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Abstract

This thesis reviews selected topics from the theory of parallel computa-
tion. The research begins with a survey of the proposed models of parallel
computation. It examines the characteristics of each model and it discusses
its use either for theoretical studies, or for practical applications. Subse-
quently, it employs common simulation techniques to evaluate the computa-
tional power of these models. The simulations establish certain model rela-
tions before advancing to a detailed study of the parallel complexity theory,
which is the subject of the second part of this thesis. The second part exam-
ines classes of feasible highly parallel problems and it investigates the limits
of parallelization. It is concerned with the benefits of the parallel solutions
and the extent to which they can be applied to all problems. It analyzes the
parallel complexity of various well-known tractable problems and it discusses
the automatic parallelization of the efficient sequential algorithms. Moreover,
it compares the models with respect to the cost of realizing parallel solutions.
Overall, the thesis presents various class inclusions, problem classifications
and open questions of the field.
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Chapter 1

Introduction

Digital parallel computers date back to the late 1950s. At that time the
industry had already developed a number of sequential machines and the en-
gineers became interested in the use of parallelism in numerical calculations.
Consequently, during the 1960s and the 1970s, several shared-memory ‘mul-
tiprocessor’ systems were designed for academic and commercial purposes.
Such systems consisted of a small number of processors (1 to 4) connected
to a few memory modules (1 to 16) via a crossbar switch. The processors
were operating side-by-side on shared data. The advances in the technology
of integrated circuits and the ideas of famous architects, such as G. Amdahl
and S. Cray, contributed in the evolution of supercomputers. By the early
1980s, the Cray X-MP supercomputer could perform more than 200 Million
FLoating Operations Per Second (MFLOPS). In the mid-1980s, massively
parallel processors (MPPs) were developed by connecting mass market, off-
the-self, microprocessors. The ASCI Red MPP was the first machine to rate
above 1 Tera-FLOPS in 1996 by utilizing more than 4,000 computing nodes
arranged in a grid. The 1990s also saw the evolution of computer clusters,
which are similar to the MPPs without, however, being as tightly coupled.
A cluster consists of mass market computers, which are connected by an
off-the-shelf network (e.g., Ethernet). This architecture has gained ground
over the years characterizing most of the latest top supercomputers. The
Cray-Jaguar cluster is the fastest parallel machine today, performing almost
2 Peta-FLOPS and utilizing more than 200,000 cores.

The purely theoretical study of parallel computation begun in the 1970s
[1]. The first results concerned circuit simulations relating the model to
the Turing machine. In the second half of the decade various models of
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parallel computation were formulated, including the Parallel Random Access
Machine. Also, Pippenger introduced the class of feasible highly parallel
problems (NC), the theory of P-completeness was born, and the researchers
started identifying the inherently sequential problems. During the 1980s
and the 1990s the area expanded dramatically, flooding the literature with
numerous important papers and books. Until today, parallel computation
constitutes an active research area, which targets efficient algorithms and
architectures, as well as novel models of computation and complexity results.

Basic terms and notions

Through all these years of theory and practice certain terms and notions
have been developed. To begin with, most researchers would describe paral-
lel computing as the combined use of two, or more, processing elements to
compute a function. That is, the parts of the computation are performed
by distinct processing elements, which communicate during the process to
exchange information and coordinate their operations. The number and the
size of the parts of the computation, as well as the volume of the exchanged
information, are qualitatively characterized by terms such as granularity and
level of parallelism. Roughly, granularity indicates the ratio of computation
to communication steps: a fine grained parallel process consists of numerous
successive communication events with little local operations in between them,
while a coarse grained computation is partitioned into big tasks requiring
limited coordination (synchronization). Extremely coarse grained computa-
tions with almost no task interdependencies can be used for the so called
‘embarrassingly parallel problems’, which are the easiest to solve in parallel.
Evidently, the granularity is related to the chosen level of parallelism: task,
instruction, data, and bit level. Task level parallelism focuses on assign-
ing entire subroutines of the algorithm (possibly very different in structure
and scope) to distinct processors of the machine. At instruction level, we
focus on parallelizing consecutive program instructions by preserving their
interdependencies (as, e.g., in superscalar processors). Data level parallelism
distributes the data to be processed across different computing nodes, which
work side-by-side possibly executing the same instructions. At bit level, the
machine processes concurrently several bits of the involved datum (a tech-
nique explored mostly in circuit design). Generally, the parallelism level
and the granularity of the computation determine the use of either tightly
or loosely coupled systems. A coarse grained, task level, parallel computa-
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tion can be performed by a machine with loosely coupled components, e.g.,
off-the-self computers located at distant places (clusters). On the contrary,
a fine grained, data level, computation should be implemented on a tightly
coupled system with, e.g., shared memory multiprocessors.

Clearly, parallelization is used to obtain faster solutions than those offered
by the sequential computation. In this direction, we define the speedup of a
parallel algorithm utilizing p processors as the ratio of the time required by
a sequential algorithm over the time required by the parallel algorithm, i.e.,
speedup = T (1)/T (p). More precisely, when the sequential time corresponds
to the fastest known algorithm for that specific problem, we get the absolute
speedup. Else, when the sequential time is measured with the parallel algo-
rithm itself running on a single processor, we get the relative speedup. Note
that a parallel solution cannot reduce the sequential time by a factor greater
than the number of the utilized processors, i.e., speedup ≤ p. Consequently,
from a complexity theoretic viewpoint, in order to significantly reduce the
polynomial time of a tractable problem to, say, sublinear parallel time, we
have to invest at least a polynomial number of processors.

The aforementioned linear speedup is ideal and in most cases it cannot
be achieved by real world machines. Among applications, the speedup usu-
ally ranges from p to log p (with a middle ground at p/ log p) [2]. Based on
empirical data, the researchers propose various practical upper bounds for
the speedup, the most notable being Amdahl’s law. According to Amdahl,
each computation includes an inherently sequential part, which cannot be
parallelized. Assuming that this part is a fraction f of the entire computa-
tion, we get speedup ≤ 1/(f +(1−f)/p). This ‘sequential overhead’ f varies
with respect to the problems and the algorithms. Fortunately, in some cases
f is very small, and in other cases f decreases as the size of the problem
increases. For instance, Gustafson’s law states that increasing sufficiently
the size of a problem and distributing the workload in several processors will
probably result in almost linear speedup (experimentally confirmed), i.e.,
speedup ≤ p− fn · (p− 1). Notice the difference between the two laws: Am-
dahl examines the performance of the algorithm with respect to the number
of processors by assuming fixed-size inputs and constant f , while Gustafson
observes that f is size-dependent and probably diminishes for large datasets.
Overall, in the case of fixed size problems, we have that speedup → 1/f as
p→∞. In other words, beyond a certain number of processors, adding more
hardware to the parallel machine will have no actual effect to the execution
time. In fact, the ratio T (1)/T (∞) is called parallelism of the computation
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and it can be used either as a theoretical maximum of the speedup or as a
practical limit on the number of the useful processors [3].

Besides speedup, we are interested in the effectiveness of the parallel com-
putation. To be more precise, we define the parallel efficiency as the ratio
speedup/p (again, we have absolute and relative metrics). The efficiency
value –typically between 0 and 1– reflects the overhead of the parallelism,
such as the time spent for communication and synchronization steps (unipro-
cessors and optimal speedup algorithms have parallel efficiency equal to 1).
Alternatively, we can express the efficiency as the ratio T (1)/pT (p), which
compares the sequential cost T (1) to the parallel cost p · T (p). Note here
that the product processors × time is a common cost function, which takes
into account both time and hardware requirements of the parallel solution.
Additionally to the efficiency, we define ratios such as the redundancy =
W (p)/W (1), and the utilization = W (p)/pT (p), where W (p) denotes the
total number of operations performed by the p processors and is called work
(or energy) of the computation [2].

Thesis scope and organization

The current thesis reviews parallel computation from a theoretical viewpoint.
First, it is concerned with the formal description of the computation and
the understanding of abstract notions such as concurrency and coordina-
tion. Hence, chapter 2 surveys the models of parallel computation that have
been proposed by various researchers in the literature. All these modeling
approaches show the line of thought developed by experts studying paral-
lelism and, at the same time, summarize the design trends used in real world
applications.

The diversity of the models in the literature gives rise to certain ques-
tions. Most of them regard the computational power of these models and the
ability to migrate solutions between them in a mechanical fashion. That is,
given the formal description of a computation for a specific model (a program
or a circuit) it is important to study generalized techniques, called simula-
tions, which allow the given computation to be performed by another model.
Chapter 3 uses simulations to investigate the abilities of certain categories of
models and to compare model variations with respect to the cost of realizing
parallel solutions.

Having been acquainted with the basics of parallel computation, the thesis
continues with a second part devoted to the study of problems. Specifically, it

6



is concerned with fundamental questions such as: are all problems amenable
to parallelization? Can we use parallelization to solve intractable problems?
How can we classify problems respectfully to the parallelization difficulty?
How are these classes related? What is the relation between parallel and
sequential computation cost? Is there a way to transform algorithmically
an efficient sequential solution to an efficient parallel solution? Such ques-
tions are tackled, among others, by the parallel complexity theory, which is
explored in chapter 4. Finally, chapter 5 concludes this thesis.
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Chapter 2

Models of Parallel
Computation

Prior to designing parallel solutions, analyzing algorithms, or studying the
parallel complexity of problems, we must define a suitable model to describe
the parallel computation. A model of parallel computation is a parameterized
description of a class of machines [1]. Each machine in the class is capable of
computing a specific function and is obtained from the model by determining
values for its parameters (e.g., a Turing machine is obtained by determining
the work tapes, the symbol sets, the states and the transition function).

Over the years, several models of parallel computation have been pro-
posed in the literature. Although many of them are widely used until today,
none was ever universally accepted as dominant. The reason is that each
model serves a slightly different goal than the others, rendering its own use
indisputable. To explain the diversity in modeling parallel computation, one
should examine the modeling trends summarized in the following four axes:
computation, concurrency, theory, and practice. That is, a parallel model
should capture the notion of computation and, moreover, the notion of con-
currency. Regarding the first, it is clear that we can adopt the outcome of the
efforts made in the domain of the sequential computation (which is already
vast). Regarding the second, the model must reflect the fact that different
parts of the computation are performed in parallel and, more essentially, it
must include a means of communication for the coordination of the entire
computation. By combining computation and communication ideas, we can
derive a plethora of parallel models. In another direction, the model designer
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must make choices between theory and practice. That is, the designer must
balance factors such as generality and technicality, ease of performance anal-
ysis and plausibility of real-world implementation, novelty and historical use,
etc. Depending on the intended use and the available technology, the choices
add a flexibility, which inevitably leads to a proliferation of different models.

Considering the above, the current chapter describes the majority of the
parallel models of the literature. The presentation of the models is organized
as follows. We begin with the processor-based machines, i.e., the models
capturing computation with the use of powerful components able to com-
pute complicated functions on their own. These models are further divided
in two major categories according to the employed communication method:
common memory or message exchanges. The third section introduces the
circuit models, which capture computation based on very low complexity
components and communication lines. Within each one of the three sections,
the presentation begins with a high level of abstraction (mostly theoretic
models) and continues with the incorporation of real-world details to discuss
practical models. Finally, the fourth section describes models beyond these
categories, obsolete and novel modeling approaches, as well as architectural
taxonomies of the modern parallel computers.

2.1 Shared Memory Models

The shared memory models were among the first to be proposed for the
study of parallel computation (1970s). The most characteristic shared mem-
ory model is the PRAM. In fact, every other model of the category can be
viewed as an extension of the original PRAM of Fortune and Wyllie. In a
natural generalization of the single processor, the PRAM is a collection of
independent processors with ordinary instruction sets and local memories,
plus one central, shared, memory to which every processor is connected in a
random access fashion (figure 2.1). Note that the processors cannot commu-
nicate directly with each other; their communication is performed through
the central memory (via designated variables).

The original PRAM is an ideal model, which abstracts away many of
the real world implementation details. As a result, it allows for a straight-
forward performance analysis of the parallel algorithm. However, in some
cases, the disregard of real world parameters might lead to false estimations
of practical situations. As a remedy, certain extensions have been added to
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Figure 2.1: The shared memory model: processors and common memory

the PRAM over the years in order to keep track of the current technology
aspects. The following subsections describe the PRAM with its variations
and its extensions.

2.1.1 PRAM

The Parallel Random Access Machine (PRAM) was introduced in 1978 [4].
It bases on a set of Random Access Machines (RAMs) sharing a common
memory and operating in parallel. Formally,

Definition 2.1.1. A PRAM consists of an unbounded set of processors P =
{P0, P1, . . .}, an unbounded global memory, a set of input registers, and a
finite program. Each processor has an unbounded local memory, an accu-
mulator, a program counter, and a flag indicating whether the processor is
running or not.

All memory locations (cells) and accumulators are capable of holding ar-
bitrary long integers. Following the RAM notion in [5], the PRAM program is
a finite sequence of instructions Π = 〈π0, π1, . . . , πm〉, where each labeled in-
struction πi is one of the types LOAD, STORE, ADD, SUB, JUMP, JZERO,
READ, FORK, HALT. At each time instant, Pi can access either a cell of
the global memory or a cell of its local memory (it cannot access the local
memory of another processor).

Initially, the input to the PRAM, x ∈ {0, 1}n, is placed in the input reg-
isters (n is placed in the accumulator of P0), all memory is cleared and P0

is started. During the computation, a processor Pi can activate any other
processor Pj by using a FORK instruction to determine the contents of Pj’s
program counter. The processors operate in lockstep, i.e. they are synchro-
nized to execute their corresponding instructions simultaneously (in one unit
of time). Afterwards, they immediately advance to the execution of their next
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instruction indicated by their corresponding program counter. The program
execution terminates when P0 halts and the input is accepted only when the
accumulator of P0 contains “1”. The execution time is defined as the total
number of instructions (steps) executed by P0 during the computation.

Definition 2.1.2. Let M be a PRAM. M computes in parallel time t(n) and
processors p(n) if for every input x ∈ {0, 1}n, machine M halts within at
most t(n) time steps and activates at most p(n) processors.

M computes in sequential time t(n) if it computes in parallel time t(n)
using 1 processor.

Definitions 2.1.1 and 2.1.2 form the basis of the PRAM. By elaborating
on the specifics of the model, we derive a number of well-known PRAM
variations. Naturally, the first question that follows the above description
concerns the memory policy of the model: what happens when more than
one processors try to access the same cell of the shared memory? As shown
below, simultaneous access to shared memory can be arbitrated in various
ways.

Memory Policies of PRAMs

Generally, we consider that the instruction cycle separates shared memory
reads from writes [1]. Each PRAM instruction is executed in a cycle with
three phases: 1) a read phase –if any– from the shared memory is performed,
2) a computation –if any– associated with the instruction is done, and 3)
a write –if any– to shared memory is performed. This convention elimi-
nates read/write conflicts to the shared memory, but it does not eliminate
read/read and write/write conflicts. These conflicts are resolved based on
concepts such as exclusiveness, concurrency, priority, etc. More specifically,
we have the following model variations [2]:

• EREW-PRAM : exclusive-read, exclusive-write PRAM. Only one pro-
cessor can read the contents of a shared cell at any time instant. Simi-
larily, only one processor can write to a shared cell at any time instant
(conflicts result in execution halting and rejection).

• CREW-PRAM : concurrent-read, exclusive-write PRAM. This model
corresponds to the first definition of the PRAM and it is considered as
the default variation of the model. Any number of processors can read
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from the same memory location, but only one can write to a shared
cell at any time instant.

• ERCW-PRAM : exclusive-read, concurrent-write PRAM. Only one pro-
cessor can read from a cell, but many processors can write to a cell at
any time instant (not a very rational convention, considering that CW
technology should render CR even simpler).

• CRCW-PRAM : concurrent-read, concurrent-write PRAM. Any num-
ber of porcessors can read/write to any cell at any time instant. It is
the most powerfull of the model variations.

Besides EW, more restricted models exist, which are based on the concept
of ownership [6]. These are called the owner write (EROW/CROW) models
and they avoid conflicts by having each processor own one cell to which all
his write operations are performed.

In the case of concurrent writes, we must further define a policy deter-
mining the exact data to be written in the requested cell [2]:

undefined CRCW-PRAM : an undefined value is written in the cell.
detecting CRCW-PRAM : a special code “detected collision” is written.
random CRCW-PRAM : an offered datum in random is chosen.
common CRCW-PRAM : write when all the offered data are equal.
max/min CRCW-PRAM : the largest/smallest datum is written.
reduction CRCW-PRAM : a logical/arithmetic operation (and/or/sum)

is performed to the multiple data and the
resulting value is written in the cell.

priority CRCW-PRAM : based on a predetermined ordering (e.g. that
of the PIDs), the processor with the highest
priority writes its datum in the cell.

Computing Functions with PRAM

Besides accepting languages, PRAMs can be used to compute functions. For
such computations we must slightly modify the output of the model: we equip
the PRAM with a set of output registers (similar to the input registers). We
say that a machine M computes a function f(x) = y with x, y ∈ {0, 1}∗
if whenever it is started with x in its input registers, it will eventualy halt
holding y in its output registers. Note that the use of I/O registers allows
the study of sublinear time [4].
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Another input/output convention [1], is to present an input x ∈ {0, 1}n

to the machine M by placing the integer n in the first shared memory cell C0

and the bits x1, x2, . . . , xn in cells C1, C2, . . . , Cn. Similarly, M will present
its output y ∈ {0, 1}m by placing m in C0 and the bits y1, y2, . . . , yn in cells
C1, C2, . . . , Cn.

Definition 2.1.3. Let f be a function from {0, 1}∗ to {0, 1}∗. The function
f is computable in parallel time t(n) and processors p(n) if there is a PRAM
M that on input x outputs f(x) in time t(n) and processors p(n).

Nondeterminism in PRAM

Another important aspect of PRAM is nondeterminism. A nondeterministic
PRAM can be defined as a collection of nondeterministic RAMs operating
in parallel. To be more precise, consider that each instruction πi of the
PRAM program Π is labeled. If some label appears more than once in
Π, then we have a nondeterministic PRAM M [4]. Alternatively, we can
envisage the nondeterministic PRAM as a program Π with uniquely labeled
instructions πi, where each JUMP instruction can branch to more than one
labels (e.g. JUMP {L1,L5,L7}). This definition is analogous to the definition
of the nondeterministic Turing Machine (TM), where the transition function
of the DTM becomes a relation allowing the NTM to branch from a single
configuration to many distinct configurations at any step of the computation.
Similarly to the NTM, the input to the NPRAM is accepted only if there
exists a computation path in which processor P0 halts with a “1” in its
accumulator. Time and processor complexity for the NPRAM is defined as
in definition 2.1.2.

SIMDAG

The Single Instruction stream Multiple DAta stream Global memory machine
(SIMDAG) was introduced independently in 1978 [7]. However, it can be
considered as the special case of the PRAM where the program counter
is common for all processors, i.e., all active processors execute the same
instruction πi at each step of the computation. Note that each processor
may operate on different data values than the other processors (multiple
data stream). The original SIMDAG corresponds to a CREW machine with
a control unit common for all processors.
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2.1.2 PRAM Extensions

The ordinary PRAM is a good model for expressing the logical structure
of parallel algorithms and is very useful for their gross classification. How-
ever, the abstraction level of this model hides important performance bot-
tlenecks that appear in real world applications. The PRAM assumes unit
cost access to the shared memory (independent of the number of proces-
sors), infinite bandwidth for the memory-to-processor communication (and
thus for the processor-to-processor communication), and makes many more
unrealistic implications. Such conventions might lead to the development of
algorithms with a very degraded performance when tested in practice. To
reduce the theory-to-practice disparity, numerous modifications and exten-
sions have been added to the PRAM model during the past three decades.
The following paragraphs present the most prominent of these models.

PRAM with Memory Latency

The most common criticism of the simple PRAM model is the unit cost ac-
cess to the shared memory. Under this assumption, the PRAM does not
discourage the design of algorithms which access the shared memory con-
tinuously (nor the superfluous interprocessor communication via the shared
memory). It charges the same cost to any instruction independently of the
number of the active processors. However, the implementation of algorithms
that read/write excessively to the shared cells would lead any real world sys-
tem to memory contention. Therefore, the cost of a memory access would
increase and the actual performance of the algorithm would diverge from its
theoretical estimation1.

A shared memory access in real multiprocessor systems consumes tens to
thousands of instruction cycles. Whichever the underlying interconnection
network is, the delay increases with the number of the active processors
(either because of the message contention, or because of the expansion of
the hardware to support larger communication paths). Such a phenomenon
should be taken into account by any theoretical model trying to capture the
behavior of a parallel algorithm and lead to efficient solutions.

A first approach is to equip the PRAM with a parameter δ defining the
delay of the processor-to-memory communication, measured in elementary

1notice that the memory policies discussed in the previous subsection deal with con-
tention for a single shared cell, not with contention for the entire shared memory.
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steps of the processors (instruction cycles) [2]. Since δ is a function of the
number of processors |P | and the underlying interconnection, it should be
determined prior to the design or the analysis of a parallel algorithm for
the PRAM. In the resulting model the cost of a read/write operation to the
shared memory is δ and not unit (unless δ = 1), i.e., we have a “non-uniform
memory access” model. Consequently, the algorithm designer should attemp
to minimize the global communication by judicious use of the corresponding
read/write instructions in the porgram Π.

A second approach –a generalization of the first– is given in [8]. The
key idea bases on an observation regarding the memory service in real world
computers. When a processor accesses a block of shared cells, typically, it
takes a substantial period of time to access the first cell, but after that,
subsequent cells can be accessed quite rapidly. This might occur because of
the data caching techniques or because of the policies employed for congestion
control (in message passing systems).

The Block Parallel Random Access Machine (BPRAM) is in many ways
similar to the pure PRAM. It includes a shared memory of unbounded size
and a number of processors |P | with their own private memories (also of
unbounded size). The instructions and the I/O conventions are the same for
both models. The basic differences lie in the number of processors, which
is fixed for the BPRAM, and in the accessing of the shared memory: the
LOAD-STORE instructions of the BPRAM refer to a whole block of the
shared memory (a number of contiguous cells) of length b (b = 1 for a single
cell). The cost of accessing such a block is l + b, where l is the latency of the
memory service discussed above. The latency l and the number of processors
|P | are the parameters of the BPRAM. To conclude with the definition, any
number of processors may access global memory simultaneously, but in an
exclusive-read-exclusive-write (EREW) fashion. In other words, blocks that
are being accessed simultaneously cannot overlap.

Asynchronous PRAM

Synchronization is an important consideration in massively parallel machines,
of great concern to the hardware and software communities, but largely ig-
nored by the theory community. The simple PRAM assumes that the pro-
cessors execute in lockstep. However, the construction of a real machine
with this specification becomes impractical for large number of processors.
This is because of the various problems that arise with the synchronization
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of the processors, which depends on the execution time of their instructions.
To determine the length of the processors’ lockstep, one must study worst
case scenarios taking into account phenomena such as the clock skew, the
interconnection network congestion, the delay of a costly instruction (e.g.
a floating point multiplication), etc. All these delay parameters add up to
a large overhead increasing the execution time of a single computation step
and decreasing the utilization of the real machine. The synchronous approach
seems even more inefficient considering the potential functionality gained by a
generalization of the PRAM: the Asynchronous PRAM (APRAM) model [9].

The APRAM is defined as a PRAM without a global clock, i.e., each pro-
cessor can operate in its own speed. The memory-processors convention and
the set of instructions remain the same for the APRAM, with the exception
of an new type of instructions called the “synchronization steps”. A syn-
chronization step among a set P of active processors is a logical point during
the computation where each processor Pi waits for all the other processors in
P to arrive before continuing with its own local program. The use of these
instructions divides the execution of a program Π in phases, within which
each processor runs independently from the others (and thus it cannot know
the progress of the others).

The execution time of an APRM program is determined by the execution
time of its phases. Each phase is completed after all processors arrive at the
synchronization step. Consequently, each phase consumes time equal to that
of the last processor to arrive at the step plus the execution time of the step
itself, which depends to the total number of the active processors.2

Similar to the PRAM, the APRAM is a family of models that differ in
the types of the synchronization steps, in the memory policy, and in the cost
of accessing the memory. Regarding the memory policies, the APRAM sup-
ports both exclusive and concurrent read/writes (EREW, CREW, CECW).
Its major difference from the PRAM is the inability of a processor to read
a shared cell while another processor writes to it. Since APRAM misses the
lockstep, it is impossible to use the three cycles (read-compute-write) de-
scribed in the previous section to resolve the read/write conflict. Instead, we
can only use a synchronization step involving both processors between the
two accesses. With this convention, APRAM eliminates the possibility of

2the cost of a synchronization instruction is not unit; it is B(|P |) where B is a non-
decreasing function. This function is a parameter of the model (not fixed) allowing the
analysis to adapt to the characteristics of the underlying real world machine.
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race conditions among processors. Regarding the access cost, APRAM can
account for a communication delay to the shared memory or not (unit cost
access). A commonly used assumption is that a read operation consumes 2d
time while a write operation consumes d time, where d is a paramemter of the
model. Regarding the types of synchronization, APRAM can be modified to
support subset synchronization where multiple disjoint sets of processors can
synchronize independently and in parallel. The cost for a synchronization
step among the processors in a set P ′ is charged only to those processors
in P ′. The case P ′ = P is called Phase PRAM denoting the all-processor
synchronization.

Shared Memory Divided in Modules

There are even more specialized criticisms about the shared memory assump-
tions of the PRAM. Consider for example the ability to access an unlim-
ited number of memory cells simultaneously (potentially all of them). Even
though it is not technologically impossible, it is quite costly to support such
functionality and it is not the trend of today’s industry. The most common
memory designs lead to a memory module consisting of a set of individual
cells, which however are grouped under a common interface. As a result,
only one cell of the module can be accessed at a time. A more practical
model should take into account this restriction and assume a shared memory
organized in modules.

In the Module Parallel Computer (MPC) [10] the number of memory
modules m is bounded3, constituting a parameter of the model along with
the number of RAM processors |P |. Each module mi can be accessed by the
processors in a EREW fashion. Therefore, the challenge is to distribute the
logical addresses of the entire shared memory so as to minimize the potential
memory conflicts between processors without stalling the execution of the
algorithm. Of course, it is expected that less modules lead to more access
delays (because of the exclusiveness restriction) even though the intercon-
nection network is idealized in MPC.

The mapping of a parallel algorithm to the MPC is called the granular-
ity of parallel memories problem. The authors in [10] propose two generic
solutions: (i) randomization, where the logical addresses are randomly dis-
tributed among the memory modules by selecting a hash function which can

3assuming an unbounded set of memory modules brings us back to the original defini-
tion of the PRAM
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be efficiently computed by any processor, (ii) copies, where several copies of
each logical address is stored in distinct memory modules (storage redun-
dancy). The randomization solution is shown to keep memory contention
low in the average, while the copies solution decreases memory contention in
the worst case.

In a more radical approach, [11] describes a parallel machine with a shared
memory divided in modules and arranged in a tree. The leaves of the tree
correspond to the processors, while the levels of the tree capture the caching
techniques applied to most real world machines. The processors communicate
directly with their parent memory modules and similarly, memory modules
communicate with their children and parent modules by exchanging blocks
of values. The length of a block depends on the level of the tree that the
exchange takes place (typically, the length doubles at each level towards
the root). The model can support several memory policies, namely EREW,
CREW and CRCW. The parameters of the so called Uniform Parallel Mem-
ory Hierarchy (UPMH) define the number of the modules, the depth of the
memory tree, the communicated blocksize, and even the transfer costs. In
the same approach, non-uniform communication costs of various intercon-
nection topologies can be modelled by combining several levels of a PMH.
The idea to use such a model for parallel computation was inspired by the
observation that the techniques employed to optimize sequential algorithms
destined for memory hierarchies are similar to those for developing parallel
algorithms.

2.2 Distributed Memory Models

The distributed memory model of computation assumes a set of autonomous
processors with ordinary instruction sets and local memories. Additionally,
each processor can send and receive finite length messages with the use of
special purpose instructions. As opposed to the shared memory models, the
processors here are not connected to a common memory. Rather, they are
connected to a –common– communication medium (or, more precisely, inter-
connected via a specific network). Hence, the processors can communicate
direclty with each other by exchanging messages. The computation advances
in a sequence of steps involving local operations, communication, and pos-
sible synchronization. Notice that the memory of the parallel machine is
distributed over the local memories of its processors. Figure 2.2 illustrates
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Figure 2.2: Distributed memory model: a network of processors

such a setting.
The distributed memory model is widely used today for the develop-

ment of supercomputers. The design and study of algorithms for this model
strongly depend on the characteristics of the underlying interconnection net-
work of the machine, i.e., to various machine-specific details. On one hand,
these details define a large number of architectures allowing the engineer to
develop efficient solutions tailored to the requirements of the application.
On the other hand, the existence of a large number of network architec-
tures renders the unified theoretical study of algorithms in this model quite
troublesome. Naturally, there have been proposed “bridging” models which
abstract away the details of the network and allow the analysis of the algo-
rithm to base only on a limited number of parameters. In this direction, the
following subsection presents the well-known BSP model.

2.2.1 BSP

The apparent need for a unifying model for parallel computation led Valiant
in defining the “Bulk Synchronous Parallel” model (BSP) [12]. The major
purpose of such a model is to act as a standard on which people can agree.
It is intended neither as a hardware nor as a programming model, but some-
thing in between, analogously to the von Neumann model in sequential com-
putation. The von Neumann model abstracts the underlying technology of
a computer. Even with rapidly changing technology and architectural ideas,
hardware designers can still share the common goal of realizing efficient von
Neumann machines. They are not too concerned about the software that is
going to be executed. Similarly, the software industry in all its diversity can

19



aim to write programs that can be executed efficiently on this model, without
explicit consideration of the hardware. Thus, the von Neumann model is the
connecting bridge that enables programs from the diverse and chaotic world
of software to run efficientby on machines from the diverse and chaotic world
of hardware.

The BSP is a bridging model in the realm of parallel computation. It
consists of a number of components performing processing and/or memory
functions and a router delivering messages point-to-point between pairs of
components. The router abstracts the underlying interconnection network of
the components by introducing certain parameters in the model, described
below. Moreover, the BSP incorporates a synchronization mechanism similar
to the one used in the shared memory APRAM (see section 2.1.2): the
processing components are synchronized at regular time intervals of L time
units, where L is the periodicity of the computation. Synchronization is
performed by the Barrier Synchronizer of the model (a separate entity).

The structure of the BSP computation reflects the way that a parallel
programmer thinks: perform some local computation, exchange information
required for the next local computation, and synchronize the processes to
assure the correctness of the algorithm. To be more precise, a BSP compu-
tation consists of a sequence of supersteps. In each superstep, each compo-
nent is allocated a task consisting of some combination of local computation
steps, message transmissions and message arrivals from other components.
Conceptually [13], the superstep is divided in three phases: the local com-
putation phase, the communication phase, and the barrier synchronization.
Each processor can be thought of as being equipped with an output pool,
into which outgoing messages are inserted, and an input pool, from which
incoming messages are extracted. During the local computation phase, a
processor may insert messages into its output pool, extract messages from
its input pool, and perform operations involving data held locally. During
the communication phase, every message held in the output pool of a proces-
sor is transferred to the input pool of its destination processor. The previous
contents of the input pools, if any, are erased. The superstep is concluded
by barrier synchronization. Every L time units, a global check is made to
determine whether the superstep has been completed by all the components
(i.e., all local computations are completed and every message has reached its
destination). If it has, the machine proceeds to the next superstep. Other-
wise, one more time period L is allocated to the unfinished superstep. Note
that [14], although the model emphasizes global barrier style synchronization,
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pairs of processors are always free to synchronize pairwise by, for example,
sending messages to and from an agreed memory location. These message
transmissions, however, would have to respect the superstep rules.

BSP parameters and characteristics

In the BSP model we assume that each local operation costs one unit of time.
The task of the router is to realize an arbitrary h-relation, i.e. a superstep in
which each component sends and receives at most h messages. We properly
define a BSP computer by first determining three basic parameters4 [12] [15]:

p: the number of components

s: the startup cost of the h-relation realization (in time units)

g: the multiplicative inverse of the router’s throughput5

The parameters s and g describe the performance of the router. Their values
depend on the underlying interconnection network and are nondecreasing
functions of p. For example, the g parameter depends on the bisection band-
width of the network, the communication protocols, the routing, the buffer
management, etc. Similarly, the s parameter depends on software issues of
each processor, the wait cycles for each synchronization step, and other char-
acteristics of the network. Both s and g can be bounded in theory, but in
practise they are empirically determined by running suitable benchmarks.
Most of the factors affecting s and g become even more apparent as the
number of processors increases. As a result, the time costs incurred by s
and g increase with p. However, there is a way around this problem: the
g parameter can be controled, within limits, by adjusting the router design.
It can be kept low by using more pipelining or by having wider communica-
tion channels. Keeping g low or fixed as the machine size p increases incurs,
of course, other type of costs. In particular, as the machine scales up, the
hardware investment for communication needs to grow faster than that for
computation [12].

4Alternatively, [14] uses the parameters p-proseccors, g-bandwidth and L-periodicity
5More precisely, g must be regarded as the ratio of the number of local computational

operations performed per second by all the processors, to the total number of data words
delivered per second by the router (alternatively, 1/g is the available bandwidth per pro-
cessor). It is used to measure communication costs, i.e. we consider that an h-relation is
realized at the cost of g · h time units for h larger than some h0
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The time complexity of a BSP algorithm is measured by summing the
costs of its supersteps. The cost of a superstep can be defined in various
ways, depending on specific assumptions made by the model. In the most
common approach, we measure g when the router is in continuous use (i.e.
the throughput of a pipelined architecture) and thus, the cost of realizing
an h-relation becomes6 g · h + s. Consequently, when the communication
operations do not overlap with the local computation steps at each processor,
the cost of a superstep i becomes

Costi = g · hi + s + mi

where g, s are the model parameters, hi is the number of the exchanged mes-
sages per processor (the h-relation), and mi is the number of the computation
steps per processor during the superstep i. Note that hi and mi correspond
to the maximum values over all processors.

Before using the aforementioned cost function7, one should specify the
values of its parameters according to the characteristics of the underlying
–physical– machine. Intuitively [13], for sufficiently large sets of messages
(h >> s/g), the communication medium must deliver p messages every g
units of time. Parameter s must be an upper bound for the time required
for global barrier synchronization (mi = 0, hi = 0). Moreover, g + s must
be an upper bound to the time needed to route any partial permutation
and therefore to the latency of a message in the absence of other messages
(mi = 0, hi = 1). Practically, g and s have been measured for various real
world machines and their values are given in [16].

BSP example

A complete set of programming tools and specific C libraries has been devel-
oped for compiling and running BSP programs [17]. Bellow we give a simple
BSP example [16]; the program bsp sum() computes the sum of p integers
on p processors (initially held in distinct processors). The computation is
performed using the following logarithmic technique. At each algorithmic
step, processor pi adds the value sent by pi/2 to its local partial sum, and

6the time to sent h messages through the router is g · h and the time to initiate such a
process is s

7another worth mentioning approach is to charge each superstep as
Costi = max(hi + s, mi). This function is suitable for models where the communi-
cation operations overlap with the local computations
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forwards the result to p2i. At the end of the computation, the rightmost
processor, p− 1, holds the result. Each algorithmic step is implemented as a
BSP superstep. A total of dlog pe supersteps is required.

int bsp_sum(int x) {

int i, left, right;

bsp_pushregister(&left,sizeof(int));

bsp_sync();

right=x;

for (i=1; i<bsp_numofprocs(); i=i*2) {

if ( bsp_id()+i < bsp_numofprocs() )

bsp_put(bsp_pid()+i, &right, &left, 0, sizeof(int));

bsp_sync();

if ( bsp_pid() >= i ) right=right+left;

}

bsp_popregister(&left);

return right;

}

The above code-sample is copied and executed at each BSP processor
concurrently. The function bsp pid() gives a unique ID to the processor
which called it. The bsp sync() implements the barrier synchronization of
the BSP. The bsp pushregister() declares the variable left as a storage space
which will be used by other processors for writing (for sending data to the
current processor). The variable right of the processor pi is initially given the
input value of pi and is used during the execution to accumulate the partial
sums. The bsp put() is used for communication: it will copy the right value
of processor bsp pid() to the value left of processor bsp pid()+i. Finally,
bsp popregister() removes the global visibility of the variable left.

The cost of this algorithm is dlog pe(1 + g + s) + s, because there are
dlog pe supersteps for computations and one for registration. Notice that at
each superstep we have one local addition (m = 1) and only one word is
communicated between any pair of processors (h = 1).

2.2.2 LogP

The BSP was an inspiration for the authors in [18] to introduce a similar
model named LogP (the name is derived from the four parameters of the
model, which will be described next). Targeting similar goals, the LogP
was designed taking into account the technology trends underlying parallel
computers 8. It is intended to serve as a basis for developing fast portable

8in fact, the LogP authors in [18] discus technological aspects and make accurate pre-
dictions of how Massively Parallel Processors will be designed throughout the 90’s
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parallel algorithms, as well as to offer guidelines to hardware designers. LogP,
like BSP, attempts to strike a balance between detail and simplicity by using
certain parameters to abstract the communication between the processors.

LogP is a distributed memory multiprocessor in which processors com-
municate by point-to-point messages. Contrary to the BSP, LogP is asyn-
chronous, i.e. it features no barrier synchronization. Two processors can
synchronize only by exchanging messages between them. LogP uses param-
eters for modeling the performance of the interconnection network, but it
does not describe the structure of the network. It extends BSP by using one
more parameter and by imposing a network capacity constraint, i.e. up to a
maximum number of messages can be in transit concurrently.

Conceptually [13], for each processor there is an output register where the
processor puts any message to be submitted to the communication medium.
The “preparation” of a message requires certain time and, once submitted,
the message is “accepted” by the communication medium. It will be deliv-
ered to its destination with a certain delay. When a submitted message is
accepted, the submitting processor reverts to the operational state, where
it continues with its local operations. Upon arrival, a message is promptly
removed from the communication medium. This message can be immedi-
ately processed by the receiving processor or it can be buffered. As with
the preparation of an outgoing message, the acquisition of an incoming mes-
sage requires certain time, which is modeled by the new parameter of LogP,
named “overhead”.

LogP parameters and characteristics

Once again, in the LogP model we assume that each local operation costs
one unit of time (one “cycle”). We formally define the model by defining its
four parameters:

L: the latency, the delay of a message to reach its destination

o: the overhead, the time a processor engages in a transmission or reception

g: the gap, minimum time between message transmissions (per processor)

P : the number of components (i.e., processor/memory modules)

The parameters L, o and g are measured as multiples of the processor cycle.
More precisely, the “latency” is an upper bound of the time required for a
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single word message to travel from its source to its destination. It depends
mostly on the underlying interconnection network and it can be calculated as
L = Hr + dM/we, for an M -bit message traveling through w-wide channels,
across H hops with r delay each. The “overhead” is a period during which
the processor is engaged in sending/receiving messages and cannot perform
any other operations. Notice that o does not include L and that it is mostly
related to the underlying technology of the processor. It is regarded as the
mean overhead (Tsnd + Trcv)/2. The “gap” is a parameter used to model the
available per processor bandwidth. Since the maximum speed at which a
processor can send messages is one every g time units, then the reciprocal
of g corresponds to the bandwidth. It can be calculated [15] as g = PM/wW ,
where W is the bisection width of the network. Overall, the total time
to communicate a message between two processors can be calculated as T =
2o+L = Tsnd+Hr+dM/we+Trcv. In practice, the values of these parameters
have been measured for several real world parallel machines, e.g. in [18].

From the above definition, it is clear that any processor can have no
more than dL/ge of its messages traveling in the communication medium
concurrently. In fact, the model assumes finite network capacity, such that
no more than dL/ge messages can be in transit from any processor, or to
any processor, at any time. If a processor attempts to transmit a message
that would exceed this limit it stalls until the message can be sent without
exceeding the capacity limit. Notice here that the model does not ensure
that the messages will arrive at the same order that they were sent.

The above parameters are not considered equally important in all situ-
ations [18]. For an easier algorithm analysis, it is possible to ignore one or
more parameters and work with a simpler model. For example, in algorithms
that communicate data infrequently, it is reasonable to ignore the bandwidth
and capacity limits. In some algorithms messages are sent in long streams
which are pipelined through the network, so that message transmission time
is dominated by the inter-message gaps, and the latency may be disregarded.
Also, notice that g and o can be merged in one parameter without altering
much the results of the analysis [18] 9.

9approximation by a factor of at most 2 (if we consider g = o). Arguably, o is unnec-
essarily inserted in the model [15] [16]. Actually, the LogP authors hope that technology
(off-the-shelf processors) will eventually eliminate o [18].
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LogP example

Arguably [13] [16], LogP provides a less convenient programming abstrac-
tion compared to BSP. The analysis of a LogP algorithm is somewhat less
straightforward, primarily due to the lack of the synchronization barriers. As
an example, we discuss here the simple problem presented in the previous
section (for the BSP case): the optimal summation of P integers.

If we were to write a code sample for logp sum(), we would certainly omit
the bsp sync() function used in the BSP case. Instead, we would take for
granted that any message arrives at most after L time units.

As with BSP, the LogP processors will gradually construct a tree for
communicating their values. The idea [18] is that each processor will sum
a set of the input elements and then (except for the root processor) it will
transmit the result to its parent as quickly as possible (we must ensure that
no processor receives more than one message). The elements to be summed
by a processor consist of original inputs stored in its memory, together with
partial results received from its children in the communication tree. The
main difference from BSP is that the LogP tree will not be binary 10. It
will be an unbalanced tree, with the fan-out of each node determined by the
values L, o, g and the following analysis.

To specify an optimal algorithm, we must determine (off-line) the optimal
schedule of communication events and then determine the distribution of the
initial inputs over the P processors. We start by considering how to sum as
many values as possible within a fixed amount of time T . If T < L + 2o,
the optimal solution is to sum T + 1 values on a single processor, since there
is not sufficient time to receive data from another processor. Otherwise, the
last step performed by the root processor (at time T − 1) is to add a value
it has computed locally to a value it just received from another processor.
The remote processor must have sent the value at time T − 1 − L − 2o
and we assume recursively that it forms the root of an optimal summation
tree with this time bound. The local value must have been produced at
time T − 1 − o. Since the root can receive a message every g cycles, its
children in the communication tree should complete their summations at
times T − (2o+L+ l), T − (2o+L+ l+g), T − (2o+L+ l+2g), . . .. The root
performs g−o−1 additions of local input values between messages, as well as

10the root of the tree will have more children than other nodes nested deeper in the
tree. The reason is that as a message travels, the source processor has time to send new
messages.
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the local additions before it receives its first message. This communication
schedule must be modified by the following consideration: since a processor
invests o cycles in receiving a partial sum from a child, all transmitted partial
sums must represent at least o additions.

A good LogP algorithm should coordinate work assignment with data
placement, provide a balanced communication schedule, and overlap com-
munication with processing.

2.2.3 Fixed-Connection Networks

The BSP and LogP models presented above abstract the structure of the in-
terconnection network of the processors. They introduce certain parameters
to measure the communication cost during the computation, without taking
into account the relative location of the processors that exchange messages.
Such a uniform approach simplifies the performance analysis and, moreover,
is accurate in various situations (e.g., ethernet, or fully connected networks).
However, in many applications, a parallel machine includes only a limited
number of internal connections between predetermined pairs of processors.
Communication is allowed only for the directly connected processors, while
the remote destination messages are explicitly forwarded through intermedi-
ate nodes. Here, studying the exact structure of the interconnection network
becomes very important for the design of an efficient parallel machine.

In the fixed-connection network model the parallel machine is represented
as a graph G, where the vertices correspond to processors and the edges cor-
respond to direct communication links [2]. The computational power of each
processor may vary, although it is common to assume that they involve low
complexity control and limited local storage [19]. Depending on the archi-
tecture, the computation can be either synchronous or asynchronous. In the
first case, we assume that a global clock signal traverses the entire graph
determining the steps of the computation. At each step, each processors can
receive data from its neighbors, read its local storage, perform local com-
putations, update its local memories, or generate output data/messages. In
the case of an asynchronous computation, there is no global clock. Instead, a
processor can send or receive messages from its neighbors at any time instant.
The communication might be blocking or non-blocking (i.e., the sender sus-
pends its operations until the receiver sends back a response, or the sender
continues independently of the receiver) and the activity of the machine is
coordinated via designated messages (coarse-grained synchronization).
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Apparently, an important aspect in the development of an algorithm for
the fixed-connection network model is the design of a scheme for the inter-
processor communication within the parallel machine. In the general case,
the messages have to be transferred over a number of intermediate edges
before reaching their destination. The message transfer is handled by the
processors in between the source and the destination of the message, based
on a predetermined procedure. Such a procedure is called routing and is of
great importance for the performance of the machine. Usually, several rout-
ing problems have to be solved just to implement a single parallel algorithm.
The routing problem is defined as a set of messages with specific destinations,
which are either stored initially in distinct nodes of the network, or they are
generated dynamically during the computation. Targeting solutions for dis-
tinct problems and network topologies, several routing algorithms have been
proposed in the literature: online or offline, deterministic or randomized,
with and without queues, greedy, flooding, etc [19].

In the network model, the parallel machines differentiate primarily with
respect to their interconnection topology. Among others, the topology of
the network determines the implementation cost, the communication delays,
and hence, the efficiency of the parallel algorithm. The design of the net-
work depends on the application and, naturally, a plethora of these has been
presented in the literature over the years. In fact, it can be shown that
the machines benefit greatly from carefully tailored networks with judicious
processor-to-node mappings. Overall, considering the performance analysis
of each network, the available routing algorithms, and the various techniques
for cross-simulating networks, one can be led to an immense area of study
(beyond the scope of this thesis) [19]. In the context of this review chapter,
the following subsection presents a few of the most commonly used fixed-
connection networks.

Common network topologies

We begin with the definition of three parameters characterizing the topology
of the network, i.e., of the graph G: the diameter, the maximum degree and
the bisection width (or edge connectivity) [20] [2]. The diameter of G is the
longest of the shortest paths between any pair of nodes of G (maxmin path).
The maximum degree corresponds to the maximum number of edges incident
to any node of G. The bisection width measures the minimum number of
edges that need to be removed for the partition of G in two disjoint subgraphs
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of equal size (i.e., ||G1| − |G2|| ≤ 1)11. Regarding the practical effect of these
parameters, the diameter of the network affects the communication delay,
especially when the message routing is performed in a store-and-forward
fashion (each node buffers the entire message before retransmitting it, instead
of continuously forwarding its parts as smaller packets). The bisection width
is related to the bandwidth of the network (depends on the bandwidth of each
link separately) and is important for communication intensive algorithms
where the message destination follows a uniform distribution over the nodes.
The degree of G has an impact on the implementation cost of the nodes.
Examples for these three parameters are given bellow [19] [2].

Undoubtedly, the most simple fixed connection network is the 1D Mesh,
or linear processor array [19]. It consists of p processors P1, P2, . . . , Pp con-
nected in a linear array, i.e., Pi is connected to Pi−1 and Pi+1. In the case of
processors P1 and Pp being connected directly, with wraparound wires, we
get the definition of a Ring, or 1D Torus. Note that the diameter of the 1D
array is p− 1, while that of the ring is p/2. The bisection width is equal to 1
for the array and equal to 2 for the ring. Both networks have maximum de-
gree equal to 2. The construction of these networks can be easily generalized
to two, three, or more dimensions (see figure 2.3).

The r-dimensional Butterfly has N = 2r(r + 1) nodes and r2r+1 edges
(undirected graph) [19]. Each node is labeled, virtually, with a unique 〈w, i〉
bit-string, where w is an r-bit number denoting the row of the node and i,
0 ≤ i ≤ r, denotes the stage (the column) of the node. Two nodes 〈w, i〉 and
〈w′, i′〉 are connected if and only if i′ = i + 1 and, (i) w = w′ or, (ii) w differs
from w′ in exactly the i′th bit. Notice the recursive structure of the butterfly
network (its butterfly subgraphs) and the uniqueness of the paths from any
“input” to any “output” node of the graph (see figure 2.3).

The butterfly is a widely-used network and it features certain variations.
The Wrapped Butterfly is constructed, essentially, by merging the first and
the last stages of an ordinary butterfly network. That is, we merge two nodes
(one input and one output node) when they belong to the same row of the
initial butterfly. Hence, every node of the resulting network has degree equal
to 4. Note that the two networks have similar computational power, i.e.,
they can simulate each other with a slowdown factor ≤ 2 (the same holds
for many networks and their wraparounds: the linear array and the ring,

11the ‘bisection problem’ is NP-hard, as opposed to the ‘mincut’, which can be solved
efficiently by using flow techniques (the mincut places not constraint on the partitions).
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Figure 2.3: Outline and parameters of common fixed-connection networks

30



the mesh and the torus in 2D, etc). In another variation, the Benes̆ net-
work is, essentially, two butterfly networks connected back-to-back (showing
a reflection symmetry, fig. 2.3).

The r-dimensional Hypercube has N = 2r nodes and r2r−1 edges (undi-
rected graph) [19]. Each node is labeled, virtually, with a unique r-bit binary
string. Two nodes are connected if and only if their labels differ in exactly
one bit (such a connection is called a dimension-k edge, where k is the po-
sition of the nonidentical bit within the label). Therefore, each node has
degree r. Conversely, an r-dimensional hypercube can be constructed from
two (r–1)-dimensional hypercubes by connecting the nodes having the same
label via a dimension-r edge (the labels in the resulting hypercube will have
one extra bit, ‘1’ for denoting the nodes of the first hypercube and ‘0’ for
denoting those of the second). Note that the hypercube can be viewed as
a folded up butterfly: each butterfly row corresponds to a hypercube node
(consider merging each row of the butterfly to a single node and removing
the resulting edge copies).

The r-dimensional Cube Connected Cycles (CCC) network is constructed
from the r-dimensional hypercube by replacing each node with a cycle of
r nodes. In such a cycle, each node is connected to a distinct edge of the
initial hypercube (from those incident to the initial node, fig. 2.3). Overall,
the r-dimensional CCC has r2r nodes, each with degree 3. Note that, from
a computational point of view, the CCC, the Butterfly, and the Wrapped
Butterfly are identical networks (compared to the hypercube, the CCC in-
troduces a logarithmic slowdown [19]).

The r-dimensional Shuffle Exchange network has N = 2r nodes and 3·2r−1

edges (undirected graph). Each node is labeled, virtually, with a unique
binary string of r-bits and two nodes are connected if and only if: (i) their
labels differ only at their last bit or, (ii) their labels are left or right cyclic
shifts of each other. Edges of the former kind are called exchange, while those
of the latter kind are called shuffle. The Shuffle Exchange is closely related
to the de Bruijn network, which can be obtained by contracting out all the
exchange edges from the first (we start with a shuffle exchange of dimension
r+1 to derive a de Bruijn of dimension r). Both graphs share very interesting
properties, which can be used even to formulate card tricks [19].
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2.3 Circuit Models

The study of switching circuits dates back to the late 1930s and specifically
to the papers of Shannon and Lupanov. Shannon used Boolean algebra to
design and analyze circuits, while Lupanov worked on the question of how
many gates a circuit must have to perform certain tasks [21]. Thereafter, the
switching circuits and the logical design developed rapidly both in theory
and in practice, with notable contributions by Pippenger, Borodin, Ruzzo,
Savage, Cook, Allender, and many others.

Like the fixed-connection networks of processors, the circuits capture par-
allelism due to the ability of their network nodes to operate concurrently. The
major difference of the two models lies in the reduced computational power
of each node-gate; instead of processors, the circuits use gates implement-
ing single operations. The following subsections present various models and
variations. We start from the most simple abstraction, namely the Boolean
circuits, and, by successively introducing more possibilities and details, we
conclude with the VLSI circuits, which are used to model modern technology.

2.3.1 Boolean Circuits

The PRAM is a very attractive model of parallel computation due to its
simplicity and its natural parallel extension of the RAM model. However,
designing in such high level raises certain feasibility concerns. For example,
does the PRAM model correspond to a physically implementable device? Is
it fair to allow unbounded numbers of processors and memory cells? How
reasonable is it to have unbounded size integers in memory cells? Is it suffi-
cient to simply have a unit charge for the basic operations? To expose issues
like these, it is useful to have a more primitive model that is closely related to
the realities of physical implementation. A perfect candidate for this purpose
is the Boolean Circuit model [22] [1] [5].

The boolean circuit is an idealization of real electronic computing de-
vices. It abstracts their basic principles while, at the same time, it makes a
compromise between simplicity and realism by ignoring many of the imple-
mentation details. Overall, a circuit consists of gates performing elementary
logical functions and wires carrying information among the gates (figure 2.4).
Formally, we let Bk = {f |f : {0, 1}k → {0, 1}} denote the set of all k-ary
Boolean functions, and we define
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Figure 2.4: A Boolean Circuit (size=16, depth=4, width=3, n=5)

Definition 2.3.1. A Boolean Circuit Cn is a labeled, finite, directed acyclic
graph. Each vertex v has a type τ(v) ∈ I ∪ B0 ∪ B1 ∪ B2. A vertex of type
I is called an input and has zero indegree. The inputs of Cn are given as
a tuple 〈x1, x2, . . . , xn〉 corresponding to n distinct vertices. A vertex with
zero outdegree is called an output. The outputs of Cn are given as a tuple
〈y1, y2, . . . , ym〉 corresponding to m distinct vertices. Finally, any other vertex
with τ(v) ∈ Bi has indegree i and is called a gate.

Notice here that a Boolean circuit is memoryless. Most often, the gates
used are the AND, OR, and NOT, and thus, the order of the inputs of each
gate is irrelevant. We consider that, by inputing 〈x1, x2, . . . , xn〉 and out-
putting 〈y1, y2, . . . , ym〉, Cn realizes a certain function f : {0, 1}n → {0, 1}m.

The resources of interest are the size of the circuit Cn, i.e., the total
number of vertices in Cn, and the depth, i.e., the length of the longest path
in Cn from an input to an output node. Additionally, we can measure the
width of the circuit, which corresponds to the maximum number of gate
values needing to be preserved, excluding inputs, when evaluating the circuit
level by level (we consider as level i of Cn the set of vertices, which are located
exactly i edges away from the input nodes of Cn). A circuit is said to be
synchronous if all inputs to level i are outputs of level i− 1.

Similar to the description of Turing Machines via strings of predefined for-
mat, each circuit Cn is described by a string denoted C̄n. Such a “blueprint”
can be expressed in various formats, but most naturally, as a graph and a list
of vertex types (labels)12. To be precise, we will describe here the standard

12another common format is the straight line program, a sequence of assignments to
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encoding. Assume that we use the binary alphabet augmented with paren-
theses and commas. The descriptor C̄n is a sequence of 4-tuples of the form
(v, g, l, r), followed by two strings, (x1, . . . , xn) and (y1, . . . , yn). For each
vertex v of Cn, the C̄n contains a distinct 4-tuple (v, g, l, r) at some arbi-
trary position within the encoding. The numbers l and r correspond to the
vertices connected to the left and right inputs of v, respectively (all vertices
are numbered uniquely and arbitrarily in the range 1, . . . , size(Cn)O(1)). The
number g denotes the type of the vertex v. In the two concluding strings,
the number xi is the vertex number of the ith input, while yj is that of the
jth output of Cn. Overall, C̄n is an easy to generate and manipulate string
of length O (size(Cn) · log (size(Cn))).

At this point, we can make a general observation regarding the circuit
models of computation (not only Boolean). The circuits have a character-
istic, which significantly differentiates them from any of the aforementioned
processor-based models. A circuit consists of a fixed number of fundamen-
tal elements, namely the gates. Since a gate processes a fixed number of
information bits, a circuit can only process inputs of fixed length. Hence, in
order to solve a problem we must assemble an infinite number of well-defined
circuits, one for each input length (contrast this to a TM, which can input
a string of arbitrary length). To be precise, consider that the output length,
m, is a function of the input length, n, and let us define

Definition 2.3.2. A Family of Boolean Circuits {Cn} is a collection of cir-
cuits, with each member Cn computing a function fn : {0, 1}n → {0, 1}m(n).
The function computed by {Cn} is the function fC : {0, 1}∗ → {0, 1}∗, defined
by fC(x) ≡ f |x|(x).

One step farther, we can use circuit families to decide languages. We say
that L ⊆ {0, 1}∗ is decided by the boolean circuit family {Cn} computing
fC : {0, 1}∗ → {0, 1}, when we have that x ∈ L iff fC(x) = 1.

Notice that the algorithmic solution (TM, or PRAM, or BSP, etc) of a
problem is a finite object. On the contrary, the circuit family of a problem is
an infinite collection of finite objects. Inevitably, this peculiarity of the model
renders the portability and the study of circuit solutions questionable. The
most common remedy is to impose a restriction on the construction of the
circuit families by requiring a computationally simple rule for generating the

variables (wires) using instructions based on binary operators (as in Hardware Description
Languages). In fact, a circuit is a DAG of a SLP [23].
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various circuit-members of {Cn}. Intuitively, we require that all the members
of the family are similar in structure, but differ in input sizes (consider, e.g.,
a XOR-tree to decide PARITY). In general, a family is said to be uniform if
there exists an efficient algorithm to output C̄n upon request.

Definition 2.3.3. A family {Cn} of Boolean circuits is “logspace uniform”
if the transformation 1n → C̄n can be computed in O(log(size(Cn))) space
on a deterministic Turing machine.

The logspace uniformity (Borodin-Cook uniformity) is the most widely
used and, for polynomial size circuits, it can be equally defined by DTMs of
logarithmic space in –unary– n (hereafter, the two versions of the definition
are used interchangeably). Even though logspace DTMs solve a small class
of problems, they can describe a wide class of useful circuit families. Fur-
thermore, we can define several types of uniformity based on the resources
and the capabilities of the machine generating the circuit descriptions [24].
Our choice on the exact type of uniformity depends mostly on the intended
use of the circuit and on the complexity of the class under examination (see
chapter 4). Generally, we avoid allowing more computational power to the
constructor than to the circuit itself. Notice that the circuit constructor
serves as a single object representing the entire family.

Not to overlook the non-uniform families, we mention here that they
are also used in the study of circuits. First, they are famous for deciding
non-recursive languages (i.e., undecidable by TMs). Consider for example a
non-recursive unary language Lu ⊆ {1}∗ (at least one exists, because any non-
recursive L can be reduced to some Lu, e.g., via binary-to-unary expansions).
Strikingly, there exists a {Cn} to decide Lu: for each n ∈ N we define Cn

to be a tree of AND gates iff 1n ∈ Lu [5]. Unfortunately, even though {Cn}
exists, there is no way to construct {Cn} algorithmically, because no TM can
decide whether 1n ∈ Lu when generating C̄n. Second, non-uniform families
can be used to prove lower bounds; if a function cannot be computed by
such a family, then it cannot be computed by a weaker, uniform, family of
the same size.

The aforementioned definitions give us the basis of the Boolean circuit
model. Several variations have been proposed. In many cases we allow the use
of gates with fan-in greater than 2, or even the use of unbounded fan-in gates.
Such possibilities can “speed up” the computation by up to a O(log n) factor
without increasing its size. Other variations limit the gate types to be used.
For example, we can use only AND and OR gates to study monotone circuits.
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The term monotone connotes here that the change of any input variable
from ‘0’ to ‘1’ cannot result in an opposite change of the output (from ‘1’ to
‘0’). Note that, since {AND,OR} is not a functionally complete set of logic
operators, monotone circuits cannot compute all Boolean functions. Other
circuits might even introduce new types of gates as, e.g., the threshold gate
(outputs ‘1’ iff the number of its input values add up to some threshold) for
modeling neural networks. In another direction, we can impose restrictions
on the structure of the circuit graph. For example, we can confine ourselves
to the study of planar circuits, i.e., circuits that can be drawn in 2-D with no
edge crossovers. Besides the above, many criteria and resource bounds can
be used, or combined, allowing the power analysis and/or the development
of circuit solutions for specialized applications.

The Boolean circuits will be examined in detail in the following chapters.
In fact, we will consider them as the basic model of our parallel compu-
tation study. However, not all circuits proposed in the literature are built
upon Boolean operations. We mention here the arithmetic circuits [22]. An
arithmetic circuit is like a Boolean circuit except that the inputs are in-
determinate 〈x1, x2, . . . , xn〉, possibly constants ci ∈ F , F a field (e.g., the
rationals Q), the internal gates are arithmetic operations +,−,×,÷, and the
outputs are elements of F (x1, x2, . . . , xn). Arithmetic circuits are used to
study the complexity of multivariate polynomials or rational functions. As
with their Boolean counterparts, we are interested in the depth and size of
uniform arithmetic circuits, such that we can bound the cost of computing
certain polynomials. Overall, arithmetic and combinatorial (boolean) com-
plexity are related and questions of one domain can be translated to the
other; we even encounter the algebraic analog of “P vs NP”, i.e., the “VP vs
VNP” conundrum (VP is the class of polynomials computed by polynomial
size arithmetic circuits).

2.3.2 FSM, Conglomerates and Aggregates

The Boolean circuits were defined as acyclic graphs. Such a definition pro-
hibits the resource reuse during the computation, as well as the construction
of memory cells. Arguably, an extension of the model allowing feedback paths
within the circuit would enhance its ability of estimating hardware costs in
the modern technology. Before presenting the Aggregate model for this pur-
pose, we briefly describe the state machines, which precede the aggregates
without necessarily basing on circuits.
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Finite State Machines

Let us mention first the Finite State Acceptor (FSA), which is a weak relative
of the Turing machine. This automaton is defined similarly to the TM,
including a set of states Q, initial and final states, input alphabet A, and
a transition function δ. However, the FSA has the ability to read its input
tape only once starting from the leftmost symbol and moving to the right. At
each step, the state qi of the FSA changes according to a transition function
of the form δ : (qi, α) → (qj), α ∈ A. If we allow the FSA to output a symbol
at each step, i.e., if we define an output alphabet B and a transition function
δ : (qi, α) → (qj, β), β ∈ B, we get a Finite State Machine (FSM) [25].

The FSM is a notion used beyond the context of Turing machines. For
instance, we can envisage an FSM as a graph consisting of a memory node
and a processing node. Synchronously, the memory stores the current state,
while the processing node reads the input symbol and the current state to
generate a new state and an output symbol. Note that, if we restrict the
input values to some fixed length, then we can implement the above nodes
by using circuits. In fact, a common application of the FSM is in the design
of digital systems.

To conclude the deterministic FSM presentation, we define two FSM
types based on the form of the output function. The first is the Mealy
Machine (introduced by Mealy in 1955) where the output value is deter-
mined at each step by both the current state and the current input symbol,
i.e., fout : Q× A → B. The second is the Moore Machine (introduced by E.F.
Moore in 1956) where the output value is determined at each step by the cur-
rent state alone, i.e., fout : Q → B. It can be shown that the two machines
are computationally equivalent. Moreover, the FSMs decide exactly the class
of regular languages (languages described by regular expressions) [23].

Conglomerates

In an attempt to study parallel computation with the use of state machines,
Goldschlager introduced in 1977 the Conglomerates. A conglomerate is, es-
sentially, a collection of interconnected, synchronous, deterministic, FSMs [7].

To be precise, a conglomerate C = 〈I, F, f〉 is an infinite set F of isomor-
phic copies of a single FSM, Mi = 〈Σ, S, δ, r〉, where I is the input alphabet,
Σ is the communication alphabet, S is the set of states, r is the number of
inputs to each Mi, and δ is the transition function. The function f defines the
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interconnection network within the conglomerate by generating the indices
of the predecessors of each Mi. All sets, except F , are finite.

To explain the definition, a conglomerate consists of identical FSMs. Each
Mi has a predefined number of r inputs and one output, which is connected
to a number of distinct Mj’s. That is, the fan-in of each Mi is bounded, the
fan-out is unbounded, and the interconnection network of the Mi’s is fixed.
By convention, the input w of the conglomerate is distributed among the
first |w| FSMs (one bit per Mi). Hence, given that the number of FSMs used
during the computation reflects its hardware complexity, all conglomerates
have Ω(n) cost. The computation advances in steps: each Mi starts at its
initial state and it successively generates internal states and output values.
The total number of steps is considered as the time cost of the model. A
conglomerate accepts w if at any time Mo enters a designated state qacc.

The restrictions imposed on the singularity and the output of the above
FSMs might seem restrictive for the computational power of the model. How-
ever, it is shown that the above conglomerate can simulate with no time loss
the variant of the model, which allows many outputs and distinct types of
FSMs (finitely many). Moreover, it is shown that the SIMDAG (see p. 13)
can be implemented with a simple conglomerate, the connection function
of which can be computed with only logarithmic-space RAMs. Analogously
to the boolean circuit model, when studying the computational power of
the conglomerate we impose a uniformity constraint on the construction of
its interconnection. Arguably, a conglomerate is implementable if its con-
nection function can be computed by polynomial-space RAMs. It is shown
that the class of these conglomerates is equal to the class of polynomially
space bounded computers. More specifically, the –parallel– time of such a
conglomerate is polynomially related to the –sequential– space of a Turing
Machine [7].

Aggregates

By combining the boolean circuits and the conglomerates, Dymond and
Cook introduced the Aggregate model in 1980 [26]. Like bounded fan-in
circuits, each aggregate consists of 2-pin boolean gates and works for inputs
of fixed length. Like the conglomerates, the gates of an aggregate work syn-
chronously. Unlike either circuits or conglomerates, the input convention
for aggregates is such that either the hardware used or the time taken in a
computation can be sublinear in the input size.
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Formally, an aggregate βn works on n input bits x0, x1, . . . , xn−1. It is a
directed graph (not necessarily acyclic) of boolean gates and input nodes. A
configuration C of βn is an assignment of 0 or 1 to each node u. The assign-
ment of u at Ct+1 is determined by the operation of u and by its input pins
at Ct. A computation of βn is a sequence Co, C1, . . . , CT of configurations.
The maximum T over all inputs x, |x| = n, is the time complexity T (βn),
while the total number of nodes is the hardware complexity H(βn). Given a
distinguished pair 〈u0, u1〉, the output of βn is equal to the value of u0 when
u1 turns to 1 for the first time (all nodes are initialized to 0). A family of
aggregates {βn} recognizes a set A ⊆ {0, 1}∗ if βn recognizes An for all n.
An aggregate family {βn} is uniform if each member βn can be described by
a DTM in space log (T (βn) ·H(βn)) on input 1n.

The input convention of the aggregate model is analogous to the TM,
which ignores the space cost of its input tape. Here, each input node v is
associated with a unique register Rv specifying the input bit xi to be assigned
to v. The Rv is considered as a sequence of log n special purpose gates. We
can envisage v as a binary multiplexer controlled by the contents of Rv, which
can change dynamically to specify any index of x. Overall, the hardware cost
of node v is 1 and its assignment is delayed by log n steps. Note that if we
assume that an aggregate βn examines all the information of its input, then
we have T (βn) ·H(βn) = Ω(n).

Regarding the computational power of the aggregates, it is shown that
AG-TIME(T )=BC-DEPTH(T ) and that UAG-TIME(T )=UBC-DEPTH(T ).
In other words, aggregates define exactly the same parallel time classes as
boolean circuits, with and without the uniformity constraints (models of
equal power). Moreover, the time of the uniform aggregate is polynomially
related to the space of the Turing Machine. In terms of hardware, we get
DTM-SPACE(S)=UAG-HARDWARE(S)=UBC-WIDTH(S). Finally, uni-
form aggregate hardware and time are themselves polynomially related [26].

2.3.3 VLSI

The aforementioned circuit models ignore the cost of placing wires within the
circuit to connect its gates. Nonetheless, such cost is far from negligible in
today’s technology. Given the tremendous reduction of the size of a boolean
gate, the wiring accounts for more than half the cost of the entire modern
microchip [23]. The VLSI model, along with its several variations, was in-
troduced in an attempt to include the details of the microchip technology to
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Figure 2.5: VLSI layout of a NAND gate (substrate, wells and wires shown)

the theoretical study of computation.

Design at the Physical Layer

Very Large Scale Integration (VLSI) is the process of creating integrated cir-
cuits by combining thousands of transistor-based boolean gates and memory
cells into a single chip. As figure 2.5 shows, each gate is itself the combina-
tion of a number of semiconducting elements (forming a few interconnected
transistors) occupying little square micrometers on the wafer. Starting from
a thousand transistors in the early 1970s, microelectronics allow today the
integration of a billion transistors in a single chip.

In the VLSI setting, the surface of a wire within the circuit is comparable
to that of a single gate. Moreover, the fabrication process won’t allow more
than a constant number of wires to cross each other at any point of the wafer
(typically, less than a dozen metal layers are used). As a consequence, the
interconnection of an architecture has a definitive impact on its area cost.
Besides, it affects the timing of the chip, as the signals propagate through
the chip following the laws of physics and not instantaneously. Clearly, the
wiring is as important as any other algorithmic aspect of the design and
requires extra study (compared to the boolean circuit model).

The crossover constraint is even more strict for the gates, which cannot
overlap at all. Even in the emerging technology, namely the 3-D Integrated
Circuit, this constraint is still present, preventing the design of arbitrarily
“thick” circuits. Overall, a VLSI circuit is quite similar to the planar circuit of
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the boolean model. To underline their similarity we use the term quasiplanar
[23], which denotes the fact that the VLSI circuit allows only a constant
number of crossovers (planar implies zero crossovers).

Additionally to boolean gates and wires, the VLSI circuits include certain
memory cells. Such a characteristic element is the flip-flop. We can envisage
the flip-flop as a special purpose gate, which can store the value of its input
bit for an arbitrary amount of time. The amount of storage time is controlled
by designated signals, amongst which is the clock of the design. The clock
signal traverses the entire circuit defining the time instants at which the
computation advances to the next step. That is, in general, the VLSI circuit
operates synchronously. The time cost of the computation is equal to the
required number of steps (clock cycles) multiplied by the clock period. The
clock period (operating frequency) is defined prior to the computation and
is bounded by the propagation time of the largest asynchronous path in the
circuit (path between two successive flip-flops, with transistors and wires).

The inputs and outputs (I/O) of a VLSI circuit are communicated via
designated pins. The I/O pins are wires of much greater surface than the in-
ternal wires of the circuit, and thus, they are studied separately. Analogously
to the I/O conventions adopted in the other models, the VLSI features its
own I/O specifications. A port of a VLSI circuit can receive several input
values, each one at a distinct time instant, e.g., at specified clock cycles.
Also, an input can be supplied at several ports simultaneously. Moreover,
a VLSI circuit has the possibility of reading a certain value more than once
from its input ports. The VLSI computation is designed as semellective (read
once) or multielective (read/request data multiple times). Usually, the I/O
operations are where- and when-oblivious [23], i.e., they occur at specified
pins and cycles. Similar conventions are adopted for the output ports of a
circuit. In fact, any pin can be used as an input, output, or input/output of
the chip. Given the above I/O possibilities, it is clear that a VLSI circuit can
perform several, distinct, computations concurrently. In a pipeline fashion,
it can input an new problem instance (a set of new values), while still pro-
cessing some older values at a deeper stage within its architecture. Hence, to
measure the performance of a chip we use (besides the computation time and
area) the rate at which the chip can receive new instances, or the throughput :
the number of instances solved, or information processed, over the total time
consumed.

To complete the description of the VLSI technology we mention the pa-
rameter λ. In photolithography, a technique employed in microfabrication,
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the geometrical patterns comprising the integrated circuit (figure 2.5) are
printed on the wafer using light projection equipment. The projection fea-
tures certain resolution, determined by physics and state-of-the-art technol-
ogy. This resolution defines the minimum separation length, λ, between the
elements of the chip (wires, transistors, etc). Typically, the width of an in-
ternal wire is a small multiple of λ and the area of a transistor is a multiple
of λ2. That is, the minimum feature size λ specifies the transistor density
of a VLSI wafer, and to some extent, the computational power of a chip.
Naturally, λ is significantly improved over the years. Starting from 10 µm
in the 1970s, today we use 0.045 µm and we target 0.032 µm manufacturing
process13.

VLSI Technology Abstraction and Study

In all theoretical models of VLSI, circuits are made of two basic components,
namely the wires and the gates (boolean operations, or flip-flops) [27]. The
wires are embedded in the plane (quasiplanar) and have unit width and arbi-
trary length. They usually have unit bandwidth (one bit per transmission).
Their delay is determined as follows: the synchronous model assumes unit
delay independently of the length, the transmission-line model assumes that
the delay is proportional to the length of the wire, whereas the diffusion
model assumes that the delay is quadratic in the length [23]. Regarding the
gates and the I/O pins, they are considered as nodes, which are connected
via the above wires (hyperedges). Each node is characterized by a specific
transmission function and it has constant area, constant delay and constant
fan-in/fan-out. The space units are usually related to λ (e.g., width unit=λ,
area unit=λ2, and each gate, memory cell, port, or pair of crossing wires,
occupies λ2 area). Similar assumptions are made for the time unit in an at-
tempt to abstract the fabrication parameters and measure the performance
of the architecture independently of the technology, e.g., in terms of clock
cycles and area units (the implementation values of which tend to reduce
year after year). In practice, of course, an architecture is evaluated based on
its implementation results including the operating frequency and the actual
layout size of the chip.

Each VLSI model further defines the I/O, the degree of concurrency, the
energy consumption, the performance, etc [23] [27]. These definitions, more

13according to Moore, Intel co-founder, the transistor density doubles approximately
every two years. Of course, his “law” cannot hold for ever (due to atomic limitations).
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or less, choose among the aforementioned VLSI technology possibilities. We
can additionally mention here that, some authors assume an off-chip memory
to store the I/O bits, such that multiple multilocal accesses are possible (the
memory cost is usually excluded from the analysis, allowing a reduction of
the chip’s cost). The concurrency, c, of an architecture is equal to the number
of problem instances solved simultaneously. Its area performance is equal to
the total area units of the chip (smallest enclosing rectangular), divided by
c. The time performance is equal to the time between the first and last I/O
memory access, divided by c. For a detailed analysis, we even define the
data format according to which the problem instance will be presented to
the chip.

Having defined the model, one can continue with studying the computa-
tional power of the VLSI circuits. First, note that every boolean function
can be implemented on VLSI because it has a planar boolean circuit (every
function has a boolean circuit, which can be transformed into planar with at
most a quadratic increase of its size). Second, note that the area of a VLSI
circuit is proportional to the number of, say, the PRAM processors that can
fit in the chip14. Given the similarity of the time resource of the two models
(PRAM and VLSI), we are driven to the study of the product area×time for
the VLSI circuits (the AT measure). Clearly, this is analogous to the product
processors×time used in the PRAM case. This product constitutes a PRAM
performance measure, which is lower bounded by the minimum sequential
time, Ts, of the problem. Similarly, we have that AT = Ω(Ts). Note that,
for low complexity problems we can devise circuits, which are optimal in
terms of AT (performing at its lower bound). However, the AT bounds are
not the strongest studied in VLSI. Stronger complexity bounds are achieved
for the AT 2, which is the most common VLSI complexity measure used in
the literature (A2T is also used) [23].

Various methods can be employed in order to prove an AT 2 lower bound
for a given problem. The most common method is to use a “fooling argu-
ment”, i.e., show that a minimum amount of information must be transfered
between two parts of the chip, or else one part can be fooled into thinking
that the other inputs data different than the actual. Transferring such in-
formation requires either some large amount of time or a large number of

14likewise, the area is analogous to the amount of information memorized by the VLSI
circuit at any time instant. Recall that this also holds for the space of a Turing machine.
Intuitively, the area complexity of an algorithm is loosely coupled to its space complexity.
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wires (area), and thus, a lower bound on the AT 2 of the chip can be proved.
Another method to prove VLSI lower bounds for a specific problem is by
studying the complexity of the planar circuit of that problem (recall that the
VLSI is already quasiplanar). It can be shown that any VLSI computation
can be simulated by planar circuits of size O(AT 2) and O(A2T ) [23].

To report some examples, the “n-tuple prefix sum” has VLSI complexity
AT = Ω(n), while the “n×n matrix-vector multiplication” has AT = Ω(n2).
Both problems feature AT–optimal circuits, which base on H-trees15. The
“integer multiplication” and the “n-tuple shifting” have VLSI complexity
AT 2 = Ω(n2). Moreover, they both feature AT 2–optimal semellective cir-
cuits based on 2-D systolic arrays. The “n-tuple sorting” has VLSI complex-
ity AT 2 = Ω(n2 log n), while the “n-point FFT” has AT 2 = Ω(n2 log2 n) [27].
The “n×n matrix-matrix multiplication” has complexity A2T, AT 2 = Ω(n4).
Separate bounds for A, T are also computed for many problems, as for exam-
ple the A = Ω(n) of the “n-vector shifting” (shifting in T = O(

√
n/ log n) is

a characteristic case where most of the VLSI area is consumed by wires) [23].
We conclude the VLSI model by noting its area-time tradeoffs (Thomp-

son, 1980). As mentioned above, problems feature certain lower bounds on
their AT , AT 2, and A2T complexities. Such bounds imply that, when de-
signing optimal VLSI circuits, in order to improve A we have to degrade T
by some certain factor, and reversely. Of course, analogous quantitative or
qualitative estimations hold for parallel computation in general.

2.4 More Models and Taxonomies

Besides the aforementioned, the literature includes a variety of models for
studying and developing parallel algorithms. A number of these models are
based on extensions of the ideas described so far, while others incorporate
entirely novel techniques and technology trends. To complete the survey of
the current chapter, the following subsections refer to a representative set
of the remaining parallel models of the literature. Moreover, we report the
proposed architectural/programming taxonomies, which are used to classify
the parallel computers today. We begin with the details of a classical model,
which is widely used in complexity theory.

15similar to the binary tree, except that each node has 4 children. In the binary tree,
one can see a repetition of the shape Λ in a recursive fashion. In the H-tree, the repeated
shape is H, rendering the mapping of the tree on the plane more efficient in terms of area.
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2.4.1 Alternating Turing Machine

Alternating Turing Machines (ATM) were introduced in 1981 by Chandra
et al. [28]. They are generalizations of Non-Deterministic Turing Machines
(NDTM). Like the NDTM, the ATM is not a realistic model of computation.
However, it is very useful in studying certain languages with no obvious short
certificate for membership. Moreover, ATMs capture the parallel complexity
of various classes of problems.

Recall that a NDTM is essentially characterized by a computation tree,
the nodes of which represent the configurations and the edges represent the
potential transitions of the machine [5]. In the case of an NP language, the
NDTM accepts if there exists an accepting leaf in the tree. In contrast, in
the case of a co-NP language, the NDTM accepts if for all leaves we get a
negative response. Loosely speaking, one can see only OR (∃) nodes at the
first tree and only AND (∀) nodes at the second. The ATM generalizes by
allowing both types of nodes in the same computation tree.

In an ATM, each state qi ∈ Q is labeled with its own logical connective
l ∈ {∨,∧}. Consequently, each configuration of the ATM is also labeled by
l. Let us define recursively a configuration to be accepting if: (i) the state
of the configuration is a ‘yes’ state, (ii) it is labeled ∨ and at least one of its
children is an accepting configuration, or (iii) it is labeled ∧ and all of its
children are accepting configurations. The ATM computation accepts if the
initial configuration is an accepting configuration (notice the resemblance to
the evaluation of a circuit).

The remaining of the ATM is defined exactly as the NDTM, i.e., it is
a seven-tuple 〈k, Q, Σ, Γ, δ, q0, g〉 where k is the number of tapes, Q is the
finite set of states, Σ is the input alphabet, Γ is the work tape alphabet, δ
is the transition relation, q0 the initial state and g : Q → {∨,∧, yes, no} is a
function labeling the states of the ATM. The input tape is read only. An ATM
decides a language L ∈ Σ∗ when it accepts x iff x ∈ L. Let ATIME(f(n)) be
the class of languages decided by ATMs, all computations of which on input x
terminate after at most f(|x|) steps. Similarly, ASPACE(f(n)) includes the
languages decided in alternating space f(|x|). Note that, besides time and
space, we use the alternations to study the complexity of an ATM algorithm;
this measure counts the maximum number of changes between ∨ and ∧ states
over all paths of the computation tree.

Regarding the computational power of the model, the ATMs accept ex-
actly the same set of languages as the DTMs (the recursively enumerable
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languages) [28]. To be more precise, it was proved that alternating space is
equal to deterministic time, only one exponential higher. Also, alternating
time is polynomially related to deterministic space. We mention here that
the idea of alternation can be applied in other models too. In some cases,
alternation enhances the computational ability of the entire model: alter-
nating pushdown automata are strictly more powerful than nondeterministic
pushdown automata (the former accept languages accepted by DTM in time
cn, while the latter do not).

Regarding the interests of this thesis, the ATM can be viewed as a ma-
chine spawning processes with unbounded parallelism. That is, when a node
v of the tree branches, it spawns new processes, which will run to comple-
tion and report acceptance or rejection back to the node v. Afterwards, the
node v combines the answers in a simple way (AND, OR) and forwards the
result to its own parent, and so on. Note that the process communication
is confined only between parents and children. Overall, the ATM is closely
related to the models of parallel computation. A characteristic example is
the correspondence between the number of alternations and the depth of the
unbounded fan-in circuits. The ATM is used to study parallel complexity
theory and we will come back to it in chapter 4.

2.4.2 Other Models

The k-PRAM model was introduced in 1979 by Savitch and Stimson [29].
Unlike the ordinary PRAM, this model has no shared memory. Instead, a
processor communicates directly with another processor by making a call
and passing parameters via some channel registers. The processor cannot
communicate with an unbounded number of distinct processors. The param-
eter k denotes the branching factor out of each processor. The above idea is
similar to that of the recursive-TM. Such a machine has two input tapes,
one containing the input of the problem and one containing the output of
the calling machine. That is, the TM can spawn an identical TM by passing
a parameter via its output tape (to the input tape of the new TM). In this
way, the TM performs a subroutine call and waits until its termination (ac-
cept/reject state) before continuing with the remaining of the computation.
One step farther, the parallel-TM is defined by allowing two output tapes
per machine and two simultaneous subroutine calls, which will spawn two
new machines working in parallel.

The Hardware Modification and the Parallel Pointer Machines
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are essentially two versions of the same model, which is characterized by its
reconfigurability at run-time [30]. As with the Conglomerate model, HMM
and PPM consist of a finite collection of FSMs pairwise connected in a direct
fashion. However, as opposed to the Conglomerate where the connections
are fixed, the communication channels between the FSMs of the HMM and
PPM can change during the computation. To be precise for the PPM case,
each FSM has k input lines (links, or pointers) and, at each step, it can
redirect one of its links to any other FSM, which is located no more than
two hops away from it. These models were introduced (1980s) to study the
computational power of machines falling in between the two major categories
of models: those with bounded and fixed inter-process communication (e.g.,
circuits), and those with unlimited communication links (e.g., shared mem-
ory). Interestingly, the results of the literature show that the PPM falls
very close to the second and more powerful category, i.e., it can simulate
sequential-space S(n) in only O(S(n)) parallel-time (and not O(S2(n))).

The Reconfigurable Mesh is a model capturing features from the fixed-
connection networks and the VLSI, characterized by broadcast buses and
reconfigurability at run-time [31]. Specifically, it consists of a

√
N ×√N ar-

ray of processors connected via a grid-shaped reconfigurable broadcast bus.
Each processor has four local switches, which allow the bus to be divided
in sub-buses to connect various sets of processors, instantly. The broadcast
on the bus can be performed in an exclusive-write or common-write fashion.
Similar to the VLSI, we assume Θ(N) total area cost, unit area for a link be-
tween adjacent switches, and either unit-time delay (any broadcast operation
consumes Θ(1) time), or logtime delay (broadcast in Θ(log s) time, where
s counts the switches traversed by the signal). Note that under the unit-
time delay assumption, the reconfigurable mesh owns greater power than the
ordinary circuits and the PRAM, e.g., it computes the PARITY in O(1) time.

The Vector Machine is, roughly, a RAM including bit-vector registers
and bitwise instructions: AND/OR/NOT operations, vector shifting, etc [32].
These instructions are executed in one cycle and involve all bits of the register
(of infinite length), i.e., we get parallel processing at bit level. The ability of
the machine to shift integers by multiple bit-positions to the left (equal to
the length of the integer) in a single cycle, gives extraordinary power to the
model. In fact, the Vector Machine can generate exponential information
in only polynomial number of steps. This is also a characteristic of the
M-RAM model, which is a RAM equipped with a unit-cost instruction for
multiplying variables. It is proved that both machines can solve NP-complete
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problems in polynomial time [32] [5].
The CLUMPS model is a generalization of the LogP (Campbell, 1994)

[15]. A set of autonomous processors communicate directly via a partition-
able interconnection network. Similar parameters to that of the LogP are
used for measuring the performance of the parallel algorithms. Also, a net-
work capacity is determined. However, instead of the global parameters L
and g of the LogP, the CLUMPS uses latency and bandwidth parameters,
which are defined for certain regions of the machine. Each region determines
a collection of processes allocated to a specific partition of the interconnection
network. Inter-region communication is costed by merging the parameters
of the corresponding regions. The distributed memory of the model can be
viewed as a multi-level hierarchy with each level consisting of the collective
memory of a region (the local memories of each processor are located at the
lowest level, while at the highest level we get the memory of the entire ma-
chine). Overall, introducing numerous regions and parameters is liable to
increasing the difficulty of the analysis, but it also allows algorithms to run
faster if we carefully map the processes to appropriate partitions.

The Cellular Automata came into existence with the work of von Neu-
mann, among others, during the 1940s. Today, the model is used in biology,
chemistry, physics, as well as in computation theory [33]. Similar to the
Conglomerates, a CA is a –possibly infinite– collection of finite state au-
tomata. These FSAs, however, are not defined here with explicit I/O or
interconnections; we are interested only on their states. Their communica-
tion is performed indirectly by relating their states. Specifically, each FSA
is called here a cell. The cells are placed on a discrete regular grid, i.e., on a
lattice (most often, the CA is a 2D array of cells). A neighborhood formula
associates each cell with a finite number of specific cells in its vicinity. The
neighborhood determines the state of the cell during the computation. The
computation is a synchronous evolution of configurations, i.e., of vectors de-
scribing the states of all cells at each time instant. Starting from an initial
configuration, the state of each cell changes at each step according to a prede-
fined rule (a transition function), which takes as input the previous states of
its neighborhood cells. This rule is the dominant characteristic of each CA.
Interestingly, one can see certain patterns evolving within the configurations
during the computation (shapes often appearing in the study of CAs, or even
in the nature itself). Well-known problems expressed in terms of CAs are the
“configuration reachability” (can we obtain picture X starting from Y) and
the “predecessor existence” (deciding whether X has a certain predecessor
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Y). The former is undecidable for infinite 1D CAs (analogously to the halt-
ing of a TM), while the latter is NL-complete for 1D CAs and NP-complete
for 2D CAs. We know that CA can simulate TM and vice versa.

Natural Computing is a field of research swarming with peculiar mod-
els of parallel computation [34]. It is concerned with the computing paradigms
encountered in nature, i.e., it studies the principles/mechanisms underlying
natural systems, which can inspire humans to design new algorithms and
computers. Since nature works most often in parallel, most of the result-
ing models perform parallel computations. The cellular automata mentioned
above is a first, characteristic, example of natural computing inspired by the
self-reproductive mechanisms in biological organisms. Other examples in-
clude neural networks, membrane computing, molecular (DNA) computing,
evolutionary (genetic) algorithms, ant colony optimization, artificial immune
systems, etc. Some of these attempts lead to heuristic algorithms (e.g., for
search problems), while others can lead to the design of computational mod-
els with much greater power than the ordinary TM (e.g., the “transition
P system” can solve PSPACE-complete problems in polynomial time [35]).
The literature on natural computing is vast, varying from pure theoretical to
experimental laboratory research.

Dynamic Multithreading is a more of a programming model, which
can also be used to study parallel algorithms [3]. The model assumes an ideal
multiprocessor and abstracts the need for communication protocols and load
balancing (such issues are handled in practice by a concurrency platform
placed between the programmer and the actual multiprocessor). A parallel
program consists of ordinary instructions (add, jump, etc) plus three spe-
cial purpose instructions: spawn, parallel, and sync. The spawn command
allows for nested parallelism, as the programmer uses this to start a new
subroutine (a thread) to work in parallel with the caller routine (via a call
with parameters). The parallel command is used to execute certain loops
in parallel without explicitly calling subroutines. The sync command deter-
mines specific time barriers within a routine, forcing the routine execution to
wait until all of its subroutines have terminated and returned their results.
The above three commands are concurrency keywords and are inserted in a
–otherwise serial– pseudocode to express the logical parallelism of the com-
putation, indicating which parts of the computation may proceed in parallel.
Alternatively, one can construct the directed acyclic graph of the compu-
tation with nodes-instructions and edges-dependencies (fanout>1 denotes a
spawn and fanin>1 denotes a sync). We are interested in measures such as
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Model Complexity Measures

Turing Machine time(steps), space(cells), reversals

Alternating TM alternations, space(cells), time(steps)

PRAM time(instr), processors, processors×time

BSP supersteps, processors, g·hi + s + mi

Boolean Circuit depth(gates), size(gates), width(gates)

VLSI Circuit time(sec), area(µm2), area×time2

Table 2.1: Most common complexity measures (models’ resources)

the work of the computation (its sequential time) and the span (its parallel
time, i.e, the longest path in the dag).

Papadimitriou and Yannakakis described in 1990 a method for eval-
uating the performance of a parallel algorithm with the solution of a schedul-
ing problem [36]. PY view the parallel algorithm as a directed acyclic graph
indicating the elementary computations of the algorithm and their interde-
pendence. They do not simply measure the depth of this graph to find the
time complexity of the algorithm, because such a method disregards the com-
munication delay of the processors. Rather, they introduce a parameter τ
capturing the delays of the underlying machine and they define a scheduling
problem on an unbounded number of processors. As a schedule constraint,
each task Ti must be completed by time t–1, where t denotes the start of any
child Tj of Ti, or by time t–1–τ when Ti and Tj are not scheduled on the same
processor. The optimum makespan of this scheduling problem is regarded
as the complexity of the algorithm under examination (given as a function
of τ). Since scheduling is a NP-complete problem, PY devise a scheduling
method to approximate the optimum makespan to within a factor of 2.

We conclude the model presentation in this thesis by summarizing the
resources of interest for the most widely used models in table 2.1. These
resources are used to measure the complexity of the implemented algorithm
or circuit. Note that the first column, provably, captures the time complexity
of the computation. Interestingly, the measures of the second column are also
related: they reflect the amount of information carried during the course of
the computation.
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2.4.3 Taxonomy of Parallel Computers

The models mentioned so far, along with their variations, lead to the de-
velopment of a plethora of processor-based parallel machines. Considerable
effort has been spent in identifying the commonalities of these machines
and classifying them based on practical criteria (programming, architectural,
etc) [2] [37].

The first well-cited attempt was made by Flynn in the 1960s. Flynn
based his taxonomy primarily on the programmer’s viewpoint. Specifically,
Flynn was interested in whether the processors of a system will execute the
same instruction at any given cycle (central control), or not. Moreover,
Flynn was interested in whether each processor will operate on the same
data with the other processors at each cycle (common input), or not. In
other words, Flynn’s criteria are the instruction stream and the data stream
of the system. In a “Single Instruction - Multiple Data stream” computer
(SIMD) all processors execute the same command per cycle, even though
each one of them processes distinct data (recall the SIMDAG). The SIMDs
are also called array or systolic processors. In a “Multiple Instruction -
Multiple Data stream” (MIMD) every processor has its own program and
processes a distinct data set (recall the general PRAM). Of course, there
exist uniprocessor systems (SISD), as well as specialized MISD systems. The
SIMD multiprocessors were widely used in the past decades. Today, the top
supercomputers are based on MIMD architectures. During the 1980s, the
MIMD class was further divided into the SPMD and the MPMD subclasses
by considering the diversity of the programs stored in the processors of the
parallel machine. The “Single Program - Multiple Data stream” systems
compose a wide and important class, which can be viewed as a compromise
between SIMD and MIMD: each processor is given its own copy of the same
program. As a result, each processor can follow a separate branch during
the program execution, e.g., with an if–then–else command. This allows for
more flexibility and less idle time per processor. However, SPMDs require
synchronization points within the program (in contrast to the SIMD where,
by definition, every processor knows the state of the others). Note that
SPMD is nowadays the most common style of parallel programming and
forms the basis of the Message Passing Interface (MPI)16.

16MPI is a language-independent communication protocol used to program a distributed
memory system. It emphasizes in message passing among the processors. It is widely used
today in computer clusters and supercomputers.
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Figure 2.6: The Flynn-Johnson classification of computer systems

Following Flynn, Johnson proposed his own taxonomy in 1988 [37]. John-
son was interested solely in the MIMD class and extended his view to in-
clude architectural criteria. That is, he distinguished between shared and
distributed memory systems. He also distinguished between systems, which
use messages for the communication of the processors and those, which use
shared variables. The characteristic member of the “Global Memory - Shared
Variables” (GMSV) class is the PRAM, while BSP characterizes the “Dis-
tributed Memory - Message Passing” (DMMP). The GMMP systems have
isolated process address spaces (usually virtual, within the same memory).
In the DMSV, or “hybrid” systems, the memory is distributed among pro-
cessors, but communication and synchronization take place through shared
variables (e.g., via a Butterfly network). Figure 2.6 illustrates the Flynn-
Johnson taxonomy.

We continue with an alternative view of the MIMD class, which high-
lights the structure of the interconnection network and not the programming
model underlying the processor communication. That is, we examine the
physical connections of the processors. We distinguish between a bus archi-
tecture and a switched network. The former is a single medium connecting
all processors, while the latter uses fixed connections between certain pairs
of processors. In a bus architecture the bandwidth is shared, whereas in a
switched network every pair has its own channel. The second criterion used
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here is the standard distinction between shared and distributed memory.
However, the shared memory architectures are now called multiprocessors,
while the distributed memory architectures are called multicomputers to de-
note the autonomy usually encountered in each component of the system.
Multiprocessors are considered as tightly coupled systems, in the sense that
their components tend to be in close proximity with short communication de-
lay and high bandwidth. Multicomputers on the other hand are considered
as loosely coupled systems, (e.g., a number of workstations on an Ethernet
LAN). Roughly, bus–multiprocessors correspond to GMSV systems, while
bus–multicomputers correspond to DMMP systems.

Besides the above classifications, one can point out the UMA and NUMA
distinction. In the “Uniform Memory Access” architecture all processors
share the common memory uniformly, i.e., the penalty of accessing a non-
local memory does not depend on the relative position between the processor
and the memory module. If this is not the case, we have a “Non-Uniform
Memory Access”. The first UMA example that comes in mind is a sim-
ple PRAM, while the first NUMA is a fixed-connection network of mem-
ory/processor components. In general, multiprocessors are considered UMA
and multicomputers are considered NUMA, but the precise classification de-
pends on the specifics of the implemented machine. Let us finally mention
an architectural distinction between “Paracomputers” and “Ultracomputers”
introduced by Schwartz in 1980; the former use an idealized central mem-
ory like the PRAM, while the latter use a number of memory modules and
processors connected via an interconnection network (message passing).

To conclude this subsection, we report an attempt to classify entire mod-
els of computation instead of mere processor-based systems. Cook proposed
in 1981 a “structural” classification [29], according to which we have the
fixed and the modifiable structure models. The first is a class representing
parallel models whose interconnection pattern is fixed during the computa-
tion, while the second class represents models whose communication links
are allowed to vary. Examples of fixed structure models are: the ATM, the
bounded fan-in uniform Boolean Circuit families, the uniform aggregates,
and the k-PRAM. Examples of modifiable structure models are: the Hard-
ware Modification Machines, the PRAM, the SIMDAG, the Vector Machine,
and the unbounded fan-in uniform Boolean Circuit families. Note how the
above distinction would reflect to the sequential computation models: we
would get the fixed versus the modifiable storage structure models, e.g., the
Turing Machine versus the RAM. Interestingly, we know that the fixed struc-
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ture models are slightly less powerful than the modifiable: for the former we
usually get DSPACE(S(n)) ⊆ F-TIME(S2(n)) ⊆ DSPACE(S2(n)), while for
the latter DSPACE(S(n)) ⊆ M-TIME(S(n)) ⊆ DSPACE(S2(n)).
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Chapter 3

Model Simulations and
Equivalences

The literature includes a plethora of computational models and model vari-
ations, either sequential or parallel. The extent at which these models differ
from each other can be explained, at some level, by the needs of the scientific
community. We can describe here two opposite modeling trends. The first
mandates the definition of parameters and structures, which comply with the
cutting-edge technology. The second abstracts as many details as possible to
create “simple” models. Clearly, the first is a trend promoted by the fabrica-
tion industry, while the second is promoted by the theorists. In between, one
can find the numerous model variations described in the previous chapter.

Such a plethora of models might lead to a confusion regarding the scope
and the computational abilities of each machine. From a theoretical view-
point, we must settle whether these models are able to compute the same
functions. From a practical viewpoint, we must find ways to “translate” pro-
grams automatically from one model to the other. Both of these goals can
be achieved with the development of certain simulation techniques. Loosely
speaking, we say that a machine simulates another machine when it executes
a program mimicking the functionality and following the computation steps
of the second machine, in order to generate the same output on any given
input. If we develop a generic technique to simulate one model with another,
we can run any program of the first to the second, at the expense of some
extra resources (time, space, etc). The amount of the extra resources is used
to compare the computational power of the models. Trivially, if two models
can simulate each other, then they have the same computational ability.
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3.1 Shared Memory Models

The existence of numerous PRAM variations gives rise to a common theo-
retical question regarding the computational power of each machine. On one
hand, we expect that they are all computationally equivalent, i.e., they can
compute the same functions regardless of the required time/space/processor
resources. On the other hand, we expect that certain PRAM variations re-
quire less steps than others when computing specific functions.

3.1.1 Overview

The PRAM variations share common instruction sets and operating prin-
ciples (see section 2.1.1). Consequently, it is possible to “translate” a pro-
gram, which was coded for a specific PRAM model, to a program running
on a different machine (to compute the same output). Most often, only
the read/write operations to the shared memory need to be restructured.
Several techniques have been published in the literature for this purpose,
allowing the simulation of one machine by another. These simulations prove
the equivalence of the various PRAM models with respect to their compu-
tational ability. However, they also show that not all models are equally
powerful in terms of time, space, or processors. The “weak” models usually
require more resources in order to complete their calculations.

We say that two PRAM models are equally powerful if they can simu-
late each other with a constant factor slowdown [2]. A PRAM model M1 is
strictly less powerful than another model M2 (denoted as M1 < M2) if there
exists any problem for which the former, M1, requires significantly more com-
putational steps than the latter, M2. For instance, the detecting-CRCW is
strictly less powerful than the max-CRCW PRAM (writing the maximum
value offered): the latter can find the largest number of a size-p vector V
in a single step (assuming that p is equal to the number of processors, con-
sider a parallel execution where each processor Pi reads V [i] and writes it to
the shared memory cell p + 1), whereas the detecting-CRCW needs at least
Ω(log p) steps.

The PRAM models can be ordered according to their power simply by
examining their cross-simulations. More specifically, given two models M1

and M2, if M2 can simulate M1 with only a constant factor slowdown, whereas
the converse cannot hold, clearly, we have that M1 < M2. Such model
comparisons can also involve the number of processors and/or space required
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Original Model Simulating Model Simulation

#Proc #Proc Time

priority-CRCW
EREW

random-CRCW p
CREW

≥ p Θ (log p)

common-CRCW

priority-CRCW
p common-CRCW kp Θ

(
log p

k(log log p−log k)

)
random-CRCW

priority-CRCW p random-CRCW kp O
(

log log p
log(k+1)

)

CREW p EREW ≥ 1 Ω
( √

log p
log log p

)

priority-CRCW
EREW

random-CRCW p
CREW

≥ p + m2 Θ
(

p
m

)

common-CRCW

priority-CRCW
p common-CRCW p Ω

(
log p

m

)
random-CRCW

priority-CRCW p random-CRCW kp Ω
(
log p

m

)

Table 3.1: PRAM simulations (p: processors, m: memory cells) [6]
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by each machine. A chain of some well known relations among models using
the same number of processors is [2]:

EREW < CREW < detecting-CRCW < common-CRCW
< random-CRCW

< priority-CRCW

Note that, even though all CRCW models are strictly more powerful than
the EREW (the weakest model), the EREW can simulate the most powerful
CRCW listed above with at most logarithmic slowdown (assuming that extra
memory cells can be used during the simulation).

Towards a more accurate view of the PRAM model relations, Table 3.1
summarizes the results of various simulations [6]. The last column of the table
reports the slowdown factor for each case (the time of the simulation over
the time of the original execution). The upper part of the table assumes no
memory constraints, while the last three rows refer to simulations where the
models (both the original and the simulating) use only m shared memory cells
and the input is initially distributed among the processors’ local memories.
The comparisons highlight the speed of each model. The slowdown suffered
in each case depends on the number of the processors and not –directly–
on the input size. Notice that the differences between the CW models are
sub-logarithmic, i.e., they are much smaller than the logarithmic slowdown
of the EW model. Also, the memory constraint can lead to significant time
losses (in the EREW case it results in a potentially linear slowdown).

3.1.2 Simulations between PRAMs

To better understand the aforementioned simulation techniques, we will
study the most prominent of them in the following theorems. We begin by
making clear that each of the described techniques allows the simulation of
the entire functionality of a PRAM model, and not some specific algorithm.
In other words, given two models M1 and M2, we are interested in a generic
technique to support the execution of any M2 algorithm to the M1 machine.
Most often, each technique employs certain parallel algorithms to simulate
the read/write operations of the original model. Naturally, we examine the
amount of resources required to simulate a model with a weaker model (the
converse simulation is straightforward).
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SIMULATION: priority-CRCW on EREW and CREW

The next theorem [20] establishes that any priority-CRCW algorithm with
running time T (n) in p processors can be simulated by an EREW algorithm
with running time Θ(T (n) · log p) in p processors. Since the only difference
of the two models lies in the accessing of the shared memory, we are in-
terested only in simulating a concurrent read –or write– operation with the
EREW model. The remaining operations will be executed by the simulating
algorithm in their original form (instruction copy).

Theorem 3.1.1. A concurrent read (or write) operation of a p-processor
priority-CRCW PRAM can be implemented on a p-processor EREW PRAM
to run in O(log p) time.

Proof. Let Q1, . . . , Qp and P1, . . . , Pp denote the processors of the priority-
CRCW and the EREW PRAMs respectively. Each Pi will simulate the
operations of each Qi. Moreover, we use the idea that the P1, . . . , Pp pro-
cessors can cooperate to find out which Qj has the priority to write (read)
on a memory cell by sorting a list of the Q1, . . . , Qp concurrent requests
in Θ(log p) time. For simplicity, we assume here a SIMD algorithm where
the conflict resolution procedure is started only when the program counter
reaches a read/write operation. Note that for MIMD algorithms the slow-
down remains Θ(log p) even with a naive application of the conflict resolution
procedure: we execute the procedure at each step of the algorithm, regardless
of which processors actually access the shared memory, and then continue
with the next non read/write instruction.

In a priority-CRCW PRAM each processor Qi has a unique IDi (log p
bits). In a EREW we can also assign IDs and we can reserve memory loca-
tions M1 to M2p to be used only during the conflict resolution procedure. Let
us assume that during the CRCW computation Qi requests memory location
Mf(i). To start the conflict resolution procedure, each EREW processor Pi

will append the IDi number to its Mf(i) number and will store the resulting
value < Mf(i), IDi > in Mi. Next, all the EREW processors will execute a
parallel mergesort algorithm in Θ(log p) time [20] to sort the list formed in
memory locations M1 to Mp. In this way, the requests will group according
to their addresses (namely Mf(i)) and the rightmost member of each group
will correspond to the lowest IDi of the processor that requested Mf(i) (i.e.
to the one with the highest priority for accessing Mf(i)). Afterwards, each
EREW processor Pi will read the locations Mi−1 and Mi in two steps, in order
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to determine whether there is an access conflict (same address request). If
not, Pi can perform the access described in Mi. Clearly, the accesses chosen
by this procedure will correspond to the accesses performed by the CRCW
processors. Memory locations Mp+1 to M2p can serve as a buffer for com-
municating the request data between the requesting processor Pi and the
processor Pj which actually executes the request. For example, in a write
operation Pi will temporarily store its data in Mp+i and afterwards, if Pi gets
the highest priority, the data will be forwarded to Mf(i) by Pj (which, besides
Mf(i) knows the IDi and thus can locate Mp+i).

The running time of the above simulation is determined mainly by the
mergesort execution time Θ(log p). The remaining operations can be com-
pleted in O(1) time as the arithmetic computations and the consequent ac-
cesses to the memory locations M1 to M2p require constant time (by con-
struction of the simulation, no conflicts delay these accesses).

Using the same idea, any CREW algorithm can be simulated by a EREW
within the same logarithmic bound. Moreover, since a EREW can be simu-
lated by a CREW PRAM using the exact same operations (no slowdown),
we deduce that the CREW can simulate the priority-CRCW with at most a
logarithmic slowdown [20].

SIMULATION: priority-CRCW on random-CRCW

The next theorem [20] [6] shows that the computational power of the random-
CRCW is quite similar to the power of the priority-CRCW. Their only dif-
ference is in the writing of the shared memory, where

Theorem 3.1.2. A concurrent write operation of a p-processor priority-
CRCW PRAM can be simulated on a p-processor random-CRCW PRAM in
O(log log p) time.

Proof. We prove that resolving the conflict of an arbitrary number of random-
CRCW processors, which try to access the cell MC requires O(log log p) steps.

Assume that the p processors are partitioned in
√

p groups of
√

p pro-
cessors each. In the first step, the processors of group Gj that request an
access to the cell MC will write their IDs into cell Mj (as usual, we reserve
a number of shared cells for use only in the conflict resolution procedure).
A random –or none– processor P j

i in each group Gj will succeed in this op-
eration. In the second step, all the involved processors read their group cell
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Mj to identify P j
i . This concludes the first phase of the simulation. For the

remaining phases of this simulation, P j
i will be the representative of Gj.

In the second phase, we have a group GR of
√

p representative processors
along with the

√
p groups of the first phase (missing their representatives).

In a recursive fashion, the processors of each of these groups are partitioned
in

√√
p sub-groups and, by following the same steps with phase 1, new

representatives are selected. Again, all groups operate in parallel.
The recursion continues until the processors contract into groups of two.

At this point, it is easy to decide which one of the two processors has the
lowest ID (thus, the priority) and “shut down” the other. Following the
recursion backwards, when a representative is “shut down”, so are all of the
members of its group. On the other hand, if a representative is prioritized,
at each backward step we compare its ID to the single other ID of its group
having survived the procedure up to that point (by working in parallel with
the representative). Such a comparison requires O(1) time. Fewer and fewer
representatives will stay “alive” until only two processors will reach their
starting group Gj and decide the final winner of the procedure, i.e. the
lowest ID which tried to access MC .

The problem described above is widely referred to as the LEFTMOST-
PRISONER (find the leftmost processor participating in a specific conflict).
The running time of the proposed solution clearly satisfies the recurrence
relation T (p) = T (

√
p) + O(1). Therefore, T (p) = O(log log p).

Note: it is possible that we have more than one conflicts at each priority-
CRCW step. Therefore, the above procedure should be executed more than
once (once for each conflicting cell). However, all of these conflict resolutions
can be executed in parallel, not increasing the simulation time computed
above. Since each processor is interested only for its own target cell, he will
participate only in one conflict resolution as follows. The reserved shared
memory will be divided into m parts, one for each original memory cell, each
one sufficiently large to accommodate the execution of the above described
procedure. Each processor will request a shared cell Mx by writing its ID
in the reserved part which corresponds to the specific Mx conflict resolution
procedure; it will continue working within this specific part and at the end
of the procedure it will erase its ID (allowing the correct simulation of the
next step of the priority-CRCW).
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SIMULATION: priority-CRCW on common-CRCW with more processors

As expected, the simulation of a model can consume much less time if we use
more than p processors (i.e. more than the original number of processors).
In some cases, the weaker model can simulate the stronger model with only
a constant factor slowdown. The next theorem [20] [6] gives proof for such a
case:

Theorem 3.1.3. A concurrent write operation of a p-processor priority-
CRCW PRAM can be simulated on a (p log p)-processor common-CRCW
PRAM in O(1) time.

Proof. We prove that the simulating model can solve the LEFTMOST- PRIS-
ONER problem (i.e. find the leftmost processor participating in the conflict)
for the p original processors in O(1) time. With the use of the last note of
the proof of theorem 3.1.2, all conflicts arising in the simulation can be re-
solved in parallel by allowing each processor to join the LEFTMOST solution
procedure of its interest.

Assume that a number of priority-CRCW processors issue a request for
the same cell MC . The common-CRCW processors resolve the conflict as
follows. First, let us visualize a binary tree T whose leaves correspond to
the p original processors. Each node of this tree T is initially assigned “0”.
However, if an original processor pi has requested MC , then we assign “1”
to the corresponding leaf li. Moreover, we assign “1” to each ancestor aj,i

of each leaf li if li is assigned “1” and is located to the left subtree of aj,i.
Clearly, this coloring procedure leads to the safe conclusion that li is the
leftmost leaf marked “1” if and only if every ancestor of li which contains li
to its right subtree is marked “0”.

Fortunately, all the above assignments can be done in parallel. Therefore,
we associate log p simulating processors with each original processor and
program them to place the corresponding marks on the tree T concurrently
(each node of the tree T corresponds to a reserved shared cell of the common-
CRCW). Specifically, each “slave” processor will be associated with a specific
node of a specific level of the tree T and a “master” original processor (i.e.
a leaf). In the first phase of the conflict resolution, each slave will read its
master’s request and mark the corresponding node on the tree T according to
the aforementioned rule in O(1) time. Note here that the only possible write
attempts on a shared cell regard 1’s and therefore, the common-CRCW policy
will permit the write operation independently of the number of processors
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involved in it. In the second phase, each slave si associated to a node ni

containing the master pi to its right subtree will read ni. If ni is marked
“0” then the slave will attempt to write “OK” at a specific cell Mi which
will afterwards be read by processor pi. On the contrary, if ni is marked “1”
the slave will attempt to write “notOK”. Since we use a common-CRCW,
the “OK” value will be written only if all slaves agree, i.e. if the under
examination master is the leftmost (prioritized) processor. Clearly, both
phases require O(1) time.

The above simulation is not considered “efficient” since the number of
processors has to increase by log p (also, the shared memory has to increase
from m to Θ(pm)). There exist a more efficient simulation technique [20]
which requires only p processors and O(log p/ log log p) time. Note that
this improved technique –which leads to the result reported in table 3.1 [6]–
is characterized by a smaller product processors × time compared to the
technique described in theorem 3.1.3.

SIMULATION: priority-CRCW on random-CRCW with limited memory

In general, when we limit the shared memory of the simulating model, the
simulation requires significantly more time. The next theorem [6] studies such
a case where the simulation time increases exponentially –when compared to
the unrestricted simulation.

Theorem 3.1.4. The simulation of a concurrent write operation of a
p-processor priority-CRCW PRAM with m shared memory cells requires
Ω(log(p/m)) steps on a p-processor random-CRCW PRAM with m shared
memory cells.

Proof. We give a lower bound for the solution of a fundamental problem on
the examined model. Assume that the p original processors are divided into
m equal sized groups and that each group Gi tries to access cell Mi. The
simulating model must identify the highest priority processor of each group.
This problem is a restricted version of the LEFTMOST WRITER problem
(a generalization of the LEFTMOST PRISONER problem where more than
one conflicts occur).

Initially, there are Ω((p/m)m) solutions: within each group, any member
can be the leftmost processor of the group. We can envisage the random-
CRCW solution as a step by step procedure where a number of candidate
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answers is eliminated until the final solution is reached. We will show that at
each step, the total number of possible answers is decreased by a factor of at
most 22m. Therefore, any algorithm cannot perform less than Ω(log(p/m))
steps to determine the final solution of the problem.

We will use the idea of an “adversary” for the following worst case anal-
ysis. Each processor in each Gi must have value either 0 or i (by problem
definition). Our adversary will fix the values of the processors and the con-
tents of the shared cells at each step by choosing the processors who will
succeed in their write operations to them (we examine a random model, thus
any processor could be chosen in practice, unpredictably). More specifically,
the goal of the adversary is to fix the values of certain processors after each
step in a way that allows any free processor (not yet fixed) to be the leftmost
writer in its group. To accomplish this, the adversary never fixes a processor
–except with value 0– as long as there is a free processor of lower index in
the same group. The algorithm cannot terminate unless every free processor
is fixed.

Initially, the rightmost processor of each Gi is fixed to i and all other
processors are left free. In the remaining steps, as the processors execute
their instructions, the adversary monitors their requests and allows write
operations to the shared memory as follows. It will allow, if possible, only
fixed processors to complete their requests. Otherwise, it will allow –and
fix– a processor by choosing only from the right half of the free processors
of a group. Accordingly, the number of possible answers is decreased by at
most a factor of 2. Moreover, the adversary fixes the values of the left half
free processors of a group at “0” to ensure that they will not write at the
remaining unfixed cells. This move decreases the number of possible answers
by at most a factor of 2m. By combining these two factors, we conclude to
the alleged 22m reduction factor.

3.2 Distributed Memory Models

The same features that make the PRAM an attractive model for the program-
mer, unfortunately, also make the PRAM unattractive for the fabrication
engineer. Its global memory is difficult to implement in hardware. Instead,
the distributed memory models are widely used in the industry (especially
the fixed-connection network models). Consequently, it is rational to develop
simulations techniques that allow the execution of PRAM algorithms on the
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distributed memory machines. Moreover, similar to the PRAM comparisons
of the previous section, we are interested in comparing the distributed mem-
ory models in terms of computational power.

3.2.1 The simulation of a shared memory

Various techniques have been developed for simulating the shared memory
of the PRAM with a distributed memory model [19]. Naturally, one can
think of ways to distribute the shared data among the local memories of the
processors, which will communicate during the computation to exchange the
required data via messages. The data distribution might involve randomized
and/or deterministic hash functions. Moreover, it might involve data repli-
cation (multiple copies stored in distinct processors). In any case, the major
problem encountered in such simulations is the contention of the network.

In the remaining of this subsection we describe two distinct simulations
of the PRAM. First, we consider a p-node Butterfly network using the same
number of processors with the PRAM. We show that the Butterfly slowdown
is at most logarithmic in p. Second, we examine the case of a BSP machine
with sufficiently less processors than the PRAM. The slackness of the BSP re-
sults in an optimal simulation with respect to the total number of operations.
In both examples, we will use probabilistic analysis, and thus, the results are
given in terms of expected values (which hold with high probability).

SIMULATION : PRAM on a Butterfly Network

Consider a p-node Butterfly Network (BN) and a p-processor PRAM, which
includes a shared memory of m cells [19]. We distribute, randomly and evenly,
the m cells to the p processors of the BN by using some predetermined,
pseudorandom, hash function h : [1,m] → [1, p]. Each node Ni of the BN
will simulate the operations of a distinct processor Pi of the PRAM.

Assume that Pi will access, during step t of the PRAM execution, the
shared cell f(i, t). Hence, during the simulation, the Ni will send a message to
the node h(f(i, t)). The problem reduces now to the routing of such packets
with the smallest possible delay. We will use the straightforward approach
of sending the packet to the first column of the BN and, afterwards, to its
destination (in case of a read operation, a response packet will be sent back).
Assuming an EREW PRAM, the above greedy routing algorithm results with
high probability in an average of O(log p) slowdown of each PRAM step.
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Moreover, by carefully distributing the queues along the nodes of each BN
row, the routing algorithm requires only constant size queues at the expense
of some extra constant factor slowdown [19].

The above technique works equally well for CRCW PRAM simulations,
provided that we are allowed to combine (e.g., concatenate) the data destined
for the same shared cell. Notice that, in any case, we use no data replication.
Finally, we can speed-up the simulation by introducing more nodes to the
BN [19]. For instance, if we use a log p dimensional BN, which has log p more
connections than the ordinary BN (more bandwidth), then the simulation
results in only Θ(1) slowdown.

SIMULATION : PRAM on BSP

The CRCW PRAM can be simulated optimally (up to constant factors)
by the BSP model if we assume constant bandwidth g and sufficient parallel
slackness, i.e., sufficiently large ratio of PRAM processors per BSP processor.
In particular, [12] reports that if v = p1+ε for any ε > 0, a v-CRCW-PRAM
can be simulated on a p-BSP, with L ≥ log p, in time O(v/p), where v and
p denote the number of processors of each machine. However, the constant
multiplier which is hidden in the O(v/p) time bound grows as ε → 0. Such
constants can be avoided, where possible, by using simpler solutions. The
following simulation provides such a solution by using randomization and
sufficient slackness.

Let us begin with some notation and assumptions. We shall say that a
BSP algorithm is one-optimal in computation if it performs the same number
of operations, to a multiplicative factor of 1 + o(1) as n →∞, as a specified
corresponding sequential or PRAM algorithm. Also, a PRAM simulation is
one-optimal in communication when T (n) read/write operations of a PRAM
can be simulated in (2gT (n)/p)(1 + o(1)) time units on the BSP 1. Let
us assume that, during the simulation, the PRAM processors can be evenly
distributed among the BSP processors (v > p). Moreover, since we simulate a
shared memory model with a distributed memory model, we will assume that
there is a –computable– hash function h that will randomize and distribute
the memory requests evenly among the p memory modules of the p-BSP
(the contents of a memory address m will be mapped to h(m), which we

1The factor of 2g is necessary since each read operation is implemented as a message to
a distant memory block followed by a return message, and time g is charged per message.
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can assume random). The next theorem [14] gives the required slackness for
ensuring the optimality of the PRAM simulation on the BSP.

Theorem 3.2.1. Let wp be any function of p such that wp →∞ as p →∞.
Then the following amounts of slack are sufficient for simulating any one step
of the EREW-PRAM or CRCW-PRAM on the BSP in one-optimal expected
time for communication, and optimal time in local operations (if g = O(1)).

(i) wp · p · log2 p EREW-PRAM processors

(ii) wp · p2 · log2 p CRCW-PRAM processors

Proof. Separately:

(i) wp · p · log2 p EREW-PRAM processors
After the distribution of wp log p tasks to each processor of the BSP, these
tasks are completed in one superstep. The duration of the superstep will
be chosen large enough to accommodate the routing of an (1 + ε)wp log p
-relation, thus allowing the choice of an L as large as (1 + ε)wp log p, for any
appropriate ε > 0 that depends on the choice of wp.

Under the perfect hash function assumption, all references to memory are
mapped to memory modules independently of each other, and thus the prob-
ability that a memory location maps to some module (say that of processor
i), is 1/p. We then use the bound for the right tail of the binomial distri-
bution. The probability that the number of successes X in n independent
Bernoulli trials, each with probability of success P , is greater than (1+ε)nP ,
for some ε (0 < ε < 1) is at most Prob(X > (1 + ε)nP ) ≤ e−ε2nP/3. Thus,
the probability that among wpp log p requests to memory, we have more than

(1 + ε)wp log p requests to a specific memory module is at most p−wp
1/3

, for
say, ε =

√
3wp

−1/3. Since there are p such modules, the probability that
more than (1 + ε)wp log p requests are directed to any of these, is at most

p1−wp
1/3

= p−Ω(wp
1/3). It follows that reads or writes can be implemented as

desired, in two or one supersteps respectively.
(ii) wp · p2 · log2 p CRCW-PRAM processors
Each processor of the BSP will simulate wpp log p processors of the CRCW-
PRAM. Assume that each simulated processor requests one datum from some
other simulated processor. We will show how this communication can be re-
alized with the BSP in two phases, each of (1 + o(1))wpp log p steps. Write
requests (with various conventions for concurrent writes) can be simulated
in a similar fashion, in just one phase.
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Suppose we number the BSP processors 0, 1, . . . , p − 1. The simulation
consists of the following four parts.
A) Each BSP processor will sort the up to wpp log p read requests it has
according to the BSP processors numbers to which they are destined. This
can be done in time linear in wpp log p using bucket sort.
B) Each BSP processor hashes the actual addresses in the destination mod-
ule of each request into a hash table to identify all such address (i.e. not
module) collisions. This takes linear expected time. For each destination
address one request is considered “unmarked” and the rest are “marked”.
C) A round-robin algorithm is used to implement all the “unmarked” re-
quests. In the k-th of the p − 1 stages processor j will transmit all its
messages destined for memory module (j + k) mod p, and receive back the
values read.
D) The “marked” requests –which did not participate in (C)– are now given
the values acquired by their “unmarked” representative in phase (C). This
takes time linear in the number of requests per processor.

We can implement each of the p − 1 stages of (C) in two supersteps, where

L = g(1 + ε)wp log p, ε = w
−1/3
p . This is because the probability that the up

to wpp log p read requests from a fixed processor will have more than (1 +

ε)wp log p addressed to any fixed module is then at most exp(−Ω(w
1/3
p log p))

by a similar estimation to part (i). Since there are p2 choices of the fixed pro-

cessor and module, a bound of p2exp(−Ω(w
1/3
p log p)) = exp(−Ω(w

1/3
p log p))

follows. Finally we note that instead of doing the round robin in 2(p − 1)
supersteps we could do it in just two and allow L as large as L = g(1 +
ε)wpp log p.

3.2.2 Simulations between BSP and LogP

This subsection compares the computational power of the two most com-
monly used distributed memory models. BSP and LogP are similar in con-
struction and can be viewed as closely related variants within the bandwidth-
latency framework for modeling parallel computation. Consequently, it turns
out that they can compute the same functions and that their power is al-
most equal in theory (BSP is slightly more powerful). Moreover, it is shown
that both models can be implemented with similar performance on most
point-to-point networks [13].
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Before describing the cross-simulations of the two models, we give some
technical clarifications. First, the presented schemes assume well-behaved
LogP programs. That is, (i) every LogP processor sends/receives at most
one message every g

logp
time steps, (ii) every message is received at most L

time units after departure, and (iii) capacity constraints are fully complied
with. In other words, no processor stalls. Second, we set the maximum num-
ber of messages that are simultaneously in transit, to be equal to L/2g

logp

(instead of using the original L/g
logp

). The factor 1/2 is used to avoid unre-
alistic situations in the underlying machine [13]. Third, to better facilitate
the comparison between BSP and LogP, we omit the overhead parameter o
of the LogP (in this way, we have only three parameters2 to take into con-
sideration for both models). This is a convenient approximation technique
(setting g

logp
= o) leading to a discrepancy of at most 2 [18] (practically, the

contribution of o to the overall cost of an algorithm is embodied in the value
of the parameter g

logp
).

SIMULATION : LogP on BSP

The BSP can efficiently simulate the LogP with only a constant slowdown
when the router parameters of the two models have similar values [13].

Theorem 3.2.2. LogP can be simulated by BSP with slowdown
O(1 + g

bsp
/g

logp
+ s/L). When s = Θ(L) and g

bsp
= Θ(g

logp
), the slowdown

becomes constant.

Proof. The i-th BSP processor mimics the activities of the i-th LogP pro-
cessor and uses its own local memory to represent the contents of the local
memory of its LogP counterpart. Each superstep of the BSP simulates the
effects of L/2 consecutive LogP steps. Such a superstep consists of two peri-
ods. In the first period, each BSP processor interleaves the reception of the
messages sent to it during the preceding superstep with the local computa-
tion and message generation prescribed by the LogP program for the current
superstep. Specifically, the processor receives incoming messages every g

logp

time units, until its input pool is exhausted, and executes local computation
between consecutive receptions. In the second period, all messages generated

2note that both models use p to denote the number of their processors, they use g to
somehow describe the communication bandwidth and they also use the parameters s and
L, respectively, which are related to the latency of the network (loosely and indirectly for
s, which can only serve as a time bound for the barrier synchronization in BSP).
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in the first period are delivered to the intended destinations. Notice that since
the LogP program is well-behaved, in L/2 consecutive steps, no more than
L/2g

logp
messages are generated by any processor, and no processor can be

the destination for more than L/2g
logp

such messages. This implies that in
the first period of a simulation cycle each BSP processor has at most L/2g

logp

incoming messages to read, and that the second period involves the routing of
an h-relation, where h < L/2g

logp
. Hence, the overall running time of a cycle

is at most L/2 + g
bsp
·L/2g

logp
+ s. Considering that a superstep corresponds

to a segment of the LogP computation of duration L/2, the slowdown stated
in this theorem is established by simple division.

SIMULATION : BSP on LogP

The LogP is slightly less powerful than the BSP: in theory, we get a logarith-
mic slowdown when we run a BSP algorithm on the LogP (again, the com-
parison is made when the router parameters of the two models have similar
values). However, there is a notable range of values for which the slowdown
is constant, i.e., the LogP is equally powerful to the BSP. Specifically, we
know the following [13]:

Theorem 3.2.3. Any BSP superstep involving at most m local operations
per processor and the routing of an h-relation can be simulated with LogP in
time O

(
m + (g

logp
h + L) · S(L, g

logp
, p, h)

)
, where S(L, g

logp
, p, h) is at most

O(log p). When g
logp

= Θ(g
bsp

) and L = Θ(s), then S(L, g
logp

, p, h) is the slow-
down of the simulation. Moreover, if h = Ω(pε+L log p) then S(L, g

logp
, p, h) =

O(1).

Proof. Each LogP processor simulates the local computation and message
transmissions of the corresponding BSP processor. The execution advances
in stages, with each one of them corresponding to a superstep of the BSP.
The two important points that have to be examined here are the simulation
of the barrier synchronization and the routing of the h-relations. These are
the only true requirements for the correct execution of the BSP algorithm
–given of course that the LogP processors will execute faithfully the local
operations of the BSP processors.

We will make use of the Combine-and-Broadcast (CB) and Prefix algo-
rithms of LogP. Assume that we are given an associative operator, op, and
a number of input values (x0, x1, . . . , xp−1), with each one initially held by a
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distinct processor. CB returns op(x0, x1, . . . , xp−1) to all p processors, while
Prefix returns op(x0, x1, . . . , xi) to the i-th processor, 0 ≤ i ≤ p− 1. The use
of the Prefix operation is instrumental to the routing of the BSP h-relation,
while the CB is used for barrier synchronization purposes.

Barrier Synchronization
A simple algorithm for CB is obtained by viewing the p processors of

LogP as the nodes of a tree of degree dL/(2g
logp

)e. At the beginning of
the algorithm, a leaf processor just sends its local input to its parent. An
internal node waits until it receives a value from each of its children, then
combines their values and forwards the result to its parent. Eventually, the
root computes the final result and starts a descending broadcast phase3.
Note that the algorithm complies with the LogP capacity constraint, since
no more than dL/(2g

logp
)e messages can be in transit to the same processor

at any time.
Upon completion of its own activity for the stage, a processor enters a

boolean “1” as input to a CB computation with boolean AND as the associa-
tive operator op. A stage terminates when CB returns “1” to all processors.
More specifically, the barrier can be implemented by interleaving the routing
algorithm with executions of CB which count the number of messages sent
and received by all processors (the barrier establishes that all the messages
of the h-relation have reached their destination). Given the depth of the CB

tree, the running time of this algorithm is Tsync = O
(
L log p

log 2dL/(2g
logp

)e

)
.

Routing of h-relations
The difficulty here is to avoid violating the capacity constraint of the

LogP, which is not imposed by the BSP. We will devise a mechanism to
decompose the h-relation into sub-relations of degree at most dL/(2g

logp
)e.

Before continuing, we note that we can find the maximum r over all proces-
sors in time TCB, where ri denotes the number of messages sent by processor
pi during the current superstep: the processors will execute the CB described
previously with op = max and xi = ri (assuming pi knows ri).

During the simulation on the LogP, the routing of an h-relation consists
of the following two phases:

3Prefix admits a very similar implementation with CB, the only difference being that an
internal processor has to store the values received during the ascending of the messages.
These will be used by the processor in the descending period, in combination with the
value received from its parent, to determine the values to be sent to its children. Prefix
and CB have the same running time.
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(A) Sorting. Each processor creates a number of dummy messages (with
nominal destination p) to make the number of messages held by each pro-
cessor equal to r. Then, the p · r messages are sorted in order of increasing
destination, so that at the end each processor holds h consecutive messages
in the sorted sequence. Such a procedure requires Tsort = O((g

logp
r+L) log p)

time when executed in LogP by using, for instance, the AKS network [13].
This time bound can be reduced to O((g

logp
r + L) for large values of h (e.g.

when r = pε) by using, for instance, Cubesort [13].
(B) Message Delivery. After the sorting phase, messages destined to the
same processor are adjacent in the sorted sequence and, therefore, form a
subsequence held by processors indexed by consecutive numbers. At this
point, we will make use of the aforementioned Prefix computation4 to assign
consecutive ranks to messages destined to the same processor. Then, each
processor partitions its messages into two sets. The first set contains all
messages belonging to subsequences starting within the processor (i.e., the
processor stores the message in the subsequence with rank one). The second
set contains all remaining messages. Note that, in each processor, the second
set contains only messages for a single destination. These messages are part
of long subsequences spanning more than one processor. The actual routing
of the messages is done in two stages (dummy messages are discarded). In
the first stage, each processor sends the messages belonging to the first set
in an arbitrary order, one message every g

logp
steps. The capacity constraint

is never violated since no two processors send messages for the same des-
tination. In the second stage, the processors send the messages belonging
to the second set according to their rank. If a processor has one message
of rank i, it sends such message at time g

logp
· i. Both stages require time

Tdelivery = O
(
g

logp
h +

(
L log p

log 2dL/(2g
logp

)e

))
.

To sum up [13], the overall time T to simulate a BSP superstep in LogP is
T = O(m+Tsync +Tdelivery +Tsort). Replacing the previously computed run-
ning times leads to the analytic form given in the hypothesis of the theorem.
Moreover, we get an explicit expression for S(L, g

logp
, p, h), which in all cases

is O(log p), and for sufficiently large h is constant.

4to be precise, we use the “segmented prefix” [19]
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3.3 Boolean Circuits Simulations

The model simulation survey takes us, inevitably, to the Boolean circuits. In
fact, the circuits will be at the basis of our study for the remaining of this
thesis. At first sight, the Boolean Circuit model might seem quite different in
nature from the rest of the models mentioned so far. The PRAM (as well as,
the BSP, the LogP, etc) consists of processors and memory cells, i.e., it uses
structural units of much greater complexity than the simple AND/OR/NOT
gates. Moreover, a PRAM machine is a single, finite, object (a program)
solving some specific problem. That is, when given a PRAM algorithm, we
can modify it offline (e.g., by paper and pencil) to generate an equivalent
program for any another model. Every simulation presented so far fulfills
this purpose. Instead, an “algorithm” designed for the circuit model is not
a single object. Rather, it is an infinite family of objects-circuits (recall
that a processor can operate on inputs of variable length, while a circuit Cn

can process only fixed length inputs). In general, it is impossible to modify
offline an infinite number of circuits in order to develop a program for another
machine. So, how can we compare a model with such distinct characteristics
to a processor based model like the PRAM?

Fortunately, we can deal with both of the above peculiarities of the circuit
model. Let us explain intuitively before studying the corresponding simula-
tions. First, consider that the processors and the memories that we use in
our everyday life are all made of ordinary circuits. Hence, it should be clear
that no processor possesses greater power than some predefined number of
–carefully interconnected– boolean gates. Second, and most important, re-
call the uniformity constraint that we can impose on each circuit family. A
uniform circuit is defined by a single, finite, object: the Turing Machine de-
scribing its structure (a constructor). Consequently, any simulation involving
circuits turns, in practice, to the modification of the circuit constructor, or to
the incorporation of the constructor in a PRAM program, or to the design of
a constructor “following” the instructions of a PRAM program. Of course, a
comparison among models (or algorithm complexities) requires further anal-
ysis regarding the characteristics of the constructed circuit (depth, size, etc).
Notice that the PRAM was used in the above discussion as an example and
that the circuit simulations can involve any other model of computation.
Indeed, we begin with a comparison to the most common model, the Deter-
ministic Turing Machine.
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3.3.1 Equivalence to the Turing Machine

We will establish here a relation of the boolean circuit model to the deter-
ministic Turing machine (DTM). More specifically, we will show that by im-
posing certain constraints on both models we get two equal models in terms
of computational power. That is, the set of functions computed by DTMs
in polynomial time is equal to the set of functions computed by logspace
uniform circuits of polynomial size. The equivalence follows the two theo-
rems [5] [23]:

Theorem 3.3.1. Every total function f : B∗ → B∗ computed by a polynomial-
time DTM can be computed by a logspace uniform circuit family C of poly-
nomial size.

Proof. Let M f be the DTM which computes f . It suffices to show that there
exists a logarithmic-space DTM M c, which on input 1n will output the circuit
Cn, which on input x will output the value M f (x), |x| = n.

We construct M c as follows. The description of M f is incorporated in
M c, together with the running time of M f (a priori known). Upon input 1n,
M c will construct Cn based on the computation table 5 of M f . On this table,
the value of each cell Tr,j depends only on the previous cells Tr−1,j−1, Tr,j−1,
Tr+1,j−1 (including the state). Since all of these values can be represented
with a constant length identifier, M c can construct constant size circuits to
compute the value of Tr,j (by constant we mean independent of the input x).
The construction requires only the description of M f . These small circuits
will be connected in a cascade fashion to cover the entire computation table
of M f (we copy them cell after cell, row after row). The depth of the entire,
cascaded, circuit is that of the running time of M f , and it depends only on
the length of the input 1n (can be calculated).

The cascade described above is actually the requested circuit Cn. The
input of the cascade will be the input |x| of M f and the output will be
exactly M f (x), because the circuits will perform level after level the same
operations as M f . The DTM space cost for constructing C̄n is logarithmic

5a table representing the entire computation of the DTM [5]. Each row r corresponds
to the configuration of the DTM at step r of the computation. Each cell of the row depicts
the contents of a corresponding cell of the DTM tape. Moreover, each row r includes a cell
depicting the state of the DTM at step r; the position of this cell in the row corresponds to
the position of the DTM head on the tape. Notice that we use t padding to fix the length
of the configurations (so that we can combine them to form the table of the computation).
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in 1n; the required variables are used for positioning within the computation
table which, by definition, is of polynomial size in n.

Theorem 3.3.2. Every total function f : B∗ → B∗ computed by a logspace
uniform circuit family C of polynomial size can be computed by a polynomial-
time DTM.

Proof. Let M c be the logspace DTM that computes the circuit family C.
We design the DTM M f to compute the function f in polynomial-time .

The description of M c is incorporated in M f . On input x, M f computes
a unary representation 1|x|, which uses to simulate M c(1|x|) and to obtain a
description of the circuit C|x|. It then simulates C|x| on input x to compute
its output (it simply computes the value of each gate by looking up the
description of C|x|).

The unary representation is computed in time polynomial in |x|. Also,
since the size of the circuit is polynomial in |x| the evaluation of C|x| is
polynomial in the length of the input x.

Theorems 3.3.1 and 3.3.2 prove an equivalence which, in the way stated
above, affects only those problems within the complexity class P. However, we
know that the result can be extended as follows: DTM time is polynomially
related to uniform circuit size [24]. By taking a closer look at the proofs of
both theorems, we see that relaxing the polynomial size and the logspace
uniformity constraints on our circuits, we can derive

DTIME(T ) ⊆ UniformSize (T log T ) ⊆ DTIME
(
T log3 T

)

An important implication here is that every language in P has a polynomial
size circuit. A similar result establishes that TM space is polynomially related
to uniform circuit depth [24], i.e.

NSPACE(S) ⊆ UniformDepth
(
S2

) ⊆ DSPACE
(
S2

)

In the general case, we cannot assert that the two models –circuits and
TM– are equally powerful6. For instance, completely removing the uniformity
constraint allows even some polynomial-size circuits to decide non-recursive

6any language L ⊆ {0, 1}∗ can be decided by a (non-uniform) family of circuits of
size O(n2n): it suffices to implement the characteristic boolean function of L (e.g. via
its disjunctive normal form). This implies that the set of circuit families is uncountable
infinite (compare this to the set of TM, which is countable infinite).
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languages [38]. In this direction, note that although (non-uniform) poly-
nomial circuits have such exquisite power, they cannot decide all recursive
languages. In fact, we know that most languages do not have polynomial cir-
cuits (by a counting argument) and moreover, we can show that there exists
some language decided by an exponential-space DTM, which has no polyno-
mial size circuit [5]. Overall, it is conjectured that NP-complete problems do
not have polynomial circuits, uniform or not [5]. More on circuit complexity
will be covered in the next chapter.

3.3.2 Equivalence to the PRAM

This subsection compares the computational power of the logspace uniform
circuits to that of the CREW PRAM. We begin by giving a lemma, which
highlights the way we simulate a specific bounded fan-in circuit (not family)
with a CREW PRAM [20].

Lemma 3.3.3. A bounded fan-in circuit of size Sn and depth Dn, where n
denotes the size of its input, can be simulated by a CREW PRAM with Sn

processors and Sn common memory cells in O(Dn) time.

Proof. Let us assume that any logic gate has at most k inputs (bounded
fan-in). We will associate each of the Sn PRAM processors to a distinct logic
gate of the circuit (“1-1” correspondence). We will do the same for the Sn

memory cells of the PRAM (again, “1-1” correspondence with the gates).
That is, we will enumerate the gates of the circuit –starting from the first
level of the DAG– so that processor Pi will simulate the behavior of gate gi

and will write the output of gi to the PRAM cell Mi.
Specifically, since the description of the circuit is known to us, we can

program processor Pi to read successively the contents Mj from all cells
which correspond to the gates gj forwarding data to gi. Pi will then execute
the operation described by gi (e.g. AND) and will write the outcome to the
memory location Mi. Note that Pi is the only processor that will write to
Mi (by definition of boolean circuits) and thus, the exclusive-write property
of our PRAM suffices. Also, Pi can read from any common cell without
conflicts due to the common-read property of our PRAM.

A processor can be invoked either by using a FORK operation (executed
from one of his predecessors in the DAG) or by using a private counter (with
a value depending the time required by its predecessors to finish). Notice
that the FORK approach increases slightly the execution time, because the
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first group of processors (which will read the input of the PRAM) will have
to be invoked explicitly (e.g. in log n steps). The last group of processors
will write their results at the output of the PRAM.

The time required for any processor to run is O(k) = O(1). Since the
depth of the circuit is Dn, at most Dn processors will be invoked in a serial
fashion, resulting in O(Dn) execution time. The number of processors and
the number of the common memory cells is clearly Sn.

As already explained, we are interested in more generic results, which
involve entire families of circuits. We showed the equivalence of the logspace
uniform circuits to a well studied, sequential, model of computation (the
polynomial-time DTM). We will prove here their equivalence to a parallel
model consuming subpolynomial time, which captures efficient parallel com-
putation. As it turns out, in order to prove their equivalence to such fast
machines, we have to impose upper bounds on the depth of the circuits.
Specifically, the following two theorems show that the logspace uniform cir-
cuits of polylogarithmic depth are equivalent to the CREW PRAM with a
polynomial number of processors running in polylogarithmic time [1] [5].

Theorem 3.3.4. Every total function f : B∗ → B∗ computed by a logspace
uniform family C of circuits with polylogarithmic depth and polynomial size,
can be computed by a CREW PRAM in polylogarithmic parallel time with a
polynomial number of processors.

Proof. The simulation consists of two phases. During the first phase, the
PRAM uses n (the size of the input) to construct the description of the
circuit Cn. During the second phase, the PRAM simulates Cn on input x.
Phase 1
Assume that M c is the logspace DTM that describes the members of the
family C. The description of M c can be incorporated in our PRAM. Since n
is given as input to the PRAM (by definition), it suffices to simulate M c(n)
in time O(log n).

Recall that M c uses only O(log n) space. Therefore, we have only O(nk)
possible configurations of M c, for some arbitrary k. We can assign each
processor of the PRAM to each distinct configuration of the M c. Upon input,
these processors will cooperate to construct the sequence of configurations,
i.e. the computation path of Mc. They can do so efficiently, by using the
parallel prefix algorithm of Ladner and Fischer [1]. The description of Cn

can be extracted from this sequence by locating every configuration (i.e.,
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every processor) that writes a bit to the output tape of Mc (virtually), and
then, by doing parallel list contraction to produce a single string composed
of these bits. All of the above operations can be performed in time O(log n).
Moreover, the number of utilized processors is O(nk).
Phase 2
With the description of Cn available, we use Lemma 3.3.3 to simulate Cn(x)
on the PRAM. According to the lemma, since the depth of the circuit is
polylogarithmic, the time required is also polylogarithmic. Also, since the
circuit is logspace uniform, the size of the circuit is at most polynomial and
thus, the number of the processors is at most polynomial.

Theorem 3.3.5. Every total function f : B∗ → B∗ computed by a CREW
PRAM in polylogarithmic parallel time with a polynomial number of pro-
cessors, can be computed by a logspace uniform family C of circuits with
polylogarithmic depth and polynomial size.

Proof. Let Mpram be the PRAM which computes f(x) on some arbitrary
input x. Also, let p(n) be the number of processors utilized by Mpram and t(n)
the time of the Mpram computation, n = |x|. We will use a similar technique
to that used in the proof of theorem 3.3.1 (where a circuit simulates a DTM).
That is, we will combine circuits designed to simulate distinct operations of
a PRAM, in order to simulate one potential step of Mpram. We will then
connect these small circuits in a cascade fashion, layer after layer, so that the
output of one layer will become the input of the next layer. With each layer
of this cascade corresponding to a single step of Mpram, the entire circuit will
have t(n) layers to simulate step after step the Mpram computation of f(x).

Similar to the configuration of the DTM, the configuration of the PRAM
is a tuple which contains every information required to describe a single step
of the PRAM computation: the program counters of all processors, the con-
tents of their local memories (registers), the shared memory cells [5]. As
in theorem 3.3.1, we must fix the length of such a configuration at some
worst case value depending on n. Again, this is done because the simulat-
ing circuit will have an input of fixed size. Notice that the binary numbers
(variables) used during the Mpram computation cannot exceed the length
l(n) = n + t(n) + const, const > 0: at each step, Mpram can only increase
the length of its variables by using add/subtract instructions (such an in-
struction –and any other possibly included in the machine– can only increase
the operand length by 1). Also, we know that at most t(n) local cells will
be used per processor, and at most t(n) · p(n) shared cells will be used by
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all p(n) processors 7. The Mpram program is finite (a total of |Π| instruc-
tions) and thus, we only need a constant number of bits for each program
counter. The above statements bound the size of every element of the PRAM
configuration tuple. Consequently, the configuration can be encoded using
Cb(n) = O (2 · t(n)p(n) · (n + t(n)) + p(n) log |Π|) bits, which in any case
is polynomial in n. Since p(n) and t(n) can be efficiently computed by any
DTM 8, the configuration tuple can be fixed at size Cb(n) for further pro-
cessing by the DTM (it will be padded wherever necessary). Note here that,
any element within the configuration can be found simply by using counters
of logarithmic size.

At this point, we must construct circuits to compute one Mpram configu-
ration from another, i.e. we must construct one layer of our aforementioned
cascaded circuit. This construction is somewhat more complex than the cir-
cuits developed in the proof of theorem 3.3.1: first, because the operations
of a RAM are more complex than those of a DTM, and second, because
the value of one element of the configuration does not depend only on three
elements of the previous configuration. However, we can estimate the size
and depth of the layer as follows. Recall that we have already bounded the
PRAM variables to some polynomial in n (both their size and their number).
The under construction layer will be composed of ‘small’ circuits simulating
distinct operations of a PRAM (ADD, SUB, etc). Such circuits can be de-
signed with polynomial size and logarithmic depth [23] [1]. Specifically, for
each one of our polynomially many Mpram processors, we will use a constant
number of ‘small’ circuits able to simulate any potential step of the proces-
sor. Such a ‘small’ circuit will depend, at most, on a polynomial number of
local memory cells –configuration elements– and thus, we will not exceed our
polynomial size limit. This holds even for those circuits simulating the oper-
ations on the shared memory cells, which themselves depend on a polynomial
number of processors. All these ‘small’ circuits (polynomially many) will be
copied side-by-side to form a circuit layer. The exact output of this layer will
be controlled (e.g. with multiplexors) by the program counter –configuration
element– and its corresponding instruction of the PRAM (known correspon-

7for sake of simplicity we will assume that the available address space of Mpram is
t(n) · p(n). However, this is not a prerequisite of this proof (there is a way around this
problem by using feasible highly parallel algorithms during the simulation to dynamically
allocate memory cells from a pool –each cell tagged with its own address) [1]

8to be precise, this is a condition of the theorem, i.e. p(n) and t(n) must be computed
in logarithmic space upon input 1n [5]
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dence, independent of the input size). Overall, the layer will have polynomial
size and logarithmic depth.

Finally, we return to our original goal: given Mpram, we must construct
a logspace DTM M c which on input 1n will output the circuit Cn, which on
input x will output the value Mpram(x), |x| = n. Since Mpram is given, we
can incorporate its description (the program Π) in M c. Moreover, we have
shown above how M c can bound the configurations of Mpram and construct a
circuit layer. On input 1n, M c will start with the initial layer and by copying
it in a cascade fashion, it will build the –description of– the entire circuit
Cn. The total number of layers is equal to the t(n) steps of Mpram (fixed at
the worst case value). As a result, the size of Cn will be polynomial in size
and polylogarithmic in depth (considering all of the above analysis). Note
here that, M c can complete its computation in logarithmic space, because
the required variables are used only for counting and indexing through the
polynomial sized configurations and the constant sized description of Mpram.

Theorems 3.3.4 and 3.3.5 imply that the two models –logspace uniform
circuits and PRAM– are equally powerful under the constraint of polynomial
work in polylogarithmic time. Moreover, their simulations reveal a close
relation of the circuit depth to the PRAM time. Especially in the first
simulation we see that depth is related to time by some constant factor (the
converse is not exactly true, as the structural unit of a circuit is less powerful
than that of a PRAM).

The current section has shown equivalences between certain model vari-
ations. Such equivalences allow us to study parallel computation with a
specific model and, afterwards, to draw generic conclusions. Furthermore,
the current section introduced the use of resource bounds and constraints
on our machines/circuits. Such restrictions facilitate the detailed study of a
model by creating model variations with respect to its computational ability.
This is a common technique used, among others, in complexity theory, which
is presented in the following chapter.
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Chapter 4

Parallel Complexity Theory

Parallel complexity theory is the study of resource-bounded parallel com-
putation. It is the branch of computational complexity theory, which focuses
on the classification of problems according to their parallelization difficulty.

The issues raised here concern primarily the speedup gained from our par-
allel machines. Common questions driving the research towards this direction
are the following: –Are all problems amenable to fast solutions? –What is
the minimum amount of resources required for solving an important problem
in parallel? –Is it possible to achieve a dramatic speedup of a sequential
solution while maintaining reasonable hardware cost? –Is there a way of
transforming algorithmically a sequential solution to a highly parallel one?

Such questions offer an insight to the nature of parallel computation. The
answers lead to certain problem classification with respect to the difficulty
and/or the impossibility of designing efficient parallel solutions. Moreover,
they assist the researchers in redefining ‘good’ models for parallel computa-
tion and identifying the resources of interest. It is worth mentioning that,
analogously to the classical “P versus NP” conundrum, some of these ques-
tions remain open till today. The theory itself establishes relations between
parallel and sequential classes, contributing in this way to the evolution of
the entire computational complexity theory.

This chapter is a survey of the most important results presented over
the past four decades regarding parallel complexity. It presents common
complexity classes, inclusion proofs, classification of problems and equiva-
lences of models (or classes). Further, it discusses some of the inherent limits
of parallelization together with the conjectures of the research community.
Hereafter, our study bases mainly on the boolean circuits and the Turing
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machines; due to certain model equivalences, the circuits and the TM can
cover most of the study in the field of parallel complexity (we also report the
PRAM, or any other model, wherever it is related to our results).

4.1 Complexity Classes

One of the first issues raised in classical complexity theory is the distinction
between feasible and infeasible solutions. It is important to identify those
problems which have a practical solution (one that can be obtained within
the available resources, even when the size of the input increases signifi-
cantly) and those which haven’t. The community adopted the polynomial
time bound to mark the territory of the feasible computation. That is, a
solution (algorithm) is considered feasible (efficient) if it requires at most
polynomial time in the length of the input. A problem is called tractable if
it has such a solution. The well-known class P was defined accordingly, to
capture the notion of feasible sequential computation.

Similar to the classical approach, the parallel complexity theory also
makes its first distinction between feasible and infeasible solutions. In the
context of parallel computation though, besides time cost, the feasibility of
a solution depends also on its hardware cost (the required number of pro-
cessors, gates, etc). It is natural to readopt here the polynomial bound for
characterizing feasible parallel computation. That is, a parallel solution is
considered feasible if its implementation requires at most polynomially many
hardware resources, which operate for at most a polynomial amount of time.
To defend the above choice intuitively, one could point out the following real-
world analogy. Exponential (superpolynomial) functions grow fast enough to
numbers exceeding both the lifetime of our universe and the particles that
constitute it. In other words, it is impractical not only to wait for the termi-
nation, but even to start manufacturing an exponential-cost parallel machine
in our universe. Note that the class of feasible parallel problems is equivalent
to the class P. Imposing restrictions on the parallel time and on the hard-
ware resources has led to the definition of certain parallel complexity classes,
which are studied below.

When it comes to parallel time, the aforementioned polynomial bound
seems rather modest for a theoretical study of feasible problems (their se-
quential time is already polynomial). In fact, the most interesting applica-
tions of parallelization are those resulting in dramatic time savings: as shown
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for certain problems, the sequential and the parallel solution are separated
by an exponential time gap (e.g. polynomial to logarithmic). In general, we
consider as highly parallel those algorithms, which require at most polylog-
arithmic parallel time in the size of their input. Significant effort has been
spent in identifying those members of P, which can be solved highly parallel
by consuming only a polynomial amount of hardware resources. We refer
to such problems as feasible highly parallel [1] and we have defined several
classes to capture and study them. The class definitions base on certain
parallel time or circuit depth bounds (e.g. specific logarithms), on hardware
resource bounds (e.g. polynomial amount, uniformity, gate fan-in), on alter-
nating TM space or time, on the number of alternations, etc. Probably the
most notable of the parallel classes is the NC2, which is characterized by its
O(log2 n) circuit depth bound. As it turns out, NC2 contains a lot of the
feasible highly parallel problems/functions, especially those used by the en-
gineers in a daily basis. Consequently, NC2 is considered as a perfectly good
candidate for capturing the –more conservative– notion of efficient parallel
computation [5].

In the following subsections we study several parallel complexity classes;
we give definitions, inclusion proofs, implications and we show some of the
known relations between parallel and sequential computation. Moreover,
throughout this section, certain parallel algorithms are described, common
simulation techniques are employed and a representative set of parallel prob-
lems is classified. Subsection 4.1.1 is concerned with feasibility, while sub-
section 4.1.2 examines classes of greater complexity.

4.1.1 Feasible Highly Parallel Computation

We begin by defining the complexity classes, which, by convention, contain
the feasible highly parallel problems. In general, the complexity of a problem
is reflected on the amount of the resources consumed by its solution (time,
space, etc). Therefore, to define a class of problems, we define an available
amount of resources over some predefined model of computation: a problem
belongs to the class if it can be solved by the model within the available
resources (we always examine the worst case consumption).

The following class definitions base on a specific model of parallel com-
putation, i.e., the boolean circuits. Note that, provably, the same classes
can be defined by using other models, e.g., the PRAM, the ATM, etc (such
class equivalences are presented later in this subsection). The definitions
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place bounds on two kinds of resources, simultaneously. First, to meet the
feasibility requirement, we bound polynomially the hardware resources. We
also impose a logspace uniformity restriction on the circuit families (consider
any of the two definitions of section 2.3.1). Second, to meet the requirement
for fast solutions, we bound the depth of the circuit (which captures parallel
time). We do this by imposing certain logarithmic bounds. Other parame-
ters of the model, such as the type of the gates, are handled separately in
each of the definitions. Specifically [1]:

Definition 4.1.1.

NCk For k ≥ 1, let NCk be the class of languages decided by
logspace uniform families of boolean circuits, {Cn}, of depth
O(logk n) and size nO(1). The circuits must consist only of
bounded fan-in AND, OR, NOT, gates.

NC Let NC be the union of all NCk, i.e., NC=
⋃

k≥1NCk.

ACk For k ≥ 0, let ACk be that generalization of NCk, where the
circuits consist of unbounded fan-in AND, OR, NOT, gates
(logspace uniform, O(logk n) depth, nO(1) size circuits).

AC Let AC be the union of all ACk, i.e., AC=
⋃

k≥0ACk.

TCk Let TCk be defined as the ACk, except that, the circuits must
consist of NOT and MAJ gates (a boolean ‘majority’ gate
with fan-in = r outputs 1 iff at least r/2 of its inputs are 1).

TC Let TC be the union of all TCk, i.e., TC=
⋃

k≥0TCk.

Before continuing, we must mention that the above definition is not
unique throughout the literature. Even when it bases on the same model
(boolean circuits), it might differ with respect to the underlying uniformity.
For example, we can avoid imposing a direct polynomial bound on the num-
ber of the circuit gates, by defining logspace uniformity to measure space
with respect to the input 1n of the DTM (hence, we bound the output of
the DTM by a polynomial) [39], [40]. Other authors [41], [25], use a slightly
different kind of uniformity; they say that the circuit family, {Cn}, must be
DLOGTIME-uniform. That is, they can use a logarithmic-time DTM with
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random access to its input tape (via an “index” tape, on which the DTM
writes a number j and then enters a state to receive the j-th bit of the in-
put) for answering questions of the form “is there a path from node u to
node v in Cn?”, or “what type of gate is node u in Cn?”. This definition
presupposes that the size complexity of the family is polynomial. Other def-
initions use the notion of P-uniformity, i.e., the circuits must be constructed
by polynomial-time DTMs. Notice that in any case, the circuit family is
required to be uniform, as this is a prerequisite of feasibility. Essentially, all
these definitions, although not necessarily equivalent, give the same meaning
to the classes NC, AC and TC.

To explain the nomenclature [41], Nicholas Pippenger was one of the first
to study polynomial-size, polylogarithmic-depth circuits in the late 1970s,
and NC was dubbed “Nick′s Class”1. The “A” in AC connotes alternation,
because of the close relation between the depth of the AC circuit and the
number of alternations of the ATM (see page 96). Finally, the “T” in TC
denotes the use of threshold gates. Threshold gates model the technology
of neural networks. The general threshold gate inputs boolean arguments,
it associates numerical weights w1, . . . , wr with each of the r inputs, it uses
internally a threshold t, and it outputs a boolean value. Specifically, the
gate will output ‘1’ iff the inputs, multiplied by their corresponding weights,
add up to t. The definition 4.1.1 uses one kind of threshold gates, the MAJ,
which is the special case with w1 = . . . wr = 1 and t = r/2. Note that a
depth-2 circuit of MAJ gates can simulate the general threshold gate [41].

The little details in the definitions of NC, AC, and TC, make the classes
seem quite different from each other. Questions that naturally come in mind
here include: –Does the unbounded interconnection offer significantly greater
power? –Is the MAJ gate making any difference at all? –How are these
classes related to each other? –Which are the real-world problems contained
in these classes? We proceed with answering such questions by studying,
first, the inclusions between parallel complexity classes.

1Pippenger repaid this favor by giving the name “Steve’s Class” to the class of lan-
guages decided by DTMs in polynomial-time and polylogarithmic-space, simultaneously
[5]. Specifically, SCk=DTM[time(nO(1)),space(O(logk n))] and SC=

⋃
k≥1SCk.

SC captures the efficient algorithms consuming little space, and is equal to the class of
languages decided by logspace uniform circuits of polylogarithmic width. Intuitively, NC
involves “shallow” circuits, while SC involves “narrow” circuits.
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Relations between parallel complexity classes

Trivially, we have NCk ⊆ NCk+1, ACk ⊆ ACk+1, and TCk ⊆ TCk+1.
Hence, these classes form potential hierarchies of infinitely many distinct
levels. Notably, it is not yet proved that the above inclusions are proper.
For all that we know, it may be the case that, e.g., NC1=NC. However,
this is not expected to be true and it is conjectured that the NC hierarchy
is proper [5]. What we know for certain about the NC hierarchy, is that
it collapses at the k-th level if NCk = NCk+1 (the same holds for the AC
and TC hierarchies) [5]. Moreover, it is proved that the monotone-NC, i.e.,
the analog of NC consisting only of AND/OR gate circuits, indeed forms a
proper hierarchy [42].

Then, we show how the three hierarchies interleave with each other. We
start by examining the relations between NCk and ACk [5], [41].

Theorem 4.1.1. For k ≥ 1, NCk ⊆ ACk ⊆ NCk+1.

Proof. The first inclusion is trivial: every circuit with bounded fan-in gates,
can be viewed as a specific instantiation of a circuit with unbounded fan-in
gates.

The second inclusion is based on a minor modification of the ACk circuit,
namely the uCn, where n = |x| is the length of the input. Recall that ACk

includes only polynomial size circuits. Therefore, any gate of uCn must have
a number of inputs which is at most polynomial in n. Notice that we can
transform any of these gates (AND/OR) to a functionally equivalent tree of
2-input gates (AND/OR). Clearly, the size of this tree is polynomial, while
its depth is logarithmic. By transforming every gate of uCn in the above
way, we derive a circuit with bounded fan-in gates, namely bCn, which has
size polynomial in n. Since each gate of uCn increases the depth of bCn by at
most O(log n), the entire depth of bCn will be O(logk n · log n). Finally, note
that bCn can be described by a logspace DTM; the above transformation
can be executed within a modified version of the DTM describing uCn (it
requires only extra counters of size logarithmic to the size of uCn, which is
polynomial).

According to theorem 4.1.1, whichever language can be decided (or, func-
tion computed) by unbounded fan-in circuits, it can also be decided by
bounded fan-in circuits, feasibly. What’s more interesting, though, is that
the penalty of bounding our communication is only a logarithmic slowdown.
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This result contradicts one’s –probable– overestimation that the unbounded
fan-in provides tremendous computational power. The key point –probably–
missed here, is that the gate fan-in is not totally “unbounded”. Rather, it
is bounded by the polynomial size of the circuit. To better understand the
differences between gate types, the following theorem compares the NCk and
ACk classes to the TCk [41]:

Theorem 4.1.2. For k ≥ 0, ACk ⊆ TCk ⊆ NCk+1

Proof. To show the first inclusion, we describe the simulation of an arbitrary
AND/OR gate using MAJ and NOT gates. We can simulate one k-input OR
gate with exactly one MAJ gate. Specifically, we use a MAJ gate with 2k−1
inputs: the k inputs of the simulated OR gate plus k − 1 inputs of constant
value ’1’ (dummy signal). Clearly, when at least one of the k variable inputs
is ’1’, the output of the MAJ gate is ’1’. Similarly, we can simulate one
k-input AND gate with one MAJ gate and k + 1 NOT gates. Again, our
MAJ gate has 2k − 1 inputs: the inverted k inputs of the simulated AND
gate (inverted with NOT) plus k − 1 inputs of constant value ’1’. Also, we
use one extra NOT gate at the output of the MAJ gate. Clearly, the above
circuit outputs ’1’ if and only if all of the k variable inputs are ’1’. Notice
that a dummy signal can be easily acquired by driving any wire of the circuit
to a 2-input MAJ gate, the first of which is inverted (with NOT). Both of
the above simulating circuits increase the depth of the original NC circuit by
at most a constant factor. Moreover, they increase the size of the original
circuit by at most a polynomial factor; for each k-input gate, at most k + 4
gates are required, where k is polynomially bounded in the size of the circuit’s
input (the size of the original circuit is itself polynomially bounded). Finally
note that, such a circuit can be easily described by a DTM in logspace (the
DTM incorporates the description of the original circuit family and uses only
logarithmic counters), therefore ACk ⊆ TCk.

To show the second inclusion, we must simulate an arbitrary MAJ gate
with AND/OR/NOT gates of 2-inputs. The idea is simple. We add the k
1-bit inputs of the MAJ gate and compare the result to k/2. Both operations
can be done with circuits of depth O(log k) and size O(k). As mentioned
above, k is polynomially bounded in the size of the input. Therefore, sub-
stituting every MAJ gate as described above will increase the depth of the
original circuit to O(log n)·O(log n) = O(log2 n), where n denotes the length
of the circuit’s input. The size of the new circuit will remain polynomial in
n. The new circuit can be easily described by a DTM in logspace (the DTM
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Figure 4.1: Parallel classes and hierarchies

incorporates the description of the original circuit family and uses only log-
arithmic counters) and thus, TCk ⊆ NCk+1.

Theorem 4.1.2 proves that the use of threshold gates results in, at most,
a logarithmic speedup. Once again, the ordinary bounded fan-in AND/OR
gates are shown to have adequate power for studying parallel computation.
Theorem 4.1.2 also shows, for all k, how the classes NCk, ACk, and TCk,
alternate in terms of computational power. Consequently, we now see the
big picture (figure 4.1, given the widely accepted conjectures) where the
parent classes NC, AC, and TC, are equal.

Corollary 4.1.3. NC = AC = TC

Proof. Directly from theorems 4.1.1 and 4.1.2.

Corollary 4.1.4. NC ⊆ P

Proof. Directly from theorem 3.3.2.

The above corollaries place feasible highly parallel computation within
P. Indeed, we anticipated this result since the introduction of this section.
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However, corollary 4.1.4 leaves an open question: does “NC equal P?”, i.e.,
do all problems with feasible solutions also have feasible highly parallel solu-
tions? This is, arguably, the most important open question in the realm of
parallel computation. In fact, it is concerned with the inherent limitations
of parallelization. We examine this topic in section 4.2.2.

In complexity theory, proving that a class inclusion is proper, is a rare
and striking result. As usual, the aforementioned inclusions are not known
to be proper for arbitrary values of k (mere conjectures). However, we do
have proofs of proper inclusions for the first level, k = 0, of the classes given
in theorem 4.1.2. Specifically, we know that

AC0 ⊂ TC0 ⊆ NC1.

We do not know whether TC0 is strictly contained in NC1 (we conjecture
that it is). Below we describe a proof for the AC0 ⊂ NC1 inclusion. Note
here that when studying the first level of the NC, AC, or TC hierarchy, our
choice on the uniformity type of the circuit plays an important role. The
rigorous approach is to use some “conservative” uniformity type, e.g. the
DLOGTIME, and not the logspace. In the following proof we use the
logspace, as this result holds for any of the commonly used uniformities [21]:

Theorem 4.1.5. AC0 ⊂ NC1.

Proof. To show that AC0 ⊆ NC1 we can use the same argument with that
used in th proof of theorem 4.1.1. To show proper inclusion, it suffices to
find a problem which belongs in NC1 but does belong in AC0. We point out
the PARITY problem: “does the parity of x equal 1 ? ”. Recall the parity
function fp(x) = (x1 + x2 + . . . xn) mod (2), where n = |x|.

On one hand, the authors in [43] prove that the parity function fp(x)
cannot be computed by AC circuits of constant-depth and polynomial-size 2.
Therefore PARITY /∈ AC0.

On the other hand, it is trivial for any DTM to describe a XOR gate
using AND, OR, NOT gates: recall that A⊕B = (A∧¬B)∨ (¬A∧B). On
input 1n, the DTM can output the description of a XOR tree of n leaves.
The resulting circuit will have depth O(log n) and size O(n). Such a DTM
is clearly logspace, because it only uses indexing variables for positioning
within an object of size O(n). The XOR tree computes the parity of its
input. Therefore, PARITY ∈ NC1.

2specifically, they show that polynomial-size parity circuits must have depth Ω(log∗n).
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Relations between parallel and sequential complexity classes

Much effort has been devoted in parallel complexity theory towards relating
parallel to sequential computation. Arguably, the best way to establish such
a connection is by studying the inclusions between parallel and sequential
classes.

Naturally, we begin by comparing to the ordinary Turing Machine. The
weakest of the widely used TM classes are the logarithmic space classes L and
NL. Proving that these two classes are not contained in NC would severely
damage the image of the parallelization power. Fortunately, not only both L
and NL fall within NC, but they are contained in the lower levels of the NC
hierarchy. Let us first consider the deterministic class [5]:

Theorem 4.1.6. NC1 ⊆ L

Proof. Assume that M c is a logspace DTM describing a circuit family C of
NC1. We will show that there is a logspace DTM M , which can compute
the output of Cn(x) for any input x with |x| = n.

For starters, let us assume that a binary tree-like circuit Cn is given as
input to a DTM Ma, together with an input x. Ma can compute Cn(x)
using space O(log n). The idea is simple. First, notice that we can mark any
path within a binary tree by using a unique identifier of log n bits: all the
way from the root to any leaf, ‘0’ represents the left edge of a node and ‘1’
the right edge. With this in mind, we can start from the root and perform
an ordered walk of the entire tree by using O(log n) space as follows. We
keep track of our path by using a specific variable, which we update step
after step (starting with ‘0’). At any step, this variable corresponds to one
of the unique identifiers described above. We update this tracking variable
(append one bit, change last bit, remove last bit) by checking our location
on the tree: we find the current node on the graph at the input tape of Ma

(only logarithmic counters are required for this) and, if possible, we move
left (depth first search). Second, notice that the nodes here correspond to
logic AND/OR operations (and NOT). This has the following impact on the
aforementioned ordered walk of the circuit. When we encounter an AND
node, we will continue our walk back to the upper levels of the tree (i.e. we
will change/remove the last bit of our tracking variable) only if both children
of the node were previously evaluated ‘true’. Practically, when we encounter
a ‘false’ node with an AND parent, we immediately evaluate the parent ‘false’
and update our tracking variable. Similarly, when the parent is an OR gate
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and the current node is ‘true’, we mark the parent as ‘true’. Note that we
proceed to the evaluation of the right child of a node only in certain cases:
when the node is AND and we have just evaluated its left child as ‘true’, or
when it is OR and its left child is ‘false’. Consequently, in any case, we can
deduce the truth of a parent node simply by knowing the truth of the current
node and whether it is a left/right child (we do not need to store the values
of any previous nodes). By following these rules, the tree walk will finally
lead to the evaluation of the root. We can implement the above recursive
algorithm by reusing the space of the tracking variable and, therefore by
using only O(log n) space.

Unfortunately, not all circuits are binary tree-like circuits. Fortunately,
we can transform any NC1 circuit to an equivalent binary tree (which com-
putes the same function) by using only logarithmic amounts of space. First,
if k > 2, we can replace each k-input gate with a small equivalent binary
tree (of depth log k and size 2k− 1). Second, starting from the output of our
“binary” circuit, we name the paths to each input gate as described in the
above paragraph. However, in this technique we use the names of these paths
(‘0’, ‘01’, etc) to mark the intermediate gates of the original circuit. Each of
these names, together with the type of its corresponding gate, represents a
new gate of the transformed circuit. We proceed by reusing space to output
in this way every gate of the transformed circuit. Note that the new gates
have out-degree ‘1’ (because each original gate reachable by several paths
will be represented many times), and thus, the resulting circuit is a binary
tree. The two operations result in a circuit which, like our original circuit, is
of logarithmic depth and polynomial size. Moreover, they can be performed
in O(log n) space from a DTM Mb, because the only variables required are
for positioning/counting within an object of polynomial size (also, the gate
names are O(log n) wide because the original circuit has O(log n) depth).

We now return to the description of our logspace DTM M . M will use
the two algorithms described above and the descritpion of M c (incorporated).
On input x, |x| = n, our M will simulate M c(1n) to acquire Cn and then it
will evaluate Cn(x) as described above. However, there is one last obstacle
before completing the proof: the outputs of the machines M c and Mb are
polynomial in size. If we store their outputs as intermediate results in a
tape of M , the space of M will not remain logarithmic. We overcome this
obstacle as follows [5]. When seen as functional blocks, the input of Ma is
the output of Mb and the input of Mb is the output of M c. We must solve the
general problem, where two machines A and B want to exchange information
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without writing down all of it at once (in a single string). Notice that, either
way, machine B reads one bit at a time from the “tape” in-between A and
B. Moreover, this bit is located in a specific cell beneath the head of B. The
idea is that, before executing each step of B we know the location of the head
on the input tape of B and, therefore, we can simulate A until it writes that
specific cell. Then, we can continue with the step of B. By interleaving the
simulation of the two machines in the above way, the composite computation
is perfomed with only one “communication” variable (the location of the
B’s input head). In our case, the length of this variable is logarithmic,
because the intermediate “tape” is polynomial (for both M c to Mb and Mb

to Ma “communication”). To conclude, all of the above algorithms require
logarithmic space and the resulting DTM correctly evaluates the output of
Cn(x).

Although not yet proved, many researchers believe that NC1 is prop-
erly included in L [41]. For this reason, using the logspace uniformity to
define NC1 is controversial (probably, it allows more computing power to
the “preprocessing stage” than to the NC1 circuits themselves). To be pre-
cise, it is still unknown whether the logspace-uniform NC1 is equal to the
DLOGTIME-uniform NC1, or, if the logspace-uniform AC0 is equal to the
DLOGTIME-uniform AC0 (other types of uniformity are also involved in
such disputes, e.g., the logspace and the P uniformity: is L equal to P?).
However, we know that the class NCk for k ≥ 2 is identical under the two
definitions (respectively, ACk for k ≥ 1) [41]. In fact, the most commonly
used types of uniformities all lead to equivalent definitions of the class NCk

for k ≥ 2 [24].
We continue by examining the converse of theorem 4.1.6. Specifically, we

make use of the nondeterministic version of L to prove that [5], [23]:

Theorem 4.1.7. NL ⊆ NC2

Proof. It suffices to show that a NL-complete problem belongs to NC2. We
point out the REACHABILITY problem: “given a graph G and two nodes
s, t, is there a path from s to t?”

We start by showing that REACHABILITY is NL-complete. First, we
show that REACHABILITY∈NL. Nondeterministically, we guess the re-
quested path (if any). That is, starting from s, step after step we tem-
porarily store the current edge (i, j) and we find the next by looking at the
description of G. We terminate when we discover t or when we perform more
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than n steps (discover a cycle), where n denotes the size of the input. The
above search requires logarithmic space (only counters). Second, we give a
logspace reduction from any language A∈NL to REACHABILITY. Assume
that the logspace NDTM MA solves A. On input x, a logspace DTM (which
incorporates the description of MA) outputs the entire configuration graph
of MA(x). In this graph, each node corresponds to a configuration of the
MA(x) computation and each edge corresponds to a probable computation
step of MA(x). The DTM proceeds as follows: it writes down every possible
pair of strings of length c log |x| (i.e. the space bound of MA(x)) and it check
each one of them separately. Specifically, it checks whether the first string is
a valid configuration of MA(x) and if the pair constitutes a valid computation
step of MA(x) (e.g. by simulating all possible transitions –logarithmically
bounded– from the first configuration string). Notice that the DTM can write
the under examination pair of strings one after the other (e.g. lexicograph-
ically) by reusing its space. In this way the DTM can output a descritpion
of the entire configuration graph of MA(x) by using only logarithmic space
(2c log |x|, plus counters). Moreover, during this transformation, we can en-
sure that there is only one accepting node (e.g. by connecting all accepting
nodes to a new one). Clearly, MA accepts x if and only if there is a path
in the above constructed graph from the initial node to the single accepting
node (solved by REACHABILITY).

We continue by showing that REACHABILITY∈NC2. Assume that we
are given the n× n adjacency matrix V of a graph G with n nodes. In this
graph, the max-min path has length at most n − 1. Therefore, to compute
the transitive closure G∗, it suffices to take the adjacency matrix to the power
of n by using boolean matrix multiplication [23]. After the calculation of V n,
we can answer the REACHABILITY question simply by looking at the [s, t]
position in the resulting table. Notice that [44], instead of calculating all the
powers of V up to n, we can square the (V + I) matrix: we add the identity
matrix I to V and successively square the result, i.e. (V + I)2, (V + I)4, . . .,
untill we obtain (V + I)m for some m ≥ n. The resulting matrix (V + I)m

suffices for answering the REACHABILITY question. Therefore, the com-
putation of the transitive closure of V requires only dlog ne steps. A boolean
matrix multiplication can be calculated by circuits of logarithmic depth and
polynomial size [23]. Specifically, since the boolean product F = R×T of the
n × n matrices R, T is defined by F [i, j] =

∨
n−1
l=0 (R[i, l] ∧ T [l, j]), we will

compute it by using one distinct circuit per cell [i, j]: a tree whith n leaves
as AND gates and n− 1 internal nodes as OR gates. To compute (V + I)m
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we will use dlog ne layers of such multiplication circuits (each layer performs
a matrix squaring and forwards its data to the next layer). This construction
results in a cascaded circuit with O(log2 n) depth and polynomial size. Fi-
nally, we will add one more layer at the top of the cascaded circuit, which will
serve as a multiplexer to output the final value of the cell [s, t], where s and
t are also given as inputs (recall that the content of this cell is the answer to
the REACHABILITY question). Multiplexers can be constructed with cir-
cuits of logarithmic depth and polynomial size and thus, the final layer will
not affect the aforementioned bounds. Clearly, the construction of the en-
tire circuitry described above is straightforward and can be perfomed by any
DTM in logarithmic space (only counters are required for positioning within
objects of polynomial size). To conlcude, REACHABILITY∈NC2.

It is trivial to show that L ⊆ NL. By further combining theorems 4.1.6 and
4.1.7 we get corollary 4.1.8. Note that whether L ⊂ NL is still an open
question, and thus, we cannot use this chain yet to infer that NC1 is strictly
contained in NC2.

Corollary 4.1.8. NC1 ⊆ L ⊆ NL ⊆ NC2

The above result establishes that any logarithmic space algorithm (deter-
ministic or not) can be efficiently parallelized3. The converse is not known,
i.e. we cannot tell whether all NC circuits can be simulated in logarithmic
space. However, we can establish an analogous result for the generalization
of non-determinism, the Alternating Turing Machine (ATM). Specifically,
we show that NCk languages can be decided by ATMs which use logarithmic
space and perform at most logk n alternations [44]:

Theorem 4.1.9. For k ≥ 1, NCk ⊆ATM[space(O(log n)),altn(O(logk n))].

Proof. Without loss of generality, we assume that the circuit Cn uses only
2-input AND/OR gates and also that, NOT gates can be applied only at the
n inputs of Cn (every NC circuit has an equivalent circuit of this form, which
can be constructed in logspace [44]).

We will contsruct an ATM N to simulate Cn(x) on input x, n = |x|.
N will incorporate the description of the circuit family C. Consequently,

3a RAM algorithm (besides the multiple or single tape TM) can also be used to measure
space and check the aforementioned logarithmic space “criterion”. As shown in [45], TM
and RAM can simulate one another within only a constant factor of extra space.
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N can find any gate gi within Cn, together with its two predecessors, in
logarithmic space (without alternating). We program N to do the following
operations. N will start by locating the output gate go of Cn. If go is an
AND (OR) gate, then N will jump to a special purpose state labeled ‘AND’
(‘OR’). This state will have two outgoing transitions, one corresponding to
the evaluation of the left child of go and one to the right. The choice will
be taken by N nondeterministically. The computation will continue in this
fashion, recursively, until N reaches a NOT gate; at that point, N enters
the ‘yes’ or ‘not’ state depending on the value of x at the under evaluation
position.

Note that the only nondeterministic moves included in N are those taken
in the special purpose state (lebeled ‘AND’,‘OR’). Everything else (e.g., gate
or wire searching) is performed deterministically with no alternations be-
tween ‘AND’ and ‘OR’ labels. Also note that the computation tree char-
acterising N has one branch per gate, for every gate of the circuit Cn. In
fact, we can view each branching after a node/configuration of the computa-
tion as the creation of two new “subprocesses” (each subprocess searches the
predecessors of a gate without alternating, and then spawns two children).
Clearly, the computation tree of N reflects the structure of Cn and thus, it
will output the same result with Cn on input x.

The machine N requires O(log n) space for the above operations: each
“subprocess” uses only enumeration variables to locate a specific gate gi –and
its incomming wires– during the construction of Cn (which takes place several
times during the computation by reusing space). Since C is logspace uniform,
O(log n) space suffices for the enumeration. Moreover, N will alternate at
most O(logk n) times, because the number of alternations is bounded by the
length of the maximum path within Cn (by construction, no more AND/OR
transitions can take place in N).

Theorem 4.1.9 proves only one direction of a well-known class equiva-
lence. It is also shown [44] that NCk+1 ⊇ATM[space(O(log n)), altn(O(logk n))].
Consequently, the languages decided by ATM with logarithmic space and
polylogarithmic alternations are exactly those languages in NC, i.e. the fea-
sible highly parallel languages

NC = AC = ATM[space(O(log n)), altn(logO(1) n)]

Compared to NC, the AC equivalence noted above is even more closely re-
lated to the ATM alternations. When we use unbounded fan-in gates in the
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aforementioned simulation4, the depth of the simulating circuit decreases by
a logarithmic factor. Hence, it turns out that the languages in ACk are ex-
actly those languages decided by a logspace ATM, which preforms O(logk n)
alternations

ACk = ATM[space(O(log n)), altn(O(logk n)]

Such a close relation to the ATM can be established also for the NCk circuits
[24]. In this case, we have a direct correspondence between the depth of
the circuit and the running time of the (random access input tape) ATM.
Specifically, the languages in NCk are exactly those languages decided by a
logspace ATM which preforms O(logk n) steps

NCk = ATM[space(O(log n)), time(O(logk n)]

These results are analogous to those in section 3.3, which show the equiva-
lence of logspace uniform circuits to the polynomial-time DTM and to the
PRAM (when polylogarithmic-time constraints are also imposed).

NC = PRAM[proc(nO(1)), time(logO(1) n)]

By combining the above equivalences of NC, we deduce an interesting equiv-
alence of the ATM and the PRAM models. Specifically, we deduce that

ATM[space(O(log n)), altn(logO(1) n)] = PRAM[proc(nO(1)), time(logO(1) n)]

The picture given above shows that the ATM captures parallelism in various
ways and it justifies the wide use of the model throughout the literature for
studying parallel complexity5. Moreover, we can now justify the use of other
models of parallel computation for defining the NC class. For instance, it is
not uncommon to define NCk as the class of languages decided by PRAM
algorithms running in O(logkn) time and utilizing a polynomial numder of
processors [20], [29].

4to simulate an ATM, like in the case of a DTM, we have to stack a number of layers of
circuits (one on top of the other). Such a layer computes straightforward boolean functions,
which require O(log n) depth circuits when dexsigned with bounded fan-in gates or, O(1)
depth circuits when designed with unbounded fan-in gates.

5other important results comparing the power of ATM and DTM [39]:

For f(n) ≥ log n, ASPACE(f(n))=DTIME(2O(f(n))).
For f(n) ≥ n, ATIME(f(n)) ⊆ DSPACE(f(n)) ⊆ ATIME(f2(n)).
Consequently, AL=P, AP=PSPACE, APSPACE=EXPTIME.

Note that [28] the introduction of alternation shifts by exactly one level the deter-
ministic hierarchy L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ . . .
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Figure 4.2: Sequential and parallel class relations (known and conjectured)

We conclude this subsection by coming back to the ordinary DTM and,
especially, to the SC class (languages decided in polynomial-time and poly-
logarithmic-space, simultaneously). The SC seems like a perfect candidate for
relating sequential and parallel computation. In fact, the definition of the SC
is quite similar to that of the NC: it bounds two kind of resources simultane-
ously, one by a polynomial and one by a polylogarithmic function. Moreover,
as we have already seen in section 3.3.1, (i) polynomial-time DTMs are com-
putationally equivalent to polynomial-size circuits, and (ii) polylogarithmic-
space DTMs are computationally equivalent to polylogarithmic-depth cir-
cuits. At first sight, these facts might lead falsely to the conclusion that
NC=SC. The key point missed in this conclusion is the simultaneity of the
restrictions imposed by the class definitions. To be precise, the above result
(i) was established without limiting the depth of the simulating circuit, or
the space of the simulating DTM. Similarly, the result (ii) was not concerned
with the circuit size, or the DTM time. In other words, preserving one re-
source bound during the simulation might substantially alter the amount of
another resource. Note that this observation applies to many class compar-
isons, as for example in the SC versus polyL ∩ P case (polyL stands for
polylogarithmic-space): a language in polyL ∩ P has certainly one polyL
and one P algorithm, but does it have one simultaneously? At this point, it
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appears that SC and NC are incomparable [40]. One of their most important
differences seems to be their relation to the NL class. While NL ⊆ NC (see
theorem 4.1.7), it is unclear whether SC ⊆ NL; the NL-complete problems,
e.g. the REACHABILITY, are prime candidate members of NC−SC. The
SC versus NC case is yet another open question encountered in the field. Fig-
ure 4.2 illustrates the relations between the parallel and sequential classes as
they are thought of today (using proved and conjectured inclusions) [5].

Examples of NC problems

The following classification table exemplifies the NC hierarchy by pointing
out some of its characteristic members. Its purpose is to give the complexity
of each class in practice, i.e., by associating it to the complexity of specific,
well-known, problems.

Classification of well-known feasible highly parallel problems

AC0 TC0 NC1 NC2 NC3

addition multiplication matrix mult. matrix rank MBS
subtraction division FVP matrix inver. MPCVP
matrix add. counting summation matrix deter.

majority prefix sum min span tree
parity sorting SWP

tree isomor. reachability
PBPM

LFMISdeg≤2

MIS, SLE,
FFT,

JS1,
CFL

The acronyms used in the above lists are as follows: FVP (boolean Formula Value Problem), SWP

(Shortest Weighted Paths), PBPM (Polynomially Bounded Perfect Matching), LFMIS (Lexicographically

First Maximal Independent Set), MIS (Maximal Independent Set), SLE (System of Linear Equations),

FFT (Fast Fourier Transform), JS1 (Job Scheduling on one machine), CFL (Context Free Language),

MBS (Maximal Bipartite Set), MPCVP (general Monotone Planar Circuit Value Problem).
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Typically, the entries of this table refer to decision problems involving
integer numbers6. Also, since tight lower bound proofs are rare results, the
above classification bases mostly on the speed of the algorithms published
in the literature until today. In other words, the entries in the above table
are amenable to left column transitions (except parity, see proof of theorem
4.1.5). Moreover, since only the AC0, TC0, and NC1 classes have proper
inclusion proofs, the remaining columns of this table are amenable to merging
(not expected though).

As usually observed in classical complexity theory, imposing constraints
on the input set of a problem can significantly reduce its parallel complexity.
As a characteristic example, we point out the FVP and the MPCVP. Both
problems are special cases of the CVP (Circuit Value Problem), in which we
are given a boolean circuit with a specific input and we are asked whether it
will output ‘1’. In the general MPCVP, the circuit consists only of AND/OR
gates (i.e., monotone) and its edges do not cross when the circuit is depicted
in 2-D (i.e., planar graph). In the FVP, instead of a circuit, we are given a
boolean formula in fully parenthesized form. Hence, the graph computing its
value contains nodes with out-degree ≤ 1. Note that compared to formulas,
the circuits are considered more economical in expressing boolean functions
because of their ability to reuse subexpressions within their representation.
As it turns out, this is a significant difference between the general circuits
(unbounded gate fanout) and the boolean formulas (gate fanout ≤ 1): the
CVP is a P-complete problem (inherently sequential), while the FVP is NC1

(very efficiently parallelized). Similarly, the difficulty of evaluating a circuit
is reduced to NC3 by simultaneously restricting to planar and monotone
circuits. If we further restrict to upward stratified circuits (all edges face to
the same direction), then the complexity of MPCVP reduces to NC2 [46]. To
understand the impact of the above restrictions, we mention that the CVP
remains P-complete in the following three, individual, cases: i) gates with
fanaout ≤ 2, ii) monotone circuits, and iii) planar circuits.

In another direction, the difficulty of a problem can be significantly in-
creased by elaborating on the properties of the requested solution. Consider
here the MIS and the LFMIS problems. In the MIS, we seek to extract any
maximal independent set from the given graph. MIS is efficiently parallel.
However, if we start searching for solutions with specific properties, then the

6e.g., the decision version of the “integer addition” problem is stated as follows:
ADD(x, y, i)=‘1’ iff the i-th bit of the result (x + y) is ‘1’, where x,y ∈ N.

99



problem becomes harder. For instance (see p. 118), requesting the lexico-
graphically first Maximal Independent Set renders the problem P-complete
(even worse, recall that the maximum independent set is NP-complete). The
complexity of the problem is reduced –once again– by imposing constraints
on its input set. The special case LFMISdeg≤2, which is confined to graphs
of degree ≤ 2, remains in NC2.

Although not listed above, members of higher NCk classes do exist. Such
an example is the problem of finding a Hamiltonian Cycle in dense graphs
with N nodes of degree ≥ N/2. The decision version of this problem was
proved to be in NC4. Moreover, finding Hamilton Cycles in robustly expand-
ing digraphs was recently shown to be in NC5 (recall that, for general graphs,
the HC problem is NP-complete).

4.1.2 Beneath and Beyond NC

At this point, we have formed a clear picture of the most important parallel
complexity class, the NC. Hereafter, the study continues beneath and beyond
NC, either to shed more light at the lowest level of the hierarchy, or to frame
the problems defying feasible highly parallel solutions.

Finer gradation within the NC hierarchy

We start by examining the possibility of further analyzing each NCk+1 class to
subclasses, similar to the ACk and TCk. As shown in the previous subsection
(NC examples), such class gradations allow the creation of a more detailed
classification of the parallel problems according to their complexity. Recall
that the major difference between the AC and NC circuits lies in the fan-in
of their gates: the AC gates have unbounded fan-in, while the NC gates
feature certain bounds. There is, yet another, category of circuits that use
both bounded and unbounded fan-in gates: the “semi-unbounded” fan-in
circuits [21]. Let us define the SACk class to contain exactly those languages
decided by logspace uniform families of circuits with O(logk n) depth, which
use bounded fan-in AND gates, unbounded fan-in OR gates, and NOT gates
only at their input level. In other words, the SACk class is defined as the ACk

class with a restriction on the AND gates and the NOT gates. Trivially, we
have SACk ⊆ SACk+1, i.e., we get a hierarchy of SACk classes (not known to
be proper). Again, we define the union of these classes as SAC =

⋃
k≥0 SACk.

Simply by looking at the fan-in of the gates we deduce that a SACk circuit
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is a special case of an ACk circuit. Moreover, by using de Morgan laws,
we have that NCk ⊆ SACk. Therefore, we have SAC=NC=AC=TC. More
specifically, we have a finer gradation within the NC hierarchy:

NCk ⊆ SACk ⊆ ACk ⊆ TCk ⊆ NCk+1

Towards the analysis of the efficient parallel classes, significant research
effort has focused at the lowest level of the NC hierarchy. This effort has led
to the genartion of numerous individual complexity classes. Note however
that dividing the NC1 and NC2 into multiple subclasses based solely on the
running time of the algorithms is a controversial task [40]. This trend is
likely to obscure the real bottleneck of parallel computation, which is the
number of the processors. For instance, an algorithm with n2 processors and
log n time (NC1) might turn, in practice, slower than an algorithm with n
processors and log2 n time (NC2). In the real world, we have to take into
account factros as the communication overhead, etc. Overall, many believe
that the product processors × time leads to more accurate estimations in
practical situations than the numerous subclasses of NC2 and NC1.

The class LOGCFL is defined to contain exactly those dicision prob-
lems that are logspace reducible to a context-free language [40]. Recall that
deciding membership in a context free language is in NC2 (CFL problem,
examples’ subsection). Therefore, since L ⊆ NC2, we have LOGCFL ⊆ NC2.
By using alternative characterizations of the class LOGCFL, based on non-
deterministic auxiliary pushdown automata and ATMs, one can deduce that
NL ⊆ LOGCFL ⊆ AC1. LOGCFL was proved to be closed under comple-
ment (this also holds for NCk and ACk trivially, as they are deterministic
classes). Overall, it is shown that LOGCFL=SAC1. Within LOGCFL we
have the LOGDCFL (D stands for deterministic), which lies in NC ∩ SC.
Besides the above, we can define more classes based on reductions to famous
problems. Another common example is the DET class, which is defined to
contain exactly those problems that are logspace reducible to the “integer
matrix determinant” problem (in NC2, examples’ subsection). We know that
NL ⊆ DET ⊆ NC2.

To take a closer look inside the class NC1, we have to use more con-
servative types of uniformity than the logspace (as explained before, this is
not necessary for the remaining of the NC hierarchy). Common uniformity
choices are the DLOGTIME (see p. 84) and the ALOGIME (with alter-
nating TMs). Note that the AC0 properly includes the DLOGTIME class of
decision problems [40]. The definitions/results of this paragraph assume the
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Figure 4.3: Class inclusions at the lower levels of NC

DLOGTIME-uniformity. Extending the idea of augmenting our circuits
with MAJ gates (see TC circuits), we introduce the MOD gates: an un-
bounded fan-in MOD(k) gate outputs ‘1’ iff the number of its non-zero inputs
is congruent to (0 mod k) [40]. The MOD gates were introduced to tackle
the PARITY problem with AC circuits of constant depth (recall the proof of
theorem 4.1.5). This goal was achieved with MOD(2) gates. However, as it
turns out, such circuits cannot solve all problems of NC1. Let us elaborate
by defining, first, the class AC0[k] to contain exactly those languages decided
by polynomial size, constant depth, unbounded fan-in Boolean circuits aug-
mented with MOD(k) gates. Trivially, any AC0[k] class contains the AC0

class. Furthermore, for all primes p, the class AC0[p] is strictly contained in
NC1. Specifically, AC0[p] can not solve the problem of determining whether
(x mod q) = 0, x ∈ N, for any prime q 6= p (PARITY is in AC0[2], but not
in AC0[3]). The classes AC0[p] are the largest –known– proper subclasses of
NC1. It is worth noting that, for any composite number k, it is not known
yet whether AC0[k] is properly included in NC1: it may as well be the case
that AC0[6]=NP. We define the class ACC0 to be the union of all AC0[k],
k > 1, and we summarize the above as (ACC stands for “AC with counters”)

AC0 ⊂ ACC0 ⊆ TC0

Other parallel complexity classes have been defined by adding new or
modifying the criteria mentioned so far. For instance, by replacing the un-
bounded fan-in OR gates of the SAC circuits with unbounded parity gates
(XOR) we come up with the “parity SAC” classes ⊕SACk. Or, we can divide
the AC0 class into subclasses based on the number of alternations, i, between
the AND and OR gates from the input to the output of the circuit (i.e., its
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O(1) depth). The classes AC0
i form a non collapsing hierarchy within AC0.

In another direction, we can replace the depth criterion of the NC circuits
with a width criterion. The class BWk is defined as the NCk, except that
the O(logk n) constraint refers to the width of the circuits [40]. We know
that BW = SC. The class BW0 is also divided into BW0

i subclasses, where i
counts the absolute width of the circuit. We have that AC0

i ⊆ BW0
i for every

i ∈ N and that AC0 ⊂ BW0 because PARITY is in BW0. In fact, it is proved
that the BW0

i hierarchy collapses and that BW0
4 = BW0 = NC1 (holds for

both uniform and non-uniform circuits with gate fan-in=2). To sum up, the
Hasse diagram in figure 4.3 depicts the class inclusions (proper or not) that
we encounter at the lower levels of the NC hierarchy [40] [47].

Beyond NC

As we already mentioned in the previous chapter, any language can be de-
cided by non-uniform circuits of size O(n2n), e.g., via the disjunctive normal
form of its characteristic function. In fact, this bound can be lowered to
O(2n/n) [48]. However, the vast majority of boolean functions require cir-
cuits with Ω(2n/n) gates. Even worse, if we place a uniformity condition on
the circuit families, the uniform circuit complexity of some languages exceeds
O(2n). Such exponential numbers reveal the immense area beyond the NC
hierarchy, which uses only polynomial size circuits.

In section 3.3.1 we established an equivalence of the polynomial DTM
(i.e., the class P) to the logspace uniform circuits. Analogous equivalences
between the TM and the circuit model can be established for classes of greater
complexity. For instance, we know that the Polynomial Hierarchy (see foot-
note, p. 106) is also defined by DC-uniform boolean circuits of constant
depth (in the Direct Connect uniformity we can find the size, a gate or an
edge of a circuit by using a polynomial-time DTM) [48]. These circuits use

2nO(1)
gates of unbounded fan-in and the NOT gates appear only at their

input level. Moreover, if we drop the constant depth restriction then we
obtain exactly the EXP class (i.e., DTIME(2nO(1)

)). Overall, by carefully
controlling the imposed restrictions on our circuits (gate fan-in, input rout-
ing, etc) we can get alternative characterizations for various TM classes (NP,
PSPACE, etc) [49]. The complexity of these classes increases by allowing
more resources to the circuits (e.g., depth). Notice that the above circuits
are infeasible (exponential size), but they have a succinct description: any
basic information regarding the circuit can be extracted in polynomial time.
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One step farther, the following paragraphs examine the consequences of
completely dropping the uniformity constraint that is usually imposed to
each circuit family. To begin with, we have seen that non-uniform circuits
have the extraordinary ability of “deciding” undecidable languages (recall
however that, describing such circuits algorithmically is itself an undecidable
problem). So, how can we relate these circuits to the well-studied TM classes?
Is such a comparison worthy?

Before continuing to answer the above questions, we must define the
Turing Machines which “take advice”. This notion was introduced to capture
non-uniform complexity classes. We can envisage such a TM as a machine
with two inputs: the first, x, is the string for which we are interested whether
x ∈ L for some language L. The second, an, is a string which is given as an
“advice” to the TM, in order to facilitate the computation. Formally [48],

Definition 4.1.2. Let T,w: N → N be functions. The class of languages
decidable by time-T(n) TMs with w(n) advice, denoted DTIME(T(n))/w(n),
contains every L such that there exists a sequence {an}, n ∈ N, of binary
strings with |an| = w(n) and a TM M satisfying

∀x ∈ {0, 1}n M(x, an) = 1 ⇔ x ∈ L

On input (x, an) the machine M runs for at most O(T (n)) steps.

The languages decided in this way may not as well be recursive, i.e.
decidable by regular Turing Machines. Consider the example of an advice-
TM deciding a unary language L with a single bit of advice: an = 1 iff
1n ∈ L. Clearly, L may stand here for any unary language, recursive or not,
because the above definition imposes no restrictions on the advice sequence
{an} (e.g. its construction).

Based on the definition of the advice-TM, various classes have been
studied in the literature. They are characterized by the time spent to ac-
cept/reject a string (polynomial, nondeterministic-polynomial, exponential)
and by the width of the advice string (polynomial, logarithmic). We point
out here the P/poly class, for which we give the following two definitions and
we prove that they are equivalent [48] [23].

Definition 4.1.3. The class P/poly contains exactly those languages decided
by polynomial-time TMs which use polynomial-size advices.

Definition 4.1.4. The class P/poly contains exactly those languages decided
by families of circuits with polynomial-size.
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Theorem 4.1.10. The definitions 4.1.3 and 4.1.4 of the class P/poly are
equivalent.

Proof. We will use bidirectional simulations, similar to those of section 3.3.1.
For the first direction, assume that a language L has a TM M running

in polynomial time and using polynomial-size advices (in n = |x|). That is,
there exists a family of advices {an} and a TM M , such that M on input
(x, an) will decide whether x ∈ L in a polynomial number of steps. Since M
exists, we know how to construct a circuit Cn to simulate M(x, an) (as in
the proof of theorem 3.3.1). The resulting circuit will have polynomial size,
because the computation of M is itself polynomially bounded. Moreover,
since the family {an} exists, we know that there exists a family of circuits
{Ca

n} such that Ca
n outputs an without requiring any input (constant output):

every member Ca
n is simply a hardwiring of gates, according to the string

an (we are interested only on the existance of Ca
n, not in the difficulty of

constructing it). The size of Ca
n is bounded by the length of an, i.e. it is

also polynomial in n. By appending Ca
n to the aforementioned Cn we get

a polynomial size circuit and moreover, we assemble a family of circuits to
decide L (notice that this family is rendered nonuniform, because of the
argument used in the construction of Ca

n).
For the second direction, assume that L has a polynomial circuit. That

is, there exists a family of circuits, {Cn}, such that Cn(x) = 1 ⇔ x ∈ L,
n = |x|. We will use the advice sequance {an}, where an =< Cn > is the
description of the n-th circuit of {Cn} (the difficulty to construct < Cn > is
irrelevant here). A DTM can input an and x to simulate Cn(x) in polynomial
time, because the size of Cn(x) is polynomially bounded in |x|.

It is straightforward to see from definition 4.1.3 that any language within
P also resides within P/poly. In fact, the class inclusion is proper, as there
are many problems in P/poly which are not members of P: e.g. all the non-
recursive languages of P/poly (recall the previous example with the L ⊆ {1}n

decider). This conclusion is in accordance with the discussion of section 3.3.1,
if we consider definition 4.1.4, thus

P ⊂ P/poly

The question that arises naturally here concerns the relation of NP to
P/poly. Is NP a subset of P/poly? We know that the converse is false (due to
the existence of non-recursive problems in P/poly), but what if this inclusion
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does not hold either? The answer to this conundrum might even resolve
the P versus NP conflict: if NP * P/poly, then P 6=NP. For this reason,
circuit complexity is often considered as a means of separating important
complexity classes. Indeed, there is evidence that the NP class is not a
subclass of P/poly: according to the Karp-Lipton theorem [50], such an
“odd” inclusion would imply that the entire Polynomial Hierarchy collapses
to its second level7. This result also strengthens the conjecture mentioned in
section 3.3.1, i.e. that no NP-complete problem has a polynomial size circuit.
We give bellow a proof sketch of the Karp-Lipton theorem [48].

Theorem 4.1.11. If NP ⊆ P/poly then PH=Σp
2.

Proof (sketch). To show that PH = Σp
2 it suffices to show that Πp

2 ⊆ Σp
2

(and thus, Πp
2 = Σp

2). To show such an inclusion, it suffices to prove that a
Πp

2-complete problem belongs in Σp
2.

The problems in Πp
2 are described by using the syntax ∀x∃yφ(x, y), while

those in Σp
2 by using the syntax ∃x∀yφ(x, y). The goal of this proof is to

transform a problem of the former syntax to an equivalent of the latter syntax
in polynomial time. We point out the Πp

2SAT language (Πp
2-complete), which

consists of all unquantified Boolean formulas φ(x, y) satisfying

∀x∃yφ(x, y) = 1, x, y ∈ {0, 1}n (4.1)

By the assumption NP ⊆ P/poly, there exists a family of polynomial-
size circuits {Cn} deciding SAT (i.e. Σp

1SAT). Specifically, {Cn} decides
whether for some given string x and formula φ(x, y) the following holds:
∃yφ(x, y) = 1, for y ∈ {0, 1}n. Moreover, it is known how to modify a
decision algorithm/circuit so that it can output the solution of the problem
(if any). Such a circuit {C ′

n} will input a formula φ and a string x to output

7 that is, any problem within PH (and probably within PSPACE, as PH ⊆ PSPACE)
could be solved by a polynomial-time NTM with a polynomial number of queries to an
oracle solving some NP-complete problem (Σp

2 = NPNP ). Recall [5] that PH is a sequence
of classes, which are defined recursively, based on TM using oracles. Specifically, at the
zeroth level we have the classes ∆p

0 = Σp
0 = Πp

0 = P . At the first level we have ∆p
1 =

P, Σp
1 = NP, Πp

1 = coNP . The classes in each of the upper levels are defined based
on a polynomial-time TM using an oracle from the previous level: ∆p

i+1 = PΣp
i , Σp

i+1 =
NPΣp

i , Πp
i+1 = coNPΣp

i . Note that each level includes all of the previous levels and that
PH=

⋃
i≥0 Σp

i . An equivalent way to define PH is to let Σp
i (respectively Πp

i ) denote those
languages accepted by polynomial-time ATMs that make less than i alternations starting
from an existential (respectively universal) state [48].
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a string y (if any exists). Note that the circuits of the family {C ′
n} will still

have polynomial size.
Let us denote by w a potential description of the circuit C ′

n (by assump-
tion, C ′

n exists). Consider the language consisting of all Boolean formulas
φ(x, y) satisfying

∃w∀x(
w =<C ′

n > ∧ φ (x,C ′
n(φ, x)) = 1

)
(4.2)

If 4.1 is true (false) for a specific formula ψ(x, y) then, by the definition of
C ′

n, 4.2 is also true (false) for ψ(x, y). Hence, we have reduced the problem
described by 4.1 to the problem described by 4.2. Moreover, the reduction
is performed with Σp

2 requirements: the circuit C ′
n is constructed by using

a SAT oracle (which inputs ψ and x) and the evaluation of C ′
n, as well as

its construction, requires at most polynomial time. Consequently, if
NP ⊆ P/poly, then Πp

2SAT ∈ Σp
2.

An even more extreme assumption that NP is contained in P/log (a strict
subset of P/poly) implies that PH collapses at its first level, i.e. P=NP [50].
Similar results given in [50] show that it is rather unlikely for deterministic-
exponential-time or polynomial-space problems to have polynomial-size cir-
cuits. Specifically,

If EXP ⊆ P/poly then EXP = Σp
2

If PSPACE ⊆ P/poly then PSPACE = Σp
2 ∩ Πp

2

Iff PSPACE ⊆ P/log then PSPACE = P

Note as a corollary of the first that, EXP⊆P/poly and P=NP will never hold
together. These inclusions, when combined, contradict the Time Hierarchy
Theorem [48]: if P=NP, then PH collapses and thus, P=Σp

2=EXP.

We conclude the current section by referring to a randomized complexity
class of parallel computation, namely the RNC class. The RNC class is the
union of all RNCk classes, k > 0, where each RNCk is defined as the NCk,
except that the circuit is probabilistic [1] [5]. More specifically, we have a
boolean circuit, which inputs a number of extra bits (intuitively, the random
bits). The number of extra bits is bounded by a polynomial p(n), n = |x|.
If x ∈ L, the circuit outputs ‘1’ with probability at least 1/2, i.e., at least
half of the 2p(n) outputs are correct. Otherwise, if x /∈ L, the circuit outputs
‘0’ with probability 1 (zero sided error). The introduction of randomization
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Figure 4.4: Known class relations (single arrows denote proper class inclusions)
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to the NC class has the same effect with the RP case (randomized P) [5].
As we will see in section 4.2, the first important class beyond NC is, most
probably, the class of P-complete problems (still inside P). Randomization is
a potential way of attacking these problems, analogous to that of attacking
NP-complete problems with randomized polynomial algorithms. A charac-
teristic example is the “perfect matching” problem, which is shown to be in
RNC [5]. More specifically, it lies in RNC ∩ co-RNC, i.e., there is a feasible
parallel algorithm that runs in expected polylogarithmic time for any input,
giving always the correct output [40]. Unfortunately, perfect matching is not
yet proved to be either NC or P-complete8. In fact, as with the P versus NP
case, no problem in RNC was ever proved to be P-complete; most researchers
believe that randomization is not adequate for solving such difficult problems,
neither P-complete (with RNC) nor NP-complete (with RP). Regarding the
relations of the RNC to the other classes, we expect that RNC is in P (mere
conjecture). Also, it is straightforward to show that NC ⊆ RNC, because the
use of the random bits is not mandatory. We know that RNC ⊆ BPP (prob-
lems solvable with randomized sequential algorithms with two-sided error in
expected polynomial time), which in turn is contained in P/poly according to
Adleman’s theorem [47]. Figure 4.4 summarizes most of the aforementioned
–proved– class relations with a Hasse diagram (double arrows denote class
inclusions and single arrows denote proper class inclusions).

4.2 P-completeness

Are all problems in the class P equally difficult to solve? A first, negative,
answer can be obtained by using their sequential-time as a comparison mea-
sure: the Time Hierarchy Theorem [5] establishes that some problems require
strictly greater amounts of time than others, i.e. the DTIME(nk) hierar-
chy is proper. There are other viewpoints, though, from which we cannot
answer the above question with certainty9. As it turns out, we cannot even
tell whether all P problems are easy enough to be solved in narrow space
(polyL), or in moderate parallel time bounds (NC). Separating P from such

8recall that the special case PBPM of this problem is in NC2 (examples’ subsection).
9e.g., we also know, from the Space Hierarchy Theorem, that the DSPACE(logk n)

hierarchy is proper. However, we cannot use this result to further divide P with respect to
space, because we expect that polyL * P (the distinguishing problems of each polyL level
might lie beyond P). In other words, we cannot tell whether SC is a proper hierarchy.
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classes is an issue addressed, among others, by the theory of P-completeness.
The most direct method for separating two classes is, arguably, by show-

ing that a specific member of one class does not reside in the other. To
find such distinctive members we, naturally, search among the most difficult
problems of a class (after all, we are working with difficulty classifications).
Hence, the theory of P-completeness focuses on identifying the “hardest”
problems of P. Indeed, as practice has shown, the P-complete problems are
the prime candidate members of P−NC, of P−L, etc. They seem to lack
feasible highly parallel, as well as, polylogarithmic-space solutions.

To identify the “hard” problems of a class we use reductions. In general,
we say that a problem A is reduced to a problem B, if we can solve any
instance of A by transforming it to an instance of B, and then, solving B. The
complexity of transforming the instances determines the relative difficulty of
the two problems. Intuitively, if the transformation is easy enough (compared
to the complexity of B), then solving A is at most as difficult as solving
B. Note that we can choose among many types of transformations (and
reductions), depending on the underlying complexity class and the intended
application. By using reductions, we can partially order the problems of a
class according to their difficulty. The “hardest” problems are those to which
we can reduce any problem of their class. We call such a problem complete
and we can use it as a representative of its class.

Several problems have been identified as P-complete [1]. Even though it
is conjectured that they all lie beyond NC, none of them was ever proved
to do so. Such a striking result would imply that all P-complete problems
lie beyond NC, and moreover, it would separate NC from P once and for all
(the same holds for the ‘P versus L’ conundrum). Decades of failed attempts
reveal the magnitude of the challenge and in no case do they invalidate the
merit of the theory. Besides provably separating the classes, P-completeness
gives us some insight to the limits of parallelization and it expands our knowl-
edge of difficult –or, seemingly difficult– problems. In practice, a large set
of known P-complete problems can, actually, guide the designer in solving
efficiently parallel his own problem. For example, identifying a P-complete
subproblem suggests that the decomposition of the larger problem should
be reformulated. Or, it suggests that some other method should be applied
(e.g. approximation). In other examples, there exist problems featuring both
highly parallel and inherently sequential solutions; the designer can benefit
by consulting the theory.

Historically, the notion of P-completeness appeared at roughly the same
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time as that of NP-completeness (1970’s) [1]. The motivation was to study
the relations between sequential time and space. Cook was the first to raise
the question of whether everything computable in polynomial time is also
computable in polylogarithmic space (‘P versus polyL’, still open). Cook
also gave the first P-completeness result (the “Path Systems” problem), by
using logarithmic-space reducibility. Thereafter, many problems were shown
to be P-complete, including the “Circuit Value” by Ladner (1975). The
introduction of the class NC (Pippenger, 1978) and the importance of P-
completeness in the study of parallel computation (Goldschlager et al., 1982)
led to several new results by using NC reducibility. Nonetheless, there still
exist numerous problems that are not known to be either P-complete or NC.
Such a characteristic example is the Greatest Common Divisor, which, as
the rest of the open problems, is not expected to be in NC (compare to the
Factoring problem, which is not expected to be in P). Today, the general
–but unproven– consensus is that the P-complete problems are inherently
sequential (i.e. they are feasible but not feasible highly parallel).

In the following of this section we study P-completeness for the purposes
of parallel computation. We describe the notion of reducibility and its uses.
We define the P-complete problems and we give various examples. Moreover,
we explain the NC ⊂ P conjecture and we consider its consequences.

4.2.1 Reductions and Complete Problems

One of the central ideas used in P-completeness is the reduction of one prob-
lem to another. That is, the idea of finding the solution of one problem
by solving another problem. For example, sometimes, we can tell whether
x ∈ LA by transforming the instance x to a new instance f(x) and answering
whether f(x) ∈ LB. The existence and the complexity of such functions,
f , help us order/classify the problems according to their own complexities.
Intuitively, if f exists and can be computed with less or equal complexity to
that of deciding LB, then deciding LA cannot be more difficult than deciding
LB.

The computational complexity of a function is formalized and studied
with the same methods presented in the previous section. Recall that the
class NC was defined there only for decision problems. Let us define here
the function analog of this class, namely the FNC. The FNC is the set of
functions, which can be computed by boolean circuits of polynomial-size and
polylogarithmic-depth [1]. As with the NC hierarchy, the FNC is the union of

111



all FNCk classes (circuit-depth = O(logk n)). The gates of the FNC circuits
have bounded fan-in and the circuit families are logspace uniform. FNC cap-
tures the functions that can be computed feasible highly parallel. Note that,
by definition, NC ⊆ FNC. Other important function classes are the FP (func-
tions computed by polynomial-time DTMs), the FL (by logarithmic-space
DTMs), the nondeterministic FNP and FNL, the nonuniform FNL/poly (by
NDTM with polynomial-size advices), etc.

We continue by formalizing the notion of reductions [1].

Definition 4.2.1. A language LA is many-one reducible to a language LB,
written LA ≤m LB, if there is a function f such that x ∈ LA if and only if
f(x) ∈ LB.

We say that LA is P many-one reducible to LB, written LA ≤P
m LB if and

only if the function f is in FP.
We say that LA is logspace many-one reducible to LB, written LA ≤L

m LB

if and only if the function f is in FL.
We say that LA is NCk many-one reducible to LB, for k ≥ 1, written

LA ≤NCk

m LB, if and only if the function f is in FNCk.
We say that L is NC many-one reducible to LA, written LA ≤NC

m LB, if
and only if the function f is in FNC.

We call the above reductions many-one because many distinct instances of
the original problem A can be mapped to a single instance of the new problem
B. A generalization of the many-one reducibility is the Turing reducibility.
The idea is that we are not limited in a single transformation f(x), and
thus, to a single question of the form f(x) ∈ LB in order to answer whether
x ∈ LA. Instead, we are allowed to use a machine, which can issue multiple
questions to an oracle giving answers for the problem B. In practice, multiple
queries are more useful when we turn from decision to search problems10.
We will define Turing reducibility here by using PRAMs equipped with an
extra instruction-call to query their oracle (the B-oracle). Notice that, if
we assume a unit cost for the instruction-call, the complexity of the Turing
reduction captures the difficulty of reducing A to B independently of the true
complexity of B. Formally [1],

Definition 4.2.2. A search problem A is Turing reducible to a search problem
B, written A ≤T B, if and only if there is a B-oracle-PRAM that solves A.

10i.e. find a value (a string, a path, etc) with a specific property. When the answer to
a search problem is unique (for any input), then we have a function problem.
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We say that A is P Turing reducible to B, written A ≤P
T B, if and only

if the B-oracle-PRAM on inputs of length n uses nO(1) time and nO(1) pro-
cessors.

We say that A is NC Turing reducible to B, written A ≤NC
T B, if and only

if the B-oracle-PRAM on inputs of length n uses logO(1)n time and nO(1)

processors.

Similar to the PRAM extension with oracles, we define the B-oracle-
circuit families. These circuits include oracle gates for solving B. Such a gate
is considered as a vertex with k inputs and l outputs. The k-input will be
an encoding of an instance of the problem B, and the l-output will be the
encoding of the corresponding solution to B. By convention, the oracle gate
has depth log(k + l) and size (k + l). Oracle circuit families serve the same
purpose as oracle PRAMs. They are introduced to study a more detailed
reduction than the ≤NC

T defined above. Specifically [1],

Definition 4.2.3. A search problem A is NCk Turing reducible to a search
problem B, for k ≥ 1, written A ≤NCk

T B if and only if there is a uniform
B-oracle circuit family {Cn} that solves A, and each member Cn has depth
O(logkn) and size nO(1).

As already mentioned, reductions are often used to reckon whether a
problem is more difficult than another (either in terms of complexity or com-
putability). Furthermore, we can use reductions to reckon whether two prob-
lems are equally difficult [1].

Definition 4.2.4. Suppose that for some reducibility ≤ we have A ≤ B and
B ≤ A. Then we say that A and B are equivalent under ≤.

The above reductions have certain properties, which can be used to reach
certain conclusions easier and faster. For instance, we know that they are
transitive, i.e. if A ≤ B and B ≤ Γ, then A ≤ Γ. To prove such a claim
for a many-one reduction, we must compose the two functions transforming
the instances of the two given problems. For this, notice that the classes FP,
FL, FNCk and FNC are closed under composition [1] (it can be shown with
straightforward simulations, except from FL, which requires the technique
used in the proof of theorem 4.1.6 for passing the “intermediate result” [5]).
To prove the claim for a Turing reduction, it is straightforward to construct
a machine (circuit) utilizing the second given oracle and simulating the op-
erations of the two given machines (e.g. by interleaving their computations).
Overall [1],
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Proposition 4.2.1. All the reductions given in definitions 4.2.1, 4.2.2 and
4.2.3 are transitive.

Moreover, since Turing reducibility is a generalization of many-one re-
ducibility, it is straightforward to show that [1]

Proposition 4.2.2. If A ≤m B, then A ≤T B. If A ≤P
m B, then A ≤P

T B.
If A ≤NC

m B, then A ≤NC
T B.

The aforementioned reductions are useful in parallel computation for spe-
cific reasons. In some cases, we want our transformation to be in FNC (or
in L) so that we can solve our problem highly parallel (i.e., transform it and
then solve another highly parallel problem). In other cases, we might simply
want to show the complexity class of a specific problem (by comparing to
other problems of that class). In most cases, we are interested in ordering
problems within P, and NC, according to their complexity. Let us elaborate
on the latter two situations, which involve comparisons. When comparing
problems through reductions, one should be careful with the design of the
transformation function or the oracle machine: the reduction should be no
more complex than the problem itself (e.g., the exponential cost of a falsely
chosen transformation could mask the polynomial cost of the problems under
examination and thus, mislead the comparison). Therefore, before continu-
ing, we define the compatibility of a reduction and we explain why the afore-
mentioned reductions are suitable for the purposes of P-completeness [1].

Definition 4.2.5. Let ≤ be a resource bounded reducibility and let C be a
complexity class. We say that ≤ is compatible with C if and only if for all
problems A and B, when A ≤ B and B ∈ C, then A ∈ C.

It is easy to see that the resource-bounded many-one reductions given in
definition 4.2.1 are compatible with P. That is, if we reduce a problem A
(of unknown complexity) to a problem B ∈ P by using one of the ≤P

m, ≤L
m,

≤NCk

m , ≤NC
m reductions, we actually deduce that A ∈ P (the transformation

of the input x can be computed in polynomial time, as well as the solution
of B). Similarly, the many-one reductions ≤L

m and ≤NC
m are compatible with

NC and the many-one reduction ≤NCk

m is compatible with NCk. The Turing
reductions ≤P

T and ≤NC
T are also compatible with P and NC respectively (we

can replace the oracle-instruction by an actual machine, as we know that the
number of the oracle “executions” is bounded by the running time of the
original oracle-PRAM ). The ≤NC1

T is compatible with NCk for each k ≥ 1 as
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it preserves circuit depth. Note finally that, for any reduction ≤ compatible
with C and for any problems A, B, if A ≤ B and A /∈ C, then B /∈ C. This is
an immediate consequence of definition 4.2.5, which can be used for proving
that a problem does not reside in a particular class C.

Having defined the above tools for ordering and classifying problems, we
can now give the notion of a complete problem. Assume that for some class
C and some problem B ∈ C, we know that every problem A ∈ C can be
reduced to B by using a reduction compatible with C (∀A,A ≤ B). That is,
we know that B is at least as “difficult” as any other problem in C and that
it also resides in C. Such a problem is called C-complete11. A C-complete
problem can be viewed as a representative of the class C. In certain cases,
proving a complexity result for that problem is as good as proving a result for
every problem within C. For instance, consider that in order to show a class
inclusion C1 ⊆ C2, it suffices to show that a C1-complete problem resides in
C2 (because no problem in C1 is more difficult than the C1-complete problem,
which itself can be solved under C2 constraints). Further, when C1 ⊆ C2, to
show that the two classes are equal, it suffices to show that a C2-complete
problem resides in C1 (which implies that C2 ⊆ C1). Overall, when a C1-
complete problem resides in C2, and at the same time a C2-complete problem
resides in C1, then C1 = C2.

As the title of this section indicates, we will focus on a specific set of
complete problems: the P-complete problems. Formally [1],

Definition 4.2.6.
A language LB is “P-hard under NC reducibility” if LA ≤NC

T LB for every
LA ∈ P .
A language LB is “P-complete under NC reducibility” if LB ∈ P and LB

is P-hard.

Definition 4.2.6 can be extended –in the obvious way– to include function
problems (FP-complete) and search problems (quasi-P-complete). Note that,
one can give P-completeness results using reductions different than the NC

11not all classes have complete problems. For instance, no complete problems are known
for “semantic” classes like RP and BPP (Randomized Polynomial-Time and Bounded-
Error Probabilistic Polynomial-Time). Moreover, it is believed that some classes do not
have complete problems at all. Such an example is the Polynomial Hierarchy (non-semantic
class), for which we know that the existence of a PH-complete problem implies the collapse
of PH to some finite level [5]. Note that the same holds for the NC hierarchy, which would
collapse at the level of the –alleged– complete problem (it also collapses if NC=P).
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(weaker forms of reducibility, possibly down to NC1 many-one). However, we
avoid P reducibility due to the NC ⊂ P conjecture (we avoid allowing more
computational power to the transformation than to the “complete” problem
itself).

Proofs and examples of P-complete problems

To exemplify the use of the above, we present a number of P-complete prob-
lems and some commonly used proof techniques. We begin with the Circuit
Value Problem (CVP), which is, probably, the most famous of the class.
CVP is a decision problem: given the description of a boolean circuit Cn and
a bit vector v = [v1, . . . , vn], is Cn(v) = 1 ? We show that [5]

Theorem 4.2.3. CVP is P-complete

Proof. It suffices to show that CVP ∈ P and that A ≤L
m CVP for every

A ∈ P (note that ≤L
m is compatible with P and that it is a weaker form of

reducibility than ≤NC
T , which was used in definition 4.2.6).

It is straightforward to evaluate the output of the circuit in polynomial
time: read its description and evaluate every gate in a bottom-up fashion.

To show that every A ∈ P can be reduced to CVP, recall Theorem 3.3.1.
Since problem A has a polynomial-time DTM MA, we can construct a cir-
cuit CA

n to simulate MA(x), |x| = n, by using a logarithmic-space DTM.
Therefore, any input x of A can be transformed in a string < x,CA

n > such
that x ∈ A if and only if < x,CA

n >∈ CV P . Since the above transforma-
tion requires only logarithmic space, we deduce that A ≤L

m CVP for every
A ∈ P.

Having proved that CVP is P-complete, we can use it to show other P-
completeness results. Specifically, to establish that A ∈ P is P-complete,
it suffices to give a compatible reduction CVP ≤ A. Such a result implies
that any problem B ∈ P can be reduced to A by composing the two trans-
formations (B ≤ CVP and CVP ≤ A), e.g., by using the “communication”
technique used in the proof of Theorem 4.1.6. In fact, CVP plays the same
role in P-completeness theory that the Satisfiability Problem (SAT) does in
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NP-completeness theory12. Analogous to SAT, CVP is most often used to
show that other problems are P-complete. Moreover, as with SAT, many
variants of the CVP are also P-complete. This holds even for restricted CVP
variants, which can sometimes simplify a proof. Such a case is examined next:
the Monotone CVP. MCVP is the same problem, except that the given circuit
consists only of AND and OR gates (no NOT gates). Nonetheless [1],

Theorem 4.2.4. MCVP is P-complete

Proof. First, note that as CVP ∈ P, so is MCVP ∈ P. To show that MCVP
is P-hard, we will reduce CVP to it.

We construct a DTM which inputs an instance of CVP, i.e. < x, Cn >,
and constructs an instance of MCVP, i.e. <x′, C ′

m > with |x′| = m = 2n =
2|x|. First, the DTM inverts every bit of x and by concatenation constructs
x′ =<x; x̄>. This action will allow the removal of any NOT gate from the
first level of Cn (by using a connection directly to the inverted bit of the
input). We extend this idea to the remaining levels of Cn by using a classical
technique of circuit design, called double-rail logic (the idea is that for every
signal-edge within Cn, there will also be a new signal of the opposite value
–without using NOT gates). The DTM reads the description of Cn and when
it encounters an AND gate vi with vi = vj ∧ vk, it outputs two gates: vi and
v̄i = v̄j∨v̄k (the bar here denotes only a symbol, not an operation). Similarly,
for an OR gate vi = vj ∨ vk it outputs vi and v̄i = v̄j ∧ v̄k. For a NOT gate
vi = ¬vj it outputs vi = 1 ∧ v̄j and v̄i = 0 ∨ v̄j.

Basically, this is a recursive definition of the circuit construction. It is
easy to show by induction that, starting from x and x̄, for any signal si of
Cn, there is a signal s̄i of C ′

m such that s̄i = ¬si (the new circuit C ′
m is

double the size of Cn). This allows C ′
m to have the same functionality with

Cn, but without using any NOT gates (when necessary, a node connects
directly to the inverted signal). We are interested in the output gate of C ′

m,
which has the same value with Cn, that is, <x, Cn >∈ CVP iff <x′, C ′

m >∈
MCVP. It is clear that the above computations can be performed by the
DTM in logspace (simple counters and indexing variables are required) and
thus, CVP ≤L

m MCVP.

12SAT is a well known decision problem: given a boolean expression φ (usually in
conjunctive normal form –CNF), is is satisfiable? SAT is computationally equivalent to
the Circuit-SAT problem (i.e., for a given circuit Cn, is there an input assignment so that
Cn will output ’1’?) [5].
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Other variants of the CVP that are P-complete are [1]:

¦ NAND-CVP: The circuit consists only of NAND gates. Reductions are
often simplified when only one type of gate needs to be simulated.

¦ Top-CVP: Topological CVP, i.e. the vertices in the circuit are numbered
and listed in topological order.

¦ P-CVP: Planar CVP, where the circuit is a planar graph, i.e. it can be
drawn in the plane with no edges crossing. Note that Monotone-Planar-
CVP ∈ NC.

¦ AM2-CVP: Alternating Monotone Fanin 2, Fanout 2 CVP, where on any
path from an input to an output, the gates are required to alternate
between OR and AND.

¦ Arith-CVP: Arithmetic CVP, where we are given an arithmetic circuit with
dyadic operations +,−, ∗, together with inputs x1, . . . , xn from a ring.

There are numerous P-complete problems, which are related to circuit
complexity, graph theory, searching graphs, combinatorial optimization and
flow, local optimality, logic, formal languages, algebra, geometry, real analy-
sis, games, etc [1]. For each the above categories, we list one representative
P-complete problem bellow:

¦ CVP: Circuit Value Problem (see above).

¦ LFMIS: Lexicographically First Maximal Independent Set. Given a
graph G with ordered vertices and a designated vertex v, is v in the
lexicographically first maximal independent set of G?

¦ BDS: Breadth-depth Search. Given an undirected graph G with a
numbering on the vertices, and two designated vertices u and v, is
vertex u visited before vertex v in the breadth-depth first search of G
induced by the vertex numbering?

¦ LP: Linear Programming. Given an integer n× d matrix A, an integer
n × 1 vector b, and an integer 1 × d vector c, find a rational d × 1
vector x such that Ax ≤ b and cx is maximized. Typically, this is an
FP-complete problem.
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¦ UNAE3SAT: Unweighted, Not-all-equal Clauses, 3SAT, FLIP. Given
a 3-CNF boolean formula φ, find a locally optimal assignment for φ.
A truth assignment satisfies a clause under the not-all-equals criterion
when it has at least one true and one false literal. The cost of the
assignment is the number of the satisfied clauses. An assignment s is
locally optimal if it has maximum cost among its neighbors, where the
neighbors are assignments that can be obtained from s by flipping the
value of one variable. Typically, this is an FP-complete problem.

¦ HORN-SAT: The CNF SAT with the special case of Horn clauses, i.e.
each clause is a disjunction of literals having at most one positive literal.

¦ Memb-CFG: Context-free Grammar Membership. Given a context-free
grammar G and a string x, is x ∈ L(G)?

¦ IM: Iterated Mod. Given the integers a and b1, . . . , bn, is
(. . . ((a mod b1) mod b2) . . . ) mod bn = 0 ?

¦ PHULL: Point Location on A Convex Hull. Given an integer d, a set
S of n points in Qd, and a designated point p ∈ Qd, is p on the convex
hull of S?

¦ IIRF: Inverting An Injective Real Function. Given an NC real function
f defined on [0, 1], compute x0 with error less than 2−n, such that
f(x0) = 0. The function is increasing and has the property that f(0) <
0 < f(1) (it has a unique root). A real function f is in NC if an
approximation to f(x) with error less than 2−n, for x ∈ [−2n, +2n], can
be computed in NC.

¦ LIFE: Game of Life. Given an initial configuration of the “Game of
Life”, a time bound T expressed in unary, and a designated cell c of
the grid, is cell c live at time T?

We conclude this subsection with a P-complete problem, which can give
us some insight to the forthcoming question NC ?

= P. In the Generic Machine
Simulation Problem (GMSP) [1], we are given the description of a Turing
machine <M >, an integer T coded in unary and an input string x. We are
asked whether M accepts x within T steps. The solution to this problem
is essentially a Universal Turing Machine (UTM) equipped with a counter
for keeping track of the time T . The reason that T is given in unary is to
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avoid the exponential time cost of the UTM13. We give the following proof
by using NC1 Turing reducibility [1]:

Theorem 4.2.5. GMSP is P-complete

Proof. First, note that GMSP ∈ P. A modified UTM′ will simulate T steps of
the given machine. For each one of them it will simply read the description
<M > of the given machine together with its input x. The execution time is
polynomially bounded by the length of the UTM′ input, because the input
includes both T (in unary) and <M ; x>.

We now show how to reduce any A ∈ P to the GMSP. Assume that MA

decides A and that p(n) is an easily computable function, denoting an upper
bound on the running time of MA. Both MA and p(n) are considered known
for the purposes of this proof. Hence, when given an input x for A, with
|x| = n, we can transform it to the string fA(x) = x; <MA >; 1p(n). Clearly
x ∈ A iff fA(x) ∈ GMSP.

We argue here that fA(x) can be computed with NC1 circuits. The first
part of fA(x) is a plain copy of the input x to the output of the circuit (i.e.
depth=O(1), size=O(|x|)). The second part is a straightforward generation
of a description string, which does not depend on x (hardwired circuitry of
constant size and depth). The third part involves an actual computation, that
of p(n). Recall that this is a uniform circuit, described by a DTM. The DTM
must count up to n, compute p(n) and generate the corresponding number
of gates, all in logspace. Notice that p(n) need not be a tight bound on MA,
just a polynomial easy to compute. Therefore, we can choose p(n) = 2k log n

for some appropriate constant k. This computation results in a ’1’ followed
by k log n 0’s, i.e. it can be stored in logspace. It only remains to ’expand’
this number to its unary representation at the output of the DTM (in the
form of gates). This can be done by successively decreasing the computed
number by one and appending a gate description at the output tape (the
subtraction is also logspace ). The resulting circuit has constant depth and
polynomial size. Also, the family of the above circuits is highly uniform.

13Algorithms that run polynomially in the length of their input just because their input
is represented in unary are called pseudopolynomial. This characterization is related to
the notion of strong NP-completeness; we know that, unless P=NP, strong NP-complete
problems do not have even pseudopolynomial algorithms [5].
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4.2.2 NC versus P

The ‘NC versus P’ question is analogous to the ‘P versus NP’ conundrum,
which is encountered in the theory of NP-completeness. There, we ask
whether all problems with feasible verifiers14 also have feasible solutions
(sequential polynomial time). Here, we ask whether all problems with fea-
sible solutions also have feasible highly parallel solutions (polynomial work
in polylogarithmic time). Most researchers believe that the answers to both
questions are negative, but up until today both of them remain open.

According to the previous subsection, to show that NC=P, it suffices to
show that a P-complete problem resides in NC. From a circuit point of view
(see CVP), we must come up with a technique to compute the value of a
polynomial circuit in polylogarithmic time by using a polynomial number of
processors. From a DTM point of view (see GMSP), we must come up with an
interpreter/compiler, which will input a sequential code and it will produce
an equivalent feasible highly parallel code. The obstacles encountered in both
directions seem rather impossible to overcome. Many theoretical efforts have
failed, while at the same time, the approaches followed in the industry lead
only to moderate speedups. Everyday experience shows that the P-complete
problems are quite difficult to parallelize and most likely, as we say, they are
inherently sequential. Next, we give some of the evidence that NC 6= P and
we discuss some of the implications.

Evidence that NC 6= P

Let us begin by reporting that monotone-NC 6= monotone-P [42]. That is,
provably, we can separate the two classes if we confine ourselves to monotone
functions (f is monotone if flipping a bit from ‘0’ to ‘1’ in any argument
to f cannot cause the value of f to change from ‘1’ to ‘0’). However the
separation of the general NC and P classes is a more difficult task15. As
mentioned above, if we could just discover how to simulate efficiently in
parallel every polynomial DTM, then every feasible sequential computation
could be translated automatically into a highly parallel form. Besides DTM,
this observation holds for any programming language. However, such a highly

14a feasible verifier is a polynomial-time sequential algorithm, which can verify the
correctness of an answer to a problem if it is given a succinct certificate (witness, proof)
for that specific answer [48].

15the same holds for P vs NP, for which we also know that monotone-P 6=monotone-NP.
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parallel interpreter is not likely to exist. This machine should be able to
deduce nontrivial properties of programs by just reading their code. In many
cases, finding these properties is provably an intractable, or even undecidable
problem. Modern compilers exploit only properties, which tend to be very
syntactic, local, or relatively simplistic. Their optimization techniques rarely
make radical alterations to the set of intermediate values computed by the
program (either to the method or to the computation order). Overall, the
state of the art parallelizing compilers generate code with modest execution
speedup (some constant factor, of great importance in the industry, but
rather indifferent in our theoretical endeavors) [1].

The evidence that general simulations cannot be performed fast is strength-
ened by taking a closer look to known highly parallel algorithms. In many
cases all such algorithms are strikingly different from good sequential algo-
rithms for the same problem. Therefore, their automatic generation from
their sequential counterparts seems far beyond the capabilities of modern
parallelizing compilers [1].

Despite the above –empirical– observations, the literature includes many
efforts to speed-up the execution of a general sequential machine. Alas, all
of them require parallel machines with exponentially many processors. For
instance, we know that any DTM running in time T can be simulated by
a CREW-PRAM in O(

√
T ) time but with 2ω(

√
T ) processors (by precom-

puting in parallel the huge table of the DTM transition function and then
performing rapid table look-ups). Similar results have been given for general
RAM simulations. For circuits, we know that any bounded fan-in boolean
circuit with size S has an equivalent circuit with depth O(S/ log S) and size
2Ω(S/ log S). We have similar results for circuit simulations of general DTMs.
Note that, when we impose a feasibility constraint on the aforementioned
techniques we get only a constant speedup [1].

Indeed, efficiently parallel general simulations seem impossible. What
if we drop the ‘generality’ requirement? As expected, such a cutback al-
lows us to design feasible highly parallel simulators for weaker relatives of
the polynomial-time DTM. We can simulate machines solving only specific
subclasses of P, depending on their allowed resources. Unfortunately, these
subclasses seem to be separated from P by an exponential gap. This expo-
nential gap, hard as it is to bridge, is yet another evidence that NC 6=P.

We will mention here [1] some of these machines together with their in-
feriority to the –general– polynomial-time DTM. Usually, to obtain such a
convenient machine we have to impose a constraint on two kind of resources

122



simultaneously: time and space, time and processors, space and tree size,
etc. First, consider the examples of a Finite State Machine and of a logsapce
DTM. Both machines decide only a portion of P (to be precise for the second,
we know that L ⊆ NC2 and we believe that L 6=P –open problem). Both can
be simulated highly parallel due to the following observation. Intuitively,
they carry little ‘state’ information. Therefore, the first and second halves
of their computation are only loosely coupled. We can afford to simulate
the two halves (recursively) by trying all midpoint ‘states’ in parallel, and
selecting the correct when the first half is known. Note here that we have to
supply these machines with an exponentially greater amount of resources in
order to decide any problem in P. As another example, consider a generaliza-
tion of the logspace DTM: a logspace and 2logO(1) n-time bounded auxiliary
Push Down Automaton, or a logspace and 2logO(1) n-tree size bounded ATM.
As before, the limited space and the loosely connected subtrees of the com-
putation allows for highly parallel simulators. Note however that a nearly
exponential gap remains before we are certain that this machine can decide
any problem in P. More examples exist, which reveal the gap between the
generic NC simulation and the generic P simulation. In all cases, if we relax
one of the resource constraints (the gap), the known highly parallel simula-
tion degrades to a polynomial time one. Given the above picture, one could
say that NC=P when we find out that a nearly exponential increase at some
resource adds no extra power to a model [1].

As a final piece of evidence that NC 6=P, we mention that natural ap-
proaches provably fail [1]. Many approaches in designing a general highly
parallel simulation come “naturally” to those who have studied the problem.
One can prove that their failure is intrinsic. That is, one can formulate an
abstract model embodying all these ideas and prove that it is impossible to
achieve a result strong enough to show that NC equals P.

All of the evidence given in this subsection may be quite compelling, but
it is ultimately inconclusive. It does not prove that a feasible highly parallel
simulator does not exist. For all that we know, it is still possible that NC
equals P, or NP, or even PH. However, any such result would be a surprise
to the community.

Inherently sequential, strong & strict complete, approximability

We have seen that the P-complete problems are the most difficult problems
of P and that they most probably do not reside in NC (if one is not in NC,
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then none is). Such a concession necessitates the use of alternative, feasible,
methods for speeding up their solutions: randomization or approximation.
Are all difficult problems amenable to these methods? The answer to this
question requires further study of the P-complete class and it involves tools
and notions, which are briefly described in the following paragraphs.

Inherently sequential is a notion introduced to permit classification of al-
gorithms with respect to their potential parallelization [1]. It targets those
algorithms for which parallelization does not result in significant time sav-
ings. Note that the term is also used to characterize problems, namely those
which have feasible sequential solutions but have –or seem to have– no fea-
sible highly parallel solution. To highlight the difference between the two
usages of the term we mention that, even though we know of no provably
inherently sequential problem (NC ?

= P), we know of many provably inher-
ently sequential algorithms. Further, we know that some problems have both
an inherently sequential algorithm and a feasible highly parallel one. Let us
elaborate by giving the exact definition of the inherently sequential RAM
algorithm. The definition examines the “nature” of the intermediate opera-
tions of the algorithm. Intuitively, the dependencies between the algorithm’s
intermediate values determine the degree at which we can parallelize the
operations. Technically, a RAM algorithm Π is inherently sequential if the
language LΠ = {x#i#j| bit i of fΠ(x) is j} is P-complete; the flow function
fΠ(x) inputs x (the input of Π) and outputs a string containing every inter-
mediate value of the computation Π(x) in order. In other words, an algorithm
is considered inherently sequential when its flow function is at least as diffi-
cult to compute as a P-complete problem. Some of the algorithms that have
been proved to be inherently sequential are the standard depth-first search,
the greedy algorithm for computing a lexicographically first maximal path,
the Gaussian elimination with partial pivoting for solving a system of equa-
tions, etc [1]. Notice though that, the maximal path can be computed highly
parallel by using randomization and that solving a system of equations is in
NC. After all, proving that an algorithm is inherently sequential is only a
clue that the problem might not be efficiently parallelized. A general result is
that any polynomial time algorithm computing the solution to a P-complete
problem is indeed inherently sequential. As with the DTMs of P-complete
problems, it is widely believed that the inherently sequential algorithms can-
not be automatically parallelized by compilers (even when they solve an NC
problem).

Another type of algorithm studied in P-completeness is the pseudo-NC

124



algorithm [1]. It is called pseudo because it features NC performance only
when given its input in unary encoding. Specifically, in number problems,
replacing the binary input with unary results in an exponential increase of
the length of the input. Hence, a problem might be solved efficiently in terms
of this input length. Another characteristic of such problems is that, even
with binary inputs, there exist efficient solutions under the assumption that
the numbers involved in the computation are restricted to small integers.
For these reasons, problems with pseudo-NC algorithms hold a special place
within the FP-complete class (they are considered border cases, in a sense,
easier than the others). This distinction gives rise to the notion of strong P-
completeness. By definition, a problem is strongly P-complete if there exists
a polynomial p such that the problem remains P-complete even when the
numbers contained to its input (its instances) have magnitudes of at most
p(|x|). That is, a problem is strongly P-complete when it cannot be solved by
a pseudo-NC algorithm, unless of course NC=P. Note that problems which
do not involve numbers are all strongly P-complete. Examples of strongly
P-complete are the CVP, the Linear Inequalities (a variation of LP), First
Fit Decreasing Bin Packing, etc [1].

Strongly P-complete problems cannot be solved by a fully NC approxima-
tion scheme, unless NC=P [1]. One way of attacking a problem once proven
P-complete, is to approximate it. Roughly, assume that we are given a com-
binatorial optimization problem Π and that we try to maximize/minimize
some quantity. Can we obtain a near optimal solution by using an NC
algorithm, instead of using an inherently sequential one to obtain the op-
timal? In some cases, this is plausible. Formally, for an instance I ∈ Π,
let OPT (I) denote the optimal solution and A(I) the solution provided by
some NC-approximation algorithm (running in parallel time logO(1)(|I|) and
using |I|O(1) processors). RA(I) = A(I)/OPT (I) defines the approxima-
tion ratio of A for that specific instance I (generally, we are interested in
the infimum of RA over all instances of the problem Π). We say that, an
NC algorithm A with inputs ε > 0 and I ∈ Π is an NC approximation
scheme for Π if and only if it delivers a candidate solution on instance I
with ratio RA(I) ≤ 1 + ε. Moreover, we call this algorithm fully NC approx-
imation scheme for Π (FNCAS), if the NC constraints are also met against
the quantity 1/ε besides the length |I| (i.e. polylogarithmic parallel time
and polynomial processors in 1/ε). The difference between the two approxi-
mations (simple and fully) is that when we try to approximate the solution
very closely (ε → 0) the former might require exponential resources, while
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the latter only NC. Provably, the existence of a FNCAS for a problem Π
implies the existence of a pseudo-NC algorithm for Π [1]. This is actually
the contraposition of the first statement of the paragraph, which establishes
that not all problems are approximable. Such an example is the LFMIS-size
problem (LFMIS –section 4.2.1– but asking for the size of the set). Examples
of fully NC approximable problems are the First Fit Decreasing Bin Packing,
the 0-1 Knapsack, the Makespan, the List Scheduling, etc16 [1].

In another direction, when it is too much to ask a shift from polynomial
to polylogarithmic time, we must raise the question of a limited polynomial
parallel speedup (e.g. speedup=

√
n). We already have a positive answer on

that for some problems in P, but not for all of them [1]. The theory of strict
P-completeness studies P under this prism [52]. It tries to identify complete
problems that exhibit some parallel speedup, and for which any further per-
formance improvement would imply that all problems in P can have a limited
polynomial speedup. The key idea is to use a reduction preserving speedup.
That is, find NC reductions requiring ‘little’ transformation resources; with
such reductions, any speedup of the P-complete problem could also have an
impact to the reduced problem (the running time is not ‘masked’ by the
reduction itself). Roughly, we define as strict T(n)-P-complete a problem
with parallel running time Õ(T (n)) when17, for any problem A∈P, the value
T (fA(x)) is bounded by the sequential RAM time of A (f is the many-one
NC reduction of A). The first strict

√
n-P-complete problem was the Square

Circuit Value Problem (boolean, monotone, alternating, synchronous, fan-
in=2 and square, i.e. the number of gates at every level equals its depth).

4.3 The Parallel Computation Thesis

The previous sections present results and give proofs relating certain com-
plexity classes. Note that, each of these classes is defined on top of a specific
model of computation. In other words, each of the presented results relates
only two models (when we overlook potential class/model equivalences). Are

16NC-approximation schemes can also be used for NP- and PSPACE-hard problems [51].
17“soft Oh” notation: g(n) ∈ Õ(T (n)) if and only if ∃ c > 0, k > 0, n0 ∈ N s.t. ∀n > n0,

g(n) ≤ T (n) · (log n)k. We use Õ when we wish to ignore polylogarithmic factors.
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there any generic statements to include ‘all’ models of parallel computation?
This section discusses such a statement, which is analogous to the extended
Church-Turing Thesis.

The Church-Turing Thesis (CTT) is a consensus over what should be
considered computable by the computability/complexity theorists [53]. It
expresses their common belief that the standard Turing machine can compute
whatever was once vaguely referred to as “effectively calculable”. Specifically,
the CTT asserts that “a function is effectively calculable if and only if it is
recursive”. Provably [25], this statement is equivalent to “. . . if it is λ-
definable” and to “. . . if it is Turing-computable”, i.e. computed by a TM.
The belief that the CTT is true stems from the fact that every model of
computation proposed so far was eventually shown to have power equal to
that of the TM. The CTT itself cannot be proved, as it attempts to relate the
vague notion of “effectively calculable” to the mathematical –well defined–
notions of recursion, TM, etc (some consider the thesis as a definition for the
computable functions, while others think of it as a natural law).

Over the years, the CTT has appeared in various forms. One example
is the extended CTT (ECTT), which makes the stronger assertion that “the
TM is as efficient as any computing device can be”. That is, if a function
is computable by some device in time T (n), then it is computable by a TM
in time (T (n))O(1). This polynomial relation also expresses the belief that P
truly captures the notion of efficiently solvable problems, i.e. that P contains
all those problems solved in polynomial time by any model (polynomial-time
CTT [41]). Note that, if we replace ‘time’ by ‘work’ (=time×processors),
then the ECTT also includes the parallel models18.

The ECTT can be rephrased as “time on all reasonable sequential mod-
els of computation is polynomially related” (Sequential Computation The-
sis) [54]. Before making a similar statement in the context of parallel com-
putation, we elaborate on the characterization “reasonable”. The term itself
does not have a universally accepted definition, even though its purpose is
somewhat clear. It serves as a filter excluding models with extraordinary
abilities, e.g. deciding non-recursive languages (see non-uniform circuits), or
generating exponentially large words in only polynomially many steps (see
RAM with unit-cost multiplication instruction, or P-systems with membrane

18in some cases, ECTT (and CTT in general) has been called into question. The criticism
bases mainly on models which are quite different from the paper-and-pencil framework of
Turing, as for example the Quantum Computer [48] [53].
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division [35]). Roughly, we will characterize a model as reasonable if it can be
physically implemented with a moderate amount of resources19. To continue,
the Parallel Computation Thesis (PCT) asserts that [28]:

On reasonable models, sequential space is polynomially related to
parallel time.

That is, if a function can be computed sequentially in space f(n), then
it can be computed in parallel time O(fk(n)), for some constant k, and
vice versa, i.e. Seq-SPACE

(
fO(1)(n)

)
= Par-TIME

(
fO(1)(n)

)
. The thesis

associates sequential and parallel machines. Moreover, it implies that, time
on all reasonable parallel models is polynomially related.

We have already seen evidence in the previous sections that, the PCT (and
its implication) holds . Recall the inclusions NC1 ⊆ L ⊆ NC2 proved in sec-
tion 4.1.1. In the same section, we also showed the relation of general NC
circuits to the logarithmic-space ATM. Recall that we had already proved the
equivalence of NC circuits and polylogarithmic-time PRAMs in section 3.3.2.
These two equivalences also implied (section 4.1.1) that polylogarithmic-
time PRAMs are equivalent to logarithmic-space ATMs. The discussion
in section 3.3.1 reported that for general uniform boolean circuits we have
NSPACE(S) ⊆ UniformDepth (S2) ⊆ DSPACE (S2). Notice that
any of the simulations between parallel machines described in the previous
chapter suffered –at most– a polynomial time slowdown.

Besides the above, various results have been published in the literature
relating parallel time and sequential space. For instance, we know that for
uniform aggregates, for conglomerates and for ATMs the following inclusions
hold (X represents here the UAG, the CONG, or the ATM) [29]

DSPACE(f(n)) ⊆ X-TIME(f 2(n)) ⊆ DSPACE(f 2(n))

A similar result is known for the CREW-PRAM, for the Hardware Modifica-
tion Machines (see p. 46) and for the SIMDAGs (see p. 13) when f(n) ≥ log n
(Y represents here the HMM, the SIMDAG, or the CREW-PRAM) [29]

DSPACE(f(n)) ⊆ Y-TIME(f(n)) ⊆ DSPACE(f 2(n))

19in a circular definition, one could denote by reasonable those models which satisfy
the sequential and parallel computation theses. In other words, a new model should be
considered reasonable if it is able to simulate some existing reasonable model (e.g. the
TM) and vice versa [29].
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For Vector Machines (see p. 47) we know that when f(n) ≥ log n [32]

DSPACE(f(n)) ⊆ VM-TIME(f 2(n)) ⊆ DSPACE(f 4(n))

We can summarize the commonalities of the proofs that establish results
of the aforementioned kind as follows [29]. First, consider the simulation
of the sequential space (inspired by Savitch’s theorem [5]). Let M be a
S(n) space bounded machine which, as a consequence, has at most 2O(S(n))

configurations. Construct the transition matrix or the transition graph of
these configurations and compute its transitive closure by repeated squaring
the matrix (e.g see proof of theorem 4.1.7) or by path doubling within the
graph. Note that this step of the simulation should require logarithmic time
in the number of the configurations and hence, polynomial time in S(n).
The simulation accepts if and only if there is a transition from the initial to
the accepting configuration of M . Second, consider the simulation of parallel
time. Perform a depth first search on the instructions executed by the parallel
machine (e.g. see proof of theorem 4.1.6). Note that the search is executed in
a recursive fashion and that the depth of the recursion is bounded by the time
consumed by the simulated machine, say T (n). As a result, no more space
than polynomial in T (n) should be required. To make a decision about the
input, during the simulation we check whether a final state or an accepting
instruction is reached.

The PCT can serve as a “rule of thumb” to aid the engineer in setting
certain performance targets when designing his algorithm. For instance, if
she/he is aware of a polylogarithmic-space sequential algorithm for a given
problem, then she/he can expect that a highly parallel solution also exists for
that problem, whichever –reasonable– parallel machine she/he has at her/his
disposal (a reasonable model should be neither too powerful nor too weak).
Notice, however, that the PCT examines only the cases where a single kind
of resource is bounded at each domain (sequential space  parallel time).
That is, to say, the PCT is indifferent to the amount of parallel processors
that it involves. Recall that, in order to avoid impractical solutions, we
simultaneously bound the parallel time and the hardware cost. Of course,
dealing with simultaneity is a more difficult task, especially when formulating
general statements to include several distinct models. Nonetheless, parallel
computation is, most often, concerned with simultaneity, and thus, we should
“sharpen” our thesis accordingly.

In this direction, the PCT features two more formulations: an extension
and a generalization [54]. The extended PCT asserts that, “on any reason-
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able parallel machine, time and hardware are simultaneously polynomially
related to Turing Machine reversals and space”, where a reversal is said to
occur when any head of the TM changes direction. The term hardware refers
here to the product space×wordsize of a parallel machine and is considered
as a good measure when memory cost dominates the cost of the process-
ing elements (e.g. elements with minimal instruction sets). Equivalently,
the term might refer to the width of a uniform circuit (the circuit-width,
compared to the circuit-size, is sometimes considered as a more accurate
measure of the circuit cost, because it captures the amount of hardware that
is ‘activated’ at each time instant). The PCT and its extension are not
true for massively parallel computers, which utilize an exponential number
of processors (such machines can decide any NP language in sub-logarithmic
time) [54]. To include such models, the generalized PCT asserts that “on a
parallel machine, time is related within a constant to the alternations of an
Alternating Turing Machine, while at the same time, address complexity is
related polynomially to the time of that ATM”. The term address complexity
refers here to the number of bits required to describe an individual unit of
hardware (e.g. it refers to the wordsize of a shared memory machine, to the
logarithm of the size of a circuit, etc). Similar to the PCT, cross simulations
between shared-memory machines and ATMs, as well as simulations between
networks of processors and DTMs give support to the generalized and the
extended PCT [54]. As a final note, the aforementioned theses also highlight
the theoretical efforts to capture the inherent correspondence of sequential
cost to parallel cost: sequential-space to parallel-time, alternations-number
to parallel-time, alternating-time to address-complexity, etc.
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Chapter 5

Conclusion

This thesis has reviewed selected topics from the theory of parallel computa-
tion. It includes two main parts, one concerned with the formal description
of the parallel computation and one devoted to the thorough study of its
complexity.

Following the diachronic efforts of the research community to capture
both computation and communication, and to balance between theory and
practice, this thesis has presented the plethora of models proposed in the
literature for studying parallel computation. The presentation was divided
between the processor-based models and the circuit-based models. A second
distinction was made between shared-memory and message-passing models.
Starting with the highly abstract and continuing to the technology oriented
models, this survey highlighted the differences of the resulting machines and
discussed their uses and abilities. Also, from a slightly different standpoint, it
reported an architectural taxonomy of the parallel machines, which is widely
referenced in the applied computer science.

Subsequently, the thesis examined the computational power of the de-
scribed models by using common simulations techniques. It showed that all
shared memory models feature similar power (logarithmic slowdown factors)
and that the distributed memory models can simulate optimally the PRAM
when given sufficient parallel slackness. Moreover, it proved that, under cer-
tain resource bounds, the uniform families of Boolean circuits compute the
same set of functions with the Turing machines and the PRAM.

In the second part, the thesis reviewed the most important achievements
in the area of parallel complexity theory. It defined the complexity classes
capturing the feasible highly parallel computation and it proved various in-
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clusions among them. Furthermore, it related these classes to well-known
classes of sequential computation. It reported a number of tractable prob-
lems and it classified them according to the efficiency of their parallel so-
lutions. Beyond the realm of feasible computation, the thesis investigated
the effects of parallelization and gave alternative, circuit based, character-
izations to classes of higher complexity. As a means of studying the exact
limits of efficient parallelization, the theory of P-completeness was explained.
Reductions and completeness proofs were given, as well as a list of practical
P-complete problems. Subsequently, the famous ‘NC versus P’ conundrum
was discussed, along with the implications and the possibility of separating
the two classes. Finally, the Parallel Computation Thesis was presented to
relate the solutions offered by distinct models of computation.
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