
Strategyproof Allocation of

Multidimensional Tasks on

Clusters

by

Christos-Alexandros Psomas

Master of Science Thesis

Graduate Program in Logic and Theory of

Algorithms and Computation

University of Athens

Supervised by

Aris Pagourtzis

Committee

Aris Pagourtzis

Stathis Zachos

Evangelos Markakis

August 20th 2014

Abstract

The present thesis focuses on the problem of fair resource allocation in a system

containing multiple machines with multiple resources each. The users have

heterogeneous demands and Leontief preferences, i.e. demand resources in

fixed proportions. Resource allocation is a key issue in the design of cloud

computing systems. Traditional solutions, like max-min fairness per resource

don’t work well in this multi resource setting. Furthermore, efficiency and

fairness are not the only issues here; the designer must take into account the

users’ incentives.

In the past couple of years this problem has received a lot of attention from

the algorithmic game theory community. We review some the most important

results related to multi-resource allocation, starting from the work of Ghodsi

et al ([7]) that studied the problem on a single machine setting with fractional

tasks. We then move on to the indivisible tasks on a single machine case,

studied by Parkes et al ([13]). Finally we discuss the work of Friedman et al

([4]) that studies the problem of executing indivisible, containerized tasks on

a multiple machine setting.

Περὶληψη

Στην παροὺσα εργασὶα μελετοὺμε το πρὸβλημα της δὶκαιης κατανομὴς πὸρων

σε ενα σὺστημα με πολλοὺς υπολογιστὲς με πολλοὺς πὸρους ο κὰθε ὲνας.Οι

χρὴστες ὲχουν διαφορετικὲς απαιτὴσεις και Leontief προτιμὴσεις, δηλαδὴ α-

παιτοὺν πὸρους σε σταθεροὺς λὸγους. Η δὶκαιη κατανομὴ πὸρων εὶναι κεν-

τρικὸ πρὸβλημα στην σχεδὶαση συστημὰτων cloud computing . Παραδοσιακὲς

λὺσεις ὸπως max-min fairness ανὰ πὸρο δεν δουλεὺουν ικανοποιητικὰ σε τὲτοια

συστὴματα με πολλοὺς πὸρους. Επιπλὲον, η αποδοτικὸτητα και η δικαιοσὺνη δεν

εὶναι τα μὸνα προβλὴματα. Ο σχεδιαστὴς πρὲπει να λὰβει υπὸψην τα κὶνητρα των

χρηστὼν.

Τα τελευταὶα χρὸνια αυτὸ το πρὸβλημα ὲχει τραβὴξει την προσοχὴ της κοινὸτητας

της αλγοριθμικὴς θεωρὶας παιγνὶων. Θα μελετὴσουμε τα πιο σημαντικὰ απο-

τελὲσματα σχετικὰ με την κατανομὴ πολυδιὰστατων πὸρων, ξεκινὼντας απο την

δουλειὰ των Ghodsi et al ([7]) που μελὲτησε το πρὸβλημα σε συστὴματα με ὲναν

υπολογιστὴ με κλασματικὲς διεργασὶες. Συνεχὶζουμε με διακριτὲς διεργασὶες σε

ὲναν υπολογιστὴ, περὶπτωση που μελετὴθηκε απο τους Parkes et al ([13]) .

Τὲλος μελετοὺμε τη δουλειὰ των Friedman et al ([4]) που κοιτὰει το πρὸβλημα

εκτὲλεσης διακριτὼν διεργασιὼν σε συστὴματα με πολλοὺς υπολογιστὲς.

5

Contents

Abstract 3

Περὶληψη 5

Acknowledgements 9

1 Introduction 11

1.1 Motivation and Background 11

1.2 Thesis Outline . 13

2 Dominant Resource Fairness 15

2.1 Preliminaries . 15

2.2 The DRF mechanism . 17

3 Indivisible Tasks on a Single Machine 21

3.1 Extensions of DRF . 22

3.2 Indivisible Tasks and Impossibility results 25

3.3 Sequential Min-Max . 27

4 Containerized DRF 29

4.1 Containers . 29

4.2 Possibilities and Impossibilities 33

4.3 The CDRF mechanism . 37

5 Ex-post Guarantees 43

5.1 Approximate CDRF mechanisms 43

5.2 Identical Machines . 46

5.3 Deterministic mechanisms . 49

7

Bibliography 53

Acknowledgements

First and foremost I want to thank Aris Pagourtzis for his guidance and all the

time he dedicated to helping me complete this thesis. My special thanks to

the other members of the committee, Stathis Zachos and Vangelis Markakis.

I would also like to thank all the faculty of the µΠλ∀ graduate program for

providing me with a great environment to learn and grow. Also many thanks

to my colleagues and friends from µΠλ∀ and CoreLab; I had a lot of fun with

you guys.

I would like to thank my co-authors Eric Friedman and Ali Ghodsi for all

their hard work. Many thanks to Christos Papadimitriou and all my friends

and colleagues from Berkeley.

Last but not least I would like to thank my family. Without them none of

this would have been possible.

Chapter 1

Introduction

1.1 Motivation and Background

The problem of allocating jobs in a cloud computing center is of broad practi-

cal and theoretical interest. For the former, cloud computing centers (CCCs),

both internal (such as used by Twitter) and external (such as Amazon’s EC2)

are used for a large fraction of the world’s computing and growing rapidly. In

these systems, both servers and users are heterogeneous: modern datacenters

are likely to be constructed from a variety of classes with different amounts

resources (CPU, Memory etc) per class. In addition to server heterogeneity

cloud computing centers, there is extreme user diversity as well: some users

might want to execute CPU intensive tasks, other might want memory inten-

sive tasks etc. In these systems traditional max-min fairness approaches and

single resource abstractions fall short. Moreover, one has to take into account

the fact that the users are strategic: our task is to design mechanisms, not

algorithms. Anecdotal evidence from cloud operators indicates that strate-

gyproofness is important, since attempting to manipulate schedulers is very

common. For example, a big search company provided dedicated machines

for jobs only if the users could guarantee high utilization. Soon the company

found that users would add infinite loops to their code to artificially inflate

utilization.

The introduction of the dominant resource fairness ([7]) protocol has spurred

much work on strategyproof allocation for Leontief Economies ([13], [2], [11])

leading to important insights and unexpected connections between computer

11

Chapter 1 1.1. MOTIVATION AND BACKGROUND

science ([9]) and economics ([5]). DRF has been extended to be used inside

routers ([6]) as well as large organizations with hierarchies ([1]). In addition,

it has been deployed in production, running on thousands of nodes at Twitter

in the Mesos resource manager ([8]).

The basic model underlying the analysis of DRF is an extremely simplified

setting in which there is a single large machine and job allocations can be frac-

tional. While this has led to a widely used mechanism in CCCs, many issues,

such as the discreteness of jobs and the distributed computing environment

have been dealt with in ad-hoc manners. In this thesis we review the main

results in this area, starting from the seminal paper of Ghodsi et al ([7]). We

move on to various extensions of DRF, focusing on the single machine with

indivisible jobs case by Parkes et al ([13]). Then we consider a model which

captures both the discreteness of jobs and the multiplicity of machines, first

discussed in Friedman et al ([4]).

Page 12

1.2. THESIS OUTLINE Chapter 1

1.2 Thesis Outline

In chapter 2 we formally define some notation that we use through this thesis,

and present the main mechanism: Dominant Resource Fairness. This

mechanism is defined in a single machine setting with divisible tasks. We

prove that it satisfies pareto optimality, strategyproofness, sharing incentives

(aka individual rationality) and envy freeness. This chapter is based on the

work of Ghodsi et al ([7]).

In chapter 3 we discuss some extensions of the Dominant Resource Fairness

mechanism, with our main focus being it’s extension to indivisible tasks by

Parkes et al ([13]). In this setting we prove that the main properties are

incompatible if we insist on deterministic mechanisms. We also present some

positive results (the Sequential Min-Max algorithm) that are possible if we

give up on strategyproofness.

In chapter 4 we introduce the main setting of this thesis: multiple machines

with indivisible tasks, that are allocated as containers. We present our main

(randomized) mechanism Containerized DRF (CDRF), and prove it satisfies

all the desired properties in expectation. This chapter and the next are based

on the work of Friedman et al ([4]).

In chapter 5 we consider mechanisms that approximate CDRF, and their

performance in an ex-post sense. We prove that (deterministic) allocations

that are close to the expected CDRD allocation approximately satisfy strate-

gyproofness and sharing incentives.

Page 13

Chapter 1 1.2. THESIS OUTLINE

Page 14

Chapter 2

Dominant Resource Fairness

2.1 Preliminaries

We will define some basic notation that will used throughout this thesis. A

cluster has m machines, n users and p resources. Each machine j has a vector

of resources rj ∈ <p+, i.e. rjk ≥ 0 of resource k. We will refer to the cluster,

the vector of machine vectors, as r. User i has true demand di ∈ <p+ for each

job, where dik is the amount of resource k that she needs to execute a task.

We will say that d = (d1, d2, . . . , dn) is a demand profile.

An allocation A is a distribution of resources between the users. Given

allocationA, user’s i utility for that allocation ui(A) will be the number of tasks

she can execute in the cluster in that allocation. This number can either be

real or integer, depending on the model we’re working on. A mechanism M is a

mapping from demand profiles to allocations. We want to design mechanisms

that satisfy a number of properties. We will define these properties informally

to avoid introducing notation that we will not use later on.

A mechanism satisfies the Sharing Incentives (also known as individual

rationality) if each user’s utility is at least her utility for the allocation that

gives 1
n

of the cluster to each user. A mechanism is Strategyproof if no user

can increase her utility by misreporting her demand vector. A mechanism is

Pareto Optimal if the output allocation is efficient: there does not exist an

allocation which is strictly better for (at least) one user and every other user

is at least as well off. A mechanism is Envy-Free if each user prefers her own

bundle to the bundle received by any other agent.

15

Chapter 2 2.1. PRELIMINARIES

In the rest of the chapter we define the Dominant Resource Fairness

mechanism (DRF), defined by Ghodsi et al ([7]) for the single machine case

(m = 1) and divisible tasks.

Page 16

2.2. THE DRF MECHANISM Chapter 2

2.2 The DRF mechanism

Consider a single machine with 9 CPU’s and 18 GB’s of RAM, and two users.

User 1 wants to execute tasks that require (1 CPU, 4 GB) each, and user 2

tasks that require (3 CPU, 1 GB) each. In other words, user 1 has demand

vector d1 = (1, 4), and user 2 has demand vector d2 = (3, 1). The cluster

consists of a single machine with resource vector (9, 18).

The Dominant Resource Fairness (DRF) mechanism works as follows:

The dominant resource of a user is the resource for which the agent’s tasks

require the largest fraction of total availability. In the example, user’s 1 dom-

inant resource is RAM, since she demands 2
9

of the total RAM available per

task, while she only needs 1
9

of the total CPU per task. Similarly, user’s 2

dominant resource is CPU. The dominant share of a user is simply the frac-

tion of her dominant resource she got allocated. DRF tries to maximize the

number of allocated tasks, subject to equal dominant shares.

Back to the example, if x is the number of tasks allocated by DRF to

user 1, and y the number of tasks allocated to user 2, then the total number of

resources allocated are (x+3y) CPU’s and (4x+y) GB’s RAM. The dominant

shares are 4x
18

= 2x
9

and 3y
9

respectively. The DRF allocation is the solution to

the following maximization problem:

max (x, y)

s.t. x+ 3y ≤ 9

4x+ y ≤ 18
2
9
x = 3

9
y

The solution is x = 3 and y = 2. Thus, user 1 gets allocated (3CPU, 12GB)

and user 2 gets allocated (6 CPU, 2GB). See Figure 2.1.

It is useful to note that DRF need not always equalize dominant shares:

if for example a resource gets exhausted, users that do not need it can still

continue getting higher shares. We will later give alternate interpretations of

DRF that will make this clear.

Page 17

Chapter 2 2.2. THE DRF MECHANISM

user2

user1

user2

user1

9 CPU’s 18 GB RAM

Figure 2.1: Resources per user in the example: User 1 gets (3 CPU, 12 GB)

and user 2 gets (6 CPU, 2GB)

Implementing DRF

The DRF allocation can be computed very easily in an iterative fashion: at

every step pick the user with the lowest dominant share and give her enough

resources to increase her dominant share by some fixed amount ε (if there are

enough resources to do so).

Consider the previous example, and for simplicity at each step the algo-

rithm will allocate a whole task. See Table 2.1. DRF first picks user 2 to

execute a task. As a result the shares become (3/9,
1 /18) and the dominant

share is 1/3. Next, DRF picks user 1 (dominant share is 0) and executes on of

her tasks, changing her dominant share from 0 to 2/9. In the next step user

1 is selected again (2/9 <
1 /3), and so on, until it is no longer possible to

execute new tasks.

Properties of DRF

Ghodsi et al ([7]) show that DRF satisfies all the properties we discussed:

Theorem 1. The DRF allocation mechanism satisfies sharing incentives, strat-

egyproofness, pareto optimality and envy-freeness.

In addition DRF satisfies other ”nice-to-have” properties: Single resource

fairness (for a single resource, the solution is equivalent to the max-min solu-

tion), Bottleneck fairness (if the dominant resource is the same for all users,

then the solution is equivalent to the max-min solution for that resource), Pop-

ulation monotonicity (if a user leaves the system none of the allocations of the

Page 18

2.2. THE DRF MECHANISM Chapter 2

Schedule
User 1 User 2

CPU RAM
resources dom. share resources dom. share

User 2 (0, 0) 0 (3/9,
1 /18) 1/3

3/9
1/18

User 1 (1/9,
4 /18) 2/9 (3/9,

1 /18) 1/3
4/9

5/18

User 1 (2/9,
8 /18) 4/9 (3/9,

1 /18) 1/3
5/9

9/18

User 2 (2/9,
8 /18) 4/9 (6/9,

2 /18) 2/3
8/9

10/18

User 1 (3/9,
12 /18) 2/3 (6/9,

2 /18) 2/3 1 14/18

Table 2.1: Progressive filling implementation

other users decreases). The authors of [7] also compare DRF with other fair

allocation policies, namely Asset Fairness and Competitive equilibrium from

equal incomes.

We will now prove Theorem 1. The interested reader can refer to [7] for

the comparison with Asset Fairness and CEEI.

Lemma 2. DRF is Strategyproof.

Proof. Assume that some user i can increase her dominant share by submitting

a demand vector d′i 6= di. Let xi,k and x′i,k be the amount of resource k

user i gets, under progressive filling, when submitting the truth and lying

respectively. For user i to be better off we need x′i,k > xi,k for every resource

k with non-zero demand. Let r be the first resource that becomes saturated

for user i when submitting di. If no other user is allocated resource r we have

a contradiction (there is no allocation that increases user i’s utility). Thus,

there are other users that are allocated resource r. Let t be the step that

progressive filling saturates r under di, and t′ the step it saturates r under d′i.

Since the dominant share in x′ is higher, it must be that t′ > t. Thus, i under

d′i does not saturate any resources before step t′, and thus doesn’t affect other

users allocations before step t′. So, under d′i, since at every step the increase

in dominant share is the same, a user j has xj,r of resource r at time t, same

as under di. Thus, it isn’t possible that x′i,r > xi,r.

Page 19

Chapter 2 2.2. THE DRF MECHANISM

We’re going to user without proof the following Lemma:

Lemma 3. Every user in a DRF allocation has at least one saturated resource.

Lemma 4. DRF is Pareto Optimal.

Proof. Assume that user i can increase her dominant share si without decreas-

ing the dominant share of anyone else. According to Lemma 3, user i has at

least one saturated resource. If no other user is using the saturated resource

we have a contradiction. If other users are using the saturated resource then

increasing the allocation of i would result in decreasing the allocation of some

other user j. Since under progressive filling the resources allocated by any

user are proportional to her demand vector, decreasing the allocation of any

resource of user j would also decrease her dominant share. This contradicts

our hypothesis and thus proves the result.

Lemma 5. DRF satisfies Sharing Incentives.

Proof. Assume resource k is the first resource being saturated by progressive

filling. Let i be the user allocating the largest share on resource k and let

ti,k denote her share on k. Since resource k is saturated we have ti,k ≥ 1
n
.

Furthermore, by the definition of the dominant share, we have that si ≥ ti,k ≥
1
n
. Since progressive filling increases the allocation of each user’s dominant

resource at the same rate, it follows that each user gets at least 1
n

of her

dominant resource, and thus DRF satisfies sharing incentives.

Lemma 6. DRF is Envy Free.

Proof. Assume by contradiction that some user i envies the allocation of an-

other user j. For that to happen, user j must have a strictly higher share of

every resource that i wants, otherwise she cannot execute more tasks under

j’s allocation. This means that j’s dominant share is strictly larger than i’s

dominant share. Since every resource allocated to i is also allocated to j (oth-

erwise i wouldn’t envy j), user j cannot reach its saturated resource after i,

i.e. tj ≤ ti, where tk is the step that user’s k allocation gets frozen due to

saturation. However, if tj ≤ ti, under progressive filling, the dominant shares

of users j and i will be equal at time tj, after which user’s i dominant share

can only increase, violating the hypothesis.E

Page 20

Chapter 3

Indivisible Tasks on a Single

Machine

Even though the Dominant Resource Fairness mechanism was a significant

step in fair allocation of multidimensional resources under Leontief preferences,

the setting considered was too restricting: the cluster had a single machine,

and fractional tasks where allowed (half the demand vector results in utility

half). The paper quickly attracted attention from the algorithmic game theory

community, leading to many extensions. We will briefly discuss some of them,

and then focus on the results of Parkes et al ([13]) about executing indivisible

tasks on a single machine.

21

Chapter 3 3.1. EXTENSIONS OF DRF

3.1 Extensions of DRF

Alternative interpretations

A nice alternative way of thinking about DRF, due to Parkes et al ([13]), is

the following: let Dir be the ratio between the demand of user i for resource

r and the availability of that resource. In the example of Figure 2.1 D11 = 1
9
,

D12 = 4
18

, D21 = 3
9

and D22 = 1
18

. For all users i and resources r let d̂ir =

Dir/maxr′ Dir′ ; the normalized demands. In the example d̂11 = 1
2
, d̂12 = 1,

d̂21 = 1 and d̂22 = 1
6
.

Let x be the dominant share of each agent (remember that the dominant

shares are equal). Thus, every user is allocated an (x · d̂ir)-fraction of resource

r. Now, instead of writing a linear program to compute x, one can simply find

it by computing:

x =
1

maxr
∑

i d̂ir

In the example x = 1
(1
2

+1)
= 2

3
. Thus, user 1 gets 2

3
· 1

2
= 1

3
of the available

CPU, 2
3

of the available RAM, and user 2 gets 2
3

of the total CPU and 1
9

of

the total RAM.

Extended DRF

The way we defined DRF, it doesn’t allow for zero demands, or weighted users

(i.e. users with different priorities). Parkes et al ([13]) show that with a slight

modification of DRF we can address these issues without losing any properties.

Assume that each user i has a publicly known weight wir for resource r

which reflects the user’s endowment of that resource. We assume w.l.o.g. that

for all resources r,
∑

users iwir = 1. Pareto Optimality and Strategyproofness

do not need to be redefined, but Envy-Freeness and Sharing incentives do.

Sharing Incentives now means that each user i receives as much utility as

she would from the allocation that assigns her a wir-fraction of each resource.

Envy-Freeness requires that user i does not envy user j when the allocation

of j is scaled by wir
wjr

on each resource r.

Now, we’ll need to make some adjustment to the definition of a dominant

resource. Let r∗i be the weighted dominant resource of user i, defined by

Page 22

3.1. EXTENSIONS OF DRF Chapter 3

r∗i = arg minr:dir>0
wir/d̂ir . Next, let ρi =

wir∗
i /d̂ir∗

i

be the ratio of weight to

demand on the weighted dominant resource of user i. The Extended DRF

mechanism proceeds in rounds: let srt be the surplus fraction of resource r left

unallocated at the beginning of round t. The fraction of resource r allocated

to i in round t is denoted A
(t)
ir . Weights and demands do not change during

the execution of the algorithm, but an agent’s dominant resource might. In

pseudocode Extended DRF is given in 1.

ALGORITHM 1: Extended DRF
Input: Demand profile d, weights w

Output: A feasible allocation A
1: t← 1 , ∀r, sr1 ← 1 , S1 ← N (N is the set of users)

2: while St 6= 0 do

3: xt ← minr

(
srt∑

i∈St
ρi· ˆdir

)
4: ∀i ∈ St, resources r, A

(t)
ir ← xt · ρi · d̂ir

5: ∀i ∈ N \ St, resources r, A
(t)
ir ← 0

6: ∀ resource r, sr,t+1 ← srt −
∑
i∈St

A
(t)
ir

7: t← t+ 1

8: St ← {i ∈ St−1|∀r, d̂ir > 0⇒ srt > 0}
9: end while

10: ∀ users i, resources r, Air =
∑t−1
k=1 A

(k)
ir

Extended DRF deviates from the unweighted mechanism in a couple of

ways. First, instead of x = 1

maxr
∑
i d̂ir

, we have a different xt in each round t.

Thus, each agent i is now allocated an (xt · ρi · d̂ir) fraction of resource r in

round t.

We can show that Extended DRF satisfies the main properties, and even

is Group Strategyproof :

Theorem 7. Extended DRF satisfies Pareto optimalality, Envy-freeness, Shar-

ing Incentives and Group Strategyproofness.

We will not prove this theorem. The reader can refer to [13] for a proof.

DRFH

The last extension of DRF we’ll discuss is the one by Wang et al ([16]). The

authors consider a setting with multiple machines and fractional tasks. In a

multi-machine setting computing the DRF allocation in each machine sepa-

rately results in very undesirable outcomes. For example, consider a cluster of

Page 23

Chapter 3 3.1. EXTENSIONS OF DRF

two machines with two resources each r1 = (10, 100) and r2 = (100, 10). Now,

assume we have two users with demands d1 = (1, 10) and d2 = (10, 1). Doing

DRF in each machine separately ignores the dovetailing of user 1 in machine

1 and user 2 in machine 2. Thus, we have to look for alternatives.

The authors propose a mechanism called DRFH (DRF in Heterogeneous

servers). The idea behind DRF is to achieve the max-min fair allocation of

the global dominant resources. The global dominant resource of user i is her

dominant resource on the aggregate resource vector
∑

machines j rj. So, if Ail

is the allocation of user i in machine l, let Gil(Ail) be the fraction of global

dominant resources user i gets on machine l, her global dominant share on

machine l. Thus, a user’s overall global dominant share is

Gi(Ai) =
∑

machines l

Gil(Ail)

DRFH aims to maximize the minimum global dominant share among all

users, subject to the resource constraints per machine:

max
allocation A

min
i
Gi(Ai)

s.t.
∑
i

Ailr ≤ rlr,∀machines l, resources r

DRFH satisfies a number of important properties, but as we’ll see later,

does not satisfy sharing incentives as well as other important robustness cri-

teria.

Page 24

3.2. INDIVISIBLE TASKS AND IMPOSSIBILITY RESULTS Chapter 3

3.2 Indivisible Tasks and Impossibility results

Parkes et al ([13]) remove the divisible tasks assumption and consider a single

machine setting with indivisible tasks. This time, user’s i utility for a bundle of

resources is a step function, increasing for every additional task she can execute

given that bundle. In this setting, as we will see, deterministic mechanisms do

not perform as well.

As one moves to this setting with indivisibilities, DRF is not Pareto Opti-

mal anymore. To see this most clearly consider a single machine cluster, with

one resource of size 1, and two users with demands d1 = 1
10

and d2 = 2
5
. DRF

would allocate the resource half and half, resulting in utilities 5 and 1 for users

1 and 2 respectively. Observe though that allocating 3
5

to user 1 and 2
5

to user

2, leaves user 2’s utility unchanged, but increases user 1’s utility by 1.

Unfortunately, this is not just an issue with DRF. One cannot hope for a

good deterministic algorithm in this setting:

Theorem 8. No mechanism satisfies Pareto Optimality, Strategyproofness and

Sharing Incentives simultaneously.

Proof. Consider a system with a resource of size 1 and two users with demands

d1 = d2 = 1
2

+ ε, for some small ε > 0. Assume w.l.o.g. that a mechanism

that satisfies all 3 properties allocates to user 1. If user 2 reports d′2 = 1
2

then sharing incentives dictates that she should get half the resource. But,

since the remaining half cannot be used by user 1 and it can be used by user

2, Pareto-optimality dictates that user 2 gets that as well. So, user 2 has a

profitable deviation and the mechanism is not strategyproof.

Moreover, Pareto Optimality is inherently incompatible with Envy-Freeness:

when each agent needs all the available resources to execute a task, the only

Pareto Optimal allocations are the ones that give all the resources to some

user i. These allocations of course are not envy free. Notice also that if we

give up on Pareto Optimality it is trivial to satisfy the other 3 properties with

the following mechanism: give 1
n

of each resource to each user.

Parkes et al ([13]) define a relaxed notion of envy-freeness, that they call

EF1 (envy free up to one bundle). A mechanism satisfies EF1 if for every

submitted demand profile d it outputs an allocation A, such that for all users

Page 25

Chapter 3 3.2. INDIVISIBLE TASKS AND IMPOSSIBILITY RESULTS

i, j, ui(Ai) ≥ ui(Aj − di), where Ak is the vector of resources user k was

allocated. In other words, a mechanism satisfies EF1 if each user i does not

envy user j if one instance of the task of user i is removed from the allocation

of j.

Again, we have that the main properties are incompatible with each other:

Theorem 9. No mechanism satisfies Pareto Optimality, EF1 and Strate-

gyproofness simultaneously.

Proof. Consider a setting with one resource of size 1 and two users with de-

mands d1 = d2 = 1
3
. The only feasible allocations that are EF1 and Pareto

Optimal allocate 2
3

of the resource to one user and 1
3

to the other user. Assume

without loss of generality that user 1 gets two tasks. If user 2 reports d2 = 1
6
,

then the only EF1 and PO allocation gives her 2
3

and 1
3

to user 1, thus violating

strategyproofness.

So, to summarize, we have that Strategyproofness + Sharing Incentives +

EF1 is trivial, but if we add Pareto Optimality and insist on Strategyproof-

ness we run into impossibilities. If we give up Strategyproofness though, as

we’ll see next, there does exist a deterministic mechanism that satisfies Pareto

Optimality, EF1 and Sharing Incentives: Sequential Min-Max.

Page 26

3.3. SEQUENTIAL MIN-MAX Chapter 3

3.3 Sequential Min-Max

To describe Sequential Min-Max we will need to define some additional nota-

tion: given an allocation A let MaxDom(A) = maxusers i max resources rAir,

where Ajk is the amount of resource k user j gets. MaxDom(A) is the max-

imum dominant share a user gets. Also, let A ↑ i be the allocation obtained

by starting from allocation A and giving user i another bundle di.

Sequential Min-Max (Algorithm 2) allocates one bundle at each step,

to the user that minimizes the maximum dominant share after the allocation.

Note that maximizing the minimum dominant share instead, which is arguably

a more intuitive approach, does not achieve the same properties.

ALGORITHM 2: Sequential Min-Max

Input: Demand profile d

Output: A feasible allocation A
1: k ← 1 , A0 ← 0 , T1 ← n

2: while Tk 6= 0 do

3: Mk ← {i ∈ Tk|∀j ∈ Tk, MaxDom(Ak−1 ↑ i) ≤MaxDom(Ak−1 ↑ j)}
4: i← any agent in Mk

5: Ak ← Ak−1 ↑ i
6: Tk+1 ← {i ∈ Tk|Ak ↑ i feasible }
7: k ← k + 1

8: end while

9: Return Ak−1

Theorem 10. Sequential Min-Max satisfies Pareto Optimality, Sharing In-

centives and EF1

We will not prove this theorem here. The interested reader can refer to

[13] for the proof of this theorem.

To summarize, in this section we moved away from the divisible tasks

assumption, and we immediately hit impossibilities for our main properties and

deterministic mechanisms. In the next chapter (Chapter 4) we will consider

a setting with multiple machines and indivisible tasks, but allow randomized

mechanisms to evade these kinds of impossibilities.

Page 27

Chapter 3 3.3. SEQUENTIAL MIN-MAX

Page 28

Chapter 4

Containerized DRF

4.1 Containers

In this chapter we move to our main, most general setting: multiple machine

cluster with indivisible tasks. Before the formal model we present an illustrat-

ing example (Figure 4.1):

c1

c2

c3

c1

c2

c3

4 CPU 6 GB RAM

c5

c5

c4

4 CPU 4 GB RAM

Figure 4.1: Example of an allocation in a containerized setting with machines

r1 = (4, 6) and r2 = (4, 4), and users d1 = (1, 3) and d2 = (2, 1). User 1

gets containers c1 = (1, 3), c2 = (1, 1) and c4 = (0, 2). User 2 gets containers

c3 = (2, 1) and c5 = (4, 2)

Example: Consider a cluster of two machines, with two resources each:

machine 1 has 4 CPU’s and 6 GB RAM, while machine 2 has 4 CPU’s and 4

GB RAM. Two users want to execute their tasks in this cluster. User 1 wants

to execute tasks that require 1 CPU and 3 GB’s of RAM each. User 2 wants to

execute tasks that require 2 CPU’s and 1 GB RAM. In other words, the users

have demands d1 = (1, 3) and d2 = (2, 1) respectively. In a cluster like this we

29

Chapter 4 4.1. CONTAINERS

will assume that each user gets allocated a set of containers ; each container is

a bundle of resources. A user can execute in each container she gets as many

tasks as she can ”fit”. Her total utility is simply the total number of tasks she

can execute in the cluster. So, say user 1 is allocated containers c1 = (1, 3) and

c2 = (1, 1) in machine 1, and container c4 = (0, 2) in machine 2. User 2 gets

allocated container c3 = (2, 1) in machine 1 and c5 = (4, 2) in machine 2. User

1 can only use c1; c2 and c4 are too small. Moreover, she can’t combine these

two containers (this holds even if the containers were in the same machine).

Thus, her utility is 1. Similarly, user 2 has utility 3: she can fit one task in c3

and two tasks in c5.

Utilities in a containerized setting

If there was a single machine and user i was allocated a bundle x ∈ <p+ of

resources, then in a model with divisible tasks she could run mink(xk/dik) jobs,

while in a model without fractional tasks she could only run bmink(xk/dik)c
jobs. On the other hand, in a setting with many machines users shouldn’t be

able to combine resources across machines. The key here is that the system

allocates containers. The s’th container cs ∈ <p+ is a bundle of resources on

a single machine, i.e. csk is the amount of resource k in the container s. In

a containerized model, using container cs user i can run bmink(csk/dik)c jobs.

Combining resources across containers is not possible.

An allocation A =< C,M,P > consists of a set C of containers with a

machine function M(s) ∈ [m] and a user function P (s) ∈ [n]. M(s) is the

machine on which container s is located and P (s) the user who gets container

s. For an allocation A, the number of jobs that user i can execute is

ui(A, di) =
∑

{s|P (s)=i}

bmin
k

(csk/dik)c

and note that the floor function is inside the sum. This number is exactly

a user’s utility. Observe that we have Leontief preferences: users require re-

sources in fixed proportions. We will often write ui(A) when the di is implicit.

An allocation is feasible, if

∀j ∈ [m] , k ∈ [p] :
∑

{s|M(s)=j}

csk ≤ rjk

Page 30

4.1. CONTAINERS Chapter 4

We denote by F (d) the feasible region, that is the set of all feasible alloca-

tions under submitted demand profile d. We will also use Fj(d) for the feasible

region of machine j.

A mechanism A(d, r) is a function that takes as input a demand profile

d and a cluster r and outputs an allocation. In much of the following we will

consider a fixed set of machines and resources, so will often simply write A(d)

when r is implicit. The mechanisms we will design will only allocate containers

equal to demands, so the usage of containers will be implicit.

Our mechanisms work directly with the feasible region F (d), so it is useful

to define the following:

Definition 11. The Minkowski sum of sets A1, A2, . . . , Ak is the set

B = {
k∑
i=1

xi : xi ∈ Ai}

Observe that F (d) is the Minkowski sum of the Fj(d)’s. We will later use

the fact that the Minkowski sum of convex hulls is the convex hull of Minkowski

sums.

Properties of mechanisms

Our goal is to design mechanisms that satisfy our key properties: Pareto Op-

timality, Strategyproofness and Sharing Incentives. The definitions of these

properties are informally as before, except from sharing incentives. To define

this property, we first define user’s i stand alone allocation in the cluster to be

the number of jobs user i could run if she had the entire system for herself

sai(d, r) =
m∑
j=1

bmin
k

(rjk/dik)c

We will usually write sai to relax notation. A mechanism satisfies Sharing

Incentives if every user’s utility for the output allocation is at least her fair

share bsai/nc.
We will not consider Envy Freeness, since it is not a very natural property

in a setting that allocates multidimensional containers. On the other hand, we

will consider two additional ”nice-to-have” properties:population monotonicity

and independence of dummy machines. A mechanism M is population mono-

tonic if no user is harmed (receives fewer jobs) when some other user leaves

Page 31

Chapter 4 4.1. CONTAINERS

the system. The last property we want our mechanisms to satisfy is indepen-

dence of dummy machines, IDM, where a dummy machine is one on which no

user can execute any job: A mechanism satisfies IDM if adding or removing

dummy machines does not change the allocation. IDM is a simple proxy for

robustness, since if a mechanism fails IDM then it will fail a variety of other

important robustness considerations.

The importance of containers

The importance of containers is that they allow the underlying placement of

jobs on machines to be invisible to the users. Many cloud providers (e.g.

Amazon.com) indeed hide from users whether two container instances are co-

located or not. The user is therefore given the illusion of owning a dedicated

machine that is isolated from the other instances, even though she is run-

ning on a container on a machine that has other containers. There are many

reasons for this. First, it enables container migration. Second, not revealing

co-location avoids applications that rely on co-location, limiting the flexibility

of the provider (once one customer relies on this, you have to support it for-

ever or break their applications). Finally, cloud providers often do not want to

reveal too much information about the exact technology they are using as that

is a competitive advantage as well as a potential vulnerability that attackers

can exploit. Thus, unlike previous papers on DRF, in our model the system

directly allocates containers (the term is borrowed from the Linux literature,

c.f. [12]), which are isolated bundles of resources. This differs from the model

in [13] as users cannot combine bundles. For example, if a user needs 2 units

of a certain resource to run a job, but for strategic reasons only requests 1

unit per job, then even if she gets allocated 2 jobs on the same machine she

is unable to run her job, even though she does have a total of 2 units of the

resource. Of course the user could execute separate tasks in each container

and have them use the network to coordinate as if they were a single task,

but this would have performance overheads (communication), as well as cost

overheads (parallelizing the code). Furthermore, a task might have the con-

sumption vector (3 CPU, 4 GB memory), and it cannot simply separate it into

one (3 CPU, 3 GB memory) and one (0 CPU, 1 GB memory) tasks.

Page 32

4.2. POSSIBILITIES AND IMPOSSIBILITIES Chapter 4

4.2 Possibilities and Impossibilities

Limitations of Deterministic Mechanisms

As in the single machine case, when we demand integer allocations no mech-

anism can satisfy sharing incentives, Pareto optimality, and strategyproofness

simultaneously. For the model without containers and a single machine, this

was proven by the following example in [13] (Theorem 8): consider a system

with a resource of size 1 and two users with demands d1 = d2 = 1
2

+ ε. Assume

w.l.o.g. that a mechanism that satisfies all 3 properties allocates to user 1. If

user 2 reports d′2 = 1
2

then sharing incentives dictates that she should get half

the resource. But, since the remaining half cannot be used by user 1 and it

can be used by user 2, Pareto-optimality dictates that user 2 gets that as well.

So, user 2 has a profitable deviation and the mechanism is not strategyproof.

However, this example does not prove impossibility in our model. To see

this consider a mechanism that allocates containers equal to demand vectors.

Then user 2 would get containers of size 1
2

when she reported d′2. But she

cannot execute any jobs in these containers, and she cannot combine them,

so her utility when misreporting would be zero. Nonetheless, a slightly more

complicated example does work as seen below:

Theorem 12. No deterministic mechanism can satisfy sharing incentives,

Pareto optimality and strategyproofness simultaneously, even for one machine,

two resources and two users.

Proof. Assume such a mechanism M exists and consider a cluster with one ma-

chine and two resources r = (1, 1) and two users with demands d1 = (0.25, 0.1)

and d2 = (0.1, 0.25). Since M satisfies sharing incentives then each user should

be allowed to execute at least 2 tasks. A Pareto optimal mechanism should

allocate one more job for either user 1 or user 2. Without loss of generality

assume that M chooses the first option and allocates containers which result

to utility 3 for user 1 and utility 2 for user 2.

Now, examine what happens when user 2 deviates with d′2 = (1
6
, 0.25).

Again, sharing incentives requires M to allocate containers that give utility at

least 2 to each user. This will use at least (5
6
, 0.7) of the available resources,

leaving (1
6
, 0.3) available, which is enough for user 2 to schedule a task, but not

Page 33

Chapter 4 4.2. POSSIBILITIES AND IMPOSSIBILITIES

user 1. Pareto optimality dictates that the remainder should be allocated to

user 2. Since d2 “fits” in d′2, user 2’s utility strictly increases, thus she has an

incentive not to report her true demand vector and so, M is not strategyproof,

a contradiction.

SI allocations always exist

Even though all three main properties are impossible to satisfy at the same

time, it is very easy to construct a mechanism that satisfies only Pareto opti-

mality and strategyproofness. For example, a serial dictatorship, in which we

choose a fixed order of users and allow each user, in order, to allocate as many

jobs as possible. However, it is not clear if there always exists an allocation

that satisfies sharing incentives for every cluster. In this subsection we will

prove that such an allocation always exists by showing the correctness of a

moving knife-like algorithm ([3]). In addition to providing a useful result for

multiple machine settings, this will also be necessary for the correctness proof

of the main randomized mechanism.

Recall the moving knife procedure for allocating a divisible cake to n play-

ers, when each player’s value for the whole cake is 1: the referee moves a knife

from left to right until some player i calls ”cut”. Then the referee cuts at the

point where the knife was and allocates to player i everything on the left of

the cut. If each player calls ”cut” when she thinks the amount of cake on the

left of the knife is worth 1
n

the allocation is fair: everybody gets utility at least
1
n
.

Now, in our setting, given an arbitrary ordering of the machines, imagine a

water filling procedure for every user i that works as follows: starting from the

first machine and following the ordering, user i progressively fills the cluster

using a constant fraction of the resources. Every time she has ”filled” enough

to be able to allocate her fair share b sai
n
c she puts a mark µi,k. So, the marks

are such that, if she were allocated everything between two consecutive marks,

she would get exactly her fair share, with the exception maybe of the last mark,

where she would possibly get more if allocated everything from that mark until

the end. There are n− 1 such marks.

We will write µi,k = (f, j) to denote that the k-th mark of user i is in

machine j, when she reached an f fraction of that machine. Notice that this

Page 34

4.2. POSSIBILITIES AND IMPOSSIBILITIES Chapter 4

doesn’t mean that she needs an f fraction of machine j to get her fair share,

since two consecutive marks can be many machines apart. We will say that

µi,k ≤ µj,k if µi,k is a mark in a machine earlier in the ordering, or in the

case that both marks are on the same machine, µi,k uses a smaller (or equal)

fraction.

We are now ready to state the algorithm:

ALGORITHM 3: Moving Knife Algorithm

Input: Cluster r = (r1, . . . , rm) and demand profile d

Output: A feasible allocation A
1: Pick an arbitrary ordering of the machines

2: For each user i compute n− 1 marks µi,k

3: S = set of users

4: µ = (0, 1) (mark the beginning of the first machine)

5: while |S| > 1 do

6: Pick user j ∈ S with smallest µj,n−|S|+1 mark

7: Allocate to j everything from µ until µj,n−|S|+1

8: µ = µj,n−|S|+1

9: S = S \ {j}
10: end while

11: Allocate the rest to the last user

Example: Consider the cluster from the previous section (Figure 4.1),

with an extra user d3 = (1, 2), and an extra machine with 4 CPU’s and 2 GB

RAM. User 1, with d1 = (1, 3), would be able to execute 3 jobs if alone in the

system: 2 jobs in machine 1 and 1 job in machine 2, so her fair share is 3
n

= 1.

She will put n− 1 = 2 marks: µ1,1 = (1
2
, 1) and µ1,2 = (1, 1). Similarly user 2,

with sa2 = 6, would have marks µ2,1 = (1, 1) and µ2,2 = (1, 2). User 3, with

sa3 = 6 as well, would have µ3,1 = (2
3
, 1) and µ3,2 = (1

2
, 2), because she can get

her fair share with 1
3

of machine 1 and 1
2

of machine 2. Figure 4.2 shows the

execution of the algorithm in this example.

Theorem 13. The mechanism defined by the moving knife Algorithm 3 satis-

fies sharing incentives.

Proof. Assume some user i did not get her fair share of the system. She was

allocated some part of the system either in the first step, in some step k > 1

or in the last step. In the first and last step cases we have an immediate

contradiction from the description of the algorithm; the user was definitely

allocated her fair share. The only interesting case is if she got picked in some

Page 35

Chapter 4 4.2. POSSIBILITIES AND IMPOSSIBILITIES

4 CPU 6 GB RAM 4 CPU 4 GB RAM 4 CPU 2 GB RAM

µ1,1

µ1,2
µ2,1

µ2,2

µ3,1

µ3,2

Figure 4.2: Marks in a cluster with r1 = (4, 6), r2 = (4, 4) and r3 = (4, 2), and

users with demands d1 = (1, 3), d2 = (2, 1) and d3 = (1, 2). After the execution

of algorithm 3, the dotted area shows the fraction user 1 gets, the lined area

shows the fraction user 3 gets, and the grid the fraction user 2 gets

step k > 1. In that case, we know that she was not picked in step k−1 because

there was some other user j that had a mark µj,k−1 ≤ µi,k−1. User i then got

allocated everything between µj,k−1 and µi,k which is more than everything

between µi,k−1 and µi,k, which is by definition her fair share.

Page 36

4.3. THE CDRF MECHANISM Chapter 4

4.3 The CDRF mechanism

As we showed in Theorem 12, one cannot exactly satisfy the basic properties

with a deterministic mechanism. However, as we shall now show there does

exist a randomized mechanism, which is the natural extension of DRF, that

satisfies all of the desired properties on average (in an ex-ante sense). Since

our mechanisms allocate containers equal to demands we will relax notation

and refer to allocations simply as vectors y ∈ Nn, where yi is user’s i utility,

i.e. the number of jobs she can execute in that allocation. On the other hand,

when talking about non integral solutions, allocations are vectors in Rn
+. This

distinction should be clear from the context.

We will restrict our randomized mechanisms to be a random mixture of a

finite set of deterministic mechanisms. Our goal is to construct a randomized

mechanism which satisfies all of the desirable properties on average before the

randomization is revealed, i.e. ex-ante. We note that these do not necessarily

satisfy the properties ex-post, that is when the actual allocation is initialized,

and discuss this issue later.

For most properties ex-post is a stronger guarantee than ex-ante. Notice

though that, somewhat surprisingly, ex-ante Pareto optimality implies ex-post

Pareto optimality, but not the converse. This happens because in order to

achieve ex-ante Pareto optimality one must make sure that the average allo-

cation is not dominated. To see this distinction, consider a randomized serial

dictatorship: pick a random order on the players and allocate as many jobs

as possible to the first player in the order, then to the second player etc.

This mechanism is fair, strategyproof and ex-post Pareto optimal, but not

ex-ante Pareto optimal. For example, in a cluster with two users with de-

mands d1 = (10, 1) and d2 = (1, 10) and two machines with r1 = (100, 10) and

r2 = (10, 100) the randomized serial dictatorship yields allocations (11, 0) and

(0, 11) with equal probability combining for an ex-ante allocation of (5.5, 5.5).

This is a dramatic loss of efficiency considering that allocation (10, 10) is also

feasible. Incidentally, (10, 10) will be the output of our randomized mechanism

with probability 1.

First, before we start describing our mechanism, we note that one can re-

interpret DRF. In the case of a single machine with divisible jobs, notice that

Page 37

Chapter 4 4.3. THE CDRF MECHANISM

the dominant share si = xik∗/rk∗ is equal to the ratio of allocated jobs to

user i divided by the number of potential jobs for user i if she had the entire

machine to herself. This equivalence allows us to connect DRF to the Kalai-

Smorodinsky bargaining solution ([10]). To see this most clearly, recall that

the total number of jobs which can be allocated to user i is sai, which in the

single machine with divisible jobs is simply mink
rk
dik

= rk∗
dik∗

. The generalized

Kalai-Smorodinski solution, if translated in this setting, is the weighted max-

min allocation of jobs with weight vector (1/sa1, . . . , 1/san) over the feasible

region. The DRF allocation is exactly this weighted max-min vector of jobs.

One could extend this definition to our container based model; however,

if done directly, this fails because the set of feasible allocations F (d) is not

convex, a fact crucial to the analysis. To resolve this, we convexify the feasible

region to CH(F (d)), the convex hull of set F (d), and compute the max-min
1
sai
−weighted vector of jobs over CH(F (d)). A geometrical interpretation of

this solution is this: the weighted max-min is just the intersection of the

Kalai-Smorodinski line, the line connecting the origin to the (sa1, . . . , san)

point, with CH(F (d)).

As we will show, this procedure, which we denote Containerized DRF

(CDRF), preserves the properties of DRF in this multiple-machine with indi-

visible jobs setting. In addition, one can directly interpret this mechanism as

a randomized mechanism, since the resulting allocation is a convex combina-

tion of allocations in F (d), by the definition of a convex hull. Moreover these

allocations are Pareto optimal. In pseudocode, CDRF is given as Algorithm 4.

ALGORITHM 4: Containerized-DRF
Input: Demand profile d and cluster r

Output: A feasible allocation z ∈ Nn.
1: Compute the allocation CDRF (d, r) = (k1, k2, . . . , kn) ∈ <n which is the max-min 1

sai
−weighted

vector of jobs over CH(F (d))

2: Compute n allocations z1, . . . , zn ∈ F (d) such that CDRF (d, r) is their convex combination, i.e.

∃b1, . . . , bn ∈ <+ s.t.
n∑
j=1

bjzj = CDRF (d, r) and

n∑
j=1

bj = 1

3: Output allocation zj with probability bj

Example: The feasible region is n dimensional, so, for simplicity, we use

the example from Figure 4.1: two machines r1 = (4, 6) and r2 = (4, 4) and users

Page 38

4.3. THE CDRF MECHANISM Chapter 4

with demands d1 = (1, 3) and d2 = (2, 1). See Figure 4.3. The feasible region

is the set of integer points and the colored area is it’s convex hull. The set

of Pareto optimal points of the feasible region are {(3, 1), (2, 2), (1, 3), (0, 4)}.
The stand alone shares are sa1 = 4 and sa2 = 3. The intersection of the Kalai-

Smorodinski line, connecting the origin with the (sa1, sa2) point, is the point

that maximizes the minimum ui
sai

over the colored area. In this example that

point is CDRF (d, r) = (12
7
, 16

7
). This can be written as a convex combination

of (1, 3) and (2, 2) with coefficients 2
7

and 5
7
. Thus, CDRF will output the

allocation (1, 3) with probability 2
7
, and the allocation (2, 2) with probability

5
7
.

(0, 4)

(3, 1)

(2, 2)

(1, 3)

Kalai-Smorodinski

CDRF (d, r)

Figure 4.3: CDRF in a cluster with r1 = (4, 6) and r2 = (4, 4), and users with

demands d1 = (1, 3) and d2 = (2, 1). CDRF (d, r) is the weighted max-min

allocation, i.e. CDRF (d, r)i is the expected utility of user i in CDRF. In higher

dimensions CDRF (d, r) is not necessarily the intersection of CH(F (d)) and

this ”Kalai-Smorodinski” line, as one needs to use the lexicographic max-min.

Let CDRF (d, r) ∈ <n be the weighted max-min allocation for demand

profile d; the Kalai-Smorodinski solution. Observe that the expected number

of containers user i gets is exactly CDRFi(d, r). If i reports her true demand

that CDRFi(d, r) is also her utility. Since the region we’re maximizing over

is convex, it immediately follows that Containerized-DRF satisfies several key

properties.

Theorem 14. If users are expected utility maximizers then CDRF satisfies

ex-ante sharing incentive, ex-ante Pareto optimality, ex-ante population mono-

tonicity and independence of dummy machines.

Page 39

Chapter 4 4.3. THE CDRF MECHANISM

Proof. Pareto optimality is ex-ante satisfied since the expected allocation is

on the convex hull of the feasible region. Sharing incentives is similarly

satisfied ex-ante since the Kalai-Smorodinski solution always dominates the

(bsa1/nc, . . . , bsan/nc) allocation, and we know from Theorem 13 that this

allocation is always feasible. Population monotonicity also follows directly

since when a user leaves the system, the feasible region can only expand. The

independence of dummy machines property holds since our mechanism works

directly with the feasible region: if the feasible region is not changed, then the

allocation is not changed.

CDRF is also strategy proof in expectation, although the proof is somewhat

more complex.

Theorem 15. If users are expected utility maximizers then CDRF is ex-ante

strategyproof.

Proof. Let d′ be the demand profile where the i-th user reports some d′i and

every other user l truthfully reports dl, and d the demand profile where every-

one is truthful. Also, let fi(d
′
i, di) be the number of tasks user i can execute in

a container of size d′i. Remember that CDRFi(d
′, r) is the expected number

of containers user i gets in profile d′. So, her expected utility can be writ-

ten CDRFi(d
′, r) fi(d

′
i, di). We have to show that this value is maximum for

d′i = di.

First observe that by definition reporting a vector d′i with d′ir < dir for

some resource r gives zero utility, since fi(d
′
i, di) is zero. So, we only have to

consider deviations d′i that over demand resources.

Let pk = bd
′
ik

dik
c. If all pk are not equal, the largest can be reduced without

any loss in utility: fi(d
′
i, di) will be the same, CH(F (d)) and sai can only

increase, thus CDRFi(d
′, r) can only increase. Using the exact same argument

we can see that pk =
d′ik
dik

, that is d′i is a better deviation for our mechanism

when it is an integer multiple of di. So, w.l.o.g. we can assume that all pk’s

are equal to some integer p, and that d′ik = pdik.

All that’s left to show is that the best such p is p = 1. Let’s examine what

happens when the demand of user i changes from di to d′i = p di: sai becomes

at least p times smaller, since it is harder to allocate big tasks of size d′i than

it is to allocate tasks of size di. For the same reason, CH(F (d′)) is a subset

Page 40

4.3. THE CDRF MECHANISM Chapter 4

of CH(F (d)) with the i-th dimension rescaled by p. So, CDRFi(d
′, r) ≤

CDRFi(d,r)
p

, while fi(d
′
i, di) = p, for any p ≥ 1. Thus there is no profitable

deviation.

DRFH in a containerized setting

One could directly extend DRFH (3.1) to our containerized model, by maxi-

mizing the global dominant resource shares; however, this mechanism fails to

satisfy some basic properties:

Example: Consider one machine with resource vector r1 = (15, 15) and

two users with demand vectors d1 = (1, 1
2
) and d2 = (1

2
, 1). Under DRFH, 1’s

global dominant resource is resource 1, since in order to execute a single task

she needs a 1
15

fraction of resource 1 and a 1
30

fraction of resource 2. Similarly,

the global dominant resource of user 2 is resource 2. DRFH allocates 10 tasks

to each user. Note that each user’s stand alone share is sai = 15 so this

allocation satisfies the resource sharing property. However, if we add a second

machine with r2 = (16, 0) then even though this machine is unable to run a

single job for either user, it changes the allocation significantly, giving 12 jobs

to user 1 and 6 to user 2. This happens because user 1’s dominant resource is

now resource 2.

This example shows that DRFH need not satisfy the sharing incentives

property and that it also lacks the important independence of dummy ma-

chines property, as the addition of dummy machine changes the allocation

significantly.

Page 41

Chapter 4 4.3. THE CDRF MECHANISM

Page 42

Chapter 5

Ex-post Guarantees

5.1 Approximate CDRF mechanisms

In certain situations, the randomized mechanism might be directly applicable.

For example, if individual job times are short then in a randomized mechanism

the fluctuations in users’ job shares would average out quickly. However, one

potential problem with this mechanism in practice is the possibility of large

fluctuations in allocations which may rely too heavily on the assumption that

users maximize expected utility. For example, consider the case with rj = (1)

for 1 ≤ j ≤ m and d1 = d2 = (1). The randomized CDRF mechanism could

choose to randomize between two allocations, the first gives all the machines

to user 1 and the second gives all the machines to user 2. Thus, while the

average allocation for each user is m/2 jobs, the fluctuations are huge.

In the following, we present several mechanisms which help resolve this

issue. They produce allocations which not only satisfy the properties in the

expectation/ex-ante sense, but also approximately satisfy these properties ex-

post, i.e. after the actual allocations are realized. The key idea is that if we

can always find an allocation that is close to the CDRF allocation, then the

mechanism that produces that allocation will “inherit” approximate ex-post

bounds for the properties satisfied by CDRF. We formalize this as follows:

Definition 16. A mechanism M is an ε-approximate CDRF mechanism if for

all demand profiles d and clusters r,

|Mi(d, r)− CDRFi(d, r)|
CDRFi(d, r)

≤ ε

43

Chapter 5 5.1. APPROXIMATE CDRF MECHANISMS

for all users i, and M is ex-ante Pareto Optimal.

In order to simplify the notation, in this section we let Mi(d, r) be the

number of jobs allocated to user i and require that the mechanism allocates

containers of size di. Thus the explicit discussion of containers will not be

necessary.

It is straightforward to show that such a mechanism approximately satisfies

the ex-post versions of our properties, where we define these directly in terms

of the fractional changes to each user. For example, ε-approximate ex-post

sharing incentive implies that the actual allocation

Mi(d, r) ≥ (1− ε)bsai(d, r)
n

c

and similarly for ε-approximate ex-post population monotonicity and ε-approximate

IDM. For ε-approximate ex-post strategyproofness we require that no user can

gain a fractional increase in jobs of ε from a deviation.

Theorem 17. If mechanism M is an ε-approximate CDRF mechanism then

it satisfies:

1) ε-approximate ex-post sharing incentives,

2) ex-ante Pareto Optimality,

3) ε-approximate ex-post population monotonicity,

4) ε-approximate IDM,

5) 3ε-approximate ex-post strategyproofness.

Proof. Parts 1,3 and 4 follow immediately from the definition of “ε-approximate

ex-post” versions. Part 2 is immediate from the assumption that M is ex-ante

Pareto Optimal. Part 5 follows from the strategyproofness of CDRF: Consider

a deviation for a single user from di to d′i, with d and d′ the respective demand

profiles. Assuming that dik ≤ d′ik < 2dik, for all resources k, we can see that

|ui(Mi(d
′), d′i)− ui(CDRFi(d′), d′i)|
ui(CDRFi(d′), d′i)

≤ ε

as is
|ui(Mi(d), di)− ui(CDRFi(d), di)|

ui(CDRFi(d), di)
≤ ε

by the definition of an ε-approximate mechanism. Next, by strategyproofness

of CDRF, we see that ui(CDRFi(d
′), di) − ui(CDRFi(d), di) ≤ 0 and by the

Page 44

5.1. APPROXIMATE CDRF MECHANISMS Chapter 5

assumption on d′i, ui(CDRFi(d
′), d′i) = ui(CDRFi(d

′), di), since user i can only

fit one job in a container of size d′i. Similarly ui(Mi(d
′), d′) = ui(Mi(d

′), d).

Also, from the definition of ε-approximate CDRF we can get ui(Mi(d),di)
1−ε ≥

ui(CDRFi(d), di). Combining these facts we get:

ui(Mi(d
′), di)− ui(Mi(d), di)

ui(CDRFi(d), di)
≤ 2ε

which implies

ui(Mi(d
′), di)− ui(Mi(d), di)

ui(Mi(d), di)
≤ 2ε

1− ε
< 3ε

which is the definition of 3ε approximate ex-post strategyproofness. In the

case where d′i does not satisfy our assumption, we use the same techniques as

in the proof of theorem 15 to complete the analysis.

We note here that an ε-approximate CDRF mechanism doesn’t have to be

randomized. In case it is deterministic then the properties above are approxi-

mately satisfied in the obvious way.

Page 45

Chapter 5 5.2. IDENTICAL MACHINES

5.2 Identical Machines

While a typical CCC may contain a thousand to a hundred thousand machines,

there are typically only a few specific types of machines in the CCC, due to

scalability concerns, both for hardware and software. In this setting we can

get an ε-approximate CDRF mechanism.

For simplicity, we first consider the case when all m machines are identical.

In this setting we compute z = CDRF (d, r1) which is the CDRF expected

allocation for a single machine. Since this z is a point in the convex hull of

an n-dimensional space, we can then find n feasible allocations zt ∈ F1(d)

and their associated αt’s such that z =
∑n

t=1 αtz
t where each αi ≥ 0 and∑n

t=1 αt = 1. Then we randomly assign each machine to allocation zt with

probability αt. Define ε =
√

12n logn
m

and check that all users i, are allocated at

least (1− ε)mzi jobs. If this is not true, then repeat the randomized procedure

until it is. We denote this mechanism the Identical Machines-CDRF, or just

IM-CDRF.

Theorem 18. Suppose that there are m identical machines. Then IM-CDRF

is O(
√

n logn
m

)-approximate CDRF. In addition, the number of iterations is less

than 2 on average, and more than γ with probability less than 2−γ.

Proof. First note that the feasible region of the cluster is the Minkowski sum

of the single machine feasible region m times with itself. Since the Minkowski

sum of convex hulls is the convex hull of Minkowski sums, if z = CDRF (d, r1)

then mz = CDRF (d, r). Now, let Yj be random variable for the allocation on

the j’th machine which takes on value zt with probability αt.

To simplify the presentation, consider the “normalized variables”, Wji =

Yji/sai(d, r1) and vi = zi/sai(d, r1) and note that both are contained in the

interval [0, 1].

First, we note that E [Wji] = vi by construction, so E
[∑m

j=1 Wji

]
= mvi.

Next we note that V ar [Wji] ≤ vi(1 − vi) since the Wji has mean vi and is

contained on the interval [0, 1] and the maximum variance for such a random

variable arises when the random variable takes on only the values 0 and 1.

This implies that V ar
[∑m

j=1Wji

]
≤ mvi(1 − vi) and thus for the standard

deviation σ we have σ = σ
[∑m

j=1Wji

]
≤
√
mvi(1− vi).

Page 46

5.2. IDENTICAL MACHINES Chapter 5

Then, using Chernoff’s inequality we get that

Pr

[∣∣∣∣∣
m∑
j=1

Wji −mvi

∣∣∣∣∣ ≥ kσ

]
≤ 2e−k

2/4.

Setting k2 = 12 log n gives us

Pr

[∣∣∣∣∣
m∑
j=1

Wji −mvi

∣∣∣∣∣ ≥ kσ

]
≤ 2/n3.

We then apply a union bound to obtain

Pr

[{∣∣∣∣∣
m∑
j=1

Wji −mvi

∣∣∣∣∣ ≥ kσ

}
∀i

]
≤ 2n/n3 = 2/n2

which is less than 1/2 for n ≥ 2.

To complete the proof we note that

Pr

[∣∣∣∣∣
m∑
j=1

Wji −mvi

∣∣∣∣∣ ≥ kσ

]
= Pr

[∣∣∣∣∣
∑m

j=1Wji −mvi
mvi

∣∣∣∣∣ ≥ kσ

mvi

]
which is the fractional difference between the number of jobs allocated to user

i under IM-CDRF and the expected number allocated under CDRF. Thus, we

see that the ε in the approximation bound is given by

ε ≤ kσ

mvi
≤
√

12 log n mvi(1− vi)
mvi

≤
√

12 log n√
m/n

=

√
12 n log n

m

which is the desired bound, where we used the fact that 1−vi < 1 and vi > 1/n

by resource sharing.

Since the probability of this bound being exceeded is less than 1/2, the

number of iterations is bounded by a geometric distribution, leading to the

stated bound on iterations. Lastly, ex-ante Pareto optimality is immediate,

since all the zt’s are Pareto optimal and lie on the face that contains the CDRF

allocation.

We can extend this to the case where there are several classes of identical

machines, but computing the IM-CDRF allocation separately for each class to

get the GIM-CDRF allocation.

Corollary 19. Suppose that there are t < nb machine types and at least

c copies of every machine. Then GIM-CDRF is O

(√
nb logn

c

)
-approximate

CDRF. In addition, IM-CDRF requires 2 iterations on average and only re-

quires more than γ iterations with probability less than 2−γ.

Page 47

Chapter 5 5.2. IDENTICAL MACHINES

Proof. The constant in the approximation is increased by a factor of 21/2, since

in order to guarantee that the tail bounds apply to all classes of machines

simultaneously we need to choose k2 = (12 + b) log(n) in the proof of 18.

Page 48

5.3. DETERMINISTIC MECHANISMS Chapter 5

5.3 Deterministic mechanisms

One can improve this mechanism by reducing the randomization. For exam-

ple, instead of choosing the allocation for each machine independently on can

directly assign bmαtc machines to allocation zt and then ignore the remaining

machines. This mechanism has the same properties as IM-CDRF but a some-

what different error bound of ε = O(n2/m), and also is not Pareto Optimal.

Thus, in a common setting, we can directly construct approximate de-

terministic allocations. In particular, one key property of GIM-CDRF is its

simplicity as an algorithm: One only needs to find the CDRF allocation on a

single machine of each type and then GIM-CDRF provides a simple algorithm

for allocating all the machines. However, for more general sets of machines

computing a good allocation is more complex. In the following, we provide a

general approximation theorem for arbitrary sets of machines. Our analysis re-

lies on a famous result in convex analysis [14]. This result is non-constructive;

it shows the existence of a good approximate CDRF deterministic mechanism,

but does not provide a reasonable way of computing it. There is a constructive

version of this result ([15]) but it comes with worse approximation bounds and

doesn’t solve our key algorithmic issue: computing maximum allocations over

the feasible region is NP-hard.

Given a set Si define the inner radius, IR(Si) to be the smallest value of

ρ such that for any point y ∈ CH(Si) the ball of radius ρ centered at y will

contain a subset of Si whose convex hull contains y. For example, in Figure

4.3 the inner radius of the feasible region is
√

2. The ball with radius
√

2 with

center CDRF (d, r) contains (1, 3) and (2, 2), whose convex combination can

give CDRF (d, r).

Another example, where we can see that a point on the convex hull can be

far from any point in the feasible region is the following: Consider a cluster

with n + 1 users and n + 1 resources. Each user i, i = 1 . . . n, demands 1

unit of resource i and 1 unit of resource 0. Player 0 demands n units of

resource 0. Assume that this cluster has n machines, where each machine j

has n units of resource j and n units of resource 0. For every machine j,

(1, 0, . . . , 0) ∈ Fj(d) and (0, . . . , 0, n, 0, . . . , 0) ∈ Fj(d) where n is in the j-

th position.
(
n
2
, n

2
, . . . , n

2

)
∈ CH(F (d)) is the CDRF allocation. The closest

Page 49

Chapter 5 5.3. DETERMINISTIC MECHANISMS

integral allocation is (0, n
2
, . . . , n

2
), which is clearly not Pareto optimal, since

(0, n, n, . . . , n) is feasible; however in computing the inner radius the latter

point is used. Thus the inner radius here is 2n
√
n.

Theorem 20 (Shapley-Folkman-Starr). Let S1, ..., Sm be a family of m com-

pact subsets of Rn, W =
∑m

i=1 Si. Then for any x ∈ CH(W) there is y ∈ W
such that ‖x− y‖2

2 is bounded by the sum of squares of the n largest IR(Si).

In our setting, the Shapley-Folkman-Starr theorem states that one can

approximate any allocation in the convex hull of the feasible region, such as

the CDRF allocation, with an actual (integral) feasible allocation.

We are now ready to define the Shapley-Folkman-Starr mechanism:

First we compute the CDRF allocation z = CDRF (d, r). Remember zi is

the expected number of containers user i gets. Next, from the definition of

Minkowski sums and the fact that the convex hull of the sum is equal to the

sum of the convex hulls, we can decompose z =
∑m

j=1 zj where zj ∈ CH(Fj(d)).

Since z is Pareto optimal, all of the zj’s must also be Pareto optimal and

furthermore they must lie on a face of CH(Fj(d)). This face is composed

of at most n points in Fj(d), which we will denote Gj; Gj is just the set

of (Pareto optimal) allocations on machine j that can span zj. Then, we

apply the Shapley-Folkman-Starr theorem to the Minkowski sum of the Gj’s

to approximate z. We call the resulting allocation y = SFS (d, r) the SFS

mechanism.

In order to prove a reasonable bound on the SFS mechanism we need to

make some assumptions about the heterogeneity of the machines. For example,

if one machine is much larger than all the other machines then approximations

will be difficult. Define I∗ to be the maximum inner radius out of all the

Fj(d)’s: I∗ = maxj IR(Fj(d)). The bound will depend on I∗. Next, since the

bounds need to be multiplicative, if a user is allocated a small number of jobs,

then even a small additive approximation will be problematic. Thus we make

the simple, and reasonable, assumption that each user can run at least one job

per machine, on average. Thus, with m machines each user will have a stand

alone bound of sai ≥ m. Under these assumptions we can prove the following:

Theorem 21. Let I∗ be the max inner radius of a feasible region of a machine,

and suppose that for each user sai ≥ m. Then SFS O
(
n

3
2

m
I∗
)

-approximates

CDRF.

Page 50

5.3. DETERMINISTIC MECHANISMS Chapter 5

Proof. First, we note that by applying the Shapley-Folkman-Starr bound to

the Gj’s instead of the Fj(d)’s directly, we get a Pareto Optimal allocation.

Remember that SFS is deterministic, so ex-ante Pareto Optimal is the same

as Pareto Optimal. Next, we see from the Shapley-Folkman-Starr bound

that ‖SFS(d, r) − CDRF (d, r)‖2 ≤
√
nI∗. This implies that for each user

i, |SFSi(d, r)− CDRFi(d, r)| ≤
√
nI∗, since ‖ · ‖2 ≥ ‖ · ‖∞. Thus the frac-

tional difference between the SFS allocation and the CDRF allocation is less

than
√
nI∗

(m/n)
= n

3
2 I∗

m
. This holds because the fair share of user i is at least m

n

by assumption. Thus, we see that the SFS mechanism satisfies the stated

approximation ratio.

Page 51

Chapter 5 5.3. DETERMINISTIC MECHANISMS

Page 52

Bibliography

[1] Arka A. Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott

Shenker, and Ion Stoica. Hierarchical scheduling for diverse datacenter

workloads. In Proceedings of the 4th Annual Symposium on Cloud Com-

puting, SOCC ’13, pages 4:1–4:15, New York, NY, USA, 2013. ACM.

[2] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman,

and Nathan Linial. No justified complaints: On fair sharing of multiple

resources. In Proceedings of the 3rd Innovations in Theoretical Computer

Science Conference, ITCS ’12, pages 68–75, New York, NY, USA, 2012.

ACM.

[3] L. E. Dubins and E. H. Spanier. How to cut a cake fairly. The American

Mathematical Monthly, 68(1):pp. 1–17, 1961.

[4] Eric Friedman, Ali Ghodsi, and Christos-Alexandros Psomas. Strate-

gyproof allocation of discrete jobs on multiple machines. In Proceedings

of the fifteenth ACM conference on Economics and computation, pages

529–546. ACM, 2014.

[5] Eric J Friedman, Ali Ghodsi, Scott Shenker, and Ion Stoica. Strate-

gyproofness, leontief economies and the kalai-smorodinsky solution, 2011.

Manuscript.

[6] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-resource

fair queueing for packet processing. SIGCOMM Comput. Commun. Rev.,

42(4):1–12, August 2012.

[7] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott

Shenker, and Ion Stoica. Dominant resource fairness: Fair allocation of

multiple resource types. In Proceedings of the 8th USENIX Conference on

53

Chapter 5 BIBLIOGRAPHY

Networked Systems Design and Implementation, NSDI’11, pages 24–24,

Berkeley, CA, USA, 2011. USENIX Association.

[8] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:

A platform for fine-grained resource sharing in the data center. In Pro-

ceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation, NSDI’11, pages 22–22, Berkeley, CA, USA, 2011.

USENIX Association.

[9] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multi-

resource allocation: Fairness-efficiency tradeoffs in a unifying framework.

In INFOCOM, pages 1206–1214, 2012.

[10] Ehud Kalai and Meir Smorodinsky. Other solutions to nash’s bargaining

problem. Econometrica, 43(3):pp. 513–518, 1975.

[11] Jin Li and Jingyi Xue. Egalitarian division under leontief preferences.

Economic Theory, 54(3):597–622, 2013.

[12] linuxcontainers.org. http://linuxcontainers.org/, 2014.

[13] David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond dominant

resource fairness: Extensions, limitations, and indivisibilities. In Proceed-

ings of the 13th ACM Conference on Electronic Commerce, EC ’12, pages

808–825, New York, NY, USA, 2012. ACM.

[14] Ross M. Starr. Quasi-equilibria in markets with non-convex preferences.

Econometrica, 37(1):pp. 25–38, 1969.

[15] Ross M Starr. Approximation of points of the convex hull of a sum of

sets by points of the sum: an elementary approach. Journal of Economic

Theory, 25(2):314–317, 1981.

[16] Wei Wang, Baochun Li, and Ben Liang. Dominant resource fair-

ness in cloud computing systems with heterogeneous servers. CoRR,

abs/1308.0083, 2013.

Page 54

	Abstract
	Per`ilhyh
	Acknowledgements
	Introduction
	Motivation and Background
	Thesis Outline

	Dominant Resource Fairness
	Preliminaries
	The DRF mechanism

	Indivisible Tasks on a Single Machine
	Extensions of DRF
	Indivisible Tasks and Impossibility results
	Sequential Min-Max

	Containerized DRF
	Containers
	Possibilities and Impossibilities
	The CDRF mechanism

	Ex-post Guarantees
	Approximate CDRF mechanisms
	Identical Machines
	Deterministic mechanisms

	Bibliography

