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Abstract

Since 1962, when the Stable Marriage Problem was first proposed by David Gale and
Lloyd Sharpley, there have been many theoretical results as well as numerous applica-
tions. Also, numerous variants of the problem have been proposed, thus establishing a
very interesting class of problems. This thesis is a thorough review of the literature, con-
cerning Stable Marriage and its variants, concentrating on the algorithmic, complexity
and structural results that have been published so far. Also, a new result is presented,
namely, an upper bound on the maximum number of stable matchings for the Stable
Marriage problem and, via reductions this bound is extended to the Hospital-Residents
and Stable Roommates problems.

KEYWORDS: Stable Marriage, Variants of Stable Marriage, Maximum number of
stable matchings, Complexity, Structure

Περίληψη

Το πρόβλημα του Σταθερού Γάμου, προτάθηκε το 1962 από τους David Gale και Lloyd
Sharpley. Από τότε, έχουν υπάρξει πολλά θεωρητικά αποτελέσματα αλλά και πολλές εφαρ-
μογές. Επίσης, έχουν προταθεί αρκετές παραλλαγές του προβλήματος, δημιουργώντας μία

πολύ ενδιαφέρουσα κλάση προβλημάτων. Η διπλωματική αυτή είναι μία επισκόπηση της βι-

βλιογραφίας, σχετικά με το πρόβλημα του Σταθερού Γάμου και των παραλλαγών του και, επι-

κεντρώνεται στα αλγοριθμικά αποτελέσματα αλλά και στα αποτελέσματα πολυπλοκότητας και

δομής που έχουν δημοσιευτεί ως τώρα. Επιπλέον, ένα καινούριο αποτέλεσμα παρουσιάζεται.

Συγκεκριμένα, υπολογίζεται ένα άνω φράγμα για το μέγιστο πλήθος σταθερών ταιριασμάτων

για το πρόβλημα του Σταθερού Γάμου και, μέσω αναγωγών αυτό το φράγμα επεκτείνεται στα

προβλήματα Hospital-Residents και Stable Roommates.

ΛΕΞΕΙΣ-ΚΛΕΙΔΙΑ: Σταθερός Γάμος, Παραλλαγές του Σταθερού Γάμου, Μέγιστο πλήθος

σταθερών ταιριασμάτων, Πολυπλοκότητα, Δομή
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Chapter 1

Introduction

The Stable Marriage problem (or SM) was first introduced in the seminal paper by
Gale and Sharpley [24] in order to approach the more general setting of the College
Admissions problem (or Hospital - Residents problem). The problem involves two sets
A, B, of equal size and for each member of each set a strict preference over each member
of the other set. The question that arises is to find a matching between the two sets (i.e.
a one-to-one mapping) so that no pair (a, b), a ∈ A b ∈ B not matched can improve its
position (i.e. a prefers its partner to b or b prefers its partner to a). The general setting
often assumes the sets being men and women and a stable matching being a collection
of marriages, hence the name Stable Marriage problem. A polynomial algorithm for SM
was presented in [24] and it was shown to produce an optimal solution under a natural
dominance relation.

Since the publication of [24] there have been many developments both in the orig-
inal problem and in the numerous variants and generalizations that have been pro-
posed. For example the set of solutions of the original problem (i.e. stable matchings)
has proved to possess a rich structure which can be exploited for the solution of many
related problems. These developments have many applications in the economic, social
and scientific fields.

The contribution of this thesis is a thorough review of known structural, algorithmic
and complexity results concerning the Stable Marriage problem and its variants. Given
the rich literature on the subject some results might be missed; still the results presented
here are at least a coherent set. Another key outcome is something that to the best of my
knowledge, has not appeared in the literature so far, namely, upper bounds on the max-
imum number of stable matchings for the Stable Marriage and the Stable Roommates
(or SR) problem. In particular it is shown that if f (n) and r(n) is the maximum number
of stable matchings for these two problems, then for all n ≥ 4, f (n) ∈ O

( n!
2n

)
and, for

all n = 2k ≥ 8, r(n) ∈ O
(

n!
n
2 !2n

)
.

Also, via reductions to SM and SR, upper bounds for the Hospital-Residents and other
problems can be derived.

1



2 G. Stathopoulos

Let us highlight the structural elements in the definition of SM, so that modifying
certain of them, leads to the definition of interesting variants. We repeat the definition
of SM so that these elements become more apparent. SM involves

• a collection of (two) sets;

• exogenously defined, strict, preferences of the elements of one set over all elements
of the other;

• matchings;

• a stability criterion.

The material is organized in three chapters. In the second chapter, titled Stable Mar-
riage, the classical Stable Marriage problem is presented together with all two-sided
generalizations and variants of it. That is, the following problems result from SM by
dropping some constraints, but keeping the constraint of looking at matchings between
two distinct sets.

• In the Stable marriage with incomplete lists (or SM-IL), we drop the constraint
that all the preference lists contain all the elements of the other sex i.e. we allow
unacceptable partners.

• In the Stable Marriage with ties (or SM-T), we drop the constraint that the pref-
erence lists are strict i.e. we allow indifference. Another form of indifference is to
allow preferences to take the form of partially ordered sets (or posets). We denote
this problem by SM-P.

• In the problem denoted by SM-ILT we allow incomplete lists and ties.

• In the Hospital - Residents problem (or HR), we drop the constraint that the two
sets are of equal size, we allow unacceptable partners and, in our setting,we al-
low each hospital to have one or more places to fill while each resident can be
assigned to at most one hospital. A matching is a partial mapping from the set of
the residents to the set of the hospitals. The definition of a stable matching changes
accordingly.

• In the Hospital - Residents with couples (or HR-C), we allow couples of residents
to be married, thus having a joint preference list for pairs of hospitals.

• We also look at the Hospital-Residents with ties (or HR-T) and the HR problem
where preferences are posets (HR-P).

• In the Many-to-Many problem (or MM), which is a generalization of HR, we allow
all members of both sets to have one or more places to fill. Again we look at the
version with ties (MM-T).
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• In the stable allocation problem (or SAL), a generalization of MM, we modify the
definition of matching so that it doesn’t involve the notion of “matched or not
matched” between two members of the distinct sets1 but rather an arbitrary inte-
ger2 or even a real number.

• Furthermore the above problems admit generalizations, inspired from economics,
where the preferences are more elaborate. In the paragraph titled Money Markets
we give references for these generalizations.

• Changing the stability criterion results in another variant which we discuss in the
section titled Exchange Stability.

• Adding the constraint that only one side has preferences produces another two-
sided variant.

In the third chapter, starting with SM, we drop the constraint of the two distinct sets
thus having only one set of even order, where every member of the set has a strict pref-
erence list over all other members of the set. The problem of matching all the members
of the set into couples so that the matching is stable is the Stable Roommates problem
(or SR). If SM is the “stable” version of bipartite matching, SR is the stable version of a
matching in an arbitrary graph.

Here is the list of variants of SR examined here:

• Naturally enough, in the Stable Roommates with ties problem (or SR-T) we allow
indifference in the lists i.e. non strict preference; of course there is the case of
incomplete lists (SR-IL) also.

• The Stable Partnership problem is another generalization of SR where each mem-
ber of the set has a so-called substitutable choice function (which serves as a pref-
erence function) and stability is interpreted in a natural way.

• In the 3-Person Stable Assignment problem (or 3PSA), we wish to partition the
original set into groups of 3 persons.

• The Stable Activities problem (or SAC) is a generalization where much like in
SAL we allow multiple edges between two partners in a matching. In the Stable
Multiple Activities problem (or SMA) we allow multiple partners in a matching,
much like in MM.

1this can be expressed by an edge between the members or even by the number 0 or 1
2or multiple edges
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SM

SM-IL

HR

MM
HR-T

SM-ILT

MM-T HR-P

SM-P

SM-T
SR

SR-IL
SR-T Stable Partnership

SMA

SAC

SAL

Money Markets
Stable Networks

Figure 1.1: Generalization Graph.

In the last chapter the generalizations of SM go towards another direction. In the
Three Sided SM (or 3DSM) we allow three sets with various preference schemes and
natural stability criteria.

Finally in the Stable Networks problem (or SN) we generalize the notion of three sets
into an arbitrary number of sets.

Detailed definitions for all the problems are provided in the corresponding sections.

Figure 1.1 shows some relations between the problems. In particular if there is a di-
rected edge (downstream arcs) from problem B to problem A, then B reduces to A with
a usually obvious reduction which shows that A is a generalization of B. The dashed
line means that the generalization treats a special case of Stable Allocation (the discrete
version). In some cases there are reductions that go upstream, represented in the graph
by thicker, curved, upstream arcs (these aren’t generalizations). For example in Sec-
tion 2.2.2.1 we show that HR reduces to SM. The rest of the upstream reductions can be
found in Section 3.2.4. An open problem posed by Gusfield and Irving is whether there
is such a reduction from SR to SM.
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Figure 1.2: Classification Graph.

In Figure 1.2 we illustrate a classification, of most of the problems we discuss in this
thesis, into polynomial-time solvable and NP-hard. All the problems mentioned in the
figure ask whether we can find a stable matching except for SM-ILT(weak) and HR-
T(weak) where we ask whether we can find a stable matching of maximum cardinality.
At this point, it might not be obvious what we mean with each node since not every-
thing has been defined and after reading all the chapters should remove any vagueness.
The edges, as in Figure 1.1, show the obvious reductions between problems.

Finally, in Figure 1.3, we present compactly for which problems it is known that the
set of solutions forms a lattice and for which problems it is known that the set of solu-
tions does not.

All three figures are depicted early enough to allow an initial understanding of the
broad spectrum of SM variants, hence showing the motivation for working on this the-
sis. In addition, these figures may well serve as a reference point while the reader is
gradually exposed to a more detailed discussion of each SM variant.
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Chapter 2

Stable Marriage

2.1 Stable Marriage Problem

2.1.1 Definitions

As stated in the introduction, SM comprises two sets of equal and finite size, namely,
the men and women. For each individual there is a strict preference list containing all
the individuals of the opposite sex. If the person x is above y on z’ s list we say that
z prefers x to y and we denote this fact by x >z y. If an instance, I, of SM involves n
men and n women we say that it is of order (or of size) n. In this setting, a matching is a
one-to-one correspondence between men and women. We denote a pair of man x with
woman y, by (x, y). If (x, y) is a matched pair in matching M we denote x by pM(y) and
y by pM(x), i.e. we use the same symbol, pM, for the one-to-one correspondence and for
its inverse.

Definition 2.1. A stable matching, M, is a matching satisfying the requirement that,
for every unmatched pair (x, y), one of the following holds

(a) pM(x) >x y

(b) pM(y) >y x

i.e. at least one of x, y prefers its partner in the matching to y, x respectively.

In the following section, we will prove that a stable matching always exists and that
it can be found in linear time (with respect to the input, that must contain all the prefer-
ence lists). In a matching, M, any unmatched pair (x, y) for which neither of (a), (b) in
the above definition holds is called a blocking pair for M. If a blocking pair exists for M,
then M is called unstable. If a pair is matched in some stable matching, then it is called
a stable pair.

7



8 G. Stathopoulos

A person x is said to prefer a matching M to the matching M′ if pM(x) >x pM′(x).
Let M, M′ be two stable matchings for the same SM instance, I. Then M is said to
dominate M′ from the man’s point of view, if for every man x, either x prefers M to M′

or pM(x) = pM′(x). We use the notation M � M′ and refer to this relation as the man
dominance relation. M is said to strictly dominate M′ if it dominates M′ and exists a
man x so that x prefers M to M′. This is denoted by M ≺ M′. The definition of the
woman dominance relation is analogous. The man and woman dominance relations
are partial orders on the setM of stable matchings of I. In fact, (M,�) is a distributive
lattice.

2.1.2 Problems

Many problems arise from just the definitions of the previous section. The first and
foremost is whether a stable matching always exists and, if it does, whether it is unique.
We will prove that it does exist through a constructive proof presented already in [24]
and we will give the necessary and sufficient conditions for its uniqueness. We shall
refer to these problems as the Existence and Uniqueness problems.

When the stable matching is not unique a natural question is to find the most or the
least dominant stable matching under the man or woman dominance relation. We shall
refer to this problem as the Dominance problem.

In the weighted version of SM, i.e. where we assign a weight to each man-woman
pair and the weight of a matching is the sum of the weights of the matched pairs, the
question is to find a stable matching of minimum weight. We shall refer to this problem
as the Min-Weight problem. The case where the weight of a pair (x, y) is the sum of y’s
position on x’s list and of x’s position on y’s list is known as Egalitarian SM since it treats
men and women equally.

Another natural question is to count in an efficient way the cardinality ofM1 and to
efficiently generate all the elements ofM. We shall refer to these problems as the Cardi-
nality and Enumeration problems.

The problem of finding the maximum cardinality ofM for an instance of order n is an
open problem first posed by Knuth in [42] (problem 5). We shall refer to this problem as
the Maximum Cardinality problem.

Other problems are finding all stable pairs efficiently and checking if a pair is stable,
henceforth referred to as the Pair Stability problem.

1 We will show that the number of stable matchings can grow exponentially as the order of the instance
increases, so this question makes perfect sense.
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2.1.3 Complexity Results

We now mention the main complexity results for the problems appearing in the pre-
vious section. The corresponding algorithms will be presented in the next section.

Finding a stable matching for an SM instance of order n takes O(n2) time and of course
it is linear and optimal on the size of the instance since the input must contain the prefer-
ence lists and thus we need n2 time just to read the input. The Gale-Sharpley algorithm
that achieves this optimal result by constructing a solution, actually constructs the opti-
mal solution under the man dominance relation.

Exploiting the structure of M, Irving and Leather proved in [37] that counting the
number of stable matchings is #P complete. Gusfield and Irving in [27] present an algo-
rithm for finding all stable matchings in O(n2 + n|M|) time.

A lower bound for the maximum cardinality of M is given in [37]. If f (n) is the
maximum number of stable matchings in an instance of order n, where n is a power
of two, then it is shown that f (n) > 2.28n

1+
√

3
. This result is generalized for arbitrary n’s

by Thurber in [66]. In this thesis a relevant new result is presented, namely, an upper
bound for f (n), for all n ≥ 4. Specifically, it is proved that f (n) ∈ O( n!

2n ) where n! is the
cardinality of the set of all matchings (stable or not).

By exploiting the structure of M, we can find all stable pairs in O(n2) time as pre-
sented in [27]. Combined with the result, established in [52] by Ng, that checking a pair
for stability takes Ω(n2) time the above result is quite remarkable.

A minimum weight stable matching can be found in O(n3(log n)2) time as shown in
[19] by Eirinakis et al.

2.1.4 Structure and Algorithms

2.1.4.1 Existence and uniqueness problems

The fundamental algorithm by Gale and Sharpley may be expressed in an informal
way, in terms of proposals, engagements and marriages and that makes it easy to grasp.
Unless otherwise specified, the setting is an SM instance of order n.

We make the following assumptions. At any time, a person can be engaged or free
and once a woman is engaged she can never be free. Now the algorithm can be viewed
as a series of proposals from men to women until the desired result occurs. In particular,
we assign each person to be free, and while a man is still free we choose such a man1

and this man proposes to the first woman on his list that he has not yet proposed to.

1This nondeterminism will be proved to be of no consequence
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A woman that is free always accepts a proposal and thus becomes engaged to the cor-
responding man. If at any time she receives a proposal from a man whom she prefers
to her fiancée, she breaks off her current engagement and becomes engaged to the more
gifted man else she rejects the proposer and he moves to the next choice on his list. We
will prove that this algorithm always terminates, that it runs in O(n2) time, that the
result is a stable matching and that the result is the man-optimal stable matching.

Theorem 2.2. The Gale-Sharpley Algorithm always terminates in O(n2) time and
upon termination the engaged pairs constitute a stable matching.

Proof. It is immediate that no man can be rejected by all the women since that would
mean that when this man proposed to the last woman on his list all women were en-
gaged. Indeed this man would subsequently propose to all the women in his list and a
woman only rejects(also counting the breaking of an engagement as a rejection) when
she is engaged. Each step of the algorithm involves one proposal and no man proposes
twice to same woman so termination is guaranteed in O(n2) steps. We accept that all the
other operations such as a woman comparing two men on her list take constant time1

and so the total time is O(n2). No person is ever engaged to two persons and the algo-
rithm terminates when no man is free so the engaged pairs upon termination constitute
a matching. Assuming that that there is a blocking pair, (x, y), it is immediate that y
must have rejected x at some point. But then from that point on y can have only better
partners than x, a contradiction.

Theorem 2.3. All possible executions of the Gale-Sharpley algorithm yield the same
stable matching (thus the nondeterminism during the execution is of no importance)
and this is the man-optimal stable matching i.e. every man has the best partner he can
have in any stable matching.

Proof. Suppose that an arbitrary execution of the algorithm yields the stable matching
M. We will prove that M is man optimal and since the execution was arbitrary this will
mean that all executions yield the same result.2 Suppose that in stable matching M′

man x has a better partner than pM(x). Then at some point during the execution of the
algorithm, pM′(x) rejected x for man y. We assume without loss of generality that this
was the first occasion that a woman rejected a stable partner. This means that y prefers
pM′(x) to pM′(y) since no other stable partner had been rejected before the matching of
y to pM′(x) in M. But since pM′(x) rejected x for y she prefers y to x. So M′ is unstable,
a contradiction.

It is immediate from the above that under the man dominance relation, the stable
matching that the Gale-Sharpley algorithm yields, M0, is the most dominant stable
matching. That is, if M is a stable matching then M0 � M.

1For a detailed analysis on these subjects see paragraph 1.2.3 of [27]
2Proving the uniqueness of the man optimal stable matching is trivial
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Theorem 2.4. The man-optimal stable matching is woman-pessimal i.e. each woman
has the worst partner she can have in any stable matching

Proof. Assuming that this does not hold, let M be a stable matching and x a woman
such that pM0(x) >x pM(x) then unless

pM(pM0(x)) >pM0 (x) x

M is not stable. But M0 is man-optimal and thus the converse inequality holds, a con-
tradiction.

Running the Gale-Sharpley algorithm with the women as the proposers we can get
corresponding results about the woman-optimal and man-pessimal stable matching,
Mz. In particular if M is a stable matching and � is the man dominance relation then
M � Mz. Now the condition for the uniqueness of a stable matching is immediate, i.e.
M0 = Mz.

We state now a theorem that we use later without giving its proof (for a proof see [27]
or [37]).

Theorem 2.5. Let I be an SM instance. If (x, y) is a matched pair in some stable
matching M of I then there is no stable matching, N, of I where both x, y, prefer M to N
or both x, y, prefer N to M.

2.1.4.1.1 Extended Gale-Sharpley

The fact that the Gale-Sharpley algorithm is independent of the occasional sequence
of proposals, and that its outcome is the man-optimal and woman-pessimal stable
matching, allows us to make some modifications to the algorithm resulting to the known
as extended Gale-Sharpley algorithm. In particular, while running the algorithm we ob-
serve that a proposal from man x to woman y means that there is no stable partner of x
better than y and no stable partner of y worse than x. This means that if at the moment
that x proposes to y we delete all entries above y in x’s list and all entries below x in
y’s list the algorithm may proceed without any loss of information, i.e. it still yields the
man-optimal stable matching. The final form of the preference lists after the execution
of the above algorithm will be called GS-lists. It is trivial to see that the man-optimal
stable matching results if we assign each man to the first woman in his GS-list and that
if y is the first woman in x’s GS-list then x is the last man in y’s GS-list.



12 G. Stathopoulos

2.1.4.2 Maximum Cardinality Problem

Let f (n) denote the maximum number of stable matchings for instances of size n. Then
we can show that f (n) ≥ 2 f 2(n

2 ) thus establishing with an inductive argument the
exponential growth of f for n = 2k. Indeed, we can easily construct an instance of size
2 with two stable matchings. This instance (denoted F2) is

men women
1 1 2 1 2 1
2 2 1 2 1 2

i.e. in the left table we have the preferences of men 1,2 over women 1,2 and in the right
table we have the preference lists of the women over the men. Using this instance, we
can derive the desired result. Indeed, let an instance, I, of order n have f (n) stable
matchings. Then it can be expressed by two ranking arrays Rm

I , Rw
I ; the preferences of

men over the women and of the women over the men. Let MI , MI′ be the sets of men for
instances I, I′ and WI , WI′ the women, where I′ is defined to be a duplicate of I. That is,
for every man x in I we define a man x′ in I′ and we do the same for the women. Also
we define the ranking arrays of I′ to be Rm

I′ and Rw
I′ . Then the following tables capture

the intricacy of our construction.

men women
MI Rm

I Rm
I′ WI Rw

I′ Rw
I

MI′ Rm
I′ Rm

I WI′ Rw
I Rw

I′

What we mean by these tables is that the men’s preferences over the women in the new
instance result from putting for M1 the ranking array Rm

I and next to it the isomorphic
array of Rm

I , namely, Rm
I′ etc. Now combining any stable assignment of I with any stable

assignment of I′ gives us a stable assignment for the derived instance. Indeed no pair
(x, y) ∈ I or I′ can be a blocking pair since the ranking arrays of I, I′, have been used
as they are. Also no pair (x, y) with x ∈ MI and y ∈ WI′ (or x ∈ MI′ and y ∈ WI ,
respectively) can be a blocking pair since x prefers all women in WI to all women in
WI′ ( x prefers all women in WI′ to all women in WI respectively). Also if we match
any man x in any stable matching, M, of I with (pM(x))′ and any man x′ in any stable
matching, M′, of I′ with (pM′(x′))′1 then the result is a stable matching for the derived
instance.(The proof is similar to the one proceeding it.) This means that we can con-
struct 2 f 2(n) stable matchings for the derived instance of order 2n. From this point we
can inductively double the instance F2 in order to derive a size-n instance with at least
2n−1 stable matchings. In fact a detailed proof appears in [66], by Thurber, of why these
instances have approximately 2.28n

1+
√

3
stable matchings. It is conjectured that this is ap-

proximately the value of f(n) at least for n = 2k.

1we use the notation (x′)′ = x



Variants of SM, Algorithms, Complexity, Structure 13

We shall now prove that f (n) ∈ o(n!) for n = 2k. First let us mention that Eilers [18]
has proved through exhaustive computer calculations that f (4) = 10 = 5

124!.

Definition 2.6. Let I be an instance of order n. Then for any pair (i, j) we define the
(i, j) projection of I, denoted I(i, j), to be all the preference lists of I, from which we have
removed the entries of man i and woman j, apart from the preference lists of man i and
woman j which we remove completely.

Definition 2.7. Let M be the set of stable matchings of I. Then we define the (i, j)
projection ofM, denotedM(i, j), to be all the stable matchings that contain the matched
pair (i, j), from which we remove (i, j).

Proposition 2.8. If N ∈ M(i, j) then N is a stable matching for the instance I(i, j).

Proof. If N is not a stable matching for I(i, j) then

∃(m, k), (n, l) ∈ N : k <m l and n <l m.

But then, since m, k, l, n are contained in the preference lists of I(i, j) they will be con-
tained in the preference lists of I with the same order, meaning that (m, l) will be a
blocking pair for the stable matching N ∪ {(i, j)} of I, a contradiction.

In the same manner we can define projections of I,M of higher order.

Let n be a power of 2. Then considering a random n
2 -projection, i.e.

I(i1, j1)(i2, j2)...(in/2, jn/2) we have that

|M(i1, j1)(i2, j2)...(in/2, jn/2)| ≤ f (
n
2
).

We also observe that I(i1, j1), ...(in/2, jn/2) = I(i1, jσ(1))...(in/2, jσ(n/2)) for every permu-
tation, σ, of the elements 1, .., n

2 . Meaning that∣∣∣∣∣∣ ⋃
σ permutation

M(i1, jσ(1))...(in/2, jσ(n/2))

∣∣∣∣∣∣ ≤ f
(n

2

)
.

Indeed M(i1, jσ(1))...(in/2, jσ(n/2)) are sets of stable matchings for the same instance so
their total cardinality will be at most f (n

2 ).

Taking the complements {i n
2+1, ..., in} = {1, ..., n}\{i1, ..., i n

2
} and

{jn
2+1, ..., jn} = {1, ..., n}\{j1, ..., jn

2
} and repeating the above process we have∣∣∣∣∣∣ ⋃

σ permutation
M(i n

2+1, jσ( n
2+1))...(in, jσ(n))

∣∣∣∣∣∣ ≤ f
(n

2

)
.
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All of the above mean that in M, at most f (n/2) permutations of j1, .., jn/2 (corre-
sponding to i1, ..., in/2) appear. Also at most f (n/2) permutations of jn/2+1, .., jn (corre-
sponding to in/2+1, ..., in) appear. This means that at most f 2(n

2 ) stable matchings exist
such that j1, .., jn/2 are mapped to i1, ..., in/2 and jn/2+1, .., jn are mapped to in/2+1, ..., in.
We observe that there are (n

n
2
) different ways to do the above process and cover all match-

ings inM, so that

f (n) ≤ f 2
(n

2

) n!
n
2 ! n

2 !

Now we can easily show that for n = 2k, n ≥ 4 : f (n) ≤
( 5

12

) n
4 (n!)

• Indeed for k = 2 it is true.

• If it is true for n = 2k then for 2n = 2k+1 we have

f (2n) ≤ f 2 (n)
2n!
n!n!

≤
((

5
12

) n
4
)2

(n!)2 2n!
n!n!

=

(
5

12

) 2n
4

(2n!).

It is now immediate that f (n) ∈ o(n!).

2.1.4.3 The Structure ofM

It is well known (a detailed proof can be found in [27]) that (M,�) is a distributive
lattice1 where if M, N ∈ M then M∨N is the stable matching that results if we assign to
each man the worst of its partners in M, N, and M∧N the stable matching that results if
we assign to each man the best of its partners in M, N. We omit proofs of these facts and
we move on to some highly interesting and widely used structural results concerning
the rotations and the rotation poset. Of course, these results are made possible because
of the lattice structure ofM, even though this will not be obvious in our approach.

We have already mentioned that, in M0, each man is partnered with the first woman
on his GS-list. Any other stable matching is strictly dominated by M0 so that in any
other matching at least one man, x, must sacrifice his man-optimal stable partner, y, for
a woman further down on his GS-list, say y′. This means that pM0(y

′) must also move
down on his GS-list and continuing in the same manner we create a sequence of men
that either cycles or reaches a man who cannot move down on his GS-list (for example,
if his GS-list contains only one element). If the case is that the men chosen this way
move down only one place in their list and the sequence cycles, we call such a sequence

1A distributive lattice is a partial order in which each pair of elements a, b, has a greatest lower bound
denoted a ∧ b and a least upper bound denoted a ∨ b. Also, the distributive laws hold, i.e.

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
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of men a rotation. The above observations suggest a way of generating stable matchings
from M0: successively identify and eliminate rotations (a precise definition of a rotation
elimination will be given shortly). A next goal would be to generalize the concept of
the GS-lists and the rotations in order to try to generate all the stable matchings. This
is the idea that is explored successfully in [37] resulting in a compact representation of
M and an efficient way to generate all stable matchings. In the rest of this section we
follow [37] , outlining the basic features of this construction.

Definition 2.9. We define a set of reduced preference lists to be a set of lists obtainable
from the original preference lists by one ore more deletions so that no list is empty and
woman y is deleted from man’s x list iff x is deleted from y’s list. Relative to such
a set we define f (x), s(x), l(x) to be the first, second and last entry on person’s x list
respectively.

Definition 2.10. A set of reduced preference lists will be called stable1 if for every
man x and woman y

• y = f (x) iff x = l(y)

• y is absent from x’s list iff x is below l(y) on y’s original preference list.

It can be proved that the GS-lists form a stable set. The notion of a stable set general-
izes that of the GS-lists and naturally enough the following lemma holds.

Lemma 2.11. If relative to a stable set, each man, x, is partnered by f (x) then the
result is a stable matching.

Proof. It is immediate that it is a matching since if for men x, x′, we have y = f (x) =
f (x′), then x = l(y) = x′, from the definition of the stable set.

Also if x prefers y to f (x) then y has already been deleted from x’s list, therefore, y
prefers l(y) to x from the definition of the stable set, meaning that there is no blocking
pair.

The following lemma establishes that any deletions resulting to a stable set are incon-
sequential.

Lemma 2.12. If relative to a stable set, woman f (x) is above y in x’s original prefer-
ence list and y has been deleted from x’s list then there is no stable matching where x
and y are partners.

Proof. By the above lemma (x, f (x)) is a stable pair appearing in the stable matching
resulting from the corresponding stable set, say M. If (x, y) is also a stable pair, say in
stable matching M′, then x prefers M′ to M. But also y has been deleted from x’s list in
that stable set, meaning that y also prefers M′ to M. Using theorem 2.5 we see that this
is a contradiction.

1for brevity called a stable set
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Now, we generalize the notion of rotation to cover all stable sets.

Definition 2.13. An ordered sequence (m0, w0), ..., (mr−1, wr−1) of pairs is said to be a
rotation if, relative to a stable set,

wi+1 = f (mi+1) = s(mi)

where i + 1 is taken modulo r. The rotation is said to be exposed in the corresponding
stable set.

The following lemma demonstrates the usefulness of the rotations.

Lemma 2.14. Let L be a stable set and let S be the corresponding stable matching. If
S′ is a stable matching in which a man m has a worse partner than f (m) then there is a
rotation exposed in L all of whose male members prefer S to S′.

Proof. By lemma 2.12, if f (m) is the only entry in m’s L-list then we have nothing to
prove. Otherwise, we form the sequence {(mi, wi)} where

• m0 = m

• wi = f (mi)

• mi+1 = l(s(mi)).

Since w0 = f (m0), it follows that (m0, w0) ∈ S. By lemma 2.12 and our lemma’s as-
sumptions, pS′(m0) ≤m0 s(m0) = f (m1) = w1. Hence for the stability of S′, pS′(w1) ≥w1

m0 >w1 m1, where the last inequality holds because m1 = l(w1) and w1 has not been
deleted from m0’s list. So, by theorem 2.5, pS′(m1) <m1 w1 and therefore by lemma 2.12,
s(m1) is defined. This argument can be repeated, establishing that s(mi) is defined for
all i and that all the mi have worse partners in S′ than in S. Now the constructed se-
quence must cycle eventually, meaning that there is a subsequence that forms a rotation
exposed in L with the required property.

An immediate corollary of the above lemma is that in any stable set either at least one
rotation is exposed or the corresponding stable matching is Mz. Another consequence
is that for an exposed rotation, in any stable matching that one man of the rotation has
a worse partner, all men in the rotation have worse partners.

We now introduce the concept of a rotation elimination.
Let ((m0, w0), ..., (mr−1, wr−1) be a rotation exposed in the stable set L. If all successors
of mi are deleted from wi+1’s list in L and wi+1 is deleted from the corresponding men’s
lists we say that the rotation has been eliminated. It can be proved that if a rotation is
eliminated then the resulting set of reduced preference lists forms a stable set. We now
state a crucial lemma.
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Lemma 2.15. Let I be an SM instance. There is an one-to-one correspondence between
the stable sets and the stable matchings.

Proof. Given a stable set we can construct a unique stable matching as in Lemma 2.11.

Given a stable matching S = {(m0, w0), ..., (mn−1, wn−1)} we construct a stable set as
follows. We start from the stable set L0 which consists of the GS-lists and corresponds to
M0. Let S be different from M0. Then for some i, wi 6= fL0(mi). By lemma 2.12, wi is in
mi’s GS-list and by lemma 2.14, the exposed rotation generated by mi is such that all of
its male members prefer M0 to S. Eliminating this rotation and repeating the argument
as many times as needed we can produce a stable set where wi = f (mi) for all i. We
observe that we constructed a stable set corresponding to a specified matching through
a sequence of rotation eliminations and the matching was arbitrary.

Now it can be proved that

Lemma 2.16.

1. a pair (x, y) can belong to at most one rotation;

2. if (x, y) belongs to a rotation then it is a stable pair;

3. if (x, y) belongs to a rotation then in a stable set obtained by a sequence of ro-
tation eliminations y is absent from x’s list iff the rotation containing it has been
eliminated.

We can observe that a rotation ρ might be exposed in several stable sets, all of which
can be constructed by a sequence of rotation eliminations as stated in Lemma 2.15.

Definition 2.17. If rotation ρ cannot be exposed in a stable set constructed by a se-
quence of rotation eliminations unless rotation π has been eliminated we say that π is a
predecessor of ρ and denote it by π < ρ.

The above relation defines a partial order on the set of rotations and we call this par-
tial order the rotation poset for the corresponding SM instance.

We define π to be an immediate predecessor of ρ if there exists no σ such that π <
σ < ρ and π < ρ holds. A subset R of a poset is closed if π ∈ R⇒ ∀σ < π, σ ∈ R.

An alternative representation for the poset is by an acyclic directed graph with a node
representing each rotation and an arc from π to ρ if π is an immediate predecessor of ρ.

It can be proved that there is an one-to-one correspondence between the stable match-
ings and the closed subsets of the rotation poset. Also all the rotations can be found
in O(n2) time from just the preference lists and an even more sparse graph (a digraph
actually with O(n2) edges denoted G(M)) than the rotation poset, that still maintains
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the one-to-one correspondence between its closed subsets and the stable matchings, can
be constructed in O(n2) time. These results combined with Lemma 2.16(1) that implies
that there are at most n(n−1)

2 rotations justifies our claim that a compact representation
ofM exists (these results can be found in [27]).

Definition 2.18. An antichain, A, in a poset (P,≤) is a subset of P containing no
elements π, ρ such that π < ρ. Given such an antichain, the closure A∗ is defined as

A∗ = {π ∈ P | ∃ρ ∈ A : π < ρ}

For any closed subset C of P, the unique antichain A such that A∗ = C is called the
spanning antichain of C.

Theorem 2.19. For any SM instance there is an one-to-one correspondence between
stable matchings and antichains.

Proof. Given an antichain, A, we can eliminate all the rotations in A∗, to produce a stable
set and its corresponding stable matching. We now observe that from Lemma 2.16(3)
results that eliminating two different sets of rotations results in two different stable sets
and thus to two different stable matchings.

For the other direction, we observe that any stable matching results from eliminating
a closed set of rotations since a rotation cannot be eliminated until it is exposed and
cannot be exposed until all of its predecessors are eliminated. And this set of rotations
has a unique spanning antichain.

2.1.4.4 Maximum Cardinality - a better bound

With the use of rotations, we can substantially improve the upper bound on the max-
imum number of stable matchings, f (n). We will show that f (n) ∈ O( n!

2n ), for all n ≥ 4.

Let ρ = {(m0, w0), ..., (mn−1, wn−1)} be a rotation. We define its size, S(ρ), to be n. We
also define its rank,R(ρ) to be the number of stable matchings in which it is exposed.

Lemma 2.20. Let ρ be a rotation in an instance of size n. Then

R(ρ) ≤ f (n− S(ρ)).

Proof. The proof is immediate since the projection

I(m0, w0) · · · (mS(ρ)−1, wS(ρ)−1)

can have at most f (n− S(ρ)) stable matchings.
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Lemma 2.14 suggests a method for finding an exposed rotation in a stable matching
M where some man m is matched in M to a woman above his partner in the woman-
optimal matching. Then, the man m either belongs to the rotation exposed this way, or
the cycle created doesn’t contain man m, in which case we say that man m belongs to the
tail of the rotation exposed. We modify the definition a bit to suit what follows. We will
say that man m belongs to the tail of a rotation exposed in some stable matching, if the
above holds, or if man m is partnered with the worst partner he can have in any stable
matching. We observe that for a man, m, in a stable matching M, one of the following
things holds:

• M is woman optimal

• man m belongs to a rotation exposed in M;

• man m belongs to a tail of a rotation exposed in M.

Lemma 2.21. A man m belonging to the tail of a rotation ρ can appear to that tail in at
most f (n− S(ρ)− 1) stable matchings.

Proof. Same as 2.20.

Now let’s assume that the instance I of size n has c rotations and man m belongs to k
of them. Then

f (n) ≤ k f (n− 2) + (c− k) f (n− 3) + 1

because we have maximized to f (n − 2) all the appearances of man m exposed to a
rotation and to f (n− 3) all the appearances of m in a specific tail of a rotation and all the
appearances to different tails to c− k. Now since f (n− 2) > f (n− 3) [66], maximizing k
makes the quantity on the right bigger. k can be at most n− 1; also maximizing c (which
can be at most n(n−1)

2 ) still makes the quantity on the right bigger. Finally, we get that

f (n) ≤ (n− 1) f (n− 2) +
(

n(n− 1)
2

− (n− 1)
)

f (n− 3) + 1. (2.1)

Using the initial values f (1) = 1, f (2) = 2, f (3) = 3 [66] we can produce upper bounds
for f (n) for all n. We note that (2.1) produces a proof for Eilers’s result that f (4) = 10.

Now we can show that f (n) ≤ n!
2n−3 ∀n ≥ 4.

• This holds for n = 4, 5, 6, 7, 8, 9, 10, 11 (we can establish it explicitly
through (2.1)).

• Let’s suppose it holds for all k ≤ n− 1.

• Then for k = n we have
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f (n) ≤ (n− 1) f (n− 2) +
(n− 1)(n− 2)

2
f (n− 3) + 1

≤ (n− 1)!
2n−5 +

(n− 1)!
2n−5 + 1

≤ 3
(n− 1)!

2n−5

≤ n!
2n−5 n

3

≤ n!
2n−3

2.1.4.5 Cardinality Problem

Theorem 2.19, is crucial in proving that determining the number of stable matchings
for an arbitrary SM instance is #P-complete. The proof is a reduction from a known
#P-complete problem, namely, determining the number of antichains in a poset (Provan
and Ball [56]). The proof relies on the following theorem.

Theorem 2.22. Given a poset (P,≤) with n elements, there exists an instance I of SM,
constructible from (P,≤) in time polynomial in n, such that the stable matchings of I
are in one-to-one correspondence with the antichains of (P,≤).

We omit proof of these facts; see [37] for a detailed proof.

2.1.4.6 Pair Stability Problem

It can be shown [27] that the converse of Lemma 2.16(2) holds, i.e.

Theorem 2.23. A pair is stable iff it belongs to Mz or to some rotation.

Since we can find all the rotations in O(n2) time using the technique used in Lemma
2.14, we can find all stable pairs in O(n2) time.

2.1.4.7 Enumeration Problem

Finding all the rotations in O(n2) time facilitates us in finding all stable matchings
efficiently. We have already seen that any stable matching results from a sequence of ro-
tation eliminations. This suggests a method for finding all stable matchings. Begin with
M0 and branch from M0 to all the stable matchings resulting from eliminating all rota-
tions exposed in M0. Then repeat the process until there no more exposed rotations. To
avoid finding stable matchings more than once, once we have branched to stable match-
ing Mi, resulting from exposed rotation i in matching M, we declare rotations 1, ..., i− 1
as forbidden for matching Mi and all the matchings that result from Mi.That is, we
never eliminate rotations 1, ..., i− 1 from Mi or the matchings branched from Mi, and so
on. This method finds each stable matching in O(n2) time and exactly once.Exploiting



Variants of SM, Algorithms, Complexity, Structure 21

a variation of the graph G(M) we can achieve finding each stable matching in O(n)
time. Needing O(n2) time to construct M0 and the aforementioned graph, the total time
needed to construct all stable matchings is O(n2 + |M|n).

2.1.4.8 Minimum Weight Stable Matching

We observe that the man-optimal stable matching minimizes

∑
(m,w)∈M

mr(m, w)

and maximizes
∑

(m,w)∈M
wr(w, m)

where mr(m, w) and wr(w, m) are just the positions of woman w on m’s preference list
and of m on w’s preference list respectively. Hence the egalitarian stable matching can
be thought as treating men and women symmetrically.

We assign weights c(x, y) to all pairs (x, y). For any matching M we define its weight
w(M) to be the sum,

∑
(x,y)∈M

c(x, y)

and we want to find a stable matching of minimum possible weight.
Let ρ = {(m0, w0), ..., (mr−1, wr−1)} be a rotation; we define its weight w(ρ) as the sum

r−1

∑
i=0

[c(mi, wi)− c(mi, wi+1)].

That is, we define as the weight of a rotation the difference between a stable matching
when the rotation is exposed and when it is eliminated. It is immediate that if S is the
closed subset of the rotation poset associated with stable matching M then

w(M) = w(M0)− ∑
ρ∈S

w(ρ).

Thus a minimum weight stable matching is a stable matching generated by a closed
subset of the rotation poset of maximum total weight. The egalitarian case is analogous.

Finding a maximum weight closed subset of a weighted poset is a classical problem
and many ways of solving this problem are explored in the literature. It has been shown
(Picard [55]) that finding the maximum weight closed subset of a poset can be solved
by finding a minimum cut in an associated flow network. Exploiting the special struc-
ture of the rotation poset (and in particular that of G(M)) it can be shown that finding
the maximum weight closed subset of G(M) and of the rotation poset can be done in
O(n3(log n)2) time (Eirinakis et al. [19]). The egalitarian case is analogous (Gusfield and
Irving [27]) and so is another weighted version of SM, Optimal SM (Irving et al. [33]).
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2.1.4.9 Equivalent Structures

We state in this section two very interesting results regarding SM establishing that
the problem is indeed, very general.

The first result is due to Irving and Leather [37] and establishes that every finite partial
order (or poset) is the rotation poset for an SM instance; meaning that the rotation posets
contain all partial orders. The second result was first established by Blair in [10] and
states that the marriage lattices contain all finite distributive lattices.
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2.2 Two-sided generalizations of Stable Marriage

2.2.1 Stable Marriage with Incomplete Lists and/or Ties

As stated in the introduction, we can drop the constraint of strict preference lists thus
resulting in indifference among several partners. One variant arises if we assume that a
preference list contains all members of the opposite set but possibly some of the entries
have the same rank; thus, there are ties in the preference list and we call this problem,
as stated in the introduction, SM-T. The other variant is to allow preference lists to be
partial orders; we denote this case by SM-P. For SM-T the setting is again n men and n
women each with a preference list over all the members of the other sex. However, we
modify the stability criterion in order to cope with non-strict preferences. In fact our
SM-stability criterion, i.e. Definition 2.1, will be called in this setting super-stability and
the corresponding stable matching super-stable. A strongly stable matching, M, will be
a matching such that for any pair (x, y) not matched none of the following hold

• y >x pM(x) and x ≥y pM(y)

• x >y pM(y) and y ≥x pM(x).

A weakly stable matching, M, will be a matching such that for any pair (x, y) not
matched the following does not hold

• y >x pM(x) and x >y pM(y).

Breaking ties arbitrarily and applying the Gale-Sharpley algorithm, one can find a
weakly stable matching for the SM problem with ties. Also, even though such an in-
stance may not accept a strongly stable or a super stable matching, polynomial-time
algorithms for finding one (O(n4) and O(n2) time respectively), if one exists, can be
found in [31] (Irving). These results can be generalized to SM-P as well. An improve-
ment of complexity (to O(n3)) for finding a strongly stable matching appears in [50] by
Mehlhorn et al.

It is shown in [64], by Spieker, that for SM-P the set of super stable matchings forms
a distributive lattice. Even though this structure is absent for the set of weakly stable
matchings for SM-T (this result is established by a counter example in [58], by Roth), in
the case of strong stability and SM-T the set of stable matchings does form a distributive
lattice as shown in [44], by Manlove. Finally, the lattice structure in the case of strong
stability does not carry over to the case of SM-P, also shown in [44].

The above results suggest that the corresponding problems, which in SM are polyno-
mial time solvable by exploiting the structure of SM, i.e. the stable pair problem and
the optimal and egalitarian stable matching problem, may be polynomial time solvable
in the cases where we mentioned that the set of stable matchings forms a distributive
lattice. However, the problems of finding an egalitarian weakly stable matching and
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checking if a pair is weakly stable in an SM-T instance are both NP-hard [46] (Manlove
et al.).

We may now turn our attention to SM-IL. In this setting, we have n men and n women
and for each person u a strict preference list over some of the people of the other sex but
maybe not all; i.e. some of the persons of the other sex may be unacceptable to u. Here
we allow matchings that don’t exhaust the two sets of men and women. That is, a
matching is a partial one-to-one mapping from the set of men to that of the women. A
matching, M, is said to be unstable if for an unmatched pair, (x, y), all of the following
hold:

• x and y are acceptable to each other;

• x is either unmatched in M,or prefers y to pM(x);

• y is either unmatched in M,or prefers x to pM(y).

A matching that is not unstable is stable.

Modifying the Gale-Sharpley algorithm one can show that a stable matching for
SM-IL always exists (Gale and Sotomayor [25], Gusfield and Irving [27]). Also the set of
stable matchings forms a lattice [25]. An interesting fact is that in all stable matchings
the set of people that is unmatched remains unchanged.

We devote the remaining section to the case of both incomplete lists and indifference.
In particular the problem that we will discuss (denoted SM-ILT) involves preference
lists that are both incomplete and total orders. Extending the notions we used for SM-T
we have here as well, super, strong and weak stability. Also a stable matching may be a
partial mapping like in SM-IL.

Manlove shows in [45], by , that an extension of the corresponding SM-T algorithms
can solve the existence problem for strong and super stability, in an instance of SM-ILT,
in O(n4) and O(n2) time respectively (again in the case of strong stability the bound is
improved in [50]). It is also shown that like in SM-IL, in these problems, the set of per-
sons not matched remains unchanged for all stable matchings. On the other hand, we
can find a weakly stable matching for SM-ILT by breaking the ties arbitrarily and solving
the resulting SM-IL instance. However, different ways of breaking the ties might pro-
duce weakly stable matchings of different sizes (where the size of the stable matching is
the number of the men matched). The problem of finding a weakly stable matching of
maximum size is NP-hard [46].

The (distributive) lattice structure is present in SM-ILT under super stabilility and
is absent under weak stability. We will discuss in a later section that in MM-T under
strong stability a (distributive) lattice structure is present. Since SM-ILT is a special case
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of MM-T (which is the many-to-many generalization of SM) the (distributive) lattice
structure is present under strong stability for SM-ILT also.

The lattice structure present in SM-ILT under super-stability allows a treatment of the
stable pair problem, of the enumeration problem and of the egalitarian stable matching
problem, analogous to that of SM (Scott [62]). We might expect that the same holds for
strong stability.

2.2.2 Hospital - Residents Problem

The HR problem involves two sets of possibly unequal cardinality, the hospitals and
the residents. The residents can be matched to at most one hospital and each hospital
has a “quota”, i.e., the maximum number of residents that can be matched to it. We
note here that the sum of all quotas is not necessarily equal to the cardinality of the
resident set. Each agent (resident or hospital) is associated with a strict preference list
involving some, but possibly not all, of the members of the other set. We observe that an
instance of HR where the two sets have equal cardinality and each hospital has quota
1, is actually an instance of SM-IL. A matching in the setting we described is a partial
mapping from the set of the residents, denotedR to the set of the hospitals, denotedH,
so that none of the hospitals’s quotas is exceeded, and for every matched pair each of
its members is acceptable to the other. A matching, M, is unstable if there is a pair (r, h)
of a resident and a hospital, not matched in M so that

• h and r are acceptable to each other, i.e. h, r appear to each other’s preference list;

• either r is unmatched, or r prefers h to his assigned hospital;

• either h has not exhausted its quota or h prefers r to at least one of his assigned
partners.

We use similar terminology with SM, i.e. r prefers h to h′ if h is above h′ on r’s list and
this is denoted by h >r h′.

A variant of the extended Gale-Sharpley algorithm yields the hospital-oriented and
resident-oriented algorithms which in turn yield the hospital-optimal and resident-
optimal stable matchings. In the resident-optimal matching each resident is matched
to the best stable partner he can have or is unmatched in which case he is unmatched
in all stable matchings. In the hospital-optimal matching each hospital either fills all of
its q available spaces with its q best stable partners or is assigned a set of less than q
residents and exactly this set is assigned to this hospital in all stable matchings. These
algorithms run in O(|R||H|) time. We state a very interesting theorem regarding HR
stable matchings known as the rural hospitals theorem.
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Theorem 2.24. For a given HR instance

• each hospital is assigned the same number of residents in all stable matchings;

• exactly the same residents are unmatched in all stable matchings;

• any hospital that does not exhaust its quota in one stable matching is assigned the
same set of residents in all stable matchings.

A thorough review of HR appears in [27] and the same book is also a good source for
references on the subject.

2.2.2.1 A Reduction: HR→SM and Maximum Cardinality

We can easily reduce HR to SM [27], by replacing each hospital h ∈ H by the set of
hospitals {h1, ..., hqh}, all of which have the same preference list as h, and also, replacing
each appearance of hospital h in any resident’s, r ∈ R, list by the sequence h1, ..., hqh . In
the new instance each hospital has quota 1 . Then any stable matching of the new SM
instance can easily be transformed into a stable matching for the original HR instance
and vice-versa. The constructed SM instance might involve two sets of unequal cardi-
nality and of incomplete lists; these cases can easily be handled with an extension of
the Gale-Sharpley algorithm [27]. In particular, in the case of sets of unequal cardinality
and complete lists, all agents in the smaller set are always matched and all the agents
in the bigger set are partitioned into two sets of agents, those that remain unmatched in
all stable matchings and those that are matched in all matchings.

Thus we can derive an upper bound for the maximum number of stable matchings in
the HR case.

Proposition 2.25. Let I(r, q) denote the set of HR instances involving a set of resi-
dents,R, with |R| = r, a set of hospitals,H, and a quota function q : H →N satisfying
q = ∑

h∈H
q(h). Let f (n) be the maximum number of stable matchings for an SM instance

of size n and f (r, q) be the maximum number of stable matchings of an HR instance
I ∈ I(r, q). Then

f (r, q) ≤ f (min{r, q})

2.2.2.2 Hospital - Residents with Ties

In the HR problem with ties (or HR-T), like in SM-T, we allow ties in the preference
lists. Thus, there appear three notions of stability, i.e., super, strong and weak. Similar
results to those for HR are shown for super stability in [36], by Irving et al. In particu-
lar, even though an instance of HR-T does not always accept a super stable matching,
two algorithms appear in [36] one hospital-oriented and one resident oriented, that con-
struct a super stable matching if one exists. Both algorithms are time-optimal, i.e., they
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run in O(|R||H|) time and, the resulting stable matchings have properties analogous
of those for the HR resident-optimal and hospital-optimal matchings. In the super sta-
ble hospital-optimal matching, each hospital is either assigned the best q super stable
partners it can have (where q is its quota) or fewer than q partners, in which case it
is assigned the same set of partners in all super stable matchings. In the super stable
resident-optimal matching, every resident that is matched is assigned his best super sta-
ble partner and every resident that remains unmatched is unmatched in all super stable
matchings. Also an analogue of the rural hospitals theorem (Theorem 2.24) holds for
super stability. These results can be extended in the case that the preference lists are
arbitrary partial orders (we denote this problem as HR-P).

In the case of strong stability, it is shown in [35], by Irving et al., that a strongly sta-
ble matching does not always exist; still, for HR-T, there is an algorithm that finds one
when one exists or reports that none exists in O(a2) time, where a is the total number of
mutually acceptable pairs (r, h). This algorithm is resident-oriented; a hospital-oriented
algorithm appears in [43], by Malhotra. In contrast to the case of super stability, finding
a strongly stable matching in the HR-P case is NP-hard.

Finally, finding a weakly stable matching is always possible by breaking the ties arbi-
trarily and applying one of the known algorithms for the resulting HR instance.

2.2.2.3 Hospital - Residents with Couples

There is substantially rich literature concerning the extension HR-C of HR, or more
generally the case where residents display some sort of preference over their coworkers
[58, 57, 17, 12, 39, 40, 41, 48, 49]. Here, we consider the formulation of the problem found
in [27] and in [57] by Ronn.

An instance of HR-C comprises one set of hospitals and one set of residents; however,
some of the residents might be married. This results in the following set of constraints:

• each hospital has a strict preference list over a subset of the resident set,R;

• each resident is either a single resident or belongs to at most one couple;

• each single resident has a strict preference list over a subset of the hospital set,H;

• each couple of residents has a strict preference list over the elements of the set
H×H.

In this setting, a matching is unstable if one of the following holds:

• there exists an unmatched pair (r, h) of a single resident and a hospital so that they
are mutually acceptable, r is either unmatched or prefers h to his partner, and h
has a free place or prefers r to his worst assigned partner;
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• there exists a pair (r, h), where resident r is coupled with resident s and (r, s) is
matched to (hr, hs) with hr 6= h, so that (r, s) prefers (h, hs) to (hr, hs) and h has a
free place or prefers r to its worst assigned partner;

• couple (r, s) is matched to (hr, hs) and there exist hospitals h′r, h′s both having free
places or preferring r and s to their assigned worst partners and (r, s) prefers
(h′r, h′s) to (hr, hs).

A matching is stable if not unstable and finding a stable matching is NP-hard [57].

2.2.3 Many - to - Many Problem
The MM problem is a natural generalization of HR. In particular the setting is two

sets, W ,F , (of possibly unequal size) of individuals, each of which has a strict prefer-
ence list over the individuals of the other set that he finds acceptable. Moreover each
person has a quota, i.e. the maximum number of persons from the other set that can be
matched to him. A matching, M, is a collection of pairs (w, f ), w ∈ W , f ∈ F so that

|{ f | (w, f ) ∈ M}| ≤ qw ∀w and |{w | (w, f ) ∈ M}| ≤ q f ∀ f

where qx is the quota of the individual x. A matching is stable if for any unmatched
pair (w, f ), either w and f are unacceptable to each other, or one of w and f , say w, has
exhausted its quota and prefers his worst assigned partner to f .

An O(n2) algorithm, where n = max{|W|, |F |}, for finding a stable matching appears
in [7], by Baı̈ou and Balinski. Actually the algorithm finds the dominant solution under
a natural dominance relation and it is also shown that under this dominance relation
the set of stable matchings forms a distributive lattice.

An O(n6) algorithm is presented in [6], by Bansal et al., for solving the equivalent
of the egalitarian stable matching problem in the MM setting. Also, equivalent results
to those of Section 2.1.4.3 concerning rotations are presented. It is shown in [19], by
Eirinakis et al., that we can optimally find all stable pairs in O(n2) time, exploiting the
rotations. Also, analogous results concerning the enumeration problem, i.e. we can
generate all stable matchings in O(n2 + n|M|) time, and an improvement of the O(n6)
algorithm for the egalitarian stable matching to O(n3(log n)2) are presented in [19]. We
note here, that the complexity of these problems remains as in SM.

2.2.3.1 Many - to - Many with Ties

As expected MM has a natural generalization with ties. In this generalization three
natural notions of stability arise, weak, strong and super stability. In [43], by Malhotra,
a polynomial-time algorithm is presented for finding a strongly stable matching if one
exists and it is shown that the set of strongly stable matchings forms a distributive lat-
tice. The strongly stable matching created by the algorithm is S-optimal, where S is one
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of the two sets: W ,F , meaning that the members of the set S are assigned the best set
of partners they can have in any strongly stable matching.

2.2.4 Stable Allocation Problem

SAL is a generalization of MM. We still have two sets of agents ,W ,F , the work-
ers and the firms, but instead of seeking to match workers to firms, each worker has a
number of hours he can be employed and each firm has a number of hours it can offer
for work. Formally, a SAL problem, (Γ, s, d, π), is a graph Γ defined over a grid and
arrays of reals s, d > 0 and π ≥ 0 as follows. There are two distinct sets of agents,
the row agents (W) and the column agents (F ), and each agent has a strict preference
over the agents of the other set. Each worker w ∈ W has s(w) units of work to offer,
each firm f ∈ F seeks to obtain d( f ) units of work and firm f can contract at most
π(w, f ) units of work with worker w. A horizontal directed edge (( f , w), ( f , w′)) in the
graph expresses firm’s preference for w′ over w and the case is similar for vertical edges.

An allocation x = (x(w, f )) for (Γ, s, d, π) is a set of real numbers that satisfies the
following:

(1) ∑
f∈F

x(w, f ) ≤ s(w), ∀w

(2) ∑
w∈W

x(w, f ) ≤ d( f ), ∀ f

(3) 0 ≤ x(w, f ) ≤ π(w, f ), ∀w∀ f

In constraint (3) we might also put a strictly positive lower bound on x(w, f ).

An allocation is stable if x(w, f ) < π(w, f ) implies that

∑
w′≥ f w

x(w′, f ) = d( f ) or ∑
f ′≥w f

x(w, f ′) = s(w).

A SAL problem is said to be discrete if s, d, and π are integer valued. We observe that
SM is the SAL problem with s(w) = d( f ) = π(w, f ) = 1, SM-IL is the SAL problem with
s(w) = d( f ) = 1 and π(w, f ) = 0 or 1, HR is the SAL problem with s(w) = 1, d( f ) ≥ 1
and π(w, f ) = 0 or 1, and MM is the SAL problem with s(w), d( f ) ≥ 1 and π(w, f ) = 0
or 1. Of course, all the above problems are discrete.

It is possible to find a row or column optimal stable allocation in O (mn) time where m
is the number of edges and n is the number of nodes in the graph ([8] Baı̈ou and Balin-
ski). Moreover, it is shown in [8] that the set of stable allocations forms a distributive
lattice. The time bound of finding a stable allocation is improved to O (m log n) in [16],
by Dean and Munshi.
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2.2.5 Money Markets

Several generalizations of SM have resulted by examining the problem from the eco-
nomic point of view. In these variants, we still have two sides of agents that we wish
to match, but this time a matching compensates each agent involved in it with money.
Using economics-terminology we can incorporate these compensations to the utility
function of each agent.

These generalizations can be thought of as a housing market where agents are buyers
and sellers of at most one house (one-to-one model [63], by Sharpley and Shubik) or a
labor market involving workers and firms (one-to-many model [15, 38], by Crawford,
Knoer and Kelso, Crawford respectively; many-to-many model [59, 60], by Roth). These
models generalize SM, HR and MM respectively.

The game-theoretic approach involved in these variants suggests that a given assign-
ment is to be stable if it belongs to the core of the game, i.e. if no coalition of agents
can improve their positions. Also, the use of monetary compensation gives rise to more
elaborate schemes of preferences than simply ordering the opposite set of agents, and
relaxations such as an agent not having a quota but an unrestricted number of places to
fill in an assignment. In particular the preferences of the firms are rankings over sub-
sets of the worker set according to salary requirements etc. These rankings are achieved
through so-called choice functions for each firm that choose from each subset W ′ of the
worker set a subset of W ′ that the firm would hire if W ′ and the firm were the only
ones present in the market. It has been shown that if a stable assignment is to exist the
choice functions must possess the substitutability property which put in simple words
suggests that if a firm would like to employ a worker it would still like to employ him
if another worker was deleted from the market.

Like in the standard versions, the two sides of the market are always in opposition
meaning that if all agents on one side prefer matching M to M′ all agents on the other
side prefer M′ to M.

A generalization of the stable allocation problem where preferences are expressed
with choice functions is explored by Alkan and Gale in [5].

In the very interesting work of Fleiner [22], it is shown that some of these generaliza-
tion results follow directly from the fixed point theorem of Knaster and Tarski.
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2.3 Other two sided variants

2.3.1 Exchange Stability

What we have not considered so far is another stability criterion. We now define
such a criterion, i.e., exchange stability, in the context of SM. A pair {x0, x1} of two in-
dividuals of the same sex will be called an exchange blocking pair for matching M if
pM(x1) >x0 pM(x0) and pM(x0) >x1 pM(x1); that is, if x1 prefers x0’s partner and x0
prefers x1’s partner. A matching will be called exchange-stable if it admits no exchange-
blocking pair.

It is shown in [14], by Cechlárová and Manlove, that finding an exchange-stable
matching is NP-hard. Other relaxations of the exchange-stability criterion are also ex-
plored in [14], resulting in polynomial time solutions as well as NP-hardness for the
variants considered.

2.3.2 One Sided Preferences

The two-sided setting with only the one side having preferences over the other (and
the other being indifferent) combined with the notion of rank-optimality was first stud-
ied in [29], by Irving, and then in [32], by Irving et al.

In this setting, a rank-maximal matching is a matching between the two sets where
the number of individuals matched to their first choice is maximal, and subject to that
the number of individuals matched to their second choice is maximal, etc.

In particular, the rank of a matched pair (i, j) is the position of j on i’s preference list
and it is shown that if C is the maximal rank used on a rank-maximal matching, n is the
size of the instance (i.e., of each set) and m is the total size of the preference lists, the
problem can be solved in O(min{n + C, C

√
n}m) time. We note that incomplete lists

and ties are allowed.

There are also other optimality criteria related to one sided preference lists; two of
them are Pareto-optimality ([1, 4, 61], by Abraham et al., Abdulkadiroglu et al. and
Roth et al. respectively), and popularity [2, 3, 47, 51] (by Abraham et al., Manlove et al.
and Mestre respectively).
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Chapter 3

Stable Roommates

3.1 Stable Roommates Problem

The stable roommates problem is an one-sided generalization of SM, meaning that we
drop the two set constraint. In particular, we have now one set of individuals, of even
cardinality, and wish to partition it into pairs. Each individual has a strict preference
list over all the other members of the set. Of course, we want the partition to be stable
i.e. no unmatched pair to prefer each other to their assigned partners. We use the same
notation and terminology that we used for SM except for the fact that now a pair of two
individuals is a set, {x, y}, instead of a vector. So a matching, M, is a partition of the
individuals into pairs; if y is above z on x’s list we say that x prefers y to z and denote
it by y >x z; a stable matching is a matching where for any unmatched pair {x, y},
pM(x) >x y or pM(y) >y x.

3.1.1 Existence Problem

Unlike SM, an SR instance may admit no stable matching. Combining the ideas used
in the extended Gale-Sharpley algorithm and those involving rotations, an O(n2)-time
algorithm for determining whether a stable matching exists, and if it does to produce
such a matching, appears in [30] (Irving). Actually, the notion of a rotation was firstly
invented in [30] for the stable roommates problem and then used in [37].

3.1.2 Cardinality and Maximum Cardinality Problems

Let I be an instance of SR of size n. We denote by R, the set of stable matchings of I.
Also, we denote by r(n) the maximum number of stable matchings that an instance of
SR of size n can have.

33



34 G. Stathopoulos

Lemma 3.1. Given an SM instance of size n there is an SR instance of size 2n that
admits precisely the same stable matchings.

Proof. We generate the SR instance by appending to the list of every individual all the
persons of the same sex in an arbitrary order. Any stable matching of the SM instance
remains stable for the SR instance and any matching for the SR instance that pairs two
men together must pair two women together as well; the unmatched pair of one of these
two men with one of the two women blocks the matching.

Corollary 3.2. It is immediate that r(n) ≥ f (n
2 ), where f (n) is the maximum number

of stable matchings for an SM instance of size n.

Corollary 3.3. The cardinality problem is #P-complete for SR also.

There are many ways of counting the possible number of ways to divide 2n objects
into unordered pairs. One of those ways is the following. First we choose n objects out
of the 2n objects. This can be done in 2n!

n!n! ways. We want these n objects to belong to
different pairs. Now the number of ways we can put the remaining n objects with the
already chosen ones so as to form the pairs is n!, so that the total number of ways so
far is 2n!

n! . We now observe that for a given partition of the 2n items in pairs, there are
2n ways to follow the previous procedure and obtain this partition. This means that
we have counted each possible partition 2n times, so that the total number of possible
partitions is 2n!

n!2n .

This proves that the obvious upper bound for r(n) is n!
n
2 !2

n
2

. We will prove that

r(2n) ≤ 2n!
n!2n

f (n)
n!

.

Definition 3.4. Let I be an instance of the Stable Roommates problem involving per-
sons 1, .., 2n. We define the {i1, i2, ..., in} projection of I , using the notation I(i1, ..., in),
where ik ∈ {1, .., 2n}, ∀k, to be the SM instance involving {i1, ..., in} as the men and
{1, ..., 2n}\{i1, ..., in} as the women with preference lists the reduced preference lists
from the SR instance, i.e. the preference list for man ik is the original preference list of I
with all the men removed.

Definition 3.5. Let I be an instance of SR. We define the {i1, i2, ..., in} projection ofR ,
using the notationR(i1, ..., in), where ik ∈ {1, .., 2n}, ∀k, to be the subset ofR containing
all stable matchings where each person of the set {i1, i2, ..., in} is matched with a person
of the set {1, ..., 2n}\{i1, ..., in}.
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Proposition 3.6. Let I be an instance of the SR problem. Then if S ∈ R(i1, ..., in), S is
a stable matching for I(i1, ..., in).

Proof. S is indeed a matching between the men and the women of I(i1, ..., in) by defi-
nition. If S is blocked in I(i1, ..., in) then S must be blocked in I since the entries of the
preference lists in I(i1, ..., in) have the same order in the preference lists of I.

A projection obtained in the above way can have at most f (n) stable matchings. Now
we can choose n men out of 2n in 2n!

n!n! ways thus covering all stable matchings of I. So
the total number of stable matchings for I is so far at most 2n!

n!n! f (n). We now observe
that for a stable matching of I there are 2n ways of doing the above process to obtain it.
So, we have counted each stable matching of I, 2n times. This proves that

Proposition 3.7. The maximum number of stable matchings for an SR instance of
order n is

r(n) ≤ n!
n
2 !2

n
2

f (n
2 )

n
2 !

Using the upper bound for SM established in section 2.1.4.4 we get that

r(n) ≤ n!
n
2 !2

n
2

1
2

n
2−3

, ∀n = 2k ≥ 8

3.1.3 Structure and related problems

It has been shown thatR possesses a semilattice1 structure under a relation that gen-
eralizes dominance as it is defined for SM. Exploiting the structure of R and the algo-
rithm that finds a stable matching , when one exists, similar problems to those defined
in Section 2.1.2 can be solved. In particular all stable pairs can be found in O(n3 log n)
time, all stable matchings can be generated in O(n3 log n + n2|R|) time and a minimum
regret stable matching can be found in O(n2) time. (A minimum regret stable matching
is an analogue of the weighted stable matching defined in Section 2.1.2. Here, the regret
of a person is the position his partner occupies on his list, and the regret of a matching is
the maximum regret of any person in the matching. So the problem is to find the stable
matching with minimum regret.) The minimum regret stable matching is also defined
in the bipartite case (Gusfield [26]). All the above results can be found in [27]. Optimal
Stable Roommates, an analogue of the Optimal SM, i.e. the weighted version of SM, is
shown to be NP-hard by Feder in [21].

1A semilattice is like a lattice; the only difference is that it has just one operation under which it is
closed: greatest lower bound or least upper bound.
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3.2 Generalizations of the Stable Roommates
Problem

3.2.1 Stable Roommates with Incomplete Lists and/or Ties

If we just allow unacceptable partners, i.e. incomplete lists, then analogous results
to those for SM can be deduced [27]. If however, we allow ties in the preference lists
the situation changes dramatically. In particular, we consider the corresponding stabil-
ity criterion to that of weak stability for SM. An unmatched pair {x, y} will block the
matching if x strictly prefers y to his partner and y strictly prefers x to his partner.

In the case of SM, this variant can easily be handled by breaking ties, arbitrarily, and
applying the Gale-Sharpley algorithm. If we attempt to use this technique here we do
not obtain the same result since the resulting instance might admit no stable matching
but a different breaking of the ties could produce a solution. It is shown in [57] that the
problem of finding a stable matching when ties are allowed in SR is NP-hard.

Irving and Manlove show in [34] that different weakly stable matchings (in the case
of incomplete lists and ties) may have different cardinality and that finding a weakly
stable matching of maximum cardinality is NP-hard. They also present a linear time
algorithm for finding a super-stable matching in the SR-T case and they extend their
algorithm to cope with incomplete lists and partially ordered preference lists (SR-P).

3.2.2 3-Person Stable Assignment Problem

There is a natural generalization of SR that asks whether we can partition a set of 3k
elements into k triples while maintaining stability. Formally, we are given a set contain-
ing 3k elements and each element (person) has a strict preference list over all possible
pairs he can be matched with. A destabilizing triple (x, y, z) of matching M, is an un-
matched triple where all of its members prefer the other two (as a pair) to the pair they
are assigned in M. This formulation of the problem has been shown to be NP-hard
[53],by Ng and Hirschberg. Other formulations of the problem where the preferences
are consistent (i.e. a person prefers x to y consistently for all possible pairs) and even
when ties are allowed are also shown to be NP-hard in [28], by Huang. These results
have been motivated by one of Knuth’s posed questions regarding stable matchings
[42].
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3.2.3 Stable Partnership Problem

A very common formalization of SM and its variants involves graphs. SM can be
thought of as the problem where we are given a complete bipartite graph (V, E). Then
the incident edges with v ∈ V, denoted E(v) define the acceptable partners of v (when
the graph is not complete we have the incomplete lists case) and for each v a linear order
ranks the elements of E(v) resulting in v’s preferences over its acceptable partners. A
stable matching is simply a subset S of E of disjoint edges so that for every e ∈ E either
e ∈ S or there is an edge m ∈ S that has a common vertex with e, say v, and v prefers m
to e. The same applies to SR only now the graph is not bipartite.

Instead of a linear order on E(v) the rankings of v can be expressed through choice
functions for non-bipartite graphs, much like in the case of money markets. In particular
the stable partnership problem is defined as follows; we are given a graph (V, E) and
for each v ∈ V a choice function Cv : 2E(v) → 2E(v) that maps each set X of incident
edges with v to a set X′ that v chooses from X. We assume that choice functions are
substitutable, meaning that if x 6= y and x ∈ Cv(X) then x ∈ Cv(X\{y}). We seek
with these inputs to find a stable partnership, i.e. a subset S of E that has the following
properties:

• (Individual Rationality) For every vertex v, Cv(S(v)) = S(v), where S(v) are the
incident edges with v that belong to S.

• (Stability) There exists no blocking edge e = {x, y} /∈ S such that e ∈ Cx(S(x) ∪
{e}) and e ∈ Cy(S(y) ∪ {e}).

An example of a substitutable choice function is a linear choice function: E(v) is linearly
ordered and Cv(X) is the minimal element of X with regard to the linear order. Then, if
all choice functions are linear, a stable partnership is a stable matching.

The stable partnership problem is studied by Fleiner in [23] and it is shown that if the
choice functions satisfy a monotonicity property also, then the problem is solvable in
polynomial time but for random choice functions the problem is NP-hard.

3.2.4 Stable Activities and Stable Multiple Activities Problems

We can easily modify the SR algorithm to treat cases where the underlying set is of
odd cardinality and the lists are incomplete. This formulation of the problem is easily
expressed with graphs. In particular we consider an SR instance to be a finite simple
graph G = (V, E) such that with each vertex v ∈ V is associated a linear order on the
set of edges incident with v, E(v). Then a stable matching is a subset, S, of E, of disjoint
edges, such that there is no blocking edge e /∈ S, i.e. an edge such that each of its vertices
either is not covered by S or it prefers e to the edge of S incident with it.
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In an instance of the Stable Activities problem we consider one set of persons and
several activities between each pair of individuals. Each individual ranks all the activ-
ities he can participate in and we want to choose a subset of all activities so that each
individual participates in at most one activity and there is no blocking activity, i.e. an
activity that both potential participants prefer to the one they are assigned. With graph
terminology, we are given a finite multigraph, G = (V, E), and a linear order on E(v) is
associated with each vertex, v. We say that a subset, F, of E dominates edge e if there is
a vertex, v, of e, and an edge f in F incident with v such that v prefers f to e. We denote
by D(F) all the edges dominated by F. Then a stable matching is a subset, M, of E such
that D(M) = E\M. It is straightforward to see that SR is the special case of SAC when
the graph is simple.

In an instance of the Stable Multiple Activities problem we are given a finite multi-
graph, G = (V, E), and a linear order on E(v) is associated with each vertex, v ∈ V.
Also, we are given a quota function defined on the vertices, b : V →N. We will say that
a subset F, of E, dominates edge e if there is a vertex, v, of e, and edges f1, ..., fb(v) ∈ F
incident with v so that v prefers all fi to e. We denote all edges dominated by F by
D(F). Then a stable matching is a subset, M, of E, such that D(M) = E\M. Again it is
straightforward to see that MM is the special case of SMA when the underlying graph
is simple and bipartite.

It is shown by Cechlárová and Fleiner [13] that both the above generalizations of SR
can be reduced to SR. Thus any algorithm that solves SR can be used to solve these prob-
lems as well. In the rest of the section we outline the reduction from the more general
case of SMA to SR which is also valid for the bipartite case.

The construction involves two steps; in the first step we transform an instance of SMA
to an instance of SMA with the so-called one-to-many property, i.e. each edge having a
vertex, v, with b(v) = 1. This is achieved if we remove each edge e = {u, v}, and add
the edges

{u, ue
0}, {ue

0, ue
1}, {ue

1, ve
2}, {ve

2, ve
0}, {ve

0, v}, {ve
0, ve

1}, {ve
1, ue

2}, {ue
2, ue

0}.

That is we put between the vertices u, v, a six-cycle. Any new vertex, x, we add has
b(x) = 1 while the vertices of the original instance have the same quota. It is obvious
that the new instance has the one-to-many property. Also, if we modify the preferences
of the vertices (new and old) to suit our needs we can achieve solutions of the two in-
stances being in one-to-one correspondence. In the second step we reduce the newly
constructed instance to an SR instance with a construction very much similar to the one
in Section 2.2.2.1. That is we make multiple copies of all vertices, x, that have quota
b(x) > 1. It can be shown that the solutions of the final SR instance are in one-to-one
correspondence with the solutions of the original instance. In particular each stable
matching of the original instance can be transformed into a stable matching for the SR
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instance and each stable matching of the SR instance results from such a transformation.

The reduction is valid if the graph is bipartite so the Gale-Sharpley algorithm can be
used to solve SMA in its bipartite form, and its special case MM.

3.2.4.1 Maximum Cardinality

A byproduct of the reduction is that it is possible to produce upper bounds for the
maximum number of stable matchings in an SMA instance, bipartite or not.

Since the reduction produces , for the most cases, SM or SR instances with incomplete
lists, we need to address the SM case with incomplete lists and then it is a simple matter
to count the the extra nodes added and produce an upper bound. It is a fact that dif-
ferent SM instances with incomplete lists, even with the same total number of entries
in the men’s lists (i.e. edges) might admit different bounds. It is easy to see that an in-
stance that has more entries in the lists has potentially more stable matchings since for
any instance with incomplete lists there is an instance with more entries having at least
as many stable matchings. Let f (n, m) be the maximum number of stable matchings
that an instance can have, involving n men in its GS-lists and m entries in the GS-lists of
these n men. Let f (n) be the maximum number of stable matchings for an SM instance
of size n (with complete lists). Then

f (n, m) ≤ m− n
2

f (n− 2) + 1.

The above bound is very loose but it can be substantially improved if it is tailored for
each particular instance. In particular each instance will have a GS-list with the fewest
entries, k, than any other list. Also, for a particular instance we can count the maximum
number of entries, m1, m2, for all possible 2 and 3 projections of the form I(i1, j1)(i2, j2),
etc. So the number of stable matchings for a particular instance can be bounded by the
quantity

k f (n− 2, m1) +

(
m− n

2
− k
)

f (n− 3, m2) + 1.

Of course the bound is not tight but it couldn’t have been since counting the number of
stable matchings for a particular instance is #P-complete.
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Chapter 4

Higher Dimensions

4.1 Three Sided Stable Marriage

Another generalization of SM is generated if we consider more than two sets in the
matching scheme. Many formulations exist for the case where three sets are involved
but they are all characterized by NP-hardness.
In particular, in the model by Ng and Hirschberg [53], three sets of equal cardinality are
involved and each agent ranks all possible pairs of agents from the Cartesian product
of the other two sets. A matching is unstable if there exists a destabilizing triple, i.e., an
unmatched triple that each of its members prefers the the triple to its assigned one in
the matching. The corresponding existence problem in this setting is NP-hard.

Other formulations of the problem where the preferences are consistent (i.e. a person
prefers x to y consistently for all possible pairs) and even when ties are allowed are also
shown to be NP-hard in [28] by Huang.

In another formulation, where preferences are cyclic (i.e. if sets A, B, C, are involved
all a ∈ A rank the members of B, all b ∈ B rank the members of C and all c ∈ C rank the
members of A. ) the problem is NP-hard when incomplete lists are allowed as shown
by Biró and McDermid in [9]. Also shown in this paper is that the problem with cyclic
preferences under strong stability is also NP-hard. The preferences in both formulations
are assumed strict and a matching is stable if there exists no triple (a, b, c) such that a
prefers b to b′ ∈ B with which it is matched, b prefers c to c′ with which it is matched
and c prefers a to a′ with which it is matched. A matching is strongly stable if there
exists no triple not in the matching such that a prefers b to b′ to which it is matched or
b = b′ and respectively the same holds for b, c.

The variant of cyclic preferences with complete lists has been shown to always have
a solution in the cases that the sets have at most 3 agents (Boros et al. [11]) or at most 4
agents (Eriksson et al. [20]).
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4.2 Stable Networks

In this section we describe the model of stable supply chain networks, as it is pre-
sented by Ostrovsky in [54], a model that contains all models of Section 2.2. Supply
chain networks are a natural generalization of two-sided markets into an arbitrary num-
ber of sides in a market. In particular there is a set of individuals (basic suppliers) that
can supply only, a set of individuals (final consumers) that can consume only, and sev-
eral sets of individuals that can supply and consume. Formally, we consider the market
as a finite set of nodes, A, with an exogenously given partial ordering, ≺, on A, that
defines possible trading relationships. That is, a ≺ b means that b can potentially sell
something to a and then, a is a downstream node for b. By transitivity, there are no loops
in the market.

Relationships between nodes are represented by bilateral contracts of the form c =
(s, b, l, p) where s ∈ A is the seller of the unit of a good with serial number l, sold at
price p to buyer b ∈ A. Of course b ≺ s. The set of possible contracts C is finite and is
given exogenously.

Nodes have preferences over sets of contracts that involve them as the buyer or the
seller. For an agent, a ∈ A, and a set of contracts, X, let Cha(X) be a’s most preferred
subset of X, let Ua(X) be the set of contracts in X in which a is the buyer (i.e. upstream
contracts) and, let Da(X) be the set of contracts in X in which a is the seller (i.e. down-
stream contracts). Preferences are strict i.e. Cha(X) is a function.

Preferences are same-side substitutable if for any two sets of contracts, X, Y, such that
D(X) = D(Y) and U(X) ⊆ U(Y) we have that

U(X)\U(Ch(X)) ⊆ U(Y)\U(Ch(Y))

and if for any two sets of contracts, X, Y, such that D(X) ⊆ D(Y) and U(X) = U(Y) we
have that

D(X)\D(Ch(X)) ⊆ D(Y)\D(Ch(Y)).

The above is a generalization of substitutable choice functions and the two notions are
equivalent for two-sided markets.
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Preferences are cross-side complementary if for any two sets of contracts, X, Y, such that
D(X) = D(Y) and U(X) ⊆ U(Y) we have that D(Ch(X)) ⊆ D(Ch(Y)) and for any
two sets of contracts, X, Y, such that D(X) ⊆ D(Y) and U(X) = U(Y) we have that
U(Ch(X)) ⊆ U(Ch(Y)). Cross-side complementarity is automatically satisfied in two-
sided markets.

A network is a set of contracts between nodes of A. Let µ(a) denote the set of con-
tracts involving a in network µ. Network µ is individually rational if for any agent a,
Cha(µ(a)) = µ(a).

A chain is a sequence of contracts, {c1, ..., cn}, n ≥ 1, such that for any i, bci = sci+1 .
That is, the buyer of contract ci is the seller of contract ci+1.

For a network µ a chain block is a chain {c1, ..., cn} that satisfies

• ∀i ≤ n, ci /∈ µ

• c1 ∈ Chsc1
(µ(sc1) ∪ c1)

• cn ∈ Chbcn
(µ(bcn) ∪ cn)

• ∀i < n, {ci, ci+1} ⊆ Chbci
(µ(bci) ∪ ci ∪ ci+1).

That is, a chain block is a downstream chain of contracts not belonging to µ such that
both the buyer and the seller of each contract is willing to add the contract to its con-
tracts in µ.

A network µ is chain stable if it is individually rational and has no chain blocks.

It can be proved that under same-side substitutability and cross-side
complementarity, there always exists a chain stable network. The proof relies on ob-
jects called pre-networks. A pre-network is a set of arrows , R, from nodes in A to other
nodes in A. Each arrow r ∈ R is vector (or, dr, cr), with origin or ∈ A, destination dr ∈ A
and a contract cr attached, involving or and dr. If or is the seller and dr is the buyer of cr,
then, the arrow is downstream, else, it is upstream. For a pre-network ν and a node, a,
we define

ν(a) = {c ∈ C | r = (or, a, c) ∈ ν}.

For each pre-network ν we define the pre-network

T(ν) = {r ∈ R | cr ∈ Chor(ν(or) ∪ cr)}.
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It is proved in [54] that the chain stable networks are in one-to-one correspondence
with the fixed points of mapping T. Thus defining a partial ordering on the set of pre-
networks and showing that T is monotone under this relation is enough to guarantee
the existence of a fixed point of T and of a chain stable network. It is also proved that
the set of chain stable networks forms a lattice and that the set of basic suppliers prefers
the minimal element of the lattice to any other chain stable network and that the set
of final consumers prefers the maximal element of the lattice to any other chain stable
network.

For completeness, we follow some of the proofs found in [54]. First let us define a
function, F, on pre-networks. For any pre-network, ν, we define a network, F(ν), as
follows.

F(ν) = {c ∈ C | (sc, bc, c) ∈ ν and (bc, sc, c) ∈ ν}

Lemma 4.1. For any fixed point, ν∗, of T i.e., T(ν∗) = ν∗, the network µ∗ = F(ν∗), is
chain stable.

Proof. We can assume that there are no contracts in µ∗ that differ only in price, since,
each agent associated with two contracts that differ only in price, seeks to maximize his
utility function, thus, choosing only one.

Let us first show that µ∗ is individually rational. For that we need to show that for
any agent a, µ∗(a) = Cha(µ∗(a)). To that end, we show that µ∗(a) = Cha(ν∗(a)).

c ∈ µ∗(a) ⇐⇒ (a, b, c) ∈ ν∗ & (b, a, c) ∈ ν∗ , where b=sc or bc

⇐⇒ (a, b, c) ∈ T(ν∗) & c ∈ ν∗(a)
⇐⇒ c ∈ Cha(ν

∗(a) ∪ c) & c ∈ ν∗(a)
⇐⇒ c ∈ Cha(ν

∗(a))

Now it is immediate that µ∗(a) = Cha(ν∗(a)) = Cha(Cha(ν∗(a))) = Cha(µ∗(a)).

Next, we need to show that there are no chain blocks. To that end, we assume that
(c1, ..., cn) is a chain block of µ∗, and si and bi are the seller and the buyer of con-
tract ci. Since (c1, ..., cn) is a chain block, c1 ∈ Chs1(µ

∗(s1) ∪ c1). This means that c1 ∈
Chs1(ν

∗(s1) ∪ c1), otherwise, if c1 /∈ Chs1(ν
∗(s1) ∪ c1), from same-side substitutability,

we have
Chs1(ν

∗(s1) ∪ c1) = Chs1(ν
∗(s1)) = µ∗(s1).

This, combined with the fact that µ∗(s1) ⊆ ν∗(s1) means that c1 /∈ Chs1(µ
∗(s1) ∪ c1), a

contradiction. Now since, c1 ∈ Chs1(ν
∗(s1) ∪ c1), the arrow r1 = (s1, b1, c1) must be in

T(ν∗) = ν∗. Also, since (c1, ..., cn) is a chain block, {c1, c2} ⊆ Chs2(µ
∗(s2) ∪ c1 ∪ c2). If

neither c1 nor c2 are in Chs2(ν
∗(s2)∪ c1 ∪ c2), then by same-side substitutability we have

Chs2(ν
∗(s2) ∪ c1 ∪ c2) = Chs2(ν

∗(s2)) = µ∗(s2).
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This, like before, combined with the fact that µ∗(s2) ⊆ ν∗(s2) produces the following
contradiction: c1, c2 /∈ Chs2(µ

∗(s2) ∪ c1 ∪ c2). If, only c2 /∈ Chs2(ν
∗(s2) ∪ c1 ∪ c2) then

then by same-side substitutability we have

c1 ∈ Chs2(ν
∗(s2) ∪ c1 ∪ c2) = Chs2(ν

∗(s2) ∪ c1)

and so, the arrow r2 = (s2, s1, c1) ∈ T(ν∗) = ν∗. Since s2 = b1 all of the above imply that
c1 ∈ µ∗, a contradiction since (c1, ..., cn) is a chain block. Proceeding inductively there is
an arrow ri = (si, bi, ci) ∈ ν∗ for every i ≤ n where si+1 = bi, ∀i < n. Doing the reverse
process, i.e., starting from bn and going towards sn we can show that there is an arrow
r′n = (bn, sn, cn) ∈ ν∗, which means that cn ∈ µ∗, a contradiction. Therefore, µ∗ = F(ν∗)
is chain stable.

Remark 4.2. It can be shown that the reverse of Lemma 4.1 holds i.e., for any chain
stable network µ, there exists a unique fixed point pre-network ν such that F(ν) = µ.

In order to prove that there exists a chain stable network, it now suffices to show that
T has a fixed point. To establish that fact, we introduce a partial ordering on the set of
pre-networks. Let ν1, ν2, be two pre-networks. Then, ν1 is said to be less than or equal
to ν2 (ν1 ≤ ν2) if the set of downstream arrows in ν1 is a subset of the set of downstream
arrows in ν2, while the set of upstream arrows in ν1 is a superset of the set of upstream
contracts in ν2. Let νmin be the pre-network that includes all possible upstream arrows
and no downstream arrows, and let νmax be the pre-network that includes no upstream
arrows and all possible downstream arrows. By construction, for any pre-network ν,
νmin ≤ ν ≤ νmax. Actually, under the relation ≤, the set of pre-networks forms a finite
lattice, with minimal element, νmin, and maximal element, νmax. In particular, if ν1, ν2
are two pre-networks, then, the pre-network ν1 ∨ ν2 comprises the union of downstream
arrows of ν1 and ν2, and the intersection of upstream arrows of ν1 and ν2. The pre-
network ν1 ∧ ν2 is defined analogously.

Lemma 4.3. For any pair of pre-networks ν1 and ν2 such that ν1 ≤ ν2, we have
T(ν1) ≤ T(ν2).

Proof. We need to show that all downstream arrows in T(ν1) belong to T(ν2) and that
all upstream arrows in T(ν2) belong to T(ν1). Let us consider a downstream arrow, r in
T(ν1). By definition of T we have that the contract attached to r,

cr ∈ Chor(ν1(or) ∪ cr).

Also, the set of downstream arrows in ν1 is a subset of the set of downstream arrows in
ν2, and so, the set of contracts attached to downstream arrows pointing to or in ν1 is a
subset of the corresponding set in ν2, i.e., Uor(ν1(or)) ⊆ Uor(ν2(or)). Analogously, we
have Dor(ν1(or)) ⊇ Dor(ν2(or)). We have already stated that

cr ∈ Chor(ν1(or) ∪ cr) = Chor(Uor(ν1(or)) ∪ Dor(ν1(or)) ∪ cr.
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Same-side substitutability implies that agent or does not accept any contract in
Uor(ν1(or)) ∪ Dor(ν1(or)) ∪ cr that he had rejected when choosing from
Uor(ν1(or)) ∪ Dor(ν2(or)) ∪ cr, which means that,

cr ∈ Chor(Uor(ν1(or)) ∪ Dor(ν2(or)) ∪ cr).

Now by cross-side complementarity we have that

cr ∈ Chor(Uor(ν2(or)) ∪ Dor(ν2(or)) ∪ cr) = Chor(ν2(or) ∪ cr)

which means that r ∈ T(ν2).
The argument is symmetric for upstream arrows.

Now, repeatedly applying T to νmin we form an increasing sequence of pre-networks:

νmin ≤ T(νmin) ≤ T2(νmin) ≤ · · · ≤ Tn(νmin) ≤ · · ·

which, because the set of pre-networks is finite, must produce a fixed point,

i.e., ∃n0 : Tn0(νmin) = Tn0+1(νmin).

We denote Tn0(νmin) by ν∗min and, applying F to this fixed point we get a chain stable
network µ∗min = F(ν∗min). We therefore have:

Theorem 4.4. Mapping T has a fixed point, thus, there exists a chain stable network.

Using as a starting point νmax we can construct another fixed point of T, ν∗max. These
two fixed points, are actually the minimal and maximal elements of the lattice of fixed
points, guaranteed to exist from Tarski’s Fixed Point Theorem on complete lattices
(Tarski, [65]). We conclude this chapter by stating a theorem that treats the Dominance
problem for chain stable networks:

Theorem 4.5. Let µ∗min = F(ν∗min), µ∗max = F(ν∗max), and let µ∗ be a chain stable
network. Then any basic supplier (weakly) prefers µ∗min to µ∗ and µ∗ to µ∗max, and any
final consumer (weakly) prefers µ∗max to µ∗ and µ∗ to µ∗min.1

1Weak preference suggests that an agent is better off when choosing from a larger set.



Chapter 5

Future Work

One of the purposes of this review was to identify potential open problems in the
literature.

Reviewing Figures 1.2, 1.3, one can pose several questions that, to the best of my
knowledge, haven’t been answered yet. Of course most of these questions have already
been posed by several authors but for completeness we state them as well.

A first question is whether MM-T and MM-P, under super-stability, can be solved in
polynomial time.

Also, the Stable Allocation problem and all problems involving choice functions , to
the best of my knowledge, have not yet been examined (in print) under the scope of
indifference.

Another question is whether SR-T and SR-P under strong stability can be solved in
polynomial time.

Finding if the set of solutions of HR-T and HR-P under super stability possesses a
lattice structure is an interesting open question. One can ask the same question for SR-T
under super and strong stability and for the stable partnership problem; in these cases,
however, we would be looking for a semi-lattice structure.

Finally, all problems where a lattice structure is present are candidates for polynomial-
time solutions regarding the corresponding Stable-Pair and Egalitarian problems and
also for efficient enumeration of all solutions. For some cases we don’t have answers
yet as to whether these problems can be efficiently solved, e.g. for MM-T under strong
stability.
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At this point we conclude with a summary table of known results for some of the
problems considered in this thesis. For the problems that are not included in the tables,
either I have not found any relevant references, or they can be handled by reductions.
Combined with Figures 1.1, 1.2, 1.3, and the implied reductions therein, this table can
serve as a guide for the whole document. An entry “P” in the table means that the
problem is polynomially solvable; an entry “NP” means that a problem is NP-hard;
“No” means that there is no lattice structure, thus the question can’t be answered; “#P”
means it is #P-complete and, “Unknown” means that I have not found any relevant ref-
erences.

SM SM-T & SM-ILT SM-T & SM-ILT
Weak Super

Dominance P No P
Min-Weight P NP Unknown
Egalitarian P NP P

Minimum Regret P NP P
Cardinality #P #P #P

Enumeration Efficient Unknown Efficient
Pair Stability P NP P

SM-T & SM-ILT MM SAL SR
Strong

Dominance P P P No
Min-Weight Unknown P P [16] NP
Egalitarian Unknown P P NP

Minimum Regret Unknown Unknown Unknown P
Cardinality #P #P #P #P

Enumeration Unknown Efficient Unknown Efficient
Pair Stability Unknown P Unknown P
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