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Preface

In this dissertation we investigate certain aspects of the formal-
ization and axiomatization of parts of constructive mathematics, and
speci�cally constructive analysis. We give here a general description of
the mathematics formalized in the systems that we study.

Constructivity in mathematics is understood in many ways. The
common feature of all varieties is that, in order to assert that an object
(having certain properties) exists, one has to provide a (mental) con-
struction of it. As is observed in [Troelstra1991], \constructivism as a
speci�c viewpoint emerges in the �nal quarter of the 19th century, and
may be regarded as a reaction to the rapidly increasing use of highly
abstract concepts and methods in mathematics, a trend exempli�ed by
the works of R. Dedekind and G. Cantor".

Kronecker with his �nitistic views, but also the French \empiri-
cists" Baire, Borel, Lebesgue, as well as Poincar�e and others, can all be
considered as precursors of the �rst coherent presentation of the con-
structive standpoint by L. E. J. Brouwer, the founder of intuitionism.

As Brouwer �rst realized and showed, the demand for constructivity
a�ects the logic inherent in mathematical reasoning. Any reasonable
notion of \construction" leads to the rejection of the unrestricted use
of the logical law of the excluded middle, as this law allows existen-
tial assertions by reductio ad absurdum. In this way, objects can be
proved to exist or even de�ned, without any indication of how to �nd
or construct them.

Constructive mathematics can be considered simply as mathematics
with intuitionistic logic, which is just classical logic without the law
of the excluded middle. Clearly this standpoint makes constructive
mathematics just a portion of classical mathematics, which, however,
is not always the case. Constructivity poses serious restrictions to
the development of a satisfactory theory for the real numbers and the
continuum, as it seems to allow a continuum which is only denumerably
in�nite. Thus, a constructive theory for the continuum has always been
the big challenge for constructivists.
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2 PREFACE

Di�erent answers to this question have been given from the various
schools of constructivism. The main three which have made impor-
tant contributions to constructive analysis, are Brouwer's intuitionism
(INT), Markov's Russian Constructive Recursive Mathematics (RUSS)
and Bishop's Constructive Mathematics (BISH). We describe very brie-
y the main tenets of each.

Brouwer's intuitionism rejects the law of the excluded middle for
in�nite sets, as well as the treating of in�nite objects as actual, com-
pleted. It proposes a totally new conception of the constructive contin-
uum, by accepting in�nitely proceeding sequences (of natural numbers
or other already constructed objects) generated by successive arbitrary
choices, the choice sequences, as legitimate objects. So a theory of the
continuum based on the whole classical Baire space, but with intuition-
istic logic, is developed. The way that Brouwer found to treat construc-
tively the choice sequences, is captured by the principles of continuity
and bar induction. Bar induction is a classically correct principle. But
the continuity principle, asserting that every total function on the Baire
space is continuous, contradicts classical mathematics. So the resulting
theory of the continuum diverges from the classical one.

In Markov's Russian recursive mathematics, the objects of math-
ematics are algorithms �nitely presented. Church's Thesis that every
constructive function is recursive is accepted. Markov's principle, a
logical principle asserting that if an algorithm cannot fail to converge
then it converges, is also assumed.

Bishop's constructive mathematics adopts the standpoint that all
mathematical statements should have numerical meaning. This school
develops mathematics in a neutral way, compatible with all construc-
tive views, but also with classical mathematics (CLASS).

The relation between these varieties is roughly as follows:

BISH ⊆ INT ∩ RUSS ∩ CLASS

Any two of INT, RUSS, CLASS are incompatible.

All the above varieties agree on the following:
· Natural numbers with mathematical induction are accepted as the
undeniable basis for mathematics.
· Integers and rationals are coded by natural numbers.
· The real numbers are represented mostly using Cauchy sequences,
almost like in CLASS, with a constructive interpretation of the notion
of Cauchy sequence. Other representations are possible as in CLASS.

The investigation in all these branches of constructive mathemat-
ics is carried out in a multitude of formal and informal systems and
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languages, whose relationships remain in many aspects unclear. This
problem becomes quite crucial for the development of the relatively
new �eld of constructive reverse mathematics.

In Part 1 we contribute to the endeavor of getting a clearer picture
of this area by establishing precise relationships between widely used
basic formal systems for constructive analysis. The formal systems that
we study here are neutral, they all belong to the common core of all
these varieties of constructive analysis and of classical analysis also.

In all branches of constructive analysis, various forms of choice prin-
ciples, continuity principles and many others are used. Part 2 studies
relations between many of them, in their versions having a unique-
ness condition, a feature from which interesting properties follow, as
well as relations between these principles and non-constructive logical
principles, in the spirit of reverse mathematics.
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CHAPTER 1

Comparison of minimal systems

Introduction

In this chapter we consider particular formal systems of intuitionis-
tic two-sorted arithmetic that are weak, and serve as basis for theories
formalizing parts of various branches of constructive analysis. They
are all classically correct.

The systems we study have common basic features. They are
based on intuitionistic logic and they are formulated in two-sorted �rst-
order languages, with variables for natural numbers and for one-place
number-theoretic functions. The primitives of all these formalisms are
constants for (di�erent selections of) primitive recursive functions and
functionals. They are all theories with equality for natural numbers,
which is assumed decidable. Equality for functions is in all of them
de�ned in terms of number equality. �-abstraction is included in some
of them. The function existence principles assumed are all weak, and
do not involve real choice.

The di�erences in the languages, as well as the interplay between
the possibilities provided by the languages and the assumed (if any)
function existence principles, do not allow, in most cases, to determine
directly how these systems relate to each other. Here we present a way
to establish a precise relationship between the two most widely used
systems among those that we are considering, namely M and EL, and
then apply similar arguments to obtain comparisons in other cases.

1. The formal systems M and EL

1.0.1. Starting with Heyting, intuitionistic logic and arithmetic were
formalized as subsystems of the corresponding classical formal theories
(see [JRM2009]). On the contrary, Heyting's formalization of Brouwer's
set theory (the part of intuitionistic mathematics concerning the con-
tinuum and the real numbers) failed to allow comparison with clas-
sical mathematics. In order to make such a comparison possible, S.
C. Kleene formalized large parts of intuitionistic mathematics, corre-
sponding to mathematical analysis, in the formal system FIM ([FIM]),
whose language is suitable also for classical analysis. Moreover, FIM

7



8 1. COMPARISON OF MINIMAL SYSTEMS

contains a classically correct subsystem, the basic system B, which can
be extended in two, diverging ways: with the addition of the law of
double negation it becomes a system of classical analysis, while with
the addition of the continuity principle (which is incompatible with
classical mathematics), it becomes a system of intuitionistic analysis.

The minimal system M is a proper and substantially weaker sub-
system of B, obtained by omitting bar induction and replacing the
countable choice assumed by B by a function comprehension princi-
ple, which does not involve choice. In the system M, S. C. Kleene
developed formally, with great detail, the theory of recursive partial
functionals. This was a preparatory step towards the formalization of
the function realizability interpretation of FIM within B, by which he
obtained a metamathematical consistency proof, relative to the (clas-
sically correct) system B, of intuitionistic analysis (see [Kleene1969]).

The system of elementary analysis EL [Troelstra1973] has been
developed mostly by A. S. Troelstra, to serve as a formal basis for
intuitionistic analysis. It di�ers fromM in its arithmetical basis and in
the function existence principle it assumes. But likeM, it represents a
classically correct fragment of intuitionistic analysis. It is used in recent
work for the formalization of Bishop's constructive analysis, especially
in relation to the program of Constructive Reverse Mathematics (see
for example [Berger] and [Ishihara]).

1.0.2. M and EL have many similarities:
· Both are based on two-sorted intuitionistic predicate logic with num-
ber and function variables (for one-place number-theoretic functions).
· Both have function and functional constants for (di�erent selections
of) only primitive recursive functions and functionals.
· Both have �-abstraction and function application.
· Both allow de�nition by primitive recursion (although with di�erent
justi�cations).

Their di�erences are of two kinds:
· First, they have di�erences in their languages. M has only �nitely
many function and functional constants, following the paradigm of (the
usual presentation of) Peano arithmetic, while EL has in�nitely many
function constants (not including the functional constants of M), as it
extends the primitive recursive arithmeticPRA; EL has also a recursor
functional (not included in M).
· Second, they assume di�erent function existence principles. M as-
sumes AC00! while EL assumes QF-AC00, which is a consequence of
AC00!.

The two systems were considered more or less equivalent, but their
exact relation was unclear. We have found that EL is essentially weaker
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thanM, and that their di�erence is captured by the function existence
principle CFd, which is a consequence of AC00!, and asserts that every
decidable predicate of natural numbers has a characteristic function.
The schema CFd makes it possible to avoid explicit decidability hy-
potheses in the formulation of various principles and theorems. We
observed that this schema helps to determine the relation between M
and EL. The argument is as follows. We show �rst that the system
EL + CFd entails AC00!, and that EL does not entail CFd. These re-
sults suggest that EL + CFd is essentially equivalent to M, while EL
is weaker than M. In order to establish these suggested relationships,
we have to overcome the di�erences of the languages. So we extend
both systems up to a common language, and we show that the corre-
sponding extensions of EL + CFd andM are conservative and coincide
up to trivial notational di�erences; so we conclude that the suggested
relationships hold indeed.

Both systems have �-abstraction. In [JRMPhD] it is proved that
this mechanism can be omitted fromM, without weakening the system;
we show that the same holds for EL.

1.1. Language and underlying logic.
1.1.1. The underlying logic of both systems is the two-sorted in-

tuitionistic predicate logic with number and function variables. The
languages L(M) and L(EL) have a common part consisting of the
following:

· logical symbols: →; & ;∨;¬; ∀;∃ ;
· punctuation symbols: commas and parentheses ; ( ) ;
· number variables: x, y, z, : : : , intended to range over natural
numbers;

· function variables: �; �; ; : : : , intended to range over one-
place number-theoretic functions (or choice sequences);

· [ the set of individual constants, predicate and function and
functional symbols (constants) of each language extends in dif-
ferent ways a common part; there are also common as well as
di�erent formation rules for the terms (type-0 terms, expres-
sions for natural numbers) and the functors (type-1 terms, ex-
pressions for one-place number-theoretic functions (or choice
sequences)); these will be included in the description of the
non-logical part of the formalisms; ]

· the number equality predicate symbol: = .

The quanti�ers ∀, ∃ are used for both sorts.
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1.1.2. The logical axioms and rules can be introduced in various
ways, for example in a natural deduction or Hilbert-type style. We
give here the logical axioms and rules of inference of the formal system
of [FIM] (which extends that of [IM]), as we will base our treatment
on it.

1a. A→ (B→ A):

1b. (A→ B)→ ((A→ (B→ C))→ (A→ C)):

2. From A and A → B infer B. (modus ponens)

3. A→ (B→ (A & B)):

4a. (A & B)→ A:

4b. (A & B)→ B:

5a. A→ (A ∨ B):

5b. B→ (A ∨ B):

6. (A→ C)→ ((B→ C)→ ((A ∨ B)→ C)):

7. (A→ B)→ ((A→ ¬B)→ ¬A):

8I. ¬A→ (A→ B):

9N. From C → A(x) infer C → ∀xA(x), x not free in C.

10N. ∀xA(x)→ A(t), t a term free for x in A(x).

11N. A(t)→ ∃xA(x), t a term free for x in A(x).

12N. From A(x) → C infer ∃xA(x) → C, x not free in C.

9F. From C → A(�) infer C → ∀�A(�), � not free in C.

10F. ∀�A(�)→ A(u), u a functor free for � in A(�).

11F. A(u)→ ∃�A(�), u a functor free for � in A(�).

12F. From A(�)→ C infer ∃�A(�)→ C, � not free in C.

Classical logic is obtained by replacing axiom-schema 8I by the
schema 8◦ ¬¬A→ A, expressing the double negation law, or, equiva-
lently, by adding the schema A ∨ ¬A, expressing the law of the excluded
middle.
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1.1.3. First-order equality in EL, and in Heyting arithmetic HA
(contained in it as we shall see), is treated as part of the logic. As
equality axioms are taken (the universal closures of) the axiom

REFL x = x

and the replacement schema

REPL A(x) & x = y→ A(y):

In the version of �rst-order arithmetic of [IM], upon which M is
based, these are reduced to a �nite number of simple axioms, given
below, from which REFL and the schema corresponding to REPL are
provable.

1.2. Underlying arithmetic.
1.2.1. The systems M and EL are based on weak systems of two-

sorted intuitionistic arithmetic, IA1 andHA1, respectively. Both weak
theories are based on the two-sorted intuitionistic predicate logic that
we described; they are extensions of corresponding versions of �rst-
order intuitionistic arithmetic: IA0, the version of [IM], by S. C.
Kleene, and Heyting arithmetic HA, as presented in [TvDI]. The
di�erence between IA0 and HA is that the �rst one is based on a �-
nite selection of initial functions (has the constants 0; ′;+; · ), while the
second has in�nitely many function symbols, for all the primitive recur-
sive functions; we will consider, more precisely, that it has one function
symbol for each primitive recursive description. These two ways of for-
malizing �rst-order arithmetic do not di�er essentially; it is well-known
(see [IM], §74, for a detailed proof) that if 0; ′;+; · are contained in
the formalism, then the addition of function symbols for primitive re-
cursive functions leads to de�nitional, and so inessential extensions.
We note that (any version of) intuitionistic �rst-order arithmetic is a
subtheory of classical �rst-order arithmetic; the formulation of IA0 is
similar to the usual formulation of classical Peano arithmetic PA.

1.2.2. IA0 is based on �rst-order intuitionistic predicate logic. Be-
sides the logical symbols, its language L(IA0) contains the predicate
constant = (equality), the individual constant 0 (zero), the unary func-
tion constant ′ (successor), and the binary function constants + (ad-
dition) and · (multiplication).

Terms are de�ned inductively, as usual:
· the constant 0 and the (number) variables are terms,
· if s, t are terms, then s′; (s+ t); (s · t) are terms.

The prime formulas are the equalities of terms: if s, t are terms,
then s = t is a (prime) formula.
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The mathematical axioms of IA0 are:

13: A(0) & ∀x (A(x)→ A(x′))→ A(x): (IND)

14: x′ = y′ → x = y:

15: ¬ x′ = 0:

16: x = y→ (x = z→ y = z):

17: x = y→ x′ = y′:

18: x+ 0 = x:

19: x+ y′ = (x+ y)′:

20: x · 0 = 0:

21: x · y′ = x · y + x:

Axiom-schema 13 expresses the principle of mathematical induc-
tion; we will refer to it as IND.

Peano arithmetic PA is IA0 + ¬¬A→ A.
1.2.3. Heyting arithmeticHA di�ers from IA0 in the set of function

constants contained in its alphabet. Its language L(HA) has a constant
0 (zero), a unary function constant S (successor) and one function
constant for each primitive recursive description, so it has countably
in�nitely many function constants h0; h1; h2; : : :.

The term formation rules are adapted accordingly:
· the constant 0 and the (number) variables are terms,
· if t1; : : : ; tk are terms and h a k-place function constant,
then h(t1; : : : ; tk) is a term.
The mathematical axioms ofHA are the axiom-schema of induction

IND, the axiom
¬S(0) = 0;

and de�ning axioms for the function constants, which consist of the
equations expressing the corresponding primitive recursive descriptions.

Example. The de�ning axioms for the binary constant + (addition)
are: x+ 0 = x; x+ S(y) = S(x+ y).

1.2.4. IA1 is described as follows. Its language L(IA1)
1 has the

(�nitely many) function and functional constants f0; : : : fp, where each
fi (i = 0; : : : ; p) has ki number arguments and li function arguments.
All of them express functions primitive recursive in their arguments
(under the intended interpretation). According to the needs of the de-
velopment of the theory, a di�erent selection of which functions are
included in the alphabet may be done, in agreement with the intu-
itionistic view that no formal system can exhaust the possibilities of

1We note that L(IA1) is L(M):
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mathematical activity. The particular formal system that we are con-
sidering, namelyM, contains the 27 function(al)s given in a list below;
the system of [FIM] contains the �rst 25 of them, the last two have been
added in [Kleene1969]. There are also parentheses serving as constant
for function application, and Church's � for �-abstraction.

Terms and functors are de�ned by simultaneous induction as fol-
lows:

· the constant 0 and the number variables are terms,
· the function variables and each function constant fi
with ki = 1, li = 0, are functors,

· if t1,: : : , tki are terms and u1,: : : ,uli functors, then
fi(t1,: : : , tki ,u1,: : : ,uli) is a term,

· if u is a functor and t a term, then (u)(t) is a term,
· if x is a number variable and t a term, then �x.t is a
functor.

The prime formulas are the equalities of terms: if s, t are terms,
then s = t is a (prime) formula.

Equality for functors is introduced by the abbreviation

u = v ≡ ∀x (u)(x) = (v)(x);

with x a number variable not free in u or v.

The mathematical axioms of IA1 are:

· the axiom-schema IND for L(IA1);

· the axioms of IA0 for =; 0;
′ ;+; · ;

· the equations expressing the primitive recursive de�nitions of
the additional function(al) constants f4 - f26; they are of the
following forms (corresponding to explicit de�nition and de�-
nition by primitive recursion):
(a) fi(y; a; �) = p(y; a; �),

(b)

{
fi(0; a; �) = q(a; �)
fi(y

′; a; �) = r(y; fi(y; a; �); a; �);
where p(y; a; �), q(a; �), r(y; z; a; �) are terms containing only
the distinct variables shown and only function constants from
f0, : : : , fi−1, and y; a; � are free for z in r(y; z; a; �);

· the open equality axiom: x = y→ �(x) = �(y);

· the axiom-schema of �-conversion: (�x:t(x))(s) = t(s), where
t(x) is a term and s is free for x in t(x).

We next give the complete list of the function(al) constants of
L(IA1) with their de�ning axioms, where a, b are number variables.
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· f0 ≡ 0; k0 = 0; l0 = 0;

· f1 ¬ a′ = 0; a = b→ a′ = b′; a′ = b′ → a = b; k1 = 1; l1 = 0;

· f2 a+ 0 = a; a+ b′ = (a+ b)′; k2 = 2; l2 = 0;

· f3 a · 0 = 0; a · b′ = a · b+ a; k3 = 2; l3 = 0;

· f4 a0 = 1; ab
′
= ab · a; k4 = 2; l4 = 0;

· f5 0! = 1; (a′)! = (a!) · a′; k5 = 1; l5 = 0;

· f6 pd(0) = 0; pd(a′) = a; k6 = 1; l6 = 0;

· f7 a .−0 = a; a .−b′ = pd(a .−b); k7 = 2; l7 = 0;

· f8 min(a; b) = b .−(b .−a); k8 = 2; l8 = 0;

· f9 max(a; b) = (a .−b) + b; k9 = 2; l9 = 0;

· f10 sg(0) = 1; sg(a′) = 0; k10=1; l10=0;

· f11 sg(0) = 0; sg(a′) = 1; k11=1; l11=0;

· f12 |a− b| = (a .−b) + (b .−a); k12=2; l12=0;

· f13 rm(0; b) = 0; k13=2; l13=0;
rm(a′; b) = (rm(a; b))′ · sg |b− (rm(a; b))′|;

· f14 [ 0= b ] = 0; k14=2; l14=0;
[ a′= b ] = [ a= b ] + sg | b− (rm(a; b))′ |;

· f15 f15(0; �) = 0; f15(z
′; �) = f15(z; �) + �(z); k15=1; l15=1;

[ gives the bounded sum �y<x�(y) ]

· f16 f16(0; �) = 1; f16(z
′; �) = f16(z; �) · �(z); k16=1; l16=1;

[ gives the bounded product �y<x�(y) ]

· f17 f17(0; �)=�(0); f17(z
′; �)= f8(f17(z; �); �(z

′)); k17=1; l17=1;

[ gives the bounded minimum miny≤x�(y) ]

· f18 f18(0; �)=�(0); f18(z
′; �)= f9(f18(z; �); �(z

′)); k18=1; l18=1;

[ gives the bounded maximum maxy≤x�(y) ]

· f19 p0 = 2; pi′ = �bb<pi!+2 [ pi < b & Pr(b) ]; k19=1; l19=0;

· f20 (a)i = �xx<a [ p
x
i | a & ¬ px′i | a ]; k20=2; l20=0;

· f21 lh(a) = �i<a sg((a)i); k21=1; l21=0;

· f22 a ∗ b = a · �i<lh(b)p
(b)i
lh(a)+i

; k22=2; l22=0;

· f23 �(x) = �i<xp
�(i)+1

i ; k23=1; l23=1;

· f24 �̃(x) = �i<xp
�(i)
i ; k24=1; l24=1;

· f25 a ◦ b = �i<max(a;b)p
max((a)i;(b)i)
i ; k25=2; l25=0;

· f26 ccp(0) = 1; ccp(y′) = ccp(y) · pr(y; ccp(y))y ; k26=1; l26=0;
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where the following abbreviations are used:

· a < b ≡ ∃c(c′ + a = b);
· a ≤ b ≡ a < b ∨ a = b;
· a | b ≡ ∃c(a · c = b);
· �yy<zR(y) ≡ �x<z�y<x′ r(y), where r(y) is a term
with ⊢ R(y)↔ r(y) = 0, ⊢ r(y) ≤ 1 and x not free in r(y);

· Pr(a) is a prime formula expressing that a is a prime number;
· the term r(y,z) in f26 is constructed in [Kleene1969].

Notation. We will use the following abbreviation, representing a
primitive recursive coding of �nite sequences of natural numbers by
natural numbers.

For each k ≥ 0, ⟨x0; : : : ; xk⟩ = p0
x0 · : : : · pk

xk ;
where pi is the numeral for the i-th prime number pi. In particular,
for the coding of ordered pairs, we have ⟨x; y⟩ = 2x · 3y. We note that
the projection functions are provided by f20.

1.2.5. HA1 is described as follows. Its language L(HA1) (note that
L(HA1) is L(EL)) includes all the function constants of L(HA). As
in L(IA1), there are parentheses for function application, and Church's
� for �-abstraction. There is a functional constant rec, expressing the
recursor functional, which corresponds to de�nition by the schema of
primitive recursion.

The terms and functors are de�ned as in IA1, with an additional
term formation rule for the constant rec: if t; s are terms and u a
functor, then rec(t; u; s) is a term.

The mathematical axioms of HA1 are:

· the axioms of HA with
· IND extended for L(HA1);
· �-conversion;

· REC
{

rec(t; u; 0) = t;
rec(t; u; S(s)) = u(⟨rec(t; u; s); s⟩);

where t, s are terms and u a functor.2

1.3. Function existence principles.
1.3.1. The unique existential number quanti�er ∃!y is used to ex-

press the notion \there exists a unique y such that ..." and it is intro-
duced as an abbreviation ([IM], p. 199):

∃!yB(y) ≡ ∃y [B(y) & ∀z(B(z)→ y = z) ] :

2REC is originally formulated using a pairing function j, which has the ad-
ditional property of being onto the natural numbers, but this is not an essential
feature; for details we refer to [Troelstra1973], 1.3.9, where it is remarked that they
\might have used Kleene's 2x3y".
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1.3.2. The minimal system M is the theory IA1 + AC00!, where

AC00! ∀x∃!yA(x; y)→ ∃�∀xA(x; �(x));
where x and � are free for y in A(x; y) and � does not occur free in
A(x; y).

The schema AC00! expresses a countable function comprehension
principle. Because of the uniqueness condition in the hypothesis, there
is no choice involved. With classical logic, it is equivalent to AC00

(like AC00! without the ! in the hypothesis), expressing the countable
numerical choice principle. Constructively, as it is shown in [Weinstein]
with a highly non-trivial proof, AC00! is weaker than AC00.

1.3.3. Elementary analysis EL is the theory HA1 + QF-AC00,
where

QF-AC00 ∀x∃yA(x; y)→ ∃�∀xA(x; �(x));
where A(x; y) is a quanti�er-free formula, in which x is free for y and
� does not occur.

The schema QF-AC00 expresses a weak principle of countable nu-
merical choice for quanti�er-free formulas. This principle does not in-
volve real choice either, since the quanti�er-free formulas are decidable,
and in this case, existence entails constructively unique existence (of
the least such number). For these basic facts we refer to section 2
below.

2. Unique existence and decidability

2.1. The unique existential number quanti�er.
2.1.1. Another way to de�ne the unique existential quanti�er is by

∃!yB(y) ≡ ∃yB(y) & ∀y∀z(B(y) & B(z)→ y = z):

The two de�nitions are equivalent over intuitionistic predicate logic
with equality. In the second de�nition, unique existence is expressed
directly as the conjunction of \exists" and \at most one", where \at
most one" is expressed by

(a) ∀y∀z(B(y) & B(z)→ y = z):

Bishop constructivists are using a di�erent (classically equivalent) con-
dition to express \at most one": they use

(b) ∀y∀z(y ̸= z→ (¬B(y) ∨ ¬B(z))):
Although M proves (b) → (a), the two interpretations are not con-
structively equivalent, as we show by the following example.

Example. Consider the formula

A(x) ≡ (x = 0 & P) ∨ (x = 1 & ¬P);
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where P is any formula and x any variable not occurring free in P. We
can easily see that for this A(x), condition (a) holds in M; however,
condition (b) entails ¬A(0) ∨ ¬A(1) and hence ¬P ∨ ¬¬P, which is
unprovable in M in general. One easy way to see this, is to consider a
continuity principle, say WC! (see [TvDI]), which is consistent withM
as is well-known. Take as P the formula ∃x�(x) ̸= 0; then using WC!
we can prove

¬∀� [¬∃x�(x) ̸= 0 ∨ ¬¬∃x�(x) ̸= 0 ] :

Observe however that under either of the assumptions ∃xA(x) or
∀x(¬A(x) ∨ ¬¬A(x)), we have (a) ↔ (b). Thus either interpretation
of \at most one" could be used to unabbreviate the ! in AC00!.

2.2. Uniqueness and decidability.
2.2.1. In intuitionistic arithmetic unique existence (of a natural

number satisfying a predicate) and decidability (of natural number
predicates) are closely related.3

As a consequence, the principles AC00! and QF-AC00 are also re-
lated in a precise manner, over any reasonable two-sorted intuitionistic
arithmetic. The following provide basic facts about the two notions.
Using them we determine how AC00! and QF-AC00 relate to each other.
For most of the proofs we give only some idea of the arguments used,
as they are standard, well known facts.

In the following S is any of IA0, HA, IA1 or HA1, and ⊢ denotes
provability in S.

2.2.2. The decidability of the equality of natural numbers, and
hence also of formulas which are quanti�er-free or have only bounded
number quanti�ers, is established by the following lemma.

Lemma 2.1. ⊢ ∀x∀y(x = y ∨ ¬x = y).

Proof. The decidability of the equality of numbers in intuition-
istic arithmetic, unlike in the classical case, needs a non trivial proof
using the schema of mathematical induction IND and the axioms of
the equality and the successor.

�

The next two lemmas provide a very important property of formulas
which are quanti�er-free or have only bounded number quanti�ers.

3In the classical case all these are trivialities, as natural number existence always
entails unique existence of a least witness and every formula satis�es the law of
excluded middle.
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Lemma 2.2. For any formula A of S built up from the formulas
P1; : : : ;Pm by propositional connectives or bounded number quanti�ers,

P1 ∨ ¬P1; : : : ;Pm ∨ ¬Pm ⊢ A ∨ ¬A:

Proof. The proof is by induction on the structure of A. The induc-
tive step for the cases of the bounded existential and universal number
quanti�ers follows from

∀x(A(x) ∨ ¬A(x)) ⊢ ∃y [ y < x & A(y) & ∀z(z < y→ ¬A(z)) ]
∨∀y [ y < x→ ¬A(y) ] ;

which in its turn is proved by formal induction on x.
�

Lemma 2.3. For any formula A of S which is quanti�er-free or
has only bounded number quanti�ers (and no function quanti�ers),
⊢ A ∨ ¬A.

Proof. Immediate from the two previous lemmas.
�

2.2.3. The least (natural) number principle is expressed in �rst-
order arithmetic by the formula

∃yB(y)→ ∃y [B(y) & ∀z(z < y→ ¬B(z)) ] :
Unlike in the classical case, it is not provable in intuitionistic arith-
metic, as it implies the law of the excluded middle (although its double
negation is provable). However, for number predicates that are as-
sumed decidable, the least number principle holds and the least number
is unique.

Lemma 2.4. In S,

⊢ ∀y(B(y) ∨ ¬B(y))→ [∃yB(y)→ ∃!y(B(y) & ∀z(z < y→ ¬B(z))) ] :

Proof. It follows from:

⊢ ∀y(B(y) ∨ ¬B(y))→ [∃yB(y)→ ∃y(B(y) & ∀z(z < y→ ¬B(z))) ]
and

⊢ ∃y [B(y) & ∀z(z < y→ ¬B(z)) ]
→ ∃!y [B(y) & ∀z(z < y→ ¬B(z)) ] :

�
The next lemma asserts that, conversely to the previous, uniqueness

entails decidability; we have to note that this holds only for numbers,
the corresponding property fails for functions or sequences.
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Lemma 2.5. ∃!yB(y) ⊢ B(y) ∨ ¬B(y).

Proof. Easy consequence of the decidability of the equality of
numbers ([FIM], Lemma 5.6, p. 43).

�

In the next lemma we prove a fact very useful for our purposes.

Lemma 2.6. ⊢ A ∨ ¬A↔ ∃!y [ y ≤ 1 & (y = 0↔ A) ].

Proof. We give the proof in IA0. We show �rst the direction →.
Case A. By A and the logical axiom A→ (0 = 0→ A) (axiom schema
1a) we get 0 = 0→ A; using ⊢ 0 = 0 we get A→ 0 = 0 in a similar
way. Since ⊢ 0 ≤ 1, we get

(a) 0 ≤ 1 & (0 = 0↔ A):

Using the assumption A we get

(b) ∀z (z ≤ 1 & (z = 0↔ A)→ 0 = z):

From (a) and (b) we get

(c) ∃!y [ y ≤ 1 & (y = 0↔ A) ]:

Case ¬A. The argument is similar, using the logical axiom schema
8I ¬B→ (B→ C), the axiom ¬x′ = 0 and

(d) ⊢ z ≤ 1↔ (z = 0 ∨ z = 1).
Direction ← follows easily from (d).

�

Remark. In intuitionistic arithmetic (in all versions that we are
considering), disjunction can be de�ned explicitly (see for example
[TvDI], p. 127) as

A ∨ B ≡ ∃y [ (y = 0→ A) & (y ̸= 0→ B) ] :

The equivalence of Lemma 2.6 corresponds to the following modi�ca-
tion, which can also serve for the explicit de�nition of disjunction (only
a slight modi�cation of the related proof in [TvDI], p. 127, is needed):

A ∨ B ≡ ∃y [ y ≤ 1 & (y = 0→ A) & (y = 1→ B) ]:

In the presence in the language of the positivity test function sg
de�ned by the pair of equations sg(0) = 0 and sg(x′) = 1 the two def-
initions are immediately seen to be provably equivalent over the logical
basis without ∨. (Only in IA0 sg is not available, but its addition gives
a de�nitional extension (we will de�ne this later), so we can think as
essentially having it in this case too).
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According to Lemmas 2.3, 2.4 and 2.5 the unique choice (or non-
choice) principle AC00! expresses countable numerical choice for decid-
able number predicates.

2.2.4. We can now draw a �rst immediate conclusion about AC00!
and QF-AC00.

Proposition 2.7. Over IA1 (and HA1) AC00! entails QF-AC00.

Proof. Assume (a) ∀x∃yA(x; y), where A(x,y) is quanti�er-free.
Then by Lemma 2.3 we obtain ⊢ ∀y [A(x; y) ∨ ¬A(x; y) ] , so by
Lemma 2.4 and (a) (after ∀x-elimination) we get, after ∀x-introduction,

(b) ∀x∃!y(A(x; y) & ∀z(z < y→ ¬A(x; z))):
We apply then AC00! to (b); from the resulting formula easily follows
(c)∃�∀xA(x; �(x)), and the proof is completed with →-introduction
discharging (a).

�

3. A characteristic function principle

3.1. The schema CFd.
3.1.1. Consider the following schema, which asserts that every de-

cidable predicate of natural numbers has a characteristic function and
is an immediate consequence of AC00! over IA1:

CFd ∀x(B(x) ∨ ¬B(x))→ ∃�∀x [ �(x) ≤ 1 & (�(x) = 0↔ B(x)) ] :

Introducing this principle allows to determine the exact relation of
AC00! and QF-AC00; and this in its turn will suggest the relation be-
tween M and EL.

Proposition 3.1. Over IA1 (and HA1), AC00! entails CFd.

Proof. Assume (a) ∀x(B(x) ∨ ¬B(x)). Then by Lemma 2.6 we
obtain

(b) ∀x∃!y [ y ≤ 1 & (y = 0↔ B(x)) ]:

Applying AC00! to (b) gives the conclusion of (the corresponding in-
stance of) CFd, and the proof is completed with →-introduction dis-
charging (a).

�
3.1.2. Now we show that the unique choice principle AC00! is equiv-

alent to the conjunction of its two consequences QF-AC00 and CFd over
the weak systems of two-sorted arithmetic underlying the two systems
M and EL.

Theorem 3.2. Over IA1 (and HA1), QF-AC00+CFd entails AC00!.
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Proof. Assume (a) ∀x∃!yA(x; y). By ∀-elimination, Lemma 2.5
and ∀-introduction (twice) we get

(a1) ∀x∀y [A(x; y) ∨ ¬A(x; y) ] ;
and then by ∀-elimination twice (specializing for (w)0; (w)1) and ∀-
introduction we have

(b) ∀w [A((w)0; (w)1) ∨ ¬A((w)0; (w)1) ] :
Applying CFd to (b) gives

(c) ∃�∀w [ �(w) ≤ 1 & (�(w) = 0↔ A((w)0; (w)1)) ] :

Assume (d) which is (c) without ∃�, towards ∃-elim.; from (a) follows
(a1) ∃yA(x; y), so assume, towards ∃-elim.,

(e) A(x; y):

After ∀w-elim. from (d) (specializing for the pair ⟨x; y⟩) with (e) and
with ∃y-introd., and with ∃-elim. disch. (e) and ∀-introd. we obtain

(f) ∀x∃y�(⟨x; y⟩) = 0:

Applying now QF-AC00 to (f) gives

(g) ∃�∀x�(⟨x; �(x)⟩) = 0;

from which �nally follows

(h) ∃�∀xA(x; �(x))
using again (d), and we complete the proof with ∃-elim. disch. (d) and
→-introd. disch. (a).

�
Corollary 3.3. Over IA1 (and HA1), AC00! is equivalent to

QF-AC00 + CFd.

3.2. Classical models for weak theories of two-sorted arith-
metic.

3.2.1. Let T be the formal theory IA1+QF-AC00. T is a classically
correct theory, as its axioms, logical and mathematical, are all part of a
classical system of analysis (see discussion in [FIM], p. 8). So T can be
extended to a corresponding classical theoryT◦, by replacing the axiom
schema ¬A→ (A→ B) by ¬¬A→ A. We will use T◦ to show that T
does not prove CFd as follows. We will show that the general recursive
functions form a classical model of T◦, in which CFd fails. This result
is obtained by a classical, non-�nitary argument; we note, however,
that it is a negative result. For the notion of primitive and general
recursive function (or functional, in the presence of function arguments)
of number and one-place number-theoretic function arguments that we
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are using, we note that a function �(x1; : : : ; xk; �1; : : : ; �l) of k natural
numbers and l one-place number-theoretic functions is primitive or
general recursive if, as a function of x1; : : : ; xk it is primitive or general
recursive, respectively, uniformly in �1; : : : ; �l; see [FIM], p. 10, and,
for the notion of uniformity, see [IM]. For the notion of a structure for
the two-sorted �rst-order language of analysis we refer to S. Simpson's
work \Subsystems of Second Order Arithmetic" [Simpson]; here we
are using a slight variant of the notion de�ned there, as in our case,
instead of set variables, the variables of the second sort are function
variables; we must also have interpretations for the functors formed by
�-abstraction.

Theorem 3.4. (a) IA1 +QF-AC00 does not prove CFd.
(b) EL does not prove CFd.

Proof. (a) Let T and T◦ be as in the discussion preceding the
theorem. We consider the structure GR for the language of T◦ which
consists of the sets and functions given by (i)-(iii):

(i) The set N of the natural numbers, that serves as the universe of
the �rst sort, over which the number variables range.

(ii) The subset GR of the set of all functions from N to N consisting
of all the general recursive functions from N to N, which serves as the
universe of the second sort, over which the function variables range.

(iii) The function(al)s f0; : : : ; fp that correspond to the function
constants f0; : : : ; fp: each fi, for i = 0; : : : ; p, is the primitive recursive
function(al) obtained by the primitive recursive derivation expressed
by the de�ning axioms of fi.

The intended model for our language di�ers from GR only in having
as universe of the second sort the set of all (classical) functions from
N to N. So it is justi�ed to use the same name for the universe of the
second sort and the structure itself.

(iv) The interpretation of a term or functor under an assignment
into GR and the notions of satisfaction and truth are as usual. In
particular, the interpretation uGR in GR of a functor u of the form
�x:t where t is a term, under an assignment v, is given by

(�x:t)GR = �n:v(x|n)(t);

where v(x|n) is the extension to all terms and functors of the assign-
ment which assigns the natural number n to x and agrees with v on
all other variables, the � in the interpretation is the usual (informal)
Church's �, and n ranges over N. Function application (represented
by parentheses) is interpreted accordingly. The justi�cation of the fact
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that all the terms and functors have, under any assignment into GR,
interpretations in GR (of the correct sort) will be given below.

By the fact that the function constants have their intended inter-
pretations the following are obtained:

(v) Each term t with free variables no other than x1;: : :; xk; �1;: : :; �l;
expresses a primitive recursive function of x1; : : : ; xk; �1; : : : ; �l, where
x1; : : : ; xk are (informal) variables for natural numbers and �1; : : : ; �l

are (informal) variables for one-place number-theoretic functions ([FIM],
Lemma 3.3); under an assignment into GR the term t is interpreted as
usual as a natural number.

(vi) For each functor u with free variables no other than x1; : : : ; xk;
�1; : : : ; �l, the term (u)(x), with x a new number variable, expresses a
primitive recursive function of x; x1; : : : ; xk; �1; : : : ; �l ([FIM], Lemma
3.3); from this it follows that under an assignment into GR, u is inter-
preted as a function of one number variable which is primitive recursive
in the functions assigned to its function variables, and so is interpreted
as a general recursive function of one number variable.

From (i)-(vi) it follows that all the terms and functors, under any
assignment into GR, have interpretations (of the correct sort) in GR,
and that all the logical and mathematical axioms and rules of inference
hold in GR. In particular: The axioms de�ning the function constants
all can be seen to hold by an inductive argument, as the function con-
stants are introduced according to the forms given in 1.2.4; in the case
of explicit de�nition the conclusion is immediate, and in the case of
de�nition by primitive recursion the conclusion follows by informal in-
duction on the recursion variable. The axiom schemas for the function
quanti�ers ∀�A(�)→ A(u) and A(u)→ ∃�A(�) hold, as can be seen
using (vi). All other axioms and rules hold as usual. So GR is a model
of IA1.

We will show now that the principle QF-AC00 holds in GR. We will
use the following fact, shown in [FIM], pp. 27-31:

(vii) For any formula Q which is quanti�er-free or has only number
quanti�ers that are bounded, we can construct a term q, with the same
free variables as Q, such that

⊢ q ≤ 1 and ⊢ Q↔ q = 0:

The construction of q and the proofs are done in IA1 (which is a
subsystem of the formal system of [FIM]), using constants for number-
theoretic functions and, for the case of bounded quanti�ers, only the
functional constants f15 and f16 representing the �nite sum and �nite
product, respectively.
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Let A(x; y; z; �) be a quanti�er-free formula with exactly the free
variables shown. (In the case of more or fewer free variables the ar-
gument is similar). We will show that the corresponding instance of
QF-AC00

∀x∃yA(x; y; z; �)→ ∃�∀xA(x; �(x); z; �)
is true under any assignment v into GR.

To see this, let t(x; y; z; �) be the term given by (vii), so that we
have

⊢ A(x; y; z; �)↔ t(x; y; z; �) = 0;

and let �(x; y; z; �) be the primitive recursive function of x; y; z; � ex-
pressed by t(x; y; z; �).

Assume that, under an assignment v into GR, ∀x∃yA(x; y; z; �)
is true in GR. Then it is clear that the function  which assigns
to each natural number x the least (natural number) y such that
�(x; y; v(z); v(�)) = 0 is general recursive and satis�es, for all natu-
ral numbers x, �(x;  (x); v(z); v(�)) = 0. From this it follows that
∃�∀xA(x; �(x); z; �) is true under v in GR.

We show now that CFd does not hold in GR. Let T(x; y; z) represent
the primitive recursive Kleene T -predicate T (x; y; z) ⇔ z is the code
of the computation of the value of the partial recursive function with
g�odel number x at the argument y. Let A(x) ≡ ∃zT(x; x; z). Then,
by the law of the excluded middle, ∀x(A(x) ∨ ¬A(x)) is true in GR.
Applying CFd gives under the interpretation the existence in GR of a
function

�(x) =

{
0 if ∃z T (x; x; z);
1 if ¬∃z T (x; x; z);

which is not recursive.

(b) The argument is similar to the one for (a). We only have to
consider now GR as a structure with in�nitely many functions, corre-
sponding to the function constants for number-theoretic functions of
EL, and the recursor functional (which, we note, is itself a primitive
recursive functional). We also note that property (vii) is obtained for
HA1 too (by use of the recursor in place of f15, f16).

�
Remark. It is well-known that in the presence of AC00! Church's

Thesis contradicts classical logic. The previous theorem makes it clear
that this is due to CFd.

Corollary 3.5. (a) IA1 +QF-AC00 is a proper subtheory of M.
(b) EL is a proper subtheory of EL+ AC00! = EL+ CFd.
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3.2.2. By interpreting the function variables as primitive recursive
functions of one number variable we obtain exactly as in the previous
theorem a classical model for the weak theory HA1. In this model the
principle QF-AC00 does not hold, as it guarantees closure under the
notion \general recursive in".

Theorem 3.6. (a) HA1 does not prove QF-AC00.
(b) IA1 does not prove QF-AC00.

Proof. (a) HA1 has a classical model in which the function vari-
ables range over the primitive recursive functions (of one number vari-
able). We can see that in this model QF-AC00 does not hold, as follows.

Let A(x; y) be a quanti�er-free formula. By lemmas 2.3 and 2.4,
(vii) in the proof of theorem 3.4 and QF-AC00, we obtain

(a) ∀x∃yA(x; y)→ ∃�∀x(A(x; �(x)) & ∀z(z < �(x)→ ¬A(x; z))):
Consider the function constant h that represents the characteris-

tic function of the primitive recursive Kleene T -predicate. Let � be
the corresponding informal function and let e be the g�odel number of
a general recursive, but not primitive recursive, function such as the
Ackermann function. Then, if e is the numeral of e, ∀x∃y h(e; x; y) = 0
is true in the model. By applying QF-AC00 we get the corresponding
instance of (a), and from this, using the normal form theorem and the
primitive recursive extraction function, we obtain �nally in the model
the existence of a function which is not primitive recursive.

(b) In the place of h of the proof of (a) we use a function variable
which we interpret by �, as h does not belong to L(IA1). �

3.2.3. As we already observed, the formal systems M and EL dif-
fer in two ways: they have di�erent sets of function and functional
constants and they assume di�erent function existence principles. In-
troducing the principle CFd allowed us to clarify the relation between
the function existence principles of the two systems, but only if they
are considered over the same system of arithmetic.

The equivalence obtained (Corollary 3.3) together with the other
similarities of the two systems (among which also is the possibility of
de�nition by primitive recursion, thanks to the presence of the recursor
in EL and to Lemma 5.3(b) of [FIM] in M), suggest that the theories
M and EL + CFd are essentially equivalent. And also theorem 3.4
suggests that EL is essentially weaker than M, and their di�erence
is captured by CFd. It turns out that the relations between these
theories are indeed the suggested ones. To justify this, we will give
a precise mathematical content to the notion \essentially equivalent"
(and \essentially weaker").
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4. Introduction of a recursor in M

To show that M and EL + CFd are essentially equivalent we will
�nd a common conservative extension of both. In order to obtain
this common extension, we add one by one the missing constants of
each system, and show that the corresponding extension is de�nitional.
In this way we reach conservative extensions of the two systems in
the same language, which are identical (except for trivial notational
di�erences).

Our treatment is based on [IM], §74, where the (one-sorted) �rst-
order case of de�nitional extensions is covered, and on [JRMPhD],
where the method is applied for a result in the two-sorted case.

The �rst step in this process is to add a recursor constant to M.
The notions of conservative extension and of de�nitional extension
will be our main tool. We start by giving their de�nitions (see also
[Troelstra1973]) and then make some essential observations concerning
equality and replacement.

4.1. Conservative and de�nitional extensions.

4.1.1. Definition. Let S1, S2 be formal systems based on (many-
sorted) intuitionistic logic with equality, and let the language L(S2) of
S2 extend the language L(S1) of S1, and the theorems of S2 contain
the theorems of S1. S2 is a conservative extension of S1 if the theorems
of S2 that are formulas of S1 are exactly the theorems of S1.

Definition. Let S1, S2 be formal systems with L(S1) contained
in L(S2). S2 is a de�nitional extension of S1 if there exists an e�ective
mapping (or translation) ′ which, to each formula E of S2, assigns a
formula E′ of S1 such that:

I. E′ ≡ E; for E a formula of L(S1).
II. ⊢S2 E′ ↔ E:
III. If � ⊢S2 E then �′ ⊢S1 E′.
IV. ′ commutes with the logical operations of S.

If the addition of a symbol gives a de�nitional extension, the symbol
is called eliminable (from the extended to the original system); condi-
tions I - IV are called elimination relations ; and we say that the symbol
is added de�nitionally.

We observe the following. A de�nitional extension is a conservative
extension. The extended system does not prove more formulas of the
original system, and every theorem of the extended system is equivalent
(in the extended system) to one of the original. So it is an inessential
extension.
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This technique is developed in detail in [IM], §74, where in e�ect
HA is shown to be an inessential extension of IA0.

4.2. On equality and replacement.
4.2.1. Many-sorted intuitionistic predicate logic with equality. The

formal systems that we are studying have been created in order to
formalize mathematical theories in which, as is the normal case for
mathematical theories, equality is a fundamental extensional relation;
so they are based on many-sorted (and speci�cally two-sorted) intu-
itionistic predicate logic with equality: a formal system of logic whose
alphabet includes a binary symbol = which satis�es, for each sort i (of
�nitely many sorts 0; : : : ; p) the following axiom and axiom-schema

REFLi xi = xi;

REPLi xi = yi → (A(x)→ A(y)); with x, y free for z in A(z).

For this subject we refer to [Troelstra1973].

4.2.2. Treatment of equality in the systems under study. In the va-
rieties of mathematical analysis that we are considering, equality of
natural numbers is a primitive concept, intuitively clear and decidable.
Equality of number-theoretic functions (and, consequently, of sequences
of natural numbers and of reals) is understood extensionally, and is un-
decidable (its decidability would entail a special case of the law of the
excluded middle, the ∀-PEM (known also as WLPO, for \Weak Lesser
Principle of Omniscience"), so it is constructively unacceptable.

Reecting this use of equality, in the formalisms under study the
constant = represents type-0 (number) equality. Type-1 (function)
equality, represented by the same symbol, is de�ned in terms of type-0
equality, and is introduced by the abbreviation

u = v ≡ ∀x u(x) = v(x);

where u, v are functors and x is not free in u or v.

The axioms of equality of both types are REFLi, REPLi, i = 0, 1.
By EQ we denote all these axioms.

It is possible (and very useful for our investigation) to reduce the
equality axioms to simpler (and in some cases only �nitely many) ax-
ioms, as follows (we refer to systems with only function constants as
non-logical symbols; the case of predicate constants is treated simi-
larly):
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(A) By equality axioms for = are meant the axioms

x = x;
x = y→ (x = z→ y = z):

(B) By equality axioms for a function symbol f of k number and l
function arguments are meant the k + l formulas

x = y→ f(x1; : : : ; xi−1; x; xi+1; : : : ; xk; �1; : : : ; �l) =
f(x1; : : : ; xi−1; y; xi+1; : : : ; xk; �1; : : : ; �l); i = 1; : : : ; k;

� = � → f(x1; : : : ; xk; �1; : : : ; �i−1; �; �i+1; : : : ; �l) =
f(x1; : : : ; xk; �1; : : : ; �i−1; �; �i+1; : : : ; �l); i = 1; : : : ; l:

(C) The axioms EQ of a two-sorted formal system with type-0
equality as a primitive and type-1 equality de�ned as above, and with
only function constants in its alphabet, are provable from the following
instances or consequences of them:
1. The equality axioms for = .
2. The equality axioms for the function constants of its alphabet.
3. The open equality axiom x = y→ �(x) = �(y).
For this subject, we refer to [IM].

Thanks to the fact that the function constants ofM are introduced
successively via the primitive recursive description of the corresponding
functions, the equality axioms for these function constants are provable
in M; the proofs are by use of IND (see [FIM], p. 20).

In the case of HA and EL, the axioms by EQ are all introduced
from the beginning, but it is easy to see that it su�ces to include (C)
1, 3, and the equality axiom for the successor: x = y→ S(x) = S(y),
and then prove successively, in parallel with the introduction of each
function constant to the formalism, the corresponding equality axioms.

About the constant rec of EL: the equality axioms are provable by
the method of Lemma 5.1, [FIM], p. 20, using IND.

About the constant rec that will be introduced in M: we will see
that the equality axioms for rec are also provable in the extended sys-
tem.

4.2.3. The replacement theorem. Lemma 4.2, p. 16 of [FIM], gives
the replacement theorem for M. Since the proviso of the lemma is
satis�ed in the case of EL as a consequence of the preceding paragraph,
Lemma 4.2 of [FIM] provides the replacement theorem for EL. The
same holds for the system that we will obtain by adding a recursor to
M.

We note that the replacement theorem requires the equality axioms
only for the function symbols that have the speci�ed occurrence to be
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replaced within their scope, in the formula in which the replacement
takes place. We refer also to [IM], §73(D) for this argument.

So, in order to prove the instance of replacement
−→
∀�
−→
∀x r = s ⊢ Er ↔ Es;

where Es is the result of replacing in Er a speci�ed occurrence of r by
s, and where −→� ;−→x are all the free variables of r or s which belong to
a �-pre�x or quanti�er having the speci�ed occurrence of r within its
scope, it su�ces to have the equality axioms for the function symbols
occurring in Er and having the speci�ed occurrence of r within their
scope.

4.3. Introducing a recursor in M.
4.3.1. We will add now to M a recursor functional, and we will

prove that the resulting extension is de�nitional, and so the system is
not essentially strengthened. Let S1 be the minimal system of analysis
M, and S2 be the system M + Rec, obtained by adding to M the
functional constant rec in its alphabet, together with the corresponding
term formation rule \if t, s are terms and u a functor, then rec(t, u, s)
is a term" and the following axiom, de�ning it:

Rec A(x; �; y; rec(x; �; y));

where A(x; �; y;w) is the formula

∃� [ �(0) = x & ∀z�(z+ 1) = �(⟨�(z); z⟩) & �(y) = w ] :

The new constant rec represents then the recursor functional, which
corresponds to de�nition by the schema of primitive recursion.

Remark. We could have introduced the new functional constant
rec in M by the pair of equations REC, that de�ne it in EL, and
consider it as the f27, extending the list of constants of M. Observe
that the equations REC have one of the forms of the de�nitions of
the constants fi. We rejected this choice, because the presence of rec
would make redundant all the constants of the list except the �rst four.
Observe also that EL could avoid the in�nite list of constants thanks
to rec.

Lemma 5.3(b) of [FIM] provides de�nition by primitive recursion
in M, so we based our de�nition directly on it. We followed [IM],
§74, in introducing a new function symbol by a formula for which the
formalism proves that it has a functional character. We note also that
some of the formal systems that we will consider (BIM, WKV, H)
have de�nition by primitive recursion as an axiom, in forms very similar
to Lemma 5.3(b) of [FIM].
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As we will see the two ways of introducing the new constant are
equivalent (see also [IM], p. 416).

4.3.2. Interderivability of Rec and REC. The constant rec could
have been de�ned by the following pair of equations, as is done in the
case of EL:

REC

{
rec(t; u; 0) = t;
rec(t; u; S(s)) = u(⟨rec(t; u; s); s⟩);

where t, s are terms, S the successor function, u a functor. This is
justi�ed by the fact that Rec and REC are interderivable over M with
rec added in its symbolism, as we show now.

Instead of considering the axioms REC as they are formulated in
EL, we consider the following equivalent (by logic) formulation:

REC

{
rec(x; �; 0) = x;
rec(x; �; y′) = �(⟨rec(x; �; y); y⟩);

(where the symbol ′ of M is used in place of S for the successor).
We show that S2 =M + Rec is equivalent with S′

2 =M + REC, in
the sense that every instance of REC is provable in S2 and vice versa.
In fact, we show that REC and Rec are interderivable in the above
sense over IA1 (and HA1). So, in the case of EL and other systems,
it is also immaterial which of the two \de�nitions" of the constant rec
is considered.

Remark. From the de�nition of rec by REC, the equality axioms
for rec become provable by the method of [FIM], Lemma 5.1 (see 4.2.2,
on the treatment of equality).

Lemma A. Every instance of REC is provable in S = IA1 + Rec
(and in HA1 + Rec).

Proof. (i) We show (a) ⊢s rec(x; �; 0) = x.
By Rec,

(b) A(x; �; 0; rec(x; �; 0))

is an axiom of S. Assume

(c) �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) & �(0) = rec(x; �; 0):

From (c), by Ax. 16 (transitivity of = ) we get

(d) rec(x; �; 0) = x:

After ∃�-elimination discharging (c), we get (a).
(ii). We show (a) ⊢s rec(x; �; y′) = �(⟨rec(x; �; y); y⟩).

By Rec, we obtain the following:

(b) ∃� [ �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) & �(y) = rec(x; �; y) ] :
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(c) ∃ [ (0) = x & ∀z (z′) = �(⟨(z); z⟩) & (y′) = rec(x; �; y′) ] :

Assume (b1) which is (b) without∃� and (c1) which is (c) without∃.
Then, using IND and the replacement property for = we get

(d) � = :

By (b1) and replacement, we get

(e) �(y′) = �(⟨rec(x; �; y); y⟩);

and from (e), (d) and (c1) (the last conjunct), we get

(f) rec(x; �; y′) = �(⟨rec(x; �; y); y⟩):

After ∃�, ∃-eliminations discharging (b1), (c1), we get (a).
�

Lemma B. The axiom Rec is provable in S′ = IA1 + REC (and in
HA1 + REC).

Proof. Using the axiom-schema of �-reduction for the functor
�z:rec(x; �; z) we have:

(a) (�z:rec(x; �; z))(0) = rec(x; �; 0) by �-red.
= x by REC

(b) (�z:rec(x; �; z))(y′) = rec(x; �; y′) by �-red.
= �(⟨rec(x; �; y); y⟩) by REC
= �(⟨(�z:rec(x; �; z))(y); y⟩) by �-red.

and repl.
for ⟨ ; ⟩; �

(c) (�z:rec(x; �; z))(y) = rec(x; �; y) by �-red.

After ∀-introduction to (b), with (a) and (c), and then with
∃�-introduction, we get

∃� [ �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩) & �(y) = rec(x; �; y) ];

which is A(x; �; y; rec(x; �; y)).
�

4.3.3. We will show that S2 is a de�nitional extension of S1.

Notation. (a) In the following, by ⊢1 and ⊢2 we denote provability
in S1 and S2, respectively.

(b) The unique existential function quanti�er is introduced as an ab-
breviation by

∃!�C(�) ≡ ∃� [C(�) & ∀ (C()→ � = ) ]:
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Remark. With the help of the unique existential function quanti-
�er, we can formulate compactly the following version of AC00!:

∀x∃!yA(x; y)→ ∃!�∀xA(x; �(x)):
Although this schema is apparently stronger than AC00!, it is easily

shown that it is a consequence of it, hence equivalent (over two-sorted
intuitionistic logic with equality). We will use this version in some
proofs.

In the following we will use the Lemma 5.3(b) of [FIM], which is
proved in M and justi�es \de�nition by primitive recursion" in this
formal theory.

Lemma 5.3(b) ([FIM]). Let y; z be distinct number variables, and �
a function variable. Let q; r(y; z) be terms not containing � free, with
� and y free for z in r(y; z). Then

⊢ ∃� [�(0) = q & ∀y�(y′) = r(y; �(y)) ] :

Lemma 4.1. ⊢1 ∃!� [ �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) ] .

Proof. From [FIM], Lemma 5.3(b), we have

(a) ⊢1 ∃� [ �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩) ]:
Assume

(b) �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩):
Assume

(c) (0) = x & ∀z (z′) = �(⟨(z); z⟩):
We show � =  (which abbreviates ∀z (�(z) = (z)) using IND:
By (b), (c), we get

(d) �(0) = (0):

Assume
(e) �(z) = (z):

Then by (b), (c) (the second conjunct of each, after ∀-eliminations),
we get using the replacement property of equality,

(f) �(z′) = �(⟨�(z); z⟩) = �(⟨(z); z⟩) = (z′).

So, after →-introduction discharging (e) and ∀z-introduction, we get
(g) ∀z (�(z) = (z)→ �(z′) = (z′));

so by (d), (g) with IND, we get � = . From this, with→-introduction
discharging (c) and then ∀-introduction, &-introduction (with (b))
and ∃�-introduction, after ∃�-elimination discharging (b), we get the
lemma.

�
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Lemma 4.2. ⊢1 ∀y∃!mA(x; �; y;m).

Proof. From [FIM], Lemma 5.3(b) again, we have

(a1) ⊢1 ∃� [ �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩) ] :
Assume

(a2) �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩):
Then by the reexivity of equality we get

(b) �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) & �(y) = �(y);

so with ∃m- and then ∃-introduction, we get
(c) ∃∃m [ (0) = x & ∀z (z′) = �(⟨(z); z⟩) & (y) = m ] :

Assume

(d1) ∃m [ (0) = x & ∀z (z′) = �(⟨(z); z⟩) & (y) = m ] :

Assume

(d2) (0) = x & ∀z (z′) = �(⟨(z); z⟩) & (y) = m:

By ∃-introduction, from (d2) we get

(e) A(x; �; y;m)

Assume now
(f) A(x; �; y; n);

so we get

(f1) ∃� [ �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) & �(y) = n ] :

Assume also

(g) �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) & �(y) = n:

By Lemma 4.1, (d2) and (g) we get m = n, so after ∃�-elimination dis-
charging (g), and then→-introduction discharging (f) and ∀n-introduc-
tion we get

(h) ∀n(A(x; �; y; n)→ m = n):

By (e) and (h) with &- and ∃m-introductions, after ∃m, ∃, ∃�-
eliminations discharging (d2), (d1), (a2) and ∀y-introduction, we get
the lemma.

�
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Lemma 4.3. ⊢2 rec(x; �; y) = z↔ A(x; �; y; z).

Proof. The formula (a) A(x; �; y; rec(x; �; y)) is an axiom of S2.
(i) Assume rec(x; �; y) = z: From this, (a) and the replacement

property of equality (which as is observed in (D) §73 of [IM] requires
only the predicate calculus with the equality axioms for = and the
function and predicate symbols of A(x; �; y; z) - we refer to §73 of [IM]
for the treatment of equality) we get A(x; �; y; z).

(ii) Assume A(x; �; y; z): From this and (a), applying lemma 4.2,
we obtain rec(x; �; y) = z.

�
Notation. Let t be a term. Let all the free number variables of

t be among x0; : : : ; xk, and let w be a number variable not occurring
in t. For the rest of this section tw will be the result of replacing in
t, for each i = 0; : : : ; k, each free occurrence of xi by an occurrence
of the term (w)i. The same notation is used for functors too. Since
the exponential will not appear in the proofs, there is no chance of
confusion by the use of this notation.

Lemma 4.4. Let t; s be terms and u a functor of S1. Let x0; : : : ; xk
include all the number variables occurring free in t; u or s, let w be a
number variable not occurring in t; u; s and  a function variable free
for v in A(tw; uw; sw; v), not occurring free in A(tw; uw; sw; v). Then

⊢1 ∃!∀wA(tw; uw; sw; (w)):
Proof. Let z be a number variable di�erent from w; x0; : : : ; xk. By

Lemma 4.2 we get

⊢1 ∀x∀�∀y∃!zA(x; �; y; z);
so, by specializing for t, u, s with the corresponding ∀-eliminations, we
get

⊢1 ∃!zA(t; u; s; z);
and then

⊢1 ∀x0 : : : ∀xk∃!zA(t; u; s; z):
From this, after specializing for each i = 0; : : : ; k for (w)i with ∀xi-
elimination, we get

⊢1 ∃!zA(tw; uw; sw; z):
From this we get

⊢1 ∀w∃!zA(tw; uw; sw; z);
and by AC00! with the Remark in the beginning of 4.3.3 we get

⊢1 ∃!∀wA(tw; uw; sw; (w)):
�
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Notation. (i) The notation E[ a ] is used to indicate some speci�ed
occurrences of a term or functor a in an expression E. We will also use
similarly E[ a1; : : : ; ak ] for k > 0 to indicate some speci�ed occurrences
of k terms or functors. This notation may leave some ambiguity re-
garding the indicated occurrences, but in each case we will explain its
use.

(ii) We use �(x0; : : : ; xk) as an abbreviation for �(⟨x0; : : : ; xk⟩).

Lemma 4.5. Let t; s be terms and u a functor of S2, let x0; : : : ; xk
be all the number variables occurring free in t; u or s, and let w be a
number variable not occurring in A(t; u; s; v). Let E[ (x0; : : : ; xk) ] be
a formula of S2 in which (x0; : : : ; xk) is not within the scope of some
function quanti�er ∀� or ∃�, where � is a function variable occurring
free in t; u or s or � is , and  is new for E[ rec(t; u; s) ], is free for v in
A(tw; uw; sw; v), and does not occur free in A(tw; uw; sw; v), and where
E[ rec(t; u; s) ] is obtained by replacing in E[ (x0; : : : ; xk) ] each of the
(speci�ed) occurrences of (x0; : : : ; xk) by an occurrence of rec(t; u; s).

Then

⊢2 E[ rec(t; u; s) ]↔ ∃[∀wA(tw; uw; sw; (w)) & E[ (x0; : : : ; xk) ] ]:

Proof. (i) Assume (a) E[ rec(t; u; s) ]. By Lemma 4.4 we have

(b) ⊢2 ∃∀wA(tw; uw; sw; (w)):
Assume

(c) ∀wA(tw; uw; sw; (w)):
Then, by Lemma 4.3,

∀w rec(tw; uw; sw) = (w);

so by specializing for w = ⟨x0; : : : ; xk⟩ we get
(d) ∀x0 : : : ∀xk rec(t; u; s) = (x0; : : : ; xk):

Since the occurrences of (x0; : : : ; xk) are not within the scope of some
function quanti�er ∀� or ∃� where � occurs free in s, t, or u or � is ,
by the replacement theorem, from (a) we get

(e) E[ (x0; : : : ; xk) ];

so with (c) and &-introduction and then ∃-introduction and ∃-elim.
discharging (c), after →-introduction we get the \→" case from (a).

(ii) Assume

(a) ∀wA(tw; uw; sw; (w))
and

(b) E[ (x0; : : : ; xk) ]:
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By (a), specializing for w = ⟨x0; : : : ; xk⟩, we get A(t; u; s; (x0; : : : ; xk));
and by Lemma 4.3, with ∀-introductions we get

(c) ∀x0 : : : ∀xk rec(t; u; s) = (x0; : : : ; xk):

By the conditions on the bindings due to function quanti�ers, the re-
placement theorem applies, so from (b), (c) we get E[ rec(t; u; s) ], and
after ∃-eliminations discharging (a) and (b), and with→-introduction,
we get the \←" case.

�
Terminology. A term of the form rec(t; u; s) is called a rec-term.

A term in which the constant rec does not occur is called a rec-less
term. A term rec(t; u; s) where rec does not occur in t; u; s is called a
rec-plain term. An occurrence of the constant rec in a formal expression
is called a rec-occurrence.

Lemma 4.6. To each formula E of S2 there can be correlated a for-
mula E′ of S1, called the principal rec-less transform of E, in such a
way that the elimination relations I; II hold, no free variables are intro-
duced or removed, and the logical operators of the two-sorted predicate
calculus are preserved (elimination relation IV).

Proof. The de�nition of E′ is done by induction on the number g
of occurrences of the logical operators in E. The basis of the induction
consists in giving the de�nition for E prime; this is done by induction
on the number q of occurrences of rec-terms in E.

Case E is rec-less: Then E′ shall be E.
Case E has q > 0 rec-occurrences: Let rec(t; u; s) be the �rst (the

leftmost) occurrence of a rec-plain term, so that E ≡ E[ rec(t; u; s) ],
and let x0; : : : ; xk be all the free number variables of this occurrence,
w a number variable and  a function variable, such that they are new
for both E ≡ E[ rec(t; u; s) ] and A(t; u; s; v). Then we de�ne

E′ ≡ ∃[ ∀wA(tw; uw; sw; (w)) & [E[ (x0; : : : ; xk) ] ]
′ ];

where E[ (x0; : : : ; xk) ] is the result of replacing in E the speci�ed (�rst)
occurrence of rec(t; u; s) by an occurrence of (x0; : : : ; xk). We observe
that E[ (x0; : : : ; xk) ] is prime and contains q − 1 occurrences of rec-
terms. About the choice of the bound variables  and w, as well as the
possibly necessary changes of the bound variables of A(x, �, y, w) to
make the substitutions of tw, uw, sw free, we note that all permissible
choices lead to congruent formulas.

The condition that the logical operators are preserved determines
in a unique way the de�nition of ′ for all formulas of S2; the cases are
the following:
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· (¬A)′ ≡ ¬ (A′),
· (A ◦ B)′ ≡ A′ ◦ B′; for ◦ ≡ →;&;∨;
· (QxA(x))′ ≡ Qx(A(x))′; for Q ≡ ∀;∃;
· (Q�A(�))′ ≡ Q�(A(�))′; for Q ≡ ∀;∃:

We immediately see that elimination relations I and IV hold. Elimi-
nation relation II is now proved easily by induction on the number of
logical operators in E. The basis of the induction is the case of E prime,
and is proved (easily) by induction on the number of rec-occurrences
in E, using Lemma 4.5 and replacement.

�

We still need to prove elimination relation III, so we have to show:
If � ⊢S2 E then �′ ⊢S1 E′. The proof depends on a sequence of lem-
mas, as follows. We will use the version with function variables of
Lemma 25 [IM], p. 408. This lemma provides useful consequences of
unique existence for number variables in intuitionistic predicate logic
with equality. Corresponding consequences have been obtained by S.
C. Kleene for function variables, in the two-sorted case (in a manuscript
mentioned in [JRMPhD]); we can use this version thanks to Lemma
4.4. The versions of [IM] ∗181 - ∗190 with a function variable instead of
v are mentioned as ∗181F - ∗188F, ∗189Fn ,

∗190Fn , and there are also cases
∗189Ff ,

∗190Ff ,
∗189Nf ,

∗190Nf , with variables whose sorts will be obvious
from the notation. We will state the needed cases in the place we use
them.

Lemma 4.7. Let rec(t; u; s) be any speci�ed occurrence of a rec-plain
term in a prime formula E of S2, so that we have E ≡ E[ rec(t; u; s) ].
Then

(a) ⊢1 E′ ↔ ∃[∀wA(tw; uw; sw; (w)) & [E[ (x0; : : : ; xk) ] ]
′ ];

where the conditions on the variables are as in the de�nition of ′.

Proof. The proof is by induction on the number q of occurrences
of rec-terms in the prime formula E.

We will use the following case of the functional version of Lemma
25 of [IM], p.408, and the functional version of ∗78, [IM], p. 162:

∗190Ff ⊢ ∃� [F(�) & ∃�D(�; �) ]↔ ∃�∃� [F(�) & D(�; �) ];

where � does not occur free in F(�).

∗78Ff ⊢ ∃�∃�D(�; �)↔ ∃�∃�D(�; �):
Case q = 0 or q = 1: is trivial.
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Case q > 1: Assume that Lemma 4.7 holds for prime formulas
having q − 1 rec-occurrences, and let E be a prime formula with q
rec-occurrences.

Let rec(t; u; s) be a speci�ed occurrence of a rec-plain term in E, so
E ≡ E [ rec(t; u; s) ]. If rec(t; u; s) is the �rst occurrence of a rec-plain
term in E, then (a) holds by the de�nition of ′ . If rec(t; u; s) is not the
�rst occurrence of a rec-plain term, then let rec(t1; u1; s1) be the �rst
such, so that E ≡ E [ rec(t1; u1; s1); rec(t; u; s) ].

Then, by the de�nition of ′ , we have

(b) E′ ≡ ∃[ ∀wA(tw1 ; uw1 ; sw1 ; (w)) & [E[ (x0; : : : ; xk); rec(t; u; s) ] ]
′ ];

where x0; : : : ; xk are all the free number variables of t1; u1; s1. Since
E[ (x0; : : : ; xk); rec(t; u; s) ] has q− 1 rec-occurrences, by the inductive
hypothesis we have

(c) ⊢1 [E[ (x0; : : : ; xk); rec(t; u; s) ] ]
′ ↔ ∃�[∀wA(tw; uw; sw; �(w))

& [E[ (x0; : : : ; xk); �(y0; : : : ; yl) ] ]
′ ];

where y0; : : : ; yl are the free number variables of t, u, s. From (b), (c),
by the replacement theorem (for equivalence) we get

(d) ⊢1 E′ ↔ ∃[∀wA(tw1 ; uw1 ; sw1 ; (w)) & ∃�[ ∀wA(tw; uw; sw; �(w))
& [E[ (x0; : : : ; xk); �(y0; : : : ; yl) ] ]

′ ]:

By (d), ∗190Ff ,
∗78Ff , we get

(e) ⊢1 E′ ↔ ∃�[∀wA(tw; uw; sw; �(w)) & ∃[ ∀wA(tw1 ; uw1 ; sw1 ; (w))
& [E[ (x0; : : : ; xk); �(y0; : : : ; yl) ] ]

′ ]:

By the inductive hypothesis again, we have

(f) ⊢1 [E[ rec(t1; u1; s1); �(y0; : : : ; yl) ] ]
′ ↔

∃[ ∀wA(tw1 ; uw1 ; sw1 ; (w)) & [E[ (x0; : : : ; xk); �(y0; : : : ; yl ] ]
′ ]:

The left part of the↔ in (f) is just the result of replacing the speci�ed
occurrence rec(t; u; s) by an occurrence of �(y0; : : : ; yl) in E. So, by (e),
(f) and the replacement theorem we get (a congruent of) (a).

�
Lemma 4.8. Let E ≡ E[ rec(t; u; s) ] be any formula of S2 such that

rec(t; u; s) is a speci�ed occurrence of a rec-plain term in E, which is
not in the scope of any quanti�er binding a free variable of rec(t; u; s).
Then, if x0; : : : ; xk are all the free number variables of t; u; s and  a
function variable not occurring in E, then

⊢1 E′ ↔ ∃[∀wA(tw; uw; sw; (w)) & [E[ (x0; : : : ; xk) ] ]
′ ]:
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Proof. The proof is by induction on the complexity of the formula
E.

Case E prime. Apply Lemma 4.7.
Case E composite. Let r be the term (x0; : : : ; xk). Then E[ r ] will

be of one of the forms ¬B[ r ]; B[ r ] & C; B & C[ r ]; B[ r ] ∨ C;
B ∨ C[ r ]; B[ r ]→ C; B→ C[ r ]; ∀xB(x)[ r ]; ∃xB(x)[ r ];
∀�B(�)[ r ]; ∃�B(�)[ r ]. By Lemma 4.4 we have

⊢1 ∃!∀wA(tw; uw; sw; (w)):
So for each form we can apply the corresponding cases of the functional
version of Lemma 25 of [IM], p. 408, that we mention before Lemma
4.7. We note that the conditions on the variables in the statement
of the present lemma and in the de�nition of the translation ′ allow
applying each corresponding case.

We treat here the case ∀�B(�)[ r ]: We will use the following case
of the functional version of Lemma 25 of [IM].
∗189Ff ∃!�F(�) ⊢ ∃� [F(�) & ∀�D(�; �) ]↔ ∀�∃� [F(�) & D(�; �) ];

where � does not occur free in F(�).

Case E ≡ ∀�B(�) ≡ ∀�B(�) [ rec(t; u; s) ],
where rec(t; u; s) is the occurrence to be eliminated, so � does not occur
free in t, u or s. We have

E′ ≡ ∀� [B(�) [ rec(t; u; s) ] ]′:

By the induction hypothesis,

⊢1 [B(�) [ rec(t; u; s) ] ]′ ↔ ∃ [ ∀wA(tw; uw; sw; (w))
& [B(�) [ (x0; : : : ; xk) ] ]

′ ]:

By this we get

⊢1 E′ ↔ ∀�∃ [ ∀wA(tw; uw; sw; (w)) & [B(�) [ (x0; : : : ; xk) ] ]
′ ]:

Since � does not occur free in ∀wA(tw; uw; sw; (w)), by ∗189Ff with
Lemma 4.4 we get

⊢1 E′ ↔ ∃ [ ∀wA(tw; uw; sw; (w)) & ∀�[B(�) [ (x0; : : : ; xk) ] ]
′ ];

from which we get the lemma for this case.
�

Lemma 4.9. Let E be a formula of S2 in which the rec-plain term
rec(t; u; s) has some occurrences such that no free (number or function)
variable becomes bound in E by a universal or existential quanti�er. Let
E[ (x0; : : : ; xk) ] be the result of replacing in E one or more speci�ed
occurrences of rec(t; u; s) by (x0; : : : ; xk), where x0; : : : ; xk are all the
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free number variables of t; u; s and  is a function variable not occurring
in E. Then

⊢1 E′ ↔ ∃[∀wA(tw; uw; sw; (w)) & [E[ (x0; : : : ; xk) ] ]
′ ]:

Proof. The proof is by induction on the number of occurrences
of rec(t; u; s) that are replaced (by (x0; : : : ; xk)). If one occurrence is
replaced, then the lemma follows by Lemma 4.8.

Assume the lemma holds if q − 1 occurrences are replaced in some
formula. Let E ≡ E[ rec(t; u; s) ] indicate q speci�ed occurrences of
rec(t; u; s) in E, and let E[ (x0; : : : ; xk) ] be the result of replacing these
q speci�ed occurrences by (x0; : : : ; xk). By Lemma 4.8 we have

⊢1 E′ ↔ ∃[∀wA(tw; uw; sw; (w)) & [E[ (x0; : : : ; xk); rec(t; u; s) ] ]
′ ];

where E[ (x0; : : : ; xk); rec(t; u; s) ] is the result of replacing in E the
�rst of the q speci�ed occurrences of rec(t; u; s) by (x0; : : : ; xk). Then,
by the inductive hypothesis,

⊢1 [E[ (x0; : : : ; xk); rec(t; u; s) ] ]
′ ↔

∃�[ ∀wA(tw; uw; sw; �(w)) & [E[ (x0; : : : ; xk); �(x0; : : : ; xk) ] ]
′ ];

where E[ (x0; : : : ; xk); �(x0; : : : ; xk) ] is the result of replacing in
E[ (x0; : : : ; xk); rec(t; u; s) ] the other q − 1 speci�ed occurrences of
rec(t; u; s) by �(x0; : : : ; xk).

By the replacement theorem we get then

⊢1 E′ ↔ ∃[ ∀wA(tw; uw; sw; (w)) & ∃�[ ∀wA(tw; uw; sw; �(w))
& [E[ (x0; : : : ; xk); �(x0; : : : ; xk) ] ]

′ ]:

We will use the following case of the functional version of Lemma
25 of [IM], p.408:

∗183F ∃!� F(�) ⊢ ∃� [F(�) & C(�; �) ]↔
∃� [F(�) & ∃� [F(�) & C(�; �) ] ] ;

where � does not occur free in F(�) and is free for � in F(�) and in
C(�; �).

Then by ∗183F and Lemma 4.4

⊢1 E′ ↔ ∃[ ∀wA(tw; uw; sw; (w)) & [E[ (x0; : : : ; xk); (x0; : : : ; xk) ] ]
′ ];

and, since E[ (x0; : : : ; xk); (x0; : : : ; xk) ] is just E[ (x0; : : : ; xk) ], we
get the result.

�
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In the next lemma we will use the following case of the functional
version of Lemma 25 of [IM], p. 408:

∗182F ∃!�F(�);∀� C(�) ⊢ ∃� [F(�) & C(�) ] :

Lemma 4.10. If E is any axiom of S2, then ⊢1 E′.

Proof. (i) If E is an axiom of S2 by an axiom-schema of the propo-
sitional logic, then E′ is equivalent in S1 to an axiom of S1 by the same
axiom-schema. This follows by the fact that, by its de�nition, the trans-
lation ′ preserves the logical operators, together with the fact that the
translations of di�erent instances of the same formula may di�er only in
their bound variables, so they are congruent, hence equivalent. Using
the replacement theorem for equivalence, it follows that the transla-
tion of any propositional axiom is equivalent to an axiom by the same
schema, so we get ⊢1 E′.

(ii) The logical axioms for the quanti�ers need a di�erent treatment.
We give the proof for the case 10N, and the other cases follow by the
same method.

Case Axiom-schema 10N: E ≡ ∀xB(x)→ B(r), where r is a term
of S2 free for x in B(x). Then E′ ≡ ∀x [B(x) ]′ → [B(r) ]′.

Ia. If x has no free occurrences in B(x), or r is rec-less and x does
not occur free in any rec-occurrence, we can easily see that, by simply
choosing the same bound variables at corresponding steps in the elim-
ination processes in B(x) and B(r), we get a formula ∀xC(x)→ C(r)
which is congruent to E′ and is an axiom of S1 by 10N, so ⊢1 E′.

Ib. In the case that x may occur free in some rec-occurrences of
B(x) and r is rec-less, we show �rst

(A) ⊢1 [B(x) ]′(x=r)↔ [B(r) ]′:

This is proved by induction on the number g of the logical operators in
B(x). The case of B(x) prime (g = 0) gives the basis, and is obtained
by induction on the number q of the rec-occurrences in B(x) as follows.

Basis for q = 0: Trivial.
Inductive Step: Let rec(t(x); u(x); s(x)) be the �rst rec-occurrence

of a rec-plain term in the formula B(x), where x occurs free in t(x),
u(x) or s(x) (if there is no such rec-occurrence, the result follows by the
argument of Ia). Let x0; : : : ; xk; x be all the free number variables of
t(x), u(x), s(x). Then, by eliminating this rec-occurrence, by Lemma
4.7 we get

(a) ⊢1 [B(x) ]′ ↔ ∃ [∀w(A(t(x)w; u(x)w; s(x)w; (w))
& [B(x) [ (x0; : : : ; xk; x)] ]

′ ];
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where all the bound variables in the displayed formula are chosen so
that r is free for x.

For simplicity, let r have only one number variable not included in
x0; : : : ; xk; x, say z, so that r = r(x; z) (in case that x does not occur
free in r, the proof is by a similar argument). By eliminating the
corresponding rec-occurrence from B(r) we get

(b) ⊢1 [B(r) ]′ ↔ ∃� [ ∀w(A(t(r)w; u(r)w; s(r)w; �(w))
& [B(r) [ �(x0; : : : ; xk; x; z) ] ]

′]:

Consider now

(a1) ⊢1 [B(x) ]′(x=r)↔ ∃ [∀w(A(t(x)w; u(x)w; s(x)w; (w))
& [B(x) [ (x0; : : : ; xk; x)] ]

′(x=r) ];

which is obtained from (a) by the substitution (x/r), using the axiom-
schema 10N of S1.

Assume

(a2) [B(x) ]′(x=r):

We will obtain [B(r) ]′ as follows.
From (a1) and (a2) we get the conclusion of (a1), so we can assume

(a3) ∀w(A(t(x)w; u(x)w; s(x)w; (w)) & [B(x) [ (x0; : : : ; xk; x) ] ]
′(x=r) :

From the inductive hypothesis, we have

(a4) ⊢1 [B(x) [ (x0; : : : ; xk; x)] ]′(x=r)↔ [B(r) [ (x0; : : : ; xk; r(x; z)) ] ]
′:

From Lemma 4.4 we have

⊢1 ∃!�∀wA(t(r)w; u(r)w; s(r)w; �(w));

so we can assume

(a5) ∀wA(t(r)w; u(r)w; s(r)w; �(w)):

From the �rst conjunct of (a3) and (a5) we can obtain using Lemma
4.2

(c) ∀x0 : : : ∀xk∀x∀z (x0; : : : ; xk; r(x; z)) = �(x0; : : : ; xk; x; z);

by corresponding ∀w-eliminations and then ∀-introductions.
We will use now the following

Fact. For any formula D[ x ] of S2 we can show that if s, t are
rec-less terms, −→x contains all the free number variables of s and t, and
no free function variable of s or t becomes bound in D[ x ], then

∀−→x s = t ⊢1 [D[ s ] ]′ ↔ [D[ t ] ]′:
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The proof is by induction on the number of logical operators in D[ x ].
The basis (case of prime formulas) is obtained by induction on the
number q of rec-occurrences in the formula, by use of the replacement
theorem for S1.

By the above fact and (c), we get now

(d) [B(r) [ �(x0; : : : ; xk; x; z)] ]
′ ↔ [B(r) [ (x0; : : : ; xk; r(x; z))] ]

′:

From the second conjunct of (a3) with (a4) and with (d) we get

(e) [B(r) [ �(x0; : : : ; xk; x; z)] ]
′:

Now from (a5) and (e) with ∃�-introduction we get the right part of
(b) and �nally [B(r) ]′.
The other direction of the equivalence of (A) is obtained similarly.
The case of composite formulas (inductive step for g > 0) follows easily.
From (A) follows immediately that E′ ≡ ∀x [B(x) ]′ → [B(r) ]′ is a con-
gruent of an axiom of S1 by the same axiom-schema, so ⊢1 E′.

II. If r has some rec-occurrences, the result is obtained by an in-
duction on the number q of these occurrences.

Basis for q = 0 is given by the second case of Ia and Ib.
Inductive Step: If r contains q (q > 0) rec-occurrences, we con-

sider the �rst rec-plain occurrence in r, say rec(t, u, s), so

(a) E ≡ E(r [ rec(t; u; s) ] ) ≡ ∀xB(x)→ B(r [ rec(t; u; s) ]):

By Lemma 4.9,

(b) ⊢1 E′ ↔ ∃ [ ∀wA(tw; uw; sw; (w)) & [E(r [ (x0; : : : ; xk) ] ) ]
′ ];

with  new for E and x0; : : : ; xk as usual. By the inductive hypothesis,

(c) ⊢1 [∀xB(x)→ B(r [ (x0; : : : ; xk) ]) ]
′:

But E(r [ (x0; : : : ; xk) ] ) is just ∀xB(x)→ B(r [ (x0; : : : ; xk) ]), so by
Lemma 4.4 with ∗182F, from (b), (c) we get ⊢1 E′.

(iii) The axiom-schema of induction (Ax. 13, IND). Consider

E ≡ A(0) & ∀x(A(x)→ A(x′))→ A(x):

Then

E′ ≡ [A(0) ]′ & ∀x([A(x) ]′ → [A(x′) ]′)→ [A(x) ]′;

and the result follows by the arguments of (ii), Ia and Ib.

(iv) The axiom-schema of �-reduction.

E ≡ (�x:r(x))(p) = r(p);

where r(x), p are terms of S2 and p is free for x in r(x).
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If r(x), p are rec-less, then E′ is E and is an axiom of S1 by the
same schema.

If there are q (q > 0) rec-occurrences in total in r(x) and p, we
consider the �rst occurrence of a rec-plain term in r(x) (in case that
r(x) is rec-less, then consider the �rst such in p), say rec(t, u, s), with
free number variables the x0; : : : ; xk, and  new. Then

E ≡ E[ rec(t; u; s) ] ≡ (�x:r(x)[ rec(t; u; s) ])(p)=(r(x)[ rec(t; u; s) ])(x=p):

By Lemma 4.9,

(a) ⊢1 E′ ↔ ∃[ ∀wA(tw; uw; sw; (w)) &
[ (�x:r(x) [ (x0; : : : ; xk) ])(p) = (r(x) [ (x0; : : : ; xk) ])(x=p) ]

′ ]:

But the instance of �-reduction shown in (a)4 has q−1 rec-occurrences
in the terms involved, so the induction hypothesis applies and we obtain

(b) ⊢1 [ (�x:r(x) [ (x0; : : : ; xk) ])(p) = (r(x) [ (x0; : : : ; xk) ])(x=p) ]
′:

By Lemma 4.4 with ∗182F, we get now from (a) and (b) that ⊢1 E′.
In case that the rec-occurrence to be eliminated is in the term p,

the argument is similar.

(v) The axiom-schema AC00!.

E ≡ ∀x∃y [A(x; y) & ∀z(A(x; z)→ y = z) ]→ ∃�∀xA(x; �(x)):
Then

E′ ≡ ∀x∃y [ [A(x; y) ]′ & ∀z([A(x; z) ]′ → y = z) ]→ ∃�∀x [A(x; �(x)) ]′;
which by the arguments of (ii), Ia and Ib is (congruent to) an axiom of
S1 by the same axiom-schema, so ⊢1 E′.

(vi) The (open) axiom Rec. Let E be

∃� [ �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩) & �(y) = rec(x; �; y) ] :

Then E′ shall be

(a) ∃� [ �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩) & [ �(y) = rec(x; �; y) ]′ ] :

We have

(b) ⊢1 [ �(y) = rec(x; �; y) ]′ ↔
∃ [ ∀wA(xw; �w; yw; (w)) & �(y) = (x; y) ] :

By Lemma 4.1,

(c) ⊢1 ∃!� [ �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) ] :
4We observe that p is free for x in r(x), as, if x occurs free in r(x), then x is

one of the variables x0; : : : ; xk.
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By Lemma 4.4,

(d) ⊢1 ∃!∀wA(xw; �w; yw; (w)):

Assume

(c1) �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩)
& ∀�(�(0) = x & ∀z �(z′) = �(⟨�(z); z⟩)→ � = �):

Assume
(d1) ∀wA(xw; �w; yw; (w)):

Then

∃� [ �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) & �(y) = (x; y) ] :

Assume

(d2) �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) & �(y) = (x; y):

By (c1) and (d2) we get � = �, so

(e) �(y) = (x; y):

After ∃�-elimination discharging (d2), we get from (d1), (e),

(f) ∀wA(xw; �w; yw; (w)) & �(y) = (x; y):

And after ∃-introduction, ∃-elimination discharging (d1) we get from
(f) with (c1)

(g) �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩)
& ∃ [ ∀wA(xw; �w; yw; (w)) & �(y) = (x; y) ] :

After ∃�-introduction, ∃�-elimination discharging (c1), we get (a) in
S1 (using (b)).

(vii) The remaining axioms are �nitely many axioms not containing
the constant rec, and they are also axioms of S1.

�
Lemma 4.11. If E is an immediate consequence of F ( F and G)

in S2, then E′ is an immediate consequence of F′ ( F′ and G′) in S1.

Proof. Since by the de�nition of the translation ′ the logical op-
erators are preserved and since, by Lemma 4.6, no free variables are
introduced or removed, and also since congruent formulas are equiv-
alent, it follows that to each instance of a rule of S2 corresponds an
instance of the same rule in S1.

�
We conclude that if � ⊢2 E, where Γ is a list of formulas and E is

a formula of S2, then �′ ⊢1 E′. So elimination relation III is satis�ed.
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5. Comparison of M and EL

5.1. Introduction of the other function(al) constants.
5.1.1. Having the recursor constant rec in the formalism, it is im-

mediate that any constant for a function, in whose primitive recursive
derivation are used only functions with names already in the symbol-
ism, can be added de�nitionally. The needed translation is trivial, it
amounts just to the replacement of each occurrence of the new constant
by the corresponding (longer) term provided by the formalism.

More concretely, constants for all the primitive recursive functions
can be added de�nitionally, successively according to their primitive
recursive descriptions, as follows:
· For the initial functions and for functions de�ned by composition from
functions for which we already have constants, it is very easy to �nd
terms expressing them.
· For the case of de�nition by primitive recursion we use the constant
rec: for example if f(x; 0) = g(x) and f(x; y + 1) = h(f(y); y; x), we
introduce a new constant fj by fj(x; y) = rec(g(x); �z:h((z)0; (z)1; x); y),
if we have already in our symbolism g and h for g and h, respectively.

We note that in this way, not only functions, but also functionals
can be added in a formalism having a recursor, like EL or M + Rec.
We also note that the equality axioms for the new constants become
provable.

5.2. Comparison of M and EL.
5.2.1. LetM+ be obtained by adding toM + Rec all the (in�nitely

many) function constants ofHA, with their de�ning axioms, extending
also all axiom-schemata to the new language.

Let EL+ be obtained by adding to EL all the (�nitely many) func-
tional constants of M, with their de�ning axioms, extending also all
axiom-schemata to the new language.

We see that the languages of the extended systems M+ and EL+

coincide (with trivial di�erences). Using the relations between the func-
tion existence principles that we have obtained as well as the equiva-
lence of the di�erent de�nitions of the recursor constant, we arrive at
the following:

EL++ CFd = HA1 + �n.list(M) + QF-AC00 + CFd =
IA1 + Rec + inf.list(HA) + AC00! = M+.

Theorem 5.1. EL+ + CFd is a conservative (in fact de�nitional)
extension of M.

Proof. It su�ces to observe that every proof in EL+ + CFd is done
in a �nite subsystem of it, so in a de�nitional extension of M. �
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Theorem 5.2. M+ is a conservative (in fact de�nitional) extension
of EL+ CFd.

Corollary 5.3. The systems M+ and EL+ + CFd essentially co-
incide, so M and EL+ CFd are essentially equivalent, in the sense
that they have a common conservative extension obtained by de�ni-
tional extensions.

Terminology. We say that M and EL+ CFd are de�nitionally
equivalent.

In [Troelstra1974] p. 585, a result of N. Goodman is mentioned
and used, stating that EL1 is conservative over HA, where EL1 is
EL + AC01, where AC01 (which entails AC00!) is the countable choice
assumed in FIM. It follows that EL + CFd is conservative over HA.
With our previous results, we obtain the following.

Proposition 5.4. M+ is a conservative extension of HA.

Proposition 5.5. M is a conservative extension of IA0.

6. Elimination of the symbol � from EL

6.1. Description of the problem.
6.1.1. From [JRMPhD] it is known that � can be eliminated from

the formal systems that S. C. Kleene set up to formalize parts of in-
tuitionistic analysis, including M. In this proof, the principle AC00! is
used in a substantial way, so this proof is not valid in the case of EL.
Here we obtain the corresponding result for EL by modifying part of
this proof.

Let EL− � be the formal system obtained from EL by omitting
the symbol �, the corresponding functor formation rule and the axiom-
schema of �-reduction.

Let S1 be EL− � and S2 be EL.
By ⊢1, ⊢2 we denote provability in S1, S2, respectively.
As axioms for the recursor constant rec we include in both systems

the following:

REC

{
rec(x; �; 0) = x;
rec(x; �; S(y)) = �(⟨rec(x; �; y); y⟩):

Over both systems, this version of the axioms REC is equivalent by
logic to the one used in the de�nition of EL, with terms and a func-
tor in the places of the number variables and the function variable,
respectively.

Both systems S1 and S2 include the quanti�er-free axiom-schema of
numerical choice. We choose to include in both systems a term-version
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of this principle which is a special case of QF-AC00, but is, as we shall
prove, over both systems, equivalent with it:

QFt-AC00 ∀x∃y t(⟨x; y⟩) = 0→ ∃�∀x t(⟨x; �(x)⟩) = 0;

where x is free for y in t(⟨x; y⟩) and � does not occur in t(⟨x; y⟩).

Proposition. Over HA1 (and IA1), QF-AC00 is interderivable
with QFt-AC00.

Proof. We �rst observe that QFt-AC00 is a special case of QF-AC00.
The converse is obtained as follows:

Using Fact (vii) of the proof of theorem 3.4, which as we noted
there holds also in EL, for any quanti�er-free formula A(x; y), we can
�nd a term t(x; y) with the same free variables as A(x; y), such that

⊢ t(x; y) ≤ 1 and ⊢ A(x; y)↔ t(x; y) = 0:

We consider then the term s(w) ≡ t((w)0; (w)1), for which we obtain

⊢ A(x; y)↔ s(⟨x; y⟩) = 0:

Replacing A(x,y) in the hypothesis of QF-AC00 by s(⟨x; y⟩) = 0 allows
to apply QFt-AC00 and get easily the result.

�

6.2. Eliminating � from EL.
6.2.1. To obtain �-eliminability in [JRMPhD] a translation is de-

�ned and then it is shown that the elimination relations are satis�ed.
The translation is the following (the terminology used corresponds to
the one we gave for the case of the eliminability of rec but of course
now E′ is de�ned di�erently) :

If P is any prime formula of S2, then:
· If P has no �'s, then P′ is P.
· Otherwise, if �x:s(x) is the �rst (free) �-occurrence in P, in which

case we use the notation P [�x:s(x) ], then

P′ ≡ ∃� [ ∀x [ s(x) = �(x) ]′ & [P [� ] ]′ ];

where P [� ] is obtained from P by replacing the occurrence �x:s(x) by
�.

The only point of the proof in [JRMPhD] where AC00! is used is in
order to obtain

⊢1 ∃!� ∀x [ t(x) = �(x) ]′:

Here we present some lemmas by which we obtain this result with-
out using AC00!, so, after treating the axioms of EL not included in
the systems of [JRMPhD], we obtain �-eliminability for EL.
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Remark 1. Consider E ≡ ∀xA(x)→ A(t), where A(x) is any for-
mula of S2 (with t free for x in A(x)), an axiom of S2 by the axiom-
schema 10N. In the case that t has no �'s, we obtain that ⊢1 E′, where
E′ ≡ ∀x [A(x) ] ′ → [A(t) ]′. We can see this as follows: By choosing
the same bound variables for corresponding steps in the elimination
process in A(x) and A(t), we obtain a formula ∀xB(x)→ B(t) for the
same t and with t free for x in B(x), but this is an axiom of S1 which
is a congruent of E′.

The general case can be shown only after more results have been
obtained. But the present case is now available with the above justi�-
cation. We will make use of it in the following proofs.

The same argument applies for the ∀�-elimination schema, the
axiom-schema 10F.

Remark 2. We use the following notation: If u is a speci�ed oc-
currence of a functor u in a formula E (or term t), then we write E [ u ]
( t [ u ] ) to indicate it, so E ≡ E [ u ] . When this occurrence is replaced
by a function variable, say �, we write E [� ] to denote the result of
replacing the occurrence u in E by an occurrence of �; the same for
terms.

Lemma 6.1. Let r(x) be any term of S2 with � not free in it. Then

⊢1 ∃� ∀x [ r(x) = �(x) ]′:

Proof. The proof is by induction on the number q of �'s in r(x).
Case q = 0. r(x) has no �'s. Then we have

(a) ⊢1 ∃!w r(x) = w;

so

(b) ⊢1 ∀x∃w r(x) = w;

Applying QF-AC00 to (b) we get

(c) ⊢1 ∃�∀x r(x) = �(x):

The lemma follows from (c) and the de�nition of the translation ′.
Case q > 0. Let r(x) have q > 0 �'s, and let �z:s(z; x) be the �rst

�-occurrence in r(x), so that

r(x) ≡ r(x) [�z:s(z; x) ] :

Then, if

E ≡ ∃�∀x r(x) = �(x);

we have

(a) E′ ≡ ∃�∀x∃� [ ∀z [ s(z; x) = �(z) ]′ & [ r(x)[ � ] = �(x) ]′ ]:
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Assume
(b) ∀z [ s(z; x) = �(z) ]′

and
(c) ∀x [ r(x)[ � ] = �(x) ]′:

Then, after ∀x-elimination, we get

(d) ∀z [ s(z; x) = �(z) ]′ & [ r(x)[ � ] = �(x) ]′:

By the induction hypothesis, we have

(e) ⊢1 ∃�∀z [ s(z; x) = �(z) ]′

and
(f) ⊢1 ∃�∀x [ r(x)[ � ] = �(x) ]′:

So with ∃�-introduction to (d) we get

(g) ∃� [∀z [ s(z; x) = �(z) ]′ & [ r(x)[ � ] = �(x) ]′ ];

from (e) with ∃�-elimination discharging (b), and with ∀x-introduction
(since x is not free in (c)) and then ∃�-introduction, with ∃�-elimination
from (f) discharging (c), we get the right part of the↔ in (a), so ⊢1 E′.

�
Lemma 6.2. Let t be any term of S2 with z not free in it. Then

⊢1 ∃!z [ t = z ]′:

Proof. The proof is by induction on the number q of �'s in t.
Case q = 0. t has no �'s. Then

⊢1 ∃!z t = z;

and the lemma follows by the de�nition of the translation ′.
Case q > 0. Let t have q > 0 �'s, and let �x:s(x) be the �rst

�-occurrence in t, so that

t ≡ t [�x:s(x) ] :

Then,
[ t = z ]′ ≡ ∃� [∀x [ s(x) = �(x) ]′ & [ t[� ] = z ]′ ] :

Assume
(a) ∀x [ s(x) = �(x) ]′

and
(b) [ t[� ] = z ]′:

By Lemma 6.1,
(c) ⊢1 ∃�∀x [ s(x) = �(x) ]′

and by the inductive hypothesis

(d) ⊢1 ∃!z [ t[� ] = z ]′:
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By (a), (b), with ∃�-introduction we get

(e) [ t = z ]′:

Assume

(f) [ t = y ]′ ≡ ∃� [ ∀x [ s(x) = �(x) ]′ & [ t[ � ] = y ]′ ] :

Assume
(g1) ∀x [ s(x) = �(x) ]′

and
(g2) [ t[ � ] = y ]′:

From (a) and (g1) we get � = � as follows: From (a) and (g1), by
∀-elimination, we get

(h1) [ s(x) = �(x) ]′

and
(h2) [ s(x) = �(x) ]′;

respectively. By the inductive hypothesis we have

⊢1 ∃!z [ s(x) = z ]′;

so by (h1), (h2) we get �(x) = �(x), so ∀x�(x) = �(x) (since x is not
free in (a), (g1)), so

(i) � = �:

By the replacement theorem, from (g2), (i), we get

(j) [ t[� ] = y ]′:

From (b), (j), (d), we get y = z, so after ∃�-elimination from (f), we
get from (e), (f)

[ t = z ]′ & ∀y([ t = y ]′ → y = z);

so we get the lemma, after completing the ∃�, ∃z-eliminations from
(c), (d).

�
Lemma 6.3. Let t(x) be any term of S2 with � not free in it. Then

⊢1 ∃!� ∀x [ t(x) = �(x) ]′:

Proof. By Lemma 6.1, we have ⊢1 ∃� [ ∀x [ t(x) = �(x) ]′.
Assume

(a) ∀x [ t(x) = �(x) ]′

and
(b) ∀x [ t(x) = �(x) ]′:

Using Remark 1, we get

(c) [ t(x) = �(x) ]′
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and

(d) [ t(x) = �(x) ]′:

By Lemma 6.2, (c), (d), we get �(x) = �(x), so ∀x�(x) = �(x) (from
(a), (b)), so

(e) � = �:

So from (a), (b), (e), we get

(a) ∀x [ t(x) = �(x) ]′ & ∀� [∀x [ t(x) = �(x) ]′ → � = � ] :

So after ∃�-introduction, we get (with ∃�-elimination) the lemma.
�

We have also to show that the axioms and axiom-schemas of EL
that are not included in the systems of [JRMPhD] become under the
translation theorems of EL− �.
· The case of the axioms REC is trivial, since there are no �-occurrences
in them.
· The case of the axiom-schema QFt-AC00 is treated as follows.

Lemma 6.4. Let

E ≡ ∀x∃y t(⟨x; y⟩) = 0→ ∃�∀x t(⟨x; �(x)⟩) = 0

be an instance of QFt-AC00 in S2. Then ⊢1 E′.

Proof. We have that

E′ ≡ ∀x∃y [ t (⟨x; y⟩) = 0 ]′ → ∃�∀x [ t(⟨x; �(x)⟩) = 0 ]′:

By Lemma 6.1,

(a) ⊢1 ∃� ∀w [ t(w) = �(w) ]′:

Assume

(a1) ∀w [ t(w) = �(w) ]′:

Assume

(b) ∀x∃y[ t(⟨x; y⟩) = 0 ]′ ;

so we get

(c) ∃y [ t(⟨x; y⟩) = 0 ]′ :

Assume

(c1) [ t(⟨x; y⟩) = 0 ]′ :

By (a1) with ∀-elimination,

(a2) [ t(⟨x; y⟩) = �(⟨x; y⟩) ]′ :
By (c1), (a2), Lemma 6.2, �(⟨x; y⟩) = 0, so

(d) ∃y �(⟨x; y⟩) = 0
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from (c) with ∃-elimination. So

(e) ∀x∃y �(⟨x; y⟩) = 0

(x not free in (b)). Now by QFt-AC00,

(f) ∃�∀x �(⟨x; �(x)⟩) = 0:

Assume
(g) ∀x �(⟨x; �(x)⟩) = 0:

By (a1), ∀-elimination, and with an induction on the number of �'s in
t using Lemma 6.3, we get

(h) ∀x [ t(⟨x; �(x)⟩) = 0 ]′;

so
(i) ∃�∀x [ t(⟨x; �(x)⟩) = 0 ]′ ;

from (f) with ∃�-elimination. So from (b) we get E′. After completing
the ∃�-elimination from (a) we get ⊢1 E′.

�
Before stating the concluding result, we make an observation moti-

vated by the question of Iris Loeb whether this method of elimination
would have worked for M: all arguments in this section apply equally
well for the system IA1 + QF-AC00 in the place of EL. As suggested by
J. Rand Moschovakis, we include the corresponding elimination result
in the �nal theorem of the section.

Theorem 6.5. (a) The system EL is a de�nitional extension of the
system EL− �.

(b) The system IA1 +QF-AC00 is a de�nitional extension of the
system IA1 +QF-AC00 − �.

7. The formal systems BIM, H and WKV

7.1. The formal system BIM. The formal system BIM of Ba-
sic Intuitionistic Mathematics has been introduced by W. Veldman to
serve as a basis for the development of intuitionistic mathematics, and
especially intuitionistic reverse mathematics. We give its description,
as presented in the paper \Brouwer's Approximate Fixed-Point Theo-
rem is Equivalent to Brouwer's Fan Theorem" [Veldman].

BIM is based on two-sorted intuitionistic predicate logic, with num-
ber and function variables, as are all the systems in the present study.
It has a numerical constant 0, unary function constants 0 for the func-
tion with constant value 0, S for the successor and K and L for the
projection functions, and a binary function constant J for the pairing
function. Terms and function terms (correspond to the functors with
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the terminology we use) are as usual. There are equality symbols =0

for numerical terms and =1 for function terms. The function equality
is in fact de�ned in terms of number equality, as the following axiom
is assumed:

Axiom of Extensionality : ∀�∀� [� =1 � ↔ ∀n [�(n) =0 �(n) ] ] :

Assumed are the Axioms on the function constants:

∀n [¬(S(n) = 0) ]; ∀m∀n[ S(m) = S(n)→ m = n ]; ∀n[ 0(n) = 0 ];

∀m∀n [K(J(m; n)) = m & L(J(m; n)) = n ] :

Also the following function existence principles are assumed, all of them
expressed by single axioms:

Composition :
∀�∀�∃∀n [ (n) = �(�(n)) ]

Primitive Recursion :
∀�∀�∃∀m∀n [ (m; 0) = �(m) & (m; S(n)) = �(m; n; (m; n)) ]

Unbounded Search :
∀� [ ∀m∃n�(m; n) = 0→ ∃∀m�(m; (m)) = 0 ]

The Axiom-schema of Induction is also assumed:

[A(0) & ∀n (A(n)→ A(S(n)))]→ ∀nA(n):
It is also assumed that constants for primitive recursive functions and
their de�ning equations are added to the system. These additions are
de�nitional; the method exposed in [IM] §74, applies directly in this
case.

In order to examine the relation of this system with the others that
we have considered, we �rst observe the following:

Proposition 7.1. Over BIM, the schema CFd entails AC00!.

Proof. The proof is similar to that of Theorem 3.2 since we have
the decidability of number equality (proved by the axiom-schema of
Induction), but using the constants J, K, L instead of the pairing and
projection functions of IA1, and the axiom of Unbounded Search in-
stead of QF-AC00.

�
In fact, over BIM without the axiom of Unbounded Search, the

conjunction of the axiom of Unbounded Search with the schema CFd
is equivalent to AC00!. The one direction is given by the preceding
proposition, and for the converse, AC00! entails CFd like in Proposition
3.1, and it is easy to see that AC00! entails the axiom of Unbounded
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Search if we add (conservatively) addition + to BIM so that < can be
expressed e�ciently and adapt the proof of Proposition 2.7.

The result of [JRMPhD] on �-eliminability applies to any formal
system of the sort that we are studying which has function constants
for 0; ′;+; · and assumes AC00!. The system BIM can be extended
de�nitionally to a system BIM′, so that it includes all these constants.
Consequently, the � symbol with the related formation rule and axiom-
schema can be added de�nitionally to the system BIM′ + CFd. Con-
sider now the system obtained by the addition of �, BIM′+CFd+�.
In this system, thanks to the presence of �, we can easily obtain Lemma
5.3(b) of [FIM] from the Axiom of Primitive Recursion. By the same
method that the recursor constant rec is added toM, all the additional
function and functional constants of M can be added de�nitionally,
successively according to their primitive recursive descriptions, to this
extended system. Let BIM+ be the result of adding to BIM � and all
the additional constants of M, with their formation rules and axioms.
LetMj be the trivial extension ofM obtained by adding the constants
J, K, L (these additions are also de�nitional). Then BIM+ + CFd and
Mj coincide up to trivial di�erences, and we have then the following:

Theorem 7.2. Mj is a de�nitional extension of BIM+ CFd.

We conclude that BIM + CFd and M are essentially equivalent,
and also essentially equivalent with EL + CFd. It is remarkable that,
in developing the theory within BIM, Veldman de�ned a set of natural
numbers to be decidable if it has a characteristic function, as this means
that CFd is implicitly assumed.

Theorem 7.3. BIM does not prove CFd.

Proof. This is obtained as in the case of EL, Theorem 3.4, in-
terpreting the function variables as varying over the general recursive
functions.

�

7.2. The formal system H. In the paper \Trans�nite Induction
and Bar Induction of Types Zero and One and the Role of Continuity in
Intuitionistic Analysis" of Howard and Kreisel ([Howard-Kreisel]), the
formal system of elementary intuitionistic analysis H is used. H di�ers
from BIM only in that it does not assume the axiom of unbounded
search (it has also another di�erence, which is inessential: it does not
use only one-place number-theoretic functions like BIM).

Like IA1 and HA1, H has a classical model consisting of the prim-
itive recursive functions. Essentially H is a proper subtheory of BIM.
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7.3. The formal system WKV. In the paper \Equivalents of
the (Weak) Fan Theorem" [Loeb], Iris Loeb presents and uses the for-
mal system WKV (for \Weak Kleene-Vesley"). This is again based
on two-sorted intuitionistic predicate logic with number and function
variables, and constants 0, S, +, ·, =, j (pairing) and j1, j2 (projec-
tions). The system has also the symbol � and parentheses for function
application, and corresponding formation rules for terms and functors.
The axioms are the usual for the function constants and number equal-
ity, the �-conversion axiom-schema, the axiom-schema of mathematical
induction, the axiom-schema of primitive recursion in the version

∃� [ �(0) = t & ∀y �(S(y)) = r(j(y; �(y))) ] ;

where t is a term and r a functor. The axiom-schema AC00! is also
assumed. We observe that the assumed version of the axiom-schema of
primitive recursion is very similar to Lemma 5.3(b) of [FIM]; in fact, as
it is easily seen, these schemas are equivalent (modulo the pairing) over
both WKV and M. Using the method of the addition of the recursor
constant rec to M, all constants of M can, successively according to
their primitive recursive descriptions, be added de�nitionally toWKV.
So, if we consider the trivial extensionMj ofM by the pairing and pro-
jections ofWKV with their axioms, we conclude that the two systems
are essentially equivalent.

Theorem 7.4. Mj is a de�nitional extension of WKV.

8. Concluding observations

We close Part 1 by collecting the main results following from the
arguments we presented.

I. In relation to the small classical models that the weak construc-
tive systems we studied admit:

(a) The systems H, IA1, HA1, IA1 + Rec have the primitive re-
cursive functions as a classical model.

(b) The systems resulting from adding QF-AC00 to the systems of
(a) as well as BIM, have the general recursive functions as a classical
model.

(c) Adding CFd to the systems of (b) gives stronger systems, which
do not have small classical models consisting of recursive functions.

II. The systems of each group are essentially equivalent between
them:

(a) IA1 + Rec, HA1.
(b) IA1 + QF-AC00, EL.
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(c) M, WKV, EL + CFd, BIM + CFd, H + AC00!.
(d) BIM, H + Unbounded Search.

III. We observe also the following.

(a) Adding QF-AC00 to any of H, IA1,HA1 gives stronger systems.

(b) Adding QF-AC00 to any of H + CFd, IA1 + CFd, HA1 + CFd
gives stronger systems (J. Rand Moschovakis, [JRM-GV2012]).

(c) Adding CFd to any of HA1, EL, BIM gives stronger systems.

Almost all results follow easily from the arguments presented so
far. The only point that needs some more justi�cation is the relation
in II(b). We give it next.

In proving that the recursor constant rec can be added de�nitionally
to M, the axiom-schema AC00! has been used in two cases (except
from the point where it is shown that the translation of AC00! itself
is a theorem of M): in the proof of Lemma 5.3(b) of [FIM], and in
the proof of Lemma 4.4. We will prove these two lemmas by using
only QF-AC00. In this way, together with the observation that, thanks
to the presence of �, QF-AC00 is equivalent over IA1 with the single
axiom

∀� [∀x∃y�(⟨x; y⟩) = 0→ ∃∀x�(⟨x; (x)⟩) = 0 ] ;

we obtain the fact that rec can be added de�nitionally to the system
IA1 + QF-AC00.

Lemma 8.1. In IA1 +QF-AC00,

⊢ ∃� [ �(0) = x & ∀z�(z′) = �(⟨�(z); z⟩) ] :

Proof. We slightly modify the proof of Lemma 5.3(b) of [FIM] as
follows.
Let

P(x; �; y; v) ≡ (v)0 = x & ∀i < y (v)i′ = �(⟨(v)i; i⟩):
By formal induction (IND) on y we show �rst

(a) ⊢ ∀y∃v P(x; �; y; v)
as follows:

Basis. We get ∃v P(x; �; 0; v) by \setting" v = px0.
Inductive step. Assuming P(x; �; y;w) and \setting"

v = �i≤yp
(w)i
i ∗ p�(⟨(w)y;y⟩)

y′ ;

since then

∀i ≤ y (v)i = (w)i & (v)y′ = �(⟨(w)y; y⟩);
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we get
∃v P(x; �; y′; v)

from the inductive hypothesis.
Using f15, P(x; �; y; v) is equivalent over IA1 to a quanti�er-free

formula (with the same free variables). So we can apply QF-AC00 to
(a) and get

(b) ∃∀y P(x; �; y; (y)):
Assume now

(c) ∀y P(x; �; y; (y)):
De�ne � = �y:(y)y (justi�ed by Lemma 5.3(a) of [FIM]). Then we can
show

(d) ∃� [ �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) ]
(for the second conjunct in (d), specialize from (c) for z′ and i = z (z < z′),
and get (z′)z′ = �(⟨(z′)z; z⟩). But (z′)z = (z)z (by induction on z,
using (c)), so �(z′) = �(⟨�(z); z⟩)).

�
Lemma 8.2. In IA1 +QF-AC00,

⊢ ∃!� [ �(0) = x & ∀z �(z′) = �(⟨�(z); z⟩) ] :
Proof. Same as the proof of Lemma 4.1.

�
In the next lemma the notation and abbreviations are as in Lemma

4.4.

Lemma 8.3. Let t; s be terms and u a functor of IA1. Let x0; : : : ; xk
include all the number variables occurring free in t; u or s, let w be a
number variable not occurring in t; u; s, distinct from x0; : : : ; xk, and 
a function variable free for v in A(tw; uw; sw; v), not occurring free in
A(tw; uw; sw; v). Then in IA1 +QF-AC00

⊢1 ∃!∀wA(tw; uw; sw; (w)):
Proof. We want to show

⊢ ∃!∀w∃� [ �(0) = tw & ∀z�(z′) = (uw)(⟨�(z); z⟩) & �(sw) = (w)) ] :

From (a) in the proof of Lemma 1.1 we have

⊢ ∀w∃v P(tw; uw; sw; v):
Applying QF-AC00 we get

(a) ⊢ ∃�∀wP(tw; uw; sw; �(w)):

Assume

(a1) ∀w [ (�(w))0 = tw & ∀i < sw(�(w))i′ = (uw)(⟨(�(w))i; i⟩) ] ;



8. CONCLUDING OBSERVATIONS 59

and let
(∗)  = �w:(�(w))sw :

By (a1), we get

(a2) (�(w))0 = tw & ∀i < sw(�(w))i′ = (uw)(⟨(�(w))i; i⟩):
From Lemma 1.2,

(b) ⊢ ∀w∃!� [ �(0) = tw & ∀z�(z′) = (uw)(⟨�(z); z⟩) ] :
Assume

(b1) �(0) = tw & ∀z�(z′) = (uw)(⟨�(z); z⟩):
Then

(c) �(sw) = (�(w))sw

(to get (c) we prove ∀i ≤ sw �(i) = (�(w))i by formal induction (IND)
on i), so

(d) (w) = �(sw) :

By →-elimination discharging (b1) with ∀�- and ∀w-introductions we
get

(e) ∀w∀� [ (b1)→ (w) = �(sw) ]:

From (b) and (e) we get

(f) ∀w∃� [ �(0) = tw & ∀z�(z′) = (uw)(⟨�(z); z⟩) & �(sw) = (w) ] :

Assume

(g) ∀w∃� [ �(0) = tw & ∀z �(z′) = (uw)(⟨�(z); z⟩) & �(sw) = "(w) ] :

Then from (e) and (f) we get easily

(h) ∀w "(w) = (w):

So from (g) we get (i) " = , and then ∀" ((g) → (i)). So with (f)
and ∃-introduction we get the lemma, after completing the ∃, ∃�-
eliminations discharging (∗) and (a1), respectively.

�
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CHAPTER 2

A study of uniqueness principles

Introduction

Intuitionistic logic does not determine in a unique way the interpre-
tation of quanti�ers (and combinations of them). Consequently, several
principles are introduced, reecting the particular ways of reasoning ac-
cepted by the various tendencies of constructivism. Among them are
versions of countable choice, continuity principles, versions of Church's
Thesis and many other.

Several of these principles have a hypothesis of the form ∀∃, and
are usually formulated in two versions, one for numbers, with the ex-
istential quanti�er being a number quanti�er, and the corresponding
one for functions. In general, the versions for numbers are weaker than
the ones for functions. In some cases, the versions for functions are
considered according to some constructivists' views as unnecessarily
strong, or even as problematic as some compatibility questions arise.
One such example is the strong continuous choice principle CC1 as-
sumed by FIM, and other formal systems for analysis. S. C. Kleene
proposed this schema to formulate Brouwer's principle of continuous
choice. While the number version CC0 of this principle is compati-
ble with Kripke's Schema, a principle reecting Brouwer's \creative
subject" arguments, the functional version CC1 contradicts it.

But there is a remarkable phenomenon that we meet: When unique-
ness versions are considered, namely when in the hypotheses the ex-
istential quanti�er is replaced by the corresponding unique existential
quanti�er ∃!, the function and number versions become equivalent (over
a weak theory like M). We note that under the constructive interpre-
tation, the combination ∀x∃y implicitly asserts that, for each x, a par-
ticular y can be speci�ed, such that a certain property of the pair (x,y)
holds.

For an example, consider the principle of countable choice

AC01 ∀x∃�A(x; �)→ ∃�∀xA(x; �y:�(⟨x; y⟩));

where x, y are distinct and x is free for � in A(x; �). This is the
countable choice assumed by FIM. AC00 is the corresponding number
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version and it is weaker than AC01 (for this result we refer to the related
observation in [Howard-Kreisel], p. 347). Consider the uniqueness ver-
sions AC01! and AC00!. In [JRMPhD], J. R. Moschovakis proved that
they are equivalent over M. The situation is similar for CC1 and the
weaker CC0. Their uniqueness versions are equivalent over M ([FIM],
p. 89, and [JRMPhD]).

In this chapter we show similar results for the uniqueness versions of
Troelstra's Generalized Continuity principle, of the principle of Weak
Continuity and of the principle of Strong Extensionality. We consider
also some non-constructive principles like Markov's Principle, and spe-
cial cases of the principle of the excluded middle, we observe that they
are equivalent to versions with some uniqueness condition and we ob-
tain various derivability and underivability results. In the same spirit
we consider a uniqueness version of Vesley's schema and �nally we com-
bine some of our results with the principle of Independence of Premise.

1. Generalized Continuity

The strong continuous choice principle CC1 ([FIM] p. 73) and its
number version CC0 assert that every total function from Baire space
(with the topology of the initial segments) to Baire space or the natural
numbers is continuous and guarantee the existence of a neighborhood
function, a function which \recognizes" when a �nite initial segment
of a choice sequence su�ces to determine the value of the function at
this choice sequence, and then provides the value. In [FIM] p. 74,
it is shown that strong continuity applies as well to functions whose
domain is any spread (a characteristically intuitionistic notion of set
that corresponds to closed subsets of Baire space). But it cannot be
extended to functions whose domain is an arbitrary species (the intu-
itionistic analog of a set de�ned by a property) of choice sequences. A.
S. Troelstra ([Troelstra1973], 3.3.9) formulated the Generalized Con-
tinuity principle, by extending strong continuity to functions whose
domain is expressed by formulas of a certain syntactic form, and used
it to characterize Kleene's function realizability.

To state the principle of Generalized Continuity we need the notion
of almost negative formula:

A formula is called almost negative if it contains no ∨ and no ∃,
except in parts of the form ∃xP(x) with P(x) prime or of the form
∃�P(�) with P(�) prime.
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We will use also the following de�nitions and abbreviations related
to the neighborhood functions. S. C. Kleene de�ned the following par-
tial recursive functions of � and � in order to code continuous func-
tionals from sequences to numbers and from sequences to sequences,
respectively:

{�}(�) ≃ �(�(�y �(�(y)) > 0)) .−1;
and

{�}[� ] ≃ �t:�(2t+1 ∗ �(yt)) .−1;
where yt ≃ �y �(2t+1 ∗ �(y)) > 0.

Abbreviations: we follow the formulations of [FIM] and we add
only the condition �(1) = 0 where 1 is the code number of the empty
sequence to the second abbreviation below, so that we agree essentially
with Troelstra's versions.

{�}(�)↓ & A(�; {�}(�)) is an abbreviation for

∃y [�(�(y)) > 0 & ∀x(�(�(x)) > 0→ y = x) & A(�; �(�(y)) .−1) ];
and {�}[� ]↓ & A(�; {�}[� ]) is an abbreviation for

∀t∃!y�(2t+1∗�(y))>0 & �(1) = 0 &

∀� [∀t∃y�(2t+1∗�(y)) = �(t)+1→ A(�; �) ] :

The principle of Generalized Continuity is expressed by the follow-
ing schema:

GC1 ∀� [A(�)→ ∃� B(�; �) ]
→ ∃�∀� [A(�)→ {�} [� ]↓ & B(�; {�} [� ]) ] ;

where A(�) is almost negative and � does not occur free in A(�), and
� does not occur free in A(�)→ ∃� B(�; �) and �, � are free for � in
B(�; �).

We will show that the uniqueness version GC1! which is like GC1

with ∃!� instead of ∃�, and the number version

GC0! ∀� [A(�)→ ∃!xB(�; x) ]
→ ∃�∀� [A(�)→ {�}(�)↓ & B(�; {�}(�)) ] ;

where A(�) is almost negative and x does not occur free in A(�), and
and � does not occur free in A(�)→ ∃!xB(�; x) and �, � are free for
x in B(�; x), are equivalent over M.

In [FIM] p. 89, S. C. Kleene remarks that the uniqueness version of
the strong principle of continuous choice for functions CC1! (his

∗27:1′)
is derivable from the strong continuity principle for numbers CC0 (his
∗27:2), and gives a hint for the proof. In fact, using the same hint,
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CC1! can be derived in M from the weaker principle for numbers with
uniqueness CC0!. This proof can be found in [JRMPhD].

We use the same method to get the corresponding result for the
case of generalized continuity.

Proposition 1.1. GC1! is derivable in M from GC0!.

Proof. We give here a description of a formal proof in M of the
above fact. First from

(a) ∀� [A(�)→∃!� B(�; �) ]
we prove

(b) ∀� [A(�)→ ∀x∃!y∃� [B(�; �) & �(x)=y & ∀(B(�; )→ �=)]]

as follows.
Assume A(�). Then from (a), specializing for � and with modus

ponens, we can assume for ∃-elimination

(a1) B(�; �) & ∀(B(�; )→ � = ):

So taking the conjunction with �(x) = �(x), we have

(a2) B(�; �) & �(x) = �(x) & ∀(B(�; )→ � = );

so, by ∃-introduction, we have
(a3) ∃� [B(�; �) & �(x) = �(x) & ∀(B(�; )→ � = ) ] :

Assume now

(a4) ∃� [B(�; �) & �(x) = z & ∀(B(�; )→ � = ) ] :

Assume for ∃-elimination

(a5) B(�; �) & �(x) = z & ∀(B(�; )→ � = ):

By (a2), we have ∀(B(�; )→ � = ), so by B(�; �) (from (a5)) we
get � = �, so �(x) = �(x), but by (a5) �(x) = z, so

(a6) �(x) = z:

So, completing the ∃-elimination in (a5) and with ∀-introduction we
get

(a7) ∀z(∃� [B(�; �) & �(x) = z & ∀(B(�; )→ � = ) ]→ �(x) = z):

So by (a3), (a7) and ∃-introduction we get

(a8) ∃!y∃� [B(�; �) & �(x) = y & ∀(B(�; )→ � = )]:

By ∀-introduction and changing the bound variable � to � we get the
conclusion of the implication of (b), and with → and ∀-introduction
we get (b).
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By (b), following Kleene's hint in FIM, we specialize for �t:�(t+ 1)
and �(0) and then with ∀-introduction we get

(c) ∀� [A′(�)→ ∃!yB′(�; y) ];

where
A′(�) ≡ A(�t:�(t+ 1))

and

B′(�; y) ≡ ∃� [B(�t:�(t+ 1); �) & �(�(0)) = y &

∀(B(�t:�(t+ 1); )→ � = ) ] :

Since A′(�) is still almost negative (like A(�)), we can apply GC0!
and obtain

(d) ∃�∀� [A′(�)→ {�}(�)↓ & B′(�; {�}(�)) ] :
Using this � we will establish the conclusion of GC1!. So we assume
for ∃-elimination

(e) ∀� [A′(�)→ {�}(�)↓ & B′(�; {�}(�)) ] :
We de�ne now �′ by cases, which is justi�ed by FIM, Lemma 5.5:

�′(s) =

{
0; if lh(s) = 0;

�(�i<lh(s)
.−1p

(s)i
i ); otherwise.

We then have, for any y,

�′(�(y + 1)) = �(�(y)):

We will show that this �′ is the one needed (as the �) for the conclusion
of GC1!. By (e), we have

(f) ∀� [A′(�)→ ∃y [�′(�(y + 1)) > 0 &

∀x(�′(�(x+ 1)) > 0→ y = x) & B′(�; �′(�(y + 1)) .−1) ] ]:
Assume now A(�). Put, for ∃-elimination, in other words de�ne, again
as justi�ed by FIM, Lemma 5.5,

�(y) =

{
n; if y = 0;
�(y .−1); if y > 0;

where n is a number variable. We have then � = �t:�(t+ 1), and we get
A′(�). Now we �rst specialize for this � from (f), and then we can prove,
completing �nally the ∃-elimination for � and with ∀-introduction for
n,

(g) ∀n∃y[�′(2n+1 ∗ �(y)) > 0 & ∀x(�′(2n+1 ∗ �(x)) > 0→ y = x) &

∃�[B(�; �) & �(n) = �′(2n+1 ∗ �(y)) .−1 & ∀(B(�; )→ � = )]]:
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Now from (g) we have

(h) ∀n∃!y�′(2n+1 ∗ �(y)) > 0:

From (g) also, we can prove that if �1 is the � that exists for any n and
�0 the one for n=0, then �1 = �0. And from this fact and assuming

(i) ∀t∃y�′(2t+1 ∗ �(y)) = �(t) + 1

we get B(�; �). So we get

(j) ∀� [∀t∃y�′(2t+1 ∗ �(y)) = �(t) + 1→ B(�; �) ] :

By (h), (j) and the de�nition of �′, with ∀ and →-introductions and
completing the ∃- eliminations we establish �nally the conclusion of
GC1!.

�
Proposition 1.2. GC0! is derivable in M from GC1!.

Proof. The proof is similar to the one by which CC0 (∗27.2) is
obtained from CC1 (

∗27.1) in [FIM], p. 73.
�

2. Weak Continuity

Weak continuity, which follows from strong continuity, asserts only
the continuity of functions on Baire space, without providing a neigh-
borhood function. Weak continuity (for numbers) with uniqueness, can
be expressed by

WC0! ∀�∃!xA(�; x)→ ∀�∃x∃y∀� [�(x) = �(x)→ A(�; y) ] :

The functional version of the above principle is:

WC1! ∀�∃!�A(�; �)→ ∀�∀x∃y∃z∀ [�(y) = (y)→
∃�(A(; �) & �(x) = z) ] :

In fact, these two versions are equivalent over the minimal system M,
as the following proposition shows.

Proposition 2.1. The schemata WC0! and WC1! are equivalent
over M.

Proof. (i) We show �rst that WC0! entails WC1! overM. Assume
∀�∃!�A(�; �): From this we get easily

∀x∀�∃!z∃� [A(�; �) & �(x) = z ] :

Specializing for x and applying then WC0! to the formula

B(�; x; z) ≡ ∃� [A(�; �) & �(x) = z ]
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we get

∀�∃y∃z∀ [�(y) = (y)→ ∃� [A(; �) & �(x) = z ] ] ;

and then the conclusion of WC1!.

(ii) We show next that WC1! entails WC0!.
Assume ∀�∃!xA(�; x); which abbreviates

∀�∃x [A(�; x) & ∀y(A(�; y)→ x = y) ] :

Assume, towards ∃-elimination,

A(�; x) & ∀y(A(�; y)→ x = y):

From this, considering x as the value at 0 of the function �t:x, we have

(a) A(�; (�t:x)(0) ) & ∀z (�t:x)(z) = (�t:x)(0)

and also
(b) ∀y(A(�; y)→ (�t:x)(0) = y):

Assume
(c) A(�; (0) ) & ∀z (z) = (0):

From (b) and (c) we obtain

(d) (�t:x)(0) = (0) & ∀z (z) = (�t:x)(0);

so (discharging (c) and using ∀-introduction)
(e) ∀ [A(�; (0) ) & ∀z (z) = (0)→  = �t:x ] :

By (a) and (e) with ∃�-introduction and then completing the ∃-elimina-
tion and with ∀�-introduction we get �nally

(f) ∀�∃!� [A(�; �(0)) & ∀z�(z) = �(0) ] :

Applying WC1! to (f), we get

(g) ∀�∀x∃y∃w∀� [�(y) = �(y)→ ∃ [A(�; (0)) &
∀z (z) = (0) & (x) = w ] ] :

We consider now � and x = 0 and, towards ∃-eliminations, assume

(h) ∀� [�(y) = �(y)→ ∃ [A(�; (0)) & ∀z (z) = (0) & (0) = w ] ] :

From (h), for any �, assuming �(y) = �(y), we obtain
∃ [A(�; (0)) & (0) = w ] and from this A(�;w). So we get

(i) ∀� [�(y) = �(y)→ A(�;w) ]:

By completing the ∃-eliminations and with ∀�-introduction, we get the
conclusion of WC0!.

�



70 2. A STUDY OF UNIQUENESS PRINCIPLES

Remark. Given a function de�ned on Baire space, together with
a (not necessarily optimal ) neighborhood function provided by strong
continuity, we eventually know a particular (�nite) initial segment of
each choice sequence which su�ces to determine the value of the func-
tion for that argument. If the function is only weakly continuous,
then the property which guarantees that an initial segment is su�-
cient, namely the condition

∀� [�(x) = �(x)→ A(�; y) ] ;

is just monotone in x. We give an example, showing that monotone
existence does not entail decidability overM and more concretely, that
M does not prove the schema ∃yB(y)→ ∀y(B(y) ∨ ¬B(y)) for B(y)
monotone.

Example. Consider the formula

A(x) ≡ (x = 0 & P) ∨ (x > 0);

where P is any formula not containing x free. Clearly we have ∃xA(x)
and ∀x∀y(A(x) & x ≤ y→ A(y)). Assuming that M entails the above
schema, we get ∀x(A(x) ∨ ¬A(x)) and specializing for x=0 we have
A(0) ∨ ¬A(0), from which follows P ∨ ¬P; but then M would prove
P ∨ ¬P for any P, which is impossible.

3. Strong Extensionality

The need for the notion of strong extensionality is due to the fact
that, constructively, denying the equality of two (in�nite) sequences
of natural numbers or of two (one-place) number-theoretic functions is
weaker than providing a witness guaranteeing their inequality.

The condition that the total functionals from Baire space to the
natural numbers or to the Baire space are strongly extensional is ex-
pressed by the two following schemas, respectively:

SE0! ∀�∃!xA(�; x)→ ∀�∀�∀x∀y [A(�; x) & A(�; y) & x ̸= y

→ ∃z �(z) ̸= �(z) ] :

SE1! ∀�∃!�A(�; �)→ ∀�∀�∀∀�∀x [A(�; ) &A(�; �) & (x) ̸=�(x)
→ ∃y �(y) ̸= �(y) ] :

The apparently stronger principle for functions SE1! is in fact
equivalent to the principle for numbers SE0!, as the following proof
shows.
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Proposition 3.1. The schemata SE0! and SE1! are equivalent over
M.

Proof. 1. We show that SE0! entails SE1! over M.
Assume ∀�∃!�A(�; �), which is an abbreviation for

(a) ∀�∃� [A(�; �) & ∀(A(�; )→ � = ) ] :

We observe that from (a) we can prove (see below)

(b) ∀x∀�∃!y∃� [A(�; �) & �(x) = y ] :

Let B(�; x; y) ≡ ∃" [A(�; ") & "(x) = y ] (we use " instead of �, so that
we need to introduce fewer new variables in the following steps). From
(b), specializing for x and changing � to ", we get

(c) ∀�∃!yB(�; x; y):
So we can apply SE0! and we get

(d) ∀�∀�∀y∀z [B(�; x; y) & B(�; x; z) & y ̸= z→ ∃w �(w) ̸= �(w) ] :

Now, in order to obtain (the considered instance of) SE1!, it su�ces to
prove ∃y�(y) ̸= �(y), assuming

(e) A(�; ) & A(�; �) & (x) ̸= �(x):

So, assume (e). From A(�; ) we have A(�; ) & (x) = (x) and with
∃-introduction,

(e1) ∃" [A(�; ") & "(x) = (x) ] :

Similarly, from A(�; �) we have

(e2) ∃" [A(�; ") & "(x) = �(x) ] :

So by (e), (e1), (e2) we have

(f) B(�; x; (x)) & B(�; x; �(x)) & (x) ̸= �(x):

Now, from (d), specializing for �; �; (x); �(x) and (f), we obtain
∃w�(w) ̸= �(w), and by changing w to y, �nally ∃y�(y) ̸= �(y).

[Proof of (b) from (a). Assume (a), and after ∀�-elimination assume
towards ∃-elimination

(i) A(�; �) & ∀ (A(�; )→ � = ):

So, we have A(�; �); from this we have A(�; �) & �(x) = �(x), and
with ∃-introduction, �nally

(ii) ∃� [A(�; �) & �(x) = �(x) ] :

Now assume
(iii) ∃� [A(�; �) & �(x) = z ] :
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Towards ∃-elimination, assume

(iv) A(�; �) & �(x) = z:

From (i) we have ∀ (A(�; )→ � = ) and from (iv) A(�; �), so we
get � = �, and so �(x) = �(x). But from (iv) �(x) = z, so �(x) = z. So
by →-introduction (discharging iii)) and completing the ∃-elimination
of (iv) and with → and ∀-introductions, we get

(v) ∀z (∃� [A(�; �) & �(x) = z ]→ �(x) = z):

Now from (ii) and (v) with ∃-introduction, we have

(vi) ∃!y∃� [A(�; �) & �(x) = y ] :

By changing � to � and completing the ∃-elimination of (i), and with
∀-introductions we get (b).]

2. We show now that SE1! entails SE0! over M.
Assume ∀�∃!xA(�; x), which is an abbreviation for

(a) ∀�∃x [A(�; x) & ∀y(A(�; y)→ x = y) ] :

We observe that from (a) we can prove (see below)

(b) ∀�∃!� [A(�; �(0)) & ∀z�(z) = �(0) ] :

Let

B(�; �) ≡ A(�; �(0)) & ∀z�(z) = �(0):

Then by (b) we have ∀�∃!� B(�; �); so applying SE1! we have

(c) ∀�∀�∀∀�∀x [B(�; ) & B(�; �) & (x) ̸= �(x)→ ∃y �(y) ̸= �(y) ] :

Now, in order to obtain the instance of SE0! that we are considering,
it su�ces to prove ∃z�(z) ̸= �(z), assuming

(d) A(�; x) & A(�; y) & x ̸= y:

So, assume (d). From A(�; x) we get

(d1) A(�; (�t:x)(0)) & ∀z (�t:x)(z) = (�t:x)(0):

From A(�; y) we get

(d2) A(�; (�t:y)(0)) & ∀z (�t:y)(z) = (�t:y)(0):

So by (d), (d1), (d2) we have

(e) B(�; �t:x) & B(�; �t:y) & (�t:x)(z) ̸= (�t:y)(z):

From (c), specializing for �; �; �t:x; �t:y and z and with (e), we get
∃y�(y) ̸= �(y), and by changing y to z we get ∃z�(z) ̸= �(z).
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[Proof of (b) from (a). Assume (a), and after ∀�-elimination assume
towards ∃-elimination

(i) A(�; x) & ∀y (A(�; y)→ x = y);

from which we have

(ii) A(�; (�t:x)(0)) & ∀y (A(�; y)→ x = y):

So we have A(�; (�t:x)(0)) and from this

(iii) A(�; (�t:x)(0)) & ∀z (�t:x)(z) = (�t:x)(0):

Assume
(iv) A(�; (0)) & ∀z (z) = (0):

So we have A(�; (0)). But by (i), ∀y (A(�; y)→ x = y), so x = (0).
By (iv) ∀z (z) = (0), so ∀z (z) = x = (�t:x)(z), so  = �t:x. So

(v) ∀ [ (A(�; (0)) & ∀z (z) = (0))→ �t:x =  ] :

So by (iii), (v) and ∃-introduction we get

(vi) ∃!� [A(�; �(0)) & ∀z �(z) = �(0) ] :

Completing the ∃-elimination of (i) and with ∀-introduction we obtain
(b).]

�

4. Markov's Principle

Markov's principle is a necessary assumption for the constructive
recursive mathematics of Markov's school. It asserts roughly that, for
decidable properties of numbers, indirect proofs of existence are accept-
able. Over intuitionistic analysis FIM, Markov's principle is neither
provable nor refutable, as Kleene's function realizability validates it,
while typed realizabilities such as Kleene's special realizability validate
its negation.

In the context of M, where every decidable predicate has a charac-
teristic function, Markov's Principle is expressed by

MP1 ∀� [¬¬∃x�(x) = 0→ ∃x�(x) = 0 ] :

We consider also the version with uniqueness:

MP1! ∀� [¬¬∃!x�(x) = 0→ ∃x�(x) = 0 ] :
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Proposition 4.1. MP1 and MP1! are equivalent over M.

Proof. 1:MP1 entails MP1! by logic, as follows. From ∃!x�(x) = 0
we get (easily) ∃x�(x) = 0, and so, assuming (a) ¬¬∃!x�(x) = 0 we
get (b) ¬¬∃x�(x) = 0. Now from MP1, specializing for � and with
(b) and modus ponens, we get ∃x�(x) = 0. So with →-introduction
discharging (a) and with ∀�-introduction we get MP1!.

2. MP1! entails MP1 as follows. In intuitionistic arithmetic we
cannot prove the least number principle (which says that if there exists
a natural number n with the property P (n) then there exists a least
such natural number) but we can prove its double negation (see IM,
p.190). So in particular we have

(a) ¬¬ [∃x�(x) = 0→ ∃x (�(x) = 0 & ∀y < x�(y) ̸= 0) ] :

From (a) and the schema ¬¬(A→ B)→ (¬¬A→ ¬¬B) which is prov-
able in intuitionistic propositional logic, we get

(b) ¬¬∃x�(x) = 0→ ¬¬∃x(�(x) = 0 & ∀y < x�(y) ̸= 0):

We de�ne now (x) = 0 if �(x) = 0 & ∀y < x�(y) ̸= 0 and 1 oth-
erwise, so from ∃x�(x) = 0 we get ∃!x (x) = 0 (by Lemma 2.4, Ch.
1). So we get

(c) ¬¬∃x�(x) = 0→ ¬¬∃!x (x) = 0:

Now we assume (d) ¬¬∃x�(x) = 0. From (c), (d) and modus ponens
and then MP1! (after specializing for ) and modus ponens we get

(e) ∃x (�(x) = 0 & ∀y < x�(y) ̸= 0)

and from this ∃x�(x) = 0. So, with →-introduction discharging (d)
and with ∀�-introduction we get MP1.

�

5. Other non constructive principles

Bishop called the principle, valid in classical mathematics, accord-
ing to which either all elements of a certain set A have property P or
there exists an element of A with property (not P), the principle of
omniscience. The simplest form of this principle, the limited princi-
ple of omniscience, and the weak limited principle of omniscience, are
respectively:

LPO ∀� [ ∃x�(x) = 0 ∨ ∀x�(x) ̸= 0 ]

and

WLPO ∀� [¬∃x�(x) ̸= 0 ∨ ¬¬∃x�(x) ̸= 0 ] :
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Both are special cases of the constructively (and intuitionistically)
invalid principle of excluded middle

PEM A ∨ ¬A:
Since LPO is equivalent to ∀� [ ∃x�(x) = 0 ∨ ¬∃x�(x) = 0 ] and

WLPO is equivalent to ∀� [∀x�(x) = 0 ∨ ¬∀x�(x) = 0 ] , they are also
called ∃-PEM and ∀-PEM, respectively.

In intuitionistic arithmetic HA and in the minimal system M, dis-
junction is explicitly de�nable by

A ∨ B ≡ ∃y [ (y = 0→ A) & (y ̸= 0→ B) ] :

From this we get1 that A ∨ ¬A↔ ∃!y [ y ≤ 1 & (y = 0↔ A) ] and so
we have equivalent uniqueness expressions PEM!, LPO!, WLPO! for
the above principles:

PEM! ∃!y [ y ≤ 1 & (y = 0↔ A) ] ;

LPO! ∀�∃!y [ y ≤ 1 & (y = 0↔ ∃x�(x) = 0) ] ;

WLPO! ∀�∃!y [ y ≤ 1 & (y = 0↔ ∀x�(x) = 0) ] :

It is immediate that LPO implies WLPO and MP1, and that MP1

with WLPO implies LPO. We can see that some of the converses of
the above implications cannot be proved in M, as in the presence of
more powerful principles we have the following results.

Proposition 5.1.
(a) M+WC0! ⊢ ¬WLPO.
(b) M+WC0! ⊢ ¬LPO.

Proof. (a) This result is obtained in [FIM] (p.84) using a disjunc-
tive form of CC0 and in [TvDI] (p.209) using a disjunctive form of
WC0 in the place of WC0!. Here we argue as follows. Assume WLPO!.
For � ≡ �t:0, we get from WC0! an m and (exactly one) y such that
(∗) ∀�[�t:0(m) = �(m)→ (y = 0↔ ∀x�(x) = 0)]. But then y=0 and
for � ≡ �t:sg(m .−t) (∗) does not hold.

(b) Immediate from (a) and the fact that LPO implies WLPO.
�

Neither MP1 nor its negation is provable in M + GC1.

Proposition 5.2.
(a) M+GC1 0 MP1.
(b) M+GC1 0 ¬MP1.

1This is Lemma 2.6 of Chapter 1.
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Proof. (a) By Troelstra's characterization of Kleene's function re-
alizability ([Troelstra1973], pp. 209-211), we have that if M++GC1

proves MP1 then M+ proves a formula expressing that MP1 is real-
izable. Observe that MP1 is almost negative. By Lemma 3.3.8 of
[Troelstra1973], p. 209, each almost negative formula is equivalent (in
EL and so in M+ ) to a formula expressing that it is realizable. But
then M+ would prove MP1, which is not the case, as its negation is
(classically) special-realizable ([FIM], p. 131).

(b) GC1 and MP1 are (classically) realizable, for Kleene's function
realizability.

�

Proposition 5.3.
(a) M+GC1 0 MP1 →WLPO.
(b) M+GC1 0 MP1 → LPO.

Proof. (a) By Proposition 5.1(a) and the fact that GC1 entails
WC0! over M, if M + GC1 ⊢ MP1 →WLPO, we get by logic that
M + GC1 ⊢ ¬MP1. It is known that GC1 is realizable (for the func-
tional realizability of Kleene, see [FIM]), so from the soundness theorem
for this notion of realizability we would then have that ¬MP1 is also
realizable, which is impossible since MP1 is (classically) realizable. So
(a) holds.

(b) Immediate from (a).
�

Remarks. (a) With an argument using the Grealizability of J. R.
Moschovakis ([JRM1971]]), under which MP1 is not realizable, we can
also obtain that M+ ¬MP1 0 GC1.

(b) All the above underivability results hold if we take GC0! in the
place of GC1, by the fact that GC1 entails GC0! over M.

6. Further results

Let MP1(�) be the formula ¬¬∃x�(x) = 0→ ∃x�(x) = 0, and let
LPO!(�) be LPO! with the ∀� deleted, and WLPO!(�) similarly. As a
corollary to Proposition 5.3 of the previous section we get that

Proposition 6.1.
(a) M+GC1 0 ∀� [MP1(�)→WLPO!(�) ] and
(b) M+GC1 0 ∀� [MP1(�)→ LPO!(�) ] .
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We will give now an argument of J. R. Moschovakis which, using
a strengthening of the above proposition together with Grealizability
([JRM1971]), shows that CC0! does not entail GC0! over M.

Proposition 6.2.
(a) M+GC0! ⊢ ¬∀� [MP1(�)→WLPO!(�) ] .
(b) M+GC0! ⊢ ¬∀� [MP1(�)→ LPO!(�) ] .

Proof. We give the proof of (b). MP1 is an almost negative for-
mula, so

M+GC0! ⊢ ∀� [MP1(�)→ LPO!(�) ] →
∃�∀� [MP1(�)→ ({�}(�)↓ & ({�}(�) = 0↔ ∃x�(x) = 0)) ] :

Assume ∀� [MP1(�)→ LPO!(�) ] . Consider a � that satis�es the
conclusion. Since MP1(�t:1) holds, {�}(�t:1) is de�ned, and since
¬∃x(�t:1)(x) = 0, we have that {�}(�t:1) ̸= 0. Also we have that for
some m {�}(�t:1) = �(�t:1(m)) .−1; so if � = �t:sg(m .−t) then we have
{�}(�) ̸= 0 and �(m) = 0, which implies that {�}(�) = 0. So we get
a contradiction, so ¬∀� [MP1(�)→ LPO!(�) ] .

The proof of (a) is similar; take �t:0 instead of �t:1 and take
� = �t:sg(m .−t) for the counterexample. (Also (b) follows by logic
from (a)).

�
Proposition 6.3. ∀� [MP1(�)→ LPO!(�) ] is Grealizable.

Proof. Classically, the formula

∀� [ (¬¬∃x�(x) = 0→ ∃x�(x) = 0)→
∃y (y = 0→ ∃x�(x) = 0) & (y ̸= 0→ ¬∃x�(x) = 0) ]

is Grealized by

Λ�Λ�⟨�s�(x0); ⟨Λ�{�}[ Λ��t 0 ];Λ�Λ��t 0⟩⟩;
where x0 = ({�}[ Λ��t 0 ](0))0.

�
Corollary 6.4. GC0! is not

Grealizable.

Proof. By Propositions 6.2 and 6.3.
�

Corollary 6.5. M+ CC0! 0 GC0!.

Proof. By Corollary 6.4 together with the fact that CC0! is
Grealizable by [JRM1971].

�
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We obtain now some more results about the relations among some
of the principles with uniqueness under discussion.

Proposition 6.6. Over the minimal system M, WC0! entails SE0!.

Proof. Assume the hypothesis of an instance of SE0!

(a) ∀�∃!xA(�; x);
and also assume

(b) A(�; y) & A(�; z) & y ̸= z:

By (a) we obtain the conclusion of WC0!, and by specializing for �, we
obtain

(c) ∃x∃y∀� [�(x) = �(x)→ A(�; y) ] :

Towards ∃-eliminations, assume

(d) ∀� [�(u) = �(u)→ A(�; v) ] :

Then, for � ≡ �, we have A(�; v), so by (a) and A(�; y) (from (b)),
we have (e) y = v: By (e) and y ̸= z (from (b)), we have (f) z ̸= v:
Now, assuming A(�; v), by (a) and A(�; z) (from (b)), we have v = z,
which contradicts (f), so we have ¬A(�; v) and so, by (d), we have
�(u) ̸= �(u). So we obtain ∃w < u �(w) ̸= �(w), so, �nally we get

(g) ∃w�(w) ̸= �(w):

Now, with ∃-eliminations discharging (d), and an →-introduction dis-
charging (b), we have that (b) → (g), and then with ∀-introductions
in (b) → (g) and an →-introduction discharging (a), we obtain the
considered instance of SE0!.

�
It is well-known that MP1 entails SE0!. But from the above theo-

rem, the converse does not hold in M.

Corollary 6.7. M+ SE0! 0 MP1.

Proof. M +WC0! 0 MP1, because WC0! is
Grealizable, although

MP1 is not.
�

The following schema expresses the strong extensionality of partial
functionals on almost negative subsets of their domains:

PSE0! ∀� [A(�)→ ∃!yB(�; y) ]
→ ∀�∀�∀y∀z [A(�) & B(�; y) & B(�; z) & y ̸= z→ ∃x �(x) ̸= �(x) ]

where A(�) is almost negative.
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Proposition 6.8. Over M, PSE0! is equivalent to MP1,

Proof. We show �rst that MP1 entails PSE0!.
Assume

(a) A(�)→ ∃!yB(�; y)
and

(b) A(�) & B(�; y) & B(�; z) & y ̸= z:

From these we get (c) ∃!yB(�; y): Assume (d) ¬∃x�(x) ̸= �(x): We
get then ∀x�(x) = �(x) so � = �, and so by replacement from B(�; y)
(which follows from (b) by &-elimination ) we have (e) B(�; y), which
with (c) gives (f) z = y, contradicting (b). So with →-introduction
discharging (d) we get (g) ¬¬∃x�(x) ̸= �(x), whence ∃x�(x) ̸= �(x)
by MP1.

We show now that PSE0! entails MP1. Consider the formulas

A(�) ≡ ¬∀x�(x) = 0

and

B(�; y) ≡ (¬∀x�(x) = 0 & y = 0) ∨ (∀x�(x) = 0 & y = 1):

We have then (a) A(�)→ ∃!yB(�; y). Assume A(�); then we have
B(�; 0). Also we have B(�t:0; 1). So we have

(b) A(�) & B(�; 0) & B(�t:0; 1) & 0 ̸= 1;

and by (a) with PSE0! we get ∃x�(x) ̸= (�t:0)(x), so ∃x�(x) ̸= 0. So
we have

(c) ∀� [¬∀x�(x) = 0→ ∃x�(x) ̸= 0 ] :

From (c), starting with specializing for �t:sg(�(t)) we can easily get
MP1.

�

7. Vesley's Schema

7.1. In his paper \A palatable substitute for Kripke's Schema"
([Vesley]), R. E. Vesley showed that it is possible to avoid Kripke's
Schema2 in the proofs of the results for which Brouwer was using the
\creative subject" arguments; he employed instead the following axiom
schema:

VS ∀w [ Seq(w)→ ∃�(�(lh(w)) = w & ¬A(�)) ] →
[∀�(¬A(�)→ ∃�B(�; �))→ ∀�∃�(¬A(�)→ B(�; �)) ];

2Kripke's Schema is introduced in order to formulate Brouwer's \creative sub-
ject" arguments, see [TvDI], pp. 234-241.
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where3 � is not free in A, and where the hypothesis of the main impli-
cation expresses that ¬A(�) de�nes a dense subset of the Baire space.
He proved that the system FIM+VS extends consistently FIM and,
among other things, that ¬MP1 is a theorem of this system.

VS expresses a classically correct principle. Vesley omitted any
continuity condition. Here we are considering the following uniqueness
version of VS, which, unlike VS, is not classically correct:

VS! ∀w [ Seq(w)→ ∃�(�(lh(w)) = w & ¬A(�)) ] → [ ∀�(¬A(�)→
∃!�B(�; �))→ ∃�∀� [ {�}[� ]↓ & (¬A(�)→ B(�; {�}[� ])) ] ] ;

where � is not free in A, which also guarantees the continuity of the
function whose existence is asserted by the principle.

VS! can be consistently added to M, as it is immediately derivable
from VS and CC1. The resulting system M+VS! is an extension of
M+CC1! (CC1! is obtained from VS! if we let A(�) be ¬∀x�(x) = �(x)
for example) in which ¬MP1 is derivable, as is shown next.

In fact we will need only the version of VS! for number-valued func-
tions:

VS0! ∀w [ Seq(w)→∃�(�(lh(w)) = w & ¬A(�)) ] → [ ∀�(¬A(�)→
∃!bB(�; b))→ ∃�∀� [ {�}(�)↓ & (¬A(�)→ B(�; {�}(�))) ] ] ;

where b does not occur free in A. But, like in the cases of CC1! and
GC1!, the uniqueness condition ensures the equivalence of the two ver-
sions, for number-valued and for function-valued functions. To see this,
we �rst observe that if ¬A(�) is dense, then also ¬A(�t:�(t+ 1)) is:
take any sequence number w=⟨w0+1; : : : ;wm+1⟩. Then for the se-
quence number w∗=⟨w1+1; : : : ;wm+1⟩, from the density of ¬A(�)
there is a sequence say �∗ for which �∗(lh(w∗)) = w∗ and ¬A(�∗).
So for � = ⟨w0+1⟩ ∗ �∗ we have �(lh(w)) = w and ¬A(�t:�(t+ 1)).
Once we have this, we can show the desired equivalence by the same
method as for the corresponding equivalence in the cases of CC1! and
GC1! (see previous paragraphs).

We show now how to derive ¬MP1 in M+VS!. Consider the fol-
lowing version of Markov's Principle:

MP1!! ∀� [¬¬∃!x�(x) = 0→ ∃!x�(x) = 0 ] :

For this, we have the following result.

3Seq(w) abbreviates w > 0 & ∀ii<lh(a)(a)i > 0 and expresses that w is the code

number of a �nite sequence.
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Lemma 7.1. MP1!! and MP1 are equivalent over M.

Proof. We have shown previously that MP1 is equivalent to MP1!.
Now we show that MP1!! is equivalent to MP1!. The implication
MP1!!→ MP1! is trivial. We give a sketch of proof for the converse
implication. Assume (a) ¬¬∃!x�(x) = 0. By MP1! we get ∃x�(x) = 0.
To show ∃!x�(x) = 0 we assume (b) �(x) = 0 and we will show (c)
∀y(�(y) = 0→ y = x). We assume �(y) = 0 and x ̸= y. From this and
(b) we can prove ¬∃!x�(x) = 0, so from (a) we get x = y and �nally
(c).

�

Lemma 7.2. Over M,

MP1!!→ ∀� [¬¬∃x�(x) = 0→ ∃!x(�(x) = 0 &

∀y(y < x→ �(y) ̸= 0)) ] :

Proof. Assume ¬¬∃x�(x) = 0. From this follows similarly to pre-
vious cases

¬¬∃!x [�(x) = 0 & ∀y(y < x→ �(y) ̸= 0) ] :

Let (x) = 0 if �(x) = 0 & ∀y(y < x→ �(y) ̸= 0) and 1 otherwise.
Then we have ¬¬∃!x (x) = 0 and, by MP1!!, ∃!x (x) = 0.

�

Theorem 7.3. M+ VS! ⊢ ¬MP1.

Proof. It easy to see that ¬¬∃x�(x) = 0 is dense. So, assuming
MP1!!, by Lemma 7.2 and VS0! we get

(a) ∃�∀� [ {�}(�)↓ & (¬¬∃x�(x) = 0→ ({�}(�)) = 0) ]

for the  of Lemma 7.2. Since ∀x((x) = 0→ �(x) = 0), from (a) we
have

(b) ∃�∀� [ {�}(�)↓ & (¬¬∃x�(x) = 0→ �({�}(�)) = 0) ] :

We repeat now Vesley's argument and we get ¬MP1!! or, by Lemma
7.1, ¬MP1.

�

We will see now that the continuous total extension of a partial
function with a negative dense domain asserted by VS! is unique overM
(in the sense that any modulus of continuity functional which extends
the given partial function leads to the same extension).
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Theorem 7.4. In M+ VS0!

⊢ ∀w [ Seq(w)→ ∃�(�(lh(w)) = w & ¬A(�)) ]→
[∀�(¬A(�)→∃!bB(�; b))→∃�∀� [ {�}(�)↓ & (¬A(�)→B(�; {�}(�)))
& ∀�[ ∀�[ {�}(�)↓ & (¬A(�)→B(�; {�}(�)))]→∀�{�}(�)={�}(�) ] ] ] ;
where b does not occur free in A.

Proof. We assume the two hypotheses of the formal theorem that
we want to prove. Then, by VS0! we can assume for ∃� -elimination,

(a) ∀� [ {�}(�)↓ & (¬A(�)→ B(�; {�}(�))) ] :
Assume also

(b) ∀� [ {�}(�)↓ & (¬A(�)→ B(�; {�}(�))) ] :
Consider now any �; we will show (c) {�}(�) = {�}(�). Since

{�}(�) ↓ and {�}(�) ↓, we get (unique) y1; y2 with �(�(y1)) > 0 and
�(�(y2)) > 0.

Since Seq(�(y1)) holds, from the density of ¬A(�) we obtain an �1

with ¬A(�1) and �1(y1) = �(y1); so (d) �(�1(y1)) > 0. And similarly
an �2 with ¬A(�2) and �2(y2) = �(y2), so that (e) �(�2(y2)) > 0.

Now we argue by cases. If y1 ≤ y2, then we have

(f) �1(y1) = �(y1) ⊑ �(y2) = �2(y2):

Now by (d), (f) and the fact that {�}(�2) ↓, we get (g) {�}(�1) =
{�}(�2). By ¬A(�2) and the ∃!b of the second hypothesis we get
(h) {�}(�2) = {�}(�2). By (g), (h) and the fact that {�}(�) =
{�}(�1) and {�}(�) = {�}(�2), we get �nally {�}(�) = {�}(�).

The case y2 < y1 is treated similarly, so we have (c) and then the
theorem follows by logic.

�
7.2. A Weak Continuity Alternative of VS!. We consider the

following version of Vesley's Schema with uniqueness, which ensures the
existence of a weakly continuous total extension of the given partial
function:

WVS! ∀w [ Seq(w)→ ∃�(�(lh(w)) = w & ¬A(�)) ]→ [∀�(¬A(�)
→∃!bB(�; b))→ ∀�∃m∃b∀� [ �(m) = �(m)→ (¬A(�)→ B(�; b)) ] ] ;

where b does not occur free in A.
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Theorem 7.5. M+WVS! ⊢ ¬MP1.

Proof. Following the proof of Theorem 7.3 but considering WVS!
instead of VS!, we assume MP1!! and we get

(a) ∀�∃m∃x∀� [ �(m) = �(m)→ (¬¬∃!x�(x) = 0→ �(x) = 0) ] :

Letting � = �t:1 we get from (a) m1; x1 with

(b) ∀� [ �(m1) = �(m1)→ (¬¬∃!x �(x) = 0→ �(x1) = 0) ] :

We de�ne now �1 by (c) �1(x) = 0 if x = max(m1; x1) + 1 and 1 other-
wise. So we have �1(m1) = �(m1) and ¬¬∃!x�1(x) = 0 so �1(x1) = 0
by (b), but �1(x1) = 1 by (c). So we have a contradiction which gives
us �nally ¬MP1.

�

Remarks. (a) We include the above proof because the same ar-
gument can show that in Vesley's original proof of the negation of
Markov's Principle from Vesley's Schema it su�ces to use the weak
continuity principle instead of the strong one of FIM.

(b) The weak continuity condition of WVS! su�ces also for ensuring
the uniqueness of the weakly continuous total extension of the given
partial function. We can see this with an argument very similar to the
one of Theorem 7.4:

Assume that we have two functions that coincide on the negative
dense domain described in WVS!. Consider an argument �. The
weak continuity condition gives moduli of continuity m1;m2 and values
b1; b2 respectively for the two functions at �. The density condition
gives then �1; �2 with �1(m1) = �(m1), �2(m2) = �(m2) and ¬A(�1),
¬A(�2). Arguing now by cases for m1;m2 and with the basic remark
that �1(m1) and �2(m2) are initial segments of the same sequence �
and so comparable, we can get that b1 = b2.

7.3. Consequences of VS! on some non constructive local
principles. In a previous section we have seen that using continuity
principles we can get underivability results concerning non constructive
principles, and even formal negations of global and local non construc-
tive principles. From VS! (and just by the same proofs from WVS!) we
obtain the following related results.

Proposition 7.6.
(a) M+ VS! ⊢ ¬∀� [WLPO(�)→ MP1(�) ] .
(b) M+ VS! ⊢ ¬∀� [WLPO(�)→ LPO(�) ] .
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Proof. (a) In M we can very easily see that

⊢ ∀�[(¬¬∃x�(x)=0 ∨¬∃x�(x)=0)→(¬¬∃x�(x)=0→∃x�(x)=0)]

→ ∀� [¬¬∃x�(x)=0→ ∃x�(x)=0 ] ;

which is just ∀� [WLPO(�)→ MP1(�) ]→ MP1. But from Theorem
7.3 we have M+ VS! ⊢ ¬MP1, so we get (a).

(b) In M we can also very easily see that

⊢ ∀� [ (¬¬∃x�(x)=0 ∨ ¬∃x�(x)=0)→ (¬∃x�(x)=0 ∨ ∃x�(x)=0) ]

→ ∀� [¬¬∃�(x)=0→ ∃x�(x)=0 ] ;

which is ∀� [WLPO(�)→ LPO(�) ]→ MP1, so again from the fact
that M+ VS! ⊢ ¬MP1 we get (b).

�

Since M+GC1! 0 MP1, for the system M+GC1! we have as a
corollary of the above proofs the following weaker results.

Proposition 7.7.
(a) M+GC1! 0 ∀� [WLPO(�)→ MP1(�) ] .
(b) M+GC1! 0 ∀� [WLPO(�)→ LPO(�) ] .

8. On some extensions of intuitionistic analysis

Intuitionistic analysis is compatible with principles and sentences
which are not theorems of it. One fact asserting this is that the various
realizability notions which serve as interpretations of formal systems
for analysis, validate also di�erent sentences, unprovable in the corre-
sponding systems: Kleene's functional realizability validates Markov's
Principle (with classical reasoning) and Troelstra's Generalized Conti-
nuity Principle, while versions of (implicitly or explicitly) typed realiz-
ability validate the negation of Markov's Principle, Vesley's Schema, a
weak form of Church's Thesis, and the Independence of Premise Prin-
ciple (stated below) for example.

This situation suggests the possibility of diverging extensions of
intuitionistic analysis, from which di�erent pictures of the intuition-
istic continuum emerge. And so the problem of the comparison of
such extensions arises. In her recent paper \Unavoidable sequences
in constructive analysis" [JRM2010], J. R. Moschovakis formulates
this question, and proposes comparing in detail the theories M +
BI1 +MP1 +GC1 and FIM+ VS from a reverse mathematics perspec-
tive, observing that MP1 and VS are both classically correct principles.
The following could be considered as a �rst step towards this direction,
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as well as towards charting the area of the constructive theories for the
continuum.

8.1. Independence of premise. In our following arguments we
will make use of the principle of Independence of Premise, so we state
it and show some consequences of it. The Independence of Premise
Principle that we are considering here is the following schema:

IP (¬A→ ∃�B(�))→ ∃�(¬A→ B(�));

where � does not occur free in A.

IP is consistent with FIM, since it is special-realizable and also
Grealizable, but FIM does not entail this principle, as S. C. Kleene
has shown4, but also as it follows from the next propositions. Vesley's
Schema is derivable in M from IP, but Troelstra's Generalized Conti-
nuity is inconsistent with IP. This is already known, but we can see it
also in the following simple way.

Proposition 8.1. M+ IP ⊢ ∀� [MP1(�)→ LPO(�) ] .

Proof. Assume

¬¬∃x�(x) = 0→ ∃x�(x) = 0:

Then using IP, we obtain

∃x(¬¬∃x�(x) = 0→ �(x) = 0):

Now assume
(∗) ¬¬∃x�(x) = 0→ �(x) = 0:

Since we have �(x) = 0 ∨ �(x) ̸= 0, we argue by cases and get

∃x�(x) = 0 ∨ ¬∃x�(x) = 0

(in the �rst case the conclusion is immediate, in the second obtained
by (∗)).

�
Corollary 8.2. M+GC1! + IP ⊢ 0 = 1.

Proof. We have already seen that

M+GC1! ⊢ ¬∀� [MP1(�)→ LPO(�) ] :

From this and the previous proposition we get the corollary.
�

In the next two corollaries we see how to get ¬MP1 from IP and
weak continuity almost immediately.

4S. C. Kleene in his paper \Logical Calculus and Realizability" gives a classical
proof that a special disjunctive instance of IP is not realizable in the sense of FIM.
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Corollary 8.3. M+ IP ⊢ MP1 → LPO.

Proof. By Proposition 8.1, using

∀�(A(�)→ B(�))→ (∀�A(�)→ ∀�B(�)):
�

Corollary 8.4. M+ IP+WC0! ⊢ ¬MP1.

Proof. By Corollary 8.3 and the fact that M+WC0! ⊢ ¬LPO.
�

Remark. From the above corollary we can see immediately that
FIM does not entail IP, otherwise FIM would prove ¬MP1.

In the previous chapter we derived in M the negation of Markov's
Principle from Vesley's Schema and weak continuity. We give here
another very short proof of the same fact, using arguments very similar
to the ones of this paragraph.

Proposition 8.5. M+ VS ⊢ MP1 → LPO.

Proof. Assume

∀� [¬¬∃x�(x) = 0→ ∃x�(x) = 0 ] :

Then by VS, we obtain

∀� ∃x [¬¬∃x�(x) = 0→ �(x) = 0 ] :

Arguing for each � by cases as in Proposition 8.1, we get

∀� [ ∃x�(x) = 0 ∨ ¬∃x�(x) = 0 ] :

�
Corollary 8.6. M+WC0! + VS ⊢ ¬MP1.

Proof. By Proposition 8.5 and the fact that M+WC0! ⊢ ¬LPO.
�

8.2. A theory between FIM and each of FIM+ VS and
M+ BI1 +MP1 +GC1. Although IP is inconsistent with GC1 as we
have seen, it is yet an open question if VS is consistent or not with GC1

(over M). But because of the presence of MP1, it is clear that the two
theories M+ BI1 +MP1 +GC1 and FIM+ VS are divergent. Their
common part is not just FIM, but a larger theory, as the following
show.

We consider the following version of generalized continuity:

GC− ∀� [¬A(�)→ ∃�B(�; �) ]→
∃�∀� [¬A(�)→ {�}[� ]↓ & B(�; {�}[� ]) ] ;
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where the domain of continuity is a negation instead of almost negative
as in GC1.

GC− can be consistently added to FIM + VS, as it is immediately
derivable from IP and CC1. The interesting feature of this principle
is that it allows us to exploit two facts: (1) every negative formula5

is equivalent over M to a negation and (2) every negative formula is
almost negative. If we call GCn the common special case of GC− and of
GC1 where the domain of continuity is de�ned by a negative formula,
we obtain the theory FIM+GCn, which lies between FIM and its two
divergent extensions.

5A formula is negative if it does not contain ∨ or ∃.
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