
National & Kapodistrian University of Athens

Graduate Program in Logic, Algorithms and Computation

M.Sc. Thesis

Infrastructure Leasing Problems

by

Paraschos Koutris

Supervised by

Dimitris Fotakis

Athens

December 2010

i

Abstract

Infrastructure problems are important for a wide variety of applications in networks,
business and planning. The standard assumption for modeling these problems is that,
when a resource is purchased, it can be used at any time in the future, without inducing
further cost. However, this fails to capture how time may influence the cost; in the real-
world, resources can be leased for various time periods or the cost may vary according to
the amount of time a resource is utilized. Motivated by this, we introduce a leasing frame-
work for infrastructure problems, where a resource can be purchased for various periods
of time (day, week, month) with a different cost. Naturally, purchasing a resource for a
longer time period costs more, but the average cost per day is smaller. We first examine
the structure of leasing problems and show a surprising connection to multistage stochastic
optimization. Then, we describe the leasing variants of several problems: Parking Permit,
Facility Location, Steiner Forest, Set Cover, and present both offline and online algorithms
for most of these. Finally, we introduce the Sum-Radii Clustering problem, which is also
related to leasing, and study its online version.

Keywords

Leasing, Facility Location, Steiner Tree, Set Cover, Clustering, Infrastructure Prob-
lems, Parking Permit, Stochastic Optimization

ii

Contents

1 Introduction 1

2 The Framework 5

2.1 Definition . 5

2.2 Examples of Leasing Problems . 6

2.2.1 Steiner Tree Leasing . 7

2.2.2 Steiner Forest Leasing . 7

2.2.3 Facility Leasing . 8

2.2.4 Set Leasing . 9

2.2.5 Sum-Radii Leasing . 9

2.3 The Structure of Leasing Problems . 10

3 Multistage Stochastic Optimization and Leasing 13

3.1 Multistage Stochastic Optimization . 14

3.2 A Reduction from Leasing to Multistage Stochastic Optimization 16

4 Offline Leasing Problems 21

4.1 Algorithms for Leasing Problems through Stochastic Optimization 22

4.2 Set Leasing . 23

4.3 Sum-Radii Leasing . 25

4.4 Facility Leasing . 29

5 The Parking Permit Problem 35

5.1 Definition . 36

5.2 A Deterministic Approach . 36

iii

iv CONTENTS

5.3 Randomized Algorithms . 39

6 Online Sum-Radii Clustering 45

6.1 Description of the Model . 46

6.2 Equivalent models . 47

6.3 The Deterministic Approach . 50

6.4 Randomized Sum-Radii Clustering . 54

6.4.1 A Lower Bound . 55

6.4.2 A Fractional Online Algorithm . 56

7 Online Leasing Problems 59

7.1 Online Steiner Forest Leasing . 60

7.2 Online Facility Leasing . 61

7.2.1 A Deterministic Algorithm . 62

7.2.2 A Randomized Algorithm . 66

Chapter 1

Introduction

Nowadays, infrastructure problems are behind a wide variety of applications and systems
in networks, business, logistics and planning. In this setting, the goal is to decide which
parts of infrastructure should be purchased such that a specific action or plan can be
carried out as efficiently as possible. This infrastructure may be servers or links in a
network, or even warehouses and trucks for a business. Naturally, an important factor
which influences the decisions is how the cost of the infrastructure varies; one has to look
for cost-effective solutions. Classic problems which fall into this category are Facility

Location, Steiner Tree and Steiner Forest, Set Cover and variants of clustering
problems. Such problems comprise the core of the Operations Research field, but they
have received a lot of attention from the Computer Science community as well, being not
only of theoretical interest, but also of practical one [29, 28, 42].

A standard feature in most models of infrastructure problems is the permanence of
the infrastructure purchased. This means that, when a link or a facility is purchased at
some point, it can be used at any time in the future, even if we work in the online setting,
without incurring any additional cost. This is a simplifying assumption, since in many
cases we might want to lease parts of the infrastructure for specific periods of time, thus
paying less to cover any needs and removing the necessity of investing a large sum of
money to buy infrastructure. For example, consider a company which, instead of buying
warehouses to store its goods, leases warehouses for varying amounts of time, depending
on current and future needs. Moreover, it might be that the cost of infrastructure depends
on how much it is used; for example, deploying a server in the web for a long period has
a maintenance and update cost, which should be taken into account. Naturally, such a
model should capture the nature of economy: a longer lease should cost more, but the
average cost per unit of time should be less.

1

2 CHAPTER 1. INTRODUCTION

Models which try to describe different economies of scale have been proposed and
extensively studied; however, no other model captures the notion of time and how it
affects the cost. One such example is the Buy-at-Bulk model [5, 8, 37, 55], where the cost
varies according to the amount of work we want to serve on a link or a facility. Clearly,
buying more ”capacity” costs less per unit. We should also note the relevant Rent-or-Buy
model, where apart from buying infrastructure for various capacities, we can also purchase
it forever by paying a larger cost [38]. Another example is the model of perishable goods in
inventory theory [35, 51]. In this model, we assume that commodities have finite lifetime.

The study of leasing problems has only been recently initiated. The first who intro-
duced the leasing model, where purchases have time durations and expire, was Meyer-
son [49], with the Parking Permit problem. In the same paper, the author introduced
a leasing variant of Steiner Forest. Nevertheless, the leasing model in its general form
was described later by Anthony and Gupta [6]. The authors formally defined the model
and proved a surprising connection to multistage stochastic optimization. Using powerful
tools from this area, they obtained algorithms for several offline leasing problems, such
us Facility Leasing and Set Leasing. Subsequently, Nagarajan and Williamson [50]
showed that the results from [6] are not optimal; they presented a better approxima-
tion algorithm for offline Facility Leasing and proposed the first online algorithm for
Facility Leasing.

The purpose of this thesis is not only to present in detail the above results, but also to
contribute to the study and better understanding of leasing problems. In particular, our
contribution can be summarized as follows:

• We obtain an improved approximation algorithm for the offline Vertex Leasing

problem, by presenting an alternative approach to solving offline Set Leasing.

• We give a randomized online algorithm for Faciltiy Leasing, which achieves a
better competitive ratio than the previous deterministic algorithm.

• We present the first approximation algorithm for Sum-Radii Leasing, which achieves
a constant approximation factor.

• We study the online Sum-Radii Clustering problem, in both the deterministic and
randomized setting. We also prove an interesting connection to Parking Permit.

Finally, let us briefly describe the outline of this thesis. Chapter 2 describes in detail
the framework of leasing problems and defines the standard and leasing versions of the
problems we study. Moreover, in this chapter we prove several reductions and simpli-
fications of the model, which will prove useful throughout the thesis. In chapter 3, we

3

give a brief overview of multistage stochastic optimization and several important results
in this area. Next, we formally show the connection between leasing problems and multi-
stage stochastic optimization. Chapter 4 presents and analyzes approximation algorithms
for several leasing problems: Facility Location, Set Leasing, Sum-Radii Leasing,

Steiner-Tree Leasing.

Chapter 5 initiates the study of online leasing problems. In this chapter, we present
and study the Parking Permit problem, providing deterministic and randomized online
algorithms, along with tight lower bounds. The next chapter 6 studies in detail the online
Sum-Radii Clustering problem. Finally, in chapter 7 we examine the online versions
of two leasing problems: Steiner Forest Leasing and Facility Leasing.

Although the thesis is a complete and thorough presentation of the area of leasing
problems, the results we present are still far from optimal. Much remains to be done in
order to understand how the notion of time and cost interleaves with the combinatorial
structure of the problems. For example, the gap between lower and upper bounds on
the competitive ratio of leasing problems is still large. Furthermore, we do not completely
understand the connection of leasing problems with stochastic optimization or buy-at-bulk
problems. It is possible that further advances on understanding leasing problems will also
give insight to these areas of combinatorial optimization.

4 CHAPTER 1. INTRODUCTION

Chapter 2

The Framework

In this chapter, we will provide a framework which captures the leasing variant for a large
class of infrastructure problems. This general framework was first presented by Anthony
and Gupta [6]. We will subsequently give detailed examples of specific leasing problems
which will be of interest in the next chapters. Finally, we will analyze the structure of
the leasing problems, providing several simplifications which will prove useful in designing
algorithms and proving lower bounds.

2.1 Definition

Let us first consider a general optimization problem Π. In the context of Π, we are given
a set of potential clients (or demands) U. The goal is to serve the set D ⊆ U of demands
which will actually appear by constructing a solution from a set of elements X. For
every subset D ⊆ U, there exists a corresponding set of solutions Sol(D) ⊆ 2X. Clearly,
the structure of the set of solutions is determined by the combinatorial structure of the
optimization problem Π. In the standard setting of optimization problems, each element
e ∈ X occurs with a cost c(e) and we wish to minimize the total cost of the solution chosen
to serve the set of clients.

In the leasing framework, we introduce a notion of time. The problem Π spans over a
period of days {1, 2, . . . , T }, where at each day t arrives a set of clients Dt ⊆ U. Since our
goal is to serve the clients, we would have to purchase a solution St ∈ Sol(Dt) for the set
Dt. However, we have not specified yet the duration of the elements we purchase. Can
we use an element e we have purchased at day t for the solution of a later day or is it
necessary to purchase it again? Clearly, if we assume that an element can be used only for
one day, the problem would be trivially reduced to solving an independent optimization

5

6 CHAPTER 2. THE FRAMEWORK

problem for each day. On the other hand, if we assume that an element we buy at day
t can be used at any later day for free, we would only have to solve the problem for the
client set D1 ∪ D2 ∪ . . . ∪ DT . But we would like to have a model which captures the
duration-cost tradeoff: if you buy something for a longer time, you will pay more, but the
average cost will be less in the end. Hence, it would be in our interest to purchase an
element for a longer period of time if we could use this element enough times in a solution
to make up for the amount it costs.

This observation leads naturally to the leasing model. Each element e ∈ X can be
purchased (or leased) at any day t for several different periods of time (we refer to these
as lease types 1, 2, . . . ,K), where the lease of type i for element e ∈ X costs ce(i) and e
can be used at days t, t+ 1, . . . , t+ l(i) − 1. Thus, l(i) refers to the duration of lease type
i. Moreover, we denote by St(k) the set of elements purchased at day t with lease type k.
A feasible leasing solution consists of a sequence of sets St(k) for t = 1, . . . , T , such that
for each day t, it holds that St =

⋃
k=1,...,K

⋃t
t ′=t−l(k)+1 St ′(k) ∈ Sol(Dt). This means

that the set of elements which are purchased with leases that cover day t must belong to
the set of solutions Sol(Dt).

At this point, we should note that the cost of purchasing an element e with a lease
type i depends both on e and i in an arbitrary way. However, it will often prove useful to
restrict our attention to the case where the lease costs are uniform for each element in X.
This leads to the following definition.

Definition 2.1.1. We say that a leasing problem is uniform if the lease costs functions
ce(k) depend only on the lease type we choose, namely ce() = ce ′() for every e, e ′ ∈ X.
Otherwise, we say that the leasing problem is non-uniform.

2.2 Examples of Leasing Problems

A leasing problem with simple structure is the Parking Permit problem [49]. This
problem has essentially no combinatorial structure, as it only captures the notion of time.
One could think of Parking Permit as any infrastructure problem where there is only
one point in space.

More specifically, we are given K different types of parking permits. Permit k has a
duration of l(k) days and costs ck. We are also given a schedule of T days with marked
driving days. The goal is to select a set of permits so as to cover all driving days and
minimize the total cost of permits purchased. We will analyze Parking Permit in detail
in chapter 5.

2.2. EXAMPLES OF LEASING PROBLEMS 7

Next, we will formally define the leasing variants of several other infrastructure prob-
lems. In theory, we could define leasing variants for a large class of combinatorial op-
timization problems; however, in this study, we will restrict our attention only to this
smaller class of infrastructure problems.

2.2.1 Steiner Tree Leasing

In the Steiner Tree Leasing problem, we are given a graph G = (V,E) and a root
node r ∈ V. The set of elements X we can lease is the set of edges, i.e. X = E. For each
day t, a set of terminal nodes Dt ⊆ V arrives. Each edge of the graph can be leased for K
possible lease lengths, where the cost of leasing any edge e with type k is ce(k). A feasible
solution for a set of demand nodes Dt ⊆ V consists of a subset of edges St such that the
edge-induced subgraph on St connects each terminal node with the root r.

This problem has important applications in diverse areas, from circuit layout design
to network design problems. Assume, for example, that we want to service clients in a
network (which correspond to terminal nodes) by connecting them with a central server.
These client requests arrive during a long period of time. Naturally, we wish to minimize
the cost of the links we purchase such that every client is connected at any time.

leased edges

demands

Figure 2.1: A solution for an instance of the Steiner Tree problem.

The Steiner Tree problem has been extensively studied from the perspective of both
approximation algorithms [64, 54, 18], where the best approximation ratio achieved is 1.39,
and online algorithms [61, 12].

2.2.2 Steiner Forest Leasing

In the Steiner Forest Leasing problem, we are given again a graph G = (V,E). Each
day, a family of sets of nodes Dt arrives. The set of elements X is the set of edges E and

8 CHAPTER 2. THE FRAMEWORK

each edge can be leased for K different lease durations. We pay ce(k) in order to lease an
edge e with type k.

A feasible solution needs to maintain, at each day t, a set of leased edges such that all
nodes of a set of the family Dt are pairwise connected. The goal is naturally to lease a set
of edges so that the total leasing cost is minimized. Note that Steiner Forest Leasing

collapses to Steiner Tree Leasing when the family Dt consists of only one set.

The classic Steiner Forest problem has been also extensively studied [1, 33, 15].

2.2.3 Facility Leasing

In Facility Location, we are given a set of potential facilities F in a metric space and
a set of demands D in the same metric space. Each facility i ∈ F has an opening cost fi.
The goal is to open a subset S ⊆ F of the facilities so that the total cost of opening the
facilities plus the distance of each point to its closest open facility is minimized.

In the leasing version of this problem, Facility Leasing, we are given a set of potential
facility locations F (hence X = F) and a set of potential demands U in a metric space. At
each day t, a set Dt ⊆ U of clients arrives and each client must connect with a facility
which is in lease at day t. There are K different possible types for leasing a facility and
the cost of leasing a facility i ∈ F with lease type k is fki . Notice that we can define
a uniform version of the problem, where the lease costs are exactly the same for each
potential facility.

The goal is again to minimize the leasing cost of the facilities we open plus the total
cost of serving each client in each set Dt from some facility open during day t (where the
cost of the service is equal to the distance of the demand to the closest open facility).

demands

leased facilities

Figure 2.2: A solution for an instance of the Facility Leasing problem.

Facility Location is one of the most important problems in combinatorial opti-
mization, as it has numerous applications to several fields. The bibliography considering

2.2. EXAMPLES OF LEASING PROBLEMS 9

Facility Location and its variants is vast; here, we only refer to some results on approx-
imation algorithms [57, 22, 46, 45, 24, 17], where the currently best approximation ratio is
1.5 [17] and the best lower bound is 1.463 [36]. The problem has also been studied in the
online setting [48, 31, 32], where the competitive ratio has been proved to be Θ(logn

log logn)

(n is the number of demands).

2.2.4 Set Leasing

In the Set Cover problem, we are given a set of elements U and a family S of subsets
of U. Every set S ∈ S has some weight wS. The goal is to choose a subset C ⊆ S which
covers the elements of a demand set D ⊆ U, so that the cost of the sets in C is minimum.

In Set Leasing, a subset Dt ⊆ U of elements arrives at day t and needs to be covered.
Each set in S (X = S) can be leased for K different periods of time with a corresponding
cost. The solution is feasible when the set of demands Dt for every day t will be always
covered from the sets we have leased for that day.

We also consider a special case of Set Leasing, Vertex Leasing. In the latter
problem we are given a graph G = (V,E), demands Dt ⊆ E arrive at day t and we have
to find a set of vertices such that every edge has some endpoint in this set. Clearly this
reduces to Set Leasing, if we define the universe U to be the set of vertices V and the
family S to consist of |V | sets, where each set contains all edges adjacent to a specific
vertex.

Set Cover has an approximation ratio of O(lnn) [60], which is essentially optimal,
unless of course P = NP [4, 53]. We can also design an approximation algorithm with
approximation ratio equal to the frequency α of the most frequent element (i.e. the
element of U that appears most often in the sets).

2.2.5 Sum-Radii Leasing

In the Sum-Radii Clustering problem [23], we are given a set of potential demands
U in a metric space and a set X of potential cluster centers. Opening a cluster with
center at point i and radius r costs fi + r. The goal is to specify a set of clusters with
designated centers so that each point belongs in a cluster and the total cost of the clusters
is minimized.

In the leasing version of this problem, Sum-Radii Leasing, a set Dt ⊆ U of demands
arrives at day t. There are K different possible lease types for each potential cluster, and
opening a cluster with center i ∈ X, radius r and lease length k costs fki + r. The goal is
to specify clusters with appropriate centers and lease lengths so that the demand points

10 CHAPTER 2. THE FRAMEWORK

arriving each day belong in an open cluster and the cost of the open clusters is minimized.

demands

lusters

Figure 2.3: A solution for an instance of the Sum-Radii Clustering problem.

2.3 The Structure of Leasing Problems

In this section, we will show how to simplify the structure of any leasing problem without
losing more than a constant factor from the cost of the optimum solution. This allows us
to present several online and offline algorithms, as well as reductions, in a simpler way.

First of all, it is natural to assume that longer leases are more expensive than shorter
leases. Thus, we may discard from any instance of a leasing problem lease types which are
shorter and more expensive than some other lease type, since any reasonable algorithm
will always prefer a longer and cheaper lease over a shorter and more expensive one.

Nevertheless, no lease type can be arbitrarily cheaper than another lease type. More
specifically, a leasing problem makes sense only when buying a lease covering a time period
is strictly cheaper than buying many smaller leases which cover the same time period. In
a more formal way, we can say that the function re(i) =

ce(i)
l(i) , which corresponds to the

average cost per day, is strictly decreasing. We refer to this assumption as the subadditivity
property.

Definition 2.3.1 (Subadditivity). In any instance of a leasing problem, we may assume
that the lease types satisfy the following property: for any lease types i < j and any element

e ∈ X, it holds that
ce(i)

l(i)
>
ce(j)

l(j)
.

It turns out that it is possible to assume a stricter structure for the costs of the different
lease types. In fact, we can assume that the lease costs scale at least by a factor of two as
the lease duration increases.

Lemma 2.3.2 (Cost Scaling). [49] For each lease type 1 6 k 6 K and any element

2.3. THE STRUCTURE OF LEASING PROBLEMS 11

e ∈ X, we may assume that ce(k) > 2 · ce(k − 1), with losing only a 2-factor from the
optimum solution.

Proof. Consider an instance I of a leasing problem, having an optimal solution OPT of
cost COPT . Now, we start with the largest leasing type K and consider the lease types
with decreasing order, deleting every lease type k such that 2 · ce(k) > ce(k+ 1). Clearly,
this procedure leads to an instance I ′ of the problem with a smaller number of possible
lease types. We obtain a solution for I ′ by modifying the solution OPT as follows.

If an element e is purchased with a lease type k not deleted in I ′, we also purchase e
with the same lease type in OPT ′. Otherwise, we purchase e with the cheapest lease type
k ′ of some longer duration. Since k was deleted, it must hold that ce(k) > 1

2ce(k
′) and

thus we pay at most twice the cost of the lease type k. Thus, COPT ′ 6 2COPT .

In general, any solution for I can be mapped to a solution for I ′ with at most twice the
cost.

The following lemma implies that we can also assume a simpler structure for the du-
rations of the leases.

Lemma 2.3.3 (Length Scaling). [6] For lease types i, j where i < j, we may assume
that l(i) divides l(j), with losing only a 2-factor from the optimum solution.

Proof. The easiest way to prove this is to round the length of each lease type down to the
closest power of two. In order to obtain a solution for the new instance I ′, we adopt the
following strategy. Assume that OPT buys a lease of type k for a period of time. Since
the lease length is rounded down to the closest power of two, the same time period can be
covered in I ′ by at most two leases of type k. By purchasing these two consecutive leases,
we obtain a feasible solution and pay at most twice the cost of the optimal solution.

Assuming that the previous lemma holds, we can impose the restriction that leases of
different type are nested. This implies a crucial property, which is exploited in several
algorithms: at each day, there exists only one possible lease of a specific type we can buy.
Intuitively, this means that it suffices to decide only which lease type we need to buy and
not when we need to purchase it.

Lemma 2.3.4 (Interval Model). [49] We may assume that a lease of type i is only
obtained for intervals of the form [t, t+ l(i)], where t is a multiple of l(i) and lose only a
2-factor from the optimum solution.

12 CHAPTER 2. THE FRAMEWORK

Proof. Following lemma 2.3.3, we may assume that l(i)|l(j) for every i < j. Furthermore,
let us define Rk = l(k)/l(k − 1), i.e. the number of leases of type k − 1 that can be
embedded in a lease of type k. Clearly, Rk will be an integer greater than 1.

Next, let us assume that, for each type k, we allow only leases which start at integer
multiples of l(k). Consider an instance I of a leasing problem, which has an optimum
solution OPT with cost COPT . We may view the timeline divided in time intervals of
length l(k) for any lease type k. Then, any lease of type k purchased crosses at most two
of the above intervals. This means that we can obtain a valid solution OPT ′ by purchasing
at most two leases of type k which fit exactly in the intervals defined. Clearly, we pay at
most twice the cost of the optimum solution.

alternative covering of the lease

2

1

3

4

lease types

time axisarbitrary lease of type 2
T0

Figure 2.4: The nested structure of the interval model. Any lease of type 2 can be covered
by purchasing two consecutive leases of the same type in the nested instance.

To sum up, the nature of the leasing problem allows us to impose several simplifications
on the length and structure of the leases for any optimization problem, and this costs only
a factor of 4 from the optimal solution. For several problems, we will need to assume
this structure and, as long as the competitive or approximation ratio is not constant
(but depends on K or n), the multiplicative factor is negligible. Nevertheless, for some
problems where we would like to achieve a small constant approximation ratio, dealing
with the arbitrary structure of the problem will be necessary.

Chapter 3

Multistage Stochastic

Optimization and Leasing

In this section, we show a surprising connection between leasing problems and stochastic
optimization, first studied by Anthony and Gupta [6]. In particular, we prove that any
instance of a leasing infrastructure problem Π can be reduced to a corresponding instance
of the multistage stochastic optimization version for Π. This reduction provides us with a
powerful tool to construct algorithms for leasing problems, since we already have efficient
approximation algorithms for the multistage stochastic versions of several combinatorial
problems.

However, this approach raises the question of whether applying tools from stochastic
optimization is actually the best way to solve leasing problems. It may be the case that the
use of generic algorithms from stochastic optimization overlooks the structure of leasing
problems, which we could exploit to design more efficient and accurate algorithms. Indeed,
as we will show in the next section, a more restrictive approach yields better results.
Nevertheless, this does not imply that multistage stochastic optimization is strictly more
difficult than leasing problems. It seems that multistage stochastic optimization captures
a wider variety of problems, but it could also be the case that stochastic optimization
and leasing are actually equivalent problems. In this case, techniques and algorithms
used for leasing problems could help us improve the algorithms for multistage stochastic
optimization problems.

In this chapter, we will first present the notion of multistage stochastic optimization and
then summarize the known results and algorithms for problems in this category. Finally,
we will show the reduction from leasing to multistage stochastic optimization.

13

14 CHAPTER 3. MULTISTAGE STOCHASTIC OPTIMIZATION AND LEASING

3.1 Multistage Stochastic Optimization

Let us assume that we are given a combinatorial problem Π, with a set U of possible
demands and a set X of elements we can purchase to serve the demands. Clearly, for a
given U, the goal is to find a set of elements which serves the set of the demands so as to
minimize the total cost. The common offline case is that we get the set of demands as an
input to our algorithm, hence we can plan a solution by exploiting any information about
the location and structure of the demands.

However, this may not be always the case, since there are cases when we need to plan
ahead while being uncertain about the future requirements. In fact, multistage stochastic
optimization examines the case where the input is revealed through a sequence of stages.
A classic example of such a model is the following [13]: we are in possession of a water
reservoir and the goal is to minimize the expected cost of operation. The source of income
is the amount of irrigation water we sell, but there is a restriction on the level of the
water in the reservoir (it must always be larger than some threshold). Clearly, in this
problem the source of uncertainty is the rainfall and this uncertainty can be modeled
as a multi-stage procedure, since information about the present or previous days allow
more accurate predictions of the future. More problems include forest planning models,
electricity investment planning and bond investment planning (see [7] for more details).

Let us now formally describe the model. We assume the actual set of demands is not
revealed until the last day K, and that it is drawn from a distribution π over the set of all
possible demands. At each day, we receive additional information about the distribution of
the final set of demands. This information is received in the form of a signal, which actually
corresponds to updating the distribution of the demands conditioned on the information
the signal carries. Hence, as time progresses, we obtain more accurate information about
the final distribution.

At each day, after obtaining the signal, we can buy a new set of elements to augment the
current solution based on the additional information we have gained. However, information
comes with a cost: if one decides to buy an element later on, the cost of the purchase will
be bigger. The growth of the cost may be either uniform or non-uniform. In the first case,
which we call uniform inflation, the cost of an element at day t will be σt times bigger
than the cost of the element at day t − 1 (clearly, we must have that σt > 1), namely
ce(t) = σt ·ce(t−1). We will call σt the inflation of the cost at day t. In the non-uniform
case, the costs may vary in a different way as the time progresses and more information
about the distribution is collected.

When the K-th day arrives, we learn the actual set of demands and augment the solution

3.1. MULTISTAGE STOCHASTIC OPTIMIZATION 15

to obtain a feasible one for the demand set. The goal is to minimize the expected cost
that we paid during the K-day period, where the expectation is taken over each possible
scenario that may occur. The model of multistage stochastic optimization is described
more thoroughly in [40] and [59].

Stochastic optimization dates back to the 50’s and the work of Dantzig [26]. However,
the study of classic combinatorial problems in the stochastic optimization framework is
relatively recent. Initially, the work was limited to two-stage stochastic optimization. In
this case, we choose an initial set of elements at the first day based on the distribution
of the demands and at the second day, after the set of demands is revealed, we add the
necessary elements to obtain a feasible solution. The first results on two-stage stochastic
optimization for several combinatorial problems (Minimum Cost Flow, Bin Packing,

Vertex Cover, Steiner Tree) were obtained by Immorlica et al. [44]. However, the
authors restricted their attention only to the case when the distribution over the demands
has a bounded support or when each demand appears independently in the final set with
some probability. Hence, their algorithms, even though they have good approximation
factors, are of limited applicability.

In [52], the authors studied a different kind of limitation on the distributions, that is,
they demanded that the possible scenarios are polynomially many. Under this assumption,
they provided approximation algorithms for several combinatorial problems, including a
constant-factor approximation algorithm for stochastic Facility Location.

Nevertheless, it would be desirable to consider a more general model where the distri-
bution over the possible scenarios is not given explicitly, but as a black-box, from which we
can sample according to the distribution of the scenarios. We call this model the black-box
model. Under this model, Shmoys and Swamy [56] provided approximation algorithms for
solving a very broad class of stochastic linear problems. Their algorithms are based on
a generalization of the ellipsoid method. Subsequently, Charikar, Chekuri and Pal [21]
proved that the results of [56] can be obtained using a different approach, the Sample
Average Approximation (SSA) method. This method is based on the idea that we can ap-
proximate any distribution over a large number of scenarios (or even infinite) by learning
about this distribution from polynomially many samples.

Gupta et al. [39] followed a different approach to two-stage stochastic optimization
in the black-box model. Their technique, which they call Boosted Sampling, applies to a
general class of combinatorial problems which admit approximation algorithms with strict
cost-sharing functions. The idea is to use the first day to draw a number of samples on
the distribution (which depends on the inflation parameter) and then construct a solution
for the union of the samples using the approximation algorithm. At the second day, after

16 CHAPTER 3. MULTISTAGE STOCHASTIC OPTIMIZATION AND LEASING

the set of demands is revealed, we only need to augment the solution from the first day to
cover all the remaining demands.

The Boosted Sampling framework can be extended to solve multistage stochastic opti-
mization problems [40]. The authors obtained approximation factors for several combina-
torial problems (Steiner Tree, Facility Location, Vertex Cover). Nevertheless,
the approximation ratios depend on the number of stages K, in most cases exponentially,
and only for the Steiner Tree problem the dependence is linear to K (in particular they
give a 2K approximation factor). An O(K) approximation algorithm for K-stage stochastic
Steiner Tree was also independently proposed by Hayrapetyan et al. [41].

Furthermore, Swamy and Shmoys [59] independently extended the SSA method for
multistage stochastic optimization problems. For fixed K, the authors provide fully poly-
nomial randomized approximation schemes (FPRAS) for a large class of problems. They
also provide algorithms with approximation ratios O(K logn) for K-stage stochastic Set

Cover, 2K for K-stage stochastic Vertex Cover and O(K) for the K-stage stochas-
tic Facility Location problem. We note here that the approximation guarantees are
essentially O(K) times the approximation factor of the non-stochastic versions of these
problems, i.e. we have a linear dependence on the number of stages.

Finally, Srinivasan [58] improved the approximation factors for the stochastic Ver-

tex Cover and Set Cover by removing the dependence from the number of stages
K. Hence, he provided a constant-time approximation algorithm for K-stage stochastic
Vertex Cover and a O(logn) approximation algorithm for stochastic Set Cover.

3.2 A Reduction from Leasing to Multistage Stochastic Op-

timization

In this section, we formally present the reduction from any leasing problem to the corre-
sponding multistage optimization problem, which was proved by Anthony and Gupta [6].
This seems surprising at first, since stochastic optimization and leasing are two problems
from two different worlds. Stochastic optimization assumes a probability distribution over
the set of demands and tries to minimize the expected cost of the solution over this dis-
tribution. On the other hand, leasing is a inherently deterministic problem. Hence, it is
counter-intuitive how the two versions can be connected.

However, the idea behind the reduction is simple and elegant. In any leasing problem,
at each day we are given a set of demands; one can view this as a probability distribution
over the sets of demands. The core of the leasing problem is to understand how these sets

3.2. A REDUCTION FROM LEASING TO MULTISTAGE STOCHASTIC OPTIMIZATION17

correlate in time and identify the clusters they make. Clearly, sets of demands that are
close in time are candidates for being included in a larger cluster. How do we interpret
this connection in the field of probability distributions? The idea is to force these demand
sets to be correlated probabilistically, i.e. the closer the sets are in time, the more corre-
lated will the sets be in the probability distribution. Thus, clustering in time corresponds
to clustering in the probability space. It is then easy to see that the different levels on
time clustering we have correspond to the stages, since at each stage we get more infor-
mation and thus look at smaller clusters. By tuning the inflation cost and the stochastic
process which reveals information about the distribution at each stage, we can make this
correspondence precise.

Theorem 3.2.1. Any (non-uniform) offline problem Π in the leasing framework with K
lease types can be reduced to the standard K-stage stochastic optimization version of Π.

Proof. Consider the leasing version of a combinatorial problem Π, where the number of
lease types is K. We will assume that the lease structure is nested; this means that we loose
a factor of 4 in approximating the optimal value for the leasing problem. Furthermore, we
can restrict our attention only to a time interval of type K, since the decisions we make
for this interval do not influence the decisions that we may make for the next interval of
type K. Thus, without loss of generality, we assume that the time starts at 0 and ends at
T = l(k) − 1. The first goal is to express the optimization function we want to minimize
for the leasing problem.

We denote by St(i) the elements of lease type i we purchase at time t. Notice that
St(i) 6= ∅ only when i precisely divides t. For simplicity, let also Ct(i) =

∑
e∈St(i) ce(i).

Then, the objective function FLeas can be written as

FLeas = C0(K) +

K∑
i=1

∑
t∈[0,T]:i|t

Ct(i)

We will next define a corresponding K-stage stochastic optimization instance of Π such
that its objective function is exactly the same. Consider a tree T of depth K − 1, where
the nodes at depth i (i < K− 1) have l(K−i)

l(K−i−1) children (see Fig. 3.2). This means that T
has l(K) leaves. We associate each leaf with a corresponding set of demands.

It now remains to define the signals the stochastic process sends at each stage. The
easiest way to visualize the process is to think of a particle that starts at the root of the
tree and at each stage moves to a u.a.r. chosen child. Thus, at each stage, we know that
the demands can be drawn only from the distributions that correspond to the leaves of
the subtree rooted at the node where the particle stands. When the particle reaches a
leaf, we output the set of demands associated with this leaf.

18 CHAPTER 3. MULTISTAGE STOCHASTIC OPTIMIZATION AND LEASING

lease types

2

1

3

4

time axis

(a) An instance of a leasing problem

4

l(4)
l(3)

hildren

stohasti stages

1

2

3

(b) The tree T of the stochastic model

Figure 3.1: The correspondence between the structure of the leasing and the stochastic
optimization on a problem Π.

However, in stochastic optimization the cost of purchasing elements varies according
to the stage we buy the element. In our case, purchasing an element at stage i + 1 costs
pe(i + 1) = ce(K − i) · l(K)

l(K−i) . It is easy to see that the inflation of an element e from
stage i to stage i+ 1 will be

σe(i+ 1) =
ce(K− i) · l(K)

l(K−i)

ce(K− i− 1) · l(K)
l(K−i−1)

=
ce(K− i)

ce(K− i− 1)
· l(K− i− 1)

l(K− i)

First of all, observe that the subadditivity of the lease costs guarantees that the inflation
ratio will be always larger than 1, which is a necessary assumption for the stochastic version
to be meaningful (since purchasing elements at later stages should be more expensive).
Furthermore, notice that in order to have uniform inflation ratio, i.e. the same inflation
for any element e, it is necessary to have a uniform leasing problem.

Now, notice that the structure of the tree T allows us to associate each node of the tree
with a corresponding interval of the leasing problem. In particular, the j-th node at depth
d (node v) will be associated with the j-th interval of type K − d. Notice that we can
associate j with the starting time t of this interval. Then, let us denote by S ′(v) = St(K−d)

the set of elements purchased at that node and let C ′(v) =
∑
e∈St(K−d) pe(d + 1) =

l(K)
l(K−d) · Ct(K− d). Now, the objective function FStoc we want to optimize is

FStoc = C ′0(K) +
∑

v∈V(T)

Pr[particle reaches v] · C ′(v)

The probability that the particle reaches a fixed node v at depth d is
∏d−1
i=0

l(K−i−1)
l(K−i) =

l(K−d)
l(K) . Hence, for that node, we have that

Pr[particle reaches v] · C ′(v) =
l(K− d)

l(K)
· l(K)

l(K− d)
· Ct(K− d) = Ct(K− d)

3.2. A REDUCTION FROM LEASING TO MULTISTAGE STOCHASTIC OPTIMIZATION19

Then, the objective function becomes

FStoc = C0(K) +

K−1∑
d=0

∑
t:(K−d)|t

Ct(K− d) = C0(K) +

K∑
i=1

∑
t:i|t

Ct(i)

Consequently, the two objective functions coincide and both problems want to minimize
the same function. This implies that an approximation algorithm for the stochastic version
leads to an approximation algorithm for the leasing version with the same ratio multiplied
by 4.

The reduction can be extended for the case we consider randomized leasing policies, or
in the case that the set of demands at each day is not fixed, but drawn at random from a
specified probability distribution.

20 CHAPTER 3. MULTISTAGE STOCHASTIC OPTIMIZATION AND LEASING

Chapter 4

Offline Leasing Problems

In this chapter, we present algorithms for several leasing problems in the offline setting.
Since the standard variants of the problems we study are NP-complete, we do not expect
to obtain polynomial time exact algorithms for the harder leasing variant. Instead, we
propose approximation algorithms which run in polynomial time.

In the first section of the chapter, we will give approximation results to several leasing
problems by reducing them to the corresponding multistage stochastic optimization prob-
lem and then applying known approximation algorithms to the stochastic version. This
is a general approach to such problems [6]; however, the approximation factors we obtain
are not always optimal.

In particular, the subsequent sections present an alternative approach which uses the
powerful primal-dual method. Following this approach, Williamson and Nagarajan [50]
designed an algorithm which achieves constant approximation ratio for Facility Leasing,
in comparison with the O(K) approximation ratio achieved through the reduction to the
K-stage stochastic problem.

We show that their technique is applicable to other combinatorial problems as well.
More specifically, we derive a constant approximation algorithm for Sum-Radii Leasing

and improve the approximation ratio of the Vertex Leasing problem, by showing how
to solve the more general Set Leasing problem. For ease of exposition, we will first
present the technique applied to Set Leasing, since its application is simple, and then
proceed to the other two problems, which are technically more demanding.

Based on the above results, it seems that we have one the following two situations. First,
stochastic optimization may be a tool which is more powerful than we need in order to solve
leasing problems. In this case, the question is whether we can find a general framework
which captures the structure of leasing problems in a tighter way and thus allows us to

21

22 CHAPTER 4. OFFLINE LEASING PROBLEMS

understand the problem better. The second case is that stochastic optimization perfectly
captures leasing problems (so the two variants are essentially equivalent). This would
imply that the algorithms we have for multistage stochastic optimization are far from
optimal.

Moreover, it would be interesting to examine whether studying a problem in the leasing
frameowrk implies that its approximability factor will grow. In Facility Leasing, the
algorithm of [50] achieves exactly the same approximation ratio as the algorithm for the
standard variant. However, much better approximation algorithms are known for Facil-

ity Location. Is it possible to adapt these algorithms so as to obtain an even better
approximation ratio? The cases of Set Leasing and Sum-Radii Leasing are more inter-
esting, since we lose a constant factor when we move to the leasing variant of the problem.
Is this inherent to the leasing structure or can we match the approximation ratio?

4.1 Algorithms for Leasing Problems through Stochastic

Optimization

We present approximation algorithms for Set Cover, Vertex Cover, Facility Leas-

ing and Steiner Tree by reducing them to multistage stochastic optimization instances.
More specifically, we apply the reduction theorem from Chapter 3 and thus reduce a leasing
instance with K lease types to a corresponding instance of a K-stage stochastic optimiza-
tion problem. Before applying the reduction, it is necessary to force a nested structure on
the leases; this means that we lose a factor of 4 from the approximation ratio. Hence, an
α-approximation algorithm for the corresponding K-stage stochastic optimization problem
implies a 4α-approximation algorithm for the leasing variant.

For K-stage stochastic Set Cover, an O(lnn) approximation algorithm was presented
in [58]. This directly implies a O(lnn) approximation algorithm for Set Leasing. For
the special case of the Vertex Cover, [58] gives an approximation ratio of 2. Thus, for
the Vertex Leasing we can achieve a constant approximation ratio of 8.

For the Facility Location problem, Swamy and Shmoys [59] obtained an O(K)

approximation algorithm for the K-stage stochastic version. Consequently, we can easily
obtain an O(K) approximation algorithm for the leasing version as well. Similarly, the
O(K) approximation algorithm from [40] for K-stage stochastic Steiner Tree implies an
O(K) approximation algorithm for the leasing version.

The above results can be summarized in the following table, which also presents the
best approximation factors we have so far.

4.2. SET LEASING 23

Problem Approximation Ratio

Stochastic Leasing (from Stochastic) Best

Facility Leasing O(K) O(K) 3

Steiner Tree Leasing O(K) O(K) O(K)

Set Leasing O(lnn) O(lnn) min{f, lnn}

Vertex Leasing 2 8 6

4.2 Set Leasing

We will show how to approach the Set Leasing problem by applying the primal-dual
schema. For the Set Cover problem, there exists a standard primal-dual algorithm
which achieves an approximation ratio of α, where α is the frequency of the most frequent
element [60, 10]. We apply here the same technique to solve the leasing variant.

Let us first present the primal linear program which describes this problem. We first
introduce some useful notation. An element e ∈ Dt is denoted by et. Let us also denote
by ckS the cost for buying a lease of type k for set S (lease Skt). We use xtS,k for the
indicator variable which is set to 1 iff the set S is purchased at time t with a lease of
type k. Moreover, S denotes the set of all possible leases. We can now write the primal
program.

min
∑
Skt∈S

xtS,k · ckS

subject to

∀et ∈ U :
∑

Sk
′
t :et∈Sk

′
t ,t∈Ik

t ′

xtS,k > 1

∀Skt ∈ S : xkS,t ∈ {0, 1}

(4.1)

The first inequality denotes that each element must be covered by a set which is in lease
at the time when the element appears. The relaxation of this linear program is achieved
when we allow the variables to assume any real value greater than or equal to zero. In
order to express the dual program, we need to introduce the dual variables yte. Then, the
dual can be written as

24 CHAPTER 4. OFFLINE LEASING PROBLEMS

max
∑
et∈U

yte

subject to

∀Skt ∈ S :
∑

et ′ :et ′∈Skt ,t ′∈Ikt

yt
′
e 6 ckS

∀et ∈ U : yte > 0

(4.2)

Algorithm. The algorithm works in a primal dual fashion. We initially set every dual
variable yte to zero and declare that every element is uncovered. Then, as long as uncovered
elements exist, we perform the following steps. Let L be the set which contains the sets
Skt we choose to lease, which is initially empty.

• We pick an arbitrary uncovered element et.

• We increase its dual variable until the dual constraint becomes tight for some set
Skt ′ .We then add Skt ′ and any other tight set to L and declare et covered. We also
declare any other elements covered by these sets covered.

After the procedure has ended, all elements have been covered by some set in L. Thus,
L is a valid set cover. The algorithm then performs one final step. The step starts with
an empty set L ′. For each set S, the algorithm examines the leases Skt ∈ L in decreasing
order of lease type. On considering a lease Skt , the algorithm deletes all intersecting leases
in time (i.e. all leases Sk

′

t ′ such that Ikt ∩ Ik
′

t ′ 6= ∅) and adds the sets Skt ,Skt−l(k),S
k
t+l(k) to

L ′. Finally, the algorithm outputs L ′.

Theorem 4.2.1. The primal-dual algorithm for Set Leasing admits a 3α approximation
ratio.

Proof. First, notice that L is a feasible solution, since every element will be covered by
the end of the algorithm. Moreover, L ′ maintains this feasibility, since every element in L
covered by a deleted lease will be covered by the new leases we open in L ′.

Denote by Ld the set L after having deleted the time-intersecting leases. Notice that
the cost of the solution L ′ is 3 times the cost of Ld, since for each lease in Ld, solution
L purchases 3 leases. We will thus focus on bounding the total cost of Ld. For any set
Skt ∈ Ld, it holds that it is tight and hence

∑
et ′ :et ′∈Skt ,t ′∈Ikt y

t ′
e = ckS. Thus, we have that

CLd =
∑
Skt∈Ld

ckS =
∑
Skt∈Ld

∑
et ′ :et ′∈Skt ,t ′∈Ikt

yt
′
e =

∑
et ′

yt
′
e ·

∑
Stk:et ′∈Skt ,t ′∈Ikt

1

4.3. SUM-RADII LEASING 25

The goal is to bound the number of sets which may be covering a single element. However,
notice that there at most α different sets which cover a single element, since the element
belongs in at most α sets and for each set there exists only one lease which covers that
time (since Ld has no intersecting leases). Consequently, we have that

CLd 6 α ·
∑
et

yte 6 α · COPT

Using the relation between primal, dual and optimal solutions for linear programs, we
conclude that CL ′ 6 (3α) · COPT and the proof is complete.

As we have previously shown, Vertex Leasing is a special case of Set Leasing,
where it holds that α = 2, since every element (edge) can be covered by at most two sets
(vertices). We thus obtain the following corollary.

Corollary 4.2.2. Vertex Leasing admits a 6-approximation algorithm.

This is an improvement over the 8 approximation factor obtained by reducing Vertex

Leasing to the multistage stochastic problem. It still remains an open question whether
we can further improve this factor.

4.3 Sum-Radii Leasing

We will apply the primal-dual schema for Sum-Radii Leasing, following the approach
from [23]. For simplicity, we will assume that the leases follow the simpler nested structure.
This implies that we lose a 4-factor from the approximation ratio, but the goal of this
section is to show that this problem admits a constant approximation factor, independent
of the number of lease types K.

Let us first introduce some notation. We denote by Crikt the lease of type k we purchase
at time t for a cluster opening at point i with radius r. This cluster costs cki + r. Let C

be the set of all possible leases. Furthermore, Ikt denotes the time interval [t, t+ l(k) − 1]

and dti denotes a demand point at i arriving at time t.

Let us next formulate the primal linear program for this problem. The variable xrikt is
the indicator variable of whether the lease Crikt has been purchased.

26 CHAPTER 4. OFFLINE LEASING PROBLEMS

min
∑
Crikt∈C

xrikt(r+ cki)

subject to

∀dtj ∈ D :
∑

Cr
ikt ′ :t∈I

k
t ′ ,d(i,j)6r

xrikt > 1

∀Crikt ∈ C : xrikt ∈ {0, 1}

(4.3)

In order to obtain the linear relaxation of the primal program, we let yrikt admit any
value greater or equal to 0. As for the dual program, we need to introduce the dual
variables yjt for each demand dtj . We can now express the dual program.

max
∑
dtj∈D

yjt

subject to

∀Crikt ∈ C :
∑

dt
′
j :d(i,j)6r,t ′∈Lkt

yjt ′ 6 r+ cki

∀dtj ∈ D : yjt > 0

(4.4)

The algorithm we present here works in two phases. The first phase works in a primal-
dual fashion, whereas the second phase manipulates the solution from the first phase to
lower its cost, while maintaining feasibility.

First Phase. Initially, we set all the dual variables to zero, yjt = 0. Next, we start
increasing the dual variables in any arbitrary way, as long as they do not violate any dual
constraint. Each time the first inequality of the dual program becomes tight, we declare
the corresponding lease tight and add it to a set L, which is initially empty. The phase
terminates when every point participates in a tight constraint, i.e. we can not increase
the value of any dual variable without violating some constraint of the dual program.

Second Phase. The first phase outputs a set L of tight leases. The second step es-
sentially performs a pruning procedure, which ensures that every point will contribute to
a unique lease of a cluster. The new leases will be added to the initially empty set L ′.
We examine the leases in L in decreasing order of their lease type. Consider a tight lease
Cr0i0kt ∈ L. For this cluster, we find all leases in L which intersect it both in time and
space. Consider the lease Cr1i1k ′t ′ with the largest radius among the intersecting leases. If

4.3. SUM-RADII LEASING 27

r0 < r1, we search again for the lease with the largest radius among the leases intersecting
Cr1i1k ′t ′ (not including Cr0i0kt). This process constructs a sequence of clusters with increas-
ing radius and ends when we find a lease Crmimk ′′t ′′ such that rm−1 > rm or until we cannot
find any more intersecting leases.

Thus, we have constructed a sequence of leases Cr0i0kt, . . . ,Crmimkmtm such that rm >

rm−1 > . . . > r0. Based on whether m is odd or even, we distinguish two cases:

• m is even: We purchase the lease CRei0kt, where Re = r0 + 4r2 + . . . + 4rm−2 + 6rm.

• m is odd: We purchase the lease CRoi0kt, where Ro = 3r1 + 4r3 + . . . + 4rm−2 + 6rm.

We add to L ′ this lease and delete from L all the leases of the sequence, along with the
intersecting leases. This process continues until L becomes empty.

r2

Re = r0 + 6r2

r0
r1

Figure 4.1: Constructing the sequence of clusters in the second phase. The radii are in
increasing sequence: r2 > r1 > r0. All the intersecting clusters will be removed and a
cluster with radius Re will open.

Lemma 4.3.1. The solution L ′ is feasible. In particular, every demand belongs to at least
one cluster which opens from a lease in L ′.

Proof. Every demand is covered by a cluster in L by the end of the first phase. Thus, it
suffices to prove that every cluster is contained, both in time and space, in a cluster chosen
in the final solution L ′. Let us consider such a cluster Crikt ∈ L and consider the step of
the second phase when it was examined. Assume that the sequence of clusters produced
by this step is Cr0i0kt, . . . ,Crmimkmtm and that m is even (the odd case is similar).

First, since the structure of leases is nested, it is easy to see that every lease in the
sequence or intersecting the sequence will belong in the interval Ikt , hence the lease CRei0kt
will cover in time Crikt. It remains to prove that Crikt will be covered in space as well by

28 CHAPTER 4. OFFLINE LEASING PROBLEMS

CRei0kt. We can inductively prove that a cluster CRji0kt (j even), where Rj = r0 + 4r2 + . . . +
4rj will cover all leases of the sequence Cr0i0kt, . . . ,Crjijkjtj , along with every lease which
intersects any lease of the sequence apart from the last one.

Indeed, cluster Cr0i0kt trivially covers cluster Cr0i0kt, hence the induction base holds.

Now, assume that we know the proposition holds for the cluster CRji0kt. Let us consider a
cluster Cr

′
q intersecting Crjijkjtj . This implies that there exists a point p which belongs to

both clusters. By the induction assumption, p also belongs to CRji0kt. Hence d(p, i0) 6 Rj.
Note also that, by the construction at the second phase, r ′ 6 rj+1 and rj+2 > rj+1 > rj.
Thus, for any point p ′ in the cluster Cr

′
q , it holds that d(p ′, i0) 6 d(p ′,q) + d(q,p) +

d(p, i0) 6 2rj+2 + Rj using the triangle inequality. We can slightly extend this argument
to show that every point p ′′ of Crj+2

ij+2kj+2tj+2
has distance at most 4rj+2 + Rj from i0.

This proves the proposition we need; the last 2rm added to Re corresponds to the
covering of any cluster intersecting the last cluster of the sequence Crmimkmtm , which is not
covered by Rm.

We partition the cost of L ′ into two parts: the cost CR, which corresponds to the sum
of the radii of the clusters we open, and CF, which corresponds to the cost of buying the
leases for the clusters. The following lemma charges these costs to the dual variables.

Lemma 4.3.2. CR + CF 6 7 ·
∑
dtj
yjt

Proof. Let us first study the cost CF. The cost we pay for the leasing of the clusters in
L ′ is equal to the cost of a subset Ld of disjoint clusters in L, since for each cluster in L ′,
all intersecting clusters are not considered. Thus, each dual variable pays exactly once
for a cluster in Ld, and consequently at most once for the leasing of a cluster in L ′. This
implies that CR 6

∑
dtj
yjt.

The second step is to bound the cost CR. Consider a cluster CRikt picked in the final
solution, where R 6 6(rm+ rm−2 + . . .). Notice that the clusters which contribute to this
sum are always disjoint by construction. Moreover, the clusters contributing to each lease
in L ′ are again disjoint. Hence, CR is at most the cost of a disjoint subset of clusters of L.
For this subset of clusters, each demand pays at most once. Thus, CF 6 6 ·

∑
dtj
yjt.

Summing for the two cases, we conclude that CR + CF 6 7 ·
∑
dtj
yjt.

Applying standard facts from the theory of linear programming, we obtain the following
theorem.

Theorem 4.3.3. The primal-dual algorithm for Sum-Radii Leasing achieves a constant
approximation ratio.

4.4. FACILITY LEASING 29

The approximation ratio we obtain, although constant, is too large (28). It seems that
the approximation ratio can be improved using a more detailed analysis; here, however,
we focused on making the analysis as compact as possible.

4.4 Facility Leasing

In the previous section, we showed how to obtain an algorithm for the Facility Leasing

problem with approximation ratio O(K) using the reduction of leasing problems to multi-
stage stochastic optimization. However, this is not the best we can do; we can construct a
more specialized approximation algorithm which achieves a constant ratio, independent of
the number of lease types K. The algorithm was presented by Nagarajan and Williamson
[50] and is based on the classic primal-dual algorithm for Facility Location introduced
by Jain and Vazirani [46].

We first describe the problem in the context of linear programming, that is, we present
the primal program which solves Facility Leasing, we then give the LP-relaxation and
finally the dual linear program of the relaxed one. For a detailed presentation of linear
programming and the primal-dual schema, we refer the reader to [27, 60, 34].

Let us first introduce some useful notation. We denote by Ikt the time interval of
length l(k) starting at time t. We also remind that the set of demands arriving at time t
is denoted by Dt ⊆ D. A demand at point j arriving at time t will be denoted by dtj ∈ Dt.
Finally, let fki (t) ∈ F be a facility at point i of type k which opens at time t. This facility
costs cki .

In order to express the linear program, we need to introduce some more notation. Let
yikt be the indicator variable of the facility fki (t). This means that yikt = 1 if we open
fki (t), otherwise it is 0. Furthermore, we denote by xjt,ikt ′ the variable which indicates
whether the demand dtj is assigned to facility fki (t). We can now write down the primal
linear program.

min
∑

fki (t)∈F

yikt · cki +
∑
dtj∈D

∑
fki (t

′)∈F:t∈Ik
t ′

xjt,ikt ′ · d(i, j)

subject to

∀dtj ∈ D :
∑

fki (t
′)∈F:t∈Ik

t ′

xjt,ikt ′ > 1

∀dtj ∈ D, fki (t
′) ∈ F : xjt,ikt ′ 6 yikt ′

∀dtj ∈ D, fki (t
′) ∈ F : xjt,ikt ′ ,yikt ′ ∈ {0, 1}

(4.5)

30 CHAPTER 4. OFFLINE LEASING PROBLEMS

The first inequality denotes that each demand must be assigned to at least one facility
with duration that covers the time of arrival. Note that since the objective function must
be minimized, each demand will be assigned to exactly one facility. The second inequality
implies that, in order to assign a demand to some facility, this facility must be open. To
obtain the LP-relaxation of the above linear program, it suffices to let the variables yikt
and xjt,ikt ′ take any real value greater than or equal to 0.

For the dual program, we need to introduce the dual variables vjt and wjt,ikt ′ , which
correspond to the first and second inequality of the primal program respectively. Intu-
itively, vjt expresses how much the demand dtj pays towards the opening of facilities. Now
we can write the dual linear program.

max
∑
dtj∈D

vjt

subject to

∀dtj ∈ D, fki (t
′) ∈ F : vjt −wjt,ikt ′ 6 d(i, j)

∀fki (t ′) ∈ F :
∑
dtj∈D

wjt,ikt ′ 6 cki

∀dtj ∈ D, fki (t
′) ∈ F : wjt,ikt ′ ,djt > 0

(4.6)

The algorithm for offline Facility Leasing proceeds in two phases. In the first phase,
the algorithm works in a primal-dual fashion. By the end of the first phase, the algorithm
has computed a feasible integer dual solution and a corresponding primal solution. The
solution includes a set of facilities FT which are temporarily open and the assigned facilities
to each demand. However, this procedure alone could potentially output a solution with
unacceptable cost. The second phase deals exactly with this case: the algorithm refines
the set of facilities which will finally open and also determines the mapping from demands
to the new set of facilities.

Let us now describe the algorithm in full detail.

First Phase. The algorithm starts with a feasible dual solution, where all vjt and
wjt,ikt ′ are set to zero and the set FT of temporarily open facilities is empty. More-
over, it initially declares all demands unconnected. Then, it starts increasing in a uniform
way all dual variables vjt corresponding to unconnected demands. The dual variables
wjt,ikt ′ behave so that it holds that wjt,ikt ′ = max{0, vjt − d(i, j)}, i.e. they start in-
creasing their value as soon as vjt equals d(i, j) for some facility placed at point i. This

4.4. FACILITY LEASING 31

is necessary so as to ensure the feasibility of the dual program. The procedure continues
until we come up with one of the following cases:

• It holds that vjt = d(i, j) for the demand dtj and some facility fki (t
′) such that

t ∈ Ikt ′ . Then, we say that the ”edge” (dtj , f
k
i (t
′)) becomes tight.

• The second inequality of the dual program becomes tight for some facility fki (t).
Then, fki (t) becomes temporarily open and is added to the set FT .

• As soon as a temporarily open facility fki (t
′) is connected with a demand dtj through

a tight edge, we declare the demand connected and stop increasing the dual variables
vjt, wjt,ikt ′ . We also say that demand dtj contributes to facility fki (t

′) iff vjt > d(i, j)
and t ∈ Ikt ′ .

The first phase continues until all demands are declared connected. Then, the algorithm
proceeds with the second phase.

Second Phase. Let us consider the graph GT = (V,E), where V is the set FT and two
facilities are connected with an edge iff there is a demand contributing to both facilities.
We next construct a maximal independent set of GT , following the algorithm of Jain
and Vazirani. However, for our case it does not suffice to consider an arbitrary maximal
independent set. Instead, we have to construct the independent set by examining the
facilities in order of decreasing lease length (or type equivalently) and by greedily choosing
the next vertex of the independent set.

After constructing the independent set FI, the algorithm executes one more step to
finalize the set of open facilities. Consider a facility fki (t) ∈ FI. Instead of opening only
the facility which starts at time t, the algorithm also opens the facilities fki (t− l(k)) and
fki (t+ l(k)). Hence, we end up with a set of open facilities which we denote by F ′.

Finally, the algorithm determines the mapping from each demand to a facility in F ′.
Based on the assignment constructed by the end of phase one, we distinguish two cases
for a demand dtj :

• The demand is connected to a facility in FI. The algorithm then keeps this assign-
ment and we say that dtj is directly connected to this facility.

• The demand is connected to a facility fki (t
′) ∈ FT \FI. Then fki (t

′) does not belong
to the set of facilities which the algorithm finally opens. However, since FI is a
maximal independent set, there must be some facility fk

′

i ′ (t
′′) adjacent to fki (t

′) in

32 CHAPTER 4. OFFLINE LEASING PROBLEMS

the graph T with the property that k ′ > k. It is always possible to find such a
facility, following the fact that facilities where added to the independent set FI in
decreasing order of lease type.

This means that there exists a demand dt̄
j̄

such that it contributes to both facilities
and also that t̄ ∈ It ′k and t̄ ∈ It ′′k ′ . Hence, the intervals It

′
k and It

′′

k ′ intersect and since
It
′′

k ′ has at least the same length as It
′
k (k ′ > k), the interval It

′′

k ′ is fully covered by
the interval [t ′′ − l(k ′), t ′′ + l(k ′)]. Consequently, one of the three facilities we open
due to the facility fki (t

′) ∈ FI must cover dtj .

Thus, the second phase yields a feasible solution for the instance of the problem. The
next step is to analyze the algorithm and bound the approximation ratio.

Analysis. The first step of the proof is to show that the dual variables vjt fully pay for
the facility cost and the assignment cost. For this, we need to partition the contribution of
each variable vjt to a contribution towards the opening of a facility vfjt and a contribution
towards the connection cost vejt, such that

vjt = vfjt + vejt

Note that if a demand is directly connected to a facility in FI, it will have contributed
vjt − d(i, j) towards opening the facility; thus, we have that vfjt = vjt − d(i, j) and vejt =

d(i, j). Let us denote by D(f) the set of demands directly connected to facility f.

As for any demand dtj which is indirectly connected to a facility fki (t), it holds that
the dual variable contributes only to the connection cost of the demand; hence, vjt = vejt

and vfjt = 0.

Now, observe that for each facility fki (t) ∈ FI, the second inequality of the dual program
is tight and hence ∑

dtj∈D

wjt,ikt ′ = cki

However, wjt,ikt ′ > 0 only for the demands directly connected to this facility. In this case,
we also have that wjt,ikt ′ = vjt − d(i, j) = vfjt. We thus conclude that

Lemma 4.4.1. For any facility fki (t) ∈ FI, we have that∑
dtj∈D(fki (t))

vfjt = cki

It is now straightforward to charge the dual variables with the total facility cost of the
final solution F ′.

4.4. FACILITY LEASING 33

Lemma 4.4.2. It holds that ∑
fki (t)∈F ′

cki 6 3 ·
∑
dtj

vfjt

Proof. Since each facility in FI leads to the opening of 3 equal cost facilities for the final
solution, we have that∑

fki (t)∈F ′

cki = 3 ·
∑

fki (t)∈FI

cki = 3 ·
∑

fki (t)∈FI

∑
dtj∈D(fki (t))

vfjt 6 3 ·
∑
dtj∈D

vfjt

where the last equality is derived from lemma 4.4.1.

The next lemma charges the dual variables with the assignment cost of the final solu-
tion.

Lemma 4.4.3. For any demand dtj connected to facility fki (t
′), it holds that d(i, j) 6 3·vejt.

Proof. For a directly connected demand dtj , we have that d(i, j) = vejt 6 3·vejt. The difficult
case is when the demand dtj is indirectly connected to a facility fki (t

′). Let fk
′

i ′ (t
′′) be the

temporarily open facility to which the demand was assigned at the end of the first phase.
Since fki (t

′) and fk
′

i ′ (t
′′) are adjacent facilities in the graph T , there must be a demand

dt̄
j̄

which contributes to both of them. Then, using the triangle inequality, we get that
d(j, i) 6 d(j, i ′) + d(i ′, j̄) + d(̄j, i).

First, note that since dtj was connected to fk
′

i ′ (t
′′), we have that d(j, i ′) 6 vjt = vejt.

In the same fashion, it holds that d(i ′, j̄) 6 ve
j̄t̄

and d(̄j, i) 6 ve
j̄t̄

. It thus remains to show
that vj̄t̄ 6 vjt.

Consider the moment when fk
′

i ′ (t
′′) becomes temporarily open. Since dtj is connected

to this facility, its dual variable will be increasing at least until that moment. However, dt̄
j̄

contributes to both facilities, hence it is the case that as soon as one of these is declared
open, its dual variable will stop increasing. We can now easily infer that vj̄t̄ 6 vjt.

We can now sum up the cost of the dual variables. We denote by φ(dtj) the facility to
which dtj is assigned.

Theorem 4.4.4. ∑
dtj∈D

vjt > 3 ·
∑

fki (t)∈F ′

cki + 3 ·
∑

φ(dtj)=f
k
i (t)

d(i, j)

34 CHAPTER 4. OFFLINE LEASING PROBLEMS

By setting yikt = 1 when facility fki (t) is open (otherwise 0) and xjt,ikt ′ = 1 when
demand dtj is assigned to facility fki (t

′) (else 0), we get that

COPT > CDUAL =
∑
dtj∈D

vjt > 3 · CALG

Theorem 4.4.5. The primal-dual algorithm achieves a 3 approximation ratio for the
offline Facility Leasing problem.

It is interesting that this algorithm achieves the same approximation ratio with the
algorithm of Jain and Vazirani, even if leasing actually generalizes the problem. It remains
an open question whether it is possible to deploy better approximation algorithms designed
for Facility Location to obtain an even better approximation algorithm for Facility

Leasing.

Chapter 5

The Parking Permit Problem

In this chapter, we will present the Parking Permit problem, which will function as a
transition from offline to online leasing problems. As we will later see, Parking Permit

can be considered as the simplest form of a leasing problem. Although it is straightforward
to solve its offline version, the online version is much more interesting and will provide a
cornerstone for analyzing leasing problems with a more complicated structure.

The problem is motivated by the following real-life scenario. Let us assume that the
office we work is nearby and we prefer to walk to work instead of driving at sunny days.
However, when it rains, we always use the car. In this case, we must always have a valid
parking permit in order to park our car in the nearby parking. There are various types
of parking permits with different durations: day, week, month or even year. Naturally, we
have to pay more for a parking permit with long duration. However, the cost per day is
less if we buy a longer parking permit.

Our goal is to choose which types of permits we need to purchase and when so that every
driving day is covered by a parking permit. Furthermore, we want to find the solution
which minimizes the total cost is. It is easy to see that this problem falls into the category
of leasing problems. If we know the rainy days in advance, there exists a simple dynamic
programming solution for the problem. Hence, contrary to the other leasing problems
we have studied, the offline version of Parking Permit is easy to solve. However, the
problem becomes much harder if we assume that we do not know in advance the rainy
days and we have to make the best decision based only on the information we are given
so far. Thus, we focus on the online version of the problem.

The Parking Permit problem was presented by Meyerson in [49] and it is the first
paper which introduces the leasing model. The setting is as simple as possible, since the
notion of space is not involved; we are interested only in time. Clearly, any infrastructure

35

36 CHAPTER 5. THE PARKING PERMIT PROBLEM

leasing problem where the metric space is a single point is equivalent to Parking Permit.
Thus, the study of the Parking Permit, although trivial for the offline case, provides
important intuition for the online case.

First, we describe the formal definition of the problem. Then, we examine deterministic
and randomized online algorithms for the Parking Permit. We present a deterministic
algorithm with competitive ratio O(K) and prove that it is the best possible ratio we
can hope for in the deterministic setting. Finally, we show how randomization helps us
improve the competitive ratio to O(logK) and prove its optimality.

5.1 Definition

The online Parking Permit problem can be described in detail as follows.

Definition 5.1.1 (Parking Permit). We are given K different types of parking permits.
Permit k has a duration of l(k) days and costs ck. We are given a schedule of T days with
marked driving days; this schedule is revealed one day at a time. Our goal is to select a set
of permits so as to cover all driving days and minimize the total cost of permits purchased.

Since Parking Permit follows the general structure of the leasing framework, we may
consider the simple nested structure of the problem, with losing only a constant factor
in the solution cost. In particular, we may assume that the problem has the following
structure.

• For each permit type 1 < k 6 K, we have that ck > 2 · ck−1 and l(k) > l(k− 1)

• There is exactly one permit of type k which can possibly cover a specific day

• Each permit of type k has exactly l(k)
l(k−1) permits of type k− 1 embedded within

5.2 A Deterministic Approach

We first turn our attention to deterministic online algorithms. The algorithm we present
here (Simple-Online) [49] is a generalization of the deterministic online algorithm for
the Ski-Rental problem [47, 14]. The algorithm proceeds essentially in a primal-dual
fashion, by purchasing a longer lease type as soon as it discovers that buying the shorter
permits was at least as expensive as buying the longer one.

Notice that since we deal with the interval model, the algorithm buys a permit of type
k as soon as the total cost of the permits of type k− 1 which cover the driving days in the

5.2. A DETERMINISTIC APPROACH 37

Algorithm 1: Simple-Online

• We start by purchasing a permit of type 1 for a single driving day.

• For any interval of type k, as soon as the optimum solution would purchase this
permit, we purchase it as well .

interval becomes greater than ck. Hence, the algorithm can be described as conservative,
since it purchases a permit only when it is completely sure that the optimum solution
would do the same.

While the corresponding online deterministic algorithm for the Ski-Rental problem
admits a constant competitive ratio, the competitive ratio for Simple-Online depends
on the number of types of permits K. The following theorem proves this:

Theorem 5.2.1. The algorithm Simple-Online is O(K)-competitive.

Proof. We will use induction to prove that the online algorithm pays at most k times the
cost of the optimal solution (OPT) during an interval of type k. For k = 1, clearly the
online algorithm makes the optimal choice. For any interval of type k > 1, we distinguish
two cases:

• OPT does not buy a permit of type k: Then, OPT must cover each sub-interval
of type k − 1 separately. For each sub-interval, we pay at most (k − 1) times the
optimum (from the induction hypothesis). Thus, for the whole interval we pay at
most (k− 1)COPT .

• OPT buys a permit of type k: Then, OPT pays ck. If we consider the days of the
interval in reverse order, there exists some day where OPT would not buy the whole
permit, but pay separately for each sub-interval. Until then, the online algorithm
pays at most (k− 1) · ck (this follows from the same argument as in the first case).
Then, since OPT buys permit k, the algorithm buys it too. Thus, the algorithm
pays at most (k− 1) · ck + ck = k · ck.

This completes the induction and the proof.

A natural question is whether there exists a deterministic algorithm which can do better
than the above naive algorithm. The following theorem answers this question negatively.
The theorem was proved in [49], but we will prove the lower bound in a slightly different
way, which will allow us to generalize it easily in the next chapter.

38 CHAPTER 5. THE PARKING PERMIT PROBLEM

Theorem 5.2.2. No deterministic online algorithm for the Parking Permit problem
admits a competitive ratio better than Ω(K).

Proof. The idea behind the lower bound is to force the online algorithm ALG to buy a
large number of smaller permits before realizing that a longer permit should be bought
from the start. The adversary has a very simple adaptive strategy: if ALG has no valid
permit covering a day, mark this day as a driving day. For the lower bound, we consider
the interval model and we assume that we have K different permits with costs ci = 2i and
durations l(i) = 3i.

We say that an interval is active if it has contains at least one driving day. Let us
also denote by ni the number of intervals of type i covered by ALG by a permit i (good
intervals), and by bi the number of intervals i which ALG covers by using smaller permits
(let us call them bad intervals). It is clear that CALG =

∑K
i=1 ni · ci. In order to get a

bound on the cost OPT pays, we note that it would be a feasible solution to buy a permit
of type i for every active interval of type i. However, we have bi bad active intervals and
at most

∑
j>i nj good intervals . Thus, the number of active intervals of type i is bounded

by bi +
∑
j>i nj. Thus, we have that COPT 6 2i · (bi +

∑
j>i nj) for any i.

Now, by summing for i = 1, . . . ,K, we have that

K · COPT 6
K∑
i=1

2i · (bi +
∑
j>i

nj)

 6
K∑
i=1

bi · 2i +

K∑
i=1

2i ·
∑
j>i

nj

Next, we can manipulate part of the right hand side of the equation as follows.

K∑
i=1

2i ·
∑
j>i

nj =

K∑
i=1

ni ·
i∑
j=1

2j 6
K∑
i=1

ni · 2i+1

= 2 ·
K∑
i=1

ni · ci = 2 · CALG

In order to conclude the proof of the lower bound, it remains to bound the quantity
R =

∑K
i=1 bi · 2i. Let us fix some permit type i > 1 and consider any bad interval of

type i. Then, all 3 sub-intervals of type i− 1 are active and covered by permits of smaller
type. Hence, we have at most bi−1 +ni−1 such sub-intervals. It follows immediately that
3 ·bi 6 bi−1 +ni−1 for any i > 1. Thus, we have that (3/2) ·bi ·2i 6 (bi−1 +ni−1) ·2i−1.
Now, we can sum for i = 2, . . . ,K

3
2
·
K∑
i=2

bi · 2i 6
K∑
i=2

bi−1 · 2i−1 +

K∑
i=2

ni−1 · 2i−1

5.3. RANDOMIZED ALGORITHMS 39

Since b1 = 0, we have that

3
2
· R 6

K−1∑
i=1

bi · 2i +

K−1∑
i=1

ni · 2i 6 R+ CALG

Thus, we have that R 6 2 · CALG and consequently

K · COPT 6 4 · CA

This concludes the proof of the lower bound. The original proof in [49] achieves a
K/3 lower bound, but it assumes that each interval contains a much bigger number of
sub-intervals (2K instead of 3 for our case).

5.3 Randomized Algorithms

Since deterministic algorithms can not achieve competitive ratio better than Ω(K), it is
natural to ask whether randomization leads to more competitive online algorithms. Indeed,
using randomization, we can achieve a much lower competitive ratio of O(logK). We
follow a common approach to designing online randomized algorithms. Instead of dealing
directly with randomization, we will use an equivalence between randomized and fractional
algorithms and describe a deterministic online algorithm for the fractional case. The latter
algorithm is inspired by a recent general-purpose technique for designing algorithms for
online problems [2, 3, 16].

Let us first introduce the fractional version of the Parking Permit problem. A
fractional algorithm may choose to buy a permit fractionally, for example we may buy
1/3 or 1/2 of a permit. We must ensure though that for each driving day the sum of the
permits is at least 1. A fractional algorithm can be viewed as the linear relaxation of the
integer linear program behind the Parking Permit. The key point is that randomized
and fractional algorithms for the parking permit problem are equivalent with respect to
the competitive ratio. The following theorem proves this equivalence by presenting a
randomized rounding procedure (see [60] for more details on randomized rounding).

Theorem 5.3.1. [49] There exists a randomized online algorithm for the Parking Per-

mit problem with competitive ratio Θ(a(K)) iff there exists a deterministic fractional al-
gorithm with competitive ratio Θ(a(K)).

Proof. The intuition behind this equivalence is that we can view the fractional values of
the permits as an indication of the probability with which a permit should be purchased.
The one direction is quite straightforward; if we have an online randomized algorithm,

40 CHAPTER 5. THE PARKING PERMIT PROBLEM

we may set design an online fractional one by setting the fractional value of each permit
equal to the probability that the permit is purchased. Clearly, the cost of the fractional
algorithm is equal to the expected cost of the randomized algorithm.

The other direction describes how to round the fractional solution. The randomization
we use is restricted only to choosing a threshold τ uniformly at random between 0 and
1. As the fractional algorithm runs, the fractional values of each permit may increase.
Consider a day t, where we will have K possible permits to choose from. Denote by Fk(t)
the fraction of the permit of type k which covers day t. By the feasibility of the fractional
algorithm, we are guaranteed that

∑
k Fk(t) > 1. For day t, the randomized algorithm

buys the permit k such that

K∑
i=k+1

Fi(t) < τ 6
K∑
i=k

Fi(t)

Notice that this ensures the feasibility of the randomized solution: there will always be
such a permit of some type which satisfies the above inequality.

In order to compute the expected cost of the algorithm, consider an interval [t, t +

l(k) − 1] of type k. The randomized algorithm may attempt to buy the permit at any
day in this interval. However, it buys the permit i only when for some day t ′, it holds
that τ >

∑K
i=k+1 Fi(t

′) >
∑K
i=k+1 Fi(t). Similarly, we must have that τ 6

∑K
i=k Fi(t

′) 6∑K
i=k Fi(t+ l(k) − 1). Note that the probability that the permit is purchased is bounded

by the probability that τ falls between these two values, which is exactly
∑K
i=k Fi(t +

l(k) − 1) −
∑K
i=k+1 Fi(t). Hence, the expected cost we pay for this permit is

ck ·
K∑
i=k

Fi(t+ l(k) − 1) − ck ·
K∑

i=k+1

Fi(t)

We can now sum over all intervals of type k and over all types of permits. We now need to
exploit the following two facts: the first and last days of neighboring intervals coincide, and
ci+1 > 2ci. Using these facts, we can manipulate the equation and obtain that the total
expected cost of the algorithm will be at most twice the cost of the fractional solution.

We now present a fractional online algorithm for the Parking Permit problem (Online-

Random). Let Fi(t) denote the fractional value of the unique permit of type i which covers
day t.

A first important observation is that we only need a finite sequence of operations in
order to reach a feasible solution. The analysis of the algorithm implies the following
theorem.

5.3. RANDOMIZED ALGORITHMS 41

Algorithm 2: Online-Random

Initially, all fractional permits are set to zero ;
When we need to drive and the sum of the permits covering the day is less than
one, we perform an operation, which consists of the following two steps:

1. ∀ 1 6 i 6 K, multiply Fi(t) with 1 + 1
ci

2. ∀ 1 6 i 6 K, add 1
K·ci to Fi(t)

until we achieve feasibility for the specific day.

Theorem 5.3.2. [49] The fractional algorithm Online-Random has O(logK) competi-
tive ratio.

Proof. In order to prove the theorem, we will first show that each operation has constant
cost. Then, we will show that we can bound the total number of operations involved in a
specific time interval of the optimal solution.

Indeed, if we perform an operation at day t, then the sum of the permits at that
day must be strictly less than 1, so it holds that

∑K
i=1 Fi(t) < 1. The first step of each

operation increases the fraction of permit i by Fi(t)/ci, whereas the second step increases
the fraction by 1/K · ci. By summing for all permit types, we conclude that the total
increase of the cost is at most

K∑
i=1

ci ·
(
Fi(t)

ci
+

1
K · ci

)
=

K∑
i=1

Fi(t) + 1 < 2

We next bound the number of operations performed. For this, consider an interval of
type i where the optimal solution OPT buys a permit i and pays ci. We will calculate
the cost of the fractional algorithm for the same interval. After ci operations, the second
step guarantees that the fraction of the permit i is at least 1/K. From then on, the
first step of each operation multiplies the fraction by the factor 1 + 1

ci
. Thus, after

O(ci logK) operations, the fractional value of the permit is larger than 1, which implies
that the algorithm buys the whole permit. Consequently, any other driving day during
this interval will be covered and no more operation will be performed until the end of the
interval. Since each operation costs at most 2, we pay O(logK) times more than OPT for
the specific interval.

By summing for each interval where OPT buys a permit, we conclude that the com-
petitive ratio of the fractional algorithm is at most O(logK).

42 CHAPTER 5. THE PARKING PERMIT PROBLEM

Why does Simple-Online perform so well? One important reason is that the algorithm
is not memoryless, i.e. decisions for the present day influence decisions on future days.
This is achieved by incrementing the fractional values of all permits for any day considered.
By investing a small fraction to larger permit types, we make sure that the algorithm will
realize that it needs to purchase a longer permit before it pays too much. In fact, a
memoryless approach is bound to fail, even when we use randomization [49].

It can be proved that Online-Random achieves the best possible competitive ratio
within randomized algorithms.

Theorem 5.3.3. [49] Any randomized online algorithm for Parking Permit has ex-
pected competitive ratio at least Ω(logK).

Proof. In order to prove the lower bound, we will construct a randomized instance of the
Parking Permit problem and show a bound on the expected competitive ratio of the
best deterministic algorithm. We can then apply Yao’s minimax principle [62] to derive
the lower bound for randomized algorithms.

Let us assume that we have K permit types and permit i costs ci = 2i. The instance
will be nested and we will assume that the duration of a lease of type i will be arbitrarily
larger than the duration of lease type i − 1. We construct randomized instances of our
problem using active intervals. An active interval has the following property: the i-th sub-
interval of the interval is active with probability 2i−1. Notice that this means that the
first sub-interval will always be active. Moreover, the top-level interval is always active.
The base of this recursive definition is that an active interval corresponding to type 1 has
a driving day.

Let us first compute the expected cost of any deterministic algorithm on this random-
ized sequence of driving days. Suppose that the algorithm has to make a choice about
whether or not to buy a permit of type k for an active interval. Buying a permit of type k
costs ck = 2k. However, the algorithm may choose to pay separately for each sub-interval
of type k − 1 which will be active. In this case, the algorithm pays an expected cost of∑l(k)−1
i=0

2k−1

2i
= 2k−1

∑l(k)−1
i=0 2−i < 2k. This means that the algorithm pays in expec-

tation less by preferring to buy smaller permits. We may repeat this argument for any
type of permit and conclude that the best strategy for the algorithm is to buy only type
1 permits whenever a driving day appears. Hence, the expected cost of the algorithm will
be the expected number of driving days of the instance.

Let us denote by rk the expected number of active intervals at level k. Then, we have
that rk = rk−1 ·

∑l(k)−1
i=0 2−i. By assuming that l(k) is arbitrarily large for any k, we can

prove that rk ≈ 2rk−1. Moreover, r1 = 1. This implies that rK ≈ 2K.

5.3. RANDOMIZED ALGORITHMS 43

Can we find an upper bound for what the optimum offline solution will pay in ex-
pectation? Consider the following strategy: we buy a permit of type k for an interval
only if this interval includes at least log k + 1 active sub-intervals. Using again recursion
to describe the number of active intervals at each level, we can inductively prove that
the expected cost of the algorithm will be upper bounded by 2K+1

logK . Hence, the optimum
offline algorithm pays at least O(logK) times less in expectation than any deterministic
algorithm. This concludes the proof.

44 CHAPTER 5. THE PARKING PERMIT PROBLEM

Chapter 6

Online Sum-Radii Clustering

In a clustering problem, the goal is to partition points into sets, which we call clusters, so
as to minimize an objective function. The typical setting is to assign a cost to each cluster
and let the objective function be the sum of the cluster costs.

In our case, we will assume that each cluster has a fixed opening cost plus a cost related
to the size of the cluster, which might be the radius or the diameter of the cluster. Other
models proposed by Charikar et al. [20], Chan and Zarrabi-Zadeh [19, 63] assume that we
are allowed only clusters of a fixed size and cost, with which the entire point set must be
covered. In this case, the objective function is just the number of clusters opened.

In the online variant of this problem, the request points appear one by one and have to
be assigned to clusters as soon as they arrive. In order to serve a new point, we may either
open a new cluster, assign the point to an existing cluster, or even expand an existing
cluster so as to include the new point. However, it is not possible to delete an existing
cluster, merge two clusters into one, or split a cluster into several smaller ones.

We will study the problem in the case where the requests are points of a metric space.
Csirik et al. [25] initiated the study of this variant; however, they studied only on the
restriction of the problem to the real line. They assumed that clusters may be opened
anywhere on the line and that each cluster pays a fixed cost for set-up plus its diameter.
Their goal was to minimize the sum of the cost of the clusters. On this framework, they
considered several variants, which differ in the way the clusters open: (a) a cluster must
be fixed when it is initialized (b) the algorithm can shift the cluster or expand it, as long
as it contains all points already assigned to it and (c) the diameter is fixed in advance
while the exact location can be modified.

In the following sections, we will first define the problem formally. Then, we will
prove the equivalence of several online variations. Next, we will present a primal-dual

45

46 CHAPTER 6. ONLINE SUM-RADII CLUSTERING

deterministic algorithm and show its optimality. Finally, we prove a randomized lower
bound and give a fractional algorithm which improves the competitive ratio obtained in
the deterministic case.

6.1 Description of the Model

We are given a metric space with a distance function d(i, j). The requests are points of
this metric space, and arrive one after the other. Each request point must be covered by
a cluster; this means that the distance of the point to the center of the cluster is at most
the cluster radius. A cluster is centered at some point p and is allowed to have any radius
r; we denote such a cluster by C(p, r).

A cluster with radius r costs a fixed set-up cost f plus its radius r. Note here that we
measure the cost of the cluster based on its radius instead of its diameter; both measures
are essentially equivalent, since a c competitive algorithm for the radius variant yields a
(2c)-competitive algorithm for the diameter variant.

We will also assume that a cluster may be centered at any point of the metric space.
This is not a necessary assumption; we could as well request that the clusters are centered
only at locations of request points and this would mean that we would lose a multiplicative
factor of 2 on the competitive ratio. The argument is quite simple; assume that an
algorithm opens a cluster C(p, r) centered at an arbitrary point p. Clearly, the cluster
contains some request point q and d(q,p) 6 r. If we open the cluster C(q, 2r), then any
request point in the cluster C(p, r) will be covered and we pay at most twice the cost of
the original cluster.

However, it yet remains to be specified how the clusters open in the online setting.
Here we consider several scenarios, based on the models proposed in [25].

• Fixed-Cluster: when a new cluster opens, we specify its center and radius, which
will remain fixed throughout the algorithm. Only points which arrive inside the
cluster may be assigned to it.

• Fixed-Radius: when we open a new cluster, we only fix its radius. This means
that we may move its center when new points arrive; however, the cluster must still
cover all the points originally assigned to it.

• Flexible-Cluster: when we open a new cluster, we only specify the points that
are covered by it. This means that its radius may increase and its center may change
when new requests arrive. The cluster costs only its final radius plus the set-up cost.

6.2. EQUIVALENT MODELS 47

It is clear that a c-competitive online algorithm for the Fixed-Cluster model will also
give a c-competitive algorithm for Fixed-Radius and Flexible-Cluster. However, as
the following theorem suggests, all three models are equivalent regarding the competitive
ratio within a constant factor.

Proposition 6.1.1. A c-competitive algorithm for the Flexible-Cluster or the Fixed-

Radius model gives a O(c)-competitive algorithm for the Fixed-Cluster model.

Proof. Let us assume a c-competitive algorithm AR for the Fixed-Radius model. Now,
consider the following algorithm AS for the Fixed-Cluster model. When AR decides
that some point p will be covered by a cluster with radius r, AS opens the cluster C(p, 2r),
which costs at most twice the cluster C(q, r) which AR will finally open. However, note
that each point i of the cluster C(q, r) will be also served by the cluster C(p, 2r), since
C(q, r) covers p and thus d(i,p) 6 d(i,q) + d(q,p) 6 r + r = 2r. Thus, we obtain a
2c-competitive algorithm for the Fixed-Cluster model.

Now, let us assume a c-competitive algorithm AC for the Flexible-Cluster model.
We will construct an algorithm AS which works for the Fixed-Cluster model. Let us
fix a cluster C which AC finally opens with center at some point p and radius rm (the
radius may increase when new points are added to the cluster). The algorithm AC pays
f+ rm. As for AS, we will construct a sequence of clusters C which follow the progress of
C and cover the same points.

Initially, when the first request point q covered by C arrives, we open the cluster C(q, f)
(if AC opens a cluster with radius 6 f). Then, whenever AC covers a point not covered by
any cluster of C, we keep opening clusters by doubling their radius until the new point is
covered. Moreover, let us assume that AS will perform k such doublings. Thus, AS pays∑k
i=0 f · (2i + 1) 6 f ·

∑k
i=0 2i+1 = 2 · f · (2k+1 − 1) 6 4 · f · 2k.

However, notice the distance between q and any request point p ′ covered by C is at
most d(q,p ′) 6 d(q,p) + d(p,p ′) 6 rm + rm = 2rm. Furthermore, due to the doubling
procedure, AS will open at most a cluster with radius 2 · (2rm) = 4rm. Thus, it holds that
4rm > 2kf. Consequently, AS pays at most 4 · 4 · rm 6 16(rm + f).

Since the models are equivalent within a constant, we will assume throughout the
chapter that we follow the stricter model, namely the Fixed-Cluster model.

6.2 Equivalent models

We first prove a proposition which allows us to simplify the structure of the online problem.

48 CHAPTER 6. ONLINE SUM-RADII CLUSTERING

Proposition 6.2.1 (Doubling Radii). We may assume that the radius of a cluster is
restricted only to values of the form 2i · f, where i > 0 is an integer, without losing more
than a multiplicative factor of two in the competitive ratio.

Proof. Let us consider an optimal solution OPT which opens a set of clusters C and costs
COPT =

∑
i∈C(f + ri), where we denote by ri the radius of cluster i. Now, consider an

alternative solution OPT ′ where the centers of the clusters in C are maintained, but the
corresponding radii are set to r ′i = 2k · f, where 2k−1 · f < ri 6 2k · f and k = 1, 2, For
ri 6 f, we take r ′i = f. In practice, this means that we round the radii up to the closest
power of two.

Clearly, for any ri > f, it holds that r ′i < 2ri. In the case that ri 6 f, the optimal
solution pays at least a cost of f for the cluster i, while OPT ′ pays at most 2f. In any case,
OPT ′ pays at most double what OPT pays for any cluster i. Summing for all clusters, we
conclude that OPT ′ pays at most twice as much as OPT .

We next show a correspondence between the Parking Permit problem and the Sum-

Radii Clustering problem. We consider the interval version of the Parking Permit

problem, together with the assumption that the costs for each type are rounded up to
powers of two. This loses only a constant factor from the competitive ratio of the problem.
The following theorem establishes the exact connection between these two problems.

Theorem 6.2.2. Consider an instance I of the Parking Permit problem. Then, there
exists an instance I ′ of the Sum-Radii Clustering problem such that any solution of I

can be mapped to a solution of I ′ of equal cost and vice versa.

Proof. Let us assume that I has K types of permit with corresponding costs c1, c2, . . . , cK
such that w.l.o.g. ci = 2i−1 (i = 1, . . . ,K) and durations D1,D2, . . . ,DK. We will con-
struct a tree metric T which comprises the metric space of the Sum-Radii Clustering

instance I ′. The tree T corresponding to T has K levels and level i (i = 1, . . . ,K) includes
all nodes at depth K − i. Clearly, the root is at level K, whereas all the nodes at level 1
are the leaves of T . A node at level i has exactly Di/Di−1 children. The opening cost of
any cluster will be 1. Finally, the distance between a node at level i and its child at level
i− 1 is exactly ci−1 = 2i−2.

First, we have to prove that the tree metric satisfies the properties of a metric space.
Indeed, it is easy to see that T corresponds to a 2-HST (Hierarchically Separated Tree),
since the distances at every path from the root to the leaves decrease by a factor of 2 at
every level and a node has equal distance to all its children.

6.2. EQUIVALENT MODELS 49

Next, let us describe the one-to-one mapping of a solution SI of I to a solution SI ′

of I ′. Note that the construction allows us to map each time interval of the instance I

to a subtree of T . More specifically, the i-th interval of type k can be mapped to the
subtree with root the i-th node of level k and vice versa. Then, every day of the instance
I corresponds to a leaf of the tree T . Thus, every marked day of instance I corresponds to
a request point of I ′.

2

permit types

1

3

4

time axis

driving days

(a) A solution for an instance of Parking Permit

demand points

20

21

levels

224

3

2

1

(b) A solution for an instance of Sum-

Radii Clustering

Figure 6.1: The correspondence of two solutions for the equivalent instances of the Park-

ing Permit and the Sum-Radii Clustering problems.

In a similar way, the i-th permit of type k is mapped to the cluster with center the
i-th node of level k and radius ci−1 + ci−2 + . . . + c1 = 2i−2 + . . . + 1 = 2i−1 − 1. Thus,
the total cost of the cluster is (2i−1 − 1) + 1 = 2i−1 = ci. This means that the cost of the
permit equals the cost of the corresponding cluster, which directly implies that the cost
of SI equals the cost of SI ′ .

It remains to show that a valid solution of I leads to a valid solution of I ′ and vice
versa. For the one direction, we have to show that SI ′ covers all request points. Indeed,
consider a marked day of I. This day is covered by a permit of type k and corresponds to
a request point p. However, the solution SI ′ opens a cluster which covers all the points
of the subtree which is rooted at level k and contains p. Consequently, p is covered by a
cluster. For the opposite direction, notice that we may assume w.l.o.g. that any solution
of I ′ covers a point p by opening a cluster centered along the path from p to the root of
T . Such a cluster centered at level k must have a radius of ck−1 + ck−2 + . . .+ c1 and thus
can be mapped back to a permit of type k covering the marked day which corresponds to
p.

We can use this theorem to show the following lemma.

Lemma 6.2.3. Any c-competitive online algorithm for the Sum-Radii Clustering prob-
lem gives a c-competitive algorithm for the Parking Permit problem.

50 CHAPTER 6. ONLINE SUM-RADII CLUSTERING

Proof. Consider a c-competitive online algorithm A for Sum-Radii Clustering. Fix an
instance I for Parking Permit and consider the corresponding instance I ′ from theorem
6.2.2. We have that CA(I ′) 6 c · COPT (I ′). Moreover, consider the mapping of the
solutions OPT(I ′) and A(I ′) to the corresponding solutions of I, which we denote by B(I)

and OPT(I). Since it holds that CB(I) = CA(I ′) and COPT (I) = COPT (I ′), it follows that
CB(I) 6 c · COPT (I).

6.3 The Deterministic Approach

In this section, we study deterministic online algorithms for the Sum-Radii Clustering

problem. We first show a lower bound of Ω(logn) on the competitive ratio of any deter-
ministic algorithm. Then, we give a deterministic primal-dual algorithm which matches
this lower bound.

Theorem 6.3.1. The competitive ratio of any online deterministic algorithm for the Sum-

Radii Clustering problem is Ω(logn), where n is the number of points.

Proof. We prove the lower bound for metric spaces which are described by an a-HST T
with branching factor 3 and height K = log3 n (a is a constant we will fix later). We also
require that the set-up cost of any cluster is f = 1.

Let us fix any deterministic algorithm A. The adversary brings points only at the
leaves of the tree, starting from the leftmost leaf and advancing towards the rightmost
leaf. Specifically, the adversary brings a request at the next leaf of the tree not covered
by an already open cluster. Since T has exactly 3K = n leaves, it is possible that the
adversary will bring strictly less than n points before all of them are covered. In this case,
the adversary brings the remaining requests at any leaf which already has a demand.

We denote by COPT the cost paid by the optimum solution OPT , and by CA the
cost paid by A. Furthermore, we define that Gak = 1 +

∑k−1
j=1 a

j−1. The quantity Gak
corresponds to the cost of a cluster centered at level k with radius equal to the distance
of the center to the nearest leaf. Moreover, the following property holds for any a > 2:
Gaj 6 a ·Gaj−1.

The next step is to classify the clusters opened by A to sets according to their cost;
set Lk (k = 1, . . . ,K) contains all clusters with cost c, Gak 6 c 6 2 ·Gak . The key property
is that a cluster in Lk may cover a subtree rooted at level at most k and not higher.
An equivalent way to define the sets Lk would be to assume w.l.o.g. that clusters are
centered only along the path from the request point to the root. In this case, Lk includes

6.3. THE DETERMINISTIC APPROACH 51

exactly all clusters centered at level k. We also define nk = |Lk|. It is clear that A pays
CA >

∑K
k=1 nk ·Gak .

Let us also call a subtree of T active when there exists a demand at some leaf of it.
The points of an active subtree Tk at level k may be covered in two ways, depending on
the largest cluster C which A opens after a point of Tk arrives.

1. C ∈
⋃
i>k Li: we then call Tk a good subtree.

2. C ∈
⋃
i<k Li: we then call Tk a bad subtree. Note that for a bad subtree, its three

children subtrees are also active. We denote by bk the number of bad subtrees rooted
at level k.

In order to get a bound on the cost OPT pays, we note that it would be a feasible
solution to open a cluster at level k for every active subtree rooted at level k. However,
we have bk bad active subtrees and at most

∑
j>k nj good subtrees. Thus, the number

of active subtrees rooted at level k is bounded by bk +
∑
j>k nj. Thus, we have that

COPT 6 Gak · (bk +
∑
j>k nj) for any k.

Now, by summing for k = 1, . . . ,K, we have that

K · COPT 6
K∑
k=1

Gak · (bk +
∑
j>k

nj)

 6
K∑
k=1

bk ·Gak +

K∑
k=1

Gak ·
∑
j>k

nj

Using the fact that Gaj 6 a ·Gaj−1 and consequently that Gaj 6 aj−1, it holds that

K∑
k=1

Gak ·
∑
j>k

nj =

K∑
k=1

nk ·
k∑
j=1

Gaj 6
K∑
k=1

nk ·
k∑
j=1

aj−1 6 a ·
K∑
k=1

nk ·Gak 6 a · CA

In order to conclude the proof of the lower bound, it remains to bound the quantity
R =

∑K
k=1 bk · Gak . Let us fix some level k > 1 and consider any bad subtree Tk rooted

at level k. As we have mentioned, all 3 subtrees at level k − 1 of Tk are active and
covered by clusters in

⋃
i<k Li. Hence, we have at most bk−1 + nk−1 such subtrees.

It follows immediately that 3 · bk 6 bk−1 + nk−1 for any k > 1. Thus, we have that
(3/a) · bk ·Gak 6 (bk−1 + nk−1) ·Gak−1. Now, we can sum for k = 2, . . . ,K

3
a
·
K∑
k=2

bk ·Gak 6
K∑
k=2

bk−1 ·Gak−1 +

K∑
k=2

nk−1 ·Gak−1

52 CHAPTER 6. ONLINE SUM-RADII CLUSTERING

Since b1 = 0, we have that

3
a
· R 6

K−1∑
k=1

bk ·Gak +

K−1∑
k=1

nk ·Gak 6 R+ CA

Thus, we have that R 6 a
3−a · CA (for a < 3) and consequently

K · COPT 6

(
a+

a

3 − a

)
· CA

which holds for any constant 2 6 a < 3. This concludes the proof of the lower
bound.

It is known that Sum-Radii Clustering admits a constant competitive ratio when
restricted to the 1-dimensional line [25]. Hence, it would be interesting to examine whether
metric spaces of lower dimensionality admit a better competitive ratio than Ω(logn). It
seems though that the lower bound construction can be described on a 2-dimensional
euclidean space. Thus, online Sum-Radii Clustering may be hard even for simple
metric spaces.

Now, we turn our attention to an online algorithm for the problem. We consider the
case where we have only radii equal to powers of two (by lemma 6.2.1, we lose only a
constant factor). The approach will be based on the primal-dual schema. Let us first
write the relaxed primal linear program for Sum-Radii Clustering, where we assume
uniform opening costs. For ease of exposition, we will also assume that we can open
clusters of at least radius f. The indicator variable xir denotes whether we open a cluster
at point i with radius 2r · f.

min
∑

i,r=0,1,...

xir · (2r + 1) · f

subject to

∀j :
∑

C(i,2r·f):d(i,j)62r·f

xir > 1

∀i, r = 0, 1, . . . : xir > 0

(6.1)

Next, we present the dual linear program. For this, we introduce a dual variable aj for
every demand j.

6.3. THE DETERMINISTIC APPROACH 53

max
∑
j

aj

subject to

∀i, r = 0, 1, . . . :
∑

j:d(i,j)62r·f

aj 6 (2r + 1) · f

∀j : aj > 0

(6.2)

Algorithm. At each step of the algorithm, we hold a set of open clusters S, which is
initially empty. When a new point p arrives, we check whether p belongs in some cluster
in S. In this case, we do nothing. Otherwise, we set ap = f. When ap increases from 0
to f, it is possible that some constraints (clusters) become tight. Then, we find the tight
cluster C(i, r) containing p with the largest radius and we add the cluster C(i, 3r) to S.

We claim that this algorithm gives a O(logn) competitive ratio. In order to prove this,
we first observe that no cluster with radius > n ever becomes tight, since we have n points
and thus

∑
j aj 6 n · f. Thus, for each point as the cluster center, we have at most logn

constraints. We then need the following lemmas.

Lemma 6.3.2. The dual solution we obtain satisfies all the dual constraints.

Proof. In order to prove the lemma, it suffices to show that when a constraint becomes
tight, then it will never be violated. Equivalently, we have to show that when a cluster
becomes tight, every new point which arrives and belongs in this cluster will belong to
some open cluster and thus its dual value will not be increased (and it remains equal to
zero).

Let us assume that cluster C(i, r) becomes tight after point p arrives. We distinguish
the following cases:

1. We open the cluster C(i, 3r). Clearly, C(i, 3r) covers all the points of the cluster
C(i, r) and thus every point arriving in the cluster belongs in an already open cluster.

2. We open a cluster C(j, 3r ′). First, notice that the algorithm guarantees that r ′ > r.
Now, consider any point p ′ of C(i, r). Using the triangle inequality, we have that
d(p ′, j) 6 d(p ′, r) + d(r,p) + d(p, r ′) 6 r+ r+ r ′ 6 3r ′. Thus, every point arriving
inside cluster C(i, r) will also belong to the open cluster C(j, 3r ′) and thus its dual
value will not increase.

54 CHAPTER 6. ONLINE SUM-RADII CLUSTERING

Let OPT be the optimum solution of the problem. For the dual values the algorithm
has computed, we have that

∑
j aj 6 OPT , since the dual solution we obtain is a valid

solution and thus a lower bound for the optimum cost of the primal program. Now, we
have to compute the cost of the online algorithm CALG in terms of the cost of the dual
solution.

Lemma 6.3.3. It holds that CALG 6 3 · log2 n ·
∑
aj

Proof. We will first show that each point p contributes to the opening of at most one
cluster with radius 3r, i.e. the algorithm opens at most one cluster C(i, 3r) where p
belongs in C(i, r). Indeed, assume that the opposite holds and p belongs in two open
clusters C(i, 3r),C(j, 3r), where both C(i, r),C(j, r) contain p. One of these clusters must
have opened before the other, w.l.o.g. assume that i opens before j. However, C(i, 3r)
covers all points of the cluster C(j, r) and thus no arrival of a point will force the algorithm
into opening the cluster C(j, 3r).

Thus, a point p contributes to the opening of at most log2 n clusters. Furthermore, for
each cluster C(i, 3r) we open, it holds that Cir = 3 ·

∑
j∈C(i,r) aj. By summing, we have

that

CALG =
∑
C(i,3r)

Cir = 3 ·
∑
C(i,3r)

∑
j∈C(i,r)

aj

= 3 ·
∑
j

aj
∑

j∈C(i,r)

1 6 (3 · log2 n) ·
∑
j

aj

Combining the above lemmas, we can prove the main theorem of this section.

Theorem 6.3.4. The primal-dual algorithm achieves a O(logn) competitive ratio for
Sum-Radii Clustering.

6.4 Randomized Sum-Radii Clustering

In this section, we deploy randomization in order to overcome the deterministic lower
bound of the previous section and achieve a better competitive ratio. In particular, we
first prove a lower bound of Ω(log logn) on the competitive ratio of any randomized online
algorithm. Then, we present a fractional algorithm which actually achieves this competi-
tive ratio, with the hope of providing an optimal randomized algorithm by rounding the
fractional solution.

6.4. RANDOMIZED SUM-RADII CLUSTERING 55

6.4.1 A Lower Bound

We will first show a lower bound for randomized algorithms. The lower bound is based
on the randomized lower bound for the Parking Permit problem [49].

Theorem 6.4.1. Any randomized online algorithm for the Sum-Radii Clustering prob-
lem has Ω(log logn) competitive ratio.

Proof. As we have already shown, any Parking Permit instance can be mapped to an
equivalent instance of the Sum-Radii Clustering problem. Thus, we can deploy the
Ω(logK) lower bound of the Parking Permit problem for our case. Nevertheless, we
are presented with a difficulty: the lower bound of the Parking Permit depends on
the number of permit types K whereas we would like to express the lower bound for the
Sum-Radii Clustering problem in terms of the number of points n.

Let us consider an adversary which brings a fixed number of points n. We then consider
the distribution of points for the Parking Permit bound with K = log(n/c) permit types,
where c > 1 is a constant. Moreover, let us denote byN the random variable which denotes
the number of points which the adversary brings. Following [49], we have that E[N] ≈ n/c.

We now distinguish two cases according to the value N finally assumes. In the case that
N 6 n, the adversary brings any remaining points at a location where a point has already
arrived before. Furthermore, any deterministic algorithm pays at least an expected cost
of E[N] ≈ n/c.

In the other case, the adversary has to bring more points than n, which is not allowed
since it has a budget of only n points. However, the probability that this happens can be
bounded using the Markov’s inequality.

Pr[N > n] 6
E[N]

n
≈ n/c

n
= 1/c

Thus, we conclude that the expected cost of any deterministic algorithm A is at least

E[CA] > Pr[N 6 n] · E[N] > (1 − 1/c) · n/c

Now, let us compute the expected cost of an optimal offline algorithm OPT . Following
[49], it is easy to see that the expected cost of OPT is upper bounded by 2K+1

logK =
2n/c

log log(n/c) .
Thus, it follows that

E[CA]

E[OPT]
>

(1 − 1/c) · n/c
2n/c

log log(n/c)

=
(1 − 1/c)

2
· log log(n/c)

56 CHAPTER 6. ONLINE SUM-RADII CLUSTERING

Now, applying Yao’s lemma, we conclude that the competitive ratio of any randomized
online algorithm for the Sum-Radii Clustering problem is at least Ω(log logn).

6.4.2 A Fractional Online Algorithm

We present a fractional online algorithm for the Sum-Radii Clustering problem, which
admits a O(log logn) competitive ratio; hence it matches the randomized lower bound.

In the fractional problem of Sum-Radii Clustering, we are allowed to have fractions
of clusters instead of a whole cluster. However, the fractions of the clusters which cover
any demand point must sum to a value greater than one. We will denote by fki the fraction
by which the cluster C(i, 2k ·f) opens. Hence, for any point p, the following condition must
hold: Fp =

∑
i,k:p∈C(i,2kf) f

k
i > 1. For the algorithm, we will assume that the clusters

open with an actual radius double their radius (which increases the total cost only by
a factor of 2). Hence, the required condition becomes Fp =

∑
i,k:p∈C(i,2k+1f) f

k
i > 1.

Furthermore, the total cost of a solution will now be 2 ·
∑
i,k(f

k
i · ck), where ck is the cost

of a cluster of type k.

We will first assume that the number of demand points n which will arrive is known
to the online algorithm. We will later show how this assumption can be dropped. Since
the number of points is n, the algorithm needs to consider only K = logn distinct types
of clusters. Denote by Fkp the fraction of Fp associated only with cluster of types k, i.e.
Fkp =

∑
i∈C(p,2k+1f) f

k
i . We now describe the online algorithm in full detail.

Algorithm. Notice that during the course of the algorithm, new clusters will be available
for opening. As soon as a cluster becomes available (this happens when a new point
arrives), its fractional value is set to zero. Now, consider the case when a new demand
point p arrives. We distinguish two cases based on the value of Fp.

• If Fp > 1, then p is already covered.

• Else, Fp < 1. While Fp < 1, perform the following operation:

1. For every k : fkp ← fkp + 1
K·ck

2. For every k and i ∈ C(p, 2k+1 · f) : fki ← fki · (1 + 1
ck

)

Theorem 6.4.2. The competitive ratio of the online fractional algorithm is O(log logn).

Proof. We will first prove that the cost of each operation is constant. Then, we will only
need to bound the number of operations performed by the online algorithm.

6.4. RANDOMIZED SUM-RADII CLUSTERING 57

For the first part, let us consider a single operation. Since the algorithm performs an
operation, it means that Fp < 1. For the first step of the operation, the fractional cost
increases by 1/K for each cluster type. Hence, the total increase will be exactly 1. For the
second part of the operation, notice that the total increase of the fractional cost will be

∑
i,k:i∈C(p,2k+1f)

fki
ck
· ck =

∑
i,k:i∈C(p,2k+1f)

fki = Fp < 1

Summing, we conclude that each operation increases the cost by at most 2.

Thus, it remains to bound the number of operations needed. Let us assume that the
optimal solution OPT opens a cluster C0 ≡ C(p, 2k · f) with cost ck. We will compute the
corresponding cost of the online algorithm for the points which are covered by the cluster
C0. We denote by Fcp the total fraction for type k clusters centered within the optimal
cluster. Note that as soon as Fcp > 1, each point q which arrives at an later time inside
C0 will be covered, since C(q, 2k+1 · f) includes all points inside C0 and thus Fkp > Fcp > 1.
Hence, we have to count the number of operations required so that Fcp reaches 1.

Notice that after the first ck operations for points inside the cluster C0, it holds that
Fcp > 1

K·ck · ck = 1/K. After that, when an operation is performed for a point inside C0,
the fractional value of every point within C0 is multiplied by (1+1/ck) and thus the total
fraction Fcp is multiplied by the same factor as well. It is easy to see that after O(ck logK)

more operations, we will have that Fcp > 1 and thus no more operations are needed for
any point arriving inside the cluster.

Thus, the online algorithm pays O(ck logK), whereas OPT pays ck. Summing for all
clusters of the optimal solution, we conclude that we pay O(logK) times more than OPT ,
which implies a competitive ratio of O(log logn) for the fractional online algorithm.

Estimating the number of types K. We will now describe a method to drop the
assumption that n is a priori known to the algorithm. The algorithm keeps a current
estimation of K according to the number of points already arrived and behaves according
to the specific value of K. It starts by assuming that K = 1 and increases the value of K
when more points arrive. Specifically, the algorithm sets K ← k as soon as 2k demands
have arrived. When K increases, the algorithm also redistributes the fractions so that they
match the fractions the algorithm would output in the case it started by knowing the new
value of K.

It is easy to see that the above modification does not influence the competitive ratio
of the algorithm. The only difference is that, since we may have an underestimation of
K, for an optimal cluster of type k we may pay O(logK ′) times more than OPT , where

58 CHAPTER 6. ONLINE SUM-RADII CLUSTERING

k 6 K ′ 6 logn. Nevertheless, this implies again a O(log logn) competitive ratio since K
will never increase beyond logn.

An open problem is to describe a randomized rounding procedure for the fractional
solution, so as to obtain a randomized online algorithm for Sum-Radii Clustering with
optimal competitive ratio.

Chapter 7

Online Leasing Problems

In the context of offline leasing problems, we studied the case where we were given the
whole sequence of demands at the beginning of the algorithm. However, we have to take
into account real-life situations where we want to act based on present demands, without
knowing about the future.

We model this situation by demands arriving one after the other as the time flows. The
online algorithm must decide on how the demands will be served without having knowledge
of the future, based only on current and past information. In chapter 5, we studied
the online Parking Permit problem, presenting optimal deterministic and randomized
algorithms. In this chapter, we will study the online versions of leasing problems with a
more complex structure.

Since all leasing problems generalize Parking Permit, it is clear that the competitive
ratio of any deterministic algorithm will be lower-bounded by Ω(K). We also have to take
into account the inherent difficulty of finding a good competitive ratio for the online non-
leasing version of the combinatorial problem as well. Thus, if a problem has a lower bound
of Ω(c(n)) on the competitive ratio, we get an immediate lower bound of Ω(K+ c(n)) for
the competitive ratio of any deterministic online algorithm for the leasing problem. The
same holds for randomized algorithms, were we cannot hope to achieve a competitive ratio
better than Ω(logK + c ′(n)), where Ω(c ′(n)) is the lower bound for randomized online
algorithms.

Can we design online algorithms for leasing problems that achieve this competitive ra-
tio or can we prove a stronger lower bound? As we will see in this chapter, the algorithms
that we present achieve a competitive ratio which combines orthogonally the ideas behind
algorithms for Parking Permit and algorithms for the non-leasing variants of the prob-
lems. This way, the competitive ratio obtained is the product (and not the sum) of the

59

60 CHAPTER 7. ONLINE LEASING PROBLEMS

competitive ratios of the two directions of the problem, that is, it is of the form O(K ·c(n))

or O(logK ·c ′(n)). It remains an open question whether there exists an inherent difficulty
in finding better solutions for these problems or whether we can approach online leasing
problems by combining techniques in an interleaved way.

In this chapter, we will first give a fairly straightforward generalization of the random-
ized online algorithm for Parking Permit to Steiner Forest Leasing [49]. Next, we
will study online Facility Leasing. For this problem, we first present a deterministic al-
gorithm by Nagarajan and Williamson [50], which is based on an algorithm of Fotakis [31].
Finally, we present a randomized algorithm which achieves a slightly better competitive
ratio and extends ideas from [48].

7.1 Online Steiner Forest Leasing

We briefly remind the setting for online Steiner Forest Leasing. We are given a graph
G = (V,E) and at each day, sets of nodes, which are subsets of V arrive. The elements we
can lease are the edges of the graph. Leasing an edge e with a type k lease costs ck ·we,
where we is the weight of edge e (we have thus assumed uniform lease costs). In order
to serve a set of nodes, we must ensure that the edges we lease connect the nodes of the
demand set.

The algorithm we present here combines ideas from randomized Parking Permit (see
chapter 5) and the Buy-at-Bulk problem [8]. The non-leasing online version of Steiner

Forest has been extensively studied. In particular, Imaze and Waxman [43] proved a
lower bound of Ω(logn), where n is the number of demands (pairs of nodes). As for the
upper bound, Awerbuch et al. [9] first designed an O(log2 n)-competitive algorithm, which
was then improved to an optimal O(logn)-competitive algorithm [12].

In order to be able to extend the randomized algorithm for the Parking Permit

problem, we first have to simplify the metric space and impose a tree structure to the graph
G. In order to achieve this, we apply standard results for probabilistically approximating
metric spaces by tree metrics [11, 30]. This means that we lose a multiplicative O(logn)

factor from the competitive ratio; however, the simplicity of the algorithm used for the
tree compensates for the factor we lose.

Let us first describe an O(logK) competitive algorithm for Steiner Forest Leasing

when the graph G is a tree. We may assume that the leases follow the interval model and
the cost scaling model, since we will lose only a constant factor.

Consider a day t and a request node set Dt ⊆ V. Since the graph is a tree, there is a
unique spanning subgraph GDt which connects all the demand nodes. Thus, the optimal

7.2. ONLINE FACILITY LEASING 61

algorithm must ensure that every edge of GDt is leased at day t. Notice that in the case
that the graph was not a tree, there might be that more than one subgraphs connecting
the demand nodes. Now, it is easy to see that solving the Steiner Forest Leasing is
equivalent to solving a Parking Permit instance Ie for each edge e of the tree. In this
instance, a day t is a driving day only if edge e belongs in the spanning subgraph of some
demand set arriving at day t.

Thus, we may use the randomized algorithm for the Parking Permit to independently
solve the instance Ie for each edge e and pay at most O(logK) times what the optimum
algorithm pays for this particular edge. Summing over all edges, we obtain a O(logK)

competitive ratio for the case that G is a tree.

Theorem 7.1.1. If graph G is a tree, there exists an O(logK) competitive algorithm for
Steiner Forest Leasing.

Now, suppose that we are given an arbitrary graph G. Using the result from [30], we
embed G in a randomly chosen tree T . Then, we use the above online algorithm for trees
to obtain a O(logK)-competitive solution on T . The last step is to map the solution for T
back to a solution for the original graph G. Since the embedding from graphs to trees gives
an expected O(logn) stretch to the cost of each edge, we obtain that the final solution
achieves a competitive ratio of O(logK · logn).

Theorem 7.1.2. Online Steiner Forest Leasing admits an O(logK logn) competitive
ratio.

Note that the competitive ratio we achieve is the product of the competitive ratios for
Parking Permit (O(logK)) and Steiner Forest (O(logn)). It seems that in order
to improve the competitive ratio we need to introduce new ideas and follow a different
approach.

7.2 Online Facility Leasing

We can view the online Facility Leasing problem as the generalization of two prob-
lems, the Facility Location and the Parking Permit problem. Given that the first
problem admits an Ω(logn

log logn) lower bound [32] and the latter an Ω(K) lower bound on
the competitive ratio, we easily obtain a Ω(K + logn

log logn) lower bound for deterministic
algorithms. We also obtain a Ω(logK + logn

log logn) lower bound for randomized algorithms
in a similar way.

In the algorithms we present in the next two sections, the two directions of the problem
are considered in an independent way, hence the competitive ratio we achieve will be much

62 CHAPTER 7. ONLINE LEASING PROBLEMS

larger than the lower bound. For the deterministic case, we present an algorithm from
[50] with competitive ratio O(K · logn). We manage to slightly improve the competitive
ratio by using randomization, achieving an upper bound of O(K · logn

log logn) for the uniform
case.

It remains an open question whether we can lower the upper bound on the competitive
ratio or find a better lower bound. It is still not clear whether it would be sufficient to
combine already known techniques from both directions or whether one has to proceed
with a different method.

7.2.1 A Deterministic Algorithm

In this section, we describe and analyze a deterministic algorithm with competitive ratio of
O(K logn). The algorithm, presented by [50], generalizes an online algorithm for Facility

Location introduced by Fotakis in [31].

We consider the nested version of the problem, which is equivalent up to a constant
factor in the competitive ratio. We have already described the primal and dual programs
for the offline Facility Leasing problem. We keep the same notation here.

In the online setting, each demand arrives one after the other. The algorithm maintains
K sets of facilities opened so far, where Fk is the set of type-k facilities we have opened.
Moreover, let us denote by d(Fk,dtj) = minfki (t ′)∈Fk,t∈Ik

t ′
d(i, j), i.e. the distance of a

demand from the closest open facility which can serve it.

During the algorithm, each demand dtj keeps a bid towards every facility fki (t
′) /∈ F =⋃

k Fk such that t ∈ Ikt ′ . Specifically, the bid is

bid(dtj , f
k
i (t
′)) = max{0, min{vjt,d(Fk,dtj)} − d(i, j)}

The bidding intuitively corresponds to the value the demand would be willing to pay so
as to open this particular facility. Clearly, if the demand does not profit from opening
the facility (i.e. an open facility is closer), then the demand bids nothing. The algorithm
maintains the invariant that the sum of bids for each facility which is not open is no more
than the cost of opening this facility.

Analysis. The analysis of the competitive ratio is based on dual fitting ([60]) and
involves several steps. First, let us express the connection cost of the demands in terms
of the dual variables of the algorithm. The following lemma holds.

Lemma 7.2.1. The sum of the connection costs Cd is at most
∑
dtj∈D vjt.

7.2. ONLINE FACILITY LEASING 63

Algorithm 3: Online Facility Leasing

Consider a new demand dtj arriving at time t and let D be the set of the current
demands. The algorithm then increases the dual variable vjt, which is initially set
to zero. This is equivalent to the demand bidding max{0, vjt − d(i, j)} towards any
facility fki (t). The increase stops as soon as one of the following happens:

• vjt = d(i, j) for some facility fki (t
′) ∈ Fk with t ∈ Ikt ′ . Then, notice that we cannot

increase vjt any further, since then the sum of the bids would be greater than the
opening cost of fki (t), thus violating the dual constraint.

• For a facility fki (t
′) /∈ F such that t ∈ Ikt ′ it holds that∑

dt̂
ĵ
∈D∪{dtj }

bid(dt̂
ĵ
, fki (t

′)) = cki

In this case, we add fki (t
′) to Fk (and hence to F).

Finally, the demand dtj is connected to the closest open facility in F.

Proof. When a demand dtj is assigned to an already open facility fki (t
′), it holds that

vjt = d(j, i); hence its dual variable equals the connection cost. Otherwise, the demand
must have contributed to the opening of the facility fki (t

′) the demand was assigned to.
Then, it holds that vjt > d(i, j). In either case, the dual variable is always greater than or
equal to its connection cost. Summing for each demand, we easily obtain the lemma.

Lemma 7.2.2. The sum of the facility costs Cf is at most K ·
∑
dtj∈D vjt.

Proof. Clearly, when a facility opens, the opening cost is equal to the sum of the bids
made at that time. Hence, it suffices to show that for any demand dtj , the contribution of
the bids towards opening facilities of type k is at most the value of the dual variable vjt.
Since we have exactly K different lease types, the above fact implies the bound the lemma
states.

Fix a demand dtj and a lease type k. We first observe that at any time and for any
facility fki (t

′), it holds that bid(dtj , f
k
i (t
′)) 6 vjt, i.e. the demand never bids more than its

dual variable. Now, let us consider the sequence of facilities in Fk where dtj contributes,
ordered by time of opening: f0, f1, . . . , fm. Clearly, the facilities in this sequence are in
order of decreasing distance to the demand dtj (this happens because a demand never
profits by bidding for a facility which is further than the closest one). For the first facility

64 CHAPTER 7. ONLINE LEASING PROBLEMS

f0, the demand contributes at most vjt − d(f0,dtj). After that, it holds that d(Fk,dtj) 6

d(f0,dtj), so the demand may not contribute more than d(f0,dtj)−d(f1,dtj) for the second
facility. Generally, the demand contributes at most d(fs,dtj) − d(fs+1,dtj) for any facility
fs, 0 6 s < m. Summing, the total contribution of dtj will be at most

vjt − d(f0,dtj) +
∑

0>s<m

{d(fs,dtj) − d(fs+1,dtj)} = vjt − d(fm,dtj) 6 vjt

and this concludes the proof of the lemma.

By combining the two lemmata, we easily obtain the following corollary.

Corollary 7.2.3. The total cost of the solution is at most (K+ 1) ·
∑
dtj∈D vjt.

If we would have that the dual solution is feasible, then the above corollary would
imply a (K+ 1) competitive ratio. However, the dual solution produced by the algorithm
is infeasible. Nevertheless, we can prove using a dual fitting argument that, dividing the
dual variables by the harmonic number Hn = 1 + 1

2 + 1
3 + . . . + 1

n , we get a feasible dual
solution. This implies a competitive ratio of O(K · logn). We next present the lemma
along with its formal proof. Let α = 1

2(Hn+1) .

Lemma 7.2.4. For any subset of demands S ⊆ D, and any facility fki (t
′), it holds that

∑
dtj :t∈Ikt ′

(α · vjt − d(i, j)) 6 cki

Proof. We will say that a demand l is related to an open facility fki (t
′) when vl > d(l, i).

Consider the set of demands S = {1, 2, . . . ,m} ordered according to the time they get
related to some k-type facility. If there exist demands which become related at the same
iteration, we order them in increasing order of vj−d(i, j), breaking ties arbitrarily. Clearly,
we may assume w.l.o.g. that every such demand arrives within the interval Ikt ′ , otherwise
it would not contribute to the left hand sum of the inequality.

Now, let us fix a demand l ∈ S such that l is related to a facility fki (t
′). Let Fk be the

set of open facilities at the beginning of the iteration when l first becomes related to the
facility. Moreover, denote by h < l the demand that first becomes related to fki (t

′) during
this iteration according to our ordering. Consider the invariant the algorithm maintains
for the demand l and this facility at the iteration l became related to it.

7.2. ONLINE FACILITY LEASING 65

cki >
∑

j∈{1,...,l}

bid(j, fki (t
′)) >

∑
j∈{1,...,l}

min{vj,d(Fk, j)} − d(i, j)

>
∑

j∈{1,...,h−1}

{d(Fk, j) − d(i, j)} +
∑

j∈{h,...,l}

{vj − d(i, j)}

>
∑

j∈{1,...,h−1}

d(Fk, j) − d(i, j) + (l− h+ 1) · (vl − d(i, l))

The last inequality holds because we have ordered demands that become related during
the same iteration in increasing order of vj − d(i, j). In order to further manipulate this
equation, consider a previous demand j related to fki (t

′). Clearly, the dual variable vl will
never increase more than the distance of l to the closest open facility. Hence, we have that
vl 6 d(l, Fk) 6 d(l, j) + d(j, Fk) 6 d(i, l) + d(i, j) + d(j, Fk), using repeatedly the triangle
inequality. From this, we obtain that

d(Fk, j) − d(i, j) > vl − d(i, l) − 2d(i, j)

Hence, the equation becomes

cki >
∑
j<h

{vl − d(l, i) − 2d(i, j)} + (l− h+ 1) · (vl − d(i, l))

> l · (vl − d(i, l)) − 2
∑
j<l

d(i, j)

Dividing the equation by l, we get that

cki
l

> vl − d(i, l) −
2
l

∑
j<l

d(i, j)

However, set S may contain demands which are not related to any facility of type k.
Consider such a demand with the smallest possible index q + 1. Clearly, the sum of the
dual variables of these demands will never be larger than cki , i.e.∑

j∈S:j>q

(vj − d(i, j)) 6 cki

Adding this inequality and all the other inequalities for l = 1, . . . ,q, we get that:

(Hq + 1) · cki >
∑

l=1,...,m

(vl − d(i, l)) −
∑

l=1,...,q

2
l

∑
j<l

d(i, j)

Simple algebraic manipulations of the above inequality obtain that∑
l∈S

(α · vl − d(i, l)) 6 cki

which concludes the proof of the lemma.

66 CHAPTER 7. ONLINE LEASING PROBLEMS

Theorem 7.2.5. [50] There is an online algorithm for the Facility Leasing problem
with competitive ratio O(K · logn).

7.2.2 A Randomized Algorithm

In this section, we present a simple randomized algorithm for the online uniform Facility

Leasing problem (Simple-Random). Simple-Random achieves an expected competi-
tive ratio of O(K· logn

log logn), which is smaller in expectation than the competitive ratio of the
deterministic algorithm of the previous section. The algorithm is based on the randomized
online algorithm for Facility Location presented by Meyerson in [48].

Let us now describe the algorithm in full detail.

Algorithm 4: Simple-Random

Each time a new demand at point p arrives:

• For any type k = 1, . . . ,K: open a facility of type k at point p with probability
min{ δck

, 1}, where δ is the distance to the closest open facility at that time.

• Assign the demand to the closest open facility at that time.

Analysis. Let us provide an analysis for the expected competitive ratio of the above
algorithm. Consider an optimal cluster C∗i around an optimum facility c∗i of type k. Denote
by A∗i the sum of the assignment costs of all demands attributed to c∗i . Furthermore, let
a∗i = A∗i/|C

∗
i |, where |C∗i | denotes the number of demands assigned to c∗i . Clearly, the

total cost of the cluster in the optimal solution is A∗i + ck.

We next partition the demands in C∗i into sets Sj, 1 6 j 6 u. The set Sj includes all
demands with distance from the optimal center between dj−1a∗i and dja∗i (d and u are
parameters which will be fixed later). The demands with distance at most a∗i are called
inner demands (set S0). For the purposes of our analysis, we have to ensure that Su+1 will
be empty. Indeed, if we guarantee that du > n, then Su+1 must be empty, as otherwise
the total assignment cost would be A∗i > du · a∗i > n · a∗i > |C∗i | · a∗i = A∗i , which is a
contradiction. Hence, u and d must be chosen such that du > n.

Now, let us consider some set Sj. We will bound the total amount that any demands
in Sj cost to the online algorithm. We will first compute the expected cost we pay for
assignment costs before we open a facility of type k. It is easy to see that the expected
assignment cost of the demands will be at most ck before a facility of type k first opens
in Sj. Any subsequent demand w in Sj will be at distance from the optimum center

7.2. ONLINE FACILITY LEASING 67

d∗w > dj−1a∗i and, since we have a facility of type k open inside Sj, the optimal center c∗i
will be at distance at most dja∗i from a facility of type k. Using the triangle inequality,
we obtain for w that the minimum distance δ from any open facility is bounded by
δ 6 dj · a∗i + d∗w 6 (d + 1)d∗w. Thus, the expected cost for any such demand w is
bounded by

δ+

i=K∑
i=1

δ

ci
· ci = (K+ 1) · δ 6 (K+ 1) · (d+ 1) · d∗w

demands

inner

demands

Sj

c∗i

w

dj−1a∗i

faility

open k-type

dja∗i

d∗w

ck

Figure 7.1: The partition of an optimal cluster C∗i to the sets Sj and the inner demands.
One can observe how we can bound the minimum distance from any demand w to the
closest facility when a facility has already opened in the same set.

However, before we open the first facility of type k, we have to pay for the possible
opening of facilities of smaller type. How much do we expect to pay? Notice that each
demand contributes on expectation the same for the opening of facilities of any type.
Hence, we pay an expected ck for the facilities of any type l < k. Summing for each type
smaller than k, we obtain that the expected cost for the opening of facilities of smaller
type will be (k− 1) · ck.

Now, it remains to bound the cost for the inner demands. After the opening of any
facility of type k in a distance less than a∗i from the optimum center, for any inner demand
w we will have that δ 6 d∗w + a∗i (applying again the triangle inequality). By the same
argument as before, we pay at most (k−1)·ck before opening such a facility of type k, plus
ck for the opening of the facility, plus an expected (K+ 1) · (d∗w + a∗i) for any subsequent

68 CHAPTER 7. ONLINE LEASING PROBLEMS

demand.

Summing up, we have a total expected cost C which is bounded by

C =
∑
i=1...u

{k · ck + (K+ 1) · (d+ 1) ·
∑
w∈Si

d∗w} + k · ck + (K+ 1) ·
∑
w inner

(d∗w + a∗i)

6(u+ 1) · k · ck + (K+ 1) · (d+ 1){
∑
i=1...u

∑
w∈Si

d∗w +
∑
w inner

d∗w +
∑
w inner

a∗i }

6(u+ 1) · K · ck + (K+ 1) · (d+ 1) · 2Ai∗

It is easy to see that by setting the parameters u = d = logn
log logn , we ensure that du > n

and we obtain an O(K · logn
log logn) competitive ratio for Simple-Random. Thus, we have

proved the following theorem.

Theorem 7.2.6. Simple-Random achieves an expected competitive ratio of O(K· logn
log logn)

for the online Facility Leasing problem.

Bibliography

[1] Agrawal, A., Klein, P. N., and Ravi, R. When trees collide: An approximation
algorithm for the generalized steiner problem on networks. SIAM J. Comput. 24, 3
(1995), 440–456.

[2] Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. A general
approach to online network optimization problems. ACM Transactions on Algorithms
2, 4 (2006), 640–660.

[3] Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. The online
set cover problem. SIAM J. Comput. 39, 2 (2009), 361–370.

[4] Alon, N., Moshkovitz, D., and Safra, S. Algorithmic construction of sets for
k-restrictions. ACM Trans. Algorithms 2 (April 2006), 153–177.

[5] Andrews, M., and Zhang, L. Wavelength assignment in optical networks with
fixed fiber capacity. In ICALP (2004), J. Dı́az, J. Karhumäki, A. Lepistö, and D. San-
nella, Eds., vol. 3142 of Lecture Notes in Computer Science, Springer, pp. 134–145.

[6] Anthony, B. M., and Gupta, A. Infrastructure leasing problems. In IPCO (2007),
M. Fischetti and D. P. Williamson, Eds., vol. 4513 of Lecture Notes in Computer
Science, Springer, pp. 424–438.

[7] Ariyawansa, K. A., and Felt, A. J. On a new collection of stochastic linear
programming test problems. INFORMS Journal on Computing 16, 3 (2004), 291–
299.

[8] Awerbuch, B., and Azar, Y. Buy-at-bulk network design. In FOCS (1997),
pp. 542–547.

[9] Awerbuch, B., Azar, Y., and Bartal, Y. On-line generalized steiner problem.
In SODA (1996), pp. 68–74.

69

70 BIBLIOGRAPHY

[10] Bar-Yehuda, R., and Even, S. A linear-time approximation algorithm for the
weighted vertex cover problem. J. Algorithms 2, 2 (1981), 198–203.

[11] Bartal, Y. Probabilistic approximations of metric spaces and its algorithmic appli-
cations. In FOCS (1996), pp. 184–193.

[12] Berman, P., and Coulston, C. On-line algorithms for steiner tree problems
(extended abstract). In STOC (1997), pp. 344–353.

[13] Birge, J. R., and Louveaux, F. Introduction to Stochastic Programming, cor-
rected ed. Springer Series in Operations Research and Financial Engineering.
Springer, July 1997.

[14] Borodin, A., and El-Yaniv, R. Online computation and competitive analysis.
Cambridge University Press, New York, NY, USA, 1998.

[15] Borradaile, G., Klein, P. N., and Mathieu, C. A polynomial-time approxima-
tion scheme for euclidean steiner forest. In FOCS (2008), IEEE Computer Society,
pp. 115–124.

[16] Buchbinder, N., and Naor, J. The design of competitive online algorithms via a
primal-dual approach. Foundations and Trends in Theoretical Computer Science 3,
2-3 (2009), 93–263.

[17] Byrka, J., and Aardal, K. An optimal bifactor approximation algorithm for
the metric uncapacitated facility location problem. SIAM J. Comput. 39, 6 (2010),
2212–2231.

[18] Byrka, J., Grandoni, F., Rothvoß, T., and Sanità, L. An improved lp-based
approximation for steiner tree. In Proceedings of the 42nd ACM symposium on Theory
of computing (New York, NY, USA, 2010), STOC ’10, ACM, pp. 583–592.

[19] Chan, T. M., and Zarrabi-Zadeh, H. A randomized algorithm for online unit
clustering. Theory Comput. Syst. 45, 3 (2009), 486–496.

[20] Charikar, M., Chekuri, C., Feder, T., and Motwani, R. Incremental cluster-
ing and dynamic information retrieval. SIAM J. Comput. 33, 6 (2004), 1417–1440.

[21] Charikar, M., Chekuri, C., and Pál, M. Sampling bounds for stochastic opti-
mization. In APPROX-RANDOM (2005), pp. 257–269.

[22] Charikar, M., and Guha, S. Improved combinatorial algorithms for the facility
location and k-median problems. In FOCS (1999), pp. 378–388.

BIBLIOGRAPHY 71

[23] Charikar, M., and Panigrahy, R. Clustering to minimize the sum of cluster
diameters. J. Comput. Syst. Sci. 68, 2 (2004), 417–441.

[24] Chudak, F. A., and Shmoys, D. B. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM J. Comput. 33, 1 (2003), 1–25.

[25] Csirik, J., Epstein, L., Imreh, C., and Levin, A. Online clustering with variable
sized clusters. In MFCS (2010), P. Hlinený and A. Kucera, Eds., vol. 6281 of Lecture
Notes in Computer Science, Springer, pp. 282–293.

[26] Dantzig, G. Linear programming under uncertainty. Management Science 1 (1955),
197–206.

[27] Dantzig, G. Linear Programming and Extensions. Princeton University Press,
Princeton,NJ, 1998.

[28] Daskin, M. S. Network and Discrete Location: Models, Algorithms, and Applica-
tions. Wiley-Interscience, 1995.

[29] Drezner, Z., and Hamacher, H. Facility Location: Applications and Theory.
Springer, 2004.

[30] Fakcharoenphol, J., Rao, S., and Talwar, K. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69, 3 (2004), 485–497.

[31] Fotakis, D. A primal-dual algorithm for online non-uniform facility location. J.
Discrete Algorithms 5, 1 (2007), 141–148.

[32] Fotakis, D. On the competitive ratio for online facility location. Algorithmica 50,
1 (2008), 1–57.

[33] Goemans, M. X., and Williamson, D. P. A general approximation technique for
constrained forest problems. SIAM J. Comput. 24, 2 (1995), 296–317.

[34] Goemans, M. X., and Williamson, D. P. The primal-dual method for approxi-
mation algorithms and its application to network design problems. PWS Publishing
Co., Boston, MA, USA, 1997, pp. 144–191.

[35] Goyal, S. K., and Giri, B. C. Recent trends in modeling of deteriorating inventory.
European Journal of Operational Research 134, 1 (2001), 1–16.

[36] Guha, S., and Khuller, S. Greedy strikes back: Improved facility location algo-
rithms. J. Algorithms 31, 1 (1999), 228–248.

72 BIBLIOGRAPHY

[37] Guha, S., Meyerson, A., and Munagala, K. Hierarchical placement and net-
work design problems. In FOCS (2000), pp. 603–612.

[38] Gupta, A., Kumar, A., Pál, M., and Roughgarden, T. Approximation via
cost sharing: Simpler and better approximation algorithms for network design. J.
ACM 54, 3 (2007), 11.

[39] Gupta, A., Pál, M., Ravi, R., and Sinha, A. Boosted sampling: approxima-
tion algorithms for stochastic optimization. In STOC (2004), L. Babai, Ed., ACM,
pp. 417–426.

[40] Gupta, A., Pál, M., Ravi, R., and Sinha, A. What about wednesday? approx-
imation algorithms for multistage stochastic optimization. In APPROX-RANDOM
(2005), pp. 86–98.

[41] Hayrapetyan, A., Swamy, C., and Tardos, É. Network design for information
networks. In SODA (2005), SIAM, pp. 933–942.

[42] Hwang, F. K., Richards, D. S., and Winter, P. The Steiner Tree Problem.
North-Holland, 1992.

[43] Imase, M., and Waxman, B. M. Dynamic steiner tree problem. SIAM J. Discrete
Math. 4, 3 (1991), 369–384.

[44] Immorlica, N., Karger, D. R., Minkoff, M., and Mirrokni, V. S. On the
costs and benefits of procrastination: approximation algorithms for stochastic combi-
natorial optimization problems. In SODA (2004), J. I. Munro, Ed., SIAM, pp. 691–
700.

[45] Jain, K., Mahdian, M., and Saberi, A. A new greedy approach for facility
location problems. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing (New York, NY, USA, 2002), STOC ’02, ACM, pp. 731–740.

[46] Jain, K., and Vazirani, V. V. Approximation algorithms for metric facility loca-
tion and -median problems using the primal-dual schema and lagrangian relaxation.
J. ACM 48, 2 (2001), 274–296.

[47] Karlin, A. R., Manasse, M. S., Rudolph, L., and Sleator, D. D. Competitive
snoopy caching. Algorithmica 3 (1988), 77–119.

[48] Meyerson, A. Online facility location. In FOCS (2001), pp. 426–431.

BIBLIOGRAPHY 73

[49] Meyerson, A. The parking permit problem. In In FOCS ’05: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science (2005), pp. 274–284.

[50] Nagarajan, C., and Williamson, D. P. Offline and online facility leasing. In
IPCO (2008), A. Lodi, A. Panconesi, and G. Rinaldi, Eds., vol. 5035 of Lecture Notes
in Computer Science, Springer, pp. 303–315.

[51] Nahmias, S. Perishable inventory theory: a review. Oper Res 30, 4 (1982), 680–708.

[52] Ravi, R., and Sinha, A. Hedging uncertainty: Approximation algorithms for
stochastic optimization problems. In IPCO (2004), G. L. Nemhauser and D. Bien-
stock, Eds., vol. 3064 of Lecture Notes in Computer Science, Springer, pp. 101–115.

[53] Raz, R., and Safra, S. A sub-constant error-probability low-degree test, and a
sub-constant error-probability pcp characterization of np. In STOC (1997), pp. 475–
484.

[54] Robins, G., and Zelikovsky, A. Tighter bounds for graph steiner tree approxi-
mation. SIAM J. Discrete Math. 19, 1 (2005), 122–134.

[55] Salman, F. S., Cheriyan, J., Ravi, R., and Subramanian, S. Approximat-
ing the single-sink link-installation problem in network design. SIAM Journal on
Optimization 11, 3 (2001), 595–610.

[56] Shmoys, D. B., and Swamy, C. Stochastic optimization is (almost) as easy as
deterministic optimization. In FOCS (2004), IEEE Computer Society, pp. 228–237.

[57] Shmoys, D. B., Tardos, É., and Aardal, K. Approximation algorithms for
facility location problems (extended abstract). In STOC (1997), pp. 265–274.

[58] Srinivasan, A. Approximation algorithms for stochastic and risk-averse optimiza-
tion. In SODA (2007), N. Bansal, K. Pruhs, and C. Stein, Eds., SIAM, pp. 1305–1313.

[59] Swamy, C., and Shmoys, D. B. Sampling-based approximation algorithms for
multistage stochastic optimization. In In Proceedings of the 46th Annual IEEE Sym-
posium on Foundations of Computer Science (2005), pp. 357–366.

[60] Vazirani, V. V. Approximation Algorithms. Springer, July 2001.

[61] Westbrook, J., and Yan, D. C. K. Greedy algorithms for the on-line steiner tree
and generalized steiner problems. In WADS (1993), F. K. H. A. Dehne, J.-R. Sack,
N. Santoro, and S. Whitesides, Eds., vol. 709 of Lecture Notes in Computer Science,
Springer, pp. 622–633.

74 BIBLIOGRAPHY

[62] Yao, A. C.-C. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In FOCS (1977), IEEE, pp. 222–227.

[63] Zarrabi-Zadeh, H., and Chan, T. M. An improved algorithm for online unit
clustering. Algorithmica 54, 4 (2009), 490–500.

[64] Zelikovsky, A. An 11/6-approximation algorithm for the network steiner problem.
Algorithmica 9, 5 (1993), 463–470.

	Introduction
	The Framework
	Definition
	Examples of Leasing Problems
	Steiner Tree Leasing
	Steiner Forest Leasing
	Facility Leasing
	Set Leasing
	Sum-Radii Leasing

	The Structure of Leasing Problems

	Multistage Stochastic Optimization and Leasing
	Multistage Stochastic Optimization
	A Reduction from Leasing to Multistage Stochastic Optimization

	Offline Leasing Problems
	Algorithms for Leasing Problems through Stochastic Optimization
	Set Leasing
	Sum-Radii Leasing
	Facility Leasing

	The Parking Permit Problem
	Definition
	A Deterministic Approach
	Randomized Algorithms

	Online Sum-Radii Clustering
	Description of the Model
	Equivalent models
	The Deterministic Approach
	Randomized Sum-Radii Clustering
	A Lower Bound
	A Fractional Online Algorithm

	Online Leasing Problems
	Online Steiner Forest Leasing
	Online Facility Leasing
	A Deterministic Algorithm
	A Randomized Algorithm

