it is more local than all its closed locality proofs. To do that, we
�rst try to answer the other question we formulated in page 67 | that is, is
there a labeling of the formation tree of A that \expresses" all the possible
closed locality proofs of A?

De�nition 3.3.4. (Locality Proof Schema of a Term) A locality proof

schema of A is a pair
pTA;CONDAq

such that

1. TA is the formation tree of A annotated by locality indices of the type
of each subterm. Their index tokens are all index variables and no
index variable occurs more than once.

2. CONDA is a (�nite) set of equalities and inequalities of the form

bi � bj ; bi � 1; bi ¤ bj

where bi; bj are index variables that occur in TA, and

3. For any evaluation � : tIndex Variablesu Ñ t0; 1u, if � satis�es the
equalities and inequalities of CONDA, then the labeled tree �pTAq is a
closed locality proof of A.

Notice that �pTAq is the tree that is formed if we apply � on all the index
variables that occur in TA.

Example 3.3.5. Consider a locality proof schema of the term lprunpxqq
(Figure 3.8). The locality indices that label the subterms of the term have
only index variables. The conditions are such that they express the basic
constraints that are imposed by the corresponding rules of the closed locality
proofs that we use.

Thus, the application of the (LP-APP) rule in p�q forces the conditions
tb1 � b3; b4 ¤ b3u while in p��q the application of the same rule forces tb4 �
b5; b7 ¤ b3u. The equality tb5 � 1u is forced by the (LP-CON) rule for the
constant l. In the case of run no equality is needed because both xl ë 0y and

70 CHAPTER 3. LOCALITY OF TERMS

l : xl ë b5y ë b6

run : xl ë b1y ë b2 x : l ë b3
(�)

runpxq : l ë b4
T : (��)

lprunpxqq : l ë b7

COND � tb1 � b3; b5 � 1; b4 � b5; b7 ¤ b3; b4 ¤ b3u

Figure 3.8: A locality proof schema of the term lprunpxqq.

xl ë 1y are closed locality input indices of it. It is thus straightforward that
for any evaluation � : tb1; b2; b3; b4; b5; b6; b7u Ñ t0; 1u such that � satis�es
COND, the tree �pTq is a closed locality proof of lprunpxqq.

In general, the set of conditions CONDA that are described in the def-
inition of a locality proof schema of a term A are always satis�able by at
least the evaluation which assigns the value 1 to all the variables that occur
in the corresponding tree TA. It is trivial that such an evaluation satis�es
any such set of conditions and the corresponding tree is simply the standard
closed locality proof of the term A. It is also straightforward that for any A
there is at least one locality proof schema | the schema such that there is
an equality tbi � 1u in the set of conditions COND for every index variable
bi that occurs in T.

In general, a term A does not have a unique locality proof schema. The
tree TA is of course unique up to alphabetic renaming of the index variables
that occur in it but the set of conditions may vary.

Example 3.3.6. Consider, for example, a constant c : re � re Ñ rt that has
three closed locality input indices: xl ë 0; l ë 1y, xl ë 1; l ë 0y and of course,
xl ë 1; l ë 1y. In Figure 3.9, two of the possible locality proof schemata of c
are shown.

To answer our initial question, we need to select a schema pTA;CONDAq
of A such that for any ΠA, � is an evaluation such that �pTAq � ΠA if and
only if � satis�es CONDA.

De�nition 3.3.7. (Generic Locality Proof Schema of a Term) A
generic locality proof schema of A is a locality proof schema pTA;CONDAq
of A such that every closed locality proof of A is equal to �pTAq for some
evaluation � that satis�es CONDA.

First, we use this de�nition in the following trivial proposition.

3.3. THE MOST LOCAL LOCALITY PROOF 71

c : xl ë b1; l ë b2y ë b3

CONDc � tb1 � 1u or COND1
c � tb2 � 1u

Figure 3.9: Locality proof schemata of c.

Proposition 3.3.8. Suppose that pTA;CONDAq is a generic locality proof

schema of A. Then, a closed locality proof Π1 of A is more local than Π2

pΠ1 ¤ Π2q if and only if, given evaluations �1 and �2 such that they satisfy

CONDA and �1pTAq � Π1 and �2pTAq � Π2, for any index variable b that

occurs in TA, �1pbq ¤ �2pbq.

Secondly, it is not always true that a term A has a generic locality proof
schema (see for example the constant c in Example 3.3.6). Theorem 3.3.11
describes under what circumstances a term A has a generic schema but in
what follows, we show �rst that any term A has at most one.

De�nition 3.3.9. Two set of equalities and inequalities, as in De�nition 3.3.4,
COND1 and COND2 over the same (up to alphabetic renaming) set of index
variables are equivalent if, for every evaluation �, � satis�es COND1 if and
only if an alphabetic variant of � satis�es COND2.

For example, the two sets tbi � bj ; bi � 1u and tb1j � 1; b1j ¤ b1iu are
equivalent.

Proposition 3.3.10. Every term A : r� has at most one (up to alphabetic

renaming of the index variables and to equivalent set of conditions) generic

locality proof schema.

Proof. Suppose that a term A has two generic locality proof schemata:
pTA;CONDAq and pT

1
A;COND

1
Aq. Then, as we have already mentioned in

the de�nition of a locality proof schema, TA and T 1
A are identical up to

alphabetic renaming of the index variables that occur in them.

Now, CONDA and COND1
A may include di�erent equalities and inequal-

ities, involving even di�erent index variables. We will show though that they
are equivalent.

Suppose � is an evaluation over the index variables of TA such that �
satis�es CONDA. Thus, �pTAq � ΠA where ΠA is a closed locality proof
of A. By de�nition, there is an evaluation �1 over the index variables of T 1

A

such that it satis�es COND1
A and �1pT 1

Aq � ΠA. %

72 CHAPTER 3. LOCALITY OF TERMS

We have already pointed out that the locality behavior of a term A

depends on the locality behaviors of the constants that occur in it. In order
thus to understand when a term has a generic locality proof schema, we
should start by investigating whether any state-dependent typed constant in
K has one. We have already seen in Example 3.3.6 that this is not in general
the case. In other words, we can always add a new constant in K that does
not have a generic schema and thus, refute any such claim.

On the other hand, we should notice that a closed input index ` of a
constant c : r� is not attributed to it arbitrarily. It is a closed locality
input index of its denotation c | that is, by Chapter 2, c has an associate
with respect to it. Thus, in the case of the constant in Example 3.3.6, we
should instead provide its denotation function and then, prove that it has
an associate with respect to the three given locality input indices.

In general, the interpretation of the constants of K of the L�arpKq is
coupled with their locality behavior. It is the denotation of rise : reÑ rt that
determines the non local treatment of its argument which is \coded" in its
input index xl ë 1y. The generic locality proof schema of constant rise is

Trise � rise : xl ë b1y ë b2; CONDrise � tb1 � 1u:

The non local treatment of an argument of the denotation of a constant, or
in other words, its \intensional character", is a locality feature that charac-
terizes it and in a generic schema, it is expressed by the conditions of the
form bi � 1. The local treatment of an argument of an object, in contrast,
does not \force" the non local one. Thus, the generic locality proof schema
of former is

Tformer � former : xxl ë b1y ë b2; l ë b3y ë b4; CONDformer � tb2 � 1u:

Consider now an example of a constant whose generic schema needs the
use of inequalities between index variables. Let eval : pre Ñ rtq � re Ñ rt be
such that for f1 : reÑ rt; f2 : re; a : s,

evalpf1; f2; aq � 1 ðñ f1pf2; aq � 1:

For example, consider the denotation of the terms evalprise; theptempqq and
evalprun; Johnq. The generic locality proof schema of this constant is

Teval � eval : xxl ë b1y ë b2; l ë b3y ë b4; CONDeval � tb1 ¤ b3u:

It is an open issue whether the constants in K that render natural language
expressions are such that their locality behavior can be fully described with

3.3. THE MOST LOCAL LOCALITY PROOF 73

the use of conditions introduced here. It is though clear that this can be
done at least for all the ones that come from rather natural examples.

Finally, notice also that the equalities and inequalities between index
variables that are included in the conditions of a generic locality proof schema
are used also in expressing the constraints of the locality proofs.

Theorem 3.3.11. Suppose that every constant that occurs in a term A has

a generic locality proof schema. Then,

(i) A has a generic locality proof schema, and

(ii) A has a most local closed locality proof.

Proof. (i) The proof is by induction on A.

(1) A � c. It holds by hypothesis.

(2) A � x. Trivially, the generic locality proof schema of x is simply a
pair (Tx;CONDx) where Tx � x : ` ë t, where ` ë t is the generic locality
index of the type of x, and CONDx � H.

(3) A � BpCq. Suppose that (TB;CONDB) and (TC ;CONDC) are the
generic locality proofs schemata of B and C, respectively with distinct index
variables. If `12 ë b1 is the generic locality index of BpCq with fresh index
variables, then

TB
...

B : x`1 ë b1; `2y ë b

TC
...

C : `11 ë b11TBpCq :�
BpCq : `12 ë b1

and the set of conditions is

CONDBpCq :� CONDB Y CONDC

Y t`1 ë b1 � `11 ë b11u Y t`2 � `12u

Y t`x ë bx � `1x ë b1x | for any x such that x : `x ë bx occurs

free in TB and x : `1x ë b1x in TCu

Y tb1 ¤ bx | for any x that occurs free in TBpCqq with output

index bxu:

Notice that each time, the constraint imposed by the rule is expressed by
a set of conditions that are included in CONDBpCq. For example, in order to
have `2 � `12, we add a set of equalities between all the corresponding pairs
of index variables that occur in `2 and `12.

74 CHAPTER 3. LOCALITY OF TERMS

The pair (TBpCq;CONDBpCq) is a locality proof schema of BpCq since
the equalities and inequalities that are added in CONDBpCq re
ect the con-
straints of the (LP-APP) rule and thus, every evaluation � that satis�es them
is such that �pTBpCqq is a closed locality proof of BpCq.

We show next that this schema is generic. Suppose a closed locality proof
ΠBpCq of BpCq and let ΠB and ΠC be the subproofs of B and C respectively
that are de�ned by it.

ΠB

...
B : x` ë t1; `

1y ë t

ΠC

...
C : ` ë t1ΠBpCq �

BpCq : `1 ë t1

By induction hypothesis, there are evaluations �B and �C that satisfy CONDB

and CONDC , respectively such that �BpTBq � ΠB and �CpTCq � ΠC .
Consider now the substitution �0 over the index variables of the root

label of TBpCq such that

�0p`
1
2 ë b1q � `1 ë t1:

The claim is that the substitution

� � �B Y �C Y �0

is such that �pTBpCqq � ΠBpCq and � satis�es CONDBpCq. It follows imme-
diately if we consider that

• Since TB, TC and `12 ë b1 have distinct index variables, �B, �C and �0

act on disjoint set of index variables.

• Since ΠBpCq is a closed locality proof of BpCq, �B and �C satisfy
CONDBpCq, that is,

 �Bp`1 ë b1q � �Cp�
1
1 ë b11q � ` ë t1,

 if x : `x ë bx occurs in TB and x : `1x ë b1x occurs in TC , then
�Bp`x ë bxq � �Cp`

1
x ë b1xq and �nally,

 if x : `x ë bx occurs free in TBpCq, then, if, for example, it occurs
free in B, �0pb

1q ¤ �Bpbxq.

• �0 acts only on fresh variables and it simply adds the equalities that
are imposed by the �0p`

1
2 ë b1q � `1 ë t1, thus, it respects CONDBpCq

by de�nition.

3.3. THE MOST LOCAL LOCALITY PROOF 75

(4) A � �pvqpBq. Suppose that pTB;CONDBq is a generic locality proof
schema of B. If x`v ë bv; `

1y ë b1 is the generic locality index of the type of
�pvqpBq with fresh index variables, then

TB
...

B : ` ë bT�pvqpBq :�
�pvqpBq : x`v ë bv; `

1y ë b1

and the set of conditions are

COND�pvqpBq :� CONDB Y t` � `1u

Y t`v ë bv � `1v ë b1v | if v : `1v ë b1v occurs free in TBu

Y tb1 ¤ bx | for any x that occurs free in T�pvqpBq with output

index bxu:

The equalities and inequalities that are added in COND�pvqpBq re
ect
the constraints of the (LP-�-INTRO) rule and thus, every evaluation � that
satis�es them is such that �pT�pvqpBqq is a closed locality proof of �pvqpBq.

Suppose Π�pvqpBq is a closed locality proof of �pvqpBq and ΠB the closed
locality subproof of B that is de�ned by it.

ΠB

...
B : `1 ë t1Π�pvqpBq �

�pvqpBq : x`0 ë t0; `1y ë t

If �B is an evaluation such that �BpTBq � ΠB and �0 is such that

�0

�
x`v ë bv; `

1y ë b1
�
� x`0 ë t0; `1y ë t;

it follows easily that �
�B Y �0

�
pT�pvqpBqq � Π�pvqpBq:

(5) A � A0 where tp1 :� A1; : : : ; pn :� Anu. Suppose that for i �
0; : : : ; n, pTAi

;CONDAi
q are generic locality proof schemata of Ai with dis-

tinct index variables. If `10 ë b1 is a generic locality index of the type of A
with fresh index variables, then

76 CHAPTER 3. LOCALITY OF TERMS

TA0

...
A0 : `0 ë b

TA1

...
A1 : `1 ë b1 : : :

TAn

...
An : `n ë bnTA :�

A0 where tp1 :� A1; : : : ; pn :� Anu : `10 ë b1

and the set of conditions, analogously, are

CONDA :� CONDA0 Y : : :Y CONDAn Y t`0 ë b � `10 ë b1u

Y t`x ë bx � `1x ë b1x | for any x such that x : `x ë bx occurs

free in some TAi
and x : `1x ë b1x in TAj

u

Y t`pi ë bpi � `i ë bi | if pi : `pi ë bpi occurs free in some Aju

Y tb1 ¤ bx | for any x occurring free in TA with output

index bxu:

As in the previous cases, it is trivial that any evaluation � that satis�es
CONDA is such that �pTAq is a closed locality proof of A and thus, the pair
pTA;CONDAq is locality proof schema of A.

Suppose now that ΠA is a closed locality proof of A and ΠA0 ; : : : ;ΠAn

are the closed locality proofs of A0; : : : ; An respectively, that it de�nes.

ΠA0

...
A0 : ` ë t0

ΠA1

...
A1 : `11 ë t1 : : :

ΠAn

...
An : `1n ë tnΠA �

A0 where tp1 :� A1; : : : ; pn :� Anu : ` ë t0

If, for i � 0; : : : ; n, �Ai
pTAi

q � ΠAi
and �0 is such that

�0

�
`10 ë b1

�
� ` ë t0;

it follows analogously that�
�A0 Y : : :Y �An Y �0

�
pTAq � ΠA:

(ii) We want to prove that there is a closed locality proof of A, Π0, such
that for every closed locality proof ΠA of A, Π0 ¤ ΠA.

Let pTA;CONDAq be a generic locality proof schema of A, let V be the
�nite set of index variables that occur in TA and let W be, initially, the
empty set.

We will describe a process of removing index variables from V and putting
them into W based on whether they must be assigned the value 1 or not.

Repeatedly, we do the following:

3.3. THE MOST LOCAL LOCALITY PROOF 77

1. For every b P V , if tb � 1u � CONDA, we update the sets as follows:
V � V ztbu and W �W Y tbu.

2. For every b P V , if tb � b1u � CONDA or tb1 ¤ bu � CONDA, where
b1 PW , the sets are updated as follows: V � V ztbu and W �W Ytbu.

Notice that this process terminates since the set V is �nite.
Now, trivially, any evaluation � that satis�es CONDA must be such that

for any b PW , �pbq � 1. Consider now the evaluation �0 such that

�0pbq �

#
1; if b PW

0; if b P V:

First, �0 satis�es CONDA. It is enough to notice that for any b P V ,
there is no equality of the form b � 1, b � b1 or b1 ¤ b where b1 P W , and
thus, trivially, if we assign the value 0 to all of them the possible equalities
and inequalities are satis�ed.

Second, for any � such that it satis�es CONDA, for any b, �0pbq ¤ �pbq.
Thus, if Π0 is such that �0pTAq � Π0 and Π is such that �pTAq � Π, then
Π0 ¤ Π. %

This is the main technical result of the thesis in that for each term A,
the most local closed locality proof of A represents the locality behavior
which respects the locality behavior of the constants that occur in A and
keeps track of the locality dependencies in such a way that the computations
involved are as local as possible.

78 CHAPTER 3. LOCALITY OF TERMS

Chapter 4

Formal Associates of Terms

In Chapter 3, we de�ned the closed locality proofs of each term A : r� so that
if the root label is A : ` ë t, then there is an associate of the denotation
of A with respect to `. The locality proofs of a term A keep track of the
locality dependencies of its subterms and characterize its locality behavior.
In this chapter, for each term A, each closed locality proof ΠA of A with
root label A : ` ë t and a state variable u, we de�ne, through an appropriate
syntactical transformation, the associate term A

�;u
ΠA

which de�nes formally

an associate of the denotation of A with respect to `1.

In Section 4.1, we present an extension of L�ar, L
��

ar , into which the new
associate terms will be de�ned. We then de�ne the local associate transfor-

mation for local terms (Section 4.2) and the corresponding associate trans-

formation for general terms (Section 4.3). In Chapter 5, we will use the
associate term of any term A at a state a with respect to the most local
locality proof of its canonical form to de�ne the factual content of A at a.

4.1 An Extension of L�
ar

As in the case of LIL with the intension and extension operators and in the
case of L�ar with the recursive construct, we will enrich L�ar in order to de�ne
the associates of terms formally in this extended language, L�

�

ar .

For each constant c : r� P K and each closed locality input index ` of
c, we introduce in L�arpKq a new constant c�` : s Ñ pr�q`� which denotes the

1For short, an associate of the denotation of A with respect to the index ` will be
simply called an associate of the term A with respect to `.

79

80 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

preferred associate of c with respect to `, i.e.,

denpc�` qpgq � c`� �
�
denpcqpgq

�`
�
:

For each type r� and each closed locality input index ` of r�, we also introduce,
for convenience, in�nitely many new pure and recursive variables,

x�` ; p
�
` : sÑ pr�q`�:

Finally, we introduce a new formation rule, the associate application which
behaves exactly like the ordinary functional application but is reserved for the
newly introduced constants and variables. Thus, the terms of the extended
language, L�

�

ar , are de�ned by the recursion:

A :� c | x | c�` rus | x
�
` rus | BpCq | �pvqpBq

| A0 where tp1 :� A1; : : : ; pn :� Anu (4.1)

where x is a pure or recursive variable, u and v are pure variables and
p1; : : : ; pn are recursive variables.

Types are assigned as for the terms in (1.8) in Section 1.5.1 and since
associate application behaves like ordinary application,

if c�` : sÑ pr�q`� and u : s, then c�` rus : pr�q`�;
if x�` : sÑ pr�q`� and u : s, then x�` rus : pr�q`�:

Notice that u occurs free in c�` rus and both u and x�` occur free in x�` rus.

In what concerns the denotational semantics of L�
�

ar , its interpretation
structure is again U | the interpretation structure of L�ar de�ned in Sec-
tion 1.5.1. The denotation function de�ned in this structure for the newly
introduced terms of associate application is given by

den
�
c�` rus

�
pgq � c`�pgpuqq

den
�
x�` rus

�
pgq � gpx�` qpgpuqq:

Before de�ning the canonical form of the terms of the extended language,
we have to reconsider the immediate terms in L�

�

ar . Consider the following
terms de�ned by associate application for a pure v and a recursive variable
p where ` is a locality input index of the appropriate type:

v�` rus and p�` rus:

4.1. AN EXTENSION OF L�
AR

81

They are treated as generalized variables (pure and recursive, respectively)
which means that the immediate terms of L�

�

ar are

X :� Vi | P pV1; : : : ; Vnq | �pv1; : : : ; vm; uqpP pV1; : : : ; Vnqq (4.2)

Vi :� vi | v
�
i;`i
ruis; P :� p | p�` ruis

where vi, v
�
i;`i

, v1; : : : ; vm, ui, u are pure variables and p and p�` are recursive
variables. For example, the following terms are immediate:

p�` ruspv
�
`1rusq; p

�
` pu; v

�
`1rusq; �puqp

�
` pu; v

�
`1rusq:

Notice that if v : r� Ñ r� and w : r� are pure variables, then, whereas the
term vpwq is not immediate in L�ar, the term v�` rus where u : s is immediate in
L�

�

ar . The idea is that associate application is going to be used in particular
cases to compute the value of an object at a state, and thus, as in the case
of applications like ppwq where p is a recursive variable, should be performed
at no \computational cost" in the Reduction Calculus of the extended L�

�

ar .

The Reduction Calculus in L�
�

ar is exactly the same as before (Table 1.3),
and thus, the associate applications terms c�` rus and x�` rus are irreducible.

Proposition 4.1.1. (Theorem 3.12 in [22])

(a) Constants and immediate terms are irreducible.

(b) Associate application terms c�` rus and x�` rus are irreducible.

(c) An application term BpCq is irreducible if and only if C is immediate

and B is explicit and irreducible.

(d) A �-term �puqpBq is irreducible if and only if B is explicit and irre-

ducible.

(e) A recursive term A0 where tp1 :� A1; : : : ; pn :� Anu is irreducible if

and only if all the parts A0; : : : ; An are irreducible.

Proof. Case (b) is straightforward by inspecting the reduction rules. %

Notice also that the congruence relation is the same as before (page 19)
and since associate application terms are irreducible, we have

cf
�
c�` rus

�
� c�` rus where t u

cf
�
x�` rus

�
� x�` rus where t u:

The Canonical Form Theorem (Theorem 1.5.1) extends here with no
change, which means that in L�

�

ar , for any term A there is unique (up to
congruence), irreducible recursive term cfpAq, such that Añ cfpAq.

82 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

4.2 Formal Local Associates of Local Terms

In this section, we de�ne the local associate transformation which associates
a term A�;u : � in L�

�

ar with any local term A : r� in L�ar and any state variable
u : s which does not occur free in A,

A : r�; u : s ÞÑ A�;u : �:

This new term de�nes within L�
�

ar a local associate of the original term, that
is, if we set for any state a : s,

A�;ā � A�;utu :� āu;

then, �
a ÞÑ denpA�;āqpgq

�
is a local associate of denpAqpgq:

Before de�ning the local associate transformation, we will make a simpli-
�cation on the notation of the previous section. For each constant c : r� P K,
if ` is its local closed locality input index, then we simply omit it, that is,
we let

c� :� c�` :

Analogously, if ` is the local closed locality input index of the type of a
variable x : r�, we let

x� :� x�` :

We will also say that an occurrence of a subterm x�rus (or similarly,
x�` rus) where x is a pure or recursive variable is free in a term A if the
occurrences of both variables x� (or x�`) and u are free in A.

Proposition 4.2.1. (Local Associate Transformation) For any local

term A : r� and any fresh state variable u : s, there is a term A�;u : � in L�
�

ar ,

such that:

(i) If A has free variables in the list x1 : r�1; : : : ; xn : r�n, then A�;u : �
has free variables in the list x1

� : �1; : : : ; xn
� : �n; u : s.

(ii) For any variable x, x occurs free in A if and only if the subterm x�rus
occurs free in A�;u.

(iii) The following conditions hold:

(1) c�;u � c�rus

(2) x�;u � x�rus

(3) pBpCqq�;u � B�;u
�
C�;u

�

4.2. FORMAL LOCAL ASSOCIATES OF LOCAL TERMS 83

(4)
�
�pvqpBq

��;u
� �pv1q

�
B�;utv�rus :� v1u

�
, where v1 is a fresh pure vari-

able of the type of v�rus

p5q
�
A0 where tp1 :� A1; : : : ; pn :� Anu

��;u
� pA0q

�;utpi
�rus :� qi | 1 ¤ i ¤ nu where

q1 :� pA1q
�;utpi

�rus :� qi | 1 ¤ i ¤ nu;

...

qn :� pAnq
�;utpi

�rus :� qi | 1 ¤ i ¤ nu
(
:

where for i � 1; : : : ; n, qi is a fresh recursive variable of the type of pi
�rus.

Proof. The proof is by a straightforward induction on A.

Notice that the substitutions in each case are free since each time the
variables v1 and qi are fresh.

If A is a recursive term, by (ii), for k � 0; : : : ; n, some pi occurs (free) in
Ak if and only if qi occurs (free) in pAkq

�;u. It follows that for i � 1; : : : ; n,
rankppiq � rankpqiq and thus, A�;u is a recursive term. %

For example, if q; x1 : e are fresh variables,�
�pxqlovepx; xq

��;u
� �px1qlove�ruspx1; x1q�

runppq where tp :� Johnu
��;u

� run�ruspqq where tq :� John�rusu:

Theorem 4.2.2. If A : r� with free variables in the list x1 : r�1; : : : ; xn : r�n
is a local term, the function fA : r�1 � : : :� r�n Ñ r� is de�ned by

fApf1; : : : ; fnq � denpAqpgtx1 :� f1; : : : ; xn :� fnuq

and the function fA�;u : s� �1 � : : :� �n Ñ � is de�ned by

fA�;upa; h1; : : : ; hnq

� den
�
A�;utx1

�rus :� x11; : : : ; xn
�rus :� x1nu

��
gtx11 :� h1; : : : ; x

1
n :� hn; u :� au

�
;

where x11 : �1; : : : ; x
1
n : �n are fresh variables, then the function fA�;u is a

local associate of fA.

In particular, if A is closed, then for any state a : s, the function
�
a ÞÑ

denpA�;āq
�
is a local associate of denpAq.

84 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

Proof. The proof is by induction on A. It will be useful to use the following
abbreviations.

gtxi :� fiu � gtx1 :� f1; : : : ; xn :� fnu

gtx1i :� hiu � gtx11 :� h1; : : : ; x
1
n :� hnu

(1) A � c. Simply, fcpf1; : : : ; fnq � c, and

fc�;upa; h1; : : : ; hnq � denpc�rusqpgtx1i :� hi; u :� auq � c�paq:

Thus, by Corollary 2.2.10, fc�;u is a local associate of fc.

(2) A � x. Suppose that for some j, xj � x.

fxpf1; : : : ; fnq � denpxqpgtxi :� fiuq � fj , and

fx�;upa; h1; : : : ; hnq

� denpx�rustxj
�rus :� x1juqpgtx

1
i :� hi; u :� auq � hj :

By case (i) of Theorem 2.2.9, fx�;u is a local associate of fx.

(3) A � BpCq. Suppose that the free variables of B and C are in the list
x1 : r�1; : : : ; xn : r�n.

fBpCqpf1; : : : ; fnq � denpBqpgtxi :� fiuq
�
denpCqpgtxi :� fiuq

�
� fBpf1; : : : ; fn; fCpf1; : : : ; fnqq:

fpBpCqq�;upa; h1; : : : ; hnq

� denpB�;utx1
�rus :� x11; : : : ; xn

�rus :� x1nuqpgtx
1
i :� hi; u :� auq�

denpC�;utx1
�rus :� x11; : : : ; xn

�rus :� x1nuqpgtx
1
i :� hi; u :� auq

	
� fB�;u

�
a; h1; : : : ; hn; fC�;upa; h1; : : : ; hnq

�
:

By induction hypothesis, fB�;u and fC�;u are local associates of fB and
fC respectively, and thus, by the composition case of Theorem 2.2.9, the
function fpBpCqq�;u is a local associate of fBpCq.

(4) A � �pvqpBq. Suppose that the free variables of B are in the list of
x1 : r�1; : : : ; xn : r�n; v : r�.

f�pvqpBqpf1; : : : ; fnq �
�
f ÞÑ denpBqpgtxi :� fi; v :� fuq

	
�

�
f ÞÑ fBpf1; : : : ; fn; fq

	
:

4.2. FORMAL LOCAL ASSOCIATES OF LOCAL TERMS 85

fp�pvqpBqq�;upa; h1; : : : ; hnq

� den
�
�pv1q

�
B�;utv�rus :� v1u

�
tx1

�rus :� x11; : : : ; xn
�rus :� x1nu

��
gtx1i :� hi; u :� au

�
�

�
h ÞÑ denpB�;utv�rus :� v1; x1

�rus :� x11; : : : ; xn
�rusuq

pgtx1i :� hi; u :� a; v1 :� huq
	

�
�
h ÞÑ fB�;upa; h1; : : : ; hn; hq

�
:

By induction hypothesis, fB�;u is a local associate of fB, and thus, by the
�-abstraction case of Theorem 2.2.9, the function fp�pvqpBqq�;u is a local as-
sociate of f�pvqpBq.

(5) A � A0 where tp1 :� A1; : : : ; pm :� Amu. Suppose that the free
variables of A are in the list x1; : : : ; xn and thus, the free variables of each
Ai (i � 1; : : : ;m) are in the list x1; : : : ; xn; p1; : : : ; pm.

fApf1; : : : ; fnq � denpAqpgtxi :� fiuq

� denpA0qpgtxi :� fi; p1 :� P1; : : : ; pm :� Pmuq

� fA0pf1; : : : ; fn; P1; : : : ; Pmq;

where for i � 1; : : : ;m, each

Pi � fPipf1; : : : ; fnq

is de�ned recursively on the rankppiq :

Pi � fAi
pf1; : : : ; fn; Pr1 ; : : : ; Prkq

where pr1 ; : : : ; prk are the variables with rank rankppiq (see also Sec-
tion 1.5.1).

By recursion on rankpqiq again, let

Qi � fQi
pa; h1; : : : ; hnq � fpAiq

�;upa; h1; : : : ; hn; Qr1 ; : : : ; Qrkq:

It is important to notice here that by Proposition 4.2.1, for each i � 1; : : : ;m,
rankppiq � rankpqiq.

Lemma. For r � 1; : : : ; n, fQi
is a local associate of fPi .

Proof. The proof is by induction on the rankppiq.

(i) rankppiq � 0. It follows trivially since fPi � fAi
and fQi

� fpAiq
�;u .

86 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

(ii) rankppiq ¥ 1. Suppose that for all the variables pr1 ; : : : ; prk such that
rankpprj q rankppiq, the induction hypothesis hold. It follows easily by the
composition case of Theorem 2.2.9, since

fPipf1; : : : ; fnq � fAi

�
f1; : : : ; fn; fPr1 pf1; : : : ; fnq; : : : ; fPrk pf1; : : : ; fnq

�
and

fQi
pa; h1; : : : ; hnq

� fpAiq
�;u

�
a; h1; : : : ; hn; fQr1

pa; h1; : : : ; hnq; : : : ; fQrk
pa; h1; : : : ; hnq

�
: %

Now, by induction hypothesis, the function fpA0q
�;u is a local associate

of fA0 and

fA�;upa; h1; : : : ; hnq

� denpA�;utx1
�rus :� x11; : : : ; xn

�rus :� x1nuqpgtx
1
i :� hi; u :� auq

� den
�
pA0q

�;utp1
�rus :� q1; : : : ; pm

�rus :� qm; x1
�rus :� x11; : : : ; xn

�rus :� x1nu
�

pgtx1i :� hi; q1 :� Q1; : : : ; qm :� Qm; u :� auq

� fpA0q
�;upa; h1; : : : ; hn; Q1; : : : ; Qmq:

Thus, by the composition case of Theorem 2.2.9, fA�;u is a local associate
of fA. %

The formal local associate of the canonical form of local term A : r� is
used in Chapter 5 to de�ne the factual content of A at a state a. Finally, we
end this section by a simple lemma that we will use in that de�nition.

Lemma 4.2.3. If A : r� is a local irreducible term in L�ar, then the term

A�;u : � is irreducible in L�
�

ar .

Proof. The proof is by a straightforward induction on A, using the syntacti-
cal de�nition of irreducible terms (Proposition 4.1.1). As part of the proof,
we show that if X : r� is a local immediate term in L�ar, then for any state
variable u : s, X�;u is immediate in L�

�

ar , which is again straightforward by
the following.

(1) If X � x where x is a pure or recursive variable, then x�;u � x�rus.
(2) If X � ppv1; : : : ; vnq, then�

ppv1; : : : ; vnq
��;u

� p�ruspv1
�rus; : : : ; vn

�rusq:

(3) If X � �pv1; : : : ; vnqp, then
�
�pv1; : : : ; vnqp

��;u
� �pz1; : : : ; znqp

�rus,
where z1; : : : ; zn are fresh pure variables with appropriate types.

4.3. FORMAL ASSOCIATES OF GENERAL TERMS 87

(4) If X � �pw1; : : : ; wmqppv1; : : : ; vnq, then�
�pw1; : : : ; wmqppv1; : : : ; vnq

��;u
� �pz1; : : : ; zmq

�
p�rus

�
v1

�rus; : : : ; vn
�rus

�
tw1

�rus :� z1; : : : ; wm
�rus :� zmu

�
;

where z1; : : : ; zm are fresh pure variables of appropriate types. %

4.3 Formal Associates of General Terms

Suppose A : r� is a term such that its denotation has an associate with
respect to a closed locality input index `. In Chapter 3, we showed that
syntactically this is witnessed by an existence of, at least, one closed locality
proof with root label A : ` ë t. In general, a term A has multiple closed
locality proofs with the same root locality input index. Each one of them
describes a di�erent instance of locality behaviors of the subterms of A that,
nevertheless, converge to the same closed locality input index of A.

Locality proofs will be proven indispensable in the de�nition of the cor-
responding associate transformation for general terms since, as it was shown
in the case of local terms, it is a syntactical transformation that depends on
the locality dependencies of the subterms of a term. Thus, given a closed
locality proof ΠA of a term A : r� with root label A : ` ë t, we associate with
A and any state variable u : s that does not occur free in A, an associate

term A
�;u
ΠA

, that is,

A : r�; ΠA with root label A : ` ë t; u : s ÞÑ A
�;u
ΠA

:

#
pr�q`�; if t � 0
sÑ pr�q`�; if t � 1

which de�nes (roughly) an associate of A with respect to `.

Proposition 4.3.1. (Associate Transformation) For any term A : r� in

L�ar and a closed locality proof ΠA with root label A : ` ë t and any state

variable u : s that does not occur free in A, there is a term

A
�;u
ΠA

:

#
pr�q`�; if t � 0
sÑ pr�q`�; if t � 1

such that:

(i) If A has free variables in the list x1 : r�1; : : : ; xn : r�n and for i �
1; : : : ; n, xi is indexed by mi ë si in ΠA, if t � 1, then A

�;u
ΠA

has free

variables in the list x�1;m1
; : : : ; x�n;mn

while if t � 0, its free variables are in

list x�1;m1
; : : : ; x�n;mn

; u.

88 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

(ii) If t � 1, then xi occurs free in A if and only if x�i;mi
occurs free in

A
�;u
ΠA

.

(iii) If t � 0, then xi occurs free in A if and only if either si � 0 and

x�i;mi
rus occurs free in A

�;u
ΠA

, or si � 1 and x�i;mi
occurs free in A

�;u
ΠA

.

(iv) The following conditions hold:

(1) If Πc � c : ` ë t, then

c
�;u
Πc

�

#
c�` rus; if t � 0
c�` ; if t � 1

(2) If Πx � x : ` ë t, then

x
�;u
Πx

�

#
x�` rus; if t � 0
x�` ; if t � 1

(3) If

ΠB

...
B : x`1 ë t1; `2y ë t0

ΠC

...
C : `1 ë t1ΠBpCq �

BpCq : `2 ë t

then

pBpCqq�;uΠBpCq
�

$''''&''''%
B
�;u
ΠB

�
C
�;u
ΠC

�
; if t � 0; t0 � 0

B
�;u
ΠB

�
u;C

�;u
ΠC

�
; if t � 0; t0 � 1

�puq
�
B
�;u
ΠB

�
C
�;u
ΠC

��
; if t � 1; t0 � 0

�puq
�
B
�;u
ΠB

�
u;C

�;u
ΠC

��
; if t � 1; t0 � 1

(4) If

ΠB

...
B : ` ë t1Π�pvqpBq �

�pvqpBq : x`0 ë t0; `y ë t

4.3. FORMAL ASSOCIATES OF GENERAL TERMS 89

then

�
�pvqpBq

��;u
Π�pvqB

�

$''''''&''''''%

�pv1q
�
B
�;u
ΠB
tv�;u`0ët0

:� v1u
	
; if t � 0; t1 � 0

�pv1q
�
B
�;u
ΠB
puqtv�;u`0ët0

:� v1u
	
; if t � 0; t1 � 1

�puq�pv1q
�
B
�;u
ΠB
tv�;u`0ët0

:� v1u
	
; if t � 1; t1 � 0

�puq�pv1q
�
B
�;u
ΠB
puqtv�;u`0ët0

:� v1u
	
; if t � 1; t1 � 1

where v1 is a fresh pure variable of the type of v�;u`0ët0
.

(5) If

ΠA0

...
A0 : `0 ë t0

ΠA1

...
A1 : `1 ë t1 : : :

ΠAk

...
An : `k ë tkΠA �

A0 where tp1 :� A1; : : : ; pk :� Aku : `0 ë t0

then �
A0 where tp1 :� A1; : : : ; pn :� Aku

	�;u
ΠA

� pA0q
�;u
ΠA0

tppiq
�;u
`iëti

:� qi | 1 ¤ i ¤ ku;

where!
q1 :� pA1q

�;u
ΠA1

tppiq
�;u
`iëti

:� qi | 1 ¤ i ¤ ku;

...

qk :� pAkq
�;u
ΠAk

tppiq
�;u
`iëti

:� qi | 1 ¤ i ¤ ku
)
:

where for i � 1; : : : ; n, qi is a fresh recursive variable of the type of

ppiq
�;u
`iëti

.

Proof. We prove (i)-(iv) simultaneously, by induction on A. Notice that all
that needs to be checked are that the transformations de�ned by (1)-(5) in
part (iv) produce terms. If A � c or A � x, it is straightforward.

(3) A � BpCq. If t � 1, then by Proposition 3.2.7, for i � 1; : : : ; n, xi is
indexed by mi ë 1, and thus, pxiq

�;u
mië1 � x�i;mi

.
If t � 0 and if, for example, xi occurs free in B, then by induction

hypothesis, if t0 � 1, then si � 1, and x�i;mi
occurs free if and only if xi

occurs free and if, on the other hand, s0 � 0, by induction hypothesis,

90 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

x�i;mi
rus occurs free in B

�;u
ΠB

if and only if xi occurs free in B. Analogous
claims can be made if xi occurs free in C.

(4) A � �pvqpBq. Suppose xi � v. If t � 1, then trivially for i � 1; : : : ; n,
xi : mi ë 1 and thus, x�i;mi

occurs free if an only if xi occurs free. If t � 0
and t1 � 1, then by induction hypothesis for B, x�i;mi

occurs free. If t � 0
and t1 � 0, then by induction hypothesis, x�i;mi

rus occurs free.
(5) A � A0 where tp1 :� A1; : : : ; pk :� Aku. The claims are analogous

and we do not repeat them here. In general, if for some i � 1; : : : ; k, ti � 1,
then ppiq

�;u
`ië1 � p�i;`i while, if, ti � 0, then, if pi occurs free in some Aj

(j � 0; : : : ; k), then by Proposition 3.2.7, it is also the case that tj � 0.
Thus, by induction hypothesis, both the variables of ppiq

�;u
`i

� p�i;`irus occur
free if and only if pi occurs free. It follows that for each i, rankpqiq � rankppiq
and thus, the recursive term A

�;u
ΠA

is well formed. %

If ΠA is a closed locality proof of A with root label A : ` ë t, then we
alternatively note its associate term with respect to it and a state variable
u : s that does not occur free in it as

A
�;u
ΠA

� A
�;u
`ët:

This notation will be used when the closed locality proof is explicit and we
want to draw attention to the index of the root label instead.

Theorem 4.3.2. Suppose that the free variables of A : r� are in the list

x1 : r�1; : : : ; xn : r�n and the function fA : r�1 � : : :� r�n Ñ r� is de�ned by

fApf1; : : : ; fnq � denpAqpgtx1 :� f1; : : : ; xn :� fnuq:

(i) If ΠA is a closed locality proof of A with root label A : ` ë 0 where

for i � 1; : : : ; n, xi is indexed mi ë si and the function

fA�;u
`ë0

: s�
"
psÑ pr�1q

m1
� q

pr�1q
m1
�

*
� : : :�

"
psÑ pr�nqmn

� q
pr�nqmn

�

*
Ñ pr�q`�

is de�ned for a : s by

fA�;u
`ë0
pa; h1; : : : ; hnq

� den
�
A
�;u
`ë0tpx1q

�;u
m1ës1

:� x11; : : : ; pxnq
�;u
mnësn

:� x1nu
��

gtx11 :� h1; : : : ; x
1
n :� hn; u :� au

�
;

then fA�;u
`ë0

is an associate of fA with respect to xm1 ë s1; : : : ;mn ë sn; `y.

4.3. FORMAL ASSOCIATES OF GENERAL TERMS 91

(ii) If ΠA is a closed locality proof of A with root label A : ` ë 1 where

for i � 1; : : : ; n, xi is indexed by mi ë si (with si � 1) and the function

fA�;u
`ë1

: s�
�
sÑ pr�1q

m1
�

�
� : : :�

�
sÑ pr�nqmn

�

�
Ñ pr�q`� is de�ned for a : s by

fA�;u
`ë1
pa; h1; : : : ; hnq

� den
�
A
�;u
`ë1tx

�
1;m1

:� x11; : : : ; x
�
n;mn

:� x1nu
��
gtx11 :� h1; : : : ; x

1
n :� hnu

��
a
�
;

then fA�;u
`ë1

is an associate of fA with respect to xm1 ë 1; : : : ;mn ë 1; `y.
In particular, if A is a closed term and ΠA is a closed locality proof of A

with root label A : ` ë t, then the function�
a ÞÑ denpA�;u

`ë0qpgtu :� auq
�
; if t � 0; or

denpA�;u
`ë1q; if t � 1

is an associate of denpAq with respect to `.

Proof. We prove (i) and (ii) together by induction on the term A and by
appealing to the basic properties of Theorem 2.4.8 just as we appealed to
the Theorem 2.2.9 in the proof of the corresponding Theorem 4.2.2. In fact,
the proof is basically a direct generalization of that of Theorem 4.2.2, and
we include the details only for the sake of completeness.

For each term A, the associate of A in this proof, unless a locality proof
is explicitly given, is considered with respect to the locality proofs used in
Proposition 4.3.1. It will be also useful to use the following abbreviations:

gtxi :� fiu � gtx1 :� f1; : : : ; xn :� fnu

gtx1i :� hiu � gtx11 :� h1; : : : ; x
1
n :� hnu

(1) A � c. Then, fcpf1; : : : ; fnq � c. If t � 1,

f
c
�;u
`ët
pa; h1; : : : ; hnq � denpc�` qpgtx

1
i :� hiuqpaq � c`�paq;

and, if t � 0,

f
c
�;u
`ët
pa; h1; : : : ; hnq � denpc�` rusqpgtx

1
i :� hi; u :� auq � c`�paq:

Thus, by Corollary 2.4.9, in both cases f
c
�;u
`ët

is an associate of fc with respect

to xm1 ë s1; : : : ;mn ë sn; `y.
(2) A � x. Suppose that for some j, xj � x and Πx � x : mj ë sj .

fxpf1; : : : ; fnq � denpxqpgtxi :� fiuq � fj :

92 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

If sj � 1 and hj : sÑ pr�jqmj

� ,

fpxq�;umjë1
pa; h1; : : : ; hnq � denpx�mj

tx�mj
:� x1juqpgtx

1
i :� hiuuqpaq � hjpaq

and, if sj � 0 and hj : pr�jqmj

� ,

fpxq�;umjë1
pa; h1; : : : ; hnq

� denpx�mj
rustx�mj

rus :� x1juqpgtx
1
i :� hi; u :� auuq � hj :

By case (i) of Theorem 2.4.8, in both cases fpxq�;umjësj

is an associate of fx

with respect to xm1 ë s1; : : : ;mj ë sj ; : : : ;mn ë sn;mjy.
(3) A � BpCq. Suppose that the free variables of B and C are in the list

x1 : r�1; : : : ; xn : r�n.
fBpCqpf1; : : : ; fnq � fBpf1; : : : ; fn; fCpf1; : : : ; fnqq:

If t � 0 and t0 � 0,

fpBpCqq�;uΠBpCq

pa; h1; : : : ; hnq

� denpB�;u
ΠB
tpx1q

�;u
m1ës1

:� x11; : : : ; pxnq
�;u
mnës1

:� x1nuqpgtx
1
i :� hi; u :� auq�

denpC�;u
ΠC
tpx1q

�;u
m1ës1

:� x11; : : : ; pxnq
�;u
mnës1

:� x1nuqpgtx
1
i :� hi; u :� auq

�
�

$&%fB�;u
ΠB

�
a; h1; : : : ; hn; fC�;u

ΠC

pa; h1; : : : ; hnq
	
; if t1 � 0;

fB�;u
ΠB

�
pa; h1; : : : ; hn;

�
a ÞÑ fC�;u

ΠC

pa; h1; : : : ; hnq
�	
; if t1 � 1;

if t � 0 and t0 � 1,

fpBpCqq�;uΠBpCq

pa; h1; : : : ; hnq

�

$&%
�
a ÞÑ fB�;u

ΠB

pa; h1; : : : ; hnq
	�

a; fC�;u
ΠC

pa; h1; : : : ; hnq
	
; if t1 � 0;�

a ÞÑ fB�;u
ΠB

pa; h1; : : : ; hnq
	�

a;
�
a ÞÑ fC�;u

ΠC

pa; h1; : : : ; hnq
�	
; if t1 � 1;

if t � 1 and t0 � 0,

fpBpCqq�;uΠBpCq

pa; h1; : : : ; hnq

�

$&%fB�;u
ΠB

pa; h1; : : : ; hn; fC�;u
ΠC

pa; h1; : : : ; hnqq; if t1 � 0;

fB�;u
ΠB

�
a; h1; : : : ; hn;

�
a ÞÑ fC�;u

ΠC

pa; h1; : : : ; hnq
��
; if t1 � 1;

4.3. FORMAL ASSOCIATES OF GENERAL TERMS 93

and �nally, if t � 1 and t0 � 1,

fpBpCqq�;uΠBpCq

pa; h1; : : : ; hnq

�

$&%
�
a ÞÑ fB�;u

ΠB

pa; h1; : : : ; hnq
	�

a; fC�;u
ΠC

pa; h1; : : : ; hnq
	
; if t1 � 0;�

a ÞÑ fB�;u
ΠB

pa; h1; : : : ; hnq
	�

a;
�
a ÞÑ fC�;u

ΠC

pa; h1; : : : ; hnq
�	
; if t1 � 1:

By induction hypothesis, fB�;u
ΠB

is an associate of fB with respect to xm1 ë

s1; : : : ;mn ë sn; `1 ë t1; `2y and fC�;u
ΠC

is an associate of fC with respect

xm1 ë s1; : : : ;mn ë sn; `1y. Thus, by the composition case in Theorem 2.4.8,
in all four cases the function fpBpCqq�;uΠBpCq

is an associate of fBpCq with respect

to xm1 ë s1; : : : ;mn ë sn; `2y.

Notice again that the hypotheses of the composition case in Theorem 2.4.8
are met due to Proposition 3.2.7.

(4) A � �pvqpBq. Suppose that the free variables of B are in the list
x1 : r�1; : : : ; xn : r�n; v : r�.

f�pvqpBqpf1; : : : ; fnq �
�
f ÞÑ fBpf1; : : : ; fn; fq

�
:

If t � 0 and t1 � 1,

fp�pvqpBqq�;uΠ�pvqB

pa; h1; : : : ; hnq

� den
�
�pv1qB�;u

ΠB
puqtv�;u`0ët0

:� v1; px1q
�;u
m1ës1

:� x11; : : : ; pxnq
�;u
mnës1

:� x1nu
��

gtx1i :� hi; u :� au
�

�
�
h ÞÑ den

�
B
�;u
ΠB
puqtv�;u`0ët0

:� v1; px1q
�;u
m1ës1

:� x11; : : : ; pxnq
�;u
mnës1

:� x1nu
�

�
gtx1i :� hi; u :� a; v1 :� hu

�	
;

�
�
h ÞÑ

�
b ÞÑ fB�;u

ΠB

pb; h1; : : : ; hn; hq
�
paq

	
:

94 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

If t � 0 and t1 � 0,

fp�pvqpBqq�;uΠ�pvqB

pa; h1; : : : ; hnq

� den
�
�pv1qB�;u

ΠB
tv�;u`0ët0

:� v1; px1q
�;u
m1ës1

:� x11; : : : ; pxnq
�;u
mnës1

:� x1nu
��

gtx1i :� hi; u :� au
�

�
�
h ÞÑ den

�
B
�;u
ΠB
tv�;u`0ët0

:� v1; px1q
�;u
m1ës1

:� x11; : : : ; pxnq
�;u
mnës1

:� x1nu
�

�
gtx1i :� hi; u :� a; v1 :� hu

�	
�

�
h ÞÑ fB�;u

ΠB

pa; h1; : : : ; hn; hq
	
:

and if t � 1, similarly,

fp�pvqpBqq�;uΠ�pvqB

pa; h1; : : : ; hnq

�

$&%
�
b ÞÑ

�
h ÞÑ

�
b ÞÑ fB�;u

ΠB

pb; h1; : : : ; hn; hq
�
pbq

�	
paq; if t1 � 1;�

b ÞÑ
�
h ÞÑ fB�;u

ΠB

pb; h1; : : : ; hn; hq
�	
paq if t1 � 0:

By induction hypothesis, the function fB�;u
ΠB

is an associate of fB with re-

spect to xm1 ë s1; : : : ;mn ë sn; `y and, thus, by the �-abstraction case in
Theorem 2.4.8, the function fp�pvqpBqq�;uΠ�pvqB

is an associate of f�pvqpBq with

respect to xm1 ë s1; : : : ;mn ë sn; `0 ë t0; `y.

(5) A � A0 where tp1 :� A1; : : : ; pk :� Aku. Suppose that the free
variables of A are in the list x1; : : : ; xn and thus, the free variables of each
Aipi � 1; : : : ; kq are in the list x1; : : : ; xn; p1; : : : ; pk.

fApf1; : : : ; fnq � fA0pf1; : : : ; fn; P1; : : : ; Pkq;

where for i � 1; : : : ; k, each

Pi � fPipf1; : : : ; fnq

is de�ned by recursion on the rankppiq:

Pi � fAi
pf1; : : : ; fn; Pr1 ; : : : ; Prmq

where pr1 ; : : : ; prm are the variables with rank rankppiq (see also Sec-
tion 1.5.1).

4.3. FORMAL ASSOCIATES OF GENERAL TERMS 95

On the other hand, since A and A0 have the same output index, whether
t0 � 0 or t0 � 1,

fA�;u
ΠA

pa; h1; : : : ; hnq � fpA0q
�;u
ΠA0

pa; h1; : : : ; hn; Q1; : : : ; Qmq

where, in each case, h1; : : : ; hn may be of di�erent types and Qi is de�ned
recursively on the rankpqiq by

Qi � fQi
pa; h1; : : : ; hnq � fpAiq

�;u
`iëti

pa; h1; : : : ; hn; Qr1 ; : : : ; Qrmq:

It is important to notice again here that by Proposition 4.3.1, for i � 1; : : : ; k,
rankppiq � rankpqiq.

The proof is concluded by an easy induction on the rankppiq, using the
composition case of Theorem 2.4.8, according to which for i � 1; : : : ; k, fQi

is an associate of fPi with respect to `i. Notice that the restriction of the
Theorem is guaranteed by Proposition 3.2.7. %

Finally, the following lemma generalizes Lemma 4.2.3 of the previous
section.

Lemma 4.3.3. If A : r� is an irreducible term and ΠA is a closed locality

proof of A with root label A : ` ë t, then the term A
�;u
ΠA

is an irreducible term.

Proof. The proof is by a straightforward, but rather tedious, induction on
A. %

96 CHAPTER 4. FORMAL ASSOCIATES OF TERMS

Chapter 5

Algorithmic Factual Content

The aim of the work presented in this thesis is to de�ne in the Theory of Ref-
erential Intensions a notion of structural meaning which represents what a
sentence communicates about the world at a particular context of reference.
A key idea of the approach adopted here was to study the locality behavior

of objects which is coded by closed locality input indices. In Chapter 2, we
showed that if an object f : r� has an associate with respect to a closed lo-
cality input index ` of its type, then its behavior is characterized completely
by it. In Chapter 3, we described the locality behavior of state-dependent
terms of L�ar with the use of the closed locality proofs and showed that for
any term A, its locality behavior is determined by the locality behavior of
the constants that occur in it. The main technical result of the thesis was
also presented in this chapter: for every term A, there is a most local closed
locality proof. To be more precise, for every term A such that the locality
behavior of the constants that occur in it is \described in a canonical way"
(by a generic locality proof schema), there is a behavior of the denotation
of A based on which its computation at a state uses the values of the deno-
tations of the subterms at that particular state as much as possible. Then,
in Chapter 4, for any term A and a closed locality proof of A, we de�ned
formally with the use of the associate transformation in an extension of L�ar
the associate of A with respect to the given locality proof.

In this last chapter of the thesis, we use the formal associate of a term A

with respect to its most local locality proof at a state a to de�ne the factual
content of A at a (Section 5.1). We also de�ne factual synonymy and we
use examples to shed some light on the role of the newly introduced notion
of meaning in natural language semantics. In Section 5.2, we compare the
proposed notions with the corresponding ideas in the Logic of Demonstra-

97

98 CHAPTER 5. ALGORITHMIC FACTUAL CONTENT

tives and �nally, in Section 5.3, we present some ideas about future work in
this area.

5.1 Factual Canonical Form and Factual Synonymy

In L�ar, local meaning and local synonymy are de�ned only for terms of typert, that is, terms that render natural language sentences (Section 1.5.2). We
de�ne here analogously factual content for all terms of type A : r�0 and we
use it to investigate the synonymy of utterances.

De�nition 5.1.1. (Factual Content of a Term A : r�0 at a State a) Let
A : r�0 and a state a : s in L�ar be such that

Añcf A0 where tp1 :� A1; : : : ; pn :� Anu:

If ΠA is the most local locality proof of cfpAq with root label cfpAq : l ë 0,
then the factual canonical form of A at state a is

fcfpA; āq :� pcfpAqq�;āΠA

and the factual content of A at state a is the referential intension of the
factual canonical form of A at a, that is,

Factual Content of A at state a :� intpfcfpA; āqq:

As usual, we will use the factual canonical form of A at a state a to talk
about its factual content syntactically.

Naturally enough, the factual canonical form of a local term A : r�0 at
state a is simply

fcfpA; āq :� pcfpAqq�;ā:

Also, by Lemma 4.3.3, the term pcfpAqq�;āΠA
is irreducible and thus, its canon-

ical form is congruent to it.
Second, notice that for any term A : r�, the output index of the root label

of its most local locality proof is 0. (It follows easily since, by induction
on A, it can be showed that if A has a closed locality proof with root label
` ë 1, then there is also a closed locality proof of A with root label ` ë 0.)

The notion of factual synonymy is de�ned naturally as referential syn-
onymy between factual canonical forms.

De�nition 5.1.2. (Factual Synonymy) For any two terms A : r�0 and
B : r�0, A at state a is factually synonymous with B at state b if and only if

fcfpA; āq ≈ fcfpB; b̄q:

5.1. FACTUAL CANONICAL FORM AND FACTUAL SYNONYMY 99

Example 5.1.3. Consider the famous puzzle, discussed in [22], about the
two utterances `He is Scott' and `Scott is Scott' at a state where indeed `he'
and `Scott' refer to the same person. We assume a local constant id : re�reÑ rt
that stands for equality between terms of type re, and thus, the two sentences
are rendered in L�ar by the local terms

idphe; Scottq and idpScott; Scottq:

Their respective factual contents at state a where hepaq � Scottpaq, are
de�ned by the corresponding canonical forms and their factual synonymy
follows easily.

id�rāspp; qq where tp :� he�rās; q :� Scott�rāsu

≈ id�rāspp; qq where tp :� Scott�rās; q :� Scott�rāsu:

Notice that in determining factual synonymy only the values of the deno-
tations of he and Scott at that particular state are used exactly because
the corresponding constants are local. The two utterances communicate the
same fact about the world which explains why we expect someone to treat
them as \synonymous".

On the other hand, their factual synonymy rests on an equivalence be-
tween two denotations (he�rās � Scott�rās) and goes beyond the knowledge
of the language. It requires knowledge of the external (disguised) world which
explains the possibility of having di�erent attitudes towards them | for ex-
ample, believing one and disbelieving the other. In [22], it is also explained
that these two sentences which, of course, are not referentially synonymous,
are also not locally synonymous at a

idpp1; q1qpāq where tp1 :� he; q1 :� Scottu

�≈ idpp1; q1qpāq where tp1 :� Scott; q1 :� Scottu:

This simple example shows that the factual content of an utterance cannot be
the object of belief although as a notion of situated meaning it is an obvious
candidate. In [22] and [13], it is suggested that maybe local meanings are
more suitable for that. It is more important though to point out the fact that
in L�ar there are now two notions of situated meaning that express a di�erent
algorithm of computation of the denotation of a term at a state and thus,
can possibly contribute to our understanding of propositional attitudes in
general.

100 CHAPTER 5. ALGORITHMIC FACTUAL CONTENT

.
former : xxl ë 0y ë 1; l ë 0y ë 0 p1 : xl ë 0y ë 1

formerpp1q : xl ë 0y ë 0 p2 : l ë 0
formerpp1; p2q : l ë 0 minister : xl ë 0y ë 1 John : l ë 0

formerpp1; p2q where tp1 :� minister; p2 :� Johnu : l ë 0

Figure 5.1: The most local locality proof of cfpformerpminister; Johnqq.

Example 5.1.4. Consider another example with the indexical `he' and the
adjective `former', whose locality behavior we explained many times (Ex-
amples 2.3.1 and 3.2.10), in the two utterances `John is a former minister'
and `He is a former minister' at a state a where Johnpaq � hepaq. The most
local locality proof of the canonical form of formerpminister; Johnq is shown in
Figure 5.1. The most local proof of the canonical form of formerpminister; heq
is completely analogous and thus, it follows that

former�xxlë0yë1;lë0yrāspp; qq where tp :� minister�xlë0y; q :� John�l rāsu

≈ former�xxlë0yë1;lë0yrāspp; qq where tp :� minister�xlë0y; q :� he�l rāsu:

These two utterances are not locally synonymous but the factual syn-
onymy result agrees again with our intuition that these two utterances con-
vey the same information about the world. Examples involving indexical
expressions are very useful in motivating the need of factual synonymy and
in what follows we will investigate another one.

Example 5.1.5. We formulate in L�ar the simple Fregean example that we
have already mentioned in Section 1.1 which involves the indexical expres-
sions `Yesterday' and `Today'. An utterance of `It is raining today' at a
particular day, at state a, will be reported as `It rained yesterday' the next
day, at state b. The corresponding terms in L�ar and their canonical forms
are shown below1.

Yesterdaypit rainsq ñcf Yesterdayppq where tp :� it rainsu

Todaypit rainsq ñcf Todayppq where tp :� it rainsu

The most local locality proof of `It rained yesterday' is shown in Fig-
ure 5.2. Under the assumption that the constant Today has also only the

1The constants Yesterday : rt Ñ rt and Today : rt Ñ rt are treated in this example as
sentential operators (see also the treatment of `Yesterday' in Sections 1.6 and 5.2).

5.1. FACTUAL CANONICAL FORM AND FACTUAL SYNONYMY 101

Yesterday : xl ë 1y ë 0 p : l ë 1
Yesterdayppq : l ë 0 it rains : l ë 1
Yesterdayppq where tp :� it rainsu : l ë 0

Figure 5.2: The most local closed locality proof of the canonical form of
Yesterdaypit rainsq.

closed locality index xl ë 1y, then the corresponding proof of the canoni-
cal form of `It is raining today' is exactly the same if we simply replace the
constant Yesterday with Today. The two utterances are factually synonymous

Yesterday�xlë1yrb̄spp
1q where tp1 :� it rains�l u

≈ Today�xlë1yrāspp
1q where tp1 :� it rains�l u

provided that

|ù Yesterday�xlë1yrb̄spp
1q � Today�xlë1yrāspp

1q

which follows since by the natural interpretation of these constants

|ù Yesterdaypp1qpb̄q � Todaypp1qpāq:

On the other hand, if we consider that the constant Today is local, then
the two utterances are not synonymous. Notice that the two utterances are
locally synonymous.

In general, reported speech, as in the example above, is a phenomenon
that we are tempted to analyze with the use of factual synonymy. No-
tice though that, factual synonymy (like referential and local synonymy) is
structural which means that a sentence in reported speech will be factually
synonymous with the original one only if its constituent parts are reported
accordingly.

Example 5.1.6. We end this series of examples with the famous Partee
example ([18]) which we try to analyze with the use of locality as explained
here. The canonical form of the sentence `The temperature is ninety and
rising' is

�pxq
�
andprisepxq; ninetypxqq

�
ptheptempqq

ñcf �pxq
�
andpr1pxq; r2pxqq

�
ppq where

r1 :� �pxqrisepxq;

r2 :� �pxqninetypxq;

p :� thepqq; q :� temp
(
:

102 CHAPTER 5. ALGORITHMIC FACTUAL CONTENT

and : xl ë 0; l ë 0y ë 0
r1 : xl ë 1y ë 0 x : l ë 1

r1pxq : l ë 0
andpr1pxqq : xl ë 0y ë 0

r2 : xl ë 1y ë 0 x : l ë 1
r2pxq : l ë 0

andpr1pxq; r2pxqq : l ë 0
�pxq

�
andpr1pxq; r2pxqq

�
: xl ë 1y ë 0 p : l ë 1

ΠA0 :
�pxq

�
andpr1pxq; r2pxqq

�
ppq : l ë 0

rise : xl ë 1y ë 0 x : l ë 1
risepxq : l ë 0ΠAr1

:
�pxqrisepxq : xl ë 1y ë 0

ninety : xl ë 1y ë 0 x : l ë 1
ninetypxq : l ë 0ΠAr2

:
�pxqninetypxq : xl ë 1y ë 0

the : xxl ë 0y ë 1y ë 0 q : xl ë 0y ë 1
ΠAp :

thepqq : l ë 1 ΠAq : temp : xl ë 0y ë 1

ΠA0 ΠAr1
ΠAr2

ΠAp ΠAq

A

Figure 5.3: The most local closed locality proof of the term A �
cf
�
�pxq

�
andprisepxq; ninetypxqq

�
ptheptempqq

�
.

Its most local closed locality proof (Figure 5.3) is shown here in order to
make clear how the coordination of rise and ninety forces the use of the index
xl ë 1y of the local constant ninety (see also Example 3.2.6). Its factual
content at a state a is

�px1q
�
and�xlë0;lë0yrāspr

1
1px

1q; r12px
1q
�
pp1q

where

r11 :� �px1qrise�xlë1yrāspx

1q;

r12 :� �px1qninety�xlë1yrāspx
1q;

p1 :� �puqthe�xxlë0yë1yruspq
1q;

q1 :� temp�xlë0y

(
:

Thus, its factual content at any state a depends on the associate of the
subterm theptempq and not just its value at a. This is entailed here by the
analysis of the locality behavior of the particular sentence; it is not imposed
by choices made in rendering the sentence formally.

5.2. FACTUAL CONTENT AND LD 103

The analysis of the locality behavior of the sentence `The temperature is
ninety and it is rising' if we use co-indexing as in [22] will give completely
analogous results for the subterm theptempq.

The temperature is ninety and it is rising
render

ÝÝÝÑ andpp; qq where tp :� ninetypp1q; q :� risepp1q;

p1 :� thepp2q; p2 :� tempu:

On the other hand, the analysis of the locality behavior of the sentence
`The temperature is ninety and the temperature is rising' considers the two
occurrences of the subterm theptempq independently.

andpninetyptheptempqq; riseptheptempqqq

ñcf andpp; qq where tp :� ninetypp1q; q :� risepq1q; p1 :� thepp2q; p2 :� temp;

q1 :� thepq2q; q2 :� tempu:

In the most local locality proof of this term the subterm theptempq has di�er-
ent locality output indices. In general, a constant that occurs in two places
in a term A may have a di�erent locality index in each of its occurrences in
the most local locality proof of A.

5.2 Factual Content and the Logic of Demonstra-

tives

In this brief section, we examine some examples that were mentioned already
in Section 1.4 where the Logic of Demonstratives was introduced. It is in-
teresting to compare the treatment of these examples in L�ar with that in Ty2
which was presented in Section 1.6.

Example 5.2.1. Consider the utterance `I was insulted yesterday' at two
states a and b where the agent di�ers. Kaplan correctly argues that the cor-
responding utterances don't have the same Content at these states, although
their denotations might be the same.

In L�ar, the canonical form of the term that renders the sentence is

Yesterday1pbe insulted; Iq ñcf Yesterday1pp; qq where tp :� be insulted; q :� Iu

and its factual canonical form at a state a computed by its most local locality
proof shown in Figure 5.4 is

pYesterday1q
�
xxlë0yë1;lë0yrāspp

1; q1q where tp1 :� be insulted�xlë0y; q
1 :� I�l rāsu:

104 CHAPTER 5. ALGORITHMIC FACTUAL CONTENT

Yesterday1 : xxl ë 0y ë 1; l ë 0y ë 0 p : xl ë 0y ë 1
Yesterday1ppq : xl ë 0y ë 0 q : l ë 0

Yesterday1pp; qq : l ë 0 be insulted : xl ë 0y ë 1 I : l ë 0
Yesterday1pp; qq where tp :� be insulted; q :� Iu : l ë 0

Figure 5.4: The most local closed locality proof of the canonical form of
Yesterday1pinsulted; Iq.

It is straightforward that if * I�l rās � I�l rb̄s, then

pYesterday1q
�
xxlë0yë1;lë0yrāspp

1; q1q where tp1 :� be insulted�xlë0y; q
1 :� I�l rāsu

�≈ pYesterday1q
�
xxlë0yë1;lë0yrb̄spp

1; q1q where tp1 :� be insulted�xlë0y; q
1 :� I�l rb̄su:

It can be shown that these two utterances are never locally synonymous if a
is not equal to b.

Example 5.2.2. Now, consider a state a where the date is the 21st April
1973 and the agent is the individual denoted by the name `David Kaplan'.
Then the utterance of `I was insulted yesterday' at state a is factually syn-
onymous with the utterance of `David Kaplan is insulted on 20 April 1973'
at any state b, provided that the constant DavidKaplan�l denotes at b the
same individual,

pYesterday1q
�
xxlë0yë1;lë0yrāspp

1; q1q where tp1 :� be insulted�xlë0y; q
1 :� I�l rāsu

≈ pon20April1973q�xxlë0yë1;lë0yrb̄spp
1; q1q where

tp1 :� be insulted�xlë0y; q
1 :� DavidKaplan�l rb̄su:

Kaplan argues that naturally, these two sentences do not have the same
Character. In L�ar, these two terms are not referentially synonymous but also
the two utterances at state a and b respectively are not locally synonymous.
Thus, the remark of Kaplan that `I was insulted yesterday' at a \...will have
a content roughly equivalent to..." ([14]) the utterance of `David Kaplan is
insulted on 20 April 1973' at any state is made here completely precise.

Finally, we have to point out again the fact that in the Theory of Referen-
tial Intensions both factual content and local meaning are structural notions
of meaning. Thus, the utterance of `I was insulted yesterday' at state a won't
be factually synonymous with any utterance of `The man with the grey hat
was insulted yesterday' at the same state even when the agent happens to
be the only man present who wears a grey hat.

5.3. FUTURE WORK 105

5.3 Future Work

The Theory of Referential Intensions provides a mathematical framework of
natural language semantics which is now equipped with an additional notion
of situated meaning | the factual content. There are various aspects of
it that are interesting enough to be investigated further and thus, help us
understand better natural language phenomena.

First, the factual content of a term A at a state a is de�ned with the
use of the formal associate of the canonical form of A rather than the formal
associate of A itself. If A is a local term, it can be shown that the canonical
form of the local associate term of A at a state a is congruent with the local
associate term of the canonical form of A at a. In the general case, it is
a matter of further investigation to establish the exact relation of the two
terms. Part of the complication of this task is the comparison between the
most local closed locality proof of A and the most local locality proof of the
canonical form of A.

Second, consider two terms A and B that render natural language sen-
tences. If they are referentially synonymous, then they are locally synony-
mous at any state a (see also [13] for analogous results in L

�;G
ar). The question

whether the two terms are also factually synonymous at any state a is not
straightforward to answer. The factual content as it is de�ned here expresses
an algorithm that is based on the most local interpretation of the parts of a
term. On the other hand, local meaning expresses a di�erent algorithm that
computes the same object but does not make any kind of assumption on the
locality behavior of the parts of the term. Thus, the question is really more
complicated, and at the same time, more interesting, than it appears at �rst
sight.

Third, one can investigate the role of the meaning that is de�ned by
considering the function over states of the factual content of a term A at a
state and how it is related to the global meaning originally de�ned in L�ar.

Finally, we think that the notion of locality that is introduced here and
the analysis with respect to it that is accomplished by the most local locality
proof of a sentence can be a useful tool in understanding oblique contexts
and related compositionality issues.

106 CHAPTER 5. ALGORITHMIC FACTUAL CONTENT

Bibliography

[1] Rudolf Carnap. Meaning and Necessity. The University of Chicago
Press, second edition, 1956. First Edition in 1947.

[2] David D. Dowty, Robert E. Wall, and Stanley Peters. Introduction to

Montague semantics. D. Reidel Publishing Company, 1981.

[3] Gottlob Frege. Funktion und Begri�. Address given to the Jenaische

Gesellschaft f�ur Medizin und Naturwissenschaft, Jena, January 9, 1891.
English translation by P. T. Geach as `Function and Concept' in [9].

[4] Gottlob Frege. Die Grundlangen der Arithmetik: eine logisch-

mathematische Untersuchung �uber den Begri� der Zahl. Breslau: W.
Koebner, 1884.

[5] Gottlob Frege. �Uber Begri� und Gegenstand. Vierteljahrsschrift f�ur

wissenschaftliche Philosophie, 16:192{205, 1892. English translation by
P. T. Geach as `On Concept and Object' in [9].

[6] Gottlob Frege. �Uber Sinn und Bedeutung. Zeitschrift f�ur Philosophie

und philosophische Kritik, 100:25{50, 1892. English translation by M.
Black as `On Sense and Meaning' in [9].

[7] Gottlob Frege. Der Gedanke - Eine logische Untersuchung. Beitr�age zur
Philosophie des deutschen Idealismus I, pages 58{77, 1918-1919. English
translation by P. Geach and R. H. Stootho� as `Thoughts', Reprinted
in [25].

[8] Daniel Gallin. Intensional and higher-order modal logic (With applica-

tions to Montague semantics). Number 19 in North-Holland Mathemat-
ical Studies. North-Holland, 1975.

[9] P. Geach and M. Black, editors. Translations from the philosophical

writings of Gottlob Frege. Basil Blackwell, third edition, 1980.

107

108 BIBLIOGRAPHY

[10] Irene Heim and Angelika Kratzer. Semantics in Generative Grammar.
Blackwell, 1998.

[11] Theo M.V. Janssen. Frege, Contextuality and Compositionality. Jour-
nal of Logic, Language, and Information, 10:115{136, 2001.

[12] Eleni Kalyvianaki. Factual content in algorithmic natural language se-
mantics. In Ville Nurmi and Dmitry Sustretov, editors, Proceedings of
the Twelfth ESSLLI Student Session, 2007.

[13] Eleni Kalyvianaki and Yiannis N. Moschovakis. Two aspects of situ-
ated meaning. In Fritz Hamm and Stephan Kepser, editors, Logics for
Linguistic Structures. DeGruyter, To appear.

[14] David Kaplan. On the logic of demonstratives. Journal of Philosophical
Logic, 8:81{98, 1978. Reprinted in [25].

[15] David Kaplan. Demonstratives An Essay on the Semantics, Logic, Meta-
physics, and Epistemology of Demonstratives and Other Indexicals &
Afterthoughts. In Joseph Almog, John Perry, and Howard Wettstein,
editors, Themes from Kaplan, pages 481{614. Oxford University Press,
1989.

[16] Richard Montague. English as a formal language. In Bruno Visentini
et al., editor, Linguaggi nella Societ�a e nella Tecnica, pages 189{224.
Milan, Edizioni di Comunit�a, 1970. Reprinted in [19].

[17] Richard Montague. Universal grammar. Theoria, (36):373{398, 1970.
Reprinted in [19].

[18] Richard Montague. The proper treatment of quanti�cation in ordinary
english. In J. Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches
to Natural Language: Proceedings of the 1970 Stanford Workshop on

Grammar and Semantics, pages 221{242. Dordrecht, D. Reidel Pub-
lishing Company, 1973. Reprinted in [19].

[19] Richard Montague. Formal Philosophy: Selected papers by Richard

Montague. Richmond H. Thomason (editor), Yale Universiy Press, 1974.

[20] Yiannis N. Moschovakis. Sense and denotation as algorithm and value.
In J. V�a�an�anen and J. Oikkonen, editors, Logic Colloquium '90, vol-
ume 2 of Lecture Notes in Logic, pages 210{249, 1994.

BIBLIOGRAPHY 109

[21] Yiannis N. Moschovakis. What is an algorithm? In B. Engquist and
W. Schmid, editors, Mathematics unlimited | 2001 and beyond, pages
919{936. Springer, 2001.

[22] Yiannis N. Moschovakis. A logical calculus of meaning and synonymy.
Linguistics and Philosophy, 29:27{89, 2006.

[23] Francis Je�ry Pelletier. Did Frege believe Frege's principle? Journal of

Logic, Language, and Information, 10:87{114, 2001.

[24] Paul Portner and Barbara H. Partee, editors. Formal Semantics: The

essential readings. Blackwell, 2002.

[25] Nathan Salmon and Scott Soames, editors. Propositions and Attitudes.
Oxford University Press, 1988.

[26] Dana Scott. Advice on Modal Logic. In Karel Lambert, editor, Philo-
sophical problems in logic: some recent developments, pages 143{173.
D. Reidel: Dordrecht, Holland, 1970.

110 BIBLIOGRAPHY

Index

IL, intensional logic, 10
�-abstraction, 9
�-calculus, 8
L�ar, 18
LD, logic of demonstratives, 16, 103
LIL, language of intensional logic, 12

acyclic recursion, 19
application, 9

associate, 80
assignment, 10

update, 10
associate

application, 80
term, 87
transformation, 87
transformation, local, 82
type, 44

associate (function), 45
formal, 87
local, 33
formal, 82
preferred, 36

preferred, 48

basic type, 8

canonical form, 21
factual, 98

character, in LD, 17
circumstance, possible, 16
closed

locality index, 40

locality input index, 40
locality output index, 40
locality proof, 58
term, 9

compositionality principle, 1
congruence, 19
constant, 9
constant, (locality) index, 40
content

factual, 2, 98
in LIL, 28

in LD, 17
context

of evaluation, 16
of utterance, 16
principle, 7

declarative sentence, 6
demonstrative, 16

logic of, LD, 16, 103
denotation, 6, 10

equivalent (set of conditions), 71
evaluation, 42
explicit term, 23
extension, 11

Montague, 14

factual
canonical form, 98
content, 2, 98
in LIL, 28

synonymy, 98

111

112 INDEX

formal natural language semantics, 10
formation tree (of a term), 9

general locality condition, 46
generalized variable, 20, 81
generic

locality index, 42
locality proof schema, 70

global meaning, 21
in LIL, 27

head (of a term), 21

immediate term, 20
index, 11
indexicality, 16
intension, 11

Montague, 14
intensional logic, IL, 10
irreducible term, 21

language of intensional logic, LIL, 12
less than or equal to (locality index),

67
level (of a type), 33
local

associate (function), 33
preferred, 36

associate transformation, 82
closed locality index, 41
meaning, 24
in LIL, 27

synonymy, 24
term, 56

locality, 2, 33
locality condition, 35

general, 46
locality index, 41

closed, 40
input, 40
local, 41

output, 40
standard, 41

constant, 40
generic, 42
less than or equal to, 67
more local than, 67
token, 41
variable, 42

locality proof
closed, 58
standard, 66

more local than, 68, 71
most local, 69, 73
root, 60
schema, 69
generic, 70

logic
intensional, IL, 10
language of intensional, LIL, 12
of demonstratives, LD, 16, 103

meaning, 1
global, 21
in LIL, 27

local, 24
in LIL, 27

metalanguage, 12
more local than

locality index, 67
locality proof, 68, 71

most local locality proof, 69, 73

non local object, 34

object-language, 12
occurrence (of a variable)

bound, 9
free, 9

operator
extension, 10
intension, 10

INDEX 113

part (of a term), 21
preferred

associate (function), 48
local associate (function), 36

proper term, 20
pure type, 31
pure variable, 18

recursion, acyclic, 19
recursive construct, 19
recursive variable, 18
recursor, 21
reduction, 21

calculus, 22
rules, 21

reference, 1
referential

intension, 2, 20, 21
synonymy, 23

render, 14
root (of a locality proof), 60

semantics, formal natural language,
10

sense, 6
sentence, 6

declarative, 6
standard

closed locality index, 41
closed locality proof, 66

state, 11
state-dependent type, 32
state-description, 11
subproof, 60
substitution, 42
synonymy

factual, 98
local, 24
referential, 23

term, 8

associate, 87
closed, 9
explicit, 23
factually synonymous, 98
formation tree of, 9
immediate, 20
irreducible, 21
local, 56
locally synonymous, 24
proper, 20
referentially synonymous, 23

theory of referential intensions, 1, 18
token, (locality) index, 41
transformation

associate, 87
local associate, 82

tree, formation (of a term), 9
type, 8

associate, 44
basic, 8
level of, 33
pure, 31
state-dependent, 32

universe, 9

variable, 8
(locality) index, 42
generalized, 20, 81
occurrence
bound, 9
free, 9

pure, 18
recursive, 18

